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Abstract. Electromagnetic waves that resonate with the cyclotron motion of
electrons in a magnetized plasma can efficiently transfer their momentum and
energy to the plasma. This is routinely used to heat or to drive current in
tokamak plasmas. The impact of this localized source of momentum and energy on
turbulence and the retro-action of turbulence on the resonant interaction between
the electromagnetic wave and the plasma have been scarcely studied due to the
difficulty to simulate self-consistently the two physical mechanisms. In this paper
a realistic source representing electron-cyclotron resonance heating (ECRH) and
current drive (ECCD) is derived and implemented in a gyrokinetic code. The
implementation of this realistic source in any existing global gyrokinetic code
would enable the self-consistent study of turbulence in presence of ECRH/ECCD
by this code. The analytical source derived in the paper is valid for a beam
propagating in the equatorial plane of an axisymmetric tokamak plasma. The
realistic ECRH/ECCD source is implemented in the global gyrokinetic code ORB5
and successfully benchmarked against an analytical theory [Albajar et al., PPCF,
2006] and the C3PO/LUKE suite of codes [Peysson et al., PPCF, 2011] which is
routinely used to study ECRH/ECCD deposition.

1. Introduction

Electromagnetic waves can transfer their momentum and energy to magnetized
plasmas. Efficient coupling between the wave and the plasma is possible in the
presence of a resonance between the wave oscillation and the cyclotron motion of
particles constituting the plasma. Electromagnetic waves with frequencies matching
the Doppler shifted electron cyclotron (EC) frequency, or one of its harmonics, can
be used to heat electrons, so-called Electron-Cyclotron Resonant Heating (ECRH),
and/or to drive a current, so-called Electron-Cyclotron Current Drive (ECCD).

One of the main advantages of EC waves is their ability to couple with the
plasma in a narrow region of space. Hence, EC waves can be used either as a pure
heating/current source or to control MHD instabilities by accurately driving current
at a precise position in the plasma.

It has been experimentally observed that, under certain conditions, suprathermal
electrons generated by the EC power deposition are found in a region much larger
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than the region where the power deposition is expected using quasilinear drift-kinetic
Fokker-Planck simulations [1, 2], solving beam propagation and power deposition in
quiet plasmas. Two complementary improvements of models have therefore been
proposed to reconcile these predictions with experimental observations. The first
improvement is to take into account fluctuations of plasma density, induced by
turbulence, along the path of the beam. These fluctuations, indeed, lead to the
scattering of the beam and a, generally broadened, deposition area fluctuating in
time. This effect has been studied with different approaches, starting from ray-
tracing and drift-kinetic modeling [3, 4] to wave-kinetic modeling and full-wave studies
[5, 6, 7, 8, 9], concluding that it can significantly broaden the power deposition profile,
depending on the beam incidence onto the resonant layer and on the profile of density
fluctuations.

The second improvement is to take into account the spatial transport of
suprathermal electrons generated by the EC power deposition after the wave
absorption. This has been first implemented as an ad-hoc additional transport term in
drift-kinetic Fokker-Planck simulations [2, 10]. Comparison with experiments suggests
that this transport is directly proportional to the diffusion in phase space induced by
EC wave absorption. This ad-hoc transport allows to reconcile simulation predictions
with experimental observations, suggesting that turbulence can efficiently transport
suprathermal electrons generated by the EC power deposition. More generally, the
possible synergies between EC power deposition and turbulence have not been studied
so far. Indeed, to study these potential synergies, self-consistent simulations of
turbulence in presence of ECRH/ECCD are required. To the best of our knowledge,
this has never been done before, especially because of the difficulty to self-consistently
treat turbulence and the resonant plasma/wave interaction. In this paper we derive an
analytical operator modeling ECRH and ECCD. This operator can be used as a source
term in any global gyrokinetic code, thus enabling the self-consistent simulation of
turbulence in presence ECRH/ECCD. This is therefore a major step forward to study
the possibility of synergistic effects between turbulence and ECRH/ECCD deposition.

In a recent paper [11], a quasilinear operator modeling a pure ECRH source in
the specific case of a beam propagation in the equatorial plane of the tokamak was
derived and implemented in the flux-driven gyrokinetic code ORB5 [12]. In this paper
the generalization of this source to model both ECRH and ECCD, still assuming a
propagation of the beam in the equatorial plane, is reported. This generalization of the
source to include an ECCD component is an important step toward the perspective
of comparing numerical results with experimental observations. Indeed, pure heating
is a very particular case of the use of EC waves, and the presence of a current drive
component is more relevant for applications foreseen in future large devices, such as
MHD mode mitigation. Moreover, observation of suprathermal electrons using Hard
X-Ray spectrometry is easier in ECCD configuration, as the resonance takes place
farther away from the bulk distribution, exciting electrons with higher velocities and
increasing the photon count rate at higher energies.

The derivation of the improved source term is presented in section 2. The
numerical treatment of this quasi-linear operator is described in section 3. In section
4, numerical tests of this new source term are reported.
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2. Derivation of an ECRH/ECCD source for a beam propagating on the
midplane

The gyrokinetic equation can be symbolically written

∂F̄s

∂t
+
{
F̄s, H̄s

}
=
∑
s′

C
(
F̄s, F̄s′

)
+QEC

(
F̄s

)
+ S

(
F̄s

)
(1)

where F̄s is the distribution function of gyro-centers of the species s. The second
term of the left hand side is the Poisson bracket of F̄s with the Hamiltonian H̄s. It
corresponds to particle drifts and contains nonlinear terms, leading to turbulence. The
first term on the right hand side is the collision operator, which is a key ingredient for
the saturation of the EC beam deposition at large power, as it smooths out small scale
fluctuations in the velocity space that are generated by the plasma/wave coupling. The
term QEC

(
F̄s

)
is the source term representing the ECRH/ECCD deposition which is

derived in this paper. Note that it will be non zero only for electrons. Finally, the
last term in Eq.1 represents other source and sink terms. Eq.1 needs to be solved
for each species self-consistently with Poisson and Ampere equations to evolve the
electromagnetic field.

The Larmor radius of electrons is small compared with the ion Larmor radius.
As Ion Temperature Gradient (ITG) and Trapped Electron Mode (TEM) turbulence
develop at typical space scales of the order of the ion Larmor radius, the drift kinetic
approximation is regularly used for electrons in gyrokinetic codes. This implies that
no distinction is made between the gyro-center and the particle electron distributions
for the electrons. Finite Larmor radius effects will however be kept in the realistic
source term QEC , as they are leading order terms of this operator.

The derivation of a quasilinear operator representing the coupling of an EC beam
with a plasma has been presented in [11]. We give here the main results of the
derivation. The interested reader is invited to read [11] for details of the computation.
The operator describing the resonant coupling of an electromagnetic wave with the
cyclotron motion of electrons reads

QEC =

∞∑
n=−∞

Qn, (2)

where n stands for the harmonic number and

Qn = ∇v · [Dn · ∇vFe] , (3)

with Fe the particle electron distribution function and ∇v the standard nabla operator
in velocity space. The diffusion matrix Dn is defined as

Dn = Dnsns
T
n . (4)

In Eq.4, the vector sn, which represents the direction of diffusion in the velocity space,
is defined as

sn =

(
s⊥n
s
∥
n

)
=

(
−nΩe

ωbγ

λ
(
v∥, v⊥

)
v⊥
c

)
, (5)

where Ωe = eB/me is the non-relativistic electron cyclotron frequency with e the
elementary charge and me the electron mass, ωb is the beam frequency, γ is the
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Lorentz factor, v⊥ is the component of the velocity perpendicular to the magnetic
field B, c is the light speed and the function λ

(
v∥, v⊥

)
is defined as

λ
(
v∥, v⊥

)
=

(
1− nΩe

γωb

)
c

v∥
, (6)

with v∥ the component of the velocity parallel to the magnetic field. For electrons, the
main interaction is with negative harmonics. Indeed, with the conventions given in
[11], the resonance condition reads ωb = k∥v∥−nΩe/γ, with k∥ the parallel component
of the wave vector. As ωb and Ωe are positive, n needs to be negative to fulfill the
resonance condition. An approximate version of the resonant diffusion coefficient has
been derived in [11]. It reads

D−n ≃ D̃−n =
πe2N (θ0)

