
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Offshore wind farm wake modelling using deep
feed forward neural networks for active yaw
control and layout optimisation
To cite this article: S Anagnostopoulos and MD Piggott 2022 J. Phys.: Conf. Ser. 2151 012011

 

View the article online for updates and enhancements.

You may also like
Prospects for generating electricity by
large onshore and offshore wind farms
Patrick J H Volker, Andrea N Hahmann,
Jake Badger et al.

-

Investigation and validation of wake model
combinations for large wind farm modelling
in neutral atmospheric boundary layers
E Tromeur, S Puygrenier and S Sanquer

-

Experimental study of the impact of large-
scale wind farms on land–atmosphere
exchanges
Wei Zhang, Corey D Markfort and
Fernando Porté-Agel

-

This content was downloaded from IP address 128.178.141.141 on 25/08/2022 at 08:32

https://doi.org/10.1088/1742-6596/2151/1/012011
/article/10.1088/1748-9326/aa5d86
/article/10.1088/1748-9326/aa5d86
/article/10.1088/1742-6596/749/1/012007
/article/10.1088/1742-6596/749/1/012007
/article/10.1088/1742-6596/749/1/012007
/article/10.1088/1748-9326/8/1/015002
/article/10.1088/1748-9326/8/1/015002
/article/10.1088/1748-9326/8/1/015002
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvuzmlhx6JzokVFlTyhUM9SuKLL5GuVQqzA3Xhw5Nac_gaDZK0O3jnrEm71WKXwSYAUirYp_oT2uaZcBTyfpeG4wURAgwIJTfg1h67LJpBvN17O_32wC9sZlTmY5yGlLVqN6Yk_R6xnToRNvGy3uuGz_RJv5NF3n10KQZCPUc_ybzcnCHBNBTjU0mY0UBIzgPpWpz1ZNq8_XmdHIrtlfHnBMHb-tIDQOHsd43B8WAAOXW0juO4tI8s5g0YEI_T3-M9Cgu39hvW_GyYTeG5wxfD325u75GJVnRV-tse42OOjEw&sai=AMfl-YQyQk3hWek81Pk0p05HpXWZmL2cxK0QFi-kVeLjTmMu2vrDaM-PF1hECid3xx6zARUh3wB0XpRyz3wgEf8&sig=Cg0ArKJSzAaJVzGqCLC2&fbs_aeid=[gw_fbsaeid]&adurl=https://community.electrochem.org/eWeb/DynamicPage.aspx%3Fwebcode%3DEventInfo%26Reg_evt_key%3Dcdc97533-dd9f-4411-a7c2-faa5b85a1388%26utm_source%3DIOP%26utm_medium%3DADV%26utm_campaign%3D242Reg


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

WindEurope Electric City 2021
Journal of Physics: Conference Series 2151 (2022) 012011

IOP Publishing
doi:10.1088/1742-6596/2151/1/012011

1

1 Corresponding author, Mechanical Engineering, EPFL, Lausanne, Switzerland 
2 Department of Earth Science & Engineering, Imperial College London, UK 

                            Github: https://github.com/soanagno/wakeNet 

Offshore wind farm wake modelling using deep feed forward 

neural networks for active yaw control and layout 

optimisation 

S Anagnostopoulos 1 and MD Piggott 2 

emails: sa1619@imperial.ac.uk, m.d.piggott@imperial.ac.uk 

 

Abstract. Offshore wind farm modelling has been an area of rapidly increasing interest over the 

last two decades, with numerous analytical as well as computational-based approaches 

developed, in an attempt to produce designs that improve wind farm efficiency in power 

production. This work presents a Machine Learning (ML) framework for the rapid modelling of 

wind farm flow fields, using a Deep Neural Network (DNN) neural network architecture, trained 

here on approximate turbine wake fields, calculated on the state-of-the-art wind farm modelling 

software FLORIS. The constructed neural model is capable of accurately reproducing single 

wake deficits at hub-level for a 5MW wind turbine under yaw and a wide range of inlet hub 

speed and turbulence intensity conditions, at least an order of magnitude faster than the analytical 

wake-based solution method, yielding results with 1.5% mean absolute error. A superposition 

algorithm is also developed to construct flow fields over the whole wind farm domain by 

superimposing individual wakes. A promising advantage of the present approach is that its 

performance and accuracy are expected to increase even further when trained on high-fidelity 

CFD or real-world data through transfer learning, while its computational cost remains low. 

