
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Memory of Motion for Initializing Optimization in 
Robotics

Teguh Santoso LEMBONO

Thèse n° 9717

2022

Présentée le 28 juillet 2022

Prof. C. N. Jones, président du jury
Dr J.-M. Odobez, Dr S. Calinon, directeurs de thèse
Prof. O. Brock, rapporteur
Prof. S. Coros, rapporteur
Prof. A. Ijspeert, rapporteur

Faculté des sciences et techniques de l’ingénieur
Laboratoire de l’IDIAP
Programme doctoral en génie électrique 





The fear of the LORD is the beginning of wisdom,
and the knowledge of the Holy One is insight.

— Proverbs 9:10

To my mother,
who raised me and loves me selflessly





Acknowledgements
First and foremost, I would like to thank my LORD Jesus Christ for the completion
of this thesis. For many years, I can see His hand guiding me and showering me with
blessings upon blessings that I do not deserve. The beauty and the order of His creation
continue to inspire me to study the world and find joy in it.
Next, I would like to thank my advisors, Dr. Jean-Marc Odobez and Dr. Sylvain Calinon,
for giving me the opportunity to pursue a doctorate jointly with the Idiap Research
Institute and EPFL. I am very grateful especially to Sylvain for trusting me to work on
the MEMMO project and for all the discussions we had over the last four years.
I would like to thank all my colleagues in the RLI group for our friendships. I really
enjoy both the technical and life discussions that we shared over lunch and coffee breaks.
Special thanks go to my office mates, Amir and Teng, who made my last year of PhD
very fun and enjoyable. I also thank Suhan for a nice collaboration over this last year,
which contributed greatly to this thesis.
I would like to extend my gratitude to the members of the MEMMO project. Being
involved in this project allows me to learn so much among some of the best researchers
in robotics, and I enjoy all the interactions that we had. Special thanks go to Nicolas
Mansard and Carlos Mastalli who provided me with so much support and guidance
during our collaboration.
I would like to thank all of my teachers, especially Pak Bowo and Pak Yahya, who really
inspired me to enjoy maths and physics, both through the books that you lent me and
the interesting lessons you taught me.
Finally, I would like to thank all of my family members who continue to support me. To
my mother, who used to wake me up lovingly with cold water before going to school. She
worked tirelessly to support the education of all her children, and I can not thank her
enough for that. To my sisters, who guided me especially in my early childhood when I
tend to give up easily, and helped me to walk on the right path. And most importantly,
to my wife Ella and my daughter Nina, with whom I share countless joyful moments.
Without them, there will be much fewer smiles and laughter during these four years.

Martigny, July 19, 2022 Teguh Santoso Lembono

i





Abstract
Many robotics problems are formulated as optimization problems. However, most
optimization solvers in robotics are locally optimal and the performance depends a lot
on the initial guess. For challenging problems, the solver will often get stuck at poor
local optima without a good initialization. In this thesis, we consider various techniques
to provide a good initial guess to the solver based on previous experience. We use the
term memory of motion to collectively refer to these techniques. The key idea is to use
the existing system models, cost functions, and simulation tools to generate a database
of solutions, and then construct a memory of motion model. During online execution,
we can then query the initial guess of a given task from the memory of motion. We
show that it improves the solver performance in terms of the solution quality, the success
rates, and the computation time. We consider two different formulations, i.e., supervised
learning and probability density estimation.
In the first part, we formulate a regression problem to find the mapping between the
task parameters and the solutions. Such a formulation is convenient, as there are a lot of
function approximations available, but using them as a black box tool may result in poor
predictions. It is especially the case for multimodal problems where there can be several
different solutions for a given task, and standard function approximators will simply
average the different modes. We first propose an ensemble of function approximators
that can handle multimodal problems to initialize an optimization-based motion planner.
We then investigate the problem of initializing an optimal control solver for legged robot
locomotion, where we need to also provide the initial guess of the control sequence. We
evaluate the effect of different initialization components on the optimal control solver
performance.
In the second part, we consider another formulation by first transforming the cost
function into an unnormalized Probability Density Function (PDF) and approximating
it using various surrogate models. This formulation addresses several shortcomings of
the supervised learning approaches by using the cost function itself to train or construct
the predictive model. It allows us to generate initial guesses that have high probabilities
of having low-cost values instead of simply imitating the dataset. We first show that we
can obtain a trajectory distribution of an iLQR problem as a Gaussian distribution, and
tracking this distribution results in a cost-efficient and robust controller. We then propose
a generative adversarial framework to learn the distribution of robot configurations under
constraints. Finally, we use tensor methods to approximate the unnormalized PDF.
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Abstract

Since it does not rely on gradient information, the method is quite robust in finding the
(possibly multiple) global optima or at least the good local optima of various challenging
problems including some benchmark optimization functions, inverse kinematics, and
motion planning.

Keywords: Memory of Motion, Function Approximations, Trajectory Optimization,
Motion Planning, Optimal Control, Variational Inference, Tensor Methods.
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Résumé
De nombreux problèmes de robotique sont formulés comme des problèmes d’optimisation.
Cependant, la plupart des solveurs d’optimisation en robotique sont localement optimaux
et les performances dépendent beaucoup de l’estimation initiale. Pour les problèmes
difficiles, le solveur restera souvent bloqué à de mauvais optima locaux sans une bonne
initialisation. Dans cette thèse, nous considérons diverses techniques pour fournir une
bonne estimation initiale au solveur basée sur des expériences précédente. Nous utilisons
le terme mémoire de mouvement pour désigner collectivement ces techniques. L’idée
principale est d’utiliser les modèles de système existants, les fonctions de coût et les
outils de simulation pour générer une base de données de solutions, puis de construire un
modèle de mémoire de mouvement. Lors de l’exécution, nous pouvons alors interroger
l’estimation initiale d’une tâche, donnée à partir de cette mémoire de mouvement. Nous
montrons que cette approche améliore les performances du solveur en termes de qualité de
la solution, de taux de réussite et de temps de calcul. Nous considérons deux formulations
différentes : 1) l’apprentissage supervisé et 2) l’estimation de la densité de probabilité.
Dans la première partie, nous formulons un problème de régression pour trouver la
correspondance entre les paramètres de la tâche et les solutions. Une telle formulation est
pratique, car il existe de nombreuses approximations de fonctions disponibles, mais les
utiliser comme "black box" peut entraîner de mauvaises prédictions. En particulier, dans
les cas de problèmes multimodaux où il peut y avoir plusieurs solutions différentes pour
une tâche donnée, les approximateurs de fonctions standard produiraient une moyenne des
différents modes. Nous proposons d’abord l’utilisation d’un ensemble d’approximations de
fonctions qui peuvent gérer des problèmes multimodaux pour initialiser un planificateur de
mouvement basé sur l’optimisation. Nous étudions ensuite le problème de l’initialisation
d’un solveur de control optimal pour la locomotion d’un robot à jambes, où nous devons
également fournir l’estimation initiale de la séquence de contrôle des pas. Nous évaluons
ici également l’effet de différents composants d’initialisation sur les performances du
solveur.
Dans la deuxième partie, nous considérons une autre formulation en transformant d’abord
la fonction de coût en une densité de probabilité non normalisés et en l’approximant
à l’aide de divers modèles. Cette formulation comble plusieurs lacunes des méthodes
d’apprentissage supervisé en utilisant la fonction de coût elle-même pour former ou
construire le modèle prédictif. Cela nous permet de générer des estimations initiales
qui ont de fortes probabilités d’avoir des valeurs à faible coût (au lieu de simplement
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imiter le dataset). Nous montrons d’abord que nous pouvons obtenir une distribution
de trajectoires d’un problème iLQR sous la forme d’une distribution gaussienne, et le
suivi de cette distribution aboutit à un contrôleur efficace et robuste. Nous proposons
ensuite un modèle de type GAN pour apprendre la distribution des configurations de
robots sous contraintes. Enfin, nous utilisons des méthodes tensorielles pour approximer
la densità de probabilité non normalisée. Puisque l’approche proposée ne repose pas
sur des informations de gradient, cette méthode permet de trouver les optima globaux
(éventuellement multiples) ou au moins les bons optima locaux de divers problèmes
difficiles, y compris certaines fonctions d’optimisation utilisées comme référence, la
cinématique inverse d’un robot, ainsi que la planification de mouvement.

Mots-clés : Mémoire de mouvement, Approximations de fonctions, Optimisation de
trajectoires, Planification de mouvement, Contrôle optimal, Inférence variationnelle,
Méthodes tensorielles.
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Introduction

1.1 Motivation

In robotics, an increasing number of problems are formulated as optimization problems.
One important reason is that optimization offers a lot of flexibility and ease of defining the
problem based on high-level requirements. For example, the problem of finding a robot
configuration that corresponds to the desired end effector pose, i.e., inverse kinematics, is
commonly cast as a nonlinear optimization problem [2]. In motion planning, optimization-
based planners such as CHOMP [3], TrajOpt[4], and STOMP [5] have recently been
proposed as alternatives to the popular sampling-based planners. In robot control,
optimization-based approaches come in the form of Quadratic Programming-based
controller (e.g., Task-Space Inverse Dynamics (TSID) [6]) and optimal control (e.g.,
Iterative Linear Quadratic Regulator (iLQR) [7]). The optimization framework allows us
to easily add new tasks or requirements in the form of cost functions or constraints. With
the availability of high-performance off-the-shelf solvers, increasingly complex problems
are getting solved with these approaches.

While there are many benefits of such approaches, they unfortunately suffer from the
following problems. Firstly, most of the available solvers can be categorized as local
optimizers that can get easily stuck in poor local optima. The performance of the solver,
especially in nonlinear problems, highly depends on the initial guess provided by the
user. Secondly, and not unrelated to the first point, it may take a lot of time to compute
the optimal solution, hindering its use for online execution. If the solver is initialized
from a good initial guess, it can avoid poor local optima while at the same time reducing
the computation time for convergence. In some simple problems such as base motion
planning to avoid simple obstacles [8], a heuristics-based method such as initializing
using pre-defined waypoints can work well but it does not apply in general cases. This
motivates the need for an approach that can automatically generate a good initial guess
for a given optimization problem.

Machine learning techniques seem to be very promising for that purpose. We see many
applications of various machine learning techniques on robotics problems. One important
weakness, though, is reliability. Most of the techniques do not provide us with a guarantee
on the performance, and this can be an important deterrence from using it on the real
system. Another point is about its accuracy; it is difficult, for example, to ask a machine
learning system to produce a precise control sequence associated with legged robot
locomotion. Indeed, there are existing works that successfully use machine learning
to control real robots in challenging scenarios, but they often require a tremendous
amount of data and computation. In control problems an accurate prediction is especially
important, as a slight change in the control sequence (especially at the beginning) can
result in a large change in the overall trajectory. These shortcomings, however, would
not be crucial if the machine learning algorithm is only required to predict the initial
guess instead of the final solution. The initial guess can then be further refined by the
optimization-based solver, which often provides us with better reliability and accuracy.
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1.2. Main Challenges

Combining machine learning and optimization-based technique in this way offers us the
best of both techniques.

This thesis aims at answering the following question: how can we use machine learning
techniques to improve the speed and the solution quality of model-based optimization
solvers? The main idea is that when the system models are available, we can generate
or compute a lot of data offline and store it as memory of motion. This may take a
lot of different forms, from a raw dataset [9, 10], a mixture of Gaussians [8], neural
networks (Generative Adversarial Networks (GAN)) [11], Variational Auto Encoders
(VAE) [12]), or Tensor Train model [13]). During online execution, we can then query
from this memory of motion the initial guess to be optimized using the model-based
optimization solver. In this thesis, we use the term "memory of motion" to refer to both
the representation form of the dataset as well as the querying method. The requirement
for the memory of motion is that the query has to be fast and the initial guess it produces
should be close to the optimal solution.

The success of the memory of motion can provide significant improvements over existing
robotics applications. For example, it will enable Model Predictive Control (MPC)
with a highly complex model online, allowing us to generate and control increasingly
complex behavior. Fast computation means that robots will be more reactive toward user
commands. It also allows better adaptation capability towards large disturbances, as the
memory of motion can provide us a clue on how to handle such disturbance effectively.
How can we build such a memory of motion? Several issues have to be addressed, which
will be discussed in the next section.

1.2 Main Challenges

1.2.1 Local Optima

Building a memory of motion with high performance requires a dataset of good quality.
Unfortunately, generating the dataset remains a challenging problem. Many robotics
problems are highly non-convex with a lot of local optima, and most of the solvers
commonly used are local optimizers. While most of the time in robotics we do not need
to find the global optima, getting stuck in poor local optima should be avoided. Some
techniques allow us to find feasible solutions with probabilistic completeness guarantee,
such as sampling-based planner (e.g., Rapidly-exploring Random Tree (RRT) [14], Prob-
abilistic Roadmap (PRM) [15]), but the solutions are not optimal. The optimal versions
(e.g., RRT*, PRM* [16]) are available but at much larger computational time.
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1.2.2 Multimodal Data

Many robotics problems do not have a one-to-one mapping between the input (i.e., task)
and the output (e.g., joint angle trajectory). For example, in Inverse Kinematics (IK)
problem, a specific End Effector (EE) pose may correspond to more than one configuration
for a 6-Degree of Freedom (DoF) robot and an infinite number of configurations for 7-DoF
redundant robot. To build a good memory of motion, ideally, we would like to keep
more than one solution to maintain the richness of the solutions. However, learning such
multimodal mapping is very difficult for many learning algorithms. Standard learning
algorithms such as Gaussian Process Regression (GPR) [17] or Multi-layer Perceptron
(MLP) tend to average the different modalities, resulting in a poor prediction. When
the modes are easily separable, it is possible to separate the dataset corresponding to
different modes and train a different learning algorithm separately for each mode, but
most of the time it is difficult to separate the different modes.