2m2
eωb

c∣∣v∥∣∣ |E|2
sin (θres) exp

[
−
(
θres−θ0

σ

)2]N 2 (θres)∫ π

0
sin (θ) exp

[
−
(
θ−θ0
σ

)2]N 2 (θ) dθ

∣∣∣Θ̃n
k,res

∣∣∣2 . (7)
Eq.7 is rather general and relies on a few assumptions. The first one is the

use of the cold plasma dispersion relation to express the plasma refractive index N .
This assumption is used to express the direction of the electric field, which enters in
the definition of Θ̃n

k,res. The derivation of Eq.7 also assumes that the electric field
intensity possesses a Gaussian shape of width W0 in the direction perpendicular to its
propagation. This leads to a Gaussian shape of the Fourier transform of the electric
field in the direction perpendicular to its mean wavevector k0. The consequence
of this assumption is found in the exponential functions in Eq.7. Indeed, θ0 is the
angle between the magnetic field and the mean wavevector of the beam k0, and
σ = 1/ (k0W0) is the width in the distribution of angles resulting from the finite
width of the beamW0. θres is the resonant angle corresponding to the matching of the
Doppler shifted beam frequency with the cyclotron frequency or one of its harmonics.
In Eq.7, E is the electric field of the beam and Θ̃n

k,res is defined as

Θ̃n
k,res =

[
[1 + C1 (θres)] Jn+1 (ρ̃res) + [1− C1 (θres)] Jn−1 (ρ̃res)

−2C2 (θres)
v∥
v⊥
Jn (ρ̃res)

]
2

√
1 + C1 (θres)2 + C2 (θres)2

,(8)

where Jn is the n-th Bessel function of first kind of argument ρ̃res =
sin (θres)N (θres)ωbv⊥γ/ (Ωec) is a normalized Larmor radius, and

C1 (θ) =
T

S −N 2 (θ)
, (9)

C2 (θ) =
N 2 (θ) cos (θ) sin (θ)

P −N 2 (θ) sin2 (θ)
. (10)

Note that if one neglects finite Larmor radius (ρ̃res = 0), all Bessel functions are
equal to zero except J0. The consequence is that no absorption is possible except
for the fundamental resonance. This is consistent with the fact that ECRH/ECCD
deposition relies on a resonance between the electromagnetic wave and the cyclotron
motion. The coefficients P, S and T are the ”Stix coefficients” which are related
to the plasma dispersion relation. They are defined as P = 1 − (ωp/ωb)

2
, where

ωp =
√
Nee2/ (ϵ0me) is the plasma frequency, S = (R+ L) /2, T = (R−L) /2,

where R = (P − Ωe/ωb) / (1− Ωe/ωb) and L = (P +Ωe/ωb) / (1 + Ωe/ωb).
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The quasilinear operator Eq.7, derived in [11], requires as an input some
characteristic quantities of the beam (beam waist W0, mean wavevector of the beam
k0 as well as the power carried by the beam along its path, which is proportional to
the square of the electric field of the beam integrated over a surface perpendicular
to the beam propagation direction). These quantities can in principle be evaluated
by coupling a code computing the beam quantities (i.e. a ray-tracing code) with a
global gyrokinetic code. But the coupling of such codes is numerically challenging.
To avoid the coupling of another code with the gyrokinetic code, the particular case
of a propagation of the beam in the equatorial plane of an axisymmetric plasma is
assumed. This assumption can be fulfilled or not depending on the experimental
setup (position of the launcher and direction of injection). In [11], a pure ECRH case
is considered (θ0 = π/2), leading to an one-dimensional beam propagation (along the
major radius). However, the pure ECRH case is really specific and a generalization
of the model to treat both ECRH and ECCD cases is required before envisaging a
comparison with experiments. In this paper, the model is generalized by assuming an
axisymmetric plasma. This makes the beam propagation 2D (in the equatorial plane),
but still analytical, see section 2.2. The breaking of the axisymmetry, for instance by
magnetic ripple or resonant magnetic perturbations is experimentally possible. But
axisymmetry assumption, in addition to considering a beam of constant width W0

and to neglecting the poloidal magnetic field (i.e. Bθ ≪ Bφ), make it easier to have
analytical models for the beam propagation. The possibility to include at the same
time ECRH and ECCD requires a model, much more complex than the one for a
pure ECRH case, to compute the power carried by the beam. Such a model has been
derived by [13] and is presented in the subsection 2.4.

The rest of this section is organized as follows. In subsection 2.1, an analytical
evaluation of the resonant angle θres is performed. It allows an efficient implementation
compared with the binary search used in [11]. A similar computation, described in
subsection 2.2, allows the computation of the beam path in the equatorial plane, and
so of the mean angle θ0 between the beam wave-vector and the plasma magnetic
field. Once θres and θ0 are evaluated, the remaining difficulty consists of expressing
the spatial distribution of the beam electric field E. To do so, the link between the
beam electric field E and the power crossing a surface of constant major radius P (R)
is established in subsection 2.3. An analytical model, described in subsection 2.4, is
used to evaluate the beam power along its path.

2.1. Evaluation of the resonant angle

The resonant angle θres, appearing in Eq.7, is the solution of the resonance condition
ωb = k∥v∥ − nΩe/γ which can be rewritten as [11]

N (θres) cos (θres) = λ
(
v∥, v⊥

)
. (11)

The cold plasma dispersion relation N (θ) reads

N 2
O/X (θ) =

(RL+ SP) tan2 θ + 2SP ± Gθ

2
(
S tan2 θ + P

) , (12)

where O and X stand for the O-mode polarization and X-mode polarization
respectively and

Gθ = sign (ωb − Ωe)

√
(SP −RL)2 tan4 θ + P2 (L −R)

2 (
tan2 θ + 1

)
.(13)
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Note that the definition of Gθ has been generalized compared with the one in [11]
to include the unusual case ωb < Ωe, corresponding to a configuration of injection
from the high field side and a coupling at the fondamental resonance. Defining
y = cos (2θres) and by squaring Eq.11, it is possible to show that y is the solution
of

(RL+ SP)
(
1− y2

)
+ 2SP (1 + y)

2 − 4λ2 [S (1− y) + P (1 + y)] =

± (1 + y)

√
(SP −RL)2 (1− y)

2
+ 8P2T 2 (1 + y). (14)

By squaring Eq.14 and using the definitions of the Stix coefficients, a long but
straightforward computation allows one to compute the angle of resonance for the
X-mode

θXres =
1

2
arccos

[
x+
(
λ2
)]

if λ ≥ 0

= π − 1

2
arccos

[
x+
(
λ2
)]

if λ < 0 (15)

and the O-mode

θOres =
1

2
arccos

[
x−
(
λ2
)]

if λ ≥ 0

= π − 1

2
arccos

[
x−
(
λ2
)]

if λ < 0 (16)

with

x± (y) =

{
P2 (2y − P) +

(
Ωe

ωb

)2 [
P (1− y)

2 − y2
]

±Ωe

ωb
(1− P) y

√(
Ωe

ωb

)2

(1− y)
2
+ 4Py

 /

{
P

[
P2 −

(
Ωe

ωb

)2
]
+ y

(
Ωe

ωb

)2

(P − 1)

}
. (17)

2.2. Model for the spatial dependence of θ0

The spatial dependence of the mean angle θ0 (R), appearing in Eq.7, also needs to
be evaluated. To do so, we use the general expression which is implemented in the
ray-tracing code C3PO [14]. The toroidal mode number of the beam is defined as
ñ = Reφ · k0 where eφ is the toroidal direction and k0 is the mean wave vector
associated with the beam. For an axisymmetric magnetic configuration, ñ is invariant
along the ray trajectory [14]. By neglecting the poloidal component of the magnetic
field, we obtain

N (θ0) cos (θ0) =
Rin

R
N (θ0,in) cos (θ0,in) , (18)

where θ0,in = θ0 (Rin) is the injection angle at the injection major radius Rin, where
the beam is entering the plasma. Eq.18 has the same structure as Eq.11. Therefore
the mean angle is given for a X-mode beam by

θX0 =
1

2
arccos

[
x+

([
Rin

R
N (θ0,in) cos (θ0,in)

]2)]
if λ ≥ 0

= π − 1

2
arccos

[
x+

([
Rin

R
N (θ0,in) cos (θ0,in)

]2)]
if λ < 0 (19)
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and for a O-mode beam by

θO0 =
1

2
arccos

[
x−

([
Rin

R
N (θ0,in) cos (θ0,in)

]2)]
if λ ≥ 0

= π − 1

2
arccos

[
x−

([
Rin

R
N (θ0,in) cos (θ0,in)

]2)]
if λ < 0 (20)

with x± defined by Eq.17. It is noteworthy that, for a perpendicular injection
θ0,in = π/2, the mean angle is constant θ0 (R) = π/2 ,∀R. This specific case was
used in [11] for the pure ECRH case.