1.  Introduction 

Wind power has maintained a significant share of the total worldwide electrical energy production of 

the 21st century (4.8% by the end of 2018 [1]) and is expected to grow up to 18% within the next 3 

decades [2]. Wind energy production has increased over the past few years due to extensive efforts 

towards the modelling of turbine wakes and wind farm configurations that include a variety of analytical, 

experimental as well as high-fidelity numerical approaches. 

Analytical wake modelling involves analytical or semi-analytical techniques used to perturb 

background wake flow information, providing an estimate for the flow field in the presence of turbines. 

Analytical modelling has been present from the earliest stages of modern wind turbines and is still 

playing an important role in producing low-cost wake predictions of the wake deficit profile. Some of 

the most commonly used models such as Larsen [3], Jensen [4], Curl [5] and Gaussian [6] are usually 

incorporated in packages available in the industry (FLORIS, WasP, WindPro etc) and depending on the 

application, they can significantly reduce the complexity of parametric studies or turbine array set-ups. 

However, since they usually involve the use of highly simplified physical assumptions and are mainly 

focusing on averaged velocity profiles and not transient turbulent wakes, they do not constitute a method 

that produces results of high-accuracy [7], [8]. Furthermore, the analytical models rely on empirical 

constants which require fine-tuning through computationally-expensive CFD simulations. Although 

these models are not able to capture a detailed representation of the turbine velocity deficit, the trade-
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off between accuracy and low-computational time is very often made in support to high-fidelity CFD 

studies in optimisation problems. 

During the last two decades, the exponential advancements in CPU as well as GPU architectures 

have led to a significant progress towards wake modelling using computational methods [9], [10]. 

Coupled numerical models such as large-eddy simulation (LES) and Reynolds-averaged Navier-Stokes 

(RANS) are now capable of describing steady as well as transient wake flows very accurately and 

provide a realistic illustration of wind-turbine interaction physics [11], [12]. Nevertheless, accurately 

representing the wind flow profile, especially through the turbine blades which are moving at very high 

rotational speeds, requires very fine mesh settings in order to capture the boundary layer properties. 

Even then, some of the most widely used models for turbulence like k-ε, tend to overestimate the 

turbulence viscosity [13] leading to discrepancies between the numerical results and experimental 

measurements [14]. Thus, CFD is rarely used as a standalone method, even less when dealing with array 

optimisation problems (e.g. using Adjoint methods) which require multiple high-computational-cost 

runs.  

Through the recent increase of computational power, the application of Artificial/Deep Neural 

Networks (ANN, DNN) as well as Convolutional Neural Networks (CNN), has been successfully tested 

across a wide variety of scientific fields, including fluid mechanics [15], [16], [17]. On wind turbines, 

there have been some recent efforts towards modelling of source terms with an ANN [18] and correlating 

Reynolds stress anisotropy with strain [19]. An ANN was constructed in order to assess the performance 

of wind turbines using the power vs torque curves [20], [21]. Very recently, a simple ANN architecture 

was trained on a large high-fidelity dataset and correlated two inputs (inlet wind speed and turbulence 

intensity) to produce 3D wake profiles of wind turbines in a single row [22]. Computationally efficient 

surrogate modelling has also been used to estimate long-term wake-induced loading effects and turbine 

lifetime, while leading to AEP improvements of up to 5% in various wind farm layout optimisation 

scenarios [23], [24], [25]. So far, in the limited available research, neural networks appear to be very 

efficient in the challenging task of building relationships between inflow conditions, rotor specifications 

and fluid properties. Traditional methods face difficulties in producing fast results that at the same time 

are accurate enough to support parametric studies. A well-constructed and well-trained neural network 

could be deployed and provide reliable results within seconds in order to predict flow properties of a 

wind farm that would otherwise require orders of magnitude higher computational times. At the moment, 

the use of powerful machine learning and regression tools shows promising results and could pave the 

way to even more sophisticated optimisation approaches in the future.  

