ENAC / PROJET DE MASTER 2021-2022 SECTION DE GÉNIE CIVIL

Assessment of resistance models according to SIA 263 and the new Eurocode 3 for lateral torsional buckling of I-shaped bridge girders

High strength steel

Up-and-coming type of

Higher resistance ⇒

potentially slenderer

higher loads but

elements

Auteure: Flora Mosca

Encadrement: Prof. Dimitrios Lignos 1

¹ Resilient Steel Structures Laboratory. (RESSLab)

Scope

Bridge girders:

cross large spans and support high traffic loads

Longer elements

 High slenderness ⇒ more likely to experience instability

Deeper shapes

- Welded sections ⇒ residual stresses 7
- Class 3 or 4 sections ⇒ elastic behaviour and reduced sections

The new version of Eurocode 3: significant modifications on the procedure of assessing member stability.

Aim: build a finite elements model to evaluate the necessity of these changes and their applicability on bridge girders, according a particular focus on high strength steel (HSS).

Lateral torsional buckling in structural codes

- Lateral torsional buckling (LTB): instability phenomenon occurring in members in bending.
- Characterised by the lateral torsional buckling critical moment (expression on the right).
- Procedure for assessing the lateral torsional buckling resistance standardised in the code (Figure 1) but differences exist.

	M_{Rd}	ү мо	γм1	λ_{LT}
SIA 263:2013	$\frac{W_y^* f_y}{\gamma_{M1}}$	-	1.05	$\sqrt{\frac{W_y^* f_y}{M_{cr}}}$
EN 1993- 1-1:2005	$\frac{W_y^* f_y}{\gamma_{M0}}$	1.0	1.05 1.10 for bridges	$\sqrt{\frac{W_y^* f_y}{M_{cr}}}$
EN 1993- 1-1:2019	$\frac{W_y^* f_y}{\gamma_{M0}}$	1.0	1.05 1.10 for bridges	$\sqrt{\frac{W_y^* f_y}{M_{cr}}}$
$*W_{v} = W_{n_1 v}$		Class 1	or 2	

- $W_y = W_{pl,y}$ $W_y = W_{el,y}$
- $W_y = W_{eff,y}$
- Class 3

 - Class 4 ⇒ reduced effective section properties

$M_{cr}(\sigma_{cr})$ $M_{Rk}(f_j)$
$\overline{\lambda}_D = \sqrt{rac{M_{Rk}}{M_{cr}}}$
Courbe de déversement
$\chi(\overline{\lambda}_D)$
$egin{equation} M_{D,Rd} = \chi_D rac{M_{Rk}}{\gamma_{M1}} \end{aligned}$

Figure 1: R. Thiébaud, 'Résistance au déversement des poutres métalliques

 $\int_{1}^{1} (C_{2} z_{a} + C_{3} \beta)^{2} + \frac{I_{\omega}}{I_{z}} \left(\frac{G K k_{\phi}^{2} l_{b}^{2}}{\pi^{2} E I_{\omega}} + 1 \right)$

	Φ_{LT}	χ_{LT}	$M_{b,Rd}$
SIA 263:2013	$0.5[1 + \alpha_{LT}(\lambda_{LT} - 0.4) + \lambda_{LT}^2]$	$\frac{1}{\Phi_{LT} + \sqrt{\Phi_{LT}^2 - \lambda_{LT}^2}}$	$\chi_{LT} \frac{W_y^* f_y}{\gamma_{M1}}$
EN 1993-1- 1:2005	$0.5[1 + \alpha_{LT}(\lambda_{LT} - 0.2) + \lambda_{LT}^2]$	$\frac{1}{\Phi_{LT} + \sqrt{\Phi_{LT}^2 - \lambda_{LT}^2}}$	$\chi_{LT} \frac{W_y^* f_y}{\gamma_{M1}}$
EN 1993-1- 1:2019	$0.5\left[1+f_{M}\left(\left(\frac{\lambda_{LT}}{\lambda_{z}}\right)^{2}\alpha_{LT}(\lambda_{z}-0.2)+\lambda_{LT}^{2}\right)\right]$	$\frac{f_{M}}{\Phi_{LT} + \sqrt{\Phi_{LT}^{2} - f_{M}\lambda_{LT}^{2}}}$	$\chi_{LT} \frac{W_y^* f_y}{\gamma_{M1}}$

Conclusions

- 1. Difference ≯ for higher steel grade
 - ⇒ Codes too conservative regarding high strength steel
 - ⇒ Need of specific regulations
- 2. SIA estimates better than the EC & new EC better than old EC
- · Different partial factor
- ⇒ Difference ≥ 5%
- 3 Difference ∠ for class 4 sections
- ⇒ Reduction for class 4 sections of the SIA 263 too conservative
- 4. Worst differences for $\lambda_{LT}=1.0$
 - Bridge girders range (λ_{LT} comprised between 0.4 and 1.5) worst error

Finite elements model **Technical details**

- Elements type: shell elements thickness much smaller than the two other dimensions.
- Static system: four points bending with lateral restraints located at the point of load application.
- Geometric imperfections: introduced by scaling the relative buckling mode ⇒ amplitude as in the table below, from Lignos et al. studies
- Residual stresses: pattern from Thiébaud's thesis + upper limit of 500 [MPa] for HSS
- Material model: Updated Vocematerial Chaboce model from Hartloper and Lignos
- Meshing: S4R elements, 10x10 mm, enhanced hourglass control
- Stiffeners thickness assumed so that section class 1
- Riks analysis performed (arc length

Global out-of- straightness	Local web imperfection	Local flanges imperfections	
L/1500	d/2500	b _f /2500	

Validation

Validation of the model using Tankova's paper.

- Good estimation of the stiffness of the system
- LTB resisting force (peak in chart) underestimated ⇒ error always < 20%
- Different residual stresses and material properties
- Stiffeners thickness ⇒ infinitely rigid stiffeners, LTB resistance ₹ 5-20%

Results Relative Difference - Constant $\bar{\lambda}_{L3}$ G2 Buckling Curves: G1 E3.2.2

- Extract left reaction and vertical displacement at the point of loading for each iteration.
- Obtain the maximum reaction force \Rightarrow LTB bending moment resistance $M_{h.Rd.FEM}$.
- Buckling curves:
 - SIA 263 and EN 1993-1-1: 2005 depend on the normalised slenderness
 - EN 1993-1-1:2019 depend on M_{cr}
- Upper limit on the xLT factor of 1 was set, as specified by the codes.
- Adjustment of twice standard deviation on the curves obtained experimentally ⇒ partial explanation for this difference