Generating multimodal data is also challenging in itself because most robotics solvers
only provide us with one single optimal solution. While we can obtain different solutions
using multiple random initializations, this remains very heuristic. An algorithm that can
reliably generate multimodal outputs by efficiently exploring the whole solution space
would be very useful.

1.2.3 Optimality Criteria

When building the memory of motion, ideally we should generate the dataset by using the
same solver that we want to initialize. Otherwise, the dataset might be generated with a
different notion of optimality from the online solver. Practically, this would mean that
the initial guess produced by the memory of motion will not be considered optimal by the
solver, and hence requires additional iterations for refinement, which is undesirable. On
the other hand, as mentioned previously, the online solver is most of the time a locally
optimal solver. This means that it often cannot find an optimal solution even when it
exists. The ideal way is to build the dataset using an efficient global planner that has
the same optimality criteria as the online solver, but it does not exist in general. Hence,
some tradeoff needs to be made when selecting the method for generating the dataset.

1.2.4 Data Representation and Learning Methods

Assuming that we have a good dataset, how should we store it? Storing the dataset
as raw data is inefficient both in terms of the memory storage and the query process.
We should ideally store only its minimal representation that still allows us to produce
a good quality initial guess. Dimensionality reduction techniques such as Principal
Component Analysis (PCA) or basis function representation (e.g., Radial Basis Function
(RBF)) can potentially be used. This representation also ultimately depends on the
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learning algorithms used for the query. For example, when Gaussian Mixture Regression
(GMR) is used, the dataset will be represented as a mixture of Gaussians that encode the
joint distribution of the input and output. Additionally, this representation should also
maintain the multimodality of the datasets, and the learning algorithm should handle
such multimodal data properly without simply averaging the different modalities.

1.3 Thesis Organization

The remaining part of the thesis attempt to address the challenges presented above. We
begin in Chapter 2 by explaining the relevant background knowledge related to this
thesis. Chapter 3 to Chapter 7 are then divided into two parts: supervised learning
approaches and probability density estimation approaches. Finally, Chapter 9 concludes
the thesis with some remarks about future direction.

Part 1: Supervised Learning Approaches

In the first part, we focus on investigating supervised learning approaches to build
the memory of motion. The problem of predicting the initial guess is formulated as a
regression problem to learn the mapping f : x→ y that maps each task x to the initial
guess y. Datasets are firstly generated, and then techniques such as GPR, Bayesian
GMR, and k-nearest neighbors are trained on the datasets. We then applied the approach
to motion planning and optimal control.

In Chapter 3, we apply it to motion planning of the PR2 dual-arm robot and the Atlas
humanoid robot. We demonstrate that a mixture model such as Bayesian Gaussian
Mixture Regression (BGMR) can handle multimodal prediction better than GPR. We also
show that the memory can be used as a metric to choose between different goals. Finally,
we propose an ensemble technique combining various supervised learning techniques,
resulting in a large improvement of the success rate of the motion planning problem.

Chapter 4 investigates the problem of initializing an optimal control solver based on iLQR
for generating locomotion movements of a humanoid robot. We simplify the problem by
learning one-step motions that can be concatenated to produce multiple step motions.
We compare different initialization components and show that initializing iLQR solver
with both the state trajectory and the control command sequence results in the best
improvement over the cold start initialization. We also show that a dataset that has the
same optimality criteria as the online solver results in better initialization performance.
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Part 2: Probability Density Estimation Approaches

While supervised learning formulation is convenient due to the availability of off-the-shelf
learning algorithms, it has issues in at least two aspects. Firstly, generating good data
is often difficult due to the highly nonlinear nature of the problems. Secondly, many
supervised learning techniques are not suitable for handling multimodal problems. In
the second part, we approach the problem differently by using probabilistic density
estimation approaches. We transform the cost functions to (possibly unnormalized)
probability density functions and use various techniques (i.e., GAN, Variational Inference,
and Tensor-Train decomposition) to approximate the probability distributions. This
allows us to obtain much richer solutions compared to standard learning techniques as
well as to avoid the issue of multimodal averaging.

In Chapter 5, we show that by transforming the cost of an optimal control problem into
a probability density function, we can obtain a Gaussian distribution as the output of a
standard iLQR solver. This distribution is then given to a short horizon MPC controller
for tracking, and we show that tracking the distribution is more stable and cost-efficient
compared to tracking only the optimal trajectory.

In Chapter 6, we use GAN framework to approximate the distribution of complex
robot configurations under constraints using both a dataset as well as cost functions
corresponding to the tasks and constraints. After training, we can easily generate robot
configurations that satisfy the constraints (e.g., stable configurations of a humanoid robot).
We can also condition the distributions on the desired end effector poses, obtaining the
configurations that reach those poses approximately. By using an ensemble of neural
networks as the generator, we can obtain multimodal distributions. We then use it in
the context of IK and sampling-based motion planning under constraints.

Finally, in Chapter 7, we approach the problem of approximating the probability distri-
bution using Tensor Train decomposition. By making use of the low-rank nature of the
cost functions, we can approximate the probability using low-rank tensors that has a
better capacity to approximate complex functions than existing methods, e.g., Gaussian
Mixture Model (GMM). The advantage of using this tensor method is that it does not
require building explicit datasets, it can approximate multimodal problems easily, it is
not easily stuck in local optima, it does not require gradients, and we can condition the
distribution on the given tasks. We demonstrate its advantage by applying it to various
problems including the common benchmark functions for nonlinear optimization (e.g.,
Rosenbrock and Himmelblau functions), inverse kinematics under constraints, and motion
planning. In all cases, the proposed method can find the multimodal solutions and can be
conditioned online based on the tasks to quickly produce approximate solutions during
online execution.
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1.4 MEMMO Project

Complex movement generation for arbitrary robots with arms and legs interacting in
a dynamic environment in real-time remains a challenging task for current robotics
tools. The availability of such a technology would certainly revolutionize the motion
capabilities of robots and unlock a wide range of very concrete industrial and service
applications: robots would be able to react in real-time to any change in the environment
or unexpected disturbance during locomotion or manipulation tasks. However, the
computation of complex movements for robots with arms and legs in multi-contact
scenarios in unstructured environments is not realistically amenable to real-time with
current computational capabilities and numerical algorithms.

This thesis is a part of the collaborative H2020 European project MEMMO (Memory
of Motion) that aims to solve the above problem by 1) relying on off-line caching of
pre-computed optimal motions that are 2) recovered and adapted online to new situations
with real-time tractable model predictive control and where 3) all available sensor
modalities are exploited for feedback control going beyond the mere state of the robot for
more robust behaviors. The objective of MEMMO is to develop a unified yet tractable
approach to motion generation for complex robots with arms and legs.
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Chapter 2. Background

2.1 Optimization in Robotics

Optimization has become an indispensable tool in robotics. An increasingly large variety
of robotics problems, including calibration, inverse kinematics, motion planning, control,
and navigation, are formulated as optimization problems. 1 As more powerful optimization
solvers become available and easy to use, the formulation grows in model complexity (e.g.,
from considering the centroidal dynamics to whole-body dynamics in legged locomotion)
as well as the time horizon (from one time step optimization to optimizing over a time
horizon).

One of the main benefits of casting a robotics problem as an optimization problem is the
ease of translating the task requirement into cost functions or constraints. The formulation
also often unifies several different pieces of algorithms (previously crafted manually by
the programmers or the roboticists) as a single optimization problem, allowing more
complex behaviors to be found. The availability of off-the-shelf optimization solvers
certainly helps to push this move towards optimization. Furthermore, convenient tools
for calculating the gradient of the dynamics or the cost functions are also easily available,
ranging from tools that provide analytical gradient (pinocchio [19]), symbolic gradient
(CasADi [20]), to automatic gradient (JAX [21], pytorch [22], tensorflow [23]). These
tools alleviate the burden of researchers from crafting their own solvers to focusing more
on designing the problem formulation.

However, with the increasing complexity of robotics tasks, the optimization problem
becomes very nonlinear and difficult to solve. Most of the optimization solvers used
in robotics (e.g., Gauss-Newton, Quasi-Newton, Interior-point Method, and Sequential
Quadratic Programming) are gradient-based techniques that can easily get stuck in
poor local optima without good initialization. While global optimizers such as Bayesian
Optimization [24] and Genetic Algorithm [25] exist, they take a lot of computation
time, precluding them from common robotics usage. This implies that for most robotics
problems, the performance of the solvers depends on the initial guess provided by the
users. In some cases, it is easy to craft some heuristics to generate good initial guesses,
but in general, the problem still exists. This motivates the need for a general method to
provide such a good initial guess to any kind of optimization problem.

In the following section, we discuss several important robotics problems formulated as
optimization problems that are considered in this thesis.

2.1.1 Inverse Kinematics

IK is a problem of determining the robot configuration that corresponds to a given EE
pose. For robots that have fewer or equal to 6 DoF, analytical solutions often exist and

1We refer to [18] for an interesting discussion regarding the use of optimization formulation in robotics.
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can be obtained easily, e.g., when the last three joints intersect at a common point, or
using IKFast [26]. However, for higher dimensional robots the number of solutions is
infinite, and numerical IK is the standard approach. Given a desired end effector pose pref
and the initial configuration q0, an iterative optimization is used to find the value of q
such that the corresponding EE pose p(q) is equal to the desired pose pref. One common
approach is to use Gauss-Newton algorithm, often referred to as the pseudo-inverse
method. In the most basic formulation, the IK problem is formulated as minimizing the
following quadratic cost,

c(q) = 1
2r
>r, (2.1)

where r = p(q)− pref is the residual vector to be minimized. Starting from the initial
guess q0, the next solution is obtained by

qi+1 = qi − αJ†r, (2.2)

where J = ∂r
∂q is the Jacobian of the residual function, α is the step length, and the

subscript † denotes the (Moore-Penrose) pseudo-inverse operator. The step is iterated
until the residual norm is smaller than a specified threshold value.

This formulation can be extended to include more residual functions, each of which
corresponds to a particular task or constraint that we want to enforce on the system.
For example, in the case of IK for humanoid, we can define the cost function as

c(q) = 1
2(r>eeree + r>s rs + r>l rl),

where the subscripts (ee, s, l) refer to the residuals corresponding to the constraints on
the end effector pose, static stability, and joint limit. Note that Gauss-Newton algorithm
can only be applied to least-square problems, hence each of the cost term should be a
square function of the residuals.

Furthermore, with the pseudo-inverse method, we can implement some hierarchy in the
constraints by using the nullspace projection [27]. For each level of the hierarchy, we can
define a cost function as in (2.1). Let J1 and J2 refer to the Jacobian of the residuals of
the main and secondary constraints. The nullspace projection operator due to the first
Jacobian, N1, can be obtained as N1 = I − J†1J1. We can use this nullspace operator to
prevent the secondary constraints from affecting the main constraints. Starting from the
initial guess q0, the next solution is obtained by

qi+1 = qi − α1dq1 − α2dq2, (2.3)

where dq1 and dq2 are the steps corresponding to the main and secondary constraints,
defined as

dq1 = J†1r1, and
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dq2 = (J2N1)†(r2 − α1J2dq1),

where (α1, α2) are the corresponding step lengths.

To determine the step length α1 and α2, we need to perform a line search. Armijo
condition is often used as the stopping criteria, but other conditions also exist [28]. When
there is more than one step length, the first step length (i.e., α1) should be determined
first, and the subsequent step lengths (i.e., α2, α3, etc.) are computed such that the tasks
with the higher priority are not disturbed.

Finally, to improve the stability of the pseudo-inverse, a damping term λI can be added,
defined as

λ = µr>r + µ̄, (2.4)

where µ and µ̄ are manually-defined constants. The damping term hence depends on the
residual magnitude. As shown in [2], it helps the convergence when starting far from the
optimum solution.

The above formulation transforms constraints into cost functions, effectively treating
them as soft constraints. When hard constraints are required, the numerical IK problem
can alternatively be formulated as Quadratic Programming (QP) [29].

2.1.2 Motion Planning

A typical motion planning algorithm finds a sequence of robot configurations that move
from an initial configuration to the desired configuration, or a desired EE pose while
avoiding collisions with the environment. Constraints such as staying within joint velocity
limits or maintaining a certain orientation can also be included. To avoid obstacles
effectively, the planning is usually done in the configuration space, i.e., the space of all
robot configurations. The configuration space can be divided into the free space, where
the configuration is free from collision, and the obstacle space, where the configuration
collides with some obstacle(s) in the environment. Motion planning can thus be cast as
finding a path through the free space, starting from an initial configuration to a final
configuration.

The shape of the free space is often very complex, especially in high dimensions, and it is
impossible to find an analytical expression in general. Popular algorithms that can find
the path through this space effectively are sampling-based motion planners (e.g., RRT [14],
PRM [30]). These planners work by iteratively sampling random configurations from
the configuration space and building a graph or a tree connecting all the configurations.
They are very effective and probabilistically complete, i.e., given enough samples, they
will find a solution when it exists. However, the solution is only a feasible geometric
motion that usually needs to be further optimized via a post-processing step. Optimal
sampling-based planners such as RRT* and PRM* exist, but they take a significantly
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longer computation time.

CHOMP [31] is the first work that proposes to cast the whole motion planning problem
as an optimization problem. Instead of finding an initial solution via a sampling-based
planner, CHOMP can accept an infeasible solution as initialization and optimizes it
directly to obtain the final solution. It is followed by further work such as STOMP [5],
ITOMP [32], TrajOpt [4], and GPMP [33]. The optimization formulation allows these
methods to incorporate constraints naturally and more easily compared to sampling-
based planners. Furthermore, the resulting motion is already (locally) optimal, so no
post-processing is required.