2.3. Spatial dependence of the electric field in the case of a beam propagating in the
equatorial plane

The power crossing a surface with a major radius R reads

P (R) = R

∫ 2π

0

dφ

∫ ∞

−∞
dZ

ϵ0 |E|2

2
vg · eR

=
1

2
Rϵ0 |vg| sin (θ0)

∫ 2π

0

dφ

∫ ∞

−∞
dZ |E|2 , (21)

Note that the electric field is implicitly taken at the major radius R. Consistently
with the assumption used to derive Eq.7, we assume that the beam has a Gaussian
distribution of width W0 perpendicular to its propagation direction

|E|2 = |E00 (s)|2 exp

[
−
(
X

W0

)2
]
exp

[
−
(
Z

W0

)2
]
, (22)

where X is the coordinate in the direction perpendicular to the beam propagation in
the equatorial plane and Z is the coordinate in the vertical direction. s stands for
the arc length along the beam path from the injection location to the local position
and |E00 (s)|2 is the maximum amplitude of the electric field at this arc length. When
integrating the electric field on a surface of constant major radius R, s and X are such
that the beam is evaluated on the surface of constant major radius R as illustrated
by Fig.1. Because we assume a propagation at the equatorial plane, and because the
width of the beam is small compared to the size of the plasma, the integration in the
vertical direction is trivial and gives

P (R) =

√
π

2
RW0ϵ0 |vg| sin (θ0)

∫ 2π

0

dφ |E00 (s)|2 exp

[
−
(
X

W0

)2
]
. (23)

The integration in the direction φ is more challenging. In reality the EC beam is
toroidally localised. However, assuming that the power deposited is quickly spread
along the toroidal direction, we shall assume that the deposition is axisymmetric.
This will have the advantage, in the context of a PIC code, to increase the sampling
statistics. We then define a mean value for the electric field on the equatorial plane
Ē (R) such that

Ē2 =
1

2π

∫ 2π

0

dφ |E00 (s)|2 exp

[
−
(
X

W0

)2
]
, (24)

and so

P (R) = π3/2RW0ϵ0 |vg| sin (θ0) Ē2. (25)
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We also define Ê such that

|E|2 = Ê2 exp

[
−
(
Z

W0

)2
]
. (26)

We assume that W0 ≪ R, and define a new coordinate X ′ which corresponds
to the coordinate on the surface R (see Fig.1). By noting that X ′ sin θ0 = X and
by imposing that Ê be independent of θ0 (in the absence of absorption), one gets
Ē = sin (θ0) Ê and so

|E|2 =
P (R)

π3/2RW0ϵ0 |vg| sin3 (θ0)
exp

[
−
(
Z

W0

)2
]
. (27)

Eq.27 links the amplitude of the electric field to the power crossing the surface of
constant major radius P (R) and the group velocity vg, whose expression is derived in
the appendix A.

Figure 1. Link between X and X′ coordinates.

2.4. Model of absorption for an oblique propagation

To evaluate the evolution of the beam power along its path, we use the quasi-exact
analytical evaluation derived in [13]. The power is then related to the optical thickness
of the plasma τ

P (R) = Pin exp [−τ (R)] , (28)

where Pin = P (Rin) is the injected power and τ is defined as the integral of the

absorption coefficient α along the beam path τ =
∫ L

0
αds =

∫ R

Rin
α |sin (θ0) dR′|. The

absorption coefficient is given by

α =
∑
n≥n0

αn, (29)

with

αn =
ω2
p

cΩe

π

2

µ2

n0K2 (µ)
Pn exp

− nµ

n0
√
1−N 2

∥

√( n

n0

)2

− 1, (30)

where n0 = ωb

Ωe

√
1−N 2

∥ , µ = mec
2

Te
, K2 is the modified Bessel function of the second

kind of order two, N⊥ = N (θ) sin θ and N∥ = N (θ) |cos θ|.
In practice, for all cases of interest the limit µ ≫ 1 holds. Within this limit, the

sum in Eq.30 is very well approximated by its first non zero component (n = ⌈n0⌉)
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which then corresponds to the harmonic of the beam considered. Moreover, one can
use the fact that limx→∞ [K2 (x) exp (x)] =

√
π
2x to approximate the coefficient αn

αn ≃ α̃n =
ω2
p

cΩe

√
π

2

Fn (µ)

n0

√(
n

n0

)2

− 1, (31)

where

Fn (µ) = µ5/2Pn exp

µ
1− n

n0
√
1−N 2

∥

 . (32)

The function Pn is defined as

Pn = π
(2n+ 1)!

(2nn!)
2

(
nΩe

ωbN⊥

)2
[
A

(∣∣Jn+1/2 (zn)
∣∣2

xn

)
+ B

(∣∣Jn+3/2 (zn)
∣∣2

xn

)]
, (33)

where

A (·) =
(
|Axz|2 + |êy|2

)
·+ℜ

(
iAxz ê

∗
y

) xn
n

∂·
∂xn

−
(xn
n

)2 n

n+ 1
|êy|2

(
· − ∂2·

∂y2n

)
+

 xn

n
√
1−N 2

∥

2

|êz|2
∂2·
∂y2n

−
xn

(
2ℜ (Axz ê

∗
z) + ℜ

(
iê∗y êz

)
xn

n
∂

∂xn

)
n
√

1−N 2
∥

∂·
∂yn

, (34)

and

B (·) =
(xn
n

)2 2n+ 3

(n+ 1) (n+ 2)
|êy|2

(
· − ∂2·

∂y2n

)
, (35)

In these expressions, Axz is defined as

Axz = êx +
N⊥N∥

1−N 2
∥
êz, (36)

and the quantities xn, yn are respectively defined as

xn =
ωb

Ωe
N⊥

√(
n

n0

)2

− 1, (37)

yn =
µN∥√
1−N 2

∥

√(
n

n0

)2

− 1, (38)

and the complex argument of the Bessel functions zn is defined as

zn =
1

2

(√
4x2n − y2n + iyn

)
. (39)

The derivatives of the function
|Jm+1/2(zn)|2

xn
with respect to xn and yn, which are

necessary to evaluate Eq.34 and Eq.35, are derived analytically in appendix B.
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The use of the cold plasma limit allows one to link the different components of
the normalized wave electric field ê = Ek/

√
|S| /ϵ0c. Indeed one has

i
êy
êx

= i
Ek,y

Ek,x
=

T
S −N 2

(40)

and

êz
êx

=
Ek,z

Ek,x
= −

N∥N⊥

P −N 2
⊥

(41)

In the cold plasma limit, the electromagnetic energy flux S is well approximated by
the Poynting vector and leads us to express

|êy|2 =
1

N (θ)
√
a2 (θ) + b2 (θ)

(42)

with

a (θ) =

1 + P

(
N∥ωb

[
ω2
p −

(
ω2
b − Ω2

e

) (
1−N 2

)]
Ωeω2

p (P −N 2
⊥)

)2
 sin θ (43)

and

b (θ) =

∣∣∣∣∣∣1 + P
P −N 2

⊥

(
ωb

[
ω2
p −

(
ω2
b − Ω2

e

) (
1−N 2

)]
Ωeω2

p

)2
∣∣∣∣∣∣ |cos θ| (44)

For the computation, one can assume without loss of generality that êy is real and
positive. Then using Eq.40 and Eq.41, one obtains that êx and êz are purely imaginary
quantities.

For the specific case of an O-mode close to perpendicular propagation, one has
N⊥ ≃ N ≃ P and then equations 41, 43 and 44 are not properly defined. For this
specific case, one can approximate êx = êy = 0 and êz = P−1/2.

