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The mechanical performance – including deformation, fracture and radiation damage – of Zir-
conium is determined at the atomic scale. With Zr and its alloys extensively used in the nuclear
industry, understanding that atomic scale behavior is crucial. The defects controlling that per-
formance are at size scales far larger than accessible by first principles methods, necessitating the
use of semiempirical interatomic potentials. Existing potentials for Zr are not sufficiently quan-
titative, nor easily extendable to alloys, oxides, or hydrides. To overcome these issues, a neural
network machine learning potential (NNP) is developed here within the Behler-Parrinello frame-
work for Zr. With a careful choice of descriptors of the atomic environments and the creation of
a first-principles training dataset that includes a wide spectrum of configurations of metallurgical
relevance, a very accurate NNP is demonstrated. Specifically, the Zr NNP yields a good description
of dislocation structures and their relative energies and fracture behavior, along with bulk, surface,
and point-defect properties and structures, and significantly outperforms the best available tradi-
tional potentials. Results here will enable large scale simulations of complex processes, and provide
the basis for future extensions to alloys, oxides, and hydrides.

I. INTRODUCTION

The physical properties of zirconium alloys, such as
a low neutron absorption cross-section accompanied by
good mechanical properties and corrosion resistance, [1–
4] preordain their usage in nuclear reactors. For instance,
they are utilized as fuel cladding, pressure tubes, fuel
channels, and fuel spacer grids [5–7]. Zr exhibits a num-
ber of complex features relevant to these applications,
such as competing slip systems for dislocation motion,
multiple possible cleavage planes, several modes of twin-
ning deformations, and a high-temperature hexagonal
close-packed (hcp) to body-centered cubic (bcc) phase
transformation [4, 8–10]. Experimental investigations
provide important information about the real material
behavior but probing the underlying mechanisms gov-
erning the atomic-scale phenomena is challenging. Com-
putational studies provide means for a more in-depth un-
derstanding of atomistic mechanisms involved.

First-principles methods such as Density Functional
Theory (DFT) provide highly accurate energy informa-
tion, but the complexity and size of structures that
can be analyzed is limited by the high computational
cost. Semi-empirical potentials using the embedded atom
model (EAM) and the modified embedded atom model
(MEAM) have been developed to overcome the computa-
tional cost [11–13] but with compromises to the accuracy
of describing the potential energy surface (PES) leading
to lower chemical accuracy and thus reducing the scope
of applications. The limited flexibility of these semi-
empirical potentials for capturing increasingly complex
structures, and especially for extensions to alloys, moti-
vates the continued search for more accurate but compu-
tationally accessible methods.
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The challenges in modeling the mechanical behavior of
hcp metals like Zr, Ti, and Mg lie in the diversity of active
slip systems and possible fracture modes. Fig. 1 shows
the accessible active slip systems in hcp Zr. Slip by the
⟨a⟩ Burgers vector has a competition between basal, pris-
matic I-w, and pyramidal I-n slip planes (“w” represents
the wide or loosely packed planes while “n” represents
the narrow or densely packed planes; see Yin et al. [14])
since the ⟨a⟩ vector is contained in all three planes. Zr
exhibits preferential ⟨a⟩ prismatic I-w slip with some ac-
tivity on the pyramidal I-n plane due to cross-slip, but
with the basal ⟨a⟩ being unstable [15, 16]. In contrast,
Mg shows preferential basal ⟨a⟩ slip, no pyramidal I ⟨a⟩
slip, and some prismatic activity due to cross-slip. Zr
also strongly prefers ⟨c+ a⟩ slip on the pyramidal I-w
plane over the pyramidal II plane whereas in Mg the two
slip systems are very similar [17–19]. Due to the high
stresses needed to activate ⟨c+ a⟩ slip with deformation
in the ⟨c⟩ direction, deformation twinning becomes oper-
ative in Zr (and other hcp metals) to provide further ⟨c⟩
-axis deformation. High twinning activity has been ob-
served in Zr compared to less ductile hcp-metals such as
Mg [20]. Fracture behavior involves the surface energies
of all of these different possible cleavage planes and the
blunting of cracks by dislocation emission on the various
slip planes that intersect the crack front. These points
highlight that any potential for Zr should accurately cap-
ture the competing slip activity and surface energies in
Zr.

To address the challenge of modeling Zr a number of
EAM and MEAM potentials have been developed by
Igarashi et al. [21], Ackland et al. [22], Pasianot and
Monti [23], Kim et al. [24], achieving varying accuracy
for properties such as lattice parameters and elastic con-
stants. The generalized stacking fault energies (GSFE)
that are important for dislocation and fracture behavior
are, however, not sufficiently accurate. Wimmer et al.
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(a) Basal (b) Prismatic I (c) Pyramidal I (d) Pyramidal II

FIG. 1. Slip planes in the hcp crystal structure, where ⟨a⟩ and ⟨c+ a⟩ represent the 1/3⟨12̄10⟩ and 1/3⟨12̄13⟩ families of
dislocations. Basal, prismatic I, pyramidal I, and pyramidal II are the {0001}, {101̄0}, {101̄1}, and {112̄1} families of planes
respectively

[25] recently introduced an EAM potential for Zr-H that
describes some important hydride and Zr-H properties
well compared to DFT, but the totality of properties
of pure Zr studied are not captured with the necessary
accuracy. The most widely-used Zr potential is that
of Mendelev and Ackland [4] that was initially devel-
oped to model phase transformations. The Mendelev
and Ackland [4] “#3” potential was developed for hcp-
Zr and predicts many mechanical properties with good
accuracy and give reasonable qualitative results for some
non-linear behavior [15, 16]. Not surprisingly, due to the
limited flexiblity of the EAM form, this potential is inac-
curate for a number of slip-related quantities such as the
stable stacking fault energy in the prismatic I-w plane
{101̄0} that is a critical property for ⟨a⟩ dislocation slip.
Thus, at present, there are no comprehensive potentials
for Zr that capture the myriad aspects that are necessary
for modeling of Zr deformation and fracture.

A new approach to achieving both accuracy and ef-
ficiency is through potentials developed using Machine
Learning (ML) techniques. ML methods have the ad-
vantage of not being limited to a specific functional form,
giving them the ability to be fitted to an ab initio PES
covering a wide range of the configurational space. Un-
like empirical potentials, ML potentials are fitted to lo-
cal atomic environments rather than properties of ma-
terials, and so accuracy depends on sufficient precision
and breadth of the structural space to which the ML is
applied. Structures should be selected to encompass the
metallurgical configurations pertinent to the performance
of the potential. The use of ab initio methods such as
DFT provides the chemical accuracy for the chosen struc-
tures. Finally, the adroit choice of local descriptors for
representing the local atomic environments and connect-
ing local environments to structure energies provides the
computational efficiency, relative to DFT. Hence, the de-
velopment of a machine learning potential can be divided
into the following phases:

(i) Development of a database of structures with ab

initio-calculated energies and forces that accurately
capture the PES (forces and energies) relevant to
metallurgical properties of interest;

(ii) Selection of descriptors for the local environments
of the chosen structures; these descriptors should
be invariant under rotations, translations, and ex-
change of coordinates of like atoms;

(iii) Training of an ML potential using the selected de-
scriptors on the database of structures through re-
gression to optimize model parameters that map
the descriptors to the local PES.

(iv) Optimization of the choice of descriptors to en-
hance efficiency while preserving accuracy of the
final potential.

The development of ML potentials for Zr has seen con-
siderable recent success, but with a limited focus on cap-
turing the hcp-bcc phase transition [26–29] and phonon
dispersion [30]. ML potentials suitable for modeling of
mechanical properties, especially dislocation plasticity
and fracture, have not yet been developed. The goal
of the present paper is to develop a broadly useful neural
network potential (NNP) for Zr that captures the many
features important for deformation and fracture of hcp
Zr. Current work follows recent developments of NNPs
for metals and alloys (Al-Cu [31]; Mg [32]; Al-Mg-Si [33])
using the Behler-Parrinello (BP) framework and symme-
try functions (SF) [34, 35] as descriptors. The resulting
NNP potential captures the mechanical and plastic be-
havior much better than the best existing EAM poten-
tials.
The remainder of this paper is organized as follows.