The present study aims at constructing a neural model, capable of handling wind properties and wind 

turbine yaw settings, to demonstrate that active yaw control and layout optimisation using ML tools for 

turbine wake modelling is feasible, at considerable computational time gains. Using the presented neural 

network framework could enable further accuracy and computational cost improvements in wind farm 

optimisations that could easily be implemented with transfer learning (using gained ML knowledge from 

one problem to a similar one), with more advanced wake datasets, produced by iterative analytical 

models and high-fidelity numerical simulations (CFD) for further training the DNN. 

2.  Software Description & Methodology 

A Deep Feed Forward (DFF) Neural Network is built in order to reproduce the velocity domain of a 

single wind turbine wake, when given up to a triplet of inlet conditions: upstream velocity at the hub 

(inlet speed), turbulence intensity and yaw angle. The network is trained on wake profiles produced by 

FLORIS (v2.1.1) using the Gaussian analytical wake model, where the 3D velocity deficit behind each 

turbine is derived from the following simplified form of Navier-Stokes: 

 
𝑢(𝑥,𝑦,𝑧)

𝑈∞
= 1 − 𝐶𝑒(𝑦−𝛿)2/2𝜎𝑦

2
𝑒−(𝑧−𝑧ℎ)2/2𝜎𝑧

2
       (1) 
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𝐶 = 1 − (1 −
(𝜎𝑦0𝜎𝑧0)𝑀0

𝜎𝑦𝜎𝑧
)

1/2

            (2) 

 

𝑀0 = 𝐶0(2 − 𝐶0)            (3) 

 

𝐶0 = 1 − √1 − 𝐶𝑇            (4) 

 

where 𝐶 is the velocity deficit at the centre of the wake, 𝛿 is the wake deflection, 𝑧ℎ is the hub height, 

𝐶𝑇 is the thrust coefficient and 𝜎𝑦, 𝜎𝑧 the widths of the wake in the y and z direction, respectively. The 

“0” subscript denotes the values at the start of the far wake and the widths 𝜎𝑦, 𝜎𝑧 are given by: 
𝜎𝑦

𝐷
= 𝑘𝑦

𝑥−𝑥0

𝐷
+

𝜎𝑦0

𝐷
            (5) 

 
𝜎𝑧

𝐷
= 𝑘𝑧

𝑥−𝑥0

𝐷
+

𝜎𝑧0

𝐷
            (6) 

 

where 

 
𝜎𝑦0

𝐷
= 𝑘𝑦

𝑥−𝑥0

𝐷
+

𝜎𝑧0

𝐷
cos(𝛾)           (7) 

 

𝜎𝑧0

𝐷
=

1

2
(

𝑢𝑅

𝑢∞+𝑢0
)

1/2
            (8) 

 

where 𝐷 is the rotor diameter, 𝛾 is the yaw angle and 𝑘𝑦, 𝑘𝑧 define the wake expansion in the lateral and 

vertical directions, respectively. 

 

2.1 Synthetic dataset method 

The synthetic dataset was comprised of 4000 wake images (Fig. 1), with a batch size of 400 wakes, 

which was found to be sufficient in producing results of satisfactory accuracy (Fig. 4) for the purposes 

of the present study, and was applied on a 5 MW wind turbine of 126m in diameter. A batch size of 10% 

of the complete dataset lies within the commonly adopted range in the literature [26] and was proven to 

be effective in reducing overfitting of the model to specific wake inputs, while also reducing the training 

computational cost.  