Note that for oblique propagation, with low temperature, the numerical evaluation
of Eq.32 is challenging as it involves the multiplication of very large numbers with very
small ones. To circumvent this difficulty, one can use the logarithm to perform the
multiplication and then exponentiate the result.

3. Numerical implementation of the source term

In the previous section, the model for the quasi-linear operator representing the
ECRH/ECCD source has been derived. In this section, the numerical implementation
of this source term in the global gyrokinetic code ORB5 is detailed. In subsection 3.1,
the drag term is analytically derived, avoiding a difficult numerical evaluation of this
term. The markers with a low parallel velocity are displaying a diverging drag term.
To avoid this divergence, the numerical treatment of these markers is different from
the one of the other markers. This treatment is detailed in subsection 3.2. Finally,
the adaptation of the source term to the usage of ”heavy electrons”, often used in
gyrokinetic code to lighten the numerical cost of simulations, is detailed in subsection
3.3.
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3.1. Analytical derivation of the drag term

The quasi-linear operator Qn (Eq.3) can be written in the form of a Fokker-Planck
operator

Qn = ∇v · [∇v · (DnF )− ΓnF ] , (45)

where the drag force is defined as

Γn = ∇v · Dn. (46)

Eq.45 can be efficiently implemented in a particle-in-cell code by finding the equivalent
stochastic process thanks to Ito’s lemma. This stochastic process is then discretized
using a Euler-Maruyama scheme. More details about this can be found in [11]. In this
implementation, it is necessary to compute the drag term Eq.46 which takes the form

Γn = ∇v · Dn = Γ⊥
n ê⊥ + Γ∥

nê∥, (47)

with

Γ⊥
n =

1

v⊥

∂
(
v⊥D̃ns

⊥
n s

⊥
n

)
∂v⊥

+
∂
(
D̃ns

⊥
n s

∥
n

)
∂v∥

, (48)

Γ∥
n =

1

v⊥

∂
(
v⊥D̃ns

⊥
n s

∥
n

)
∂v⊥

+
∂
(
D̃ns

∥
ns

∥
n

)
∂v∥

. (49)

The numerical evaluation of the derivatives in velocity space with finite differences
is challenging as the resonant diffusion coefficient D̃n (Eq.7) displays thin layers in
velocity space, especially in the ECCD case. An alternative is to compute analytically
the velocity derivatives appearing in Eq.48, 49. Without any simplification, the
analytical derivation is challenging and would be numerically expensive. To alleviate
this difficulty, some approximations are performed. The first one is to consider the
limit of small wavelength as compared to the beam waist size σ ≪ 1 ⇔ N (θ0)W0ωb ≫
c. For tokamaks with a relatively weak magnetic field, the small wavelength
approximation is only marginally valid (i.e. for TCV W0 ≥ 2cm, ωb = 82 GHz,
N (θ0) ∼ 1, σ ⪅ 0.2). For devices with stronger magnetic fields, this assumption is
legitimately valid (i.e. for ITER W0 ≥ 2cm, ωb = 170 GHz, N (θ0) ∼ 1, σ ⪅ 0.1).

The resonant diffusion coefficient D̃n, Eq.7, possesses three dependencies with
respect to θres. The first one is in the dispersion relation N , the second in

the function Θ̃n
k and the last one in the exponential term exp

[
− (∆θ/σ)

2
]
. For

N and Θ̃n
k , the difference between the function evaluated at θres and at θ0 is

proportional to ∆θ ∼ σ ≪ 1. On the other hand, for the exponential term, one

gets exp
[
− (∆θ/σ)

2
]
− 1 ∼ exp (−1)− 1 which is a zero order term. Therefore, in the

small wavelength limit, at leading order, the resonant diffusion coefficient reads

D̃σ≪1
−n =

√
πe2N (θ0)

2m2
eωbσ

c∣∣v∥∣∣ |E0|2 exp

[
−
(
∆θ

σ

)2
] ∣∣∣Θ̃n

k,0

∣∣∣2 , (50)

where

Θ̃n
k,0 =

[
[1 + C1 (θ0)] Jn+1 (ρ̃0) + [1− C1 (θ0)] Jn−1 (ρ̃0)

−2C2 (θ0)
v∥
v⊥
Jn (ρ̃0)

]
2

√
1 + C1 (θ0)2 + C2 (θ0)2

, (51)
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with ρ̃0 = sin (θ0)N (θ0)ωbv⊥γ/ (Ωec). The velocity derivatives of the resonant
diffusion coefficient in the limit σ ≪ 1 can then be computed

∂D̃σ≪1
−n

∂v⊥
= 2D̃σ≪1

−n

[
1

Θn
k,0

∂Θn
k,0

∂v⊥
− ∆θ

σ2

∂∆θ

∂v⊥

]
, (52)

∂D̃σ≪1
−n

∂v∥
= D̃σ≪1

−n

[
2

Θn
k,0

∂Θn
k,0

∂v∥
− 1

v∥
− 2

∆θ

σ2

∂∆θ

∂v∥

]
. (53)

The derivatives of Θn
k,0 with respect to the velocity components are given in the

appendix C. The velocity derivatives of ∆θ can be computed using

∂∆θ

∂v∥,⊥
= −

x′±
(
λ2
)
|λ|√

1− x2± (λ2)

∂λ

∂v∥,⊥
, (54)

where x′± is the derivative of Eq.17, which is straightforward to compute, and the
velocity derivatives of λ are given by

∂λ

∂v∥
=
nΩe

cωb
γ − λ

v∥
, (55)

∂λ

∂v⊥
=
nΩe

cωb

v⊥
v∥
γ. (56)

3.2. Treatment of markers with a low parallel velocity

The drag coefficients diverge for markers with a low parallel velocity. This is due to
the fact that the width of the resonant area in the perpendicular velocity direction
goes to zero when the parallel velocity goes to zero. Therefore the drag is becoming
singular for these low parallel velocities.

To circumvent this issue, markers with a low parallel velocity (
∣∣v∥∣∣ < vmax) are

treated differently. For these markers, the distribution function is assumed to be
an unshifted Maxwellian FMe. This assumption is motivated by two considerations.
First, in absence of a localized source, and even in presence of turbulence, distribution
functions of electrons in the core are close to an unshifted Maxwellian. Second, the
effective electron-electron collision frequency goes like ∼ (vT /v)

2
for v ≪ vT and

∼ (vT /v)
3
for v ≫ vT , whereas the effective electron-ion collision frequency goes like

∼ (vT /v)
3
[15]. For this reason, the low velocity part of the distribution function is

often close to a Maxwellian distribution. The assumption that the electron distribution
function is an unshifted Maxwellian allows to rewrite the quasi-linear operator Qn as

QM
n = ∇v · [Dn · ∇vFMe]

= −∇v ·
[(

Dn · v

v2T

)
FMe

]
. (57)

By analogy with Eq.45 we impose for markers with low parallel velocities (
∣∣v∥∣∣ < vmax)

the changes Dn → 0 and Γn → ΓM
n where

ΓM
n = Dn · v

v2T
, (58)

where vT =
√
Te/me is the thermal velocity of electrons. This simple change of

numerical treatment allows avoiding the singularity for low parallel velocities while
keeping the same operator (provided that the distribution function is close to a
Maxwellian). The choice for vmax is a priori not settled. A numerical study led
us to fix the choice of this parameter to vmax = 0.1vT .
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3.3. Usage of an artificial mass ratio between protons and electrons

Gyrokinetic simulations with a real mass ratio between protons and electrons are
numerically challenging due to the time and spatial scales separation between the
electron and ion dynamics. For this reason, simulations with an artificially reduced
mass ratio between protons and electrons are often performed in the gyrokinetic
community.

The electron mass appears in the plasma frequency ωp, in the cyclotron frequency
Ωce, in the prefactor of the resonant diffusion coefficient of Eq.7 and in the definition
of the thermal velocity which appears for a term of the form v∥/c =

(
v∥/vT

)
· (vT /c)

or v⊥/c = (v⊥/vT ) · (vT /c).
In all cases, the real mass of electrons needs to be used in the definitions of the

frequencies to ensure the right resonance condition and the proper dispersion relation.
One needs to use an artificial speed of light carti = creal

√
mreal

e /marti
e in all terms of

the form vT /c to ensure that vartiT /carti = vrealT /creal. Concerning the electron mass
appearing in the prefactor of the resonant diffusion coefficient, one needs to use the
artificial electron mass. The purpose of this choice is to keep the same normalized

diffusion coefficient Dn

v2
TeΩce

=
Dnm

2
e

TeeB
between the real and artificial electron masses.