In section II, the methodology of the training process
within the BP framework is discussed along with details
about the structures included in the training dataset.
Section III presents the validation of the developed NNP.
Initially, the prediction of energies and the forces of the
structures in the dataset are examined in section IIIA.
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Then, sections III B to III F analyze the mechanical and
plastic behavior of Zr (lattice parameters, elastic prop-
erties, surface energies, stacking fault and decohesion
curves, dislocations, twin boundaries, and fracture) ob-
served for “best” NNP potential with comparison to DFT
results where available. Comparisons to the Mendelev
and Ackland #3 EAM potential will be made for many
properties. Section IV summarizes the performance of
the NNP for Zr, and points toward future work.

II. METHODS

This section summarizes the composition of the train-
ing set, the ab initio approach applied to the training
set to calculate energies and forces, the Behler-Parrinello
neural-network potential (NNP) framework, and the se-
lection of symmetry functions (SF) entering the NNP for-
malism.

A. Training set

In general, the reference structures used for the train-
ing of the neural network should encompass sufficient de-
tail of the atomic environments that are encountered in
metallurgical applications. Mechanical, plastic, and frac-
ture properties are the main focus in the current study;
we do not attempt to capture the complexities that arise
in direct modeling of radiation damage [36, 37] The initial
training set thus consists of structures relevant for these
properties. These include hydrostatically and uniaxially
strained structures (within 6% strain of the equilibrium
lattice parameters) as well as structures with vacancies
and vicinal surfaces of the different crystalline phases of
Zr (hcp, fcc, bcc, and hexagonal ω phases). Addition-
ally, snapshots of ab initio molecular dynamics simula-
tions at 1000 K of the above-mentioned structures were
also considered. Exclusively for the hcp phase, struc-
tures related to decohesion curves, generalized stacking
fault energy curves, and stable stacking faults along rele-
vant directions of the various active slip planes (see Fig.
1) and self-interstitials are also included in the training
set. NNPs trained on this dataset perform sufficiently
well for many properties but, similar to the case of Mg
[32], perform very poorly in fracture tests. To rectify
this problem, guided by previous work on Mg, additional
structures consisting of hcp rod and cuboidal structures
that contain corners and edges are added to the train-
ing set, leading to significant improvement in fracture
performance (see section III F). The final total dataset
consisted of 1875 structures containing a total of 96981
atoms that encompass a broad range of local atomic en-
vironments.

In the loss function used to create the NNP (see eq. (7))
the total energy of each structure is considered irrespec-
tive of the size of the cell. The number of atoms in
all structures of the training set is kept at comparable

values in order to avoid bias towards larger structures
[32]. Specifically, most structures have between 32 and
72 atoms while the the rod and cuboidal structures have
216 atoms. These system sizes are all large enough to
avoid any size effects entering the DFT reference ener-
gies and structures.

B. DFT methodology

All training set calculations are based on density func-
tional theory (DFT) [38, 39] with electron-electron ex-
change and correlation effects described within the stan-
dard generalized gradient approximation (GGA) as pro-
posed by Perdew et al. [40]. The Kohn-Sham equations
were solved with projector-augmented-wave (PAW) po-
tentials (PAW PBE Zr sv 04Jan2005) and wave functions
[41] as implemented in the Vienna Ab initio Simulation
Package (VASP version 6.0) [42, 43]. Specifically, the
basis set comprised the 4s, 4p, 5s, and 4d states. The
planewave cutoff energy was set to 520 eV and a Γ-
centered Monkhorst-Pack k-point mesh with a spacing
of 0.2 Å−1 [44] was used as well as a Gaussian integra-
tion scheme with a broadening of 0.05 eV. All calcula-
tions were performed within the MedeA computational
environment of Materials Design [45].
For the training data set used here (1875 structures,

each containing 20 to 216 atoms), the total energies of
these structures cover a wide range between -1840.58 eV
and -168.50 eV. More interesting are the energies per
atom, which vary from -8.52 eV/atom to -7.47 eV/atom.
The atomic forces are found between -39.5 eV/Å and 34.2
eV/Å.

C. Neural-network formulation and symmetry
functions

In the same way as classical potentials, machine-
learned potentials (MLP) establish the potential energy
of a structure as a sum of the individual atom contribu-
tions [34, 46]. The potential energy E of a structure with
N atoms is calculated as,

E =

N∑
n=1

En, (1)

where En is the individual atom energy of the nth atom.
The atomic energies depend on the local environments
around each individual atom and are resolved by means
of local descriptors, also called symmetry functions [34,
35, 46]. Here, we use three types of Behler-Parrinello
SFs: radial (G2), narrow angular (G3), and wide angular
(G9) SFs, having the functional forms

G2
i =

∑
i ̸=j

e−η(rij−rs)
2

fc (rij) , (2)
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G3
i =21−ζ

∑
j,k ̸=i

(1 + λ cos θijk)
ζe−η(r2ij+r2ik+r2jk)

× fc (rij) fc (rik) fc (rjk) , (3)

G9
i =21−ζ

∑
j,k ̸=i

(1 + λ cos θijk)
ζe−η(r2ij+r2ik)

× fc (rij) fc (rik) , (4)

where rij = |rj−ri| is the radial distance between atoms i
and j and θijk the angle between the vectors from atom i
to atoms j and k, respectively. While rij in the Gaussian
components of angular SFs (G3 and G9) can be shifted by
rs similar to radial SFs, they are generally kept at zero 0,
and hence not included in eqs. (3) and (4). The so-called
hyperparameters η and rs vary the width and radial po-
sition of the Gaussian functions in the radial SFs. The
cutoff function fc smoothly decreases the radial compo-
nents to zero at a radial cutoff rc (for the current work,
fc(r) = tanh3 (1− r/rc)). The hyperparameters λ and ζ
define the shape of the angular components of the SFs.
For the radial SFs, the hyperparameters are varied in two
ways. For shifted SFs (G2,s), η is kept constant and rs
is varied, while for centered SFs (G2,c), rs = 0 while η
is varied. Equations (3) and (4) have the same angular
variation, while the radial components are different. The
choice of the SFs (chosen hyperparameters) needs to be
optimized to capture the local atomic environments suf-
ficiently without overfitting and with the fewest number
of SFs for the best computational efficiency. The process
of SF selection will be discussed later in this section.

Atom energies are calculated through a neural network
with two hidden layers as,

En = f3
1

b31 +

Mlayer,2∑
k=1

w23
k1f

2
k

×

b2k +

Mlayer,1∑
j=1

w12
jkf

1
j

b1j +

Msym∑
i=1

w01
ij Gi

 , (5)

where f(·) are the activation functions for each node (for
the current study fj and fk are softplus functions and f1
is the identity function), Mlayer,m is the number of nodes
in the mth hidden layer, Msym is the number of SFs (Gi).
Fitting parameters of the training are the weights and
the biases, wuv

pq and bvq–connecting the pth node in the uth

layer or the bias to the qth node in the vth layer–of the
neural network. Force components of the nth atom (Fn,i)
are obtained by taking the derivative of the total energy
(E) with the spatial coordinate of the atom (xn,i) as,

Fn,i =
∂E

∂xn,i
=

N∑
m=1

∂Em

∂xn,i
=

N∑
m=1

Msym∑
j=1

∂Em

∂Gj

∂Gj

∂xn,i
. (6)

Training is carried out through regression to minimize

the loss function [47],

Γ =

Nstruct∑
i=1

(Ei
NN−Ei

ref)
2+β2

Nstruct∑
i=1

3Ni
atom∑

j=1

(F i
jNN−F i

jref)
2,

(7)
where E and F are the energies of the structures and
the forces of the atoms in each of these structures, re-
spectively. β (with Å units) is used to scale the rela-
tive weight of the forces (in eV/Å versus the energies (in
eV). Performance of the training is initially assessed with
root mean square errors (RMSEs) calculated separately
for energy and forces as

RMSEE =

√√√√ 1

Nstruct

Nstruct∑
i=1

(Ei
NN − Ei

ref)
2, (8)

RMSEF =

√√√√√ 1

Nstruct

Nstruct∑
i=1

3Ni
atom∑

j=1

1

3N i
atom

(F i
jNN − F i

jref)
2,

(9)
to provide an overall estimate of how well the structures
in the dataset are represented by the NNP. Subsequently,
the resulting NNP is used to compute bulk, surface, and
point defect properties, which enables assessment of the
quality of the potential for capturing the key metallurgi-
cal features.
The NNP training is carried out using the open source

code n2p2 [48]. Training is performed with a Kalman
filter for a fixed number of 400 epochs, as proposed by
Stricker et al. [32]. All structures in the dataset are used
for training since validation of the NNP will eventually
rest on computed properties, not direct comparison of the
NNP to the training data. Initially β = 10 Å was used
for the force weighting in eq. (7), as used in Stricker et al.
[32], but greatly improved training quality was achieved
using β = 1 Å. Also at each epoch, only 2% of the forces
(selected randomly from candidates whose current error
falls above a certain threshold) and 100% of the energies
of the training dataset are updated. Larger values of the
fraction of force used led to much larger RSMEs.