In optimization-based planners, the problem of finding a path in the configuration space
Rm from qinit to qgoal is formulated as the following,

q∗ = arg min
q0,q1,...,qT

T∑
t=0

f(qt)

s.t. G(q) = 0,

H(q) ≥ 0,

where f,G, andH are the cost function, equality, and inequality constraints. While we
show the discrete form here, some planners optimize the trajectory in the continuous
space. Some planners also formulate the constraints as soft-constraints, i.e., putting the
constraints in the form of the cost function.

In CHOMP, the cost function is split into two parts: the prior term that encourages
smoothness of the trajectory and the obstacle term that steers the trajectory away from
the obstacle. It also uses a covariant gradient descent (from which it derives its name)
that ensures each update results in a smooth trajectory. For the obstacle avoidance, it
uses signed distance field, i.e., a function that outputs the distance from a point p to the
boundary of the nearest obstacle. Its values are negative inside the obstacles, positive
outside, and zero at the boundary. Since computing such functions for general obstacles
can be difficult and time-consuming, CHOMP relies on an offline-precomputed 3-D array
that store the value of the signed distance function in a uniform grid. Once this array
has been created, computing the signed distance field of a given point can be done online
really fast (in the order of microseconds), independent of the complexity of the obstacles.

Other planners differ from CHOMP in the following ways:

• Obstacle avoidance formulation. Instead of precomputing a distance field, TrajOpt
uses online convex-convex collision checking using Gilbert-Johnson-Keerthi (GJK)
and Expanding Polytope Algorithm (EPA). This allows it to model the robot
geometry more accurately using meshes instead of the combination of spheres and
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capsules as done in CHOMP. Furthermore, it provides better information (i.e.,
gradient) on how to take two colliding shapes out of the collision.

• Trajectory representation. In CHOMP, STOMP, and ITOMP, the trajectory needs
to be represented by a large number of configurations to ensure that the collision
checking against small obstacles still works. TrajOpt requires fewer number of states,
due to its continuous collision cost that checks the collision of the swept volumes
occupied by the links. GPMP, on the other hand, uses a continuous representation
of trajectory via Gaussian Process that inherently ensure the smoothness through
its priors.

• Solving strategy. While CHOMP uses covariant gradient descent to ensure smooth-
ness, STOMP relies on stochastic sampling around the current solution to find
the step direction, enabling it to optimize cost functions that are non-smooth and
non-differentiable. TrajOpt uses Sequential Quadratic Programming that allows it
to handle hard constraints easily. Finally, GPMP optimizes over the sparse set of
states that define the trajectory while still computing the obstacle cost over a large
number of intermediate points, thanks to the Gaussian Process representation.

The success of these optimization-based planners, however, does not mean that they
completely replace the sampling-based planners. In fact, they still suffer from a common
problem of optimization solver, i.e., getting stuck in poor local optima without good
initialization. In motion planning, one important source of bad local optima is the
presence of obstacle(s). In a tight environment, it can be very difficult for optimization-
based planners to find even a feasible solution. Other constraints such as joint limit
and orientation constraint can also cause the solvers to fail at finding a feasible solution,
except with a good initialization close to good local optima. Unlike sampling-based
planners, these optimization-based planners do not possess a completeness guarantee,
and the performance is highly dependent on the initial solution. That is why planners
such as TrajOpt suggest the user initialize using different waypoints when it is difficult
to obtain a solution.

Even in sampling-based planners, optimization has become a part of its toolbox. As
mentioned above, constraints cannot be incorporated naturally into sampling-based
planners, but it does not mean that it is impossible. In [34], an extension of a sampling-
based planner to handle constraints has been proposed. The main idea is to add a
projection step such that all configurations that are added to the graph/tree are first
projected to the constraints manifold. These projections steps are performed through
gradient-based optimization which is costly (they can take > 90% of the total planning
time [35]). The optimization formulation of this projection step is similar to the one for
IK as described in Section 2.1.1, but ignoring the EE reaching cost.
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2.1.3 Optimal Control

One of the most popular robot controllers is computed torque controller, also known
as the inverse dynamics controller. Compared to a basic PID controller, a computed
torque controller allows us to use a lower gain, as it compensates the robot dynamics
using the known dynamics model, effectively performing feedback linearization. This can
result in a more compliant behavior, especially important in torque-controlled robots
such as Franka Emika or Kuka Light Weight Arm [36]. However, a computed torque
controller does not provide us with a convenient way to handle constraints such as joint
limit, torque limit, or velocity limit. An extension of inverse dynamics cast the control
problem as Quadratic Programming (QP), where objective functions are quadratic and
the constraints are formulated as linear constraints. The resulting QP problem can be
solved in less than 1ms, allowing it to be part of a control loop (1kHz). It is often referred
to as TSID [6].

TSID is an instantaneous controller, i.e., it only considers one time step at a time. While
it results in fast computation, it limits the behavior that can be planned and executed.
Some complex behavior that requires future anticipation such as angular momentum
regulation or momentum building to climb high slopes is difficult to achieve with such
a controller [37, 38]. Recently, optimal control is gaining popularity as the alternative
formulation to generate and control more complex behavior, especially in legged robots.
In legged robots research, optimal control has been used to plan the center-of-mass motion
using the simplified Linear Inverted Pendulum model [39, 40]. As research progresses,
the model considered is getting more and more complex, moving to a full centroidal
model [41, 42, 43] and even recently the whole-body dynamics [44, 45, 46]. It allows more
agile behaviors and multi-contact locomotion, at the cost of more computational powers.

Optimal control considers a time horizon and uses the system model to anticipate future
events. It cast the control problem as an optimization problem:

C(x,u) =
T−1∑
t=0

ct(xt,ut) + cT (xT ,uT ), (2.5)

subject to the dynamics
xt+1 = f(xt,ut), (2.6)

where xt and ut are the state and control command at time t. Optimal Control Problem
(OCP) may also have equality and inequality constraints. The objective of solving an
OCP is to find the optimal state and control trajectories (x∗,u∗) that minimizes the cost
function while respecting the dynamics. In robotics, given the system’s high degrees of
freedom and complexity, most researchers rely on numerical optimization to solve the
problem, often called the direct methods [47].
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One of the popular methods for solving an OCP in robotics is iLQR [7] due to its fast
computation. With efficient implementation, it is fast enough to control manipulator [48]
and even humanoid robot [45] in online MPC fashion. Furthermore, besides finding the
optimal control sequence for a given problem, iLQR also provides us with feedback gains
that can be used to keep the robot within the planned trajectory, increasing its stability.
In the next section, we first look at Linear Quadratic Regulator (LQR) and then discuss
iLQR as the extension of Linear Quadratic Regulator (LQR).

Time-Varying Finite Horizon Linear Quadratic Regulator (LQR)

A time-varying finite horizon LQR problem is a subclass of OCP with time-varying linear
dynamics

xt+1 = Atxt +Btut,

and quadratic costs

C(x,u) =
T−1∑
t=0

(x>t Qtxt + u>t Rtut) + x>TQTxT ,

where At and Bt are the system matrices, Qt and Rt are precision matrices for state
and control cost. For such class of problems, the solution can be obtained analytically.
We focus here on the batch least-squares solution of LQR. Each xt can be written in
terms of x0,

x1 = A0x0 +B0u0,

x2 = A1x1 +B1u1 = A1A0x0 +A1B0u0 +B1u1,

and so on until xT . We can then stack all xt and ut and get the batch equation

x = Sxx0 + Suu, (2.7)

where x = (x>0 ,x>1 , · · · ,x>T )>, u = (u>0 ,u>1 , · · · ,u>T−1)>, and

Sx =



I

A0
A1A0

...∏T−1
t=0 AT−t


,Su =



0 0 · · · 0
B0 0 · · · 0
A1B0 B1 · · · 0

...
... . . . ...∏T−1

t=1 AT−tB0 · · · · · · BT−1


.

We can then write the cost function in batch form as

C(x,u) = x>Qsx+ u>Rsu, (2.8)

where Qs = blockdiag(Q0,Q1, . . . ,QT ) and Rs = blockdiag(R0,R1, . . . ,RT−1) are

16



2.1. Optimization in Robotics

block diagonal matrices. Substituting (2.7) to (2.8), we obtain

C(x,u) =x>Qsx+ u>Rsu

=(Sxx0 + Suu)>Qs(Sxx0 + Suu) + u>Rsu

=u>(S>uQsSu +Rs)u+ 2u>S>uQsSxx0 + x>0S>xQsSxx0.

Note that the cost is quadratic in u, and it is a standard least-square problem. By
computing the gradients and set it to zero, we obtain the solution, i.e.

u = −(S>uQsSu +Rs)−1S>uQsSxx0. (2.9)

The optimal state trajectory can then be calculated from (2.7).

Iterative Linear Quadratic Regulator (iLQR)

iLQR can be used to solve more general problems than LQR involving non-quadratic
cost functions and nonlinear dynamics. Starting from an initial guess (x0,u0), iLQR
iteratively refines this guess by making a simpler approximation of the OCP at each
step. Let us consider the current guess (xk,uk), where k is the iteration index. Given
the general cost function in (2.5), we can approximate it as a quadratic function around
(xk,uk),

ct(δxt, δut) = 1
2

[
δxt
δut

]> [
cxx,t 0

0 cuu,t

] [
δxt
δut

]
+
[
cx,t cu,t

] [δxt
δut

]
, (2.10)

where cx,t, cu,t, cxx,t, and cuu,t are the cost function’s first and second order derivatives
with respect to x and u. We omit here the cross-derivatives cxu,t for simplifying the
derivations and the notations, but a similar derivation works when cxu,t is not zero.

Similarly, we can approximate the dynamics in (2.6) using the linear approximation

δxt = Atδxt +Btδut, (2.11)

where At and Bt are the derivatives of the dynamics f(xt,ut) with respect to xt and ut,
respectively. The derivatives are evaluated at the current guess (xk,uk). If the dynamics
is approximated as quadratic instead of linear, it is referred to as Differential Dynamic
Programming (DDP) [49].

At this stage, we have quadratic costs and linear dynamics as functions of δx and δu.
This is therefore a time-varying LQR problem, of which the variables of interest are
δx and δu. We can solve this either by the batch least-squares solution or dynamic
programming, and obtain the optimal δx∗ and δu∗. Although in standard LQR the
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two methods give the same outputs, in iLQR they will be different due to the dynamics
rollout step, i.e. the forward pass. When solving the LQR subproblem using dynamic
programming, at each time step we calculate the resulting ut, and the forward pass is
calculated using the actual nonlinear dynamics. In the batch least-squares solution, on
the other hand, the forward pass is calculated using the approximated linear dynamics,
so the two will give slightly different solutions.

The δu calculated by solving the LQR subproblem is a directional step to improve
the current guess (xk,uk). Typically, a line search is performed to find the optimum
step length to move in this direction (see [44]). With the given optimum step length α
we calculate the new u as uk+1 = uk + αδuk. By performing dynamics rollout using
this new uk+1 we obtain the new state trajectory xk+1. The line search guarantees
that (xk+1,uk+1) has lower cost than the previous guess. We can then make another
approximation around the new guess to obtain a new LQR problem and improve the
solution. This is iterated until convergence. Besides obtaining the optimal solution
(x∗,u∗), we also obtain the time-dependent feedback gain Kt to be used for feedback
control in the proximity of (x∗,u∗). At each time step, we obtain the following control
law,

ut = u∗t +Kt(xt − x∗t ).

More details on iLQR can be found in [50, 37, 7].

Extension of iLQR

The standard iLQR formulation does not handle constraints except in the form of soft
constraints, i.e., formulating the constraints as cost functions and tuning the weights
such that the constraints are satisfied at the convergence. Several extensions to handle
hard constraints have been proposed, e.g., using a squashing function [51], QP [52], or a
combination of augmented Lagrangian and projection method [53].

iLQR can be classified as a single shooting method since it solves the problem by
finding the optimal sequence of control commands [47](the state trajectory is obtained by
integrating the dynamics with the optimal control sequence). Initializing such a method
is challenging, as small errors in the control sequence (especially at the beginning) can
result in a large change in the state trajectory. On the other hand, a multiple shooting
method treats both the state and control trajectories as optimization variables, while the
dynamics is used as constraints. While we can only initialize the single shooting method
with the control sequence, we can use both the state and control trajectories to initialize
multiple shooting methods. However, the standard way to solve a multiple shooting
problem using non-linear optimization solvers such as interior point method is usually
too slow for robotics applications. In [44], an extension of iLQR called Feasibility-prone
Differential Dynamic Programming (FDDP) has been proposed. FDDP formulation is
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similar to multiple shooting as it optimizes both state and control trajectories jointly
while maintaining the computation speed of iLQR. Hence, FDDP accepts initialization
by (infeasible) state and control trajectories.

2.2 Learning Methods

How can we use machine learning to predict initial guesses of the optimization problems
listed above? In this thesis, we consider two lines of approaches: supervised learning and
probability density estimation.

In supervised learning, the initial guess prediction is treated as a regression problem to
learn the mapping y = f(x), where y is the initial guess and x is the task decription. In
Section 2.2.1, we discuss several supervised learning techniques that are considered in
this thesis.

The second approach treats the problem quite differently. The cost function is transformed
into an unnormalized PDF, and we use probability density estimation techniques to
approximate this PDF. We can then sample from this model to obtain samples from the
high probability area, i.e., samples that have low cost. In Section 2.2.2 we discuss several
probability density estimation techniques that are considered in this thesis.