 
 

Figure 1. Indicative wake dataset sample where each title denotes a wind speed (ws), turbulence 

intensity (ti), yaw angle (yw) triplet. 

 

The ranges of the inlet speed (ws), turbulence intensity (ti) and yaw angle (yw) are [3, 12] m/s, [0.01, 

0.2] and [-50, 50] degrees, respectively, while their values are produced randomly following a uniform 

distribution. The range of the inlet speeds is selected based on the power curve of the specific wind 

turbine (shown in Fig. 2), where the lower operation limit is 3 m/s and the upper limit is 20 m/s. 

However, right after the point where the Cp value becomes constant (at 12 m/s), there is usually little 
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potential power gain from yawing the hub [27], thus the selected upper limit for the training was set at 

12 m/s, which significantly reduced the size of the required synthesised dataset. The range of the 

turbulence intensity is selected based on commonly reported measurements [28]. It is worth mentioning 

that the range, as well as the distribution of the dataset, could easily be adjusted to follow a non-uniform 

distribution based on available weather data, in order to further improve the capabilities of the DNN on 

site-specific weather conditions. 

 
 

Figure 2. Power curve of the 5MW wind turbine of the study. The rated region of the turbine is the 

“plateau” of potential power output and begins after about 12 m/s. 

 

2.2 DNN architecture 

The architecture of the DNN is shown in Figure 3, which consists of at least two hidden layers of 100 

neurons each, that output an m by n grid of points that represent the downstream velocity domain of the 

wake. It has been shown that re-normalising the training batch after each hidden layer of a DNN 

significantly increases the performance of the trained network [29]. Thus, two batch normalisations have 

been applied after the first two layers, which as expected, increased the accuracy of the resulting wake. 

Several activation functions were tested for their performance (sigmoid, tanh, tansig, purelin), as well 

as various normalisation methods (min-max, mean/std, -1/1) for the input parameters. The selected 

activation functions which performed best and thus is selected for this study are the tanh for the first two 

layers and a linear activation function for the output along with mean/std normalisation. 

 
Figure 3. DNN architecture. The dots represent the optional functionality of independent parallel sub-

networks, each of which is trained on a partition of the domain. 

 

The default resolution of FLORIS is a 200 x 200 grid which is also the default adopted resolution for 

the training of the DNN. However, for higher resolution demands, the user can specify the desired 

resolution before training the model which will also produce an analytical wake dataset of that same 

resolution. To tackle arising memory problems for models trained on higher resolution images, a parallel 
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sub-network functionality has been implemented (Fig. 3). These sub-networks are deployed in parallel 

instead of the main network and are trained independently on a portion (piece) of the domain, specified 

by the user. Furthermore, this functionality allows the user to specify if each independent “piece” of the 

domain will be row, column or block-wise. 

 

2.3 Hyper-parameters & training 

The model hyperparameters (Table 1) were calibrated through iterative process by evaluating the metrics 

of the loss and absolute accuracy of the validation set (Figs 4b, 4d). A common practice when using 

large datasets is to create a validation test that constitutes 10-20% of the initially created dataset [30]. 

The training dataset, is the remaining proportion of the synthesised FLORIS images (90%), and is 

compared with the DNN’s output images by applying the Root Mean Square Error (RMSE) between the 

wake velocities at each cell of the computational grid, which is given by: 

 

𝑅𝑀𝑆𝐸𝑓𝑜 = √
1

𝑁
∑ (𝑧𝑓𝑖 − 𝑧𝑜𝑖)2𝑁

𝑖=1           (9) 

 

where 𝑧𝑓𝑖 ,  𝑧𝑜𝑖 are the DNN forecasts and analytical observed values, respectively and 𝑁 is the sample 

size. Note that for the final training, the whole dataset (4000 wake images) is used as the training dataset. 