D. Selection of symmetry functions

Selection of SFs is crucial in developing an accurate
and efficient NNP. The final SFs here are chosen after
a number of trials by investigating the predicted bulk,
surface, and point-defect Zr properties. To describe a
single set of SFs, the format “µrc, iG

2,s, jG2,c, lG3, kG9”
is used, where µ, i, j, k, and l indicate the radial cutoff
(rc) and the number of G2,s, G2,c, G3, and G9 SFs, re-
spectively. For each set of SFs, training is done for 10
different random initial sets of weights and biases. Zr
has a c/a ratio which is quite low compared to the ideal
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c/a ratio, indicative of angular bonding in such hcp struc-
tures and thus suggesting the need for additional angular
symmetry functions to describe the local environments.

The initial set of SFs follows Stricker et al. [32], who
successfully developed an NNP for hcp Mg. This set con-
tains 82 unique SFs, with 32 radial SFs and 50 narrow
angular SFs as shown in eqs. (2) and (3), has rc of 6, 8,
9, and 12 Å for the radial SFs, and 6 and 12 Å for the
narrow angular SFs. SF hyperparameters are selected
as guided by Imbalzano et al. [49], with no wide angu-
lar SFs. Thereafter the number of SFs is reduced using a
CUR decomposition algorithm [49] to obtain the 48 most
useful SFs. Training with these SFs yields an NNP of
poor quality, with RMSEs of ∼20 meV/atom and ∼150
meV/Å for energy and forces, respectively. This indi-
cates that this initial set of SFs is unsuitable for captur-
ing the atomic environments that control energies and
forces in Zr. Hence, a new set of SFs is selected with
a single radial cutoff of 6 Å containing 66 unique SFs
(6rc, 10G

2,s, 8G2,c, 24G3, 24G9) including now the wide
angular SFs, where the hyperparameters of the shifted
angular SFs is determined on a grid as proposed by
Gastegger et al. [50] and the hyperparameters of the re-
maining SFs selected as per Imbalzano et al. [49]. Again
the CUR selection algorithm is used to find the 48 “best”
SFs. The NNP developed with this set of SFs resulted in
significant improvements, with reductions in the RMSEs
of energy and force to 4-6 meV/atom and 80-100 meV/Å,
respectively.

With the above encouraging results, a broader sensi-
tivity analysis is executed considering combinations of
radial cutoffs of 6 Å, 8 Å, 10 Å, 6+8 Å, and 6+8+10
Å. Using the CUR selection algorithm, the 48 ”optimal”
SFs were selected for each case. The best RMSE val-
ues were obtained using the combination of 6+8 Å radial
cutoffs. Although improvement is observed with RMSE
(RMSEE ≈ 4 meV/atom and RMSEF ≈ 80 meV/Å),
the stacking fault curves are faulty, with the unstable
basal stacking fault energies significantly lower than the
DFT values. It was speculated that this could be due to
the radial cutoff, since a stacking fault will incur a large
displacement along the plane, which can cause notable
changes to the atomic environment within any given ra-
dius.

Hence, the analysis for the sensitivity to the radial cut-
off was extended to the SF sets of

• 6 Å (6rc, 11G
2,s, 6G2,c, 48G3, 48G9),

• 7 Å (7rc, 13G
2,s, 6G2,c, 48G3, 48G9),

• 8 Å (8rc, 15G
2,s, 6G2,c, 48G3, 48G9),

• 9 Å (9rc, 17G
2,s, 6G2,c, 48G3, 48G9).

The number of most-useful SFs selected by CUR decom-
position method is also varied to find the number of SFs
required to accurately represent atomic environments.
From these, the NNPs developed with a radial cutoff of

7 Å and 80 SFs showed the best RMSE and the devia-
tions in the generalized stacking fault curves decreased
significantly (see below).
Identifying that the radial cutoff rc for the symme-

try functions must be set to 7 Å for good accuracy is
one main breakthrough in achieving a very good over-
all NNP for Zr; Fig. 2 shows the predicted basal GSFEs
for rc = 6, 7, and 8 Å where the most significant im-
provement was found. Thus atomic positions relative to
the rc during basal slip are examined. Focusing on an
atom just below the slip plane, the atoms above the slip
plane within rc are shown in Fig. 3 for the perfect crystal,
the unstable stacking fault configuration, and the stable
stacking fault configuration. For rc = 6 Å, only a few
atoms in the first two planes above the slip plane inter-
act with the lower atom, and various atoms are entering
and exiting the domain within the cut-off. For rc = 7
Å, several atoms enter the domain at the unstable point
and then exit the domain at the stable fault, but in a
smooth manner relative to the situation for rc = 6 Å.
For rc = 8 Å, overall more atoms are included, naturally,
but there are significant shifts of atoms out of the domain
without rather different atoms entering the domain. It
may be that the relatively symmetric case for rc = 7 Å
avoids small changes in total energy that may occur in
the asymmetric cases of rc = 6, 8 Å that, while small, are
fully attributed to the (also small) GSFE energy changes
and thus may lead to inaccurate stacking fault results.
This examination is far from rigorous, but suggests why
a particular cutoff of rc = 7 Å may be notably better
than other choices.
Based on the above studies, a set of ten NNPs with

different initial weights and biases were developed us-
ing the final set of SFs (80 SFs chosen with CUR se-
lection from 7rc, 13G

2,s, 6G2,c, 48G3, 48G9). As shown in
the next section, these NNPs have low RMSE for the
forces and energies of structures in the training dataset,
and will subsequently be shown to give good bulk and
defect properties, relative to DFT. Comparisons to re-
sults from one EAM potential (Mendelev and Ackland
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FIG. 2. Generalized stacking fault energy



6

rc = 6 Å

(a) Equilibrium position (b) Unstable stacking fault (c) Stable stacking fault

rc = 7 Å

(d) Equilibrium position

s
(e) Unstable stacking fault (f) Stable stacking fault

rc = 8 Å

(g) Equilibrium position (h) Unstable stacking fault (i) Stable stacking fault

FIG. 3. Atoms above the basal slip plane lying within the radial cutoff distance of an atom just below the slip plane, for
different radial cutoff (rc) values. The central atom below the slip plane is shown in red while the atoms entering the rc are
shown in the green, atoms leaving the rc are shown in brown, atoms remaining inside rc are shown in orange, and all other
atoms are shown in gray. The dotted lines indicate the slip plane.

#3 potential) will also be shown.

III. RESULTS AND DISCUSSION

To evaluate the quality and the usefulness of a po-
tential for metallurgical problems an examination of its
application on various properties is required. A compre-
hensive investigation is performed considering mechani-
cal and elastic properties, surface energies and decohesion
curves, stacking fault curves, dislocation core structures,
twin boundaries, and fracture behavior. Each of these as-
pects are discussed below in detail. The same properties
are also investigated with an EAM potential (Mendelev
and Ackland [4] #3 potential) and are discussed briefly
for comparison. All the predicted properties are obtained
through simulations performed with LAMMPS [51] with the

n2p2 module for the NNPs and using system sizes equal
to and larger than those used for the DFT training data
with no dependence of properties on system size. Ovito
is used in visualizing the atomic structures [52].