4. Numerical test of ECRH/ECCD source

In this section, testing of the source term described in the previous sections is detailed.
In subsection 4.1, an analytical prediction of the minimum and the maximum major
radii of absorption is given. The numerical evaluation of the power deposited in the
plasma is detailed in subsection 4.2. In subsection 4.3, the evolution of the electron
distribution function in the presence of the source term, but without other physical
operators, is presented. Finally, subsection 4.4 presents a comparison of ORB5 with
the code LUKE when activating all parts of the code, except the turbulence.

4.1. Analytical prediction of the deposition area in real space

The resonant condition ωb = k∥v∥ + nΩe

γ is equivalent to(
v∥ − v∥

∆v∥

)2

+

(
v⊥
∆v⊥

)2

= 1, (59)

which is the equation of an ellipse with an average parallel velocity

v∥

c
=

ωbk∥c(
k∥c
)2

+ (nΩe)
2
, (60)

a semi-major axis in the perpendicular direction ∆v⊥ given by(
∆v⊥
c

)2

=

(
k∥c
)2

+ (nΩe)
2 − ω2

b(
k∥c
)2

+ (nΩe)
2

, (61)

and a semi-minor axis in the parallel direction ∆v∥ given by(
∆v∥

c

)2

=

(
∆v⊥
c

)2
(nΩe)

2(
k∥c
)2

+ (nΩe)
2
. (62)
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By neglecting the poloidal magnetic field, one has Ωe = Ωe,0
R0

R , where Ωe,0 = eB0

me

is the electron cyclotron frequency on the magnetic axis. Eq.18 implies k∥R =
k∥,inRin. Using these relations allows one to express the characteristics of the ellipse
as functions of the major radius R. From these expressions, one can deduce that the
resonance between the wave and the plasma is possible only if R ≤ Rres

max with

Rres
max =

√(
k∥,incRin

)2
+ (nΩe,0R0)

2

ωb
. (63)

For all major radii below Rres
max the resonance between the wave and the plasma is a

priori possible. But for an efficient coupling between the wave and the plasma, particles
fulfilling the resonance condition Eq.59 are needed. If one assumes the distribution
function of electrons to be an unshifted Maxwellian of temperature Te, a reasonable
coupling between the wave and the electrons is possible only if

−3vresT ≤
∣∣v∥∣∣−∆v∥ ≤ 3vresT (64)

where vresT is the thermal velocity of electrons at the position of maximum absorption.
As
∣∣v∥∣∣−∆v∥ is an increasing function of the major radius, the condition Eq.64 allows

determining a minimal major radius Reff
min and maximal major radius Reff

max for an
efficient absorption, which read

Reff
max/min =

±3vresT

∣∣k∥,in∣∣Rin + nΩe,0R0

√
1−

(
3
vres
T

c

)2
ωb

. (65)

Note that the computation of Reff
min and Reff

max is valid only for an unshifted
Maxwellian. For a shifted Maxwellian, or a distribution function with a non negligible
deviation to a Maxwellian, the absorption boundaries can be shifted. For most of the
numerical tests presented in this article, unshifted Maxwellians are a good proxy of
the actual distribution function. Note that this is no longer true for the cases with a
high power deposition as presented in subsection 4.4. Furthermore, it is noteworthy
that the inner bound Reff

min is a theoretical limit for efficient absorption of the beam.
For cases with large density and temperature, most of the beam power is absorbed
before reaching this inner major radius.

4.2. Computation of the power deposition

The source is numerically implemented in ORB5 [12] via a Langevin equation as in
[11]. The power deposited on a given marker i reads

〈
∆
(
v2i
)〉

∆t
= 2

∑
n

[
v∥,iΓ

∥
n,i + v⊥,iΓ

⊥
n,i +Dn,i

[(
s
∥
n,i

)2
+
(
s⊥n,i
)2]]

+∆t
∑
n

[(
Γ
∥
n,i

)2
+
(
Γ⊥
n,i

)2]
, (66)

where the brackets ⟨.⟩ stand for the ensemble average. By multiplying this quantity by
the weight of the marker times me/2, and by summing over the markers in a spatial
bin, one gains access to the ensemble average power deposition on this bin. Note that
Eq.66 allows putting a quantitative limit on the maximum time step which is allowed
for a given source amplitude, as the term proportional to ∆t in Eq.66 should always
be small compared with the term independent of the time step.



4.3. Test with only the source

In this section the electron distribution function is evolved only by the source
operator dFe/dt = Qn, where Qn is the quasi-linear operator described above in
Eq.3. In all the tests presented in this section and the next one, a beam with an
X polarization and interacting with the second harmonic of the cyclotron frequency
(’X2’ in short) is simulated and an analytical axisymmetric magnetic geometry with

B = B0R0

R

[
ϵ
q̄eχ + eφ

]
is used. In this expression, χ is the poloidal angle, φ is the

toroidal angle, ϵ = r/R0 is the inverse aspect ratio and q̄ = q
√
1− ϵ2, where q is the

safety factor. In all the tests presented in this section and the next one, typical TCV
values have been used (B0 = 1.4 T, R0 = 0.89 m, a = 0.25 m).

In this subsection only, to simplify the test of the source, the safety factor q = 10
is constant and the plasma density Ne and temperature Te are chosen to have no
spatial dependence. The density and temperature are scanned around reference values
N ref

e = 2·1018 m−3, T ref
e = 1.17 keV, to test the source behavior. The reference density

has been chosen quite low to have approximately half the power absorbed. This case
is the most stringent test for the model. Indeed, with a larger density, the beam would
be fully absorbed and the sensitivity to the numerical parameters would be weaker
than in the case of half absorption. On the other hand, a really weak absorption would
not numerically test the model of absorption described in section 2.4.

The frequency of the beam fbeam = 78 GHz is chosen to have the maximum of
absorption near the magnetic axis. It allows one to simulate only a restricted volume
of the plasma r < 0.2a and so to have a large density of markers with a limited cost
for the simulation. For the results shown in Figs.2, 3 and 4, Np = 2 · 108 markers
were used. With this choice, the simulation results are numerically converged as
discussed in Fig.5. The power of the beam is chosen to be small enough so that the
distribution function stays close to a Maxwellian, allowing a direct comparison between
ORB5 results and Albajar’s prediction, which assumes a Maxwellian distribution for
electrons.

The profiles of absorption for a pure ECRH and a mixed ECRH/ECCD for
the reference density and temperature are shown in Fig.2. In both cases, excellent
agreement is found between the numerical results obtained with ORB5 and the
analytical prediction [13]. Furthermore, the absorption is taking place between the
minimum Rth

min and the maximum Rth
max major radii computed in subsection 4.1. The

agreement between ORB5 and the theoretical prediction is maintained for a different
density Fig.3 or temperature Fig.4, validating the derivation of the model and its
implementation in ORB5.

A convergence test is performed in Fig.5. Fast convergence is obtained both in a
pure ECRH and a mixed ECRH/ECCD case. More markers are needed to converge
in the pure ECRH case as the deposition is narrower in real space, but, in both cases,
a good quantitative agreement with the analytical prediction is found, even with a
low resolution (which would be under-resolved for a simulation in the presence of
turbulence).

4.4. Benchmark against drift-kinetic simulations

In this section, the code ORB5 is compared with the code LUKE, which is a
3D relativistic bounce-average drift-kinetic Fokker-Planck solver for the electron
distribution function Fe(ρ, v∥, v⊥) [16], coupled to the ray-tracing code C3PO [14], and
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Figure 2. Fraction of power absorbed as a function of the major radius for
a pure ECRH case (θin = 0.5π) on the left and a mixed case ECRH/ECCD
(θin = 0.4π) on the right. The electron density Ne = 2·1018m−3 and temperature
Te = 1.17 keV are constant.
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Figure 3. Same as Fig.2 except for the density Ne = 1018m−3.

is mainly used to study suprathermal electron physics, especially Electron-Cyclotron
and Lower-Hybrid current-drive problems. Physics operators included in LUKE are
collision, Ohmic electric field, quasilinear wave-plasma interaction and additional ad-
hoc radial transport of fast electrons, in the form of bounce-average Fokker-Planck
operators. The basis of the quasilinear treatment of the wave-plasma interaction is
similar in LUKE and ORB5 [11].