Several optimisers were tested for their performance including Stochatic Gradient Descent (SGD), 

RMSprop, Adam and Resilient Back Propagation (Rprop) [31]. The latter, qualified as the fastest 

converging optimizer for this study and was one of the most significant improvements on early vanilla 

versions of the DNN’s development, resulting in a ~97% accuracy on both training and validation 

datasets, as shown in Figure 4. 

 

          

           
 

Figure 4. Root mean square error (MSE) loss and accuracy convergence graphs of Stochastic Gradient 

Descent (SGD) (a, b) and Resilient Back Propagation (Rprop) (c, d), respectively. 

 

Table 1. Model hyper-parameters, MSE loss, accuracy and timings for SGD and Rprop optimisers. 

 Learning 

rate 

Momentum Validation 

Loss 

Training 

Loss 

Validation 

Accuracy 

Training 

Accuracy 

Time 

(m) 

SGD 0.1 0.99 0.06 0.2 0.95 0.94 50 

Rprop 0.01 - 0.035 0.05 0.98 0.97 15 
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2.4 Wake superposition 

Most analytical wake models include an independent approach for the superposition of wakes in order 

to form an array of multiple wind turbines, as well as the interactions between them [32], [33]. 

For this study, a superposition algorithm has been developed based on the SOS model, which is 

deployed for the combination of multiple individual wakes produced by the DNN. The superposition is 

modified with an approximate method of calculating a uniform velocity at the hub of each turbine. The 

final domain represents a collage of the individual wakes that comprise the examined offshore wind 

farm. 

One of the advantages of the presented neural model is that it is trained on 2D slices of a 3D wake 

domain of FLORIS, which also implicitly consider the vertical velocity boundary layer, as affected by 

the sea surface. This significantly contributes in faster computation times, while including information 

about the velocity boundary layer of the site. However, since only the velocities along the line of the 

hub are known, an approximate formula has to be applied in order to correct the average velocity taken 

at the hub of each turbine. As shown in Figure 5, the turbine hub can be divided in radial rings of equal 

thickness 𝑑𝑟, which represents the length of one pixel of the computational grid. 

 
Figure 5. 2D representation of the 1D hub as calculated by the DNN. 

 

Assuming that the rotor lies within a linear region of the boundary layer, by integrating over the 

surface of the hub, the velocity on the 2D disc is given by: 

 

𝑢ℎ𝑢𝑏 = ∫ 𝑢𝑚𝑒𝑎𝑛 ∙ 2𝜋𝑟 ∙ 𝑑𝑟
𝑟𝑛/2

𝑟1
                 (10) 

 

where 𝑢𝑚𝑒𝑎𝑛 is the mean speed on each hub ring and the power of each turbine is given by: 

 

𝑃 =
1

2
𝐶𝑝 ∙ 𝜌 ∙ cos 𝜃 ∙ 𝑢𝑝𝑜𝑤𝑒𝑟

3 ∙ 𝐴                (11) 

 

where 𝐶𝑝 is the turbine’s power coefficient and 𝜌 is the fluid density and 𝜃 is the yaw angle of the wind 

turbine. Therefore, for a farm of 𝑛 turbines, the total generated power is given by: 

 

𝑃𝑡𝑜𝑡 = ∑ 𝑃𝑖
𝑛
𝑖=1                    (12) 

 

2.5 Yaw and layout optimisations 

Recent studies [27], [34] have shown that exploiting the active yaw control of wind farms using 

analytical models like FLORIS, can increase the annual energy production (AEP) of the wind plant and 

also reduce the thrust loads on the turbines. Fast active yaw optimisation using machine learning could 

be applied at a minimal additional cost, boosting the AEP even further since the reaction time of the 

turbine could be significantly decreased.  

On the other hand, positioning the wind turbines such that the expected power production is 

maximised (Wind Farm Layout Optimization Problem, WFLOP [35]) is another complex problem that 

the existing available literature has very recently started attempting to solve. Analytical, as well as high-

fidelity CFD simulations, have been previously used along with Genetic Algorithms (GAs) [36] and 

Adjoint methods [37], [38], [39] and although they represent a good starting point towards the WFLOP 
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problem they usually constitute costly computational approaches. Moreover, they lack multi-objective 

optimisation aspects like the effect of turbulence intensity on the plant or other area-specific construction 

limitations [35]. 