A. NNP energies and forces versus DFT reference
values

The 10 NNPs developed with the final set of symme-
try functions give similar RMSE (RMSEE < 1 meV/atom
and RMSEF ≈ 60 meV/Å). To select the most balanced
NNP from among the 10 NNPs, a root mean square per-
centage error (RMPSE) is calculated as,

RMPSE =

√√√√ 1

N

N∑
i=1

(
XNNP −XDFT

XDFT

)2

× 100, (10)
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FIG. 4. Histogram of errors for energies and forces of the
structures in the dataset as predicted by NNP4. The tiny
fraction of structures having force errors >500 meV/Å (see
text for discussion) are shown in the inset.

with X=1,...N being the elastic properties (the 5 inde-
pendent components for hcp crystals (C11, C12, C13, C33,
C44) and the stacking fault energies (unstable (γusf) and
lower (γlsf , which may be different from the stable stack-
ing fault energy) defined as the first maxima and the
first minima of the GSFE curves) for basal {0001}, pris-
matic I-w {101̄0}, pyramidal I-w {101̄1}, and pyramidal
II {112̄1} planes (see Fig. 1) with N = 13 . The NNP
denoted “NNP4” is found to give the best RMPSE of
7.33%, along with best agreement for most individual
properties, with other NNPs having RMPSEs between
10% and 16%. NNP also has errors of RMSEE = 0.712
meV/atom and RMSEF = 60.58 meV/Å relative to the
DFT training set. Finally, NNP4 is also found to per-
form well for dislocation, twin boundaries, and fracture
simulations (see below). Hence, NNP4 is selected as the

proposed NNP emerging from the current study that is
capable of modelling most mechanical and plastic behav-
ior of Zr with very good agreement to DFT results and
other ab initio studies available in literature. The SFs
and the respective hyperparameters of NNP4 are shown
in appendix A.
The energies and forces predicted by NNP4 follows the

trend of the reference values with no discernible outliers.
Fig. 4a shows a histogram of percentage errors of NNP4
energies relative to the DFT database. The majority of
the energy errors (∼90%) are below 1 meV/atom, which
is comparable to DFT accuracy. No errors are above 10
meV/atom, which is excellent. On the other hand, Fig.
4b shows a histogram of percent forces errors, which are
much larger. The maximum error of 1.76 eV/Å is found
for a structure having a self-interstitial and most of the
large errors (> 500 meV/Å) were also for similar struc-
tures containing self-interstitials (minimum energy struc-
ture and snapshots of the molecular dynamic evolution
of this structure at 1000 K) but the DFT forces of these
structures were immense (7 ev/Å to 30 ev/Å) and hence
the relative errors are between 5% and 20% and these
structures will rarely occur in reality. The high error
could be due to the fact that there are only a small num-
ber of atomic environments in the training set that come
close to these interstitial configurations, causing less ac-
curate PES and then large force errors (derivatives of the
PES). Although these force errors are quite significant,
the equilibrium Zr self-interstitial energy and the atomic
configuration predicted by NNP4 are in good agreement
with the DFT values.

B. Lattice, elastic, and surface properties

A summary of properties commonly used to compare
interatomic potentials is shown in table I as calculated via
DFT, NNP4, and the Mendelev and Ackland #3 EAM
potential. Fig. 5 shows the percentage errors of these
properties relative to DFT. Overall, there is very good
agreement between NNP4 and DFT, with almost every
property of NNP4 captured more accurately than that of
the EAM, which was often fitted directly to the proper-
ties (although not to the precise DFT executed here).
A closer look at the lattice parameters from both po-

tentials (EAM and NNP) show that they match DFT
well, which itself slightly overestimates experimental val-
ues. The c/a ratio for Zr is quite low compared to the

ideal value for hcp structures of
√
8/3(≈ 1.633). This

difference may account for the substantially greater dif-
ficulty in obtaining a good NNP for Zr as compared to
earlier studies for near-ideal-c/a Mg, necessitating the
use of many more SFs (with higher number of angular
symmetry functions) and inclusion of the wide-angle SFs.
The 10 NNPs based on the final set of symmetry func-

tions yield elastic properties that are in fair agreement
with DFT values. In general large variations are observed
for C12 and C13, but NNP4 gives very good agreement for
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TABLE I. Comparison of the properties obtained for the NNP4 with the corresponding properties obtained from DFT calcu-
lations and the EAM (Mendelev and Ackland #3) potential.

Property Experimental DFT (0 K) NNP4 EAM
Lattice parameters
a (Å) 3.228a 3.237 3.231 3.234
c/a 1.592a 1.595 1.602 1.598
Elastic properties (GPa)
C11 155b 150 141.5 141.5
C12 67b 61 67.2 74.2
C13 65b 66 67.2 74.0
C33 173b 153 168.7 167.7
C44 36b 31 28.9 43.9
Surface energies (mJ/m2)
γsurf - basal - 1580 1593.8 1528.9
γsurf - prismatic I-w - 1664 1631.9 1540.8
γsurf - pyramidal I-w - 1573 1582.9 1553.8
γsurf - pyramidal II - 1713 1731.1 1645.4
Stacking fault energies (mJ/m2)
γlsf - basal - 215 196.7 197.8
γlsf - prismatic I-w - 208 219.7 135.5c

γlsf - pyramidal I-w - 202 198.6 161.8
γlsf - pyramidal II - 399 400.8 339.2

γusf - basal - 271 253.1 323.4
γusf - prismatic I-w - 223 237.0 272.7
γusf - pyramidal I-w - 482 461.1 336.1
γusf - pyramidal II - 580 545.8 415.2

γssf - pyramidal I-w - 113 139.2 136.1
γssf - pyramidal I-n - 161d 164.0 244.2
γssf - pyramidal II - 304 290.9 334.8
Other properties
Vacancy formation energy Evac (eV) - 2.02 2.04 1.69
Self-interstitial energy ESIA (eV) - 2.99 3.01 2.77
Ebcc−hcp (eV) - 0.084 0.085 0.103
Efcc−hcp (eV) - 0.038 0.037 0.054

a Goldak et al. [53] at 0 K
b Fisher and Renken [54] at 4 K
c For prismatic I-w plane, the generalized stacking fault energy curve doesn’t show a minimum. The value here indicates the stable
stacking fault energy only obtained with an additional 0.15c [0001] shift from the expected minimum. Fisher and Renken [54] confirms
this.

d Yin et al. [14]

C12 and C13 (see Fig. 5). The predicted C33 is overesti-
mated by all the NNPs but coincidentally these are closer
to the experimental value. Overall for elastic properties,
NNP4 shows the best agreement but the EAM potential
is on par with most of the NNPs. It is noted that DFT
itself differs from experiments, underestimating C33 and
C44 (as reported also in [55–59]).

The equations of states (EOS) for hcp and bcc Zr as
predicted by the NNP and the EAM are compared to
DFT result fig. 6. The DFT structures in the training
dataset are only in the range of ±6%, and here the NNP
and EAM both agree well with DFT. Both EAM and
NNP4 deviate from DFT for a/a0 < 0.9 and a/a0 < 0.94
for hcp and bcc phases respectively, but the EAM result is
smooth, by construction, whereas NNP4 becomes highly
unphysical at very large compression. This domain is not

relevant for most metallurgical problems, but can be im-
portant in studying radiation damage phenomena. The
erroneous behavior under high compression can be recti-
fied by the addition of a simple cut-and-shifted Lennard-
Jones (LJ) pair potential at small atom separations (see,
for example, Jain et al. [33]). Fig. 6 shows the total po-
tential using the LJ parameters ϵ = 5 eV and σ = 2.584
Å with cutoff at rc = 21/6σ = 2.90 Å; while the high-
compression regime does not match DFT, it avoids the
unphysical behaviors and is in an energy range that is
not relevant for most applications. Similar results are
obtained for the T=0 K EOS of bcc Zr using the same
LJ parameters. The only property value shown in table I
that is affected by introducion of the cut-and-shifted LJ
potential is the self-interstitial energy, which is increased
by 0.2 eV.
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FIG. 6. Equation of state for Zr obtained with DFT, EAM (Mendelev and Ackland #3 potential), and NNP4 for (a) hcp and
(b) bcc structures. NNP4+LJ shows the modified EOS using the NNP4 and a cut-and-shift LJ potential to avoid unphysical
behavior for high compressive strains.