In this subsection, all parts of the ORB5 code are activated (source, collisions,
Vlasov and quasi-neutrality). The non axisymmetric modes of the electric potential
are filtered out at each time step to remove the turbulence as LUKE cannot simulate
it. As a consequence, the ad-hoc radial transport of fast electrons is not activated



Electron-cyclotron resonance heating and current drive source for flux-driven gyrokinetic simulations of tokamaks17
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Figure 4. Same as Fig.2 except for the temperature Te = 2.08 keV .

pure ECRH mixed ECRH/ECCD

Figure 5. Convergence test for a pure ECRH case (θin = 0.5π) on the left
and a mixed ECRH/ECCD case (θin = 0.4π) on the right. The electron density
Ne = 2 · 1018m−3 and temperature Te = 1.17 keV are constant.

in LUKE, as it is supposed to model turbulent transport. Within this framework,
both codes solve similar problems. Some differences remain between the two codes.
Firstly, LUKE solves a bounce-average problem whereas ORB5 solves the 5D problem.
The collision operators are also different as ORB5 possesses a nonlinear collision
operator, but without relativistic corrections [17], whereas LUKE uses a linearized
collision operator with a relativistic model for electron-electron collisions [18], and non-
relativistic Maxwellian ion background model for electron-ion collisions, as described
in [19]. Ion-ion collisions are not treated in LUKE, as ions are not simulated and a
Maxwellian distribution is assumed for their distribution. Finally, the computation
of the power along the beam is different between the two models. Indeed, ORB5
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uses Albajar’s linear model to compute the local power of the beam and therefore
disregards some quasi-linear effects. On the other hand, the calculation scheme of
LUKE/C3PO, detailed in [16], retains all quasi-linear effects. In LUKE, a first guess
of the linear power deposited by the EC waves is found by the ray-tracing, assuming
a Maxwellian background plasma. The total wave power is carried by a total of 24
independent rays, and the different ray contributions are integrated together over real
and velocity space. Then, the associated diffusion coefficient is evaluated and used in
the Fokker-Planck solver to find the new distribution function. The deposited power is
re-evaluated, and ray power content is corrected by wave power balance so that a new
diffusion coefficient is found. A convergence loop is made such that the calculations of
the absorbed power density using the diffusion coefficient and the electron distribution
function are consistent with a relative accuracy of ≤ 1%, dealing with the quasilinear
nature of the absorbed power (interdependence of absorbed power and distribution
function).

The chosen equilibrium for the benchmark is an analytic TCV-like equilibrium
generated with the method explained in the appendix of [20], with minor radius
a = 0.25 m, major radius R0 = 0.89 m, magnetic field on axis B0 = 1.4 T, a parabolic
safety factor profile q(r = R − R0) = q0 + (qa − q0)(r/a)

2 (with q0 = 1 and qa = 3),
constant density N ref

e and a temperature profile corresponding to realistic temperature
profiles obtained in TCV, as described in [21]

Te(ρP )

Tedge
=


T̄axis + λT ρ

2
P if ρP ≤ ρP,1

T̄ped exp [−κT (ρP − ρP,2)] if ρP,1 ≤ ρP ≤ ρP,2

1− µT (ρP − ρP,3) if ρP,2 ≤ ρP ≤ ρP,3

1 if ρP ≥ ρP,3

(67)

where ρP =
√
ψP /ψP,a (and ψP is the poloidal magnetic flux), ρP,1 = 0.27,

ρP,2 = 0.72, ρP,3 = 0.90 and
T̄axis = T̄core − λT ρ

2
P,1

T̄core = T̄ped exp (−κT (ρP,1 − ρP,2))
T̄ped = 1− µT (ρP,2 − ρP,3)

(68)

with λT = −κT T̄core/(2ρP,1), κT = 3, µT = 12 and Tedge = 140 eV. A pure hydrogen
plasma is assumed with Ne = Ni and Te = Ti, and no Ohmic electric field is considered
(this option is not available in ORB5). In that case, the system is invariant by the
change of coordinates v∥ → −v∥ and θ0 → π − θ0. Then, for the energy absorption,
there is no difference between θ0 ≤ π/2 and θ0 ≥ π/2.

For all ORB5 simulations, 2 ·108 and 109 markers have been used for representing
the ions and electrons respectively. With these resolutions, the results are converged
with respect to the number of markers. In LUKE, the size of the phase space grid
(p, ξ = p∥/p, ρ) is 151×121×30. The points in the spatial grid are not linearly spaced,
they are concentrated around the power absorption location, guessed from the linear
ray-tracing calculation.

ORB5 simulations have been performed using two different proton-electron mass
ratios (mi/me = 100 or 1836). The advantage of using an artificially reduced mass
ratio is to increase the time step of the simulation (∆t = 1.0 Ω−1

ci for the simulations
withmi/me = 100 and ∆t = 0.1 Ω−1

ci for the simulations withmi/me = 1836), leading
to lighter numerical cost. In order to have the collision physics as close as possible
between the two types of simulations, a modification of the collisionality is applied
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for the simulations with the artificial mass ratio. Indeed, the collision frequency of a
species a on a species b reads [17]

νab =
lnΛ

3π3/2ϵ20

Nb

T
3/2
a

e2ae
2
b√

ma

(
1 + ma

mb

)
[
1 + maTb

mbTa

]3/2 . (69)

By considering the fact that electrons are much lighter than ions, one can see that
the electron-electron νee and electron-ion νei collision frequencies are proportional to

m
−1/2
e . For simulations with heavy electrons, the correct ratio between the collision

frequency of electrons and the electron cyclotron frequency, which is the most relevant
dimensionless parameter to study the impact of the source in the presence of collisions,
can be retrieved by simply multiplying the collision frequency of reference in ORB5 by√
mreal

e /marti
e . This choice is made to retain the correct physics as much as possible

when using an artificial mass ratio between protons and electrons. Note that, with

this choice, the electron collisionality ν⋆e = (νee+νei)qR
ϵvTe

is lower than the real one.
This choice therefore lowers the neoclassical transport of electrons. Furthermore, this
hypothesis could have an impact in the presence of trapped electron mode turbulence,
which is sensitive to the electron collisionality.

The two angles of injection θ0,in used in the benchmark are illustrated in figure
6, which shows C3PO ray-tracing results (poloidal and top views) for equatorial
propagation of the beam. In the pure ECRH case (θ0,in = 0.5π) the ray goes
straight in the plasma as expected, whereas for the case with an ECCD component
(θ0,in = 0.4π), the beam is slightly curved, accordingly to predictions in the subsection
2.2. Comparisons between ORB5 and LUKE/C3PO for the two angles of injection
and for two different densities (N ref

e = 5 ·1018 m−3 and N ref
e = 1 ·1019 m−3) are shown

in figures 7, 8, 9 and 10. In each of these plots, the linear predictions of Albajar and
C3PO are given as reference points. Error bars on LUKE absorbed power come from
the relative gap on absorbed power density between the last iteration and the one
before (basically less than 1% for completely converged simulations). In LUKE, error
bars on the Full-Width at Half Maximum (FWHM) of the deposition profile and on
absorption location come from the spatial grid resolution. In ORB5, error bars on all
quantities correspond to the standard deviation with respect to time.

At low power, an excellent agreement is found between all the predictions for
the pure ECRH cases Fig.7, 9. The agreement for the ECCD cases Fig.8, 10 at low
power is still good, but a mismatch of approximately 10% is found for the total power
absorbed predicted by ORB5 compared with the other predictions. As the total power
absorbed is not constrained in the model implemented in ORB5, the fact that the total
power absorbed is above 100% is not a problem. If this point becomes critical for later
applications of this source term, a convergence loop between the energy deposited
on the distribution function and the one included in the ray could be implemented
in a similar way as the one used in LUKE. This possibility has not been added in
ORB5 yet, as it would significantly increase the numerical cost of the source term.
The overall agreement at low power for all cases validates the implementation of the
model in ORB5.