2.2.1 Supervised Learning

k-Nearest Neighbor (k-NN)

k-NN is a very simple non-parametric method. Given a task x∗, the algorithm finds K
samples {xk,yk}Kk=1 in the database {X,Y } where {xk}Kk=1 are the K-nearest to x∗

according to a chosen metric (in this chapter the Euclidean metric is used). It then
predicts the corresponding robot path y∗ by taking the average y∗ = 1

K

∑K
k=1 yk. The

method is very simple to implement and it works well if there is a sufficiently dense
dataset, but it suffers from the curse of dimensionality; as the dimension of x increases,
the number of data that needs to be stored increases exponentially.

Gaussian Process Regressor (GPR)

Like k-NN, GPR [17] is a non-parametric method which improves its accuracy as the
number of data increases. While having a higher computational complexity compared
to k-NN, GPR tends to interpolate better, resulting in higher approximation accuracy.
Given the database {X,Y }, GPR assigns a Gaussian prior to the joint probability of
Y , i.e., p(Y |X) = N

(
µ(X),K(X,X)

)
. µ(X) is the mean function and K(X,X) is

the covariance matrix constructed with elements Kij = k(xi,xj), where k(xi,xj) is the
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kernel function that measures the similarity between the inputs xi and xj . In this thesis
we use Radial Basis Function (RBF) as the kernel function, and the mean function µ(X)
is set to be zero as usually done in GPR.

To predict the output y∗ given a new input x∗, GPR constructs the joint probability
distribution of the training data and the prediction, and then conditions on the training
data to obtain the predictive distribution of the output, p(y∗| x∗) ∼ N (m,Σ), where m
is the posterior mean computed as

m = K(x∗,X)K−1(X,X)Y (X), (2.12)

and Σ is the posterior covariance which provides a measure of uncertainty on the output.
In this thesis we simply use the posterior mean m as the output, i.e., y∗ = m.

While having good approximation accuracy, one major limitation with GPR is that it
does not scale well with very large datasets. There are variants of GPR that attempt to
overcome this problem, e.g., sparse GPR [54] or using Stochastic Variational Inference
(SVI) [55]. More details on GPR can be found in [17] and [1].

Bayesian Gaussian Mixture Regression (BGMR)

When using RBF as the covariance function, GPR assumes that the mapping from x to
y is smooth and continuous. When this assumption is met, it performs very well, but
it will yield poor results otherwise. For example, when there is a discontinuity in the
mapping or there are multimodal outputs, GPR tends to average the solutions from both
sides of the discontinuity or both modes. This characteristic is also shared by many other
function approximators. To handle discontinuity and multimodality problems, using
local models is one of the possible solutions. Each local model can be fit to each side of
the discontinuity or to each mode.

Gaussian Mixture Regression (GMR) is an example of such local model approaches [56].
It can be seen as a probabilistic mixture of linear regressions. Given the database {X,Y }
it can be used to construct the joint probability of (x,y) as a mixture of Gaussians

p(x,y) =
K∑
k=1

πkN (µk,Σk), (2.13)

where πk, µk, and Σk are the k-th component’s mixing coefficient, mean, and covariance,
respectively. Given a query x∗, the conditional probability of the output y∗ is also a
mixture of Gaussians. Let θ = {πk,µk,Σk}Kk=1, denoting the GMR parameters to be
determined from the data.
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We can decompose µk and Σk according to x and y as

µk =
(
µk,x
µk,y

)
and Σk =

(
Σk,xx Σk,xy

Σk,yx Σk,yy

)
. (2.14)

Given a query x∗, the predictive distribution of y can then computed by conditioning on
x∗,

p(y| x∗,θ) =
K∑
k=1

p(k| x∗,θ) p(y| k,x∗,θ), (2.15)

where p(k| x∗,θ) is the probability of x∗ belonging to the k-th component,

p(k| x∗,θ) = πkN (x∗| µk,x,Σk,xx)∑K
i=1 πiN (x∗| µi,x,Σi,xx)

, (2.16)

and p(y| k,x∗,θ) is the predictive distribution of y according to the k-th component,

p(y| k,x∗,θ) = N
(
µk,y + Σk,yxΣ−1

k,xx(x∗ − µk,x),Σk,yy −Σk,yxΣ−1
k,xxΣk,xy

)
, (2.17)

which is a Gaussian distribution with the mean being linear in x∗. The resulting
predictive distribution (2.15) is then a mixture of Gaussians. The point prediction y∗

can be obtained from this distribution by applying moment matching to the distribution
in (2.15) to approximate it by a single Gaussian, and use the mean of the Gaussian as
the desired output y∗, see [57, 58] for details.

In GMR, the parameters πk, µk and Σk are determined from the data by Expectation
Maximization method, while the number of Gaussians K is usually determined by the
user. Bayesian GMR (BGMR) [59] is a Bayesian extension of GMR that allows us
to estimate the posterior distribution of the mixture parameters (instead of relying
on a single point estimate as in GMR). The number of components K can also be
automatically determined from the data. As a Bayesian model, BGMR gives priors to the
parameters πk, µk and Σk, and computes the posterior distribution of those parameters
given the data. In high dimensional problems, the prior reduces the overfitting that
commonly occurs with GMR. The prediction y∗, given the input x∗, is then computed
by marginalizing over the posterior distribution and conditioning on x∗. The resulting
predictive distribution of y is a mixture of t-distributions,

p(y|x∗,X,Y ) =
K∑
k=1

p(k|x∗,X,Y ) p(y|k,x∗,X,Y ), (2.18)

where p(k|x∗,X,Y ) is the probability of x∗ belonging to the k-th component of the
mixture, and p(y∗|k,x∗,X,Y ) is a multivariate t-distribution, the mean of which is
linear in x∗. We can interpret (2.18) as K probabilistic linear regression models, each
of which has the probability of p(k|x∗,X,Y ). More details about BGMR can be found
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in [59].

To obtain a point-prediction y∗ from (2.18), there are several approaches. One of the
most used is to take the mean of the predictive distribution in (2.18) using moment
matching. While this approach can provide smooth estimates (as required in many
applications), the same problems as in GPR will appear in the case of discontinuity and
multimodality; taking the average in those cases will give us poor results. Instead, as
the point prediction, we use the mean2 of the component in (2.18) having the highest
probability, which approximately corresponds to the mode of the multimodal distribution.
Alternatively, we can also use the mean of each t-distributions as separate predictions,
which gives us several possible solutions. In some cases (e.g., when we would like to
retrieve all possible solutions) this approach can be very useful.

Artificial Neural Networks

Neural networks are probably the most popular learning methods nowadays, not the least
due to their ease of use, especially with the availability of libraries such as tensorflow [23]
and pytorch [22] that makes modeling and training neural networks very easy. While
convolutional layers are widely used with applications involving images, in many robotics
applications MLP (i.e., neural networks consisting of fully-connected layers with nonlinear
activation units) is often sufficient, even with as few as two to three hidden layers [60].

Due to its ease of use, it is easy to treat a neural network as a black box learning method
for performing regression. Such treatment, however, often fails when the problem at hand
defies the implicit assumptions of the standard MLP model. For example, when learning
a function with multimodal output, a standard MLP will average the multiple modalities,
resulting in a poor prediction (the same with a standard GPR). A neural network model
called Mixture Density Networks (MDN) [61] handles this issue by predicting a mixture
of Gaussian distributions instead of a single prediction. Each Gaussian can correspond
to a different mode if trained properly. The resulting conditional probability distribution
helps to model multimodal functions more precisely.

2.2.2 Probability Density Estimation

In probabilistic machine learning, it is customary to view a cost function probabilistically
by transforming it to an unnormalized probability distribution, e.g., via the following
equation [62]:

p̃(x) = exp(−c(x)), (2.19)

where c(x), p̃(x) are the cost function and the unnormalized probability density function,
respectively. The two are connected as follows: the point x that has low cost is viewed

2As in Gaussian distribution, the mean of a multivariate t-distribution is also its mode.
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as a random variable with high probability, and the point x with high cost as a random
variable with low probability. We can then view the problem of minimizing the cost
function as finding the random variable x that maximizes the probability p(x) (i.e.,
finding the mode of the distribution). This transformation allows us to use various
techniques from the probability density estimation community. For example, instead of
minimizing the cost function, we can fit a parametric probability density function such
as GMM and then perform sampling. When the density estimation is good, the samples
will come from around the region with the low cost surrounding the (multiple) optima.
This results in a richer set of solutions compared to the optimization approach.

To understand (2.19), we first look at a simple example, i.e., a quadratic cost function,
which can be related to a Gaussian distribution. We then discuss more general ways to
solve the density estimation problem, i.e., using Variational Inference, GAN, and Tensor
Train (TT).

Quadratic Cost and Product of Gaussians

A quadratic cost can be viewed probabilistically as corresponding to a Gaussian distribu-
tion. Given the quadratic cost

c(x) = (x− x̄)>W (x− x̄), (2.20)

the optimal solution x∗ = x̄ does not contain much information about the cost function
itself. Instead, we can view x as a random variable with a Gaussian probability, i.e.,

p(x) = N (x̄,W−1) = 1√
(2π)k|Σ|

exp
(
−1

2(x− x̄)>W (x− x̄)
)
, (2.21)

where x̄ and W−1 are the mean and the covariance of the Gaussian, respectively. The
negative log-likelihood of this Gaussian distribution is equivalent to (2.20) up to a constant
factor. Note that if we transform (2.20) by the exponential transformation (2.19), we
obtain (2.21) except for the constant factor. According to p(x), x has the highest
probability at x̄, and W−1 gives the directional information on how this probability
changes as we move away from x̄. The point having the lowest cost in (2.20) is therefore
associated with the point having the highest probability in (2.21).

Similarly, an objective function composed of several quadratic terms

µ̂ = arg min
x

K∑
k=1

(x− µk)>Wk(x− µk) (2.22)

can be seen as a product of Gaussians
∏K
k=1N (µk,W−1

k ), with centers µk and covariance
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matrices W−1
k . The Gaussian N (µ̂, Ŵ−1) resulting from this product has parameters

µ̂ =
(

K∑
k=1

Wk

)−1( K∑
k=1

Wkµk

)
, Ŵ =

K∑
k=1

Wk.

µ̂ and Ŵ are the same as the solution of (2.22) and its Hessian, respectively. Viewing
the quadratic cost probabilistically allows us to capture more information about the cost
function in the form of the covariance matrix Ŵ−1.

Variational Inference

For a general cost function, we cannot obtain its corresponding probability density
function analytically as for the quadratic function above. One popular method to
approximate a probability density function is Variational Inference (VI) [63]. It recasts
the approximation problem as an optimization. VI approximates the target density
p(x) with a tractable density q(x;λ), where λ are the variational parameters. Tractable
density means that drawing samples from q(x;λ) should be easy and q(x;λ) should be
properly normalized.

q(x;λ) is a parameterized distribution (e.g., GMM [64] or neural network [65]), and
to approximate the target density, we minimize the Kullback-Leibler (KL) divergence
between the two distributions. There are two different KL divergence measures, i.e., the
forward KL,

DKL(p||q) =
∫
x
p(x;λ) log p(x)

q(x;λ)dx,

and the reverse KL,
DKL(q||p) =

∫
x
q(x;λ) log q(x;λ)

p(x) dx.

Forward KL can be seen as the expectation of the difference between the two distributions
under p(x), i.e., DKL(p||q) = Ep[log p(x− log q(x)]. For general distributions, analytical
expression ofDKL(p||q) is not tractable, and its evaluation requires samples taken from the
distribution p(x). However, we often do not have access to p(x), only to the unnormalized
density function p̃(x) where p(x) = p̃(x)

Z and Z is the normalization constant which is
difficult to find. On the other hand, Reverse KL only requires us to sample from the
tractable density q(x) from which we can sample easily by design.

Furthermore, Forward KL is often said to be zero avoiding, i.e., it ensures that q(x) covers
the region where p(x) 6= 0, while reverse KL is zero forcing, i.e., it may set q(x) = 0
even in area where p(x) 6= 0 to minimize its cost function. This is especially important
when p(x) is multimodal distribution, as shown in Fig. 2.1. Here, p(x) is a mixture of
Gaussians (shown in blue), while q(x) is a Gaussian distribution whose parameters (i.e.,
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Figure 2.1 – The difference between Forward KL (left) and Reverse KL(middle and
right). The blue and red contours refer to the target and the tractacble density function,
respectively. The figure is taken from [1].

mean and covariance) need to be optimized. Optimizing with Forward KL results in the
left figure where the Gaussian tries to cover both modes (its mean will be between the
two target means), while optimizing with Reverse KL result in a smaller Gaussian that
fits only one of the modes (middle or right, depending on the initialization).

In practice, both measures can be used depending on the applications. Approximation
using reverse KL is easier since the sampling is straightforward, but it may miss some of
the modes. While sampling in forward KL is more difficult, there are ways to overcome it,
e.g., using importance sampling [66], but a good proposal distribution would be required.

Generative Adversarial Networks (GAN)

GAN [67] is an unsupervised learning model to learn the probability distribution
associated to a dataset. It consists of two main components: a generator G(z;θG) and a
discriminator D(q;θD). The generator is trained to transform the input noise {z} drawn
from pz(z) (typically a unit Gaussian) into samples {q} that look similar to the data
distribution. To do this, a discriminator is trained in parallel to output the probability
p(q) that tells whether q comes from the dataset or the generator. The training of GAN
is therefore like a game between the generator and the discriminator where one tries to
beat the other. The generator and discriminator are neural networks with parameters
θG and θD.