Surface energies predicted by the NNPs are in excellent
agreement with the DFT results across all the different
vicinal surfaces studied (table I). The decohesion behav-
ior, i.e. rigid separation of two semi-infinite blocks of
perfect crystal normal to the surface of interest, is also
very well captured by the NNPs for all surfaces stud-
ied (see Fig. 7). Surface energies are often a source of
larger error for many available Zr potentials (e.g. Wim-

mer et al. [25], Kim et al. [24] with errors of ∼ 25%).
The Mendelev and Ackland #3 EAM shows fair agree-
ment with DFT but the decohesion behavior is not as
well described, but mainly at larger separation distances.
The decohesion behavior provides the base-level behavior
associated with atomic-scale separation at a sharp crack
tip, and the relaxed surface energy sets the load level for
cleavage fracture. It is necessary, but not sufficient, for
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D
ec

oh
es

io
n

en
er

gy
(m

J
/m

2
)

NNPs
DFT
EAM
NNP4

(a) Basal

0 2 4 6 8
0

1,000

2,000

3,000

4,000

Separation distance (Å)
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D
ec

oh
es

io
n

en
er

g
y

(m
J
/
m

2
)

NNPs
DFT
EAM
NNP4

(c) Pyramidal I-w
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(d) Pyramidal II

FIG. 7. Decohesion curves for basal, prismatic I-2, pyramidal I-w and pyramidal II planes; comparing the DFT, EAM (Mendelev
and Ackland [4] #3 potential), and the 10 NNPs developed with the final set of symmetry functions. NNP4 is shown with
red color to distinguish it from rest of the NNPs. All initial structures here are contained in the training dataset, with the
non-DFT results corresponding to relaxed structures using the relevant potential

both of these features to be well-reproduced for applica-
tions of any potential to fracture problems.

C. Stacking fault energies

The generalized stacking fault energies (GSFE) of all
the different slip planes are very important in predicting
the plasticity behavior as they significantly influence the
dislocation core structures and energies, and the often
delicate energetic competition between slip modes. DFT
calculated stacking fault curves and fully-relaxed stable
stacking fault energies (SSFE) agree well with results

from Yin et al. [14]. These are included in the training
dataset. Since the basal, prismatic I-wide, and pyramidal
I-narrow slip planes (see Yin et al. [14]) all contain the
critical ⟨a⟩ screw dislocation while the pyramidal I-w and
pyramidal II planes both contain the ⟨c+ a⟩ screw dislo-
cation (see Fig. 1), careful determination of the stacking
fault energies for these planes is especially important in
Zr.

Fig. 8 shows the GSFE curves along the basal, pris-
matic I-w, pyramidal I-w, and pyramidal II directions ob-
tained from DFT calculations, the NNPs, and the EAM
potential. The fully-relaxed stable stacking fault ener-
gies are also shown with an “ ∗ ”. It is important to note
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FIG. 8. Generalized stacking fault energy curves for basal, prismatic I-2, pyramidal I-w and pyramidal II planes; comparing the
DFT, EAM (Mendelev and Ackland [4] #3 potential), and the 10 NNPs developed with the final set of symmetry functions.
NNP4 is shown with red color to distinguish it from rest of the NNPs. * shows the location and energy of the stable stacking
fault. All initial structures here are contained in the training dataset, with the non-DFT results corresponding to relaxed
structures using the relevant potential

that the stable stacking fault energies in the pyramidal
I-w, pyramidal I-n, and pyramidal II planes deviate sig-
nificantly from the minima of the GSFE curves due to
non-negligible atomic relaxations of atoms not immedi-
ately adjacent to the slip plane (again see Yin et al. [14]).
The NNPs show quite good agreement for most of the
crucial details in the GSFE (see Tab. I and Fig. 8) while
the EAM potential studied here, and all others investi-
gated, show very poor stacking fault energies. Similar to
the elastic properties, among the NNPs, NNP4 gives the
overall best agreement with the DFT results.

Looking in detail, the NNP predictions for the pris-
matic I-w slip show some variability. However, all NNPs
predict a local minimum (stable stacking fault). The ex-

istence of this minimum is quite important since it in-
dicates that a stable ⟨a⟩ screw dislocation can exist on
this plane, and experimentally this is the dominant ⟨a⟩
slip plane in hcp Zr. This differs significantly from hcp
Mg, for example, where the prismatic I-w has no local
minimum and the ⟨a⟩ is not stable relative to the basal
⟨a⟩ [32]. The actual dislocations will be analyzed later.

In addition, the pyramidal I-w stable stacking fault is
substantially lower than that on the pyramidal II plane.
This indicates that the pyramidal I-w ⟨c+ a⟩ is strongly
preferentially relative to the pyramidal II ⟨c+ a⟩, and
indeed pyramidal I-w slip is observed in Zr and pyra-
midal II slip is essentially absent. Again, this contrasts
with Mg, where the two fault energies are almost equal,
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and pyramidal II slip is very slightly favorable relative to
pyramidal I-w slip, as observed experimentally.

Mendelev and Ackland [4] only considered the SSFE
in the basal and prismatic I-w planes when developing
the EAM potential (Mendelev and Ackland [4] #3) for
the stacking fault energies due to the limited form of
the potential. Hence, important aspects of the GSFE
curves may not be accurately captured. As observed in
Fig. 8a, the SSFE in the basal plane is determined ac-
curately with the EAM potential but the SSFE in the
prismatic I-w plane shows a considerably lower energy
(135.5 mJ/m2) than the DFT value, and also with an
offset of 0.15c[0001] from the path of the GSFE curve.
Udagawa et al. [60] found that the reason for the in-
correct SSFE in the prismatic I-w plane was the use of
an incorrect DFT reference value (145 mJ/m2 as given
by Domain et al. [61]) due to an insufficient number of
planes in the simulation cell. Bacon and Vitek [62] also
showed that potentials with simple hard-sphere models,
such as EAMs, inherently suffer from an artifact for the
hcp structures wherein the stable stacking fault position
for the prismatic I-w plane is found with an offset of
αc[0001](α ̸= 0) from the GSFE path. Thus, the SSFEs
for the pyramidal planes (pyramidal I-w and pyramidal
II) are at incorrect positions even though the SSFE values
show some agreement with DFT. The EAM fails to cap-
ture remaining aspects of the GSFE curves such as the
unstable stacking fault energy, which is expected because
such information is not included in the fitting process.

D. Dislocations

The plastic flow of metals mainly depends on the avail-
ability and mobility of dislocations. Hence, accurate de-
scriptions of all the dislocation core structures are quite
important. With the hcp crystal structure, the relevant
dislocations are those with Burgers vectors ⟨a⟩ ( 13 ⟨12̄10⟩)
and ⟨c+ a⟩ ( 13 ⟨12̄13⟩) (Fig. 1). ⟨a⟩ dislocations are dom-
inant but c-axis deformation, required to satisfy the Von
Mises criterion for macroscopic plasticity, necessitates
the motion of ⟨c+ a⟩ dislocations or twinning. The five
possible glide planes are the basal, prismatic I-w, and
pyramidal I-n for ⟨a⟩ dislocations and pyramidal I-w and
pyramidal II for ⟨c+ a⟩ dislocations, as shown in Fig. 1.

Here, all five slip systems are analyzed for the rele-
vant edge and screw dislocations separately (10 different
core structures). For each case, initial full dislocation
and expected partial dislocations are created using the
anisotropic Volterra elastic dislocation solution [63], with
initial partial dislocation spacings ranging from 5 Å to 30
Å in steps of 5 Å along the respective slip planes. Sim-
ulation cells with in-plane dimensions of approximately
300 Å× 300 Å with one periodic length along the dislo-
cation line direction are used. During relaxation start-
ing from the initial structure, the outer boundary atoms
in a 10 Å-thick layer are fixed and all inner atoms are
relaxed until a stable configuration is reached. The re-

sulting dislocation core structures are analyzed using the
Nye tensor [64, 65], differential displacement maps [66],
and disregistry along the slip plane using the atomman
python package [67]. Gradients of the disregistries give
the Burgers vector distribution along the glide plane and
enable an estimate of any dissociation into partial dislo-
cations [68].

Edge dislocations are stable for all these slip planes but
the same screw dislocation can exist on several different
planes. Hence, the energetic competition among the dif-
ferent slip systems for the same Burgers vector screw dis-
location is crucial to the deformation. The stability of a
screw dislocation on a given plane is mainly determined
by the stacking fault energy, and it is encouraging that
NNP4 captures these energies with good accuracy.