For high-power beams, quasi-linear effects become important, especially for the
total absorbed power. For the pure ECRH cases Fig.7, 9, quasi-linear effects lead to
a significant decrease of the total power deposited both in LUKE and ORB5. These
quasi-linear effects are stronger for LUKE than for ORB5. The quantitative difference
between the results from the two codes can come from the fundamental differences
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Figure 6. Results of C3PO ray tracing for equatorial midplane ECCD, launched
from the Low Field Side, with an EC beam frequency of 75 GHz, and the angle
θ0,in between the beam wave vector k and the magnetic field B at the beam
entrance in the plasma ranging from π/2 (pure ECRH) to 0.4π.

Figure 7. Results of injected power P0 scan, for θ0,in = π/2, for Albajar’s
theoretical prediction, C3PO (linear calculation), quasilinear LUKE, and ORB5,
showing total absorbed power fraction (left), power absorption location ρG,abs

(right) and full width at half maximum (∆ρG)abs of the power deposition profile
dPabs/dρG, where ρG = (R−R0)/a, (center).
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Figure 8. Results of injected power P0 scan, for θ0,in = 0.4π, for Albajar’s
theoretical prediction, C3PO (linear calculation), quasilinear LUKE, and ORB5,
showing total absorbed power fraction (left), power absorption location ρG,abs

(right) and full width at half maximum (∆ρG)abs of the power deposition profile
dPabs/dρG, where ρG = (R−R0)/a, (center).

Figure 9. Results of injected power P0 scan, for θ0,in = 0.5π at lower
density (Nref

e = 5 · 1018 m−3), for Albajar’s theoretical prediction, C3PO (linear
calculation), quasilinear LUKE, and ORB5, showing total absorbed power fraction
(left), power absorption location ρG,abs (right) and full width at half maximum
(∆ρG)abs of the power deposition profile dPabs/dρG, where ρG = (R − R0)/a,
(center).
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Figure 10. Results of injected power P0 scan, for θ0,in = 0.4π at lower
density (Nref

e = 5 · 1018 m−3), for Albajar’s theoretical prediction, C3PO (linear
calculation), quasilinear LUKE, and ORB5, showing total absorbed power fraction
(left), power absorption location ρG,abs (right) and full width at half maximum
(∆ρG)abs of the power deposition profile dPabs/dρG, where ρG = (R − R0)/a,
(center).

between the two codes, i.e. 3D bounce-average for LUKE compared with 5D drift-
kinetic for ORB5, but also from the difference between the collision operators (linear
with relativistic correction for LUKE, nonlinear but without relativistic correction for
ORB5), or the feedback loop on the power absorbed by the plasma and the power of the
beam, which is included in LUKE but not in ORB5. It is also noteworthy that ORB5
simulations using the real mass ratio between electrons and protons display larger
quasi-linear effects than the one using heavy electrons. This difference is probably
due to the difference in collisionality between the two versions of the code. It implies
that simulations using the true electron mass will have to be used for the simulations
dedicated to the study of quasi-linear effects. Simulations with a non zero current
drive component, Fig.8, 10, display smaller quasi-linear effects in both codes.

Quasilinear dependencies at high injected power can be interpreted by writing the
equation for the deposited power density in the momentum-pitch-angle coordinates
(p, ξ = p∥/p)

∂P

∂V
= mc2

∫ ∞

0

dp(γ − 1)

∫ 1

−1

[
1

p2
∂

∂p

(
p2Sp

)
− 1

p

∂

∂ξ

(√
1− ξ2Sξ

)]
dξ, (70)

where the flux S in (p, ξ) is given by

S = −Dn · ∇pFe =

(
Sp

Sξ

)
=

 −Dpp
∂Fe

∂p +

√
1−ξ2

p Dpξ
∂Fe

∂ξ

−Dξp
∂Fe

∂p +

√
1−ξ2

p Dξξ
∂Fe

∂ξ

 , (71)

with Dn the diffusion tensor resulting from wave-particle interaction, as defined in
[11], and Dpp, Dpξ, Dξp and Dξξ its components in (p, ξ) coordinates. The dominant
diffusion term is Dpp (at least by an order of magnitude in all cases considered in
this paper), so the quasilinear behavior can be partly understood by looking at the
product Dpp

∂Fe

∂p at the absorption location in phase space. The quasilinear evolution
of the total absorbed power results from a balance between the relative evolution of
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Dpp with injected power due to the modification of the beam power along its path
(quasilinear effect due to the loop between the energy deposited on the plasma and
the power carried by the beam, which is not included in ORB5) and the deviation of
Fe from a Maxwellian, resulting from the competition between the source, collisions
and the neoclassical physics (turbulence is not inluded in these simulations).

In the pure ECRH case, the flattening of the distribution by the source, illustrated
on Fig.11 is the dominant effect and leads to a drop of the fraction of power absorbed
as seen in Fig.7 and 9. The flattening of the distribution function increase with the
absorbed power, explaining the dependence of quasi-linear effects with respect to the
injected power seen on Fig.7 and 9. On the opposite, an increase of the collisionality,
for instance by increasing the density, reduces the deviations from the Maxwellian and
explains the difference of quasilinear effects between Fig.7 and 9 at large power.

Figure 11. Pitch-angle integrated distribution function of electrons obtained
with LUKE (left) and its derivative with respect to p (right), for the pure ECRH,
at the maximum of absorption ρG,abs, compared with the initial Maxwellian
distribution. The distribution function is obtained for the high injected power
case. The shaded area shows a rough approximation of the resonance location.
The flattening of the distribution function leads to a decrease of the local power
deposited by ECRH

For the case with ECCD, represented in Fig.8 and 10, the combined effect of
the source and the collision pitch-angle scattering can result in a large pitch-angle-
dependent population of suprathermal electrons, illustrated in Fig.12, which shows
the electron distribution in (p, ξ) space at the absorption location. The presence of a
suprathermal population increases the power absorbed. In the case of ECCD, the two
mechanisms described above, i.e. flattening of the distribution function by the source
which leads to a reduction of the absorbed power on the one hand, and the increase of
the suprathermal population by the combination of the source and collisions leading
to an increase of the absorbed power on the other hand, are in direct competition.
The overall effect is therefore case dependent and sensitive to the collision operator.
This explains the difference between ORB5, which predicts a decrease of the power
in the ECCD case studied here, and LUKE, which predicts a small increase of the
absorbed power as can be seen in Fig.8 and 10.

The combination of low density, high temperature and high power leads to
difficulty in convergence of the quasilinear power deposition in LUKE, as the collision
frequency is low and the quasilinear diffusion is high. This translates the fact that
the power density becomes high, leading to strong quasilinear distortions of the
distribution, with less collisions to fill the hole the wave dug in the distribution. LUKE
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simulations convergence is ensured in figures 7, 8 and 9, but it could not be reached
for P0 > 100 kW at lower density in ECCD (N ref

e = 5 · 1018 m−3, Fig. 10).
The quantitative agreement between ORB5 and LUKE for low power deposition

and the qualitative agreement at high power validate the derivation of the source
term and its implementation in ORB5. The ORB5 code is therefore ready to study
the turbulence in the presence of the ECRH/CD source. This study is left for a future
paper.

Figure 12. 2-D distribution function of electron obtained with LUKE, at
maximum of absorption ρG,abs for each angle, for high injected power. The
dominant term of the RF quasilinear bounce-averaged diffusion coefficient Dpp

is overlaid, as well as a theoretical prediction for the resonance location (see [22]).
In ECCD, the resonance is pitch-angle dependent, leading to wave interaction with
particles at higher p. At low power, the distribution remains close to Maxwellian.

5. Conclusion

In this paper, a quasilinear operator representing the electron cyclotron resonance
heating and current drive is derived in the specific case of a beam propagating in the
equatorial plane of an axisymmetric tokamak. This assumption allows one to treat
the beam propagation in the plasma analytically, removing the need for the coupling
with a dedicated beam propagation code, such as a ray- or beam-tracing code.