Note that GAN requires a dataset that contains samples from the target distribution.
When only the unnormalized density function p̃(x) is available, we need to first generate
samples from that distribution, which is often challenging. For robotics problems, one
simple method is to start from uniform samples and optimize them according to the cost
function, so that the optimized samples are located in the region with high probability.
Sampling techniques such as Monte Carlo sampling can also be used, but it does not
scale well to high dimensional problems that are common in robotics.
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Tensor Train (TT) Decomposition

A tensor is a multidimensional array. The number of modes (or dimensions) of the
multidimensional array is commonly called the order of the tensor. For example, a vector
can be considered as a first-order tensor and a matrix as a second-order tensor. We can
use a tensor to approximate a probability function by first discretizing the function and
storing the discrete value in the tensor. For example, a 2D function can be stored in a
2D array. However, this naive approach does not scale up to higher dimensions, as the
number of entries in the tensor will increase exponentially with the number of dimensions.
Tensor Train decomposition [68] offers a nice solution by decomposing the tensor into
a set of third-order tensors called cores 3. This impacts both the construction and the
storage of the tensor; we do not need to evaluate every single entry to construct the
tensor, and we only store the tensor cores instead of the whole tensor. TT decomposition
does this by exploiting the correlation between the variables of the function, which results
in low-rank tensors. Once we obtain the TT model for approximating the probability
density function, we can easily generate samples from the model.

Tensor methods have not been widely used in robotics. In Chapter 7, we will see that
they provide a lot of functionalities that are suitable for many optimization problems in
robotics, including handling multimodal problems naturally and obtaining global optima
in challenging optimization problems.

2.3 Memory of Motion

The idea of building a memory of motion that learns from the previous experience has
previously been explored in the context of optimal control and motion planning. In [9]
a trajectory library is constructed to learn a control policy. A set of trajectories are
planned offline using A∗ algorithm and stored as a library, then k-NN is used online
to determine the action to perform at each state. In [69], they use a similar approach
to predict an initial guess for balancing a two-link robot, which is then optimized by
Differential Dynamic Programming. An iterative method to build a memory of motion
to initialize an optimal control solver is proposed in [70]. They use neural networks
to approximate the mapping from the task descriptors (initial and goal states) to the
state and control trajectories. Another neural network is trained to approximate the
value function, which is then used as a metric to determine how close two states are
dynamically. In [71] GPR is used to predict new trajectories based on the library of
demonstrated movements encoded as Dynamic Movement Primitives (DMP) [72]. GPR
is used to map the task descriptors to the DMP parameters.

In sensor-based control, Pastor et al. [73, 74] use the previously recorded sensor data to

3Tensor decomposition techniques can be viewed as higher-order extensions of Singular Value Decom-
position (SVD) in matrices.
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construct a predictive model for subsequent task executions. The robot trajectories are
encoded as movement primitives and augmented with the sensor data. In [75] they extend
the work to also predict when to switch the behavior from one movement primitive to
another using the reference sensor signal.

In sampling-based motion planning, Probabilistic Roadmap (PRM) [15] can be seen as
the construction of a memory of motion by precomputing the graph connecting robot
configurations. In [76], it is extended to adapt to dynamic environments by first building
a graph that only considers an obstacle-free workspace and encoding the mapping from
the workspace cells to the nodes and edges of the graph. Given the obstacles, the graph is
modified accordingly by removing the nodes and the edges that collide with the obstacles.
Instead of using the encoding map, an optimized collision detection circuit is constructed
to perform parallel collision checks for the edges in [77]. In [78], an elastic roadmap is
proposed to capture the connectivity of the workspace. Unlike PRM, the elastic roadmap
contains a set of paths in the task space belonging to different homotopy classes. Given
a specific goal, the roadmap provides global guidance to the controller such that it can
achieve the task without getting stuck at local minima, similar to the role of the memory
of motion in this thesis. It extends the work on elastic strip [79]. Unlike the elastic strip
that considers only a single homotopy class, an elastic roadmap is able to re-plan globally
and hence adapts better to changing environments with the help of on-board sensor [80].

Some works exploit Rapidly-exploring Random Trees (RRT) [14], another popular
sampling-based method. For example, in [81] an offline computation is used to speed
up the online planning in the form of an additional bias in sampling the configurations.
In [82], an Experience Graph is built from previously planned solutions. During the
online planning, the search is biased towards this graph. The Lightning framework is
proposed in [83] to plan paths in high-dimensional spaces by learning from experience.
The path library is constructed incrementally. Given the current path library and a task
to be executed, the algorithm runs two versions of the planner online, one that plans
from scratch and the other one initialized by the library.

Memory of motion has also been used for initializing optimization-based motion planner.
In [84], a high-dimensional task descriptor is constructed, and the metric between the task
descriptors is refined to minimize the necessary refinement of the initial trajectory using
L1 norm, resulting in a sparse metric and hence sparse descriptors. In [10], a sub-indexing
is used to reduce the amount of memory storage and to use the sub-trajectories of the
original solutions. In robot locomotion [85], a mapping from the task space to the optimal
trajectory for cyclic walking is learned using various machine learning algorithms, but
the prediction is not re-optimized online. In [86], the initial trajectories for real-time
catching are predicted using k-NN, Support Vector Regression, and GPR.

Despite the existing work of using a memory of motion, the following aspects are still
missing, especially in the context of warm starting a trajectory optimization solver:
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• None of the previous methods explicitly attempt to handle multimodal problems.

• They do not address the challenge of building the dataset as mentioned in Sec-
tion 1.2.

• The existing techniques only provide a single prediction for a given problem.

2.4 Conclusion

In this chapter, we have first discussed various optimization problems in robotics that
are considered in this thesis. They share some common features: all of them are
nonconvex optimization problems that can get stuck in local optima, depending on the
initialization. We then discuss various learning techniques that can be used to provide
good initializations to the optimization solvers. Finally, we mention existing works that
attempt to produce good initialization, i.e., warm start, for some optimization problems,
and discuss briefly their limitations. In the upcoming chapters, we propose novel ways
to use these learning methods to speed up the various optimization problems while
overcoming the limitations of existing approaches.
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3 Memory of Motion for Warm
Starting Trajectory Optimization

Trajectory optimization for motion planning requires good initial guesses to obtain
good performance. In this chapter, we build a memory of motion based on a database
of precomputed robot paths to provide good initial guesses. The memory of motion
relies on function approximators and dimensionality reduction techniques to learn the
mapping between the tasks and the robot paths. Three function approximators are
compared: k-Nearest Neighbor, Gaussian Process Regression, and Bayesian Gaussian
Mixture Regression. In addition, we show that the memory can also be used as a
metric to choose between several possible goals. Finally, using an ensemble method to
combine different function approximators results in a significantly improved warm-
starting performance. We demonstrate the proposed approach with motion planning
examples on the PR2 dual-arm robot and the Atlas humanoid robot.

This chapter is a result of the joint work with A. Paolillo and E. Pignat. A. Paolillo
helped in formulating the experiments and E. Pignat helped in formulating and
providing the codes of the Bayesian GMR.

Publication Note

The material presented in this chapter is adapted from the following publication:
• T. S. Lembono, A. Paolillo, E. Pignat, and S. Calinon, “Memory of motion

for warm-starting trajectory optimization,” IEEE Robotics and Automation
Letters (RA-L), vol. 5, no. 2, pp. 2594–2601, April 2020

Supplementary Material and Source Codes

Video related to this chapter is available at:
https://youtu.be/b49xwN9mon0

Source codes related to this chapter are available at:
https://github.com/teguhSL/memmo_for_trajopt_codes
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(a) (b) (c)

Figure 3.1 – Examples of motion planning problems: (a) moving the PR2 base to the
goal while avoiding an obstacle, (b) dual arm motion of PR2 to pick items from a shelf
to another, and (c) whole-body motion of Atlas.

3.1 Introduction

Motion planning for high-dimensional robots presents many challenges, especially in
the presence of constraints such as obstacle avoidance, joint limits, etc. To handle
the high-dimensionality and the various constraints, many approaches [4, 31, 5] focus
on trajectory optimization methods that attempt to find a locally optimal solution.
Trajectory optimization formulates the motion planning problem as an optimization
problem (see Section 2.1.2 for more details) that is non-convex in general, which makes
finding the global optimum difficult. Trajectory optimization methods such as TrajOpt [4],
CHOMP [31], or STOMP [5] solve the non-convex problem by iteratively optimizing
around the current solution. While such approach is very popular and yields good
practical results, the convergence and the quality of the solution are very sensitive to
the choice of the initial guess. If it is far from the optimal solution, the method can get
stuck at poor local optima.

To overcome this problem, our approach builds a memory of motion that learns how
to provide good initializations (i.e., a warm start) to the solver based on previously
solved problems. Functionally, the memory of motion is expected to learn the mapping
f : x → y that maps each task x to the robot path y. Such mapping can be highly
nonlinear and multimodal (i.e., one task x can be associated to several robot paths y),
and the dimension of y is typically very high. Our proposed method relies on machine
learning techniques such as function approximation and dimensionality reduction to
learn this mapping effectively. We use the term memory of motion to include both the
database of motions and the algorithms to query the warm starts from the database.

We point out that while other techniques such as sampling-based motion planners can
also be used to warm start the solver (e.g. in [10]), such methods typically require a
considerable computation time (i.e. in the order of seconds) that is comparable to the
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solver’s convergence time itself, given the very high dimensional problems considered
here. In contrast, querying the memory of motion can be done very fast, in the order of
milliseconds. Additionally, our proposed method produces initial guesses that are close
to the optimal solutions, reducing the convergence time.

The contribution of this chapter is the following. First, we propose the use of function
approximation methods to learn the mapping f(x). We consider three methods: k-
Nearest Neighbors (k-NN), Gaussian Process Regression (GPR), and Bayesian Gaussian
Mixture Regression (BGMR), and discuss their different characteristics on various
planning problems. We show in particular that BGMR handles multimodal output very
well. Furthermore, we show that the memory of motion can be also be used as a metric
for choosing optimally between several possible goals. Finally, we demonstrate that using
an ensemble of function approximators to provide warm starts boosts the success rate
significantly.

The chapter is organized as follows. Section 3.2 explains the methods for constructing
and using the memory of motion. The experimental results are presented and discussed
in Section 3.3 and 3.4. Finally, Section 3.5 concludes the chapter.

3.2 Method

Section 3.2.1 discusses the main idea of building the memory of motion using function
approximation and dimensionality reduction techniques to learn the mapping between
the task and the associated robot path. Section 3.2.2 then explains how the memory of
motion can be used as a metric for choosing between different goals. Finally, Section
3.2.3 describes how the warm starting performance can be improved significantly using
an ensemble method.

3.2.1 Building a Memory of Motion

To learn the mapping f : x → y, we firstly generate a set of tasks {x} and the
corresponding robot paths {y}. This is done by sampling x from a uniform distribution
covering the space of possible tasks and run the trajectory optimizer to obtain the
robot paths y until we obtain N samples (x,y). Let X = (x0, . . . ,xN−1) and Y =
(y0, . . . ,yN−1). The mapping f can be learned by training function approximators using
the database {X,Y }. In this chapter we consider three function approximators: k-NN,
GPR, and BGMR (see Section 2.2.1 for the description of each method).
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Algorithm 1 Building a Memory of Motion
INPUT: number of samples N
OUTPUT: the database {X,Y } and the function approximator f

1: X = [ ], Y = [ ]
2: for i = 1, 2, . . . , N do
3: sample a random task xi
4: compute the initial guess ỹi to achieve xi by straight-line motion
5: solve xi using TrajOpt warm started by ỹi, to obtain the path yi
6: if yi is valid then
7: add (xi, yi) to {X,Y }
8: end if
9: end for

10: apply PCA to Y to obtain Ŷ (Optional)
11: train the function approximator f on {X,Y } (or on {X, Ŷ } if PCA is used)

Algorithm 2 Using the Memory as a Metric
INPUT: A list of goals {xj}Mj=1, a function approximator f
OUTPUT: The optimal goal x∗ and the corresponding path y∗

1: for j = 1, 2, . . . , M do
2: compute the initial guess ỹj = f(xj)
3: compute the cost `(ỹj)
4: end for
5: j∗ ← arg minj `(ỹj)
6: x∗ ← xj∗

7: ỹ∗ ← ỹj∗

8: solve x∗ using TrajOpt warm started by ỹ∗, to obtain the path y∗

Dimensionality reduction

In our problem, the path y ∈ RDT is a vector consisting of the sequence of configurations
with dimension D during T time steps, which can be very high. This motivates us to use
dimensionality reduction techniques to reduce the dimension of y. For example, when T
is large and the time interval is small, RBF can be used to represent the evolution of
each variable as weights of the basis functions. Techniques such as Principal Component
Analysis (PCA), Independent Component Analysis, Factor Analysis, and Variational
Autoencoder [1, 87] can also be used. The mapping to be learned then becomes the
mapping from x to ŷ, where ŷ is the projection of y to the lower dimensional subspace.
The advantage is that the memory required to store the data is reduced significantly, while
the approximation performance is maintained or even improved because the important
correlations between the variables are preserved. In this work, since the number of time
steps is not large, we use PCA to reduce the dimension of y.
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Algorithm 3 Ensemble Method
INPUT: Task x∗, a list of function approximators {fj}Mj=1
OUTPUT: The path y∗ that accomplishes the task x∗

1: for all j = 1, 2, . . . , M do in parallel
2: compute the initial guess ỹj = fj(x∗)
3: solve x∗ using TrajOpt warm started by ỹj , to obtain the path yj
4: if yj is valid then
5: y∗ = yj
6: Terminate the parallel execution
7: end if
8: end for

3.2.2 Using the Memory as a Metric

In some planning problems, there can be several alternative goals to be achieved. For
example, in robot drilling task [88], the orientation around the drilling axis is free (the
number of possible goals is infinite). A naive way is to choose one of the goals randomly,
plan the motion, and if it fails then select another goal. While this is simple to implement,
it reduces the solution space significantly and may result in failure even when a solution
exists, especially if the chosen goal turns out to be difficult or even impossible to reach.
Another method is to plan the paths to each goal and select the one having the smallest
cost, but this is computationally expensive. Therefore, it will be useful to have a metric,
i.e., a distance function, that measures the cost to a given goal. Our idea is to use the
memory of motion as the metric.