For the critical ⟨a⟩ screw dislocation, previous compu-
tational studies [15, 16, 69] and experimental investiga-
tions [70, 71] find that the most stable ⟨a⟩ screw disloca-
tion plane in Zr is the prismatic I-w plane. DFT studies
using periodic systems with dislocation dipoles in rela-
tively small simulation cells have predicted metastable
pyramidal I-n core structures that have higher energies
(per dislocation line length) of 3.2± 1.6 meV/Å [16] and
∼ 2.9 meV/Å [72], while the basal core is unstable ex-
cept at very high temperatures [69]. The EAM potential
(Mendelev and Ackland [4] #3) shows the pyramidal I-n
to be much higher in energy (24 meV/Å) and also shows a
gliding basal core [15] not found in ab initio calculations
nor observed; the EAM potential is thus not quantita-
tively accurate. As shown in Fig. 9, the NNP4 predicts
two stable core structures at T=0K, one on the prismatic
I-w plane and one on the pyramidal I-n plane. The first
core structure is very compact and the glide plane di-
rection is hard to distinguish via the Nye tensor field.
However, the differential displacement maps (see Fig. 9)
and disregistry gradients show disassociation on the pris-
matic I-w plane. Under a small resolved shear stress, this
dislocation also glides along the prismatic plane. This
prismatic I-w core remains stable when heated to 100
K with molecular dynamics evolution. Furthermore, the
edge components of the Nye tensor are almost negligible
for this core, which can only be the case for the prismatic
I-w ⟨a⟩ due to symmetry requirements.

The second core is on the pyramidal I-n plane, and is
found to be metastable, transforming to the prismatic I-w
core during molecular dynamics at 100K. Using the NNP
for the DFT structures of Ref. [72] (192 atom periodic
cells with dislocation dipoles), we compute a pyramidal
I-n energy that is 3.8 meV/Å higher than the prismatic
I-w energy, in very good agreement with the DFT. Fur-
thermore, the NNP then enables study of the same dislo-
cations in much larger simulation cells, thus eliminating
spurious energy contributions that arise when using the
small periodic dipolar cells. In large cells (14976 atoms
or more), the NNP predicts that the energy difference be-
tween the pyramidal I-n and prismatic I-w dislocations
increases to 7 meV/Å, independent of cell size. The NNP
thus both captures the DFT results and enables a more-
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(a) Prismatic I-w plane

(b) Pyramidal I-n plane

FIG. 9. Atomistic core structures for the ⟨a⟩ screw dislocation
in the Prismatic I-w and Pyramidal I-n planes with the Nye
tensor screw components and differential displacement maps
overlaid. Green circles indicate the centers of the partial dis-
locations as identified by the disregistry plots. Theoretical
and observed dislocation separation distances are indicated
as dtheory and dobserved respectively. These structures are not
contained in the training dataset

realistic energy difference to be determined, which will
lead to accurate modeling of the stresses and tempera-
tures needed to activate any pyramidal I-n ⟨a⟩ slip. No
stable dislocation on the basal plane was found, using a
number of different initial conditions to attempt to find
a stable configuration. The NNP4 thus predicts all of
the observed behaviors found in Zr, and with very good
quantitative accuracy in the energy difference relative to
the DFT result computed using different details. This
represents a significant success for the Zr NNP4, and is
a notable improvement over the predictions of any other
potentials.

Deformations in the c-axis direction of Zr are found to
be facilitated through twinning and ⟨c+ a⟩ dislocations

(a) Pyramidal I-w plane

(b) Pyramidal II plane

FIG. 10. Atomistic core structures for the ⟨c+ a⟩ screw dislo-
cation in the Pyramidal I-w and Pyramidal II planes with the
Nye tensor screw components and differential displacement
maps overlaid. Green circles indicate the centers of the partial
dislocations as identified by the disregistry plots. Theoretical
and observed dislocation separation distances are indicated
as dtheory and dobserved respectively. These structures are not
contained in the training dataset

that are shared by both the pyramidal I-w and pyrami-
dal II planes (see Fig. 1). The experimental consensus is
that ⟨c+ a⟩ glide occurs along the pyramidal I-w plane
[73–79] and not the pyramidal II plane. Only Long et al.
[78] observed a dislocation with pyramidal II glide, but
this result is suspected to be due to the presence of Nb
[79]. The NNP4 predicts a stable ⟨c+ a⟩ screw disloca-
tion on the pyramidal I-w plane. A metastable pyrami-
dal II dislocation core is also observed with an energy 64
meV/Å higher (see Fig. 10). This is a very large energy
difference, indicating strong preference for the pyramidal
I-w plane. Hence, when a Burgers-vector length pyrami-
dal II screw is studied in molecular dynamics at 100 K,
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it quickly cross-slips into the more-stable pyramidal I-w
structure.

(a) Edge component

(b) Screw component

FIG. 11. Atomistic core structures for the ⟨a⟩ edge disloca-
tion in the basal plane with the Nye tensor and differential
displacement maps overlaid. Green circles indicate the centers
of the partial dislocations as identified by the disregistry plots.
Theoretical and observed dislocation separation distances are
indicated as dtheory and dobserved respectively. These struc-
tures are not contained in the training dataset

In contrast, available EAM potentials did not con-
sider the stable stacking fault energies of the pyramidal
planes. The resulting values for both the energy and the
minimum position are thus inaccurate relative to DFT.
Hence, the EAM potentials are likely not suitable for
modelling ⟨c+ a⟩ dislocations.

Compared to screw dislocations, edge dislocations can
be uniquely defined for each of slip system. NNP4 pre-
dicts reasonable core structures for most of the edge dis-
locations in hcp Zr. Fig. 11 shows the edge and screw
components of the Nye tensor of the ⟨a⟩ edge dislocation
along the basal plane. The ⟨a⟩ (1/3⟨12̄10⟩) dislocation
disassociates into mixed partial dislocations (1/3[11̄00]
and 1/3[01̄10]) as expected. Similarly, ⟨a⟩ edge disloca-
tions on the prismatic I-w and pyramidal I-n slip planes

(a) With the local rearrangement
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(c) Rearrangement of atoms

FIG. 12. The two atomistic core structures for the ⟨c+ a⟩
edge dislocation in the Pyramidal II plane with the Nye ten-
sor and differential displacement maps overlaid, with green
circles indicating the centers of the partial dislocations as
identified by the disregistry plots. Theoretical and observed
dislocation separation distances are indicated as dtheory and
dobserved respectively. The Yellow square shows the location of
the spurious local rearrangement in structure (a). (c) shows
this region is magnified and overlapped with the same region
in structure (b), with red atoms showing structure in (a) and
white atoms showing structure in (b). These structures are
not contained in the training dataset
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disassociate into partial dislocations with Burgers vec-
tors corresponding to the positions of the stable stacking
faults.

For the ⟨c+ a⟩ edge dislocation, the slip system in
pyramidal I-w plane is modelled without any issues. For
slip along the pyramidal II plane, however, two core ar-
rangement are observed (see Fig. 12) differing in energy
by 6.04 meV/Å. The lower-energy structure shows a lo-
cal rearrangement (shown with the yellow square in Fig.
12a) close to one of the partial dislocations. This is
expected to be an artifact of the potential, and disap-
pears when the spacing between the partials is increased.
The rearrangement can be identified as mainly associated
with three atom pairs, as seen in Fig. 12c (contained in
blue ovals), where the red atoms shows the low energy
structure with the artifact and the white atoms show
the structure without the artifact. The higher energy
structure in Fig. 12b is more likely to be the physical
core structure. However, as observed in previous stud-
ies, pyramidal II dislocations are rarely observed. These
dislocations might only be created in a specific fracture
geometry along the basal plane (see section III F). Hence,
this artifact is not expected to be a significant issue in
modelling any plastic behavior in Zr.

As a further qualitative examination of the dislocation
structures, the partial dislocation distance d is estimated
within anisotropic elasticity theory as

dtheory =
b
(1)
i Kijb

(2)
j

2πγssf
, (11)

where b(1) and b(1) are the Burgers vectors of the partial
dislocations, K is the Stroh matrix [80, 81], and γssf is the
stable stacking fault energy of the respective plane. Fig.
9 to 12 indicate the analytically estimated (dtheory) and
atomistically observed (dobserved obtained using gradients
of the atomistic disregistry across the slip plane) partial
spacing for several core structures. NNP4 shows general
agreement, providing further confidence in the potential.
Significant deviations that would point to possible subtle
problems in a potential are not found.

As mentioned above, the stacking faults of the EAM
potential (Mendelev and Ackland [4] #3) vary rather sig-
nificantly from the DFT properties, hinting at challenges
in modeling dislocations. The EAM can give some ade-
quate core structures but several shortcomings are also
observed. The ⟨a⟩ screw dislocation shows a stable basal
structure that should not exist (see also Clouet [15]). In
addition, the partial separation distances can vary more
significantly from the elasticity estimate mainly for the
⟨c+ a⟩ dislocations.