This operator can be used as a source term in any global gyrokinetic code. It
has been implemented in the particle-in-cell code ORB5. The numerical treatment
specific to particle-in-cell code is detailed. The numerical implementation is validated
against an analytical model for the linear absorption. The quasilinear corrections
are also tested by benchmarking ORB5 against the bounce-average drift-kinetic code
LUKE, which is dedicated to the simulation of the electron distribution function in
the presence of plasma/wave interactions. A good agreement is found between the
two codes despite some differences in the limit of large power deposition, which
are discussed in detail. A further development of the model may include the
implementation of a convergence loop on the deposited power (as it is done in LUKE),
but this will dramatically increase the cost of already heavy simulations, especially if
a realistic electron-to-ion mass ratio is required.

The implementation of the source term described in this paper in any global
gyrokinetic code enables the self-consistent study of turbulence in presence of
ECRH/ECCD by this code. The next step of this project is to study the interplay
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between this realistic source of momentum and energy on the one hand, and the
turbulence on the other hand. This study will help to elucidate a long standing
question about the possibility for turbulence to radially transport suprathermal
electrons generated by the resonant wave/particle interaction outside the resonant
area, a mechanism has been proposed to reconcile theoretical predictions with
experimental observations made in some cases [1, 2].
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Appendix A: Group velocity for an oblique propagation

For the evaluation of Eq.27, it is necessary to compute the group velocity in the general
case. It can be shown that the group velocity is given by∣∣vg,O/X

∣∣ = cNO/X

N 2
O/X + ωb

2

∂N 2
O/X

∂ωb

(72)

The cold plasma dispersion relation Eq.12 can be written differently

N 2
O/X =

f1
(
ω2
b

)
± Ωeω

2
p

ωb

√
f2 (ω2

b )

f3 (ω2
b )

(73)

where

f1 (x) = 2
(
tan2 θ + 1

) [(
x− ω2

p

)2 − xΩ2
e

]
+
(
tan2 θ + 2

)
ω2
pΩ

2
e (74)

f2 (x) = Ω2
e tan

4 θx+ 4
(
x− ω2

p

)2 (
tan2 θ + 1

)
(75)

f3 (x) = 2
[(
x− ω2

p − Ω2
e

)
x
(
tan2 θ + 1

)
+ ω2

pΩ
2
e

]
(76)

This formulation allows one to express the group velocity as∣∣vg,O/X

∣∣ = cNO/Xf3
(
ω2
b

)
g1 (ω2

b )±
Ωeω2

p

2ωb

g2(ω2
b)√

f2(ω2
b)

−N 2
O/Xg3

(77)

where

g1 (x) = xf ′1 (x) = 2
(
tan2 θ + 1

)
x
[
2
(
x− ω2

p

)
− Ω2

e

]
(78)

g2 (x) = xf ′2 (x)− f2 (x) = 4
(
tan2 θ + 1

) (
x2 − ω4

p

)
(79)

g3 (x) = xf ′3 (x)− f3 (x) = 2
[(
tan2 θ + 1

)
x2 − ω2

pΩ
2
e

]
(80)

The analytical expression of the group velocity Eq.77 can be used for an efficient
implementation linking the electric field of the beam to its power Eq.27
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Appendix B: Evaluation of the Bessel functions and their derivatives for
the theoretical prediction

In this section, the function
|Jm+1/2(zn)|2

xn
where zn = 1

2

(√
4x2n − y2n + iyn

)
is derived

with respect to xn and yn. These derivatives are useful to evaluate Eq.33 in the
theoretical prediction.

Case ℜ (zn) > 0

When ℜ (zn) > 0 , i.e. when 4x2n > y2n, one can use the spherical Bessel function of
first kind jm which is related to Jm+ 1

2
via the relation (Eq. 10.1.1 of [23])

Jm+ 1
2
(z) =

√
2z

π
jm (z) (81)

which is valid for any integer m and any complex argument z. In practice, only the
low m integer are useful. One can then use the fact that (Eq.10.1.10 of [23])

jm (z) = fm (z) sin (z) + (−1)
m+1

f−m−1 (z) cos (z) (82)

where f0 (z) = z−1, f1 (z) = z−2 and (Eq. 10.1.19 of [23])

fm−1 (z) + fm+1 (z) = (2m+ 1) fm (z) /z. (83)

The first values of fm (z) are given in Tab 1.

m fm (z) m fm (z)

-5 105z−4 − 10z−2 0 z−1

-4 −15z−3 + z−1 1 z−2

-3 3z−2 2 3z−3 − z−1

-2 −z−1 3 15z−4 − 6z−2

-1 0 4 105z−5 − 45z−3 + z−1

Table 1. Values of fm (z) for low m integers

Using the fact that |zn| = xn, it is possible to show that∣∣Jm+1/2 (zn)
∣∣2

xn
=

2

π
|jm (zn)|2 (84)

where z̄n is the complex conjugate of zn. Then using the relationship linking jm to
its derivative (Eq. 10.1.21 of [23])

zj′m (z) = − (m+ 1) jm (z) + zjm−1 (z) , (85)

one can show that

∂

∂xn

[∣∣Jm+1/2 (zn)
∣∣2

xn

]
= −4 (m+ 1)

πxn
|jm (zn)|2 +

4xn
πℜ (zn)

ℜ [jm−1 (zn) jm (z̄n)] (86)

∂

∂yn

[∣∣Jm+1/2 (zn)
∣∣2

xn

]
= −2ℑ [znjm−1 (zn) jm (z̄n)]

πℜ (zn)
(87)
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∂2
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(89)

Case ℜ (zn) = 0

When ℜ (zn) = 0 , i.e. when 4x2n < y2n, it is convenient to replace the Bessel functions
of first kind occurring in Eq.33 by modified Bessel functions of first kind of same order
and real arguments by using the property∣∣∣Jm+ 1

2
(zn)

∣∣∣2 = Im+ 1
2

(
z+n
)
Im+ 1

2

(
z−n
)

(90)

where

z±n =
1

2

(
yn ±

√
y2n − 4x2n

)
(91)

One can use the property (Eq.10.2.12. of [23])

Im+ 1
2
(x) =

√
2x

π
Gm (x) (92)

with

Gm (x) = gm (x) sinh (x) + g−m−1 (x) cosh (x) (93)

which is valid for any integer m and real argument x. The functions gm are defined
by recurrence as g0 (x) = x−1, g1 (x) = −x−2 and

gm−1 (x)− gm+1 (x) = (2m+ 1) gm (z) /z. (94)

The first values of gm (x) are given in Tab 2. Using the fact that z+n z
−
n = x2n, one gets∣∣∣Jm+ 1

2
(zn)

∣∣∣2
xn

=
2

π
Gm

(
z+n
)
Gm

(
z−n
)

(95)

It is possible to show that

∂
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2
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∣∣∣2
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4xn [G′
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) (97)
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m gm (x) m gm (x)

-5 −105x−4 − 10x−2 0 x−1

-4 15x−3 + x−1 1 −x−2

-3 −3x−2 2 3x−3 + x−1

-2 x−1 3 −15x−4 − 6x−2

-1 0 4 105x−5 + 45x−3 + x−1

Table 2. Values of gm (x) for low m integers

Appendix C: Velocity derivatives of Θ̃n
k,0
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where
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[9] O. Chelläı, S. Alberti, I. Furno, T. Goodman, O. Maj, G. Merlo, E. Poli, P. Ricci, F. Riva, and
H. Weber. Millimeter-wave beam scattering and induced broadening by plasma turbulence
in the TCV tokamak. Nuclear Fusion, 61(6):066011, apr 2021.

[10] D. Choi, S. Coda, J. Decker, J. A. Cazabonne, and Y. Peysson. Study of suprathermal electron
dynamics during electron cyclotron current drive using hard x-ray measurements in the TCV
tokamak. Plasma Physics and Controlled Fusion, 62(11):115012, oct 2020.

[11] P. Donnel, J. Cazabonne, L. Villard, S. Brunner, S. Coda, J. Decker, M. Murugappan, and
M. Sadr. Quasilinear treatment of wave–particle interactions in the electron cyclotron range
and its implementation in a gyrokinetic code. Plasma Physics and Controlled Fusion,
63(6):064001, apr 2021.

[12] E. Lanti, N. Ohana, N. Tronko, T. Hayward-Schneider, A. Bottino, B.F. McMillan,
A. Mishchenko, A. Scheinberg, A. Biancalani, P. Angelino, S. Brunner, J. Dominski,
P. Donnel, C. Gheller, R. Hatzky, A. Jocksch, S. Jolliet, Z.X. Lu, J.P. [Martin
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