In Section 3.2.1, function approximators were trained to predict an initial guess to
achieve a given task x. The possible goals can then be formulated as multiple tasks
{x0,x1, . . . ,xM−1}. For each task xi, the function approximator predicts the initial
guess ỹi corresponding to the task, and the corresponding cost `(ỹi) can be computed.
The initial guess ỹ∗i and the corresponding task x∗i with the lowest cost is then taken
as the chosen goal to be given to the trajectory optimizer. Since the cost computation
can be done quickly relative to optimization time, this approach can yield significant
improvements to the trajectory optimizer performance.

3.2.3 Using Ensemble Method to Provide Warm Start

In machine learning, methods such as AdaBoost [89] and Random Forests [90] have
shown that using an ensemble of methods often yields improved performance compared
to choosing a single method. We propose to use an ensemble method where we run
multiple trajectory optimizations in parallel, each one warm started by one of the function
approximators in Section 3.2.1, and once one of them finds a successful path the others
are terminated. Since each function approximator has different learning characteristics,
combining them in this way can significantly improve the motion planning performance.
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Table 3.1 – Base motion planning with one waypoint

Method Success Conv. Cost
(%) time (s) (rad/s)

STD 80.0 0.55±0.29 1.37±0.37
k-NN 93.0 0.35±0.20 1.45±0.47
GPR 96.0 0.37±0.15 1.32±0.36
BGMR 97.0 0.32±0.14 1.34±0.35

The method in Section 3.2.2 can also be used as one of the ensemble’s component.

3.3 Experiments

To evaluate the proposed method, we consider several examples of motion planning
for PR2 and Atlas robots. TrajOpt [4] is used as the trajectory optimizer to be warm
started. The output is the robot path that accomplishes the given task. In this chapter
we only work with robot path as the output, but the method can also be applied to robot
trajectory.

We consider 5 motion planning cases presented in ascending order of complexity. Each
case is chosen to demonstrate certain characteristics of the proposed method. For each
case, we follow the following procedures. First we generate the dataset by randomly
sampling Ntrain tasks from a uniform distribution in the whole task space and run TrajOpt
to find the paths achieving the tasks. The number of time steps T is set to 30, except for
Atlas (T = 15). In all cases, the cost is defined as the discrete velocity of the states. The
number of Ntrain is different for each case, depending on the complexity of the task. The
function approximators are then trained with or without PCA using the dataset. We
heuristically set 50 components for the PCA; for the k-NN, we use K = 1.

To validate the performance, we sample Ntest random tasks and use the various methods
to warm start TrajOpt. The solutions are compared in terms of convergence time, success
rate and cost. The planning is considered successful if the solution is feasible. The
comparison results are presented in the Tables 3.1-3.6. The values are averaged over
Ntest tasks, and the standard deviation is also given for the convergence time and the
cost. In the presented results, we use the label ‘STD’ to refer to the solution obtained by
warm starting the solver with a straight-line path (via waypoint, if any), and the names
of the function approximators for the rest. The subscript ‘PCA’ is added when PCA is
used. The query time for predicting the warm starts by each method is negligible w.r.t.
the convergence time, i.e. less than 5 ms for most methods, except for BGMR without
PCA (around 20ms), so they are not included in the comparison.
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Table 3.2 – Base motion planning with two waypoints

Method Success Conv. Cost
(%) time (s) (rad/s)

STD 79.0 0.53±0.23 1.43±0.37
k-NN 95.0 0.32±0.16 1.53±0.62
GPR 0.0 - -
BGMR 94.0 0.31±0.15 1.33±0.40

(a) (b) (c) (d)

Figure 3.2 – Motion planning for the PR2 mobile base. Warm start produced by
(a) straight-line with waypoint, (b) k-NN, (c) GPR and (d) BGMR.

3.3.1 Base motion planning

The task is to plan the motion for the PR2 mobile base from a random pose in front of the
kitchen to another random pose behind the kitchen (Fig. 3.1a). In this case, the state q
is the 3-DoF planar pose of the base. The task descriptor is then x = (q>init, q

>
goal)>. The

database is constructed with Ntrain = 200 samples and the evaluation is performed with
Ntest = 100. Although this is an easy problem, TrajOpt actually finds it difficult to solve
when given a poor initialization. For example, initializing TrajOpt with a straight-line
interpolation from qinit to qgoal never manages to find a feasible solution because it results
in a path that moves the robot through the kitchen while colliding, and the solver get
stuck in poor local optima due to the conflicting gradients. To obtain better initialization
for building the database, we initialize TrajOpt with two manually chosen waypoints on
the left and on the right of the kitchen (qleft and qright, respectively).

We consider two cases of building the database: in the first one, we only use qright as
waypoint, while in the second we use both qleft and qright. We initialize TrajOpt with the
straight-line motion from qinit to the waypoint and from the waypoint to qgoal. With this
setting we build the database, train the function approximators, and obtain the results
as shown in Table 3.1 and 3.2.

In the first case, the mapping from x to y is unimodal because all movements go through
the right. Table 3.1 shows that the performance of k-NN, GPR and BGMR are quite
similar. In the second case, however, the output is multimodal because the database
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Table 3.3 – Planning from fixed qinit to random qgoal.

Method Success Conv. Cost
(%) time (s) (rad/s)

STD 80.0 0.77±0.37 1.83±0.61
k-NN 91.2 0.58±0.29 1.93±0.69
GPR 92.4 0.65±0.25 1.84±0.57
GPRPCA 92.8 0.66±0.26 1.83±0.57
BGMR 88.8 0.64±0.26 1.85±0.56
BGMRPCA 92.0 0.67±0.26 1.84±0.58

Table 3.4 – Planning from random qinit to qgoal.

Method Success Conv. Cost
(%) time (s) (rad/s)

STD 75.2 0.82±0.43 1.31±0.74
k-NN 65.6 1.16±0.58 1.55±0.88
GPR 85.6 0.85±0.39 1.32±0.74
GPRPCA 88.0 0.81±0.36 1.33±0.73
BGMR 84.0 0.81±0.40 1.34±0.76
BGMRPCA 78.3 0.88±0.42 1.39±0.78
Waypoints 94.0 1.52±0.67 1.83±1.34
Ensemble 97.2 1.06±0.41 1.42±0.82

contains two possible ways (modes) to accomplish the same task. This affects GPR
significantly (see Table 3.2), as GPR averages both modes and outputs a path that goes
through the kitchen, while k-NN and BGMR are not affected. k-NN does not average the
modes because we use K = 1, while BGMR overcomes the multimodality by constructing
local models for each mode automatically.

Fig. 3.2 shows the examples of warm starts produced by each method in the second case.
As expected, GPR provides a warm start that goes through the kitchen (hence 0 success
rate). With BGMR, if we retrieve the components with the two highest probability, both
possible solutions are obtained.

3.3.2 Planning from a fixed initial configuration to a random goal con-
figuration

Here q consists of 14 joint angles of the two 7 DoF arms of PR2. The task x is to move
from a fixed qinit to a random goal configuration qgoal (i.e. x = qgoal). The database is
constructed with Ntrain = 500, and the evaluation results with Ntest = 250 are presented
in Table 3.3.
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Since each PR2 arm is redundant, the path from qinit to qgoal can be multimodal, which
may pose a problem for GPR. However, Table 3.3 shows that GPR and BGMR perform
similarly. This is due to the fact that although redundant robots can achieve a goal
configuration in many different ways, planning using optimization here results in similar
motions for similar goal configurations. The use of PCA does not improve the performance
significantly, but it still helps to reduce the size of the data. In this case, for each path it
reduces the number of variables from 30×14 (D×T ) to 50 (number of PCA components),
more than 8 times reduction while maintaining the performance.

3.3.3 Planning from a random initial configuration to a random goal
configuration

To proceed with a more complex case, the task here is to plan a path from a random
initial configuration qinit to a random target qgoal. The task x consists of the initial and
goal configurations, x = (q>init, q

>
goal)

>. The database is constructed with Ntrain = 500
and evaluated with Ntest = 250. The result is presented in Table 3.4.

k-NN performs poorly here, similarly to STD, due to the dimension of the input space
x that is much larger compared to Section 3.3.2. To achieve good performance, k-NN
requires a much denser dataset. GPR outperforms BGMR by a wide margin.

The last row of Table 3.4 shows the result of the ensemble method described in Section
3.2.3. Given an input x∗, the method uses all function approximators to provide different
warm starts, each of which is used to initialize an instance of TrajOpt in parallel. Once
a valid solution is obtained, the other instances of TrajOpt are terminated. This method
results in a huge boost of the success rate, with comparable convergence time and
cost to the other methods. As comparison, we also include here the standard multiple
initializations suggested by TrajOpt (labeled as ‘waypoints‘). Each initialization is
created by interpolating through a waypoint that is manually defined. While the success
rate is high, the convergence time and the cost increase significantly. On the contrary,
each initialization in the ensemble method has a good probability of being close to
the optimal solution, resulting in lower cost and convergence time. If having a lower
cost is more important than the computational time, the parallel execution can also be
programmed such that we wait until all instances of TrajOpt finish the optimization,
then the cost of the resulting paths are compared and the one with the lowest cost is
chosen. This alternative implementation can reduce the cost, but at the expense of higher
computational time.

3.3.4 Planning to Cartesian goals from a fixed initial configuration

In Section 3.3.2 and 3.3.3, we use TrajOpt to plan to goals in configuration space. In
practical situations, however, the task is often to reach a certain Cartesian pose using
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Table 3.5 – Planning from fixed qinit to random Cartesian goal.

Method Success (%) Conv. time (s) Cost (rad/s)

STD 65.2 1.10±0.62 1.86±0.86
k-NN 73.6 1.28±0.96 1.84±0.81
GPR 66.4 1.81±0.96 1.87±0.87
GPRPCA 66.8 1.68±0.98 1.78±0.83
BGMR 74.4 1.37±0.82 1.82±0.86
BGMRPCA 77.2 1.33±0.75 1.84±0.80
METRIC GPRPCA 86.8 0.70±0.30 1.49±0.56
Ensemble 98.0 1.50±0.60 1.60±0.68

Table 3.6 – Planning the motion of Atlas from fixed qinit to random Cartesian goal.

Method Success (%) Conv. time (s) Cost (rad/s)

STD 50.8 6.31±3.90 0.12±0.07
k-NN 58.8 1.48±1.39 0.11±0.06
GPR 54.4 1.29±1.09 0.10±0.05
GPRPCA 60.0 1.54±1.46 0.11±0.05
BGMR 56.4 1.32±1.57 0.10±0.05
BGMRPCA 58.0 1.36±1.16 0.11±0.06
Ensemble 71.2 1.46±1.40 0.12±0.06

the end effector (e.g., to pick an object on the shelf), instead of planning to a specific
joint configuration. One way to solve this problem is to first compute a configuration
that achieves the Cartesian pose using an inverse kinematic solver and plan to this
configuration, but it does not make use of the flexibility inherent in the task. TrajOpt has
an option to plan directly to a Cartesian goal, but it typically requires longer convergence
time and lower success rate than planning to a joint configuration goal.

We present two approaches to use the memory of motion in this problem. In the first
approach, we rely on the similar procedure as in previous cases: we formulate the task
as x = (p>left,p

>
right)

> where pleft and pright are the Cartesian positions of the right
and left hand of PR2. The database is then constructed with Ntrain = 1000 and the
function approximators are trained. In this approach, TrajOpt plans to a Cartesian goal
directly. The second approach relies on the fact that a Cartesian goal corresponds to
multiple goals in configuration space. In Section 3.3.2 we have already constructed several
function approximators that can predict an initial guess ỹ = q̃0:T , given a goal qgoal in
configuration space. The second approach uses one of them as a metric (Section 3.2.2) to
choose between the different goals in configuration space. First, given a Cartesian goal
x, we run an inverse kinematic solver to find M = 5 joint configurations that satisfy this
pose. For each joint configuration, we use the function approximator to predict the initial
guess of the robot path to reach that configuration, and we compute the cost of that
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path. Finally, the path with the lowest cost and its corresponding goal configuration are
chosen, and TrajOpt is run to reach this goal configuration with the given path as the
warm start. Note that in this second approach, TrajOpt plans to a joint configuration
instead of a Cartesian goal. For this approach we choose the method GPRPCA from
the Section 3.3.2, and use the term ‘METRIC GPRPCA’ to differentiate from the first
approach (denoted in standard notation).

We present the results in Table 3.5 with Ntest = 250. Among the methods using the first
approach, we note that BGMR yields better result than GPR because the mapping from
the Cartesian goal x to the robot path y here is multimodal, as planning to a Cartesian
pose has more redundancy compared to planning to a joint configuration. This again
demonstrates that BGMR handles multimodal output better than GPR. However, the
second approach METRIC GPRPCA outperforms even BGMR. The improvement over
the first approach is very significant in all three criteria. This demonstrates that using
the memory as a metric to choose the optimal goal results in large improvements. We
point out that the additional computational time required to find M = 5 IK solutions
and the corresponding warm starts is only around 0.1 s, which is negligible compared
to the convergence time. Finally, we use the ensemble method that uses all function
approximators in parallel, including METRIC GPRPCA. This boosts the success rate to
98%.