E. Twin boundaries

Plastic deformation in hcp Zr is mainly accommodated
by the prismatic ⟨a⟩ dislocations. Generalized plasticity
requires, however, c-axis deformation, which is achieved

in Zr by either pyramidal I-w ⟨c+ a⟩ dislocations or twin-
ning [70, 76, 82, 83]. Twinning is observed abundantly
at low temperatures (twinning almost exclusively con-
tributes to c-axis deformation below 77 K [76, 84]) and
high strain rates, while ⟨c+ a⟩ dislocations become dom-
inant at high temperatures (above 373 K slip dominates
the deformation). Four different twin systems have been
observed in Zr. For tensile strains (extensions) along the
c-axis, {101̄2} (T-I) twins are most frequently observed
while {112̄1} (T-II) twins are increasingly observed at
high strain rates and temperatures [70, 76, 85]. For com-
pressive strains (contraction) along the c-axis, the {112̄2}
(C-I) twins are predominantly observed with the {101̄1}
(C-II) observed only at high temperatures [85].

The NNP development here contained no twin bound-
aries in the training set. Thus the ability of NNP4 to
predict the structures and energies of the four observed
twinning systems is examined. Simulation cells contain-
ing twin boundaries were created, with periodicity along
the twin planes. Boundaries above and below the twin

(a) T-I ({101̄2}) (b) T-II ({112̄1})

(c) C-I ({112̄2}) (d) C-II ({101̄1})

FIG. 13. Relaxed twin boundaries obtained with the NNP4
potential relevant for the deformation twins observed for Zr.
Red circles represent atoms in hcp crystal structures and
white circles represent atoms which cannot be classified to
any structural system as identified by common neighbor anal-
ysis [86, 87]. Twin boundaries are shown with a dashed line
and an outline of the orthogonal unit cell for hcp Zr is shown
on either side of the twin boundary. These structures are not
contained in the training dataset



16

plane at a distance of ∼300 Å were free, and all atoms
were relaxed to the low-energy stable structures. The
minimum energy structures are shown in Fig. 13 and
agree well with those obtained by DFT Mackain et al.
[83]. The predicted twin boundary energies also agree
very well with DFT, as shown in table II. NNP4 correctly
reproduces the relative energies across the four bound-
aries, and also the very low energy of the C-II bound-
ary. In contrast, predictions using the EAM potential
(Mackain et al. [83]) show an accurate energy for the T-I
boundary but errors of 35%–60% for all others. With-
out any training information, NNP4 thus captures the
twin boundary structures and energies extremely well,
and notably outperforms the EAM potential.

F. Fracture

Fracture is perhaps the most difficult phenomenon
to model due to the complex behavior involving high
stresses at the tip of an atomistically-sharp crack. Semi-
infinite cracks, which are the key reference structures to
obtain the relevant critical stress intensity factors for var-
ious behaviors, are not periodic. Thus, DFT calculations
of fracture are challenging, and require the use of short
center cracks in small system sizes, then requiring very
high applied loads at which the entire sample is deform-
ing non-linearly (see Andric and Curtin [89]). Many em-
pirical potentials also fail to show physically reasonable
behavior near the crack tip, and across various metals
and crystal structures (fcc, bcc, hcp). However, captur-
ing the correct crack tip behavior is quite important since
it determines whether a material is intrinsically ductile or
brittle. More broadly, no problems involving the creation
or evolution of cracks can be studied using a potential
that fails for the sharp crack.

The relevant quantities controlling fracture behavior
are the three stress intensity factors KI ,KII , and KIII

for opening, in-plane shearing, and anti-plane shearing,
respectively, that uniquely characterize the asymptotic
singular fields around a crack, independent of the overall
problem geometry or applied loads. Of most interest is
the mode I opening behavior, for which there are two

TABLE II. Twin boundary energies (in mJ/m2) as predicted
by NNP4 potential and as computed by DFT Mackain et al.
[83] and Kumar et al. [88]. These structures are not contained
in the training dataset

.

System NNP4 DFTa DFTb

T-I 270 272 253
T-II 211 229 -
C-I 290 355 -
C-II 94 96 65

a Mackain et al. [83]
b Kumar et al. [88]

fundamental crack tip responses: brittle cleavage that
maintains a sharp crack occurring at the critical value
KIc [90] and dislocation emission that blunts the crack
and encourages ductility occurring at the critical value
KIe [91, 92]. These two critical quantities depend on
the surface energy γs and unstable stacking fault energy
γusf for the relevant cleavage and fracture planes. Linear
elastic fracture mechanics predicts that the critical values
are

KIc =

√
2γs
Λ22

, (12)

KIe =

√
GIe o(θ, ϕ)

|F12(θ)|
, (13)

with

GIe =

{
0.145γs + 0.5γusf γs > 3.45γusf
γusf γs < 3.45γusf

(14)

where Λ22 and o(θ, ϕ) are anisotropic elastic constant fac-
tors, θ is the inclination of slip plane relative to the crack
plane, ϕ is the the orientation angle of the dislocation
Burgers vector relative to the crack front direction in the
slip plane, and F12(θ) is a geometric factor related to the
angular distribution of shear stress at the crack tip. In
simulations with an increasing applied K, the control-
ling behavior (cleavage or emission) is determined by the
smaller of KIc and KIe. These predictions are not ex-
act, and so should be considered as indicative rather than
definitive. Also, although these criteria depend only on
basic material properties that are often fit in the develop-
ment of an interatomic potential, capturing these values
accurately in no way ensures that an actual simulation
of the crack tip fracture behavior will be physical.
Fracture is studied using the K-controlled geometry

in a cell with in-plane dimensions ∼300 Å× 300 Å and
minimum periodicity along the crack front [89]. Loading
is accomplished by displacing all atoms according to the
anisotropic elastic solution at an initial stress intensity
factor slightly below the theoretically-predicted control-
ling value (KIc or KIe). Atoms near the boundary are
held fixed and then all interior atoms are relaxed to equi-
librium. Displacements are then incremented by a small
∆K followed by full relaxation of the interior atoms, and
the response monitored for crack tip behavior (cleavage,
emission, or other behavior). To avoid crack closure be-
low KIc, atomic interactions between atoms on either
side of the crack plane are set to zero. Five different crack
systems (crack plane, crack front direction) are studied:
Basal I {0001} ⟨12̄10⟩, Basal II {0001} ⟨101̄0⟩, Prismatic
I {101̄0} ⟨12̄10⟩, Pyramidal I {101̄1} ⟨12̄10⟩, and Pyrami-
dal II {112̄1} ⟨101̄0⟩.

Initial NNPs trained without the cuboidal and rod
structures are found to show nonphysical behavior near
crack tips (amorphization, etc.). Such behavior was pre-
viously seen in studies on Mg and other systems. All
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(a) Basal I (b) Basal II (c) Prismatic I-w

(d) Pyramidal I-w (e) Pyramidal II - near tip (f) Pyramidal II - emitted dislocation

FIG. 14. Post-fracture view of the near crack tip region for sharp crack tips obtained with the NNP4 potential, where red,
green, and yellow circles represent atoms in hcp, fcc, and icosahedral crystal structures respectively, and white circles represent
atoms which cannot be classified to any structural system as identified by common neighbor analysis [86, 87]. For the pyramidal
I system, the initial crack tip location is shown with a “×”. These structures are not contained in the training dataset

TABLE III. Comparison of predicted and simulation fracture behavior (load level and event) for sharp cracks using the NNP4
potential. The theoretical critical stress intensity factor KI,theo is the smaller of KIe and KIe and is shown in bold. The stress
intensity factor at failure as found in the simulations is denoted as KI,sim.

Predictions using DFT material properties are shown for comparison.

Orientation
Prediction Simulation

KIc KIe Event Event KI,sim/KI,theo

Basal I
NNP4 0.588 0.558 Emit - Pyramidal Emit - Pyramidal 0.954
DFT 0.587 0.587 Emit/Cleave

Basal II
NNP4 0.588 0.598 Cleave Disordering+emission 1.018
DFT 0.587 0.654 Cleave

Prismatic I-w
NNP4 0.569 0.548 Emit - Basal Emit - Basal 1.020
DFT 0.599 0.577 Emit - Basal

Pyramidal I-w
NNP4 0.566 0.518 Emit - Basal Cleave 1.094
DFT 0.584 0.545 Emit - Basal

Pyramidal II
NNP4 0.593 0.579 Emit - Basal Emit - Basal 0.986
DFT 0.609 0.615 Cleave

results in this paper are based on training that included
these addition structures, which were found to success-
fully resolve issues in the fracture behavior of Mg.