On these grounds, two distinct optimisation modules are also developed in this work in order to 

assess the capability of the neural wake model in wind farm active yaw and array turbine placement 

optimisation problems. The optimisation functions are made from scratch using SciPy’s SLSQP 

optimiser and attempt to optimise the total power output of the plant (Eq. 12) by handling the outputs 

produced by the DNN. The results of the optimisers are then compared with the corresponding optimised 

results of FLORIS, for both yaw and layout optimisation scenarios. The reliability and the accuracy of 

the modules is finally assessed for the whole operation range of the DNN. 

3.  Results 

To demonstrate the capabilities of the trained neural model, several indicative cases are examined, 

namely two cases (single and multiple wakes) for the assessment of the mean absolute error (%) between 

FLORIS and the DNN, two cases of multiple wakes to assess the correctness in the implementation of 

the SOS superposition model and three optimisation cases (A, B, C), the first two for the yaw and the 

latter for the optimisation of the farm layout. All power gain comparisons were performed using 

FLORIS, with the proposed optimal settings of either FLORIS or the DNN. 

 

3.1 Single / multiple wake plots with errors and y-transects 

Figures 6a-c and 7a-c show a single wake and a multiple wake scenario, respectively. The absolute 

relative error (%) between the analytical and neural results is shown in Figures 7c and 8c, and is given 

by: 

|𝑒𝑟𝑟𝑜𝑟%| =
1

𝑛
∑ |

𝑢𝑓𝑖−𝑢𝑜𝑖

𝑢𝑓𝑚𝑎𝑥
| ∙ 100𝑛

𝑖=1                     (13) 

where 𝑢𝑓𝑖, 𝑢𝑜𝑖 are the velocities calculated at each pixel 𝑖 by FLORIS and by the DNN, respectively, 

𝑢𝑓𝑚𝑎𝑥 is the maximum velocity of the FLORIS domain and n is the total number of pixels (200x200 by 

default). 

     

Figure 6. Single wake produced by FLORIS (a), the DNN (b). Relative absolute error (%) between 

the two models (c) and y-transects at 3, 6.5 and 10D downstream (d). The inlet conditions are ws: 11 

m/s, ti: 0.05, yw: 30o. DNN: red line, FLORIS: blue dashed line. 

For the single wake case (Fig. 6), the resulting DNN data appears to reproduce well the analytical 

wake deficit, with the highest error being at 10%, while the DNN velocity profiles at three y-transects 

along vertical cross-sections of the physical domain agree with the analytical ones in terms of the yawing 

angle, showing some minor deviation the further they are from the hub (Fig. 6d). The mean absolute 
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error is calculated for a 400 different wakes of random inlet conditions as produced by the neural model 

and FLORIS, which was found to be at 1.5%. 

The multiple wake case (Fig. 7) was selected in order to test the performance of the DNN, this time 

on a dense wind farm configuration with high turbine yaw settings. As expected, the absolute error 

increases (namely up to 20%) in certain regions of the wake velocity domain (Fig. 7c), since the 

superposition method is now also affecting the results. However, the mean absolute error is less than 

10%, while the y-transects in Figure 6d agree well between the two models with only few exceptions, 

mainly in regions of multiple wake superposition. 

             

Figure 7. Multiple interacting wakes produced by FLORIS (a), the DNN (b). Relative absolute error 

(%) between the two models (c) and y-transects at 3, 6.5 and 10D downstream (d). 

3.2 Scalability for wind farm with absolute error 

Regarding the computational cost, in Figure 8 the increase of computational cost with the number of 

turbines appears to be of 2nd order for Floris, and 1st order for the DNN, resulting in 3 orders of magnitude 

gain for an array of 20 turbines. Note that the computational time for each number of turbines is obtained 

by taking the average time of 5 iterations of the same superposition scenario. 