3.3.5 Planning whole-body motion for an Atlas robot

Finally, we also applied our method for planning the motion of the 34-DoF Atlas robot
(28-DoF joints and 6-DoF root pose). We consider the same task as in Section 3.3.4,
i.e. planning from a fixed initial configuration to a random Cartesian pose, in this case
chosen to be the location of Atlas’ right hand. The task x = (px, py, pz)> corresponds to
the target position of Atlas’ right hand, while the orientation is not constrained. The
feet location are fixed, while the Zero Moment Point (ZMP) is constrained to be between
the two feet location. We use here the first approach as explained in Section 3.3.4, i.e.
treating it as a regression problem where the input x is the Cartesian goal and the output
y is the trajectory, and use the various function approximators to predict the initial
guesses. The database is constructed with Ntrain = 1000 and the evaluation is performed
with Ntest = 250. The results are presented in Table 3.6.

k-NN performs quite well, as the input size of x is small (the position of the hand is
constrained to be inside the shelf). Unlike in Section 3.3.4, the performance of GPR
and BGMR are quite similar, although the goals are also in the Cartesian space. This
is due to the difference in the implementation; in Section 3.3.4, given a Cartesian goal,
we use an inverse kinematic solver to calculate the joint configuration that satisfies this
goal, and calculate the initial guess as straight-line interpolation from the fixed initial
configuration to the goal configuration. This initial guess is used when building the
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(a) (b) (c)

Figure 3.3 – Performance comparison against the number of training samples Ntrain

database. Due to the redundancy of the PR2 dual arm, similar Cartesian goals can
correspond to very different joint configurations, resulting in the multimodality of the
solutions in the database. In this Atlas experiment, however, we do not provide initial
guesses to TrajOpt when building the database, so TrajOpt always tries to solve the
problem with zero initialization. This results in more uniform solutions, and hence GPR
can still perform quite well. Finally, using the ensemble method again shows superior
results, giving us an increase of the success rate by more than 10%.

Planning for such a high-dimensional problem with many constraints (feet location, ZMP
constraint, kinematic constraint) requires quite a lot of computational time (∼ 6.3 s in
average without a warm start). Using the memory of motion in this complex task further
exemplifies the benefit of the approach, as our method speeds up the computational
time significantly by more than four times faster. We note that the tasks are sampled
randomly, and there is no guarantee that the task is indeed feasible. This explains why
even the best method (i.e. the ensemble method) only achieves ∼ 70% success rates.

3.4 Discussions

3.4.1 Choice of Function Approximators

In Section 3.3, we have compared the performance of k-NN, GPR and BGMR over
different tasks, and shown that they have different characteristics. When the dataset is
quite dense or the input space is small, k-NN usually manages to obtain good performance
(as shown in Section 3.3.1, 3.3.2, and 3.3.4), while for larger input space (Section 3.3.4)
it does not yield good results. GPR performs the best when the output is unimodal
(Section 3.3.2 and 3.3.3), while for multimodal output BGMR has a better performance
than GPR (Section 3.3.4). This comparison can guide us to select the best method for
each task. However, it may not be obvious whether a given task (and its solution) is
unimodal or multimodal (e.g. compare Section 3.3.4 and 3.3.5). A better way is to
combine the different methods via an ensemble method, as we have shown in this chapter.
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3.4.2 Data Requirement

In Fig. 3.3, we plot the performance of various methods against the number of training
samples, with STD given as the baseline. We choose the task in Section 3.3.3, since it has
the largest input space among the other tasks. It is interesting that when the training
size is small, GPR performs quite well, while k-NN and BGMR are even worse than STD.
As training size increases, k-NN and BGMR start to approach the performance of GPR.
On the contrary, the performance of the ensemble method is quite stable even when the
training size is small. As the training size grows, its convergence time decreases, while
the success rate is already high even when the training size is small.

3.4.3 Ensemble Method

Using an ensemble method for motion planning has been explored in [91], which uses an
ensemble of motion planners. While such approach also manages to boost the performance
successfully, it is not easy to design and set up several motion planners for a given task.
On the contrary, many function approximators are available and can be used easily, since
our problem is formulated as a standard regression problem. We only need to configure
one motion planner (in this work, TrajOpt, but other optimization frameworks can also
be used) for a given task, unlike in [91]. Another benefit of our ensemble method is that
each of the ensemble’s component starts from an initial guess that has good probability
of being close to the optimal solution. This reduces the average computational time, as
we have shown by comparing it against the multiple waypoints initialization in Table 3.4.

3.4.4 Dynamic Environment

In this work we assume that the environment is static, so that the trajectories previously
planned remain valid. When the environment changes, a new memory of motion has
to be built. For the simple example in Section 3.3.1, building the memory takes only
∼3 minutes of computational time, but complex example such as Section 3.3.5 takes ∼3
hours. While paralellization can be used to speed up the building process, more effective
strategies would be interesting to explore. In [92], an efficient way of updating a dynamic
roadmap when the environment changes is presented. Such method can possibly be used
to modify the existing memory of motion, so that we do not have re-build from scratch
but only modify those affected. Alternatively, when the environment largely remain
the same but a few obstacles are moving (as in many real tasks), we can include these
obstacles’ locations as additional inputs to the regression problem, at the expense of
larger input size.
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3.5 Conclusion

We have presented an approach to build a memory of motion to warm start trajectory
optimization solver, and demonstrated through experiments with PR2 and Atlas robots
that the warm start can improve the solver performance. Function approximators and
dimensionality reduction were used to learn the mapping between the task descriptor and
the corresponding robot path. Three function approximators were considered: k-NN as
baseline, GPR, and BGMR, and their different characteristics have been discussed. The
use of PCA also improved the solution, although not very significantly, while reducing
the memory storage. We have also shown that we can use the memory of motion as
a metric to choose optimally between several alternative goals, and this resulted in a
significantly improved performance for the case of Cartesian goal planning. Finally, the
different function approximators were combined as an ensemble method, which boosted
the success rate significantly.
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4 Learning How to Walk: Warm
Starting an Optimal Control
Solver

In Chapter 3 we have discussed the ensemble method for initializing an optimization-
based motion planner. In this chapter, we propose to use a memory of motion for
warm starting an optimal control solver for the locomotion task of a humanoid robot.
We use HPP Loco3D, a versatile locomotion planner, to generate offline a set of
dynamically consistent whole-body trajectories to be stored as the memory of motion.
The learning problem is formulated as a regression problem to predict a single-step
motion given the desired contact locations, which is used as a building block for
producing multi-step motions. The predicted motion is then used as a warm start for
the fast optimal control solver Crocoddyl. We have shown that the approach manages
to reduce the required number of iterations to reach the convergence from ∼9.5 to
only ∼3.0 iterations for the single-step motion and from ∼6.2 to ∼4.5 iterations for
the multi-step motion, while maintaining the solution quality.

This chapter is a result of the joint work with C. Mastalli, P. Fernbach, and N. Mansard.
The co-authors helped in generating the data and providing the codes for the optimal
control solver.

Publication Note

The material presented in this chapter is adapted from the following publication:
• T. S. Lembono, C. Mastalli, P. Fernbach, N. Mansard, and S. Calinon, “Learn-

ing how to walk: Warm-starting optimal control solver with memory of motion,”
in Proc. IEEE Intl Conf. on Robotics and Automation (ICRA), 2020, pp. 1357–
1363

Supplementary Material

Video related to this chapter is available at:
https://youtu.be/YqDZwbZXBGQ
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Chapter 4. Learning How to Walk: Warm Starting an Optimal Control
Solver

4.1 Introduction

Legged locomotion is often achieved by first computing a sequence of contacts, generating
a stable centroidal trajectory, and finally computing a whole-body motion through
inverse dynamics [94, 95]. However, this approach cannot properly regulate angular
momentum because (a) centroidal trajectory optimization [96, 97] does not consider
the limbs momenta, and (b) whole-body control [6, 98] is instantaneous control action
that theoretically cannot properly regulate the angular momentum since it represents a
nonholonomic constraint on the multibody dynamics [99].

Optimal control is getting more attention in legged robots due to (a) its ability to
properly control angular momentum [37], and (b) they can be deployed for real-time
control [46, 100]. Recently, an efficient multi-contact optimal control framework called
Crocoddyl [44] has been proposed. This framework relies on a novel multiple-shooting
optimal control solver called FDDP. Crocoddyl can generate highly-dynamic maneuveurs
for various legged robots such as iCub, Talos and ANYMal.

As a locally optimal solver, providing warm starts (i.e., good initial guesses) to Crocoddyl
can improve its real-time performance in Model Predictive Control (MPC) setting
significantly. In this chapter, we use the concept of memory of motion to generate the
warm starts for Crocoddyl, to avoid poor local optima while speeding up the convergence.
Using HPP Loco3D [101], a versatile locomotion framework for legged robots, we build
offline a database of humanoid walking motions. We then train function approximators
using the database to generate the warm starts for Crocoddyl.

The memory of motion concept has been used in other works, e.g. for bicopter and
quadcopter [70], serial manipulators [69, 84, 83], and humanoid manipulation task [10].
However, none of them involves locomotion tasks except in [102], where a trajectory
library is constructed for the LittleDog robot. Their work does not involve warm starting
an optimization solver. Instead, the sequence of joint configurations retrieved from the
library is used directly, with an integral controller to correct for errors. The library is
created by using a joystick to move LittleDog across the terrain. Compared to [102], our
approach of using HPP Loco3D to build the library, function approximations to learn
the motion, and the optimal control solver Crocoddyl to optimize the motion is more
versatile and applicable to higher DoF robots with more complex dynamics, such as the
Talos humanoid robot [103] considered in this work.

The contribution in this chapter is as follows. Firstly, we propose a framework for learning
a memory of motion to warm start a multi-contact optimal control solver (Fig. 4.1). We
generate offline a database of dynamically consistent and collision-free motions using
HPP Loco3D to build the memory of motion, which is then used to warm start the
optimal control solver Crocoddyl online. We study the effect of having different solvers
for the offline and online computations, and describe how we tackle this problem. Finally,
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Figure 4.1 – Two approaches that are tested. In Approach 1 (dashed green), the motion
generation using HPP Loco3D produces the dataset HPP, while in Approach 2 (solid
blue), the dataset HPP is further optimized by the optimal control solver (Crocoddyl)
to produce the dataset Crl. In each approach, the memory of motion is used for warm
starting the optimal control solver.

we propose a method that learns single-step motions based on function approximations,
which are then used to build multi-step motions.

The outline of the chapter is as follows. In Section 4.2, the overall framework and the
learning method are presented. Section 4.3 presents the simulation results, both for the
single-step and multi-step locomotions. Finally, Section 4.4 concludes the chapter.

4.2 Method

4.2.1 Problem Definition

We consider the problem of generating whole-body locomotion of a biped robot from
one location to another in a known environment and a flat terrain. The desired output
consists of the robot joint configuration trajectory q ∈ RDq×T and the control input
trajectory u ∈ RDu×T , where Dq, Du, T are the joint configuration dimension, the control
dimension, and the number of time steps. q includes both the trajectory of the root (i.e.,
the hip joint) and the joint positions, while u consists of the joint torques at each joint.
The joint velocity and acceleration trajectories can also be included, but we only consider
the joint configuration and the control trajectory here. To generate these trajectories, we
use a fast optimal control solver Crocoddyl as the online solver. Our aim in this work
is to provide good warm starts to Crocoddyl using a memory of motion such that the
number of solver iterations to reach convergence can be reduced.

4.2.2 Overall Framework

In the proposed memory of motion approach, the choice of the offline and online solver
is crucial. The offline solver is to build the database of motions, while the online solver
is to control the robot in real time. The online solver has to be fast and efficient, hence
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it is usually only locally optimal, such as Crocoddyl in this work. The offline solver, on
the other hand, is used to generate the database offline, so the speed is less important.
There are two alternatives: either the offline solver is the same as the online solver, or
a different one. The advantage of choosing the same solver is that the motion in the
database would then have the same characteristics (e.g., optimality) as the online solver,
which is desirable. However, since the solver would only be locally optimal, it is difficult
to use it for generating a good database without providing warm starts to the solver.

The second alternative uses a different solver for building the database, e.g., a more
global planner that can solve various tasks without requiring warm starts. This is the
approach that we take, as can be seen in Fig. 4.1. HPP Loco3D [104], a locomotion
framework for multi-contact locomotion, is used as the offline solver. The framework is
versatile and has been applied to both biped and quadruped robots. HPP Loco3D can
compute the sequence of stable contacts to achieve the locomotion task, which cannot be
done yet in Crocoddyl. We use HPP Loco3D to generate motion samples corresponding
to various tasks and store them as the memory of motion.

However, the issue with this approach is that the motion in the database might not be
considered optimal by Crocoddyl, because HPP Loco3D does not properly regulate angular
momentum and uses heuristics for defining the swing-foot trajectories. Indeed, there
are qualitatively different motion characteristics between HPP Loco3D and Crocoddyl.
The former generates conservative and stable motions, while the latter uses the full
dynamics that optimally reduces the joint torques and contact forces. Therefore, warm
starting Crocoddyl using HPP Loco3D output will require additional iterations during
the online computation to refine the motion according to its optimality criteria, which is
undesirable.

We overcome this problem by leveraging both HPP Loco3D and Crocoddyl for building
the memory. That is, we take the motion samples generated by HPP Loco3D and optimize
them using Crocoddyl. The resulting output is then saved as the new memory of motion.
By doing this, we combine the benefits of both frameworks: we can have a sequence of
stable footholds (HPP Loco3D) with optimal whole-body motions (Crocoddyl). We will
demonstrate that this will yield improvement in the quality of the warm starts. In this
work, we refer to the database containing the HPP Loco3D motion samples as Database
Hpp, and the one containing the optimized Crocoddyl motion samples as Database Crl.

In what follows, we describe in details HPP Loco3D and Crocoddyl frameworks.