Atomistic simulations using the NNP4 potential show
one of the two expected mechanism (brittle cleavage, duc-
tile emission) and at K levels comparable to the theo-
retical values predicted using the NNP4 properties (see

Table III) for all crack geometries studied. Fig. 14 shows
atomistic images of the system just after the creation of
the failure event. In general, all the cracks are well be-
haved and nearly all show no spurious deformations. The
main problematic case is the Basal II system, where at
failure there is some disordering close to the crack tip.
This disorder (see Fig. 14b) appears similar to the arti-
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facts observed in the pyramidal II dislocation edge core
structure, which is the dislocation that is predicted to be
emitted from this crack geometry. Cleavage is the pre-
dicted failure mechanism but the difference in critical K
value between cleavage and emission is very small and
cleavage can be hindered by lattice trapping [93]. So,
emission is not surprising. Another deviation from the-
ory is that the mechanism operative for the Pyramidal
I crack plane is observed to be cleavage but emission is
predicted because KIc is ∼10% higher than KIe. This
is a notable difference which, since the K value is close
to KIc suggests that emission is being inhibited in this
geometry. The critical loads in other cases are quite close
to the predicted values.

Table III also shows the predicted criticalKI values us-
ing the DFT material properties. Fracture calculations
were not performed with DFT as the system sizes re-
quired are too large to perform DFT calculations. The
values differ slightly from those obtained with the NNP4
potential. However, with these small differences, the pre-
dicted mechanisms can be different in a few cases. For
the Basal I case, DFT predicts cleavage and emission to
be equal while the NNP predicts emission. Hence, the
NNP may overestimate stability of Basal I cracks, and
real Zr may be more prone to cleavage. Basal II, Pris-
matic I-w, and Pyramidal I-w are all predicted to show
the same phenomenon in DFT and NNP4. DFT values
predict that Pyramidal II should show cleavage, while
NNP4 predicts emission, which is observed in the simu-
lations. All of these competitions are very subtle, and the
true behavior can differ from the DFT estimate. Hence,
we mainly look for consistency and avoidance of unphys-
ical crack tip behavior. Finally, the crack tip behavior
observed for other NNPs having the same set of symme-
try functions as NNP4 give similar results for fracture,
so that NNP4 is not special in this regard.

The EAM potential (Mendelev and Ackland [4] #3)
shows reasonable predictions for surface energies but not
for unstable stacking fault energies. Hence, the EAM is
not expected to predict fracture behavior accurately. In-
deed, the EAM potential shows mainly cleavage failure in
simulations, contradicting almost all predictions based on
DFT and EAM properties. The cleavage failure also dis-
played unusual behavior where the crack extension was
gradual with increasing stress, whereas the crack should
normally extend further whenKIc is reached. These vari-
ations could be due to the limitations in the properties
used when fitting the EAM. Properties such as surface en-
ergies and stacking fault energies that are important for
fracture behavior, are not considered adequately. Hence
the behavior around crack tips may not be properly cap-
tured with the EAM.

IV. CONCLUSION

ANeural Network Potential (NNP) has been developed
for hcp Zr that achieves the goal of providing a broadly

accurate potential for a wide range of applications. This
Behler-Parrinello NNP is constructed based on previous
NNP development experience for metals and alloys. It is
found necessary to greatly expand the number and na-
ture of the symmetry functions, relative to those used
in hcp Mg and fcc Al-based alloys. The c/a ratio differs
substantially from the ideal value, unlike in Mg, and thus
creating many more complex local environments within
the typical structures. This makes the requirement for
symmetry functions capturing the angular relationships
higher, thereby increasing an expansion of the total sym-
metry functions. In particular, it is found necessary to
include wide angular symmetry functions and use a ra-
dial cutoff of 7.0 Å to obtain an accurate description of
some key Zr properties.

The selected NNP, labelled NNP4, shows very good
agreement for mechanical properties, GSFE curves, sta-
ble stacking fault energies, decohesion curves, and surface
energies, across the spectrum of slip and fracture planes
relevant for deformation and fracture. Beyond matching
the properties coming directly from DFT energies, NNP4
shows very good twin boundaries, dislocation structures,
and fracture behavior. One notable success is the correct
prediction of the relative energetics of the ⟨a⟩ screw, with
the prismatic plane slightly favored over the pyramidal
I plane and the basal plane showing no stable structure.
Another notable success is the accurate predictions of the
structures and energies of all four twin systems, none of
which were included in the training set.

Several issues remain to be rectified in future genera-
tions of a machine-learning potential for hcp Zr. First,
the behavior in high compression is poor because this
domain is outside the scope of the training set. The
unphysical behavior can be rectified by the ad-hoc ad-
dition of a repulsive potential (see Fig. 6) but this is not
a full solution. Expanding the training data is possible,
but the addition of high-energy structures could drive
the NNP toward fitting of those structures at the ex-
pense of lower-energy structures related to more-crucial
properties. Other regression methods using the current
training set or an expanded training set might show bet-
ter results. Lastly, the pyramidal II edge dislocation core
shows some likely-unphysical local rearrangements in the
lowest-energy structure. Fortunately, pyramidal II slip is
not very relevant in Zr, since pyramidal I-w slip domi-
nates. But this rearrangement does affect the crack tip
behavior of the basal II orientation where emission onto
the pyramidal II plane should occur, and so improve-
ments to the pyramidal II slip description remain desir-
able.

In spite of some of the above limitations, comparisons
of NNP4 against the EAM potential (Mendelev and Ack-
land [4] #3) show that NNP4 is clearly superior. NNP4
not only predicts basic properties as well or better than
the EAM potential, but is far better in capturing intri-
cate details related to dislocations, twins, and fracture.
Other EAM potentials not discussed here were also stud-
ied and showed even poorer performance than the EAM
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potential (Mendelev and Ackland [4] #3). While the
computational cost of NNP4 is approximately one order
of magnitude higher than that for the EAM potential, the
far better accuracy in qualitative and quantitative pre-
dictions related to metallurgical phenomena fully offsets
the increased computational cost.

In light of our present study, the current NNP4, while
not perfect, sets a new standard for the performance of
interatomic Zr potentials. Future work will involve ex-
tending this NNP framework to Zr-H and Zr alloys. This
will enable accurate simulations of critical application
problems of Zr alloys in nuclear reactors.
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Appendix A: Symmetry function hyper-parameters
used in developing NNP4 potential

Hyper-parameters of the symmetry functions used
when developing the NNP4 potential are shown in ta-
ble IV. Symmetry function types 2, 3, and 9 corresponds
to G2, G3, and G9 symmetry functions as shown in
eqs. (2) to (4) respectively.
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TABLE IV. Hyper-parameters for the symmetry functions as described in eqs. (2) to (4), where type 2, type 3, and type 9 are
for radial (G2), narrow angular (G3), and wide angular (G9) symmetry functions respectively. rc = 7.0 for all the symmetry
functions

Type η λ ζ rs Type η λ ζ rs
2 2.000E+00 - - 0.50 3 5.102E-01 -1 1 -
2 2.000E+00 - - 3.50 3 5.102E-01 1 1 -
2 2.000E+00 - - 4.00 3 5.102E-01 -1 3 -
2 2.000E+00 - - 4.50 3 5.102E-01 1 3 -
2 2.000E+00 - - 5.00 3 5.102E-01 -1 12 -
2 2.000E+00 - - 5.50 3 5.102E-01 1 12 -
2 2.000E+00 - - 6.00 3 5.102E-01 -1 64 -
2 2.000E+00 - - 6.50 3 5.102E-01 1 64 -
2 2.041E-02 - - 0.00 9 2.041E-02 -1 1 -
2 3.885E-02 - - 0.00 9 2.041E-02 -1 3 -
2 7.396E-02 - - 0.00 9 2.041E-02 1 3 -
2 1.408E-01 - - 0.00 9 2.041E-02 -1 12 -
2 2.680E-01 - - 0.00 9 2.041E-02 1 12 -
2 5.102E-01 - - 0.00 9 2.041E-02 -1 64 -
3 2.041E-02 1 1 - 9 2.041E-02 1 64 -
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