 

Figure 8. Logarithmic plots of computational time scaling vs number of superimposed turbines for 

FLORIS (blue dashed), DNN (red). The triangle sides indicate the orders of magnitude. 

3.3 Scalability for wind farm with absolute error 

Yaw optimisation has recently become a key topic, especially in wind farm configurations where the 

total power output of the plant can be significantly boosted based on the yaw settings of the turbines 
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[27]. Furthermore, active yaw optimisation is heavily dependent on fast predictions based on live 

weather forecasting [40], [41] as to take advantage of as much of the incoming wind energy as possible. 

This study attempts to demonstrate that even when compared to a relatively cheap wake model as the 

Gaussian, a DNN model can produce very good yaw setting predictions with significant computational 

cost gains, given that weather conditions are known. Two indicative example cases are discussed in this 

section (A and B), involving a 6- and a 15-turbine wind farm configuration, respectively. 

In general, compared to a greedy yaw setting where the turbines are facing the wind direction (zero 

yaw in the present case), deflecting the wakes of the front turbines can usually be regarded as a good 

yaw setting strategy for a set of turbines that cooperatively increase the overall performance of the farm 

[34]. In Figure 9a, FLORIS achieves a 25.8% power gain by setting a 29, 18, 0o of yaw on the three 

turbine pairs from front to back of the stream, respectively, after 15s. A very similar approach is adopted 

by the optimisation produced by the DNN, where a 22.8% power gain is achieved with a 26, 20, 0o 

corresponding setting. The optimisation required less than half the time (7s). Note that for all yaw 

optimisations, the initial yaw angles are at 0 degrees. 

   

Figure 9. Case A: Optimised yaw result for a 2x3 wind farm array deduced by FLORIS yaw 

optimisation module (a) and the DNN (b). 

Table 2.  Optimised results produced by FLORIS and the DNN for Case A. Yaws correspond to 

turbines from left to right and bottom to top. 

 Yaws (deg) Initial power 

(MW) 

Optimal power 

(MW) 

Power gain 

(%) 

Comp. 

time (s) 

FLORIS [29, 29/ 18, 18/ 0, 0] 3.77 4.75 25.8 15 

DNN [26, 26/ 20, 20/ 0, 0] 3.77 4.63 22.8 7 

 

Case B examines the yaw optimisation of a higher density 15-turbine wind farm, where by using a 

similar yaw cooperative strategy the power gain achieved by the DNN is again very close to that of 

FLORIS (28.7% and 31.6%, respectively), requiring almost half the computational time (60s vs 110s). 

      

Figure 10. Case B: Optimised yaw result for a 15x wind farm array deduced by FLORIS yaw 

optimisation module (a) and the DNN (b). 

(a) 

(a) 

(b) 

(b) 
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Table 3. Optimised results produced by FLORIS and the DNN for Case B. Yaws correspond to 

turbines from left to right and bottom to top. 

 Yaws (deg, from left to right 

rows) 

Initial power 

(MW) 

Optimal 

power (MW) 

Power 

gain (%) 

Comp. 

time (s) 

FLORIS [30, 30, 30/ 23, 23/ 8, 8, 8/ 7.5, 

7.5/ 0, 0, 0/ 0, 0] 

9.41 12.39 31.6 110 

DNN [25, 24, 24.5/ 24.5, 24/ 19, 18, 

18/ 18, 18/ 0, 1, 1/ 0, 0] 

9.41 12.12 28.7 60 

 

3.4 Yaw optimisation - Farm power heatmaps 

For the above cases A and B, the corresponding total farm power heatmaps are presented in Figures 11 

and 12, in order to assess the capability of the neural network in obtaining the optimal power gain. As 

evident from these heatmaps, the region with the highest potential power gain is around the bottom right 

corner, which is defined by low turbulence intensity and high inlet speeds. Although cases where high 

wind speeds are not usually accompanied by low turbulence intensity [27], they are examined for the 

purpose of creating a heatmap across the whole range of inlet conditions. For Case A, the DNN is 

capable of producing at least 75% of the total power gain of FLORIS (80% for speeds below 8m/s), as 

shown in Figure 11b within 1/10 of the computational time (60s vs 5s). Similarly, in Case B, the DNN 

achieves a large proportion of the total power gain of FLORIS, requiring less than 1/10 of the 

computational time (180s vs 16s). 

     

Figure 11. Case A: Optimised yaw heatmaps for FLORIS (a) and the DNN (b) with ti and ws ranges 

[0.01-0.19] and [3.5-11.5], respectively. Average FLORIS time: 60s, average DNN time: 5s. 

            

Figure 12. Case B: Optimised yaw heatmaps for FLORIS (a) and the DNN (b) with ti and ws ranges 

[0.01-0.19] and [3.5-11.5], respectively. Average FLORIS time: 180s, average DNN time: 16s. 

3.5 Layout optimisation 

An indicative test case for layout optimisation of the initial configuration (Fig. 13a) is presented below, 

where the wind direction is assumed to be constant at 7 m/s and the boundary constraints of the domain 

are 20D X 10D. A minimum lateral distance between each individual turbine of 2D has also been 

implemented as a constraint in the code. As shown in Figure 13b, the optimum configuration obtained 

with the DNN model achieves a 78.93% power gain (or AEP gain), whereas FLORIS achieves 79.41% 
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(Fig. 13a). The computational time required by the DNN to provide a forward solution is an order of 

magnitude less than that of FLORIS (5.5 sec vs 56 sec). Any difference between the optimal layouts in 

Figure 13 can be attributed to the fact that the solution is not unique, i.e. that multiple designs have 

similar power outputs and the optimisation algorithm may converge to either of these. 

 

           

Figure 13. Case C: Initial 2x3 layout configuration (a), optimised layout result produced by FLORIS 

Layout Optimisation module (b) and the DNN model (c). 

Table 4.  Optimised results produced by FLORIS and the DNN for Case C. 

 Initial power 

(MW) 

Optimal power 

(MW) 

Power 

gain (%) 

Comp. 

time (s) 

FLORIS 3.78 6.78 79.41 56 

DNN 3.78 6.76 78.93 5.5 

 

4.  Conclusions 

In this work, the capabilities of machine learning on the modelling of offshore wind farm wakes are 

investigated. The main stages and corresponding accomplishments of this study are the following: 

a. Development of a DNN for the accurate representation of 2D offshore turbine wakes under yaw, 

which produces the velocity fields of single wakes with a mean absolute error of 1.5%. The 2D 

velocity deficits at hub-level produced by the DNN at the hub level also include information of 

sea-level effect on the wind boundary layer downstream wind. 

b. Implementation of a superposition method, which combines the SOS model along with an 

analytical approximation that renders the 2D wake deficit produced by the DNN sufficient in 

predicting the power output of a given wind farm. The scaling of the computational time for the 

superposition of up to 20 turbines was found to be up to three orders of magnitude faster. 

c. Demonstration of the optimisation capabilities of the neural model against those of FLORIS. 

For the yaw optimisation, the optimal yaw settings produced by the DNN provides at least 75% 

of the farm power output of the corresponding FLORIS optimisation module, on average 10 

times faster, which can enable power gains due to the faster reaction time of the yaw control. 

d. Development of an open-source machine learning wake model with various set-up options, 

aiming to provide flexibility to the user, depending on the needs of application. Using the default 

model hyper-parameters and settings, a reliable neural wake model can be trained on a personal 

computer, requiring less than 15 minutes of training time. Transfer learning could be applied in 

future versions, using high-fidelity CFD runs to further increase the model’s capabilities, while 

maintaining the same low order for the evaluation time of the network. 

(a) 

(b) (c) 
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