HPP Loco3D

The planning framework proposed in HPP Loco-3D generates dynamically consistent
and collision free multi-contact whole-body motion for legged robot. It takes as input the
model of the environment and an initial and goal poses of the robot’s root. Optionally,
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some additional constraints may be specified, such as velocity bounds or a set of initial
and final contact positions. This framework decouples the motion planning problem
into several sub-problems to be solved sequentially. First, the guide planning produces
a rough initial guess of the root path of the robot [101][105]. Then, a contact planner
produces a feasible sequence of contacts following the root path [101][106]. After that,
an optimal centroidal trajectory satisfying the centroidal dynamic constraints for the
given contact points is computed [96]. Finally, a second order inverse dynamic solver1

generates a whole-body motion, following the references of the contact locations and the
centroidal trajectory.

Crocoddyl

It is a framework for multi-contact optimal control. Given a predefined sequence of
contacts, it computes efficiently the state trajectory and control policy by using sparse
analytical derivatives and by exploiting the problem structure inherited from the dynamic
programming principle. Its optimal control algorithm, called Feasibility-prone Differential
Dynamic Programming (FDDP), has a great globalization strategy and similar numerical
behavior to multiple-shooting methods [44]. During the numerical optimization, FDDP
computes the search direction and length through backward and forward passes, respec-
tively. Unlike the classical Differential Dynamic Programming (DDP), the backward pass
accepts infeasible state-control trajectories which is a critical aspect to warm starting the
solver from the memory of motion; the forward pass simulates properly infeasible search
direction, obtained in the backward pass, which improves the algorithm exploration.

4.2.3 Learning Strategies

One important question that needs to be considered is, what do we expect the memory
to learn? Should it learn directly how to move from one location to another? while this
is indeed possible, such method does not generalize very well, even in a fix environment.
Instead, we decompose the data into single-step motions, and we retrieve a multi-step
trajectory as a combination of single-step motions.

Learning Single-step Motion

Following our previous work [8] as described in Chapter 3, we formulate the problem
of learning the single-step motion as a regression problem to approximate the mapping
f : x → y, where x is the task and y is the corresponding trajectory output. We
separate the database into left-leg and right-leg movements, as this yields better results
than combining both and let the memory learns how to choose the leg. Each motion

1https://github.com/stack-of-tasks/tsid
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starts with the root position at the origin.2 The task is defined as the initial and goal
foot poses, x = [cl0, cr0, c∗T ] ∈ R9, where c ∈ R3 is the foot pose (2D position and
orientation), the subscripts l, r correspond to the left and right foot, while ∗ is either l
for the left-leg or r for the right-leg database. T is the final time step. y can be either
the joint configuration trajectory q ∈ RDq×T or the control trajectory u ∈ RDu×T . We
then apply dimensionality reduction and function approximation techniques to solve the
regression problem.

Since the dimension of y ∈ RD×T is high, we need to find a smaller representation of y.
First, we represent the trajectory of each dimension of y as the weight of radial basis
functions (RBFs), as commonly done in probabilistic movement primitives [30, 57]. Let
yi ∈ RT be the trajectory of the ith dimension of y. We can define the basis matrix Φ as
[φ0, . . . ,φK−1] ∈ RT×K , where φk ∈ RT is the kth basis function, defined as a Gaussian
function centered at the kth mean. The means are distributed equally along the time
axis T , whereas the variance is chosen to be equal for all the basis functions and to have
sufficient overlap. yi can then be represented as the weights of these basis functions,

yi = Φwi, (4.1)

where wi ∈ RK can be computed by standard linear least squares algorithm. This reduces
the number of variables for each dimension from T , which is usually large, to K which
can be much smaller. We can then stack the weights corresponding to all dimensions of
y and obtain w = [w0, . . . ,wi, . . . ,wD−1] ∈ RDK . Each y has the corresponding weight
vector w.

Now let’s consider all the N samples in the database. We can apply principal component
analysis (PCA) to further reduce the dimension of w over this database by keeping only
M principal components to obtain ŷ ∈ RM . We have thus reduced the dimension of
y from DT to M . Inverse transformation from ŷ to y is a matrix multiplication that
can be performed quickly. The regression problem then becomes f : x → ŷ. To solve
the regression problem, we consider two function approximation techniques: Gaussian
Process Regression (GPR) and Gaussian Mixture Regression (GMR). More details about
these two methods can be found in Section 2.2.1.

Constructing Multi-step Motion

To use the single-step motion for generating multi-step motions, we have to transform
the coordinate system at each step. Let’s first assume that we have the planned sequence
of contacts (i.e., foot poses), {Ci}P−1

i=0 , where Ci = (cli, cri) is the contacts at ith footstep
and P is the total number of footsteps. Assume, without loss of generality, that the
motion starts at zero root position horizontally. The first step can be obtained by

2Without any loss of generality, as we can always transform the coordinate system
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querying the single-step memory directly to move from C0 to C1, obtaining y0. To move
from C1 to C2, we first need to shift the coordinate system such that the current root
(based on the last configuration at y0) is in zero horizontal position. The motion from
C1 to C2 can then be queried from the memory to obtain y1, and this is iterated until
CP−1 to obtain {yi}P−1

i=0 . Finally, each trajectory yi is transformed back to the original
coordinate system and concatenated as a single trajectory y.

The contact sequence {Ci}P−1
i=0 can be obtained from another planner, such as RB-

PRM [101]. The alternative is to also learn it from the database. In this work, we assume
that the contact sequence is already given.

4.3 Experiments

To evaluate the proposed approach, we conduct several experiments with the humanoid
robot Talos in simulation. The robot joint configuration consists of 3-DoF root position,
3-DoF root orientation (described in quaternion), and 32 joint angles (Dq = 39), while
the control input consists of 32 joint torques (Du = 32). First, HPP Loco3D is used to
generate N = 1200 samples of one-step motion (right-leg and left-leg movement in equal
proportions), starting from the initial contact (cl0, cr0) to the goal contact (clT , crT ).
One sample thus consists of {(cl0, cr0), (clT , crT ), q,u}. These are stored as Database
Hpp.3 Next, each sample is optimized using Crocoddyl, and the resulting samples are
stored as Database Crl. The cost function in Crocoddyl consists of state and control
regularization (around a standing pose and zero, respectively), and contact placement.
Since we need high-quality database for the memory of motion, we use a small convergence
threshold of 10−5 and the maximum number of iterations is set to be 50. The time
interval in HPP Loco3D is 1 ms and 40 ms, respectively, so the HPP Loco3D data is
subsampled to Crocoddyl’s interval for the optimization. Both databases will be used
and the performance will be compared. The databases are split into the training and the
test dataset, with Ntrain = 1000 and Ntest = 200. We applied RBF and PCA to reduce
the dimensions of q and u with K = 60 and M = 60, as determined empirically.

We proceed as follows. First, we evaluate the accuracy performance of GPR and GMR in
approximating the mapping f . The warm starts generated by GPR and GPR are then
compared to the cold-start in terms of the Crocoddyl performance, i.e., the number of
iterations until convergence and the resulting trajectory cost. Finally, we also compare
the result of warm starts using only q to using both q and u. For all comparisons, we
use both the databases Hpp and Crl and compare their performance.
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Figure 4.2 – Examples of predicting single-step motions. Warm start produced by
Top: GPR, Middle: GMR, and Bottom: k-NN. Left: left foot movement. Right: right
foot movement. The green, blue and red box correspond to the initial left, the initial
right, and the goal contact pose, respectively.

4.3.1 Comparing GPR and GMR Accuracy

We train GPR and GMR on the reduced-dimension dataset {x, ŷ} for both databases
Hpp and Crl with Ntrain samples. The task x is defined as the initial and goal foot
poses, x = [cl0, cr0, c∗T ] where ∗ = l for the left-leg movement and ∗ = r for the right-leg
movement. The output y is defined here as the joint configuration trajectory q, and ŷ is
its smaller dimension representation. For each x in the Ntest samples, we use GPR and
GMR to predict the corresponding trajectory y, and the accuracy is evaluted against
the true trajectory in the database. The trajectory error (rad) is calculated as the
difference between the true and predicted trajectory, i.e. 1

Ntest

∑Ntest
i=1 ||yi − ỹi||2, whereas

the contact error (m) is defined as the difference between the foot poses of the true and
predicted trajectory, 1

Ntest

∑Ntest
i=1 ||Ci − C̃i||2.

The results can be seen in Table 4.1 (averaged over the left and right leg movements).
We compare against k-NN with k = 1 as a baseline, to demonstrate that the proposed
algorithm indeed generalizes well and the good performance is not due to having a very
dense database. GPR overall has the lowest errors in both criteria and both databases.
GMR has higher errors than GPR but still outperforms the baseline k-NN by a large
margin. Some example of the motions can be found in Fig. 4.2. We can see that motion

3The database is available at https://github.com/MeMory-of-MOtion/docker-loco3d.
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Table 4.1 – Comparing The Accuracy of GPR and GMR

Database Hpp Database Crl
Method Traj. Err. Contact Err. Traj. Err. Contact Err.

GPR 9.53 ± 4.63 0.07 ± 0.03 13.04 ± 6.15 0.04 ± 0.02
GMR 12.39 ± 5.00 0.13 ± 0.05 18.51 ± 6.80 0.09 ± 0.04
k-NN 18.78 ± 4.96 0.49 ± 0.15 29.93 ± 9.02 0.51 ± 0.10

predicted by GPR fits the desired contact locations very well.

Furthermore, for the subsequent results we will use the subscripts Hpp and Crl for the
function approximators trained on the databases Hpp and Crl, respectively.

4.3.2 Single-step Motion: Warm start vs Cold start

In this section we compare the results of warm starting Crocoddyl using the function
approximators against the cold-start, i.e., using zero initial guess. For each x in the Ntest
samples, GPR and GMR are queried to obtain the initial guess y, defined here as the joint
configuration trajectory q. We do not predict the trajectory of the control input here,
but instead calculate it from q assuming quasi-static movement. This computed control
input trajectory is denoted as u0. The initial guess is used to warm start Crocoddyl,
and the result is compared against the cold-start. We also compare the effect of using
Database Hpp and Crl. We use a large convergence threshold (10−2) for Crocoddyl here,
based on the assumption that at online computation a very refined optimal motion is
not really necessary. The number of iterations is also limited to 20. The query time is
∼5ms for GPR and ∼10ms for GMR in python implementation.

The results can be seen in Table 4.2. The solver is considered successful if it finds a
feasible trajectory within the maximum number of iterations. We see from the table that
the warm starts results consistently outperform the cold-starts; it justifies our assumption
that warm starting Crocoddyl can speed-up the computation time for online MPC.

Although in Table 4.1 we see that the accuracy of GPR outperforms GMR quite substan-
tially, the warm starting performance in Table 4.2 turns out to be very similar, with GPR
having very slightly better performance. This is due to the fact that the initial guesses
produced by GPR and GMR still go through an optimization process in Crocoddyl, and
hence the small difference between the predictions does not affect the results much. This
means that while in standard regression tasks the accuracy is highly important, it may
be less important in tasks such as producing warm starts, as long as the predicted initial
guesses are sufficiently close to the optimal solutions.

Finally, we compared the results between the function approximators trained on Database
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Table 4.2 – Comparing Warm start vs Cold start: Single-step

Method Success Rate Cost Num. Iteration
Cold-start 98.50 55.56 ±8.32 9.52 ± 3.94
GPRHpp 99.00 55.27 ±8.01 5.01 ± 0.74
GMRHpp 100.00 55.31 ±7.99 4.85 ± 0.66
GPRCrl 100.00 55.32 ±7.99 3.04 ± 0.41
GMRCrl 100.00 55.32 ±7.99 3.06 ± 0.45

(a)

Figure 4.3 – Examples of predicting a multi-step motion by GPR.

Hpp (GPRHpp, GMRHpp) and Crl (GPRCrl, GMRCrl). Those trained on the database Crl
have lower number of iterations, which justify our step of optimizing the HPP Loco3D
dataset by Crocoddyl. The dataset in Crl contain motion samples that are optimal
according to Crocoddyl, and therefore they perform better in warm starting Crocoddyl.

4.3.3 Single-step Motion: Evaluating Warm Starts Components

In Section 4.3.2, we only predict the joint configuration trajectory q for warm starting
Crocoddyl while the control trajectory u is computed based on the predicted q. In
this section we evaluate the different performances if we also predict u, or use zero
control trajectory as warm start. We train two different GPRs for the prediction, one for
predicting q and the other one for predicting u.

Table 4.3 shows the comparison results. (q,u0) denotes the warm starts using the
predicted q while the control trajectory is computed as u0, the same as in the previous
subsection. (q) denotes the warm starts using only the joint configuration trajectory
while the control trajectory is set to be zero. While the cost remains the same, the number
of iterations increases when the control trajectory is omitted from the warm starts. (q,u)
denotes the warm starts using both predicted joint configuration and control trajectory,
which has similar results to (q,u0) except for the slightly lower number of iterations.
Finally, (u) denotes the warm starts using only the control trajectory while the joint
configuration trajectory is set to zero, and cold-start means warm starting using zero
joint configuration and control trajectory.
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Table 4.3 – Comparing Warm Start Components: Single-step

Method Success Rate Cost Num. Iteration
(q) 96.50 55.06 ±8.19 5.30 ± 2.19
(q,u0) 100.00 55.32 ±7.99 3.04 ± 0.41
(q,u) 100.00 55.32 ±7.99 2.93 ± 0.45
(u) 97.50 55.36 ±7.95 6.83 ± 2.46
Cold-start 98.50 55.56 ±8.32 9.52 ± 3.94

Table 4.4 – Comparing Warm Start vs Cold Start: Multi-Step

Method Success Rate Cost Num. Iteration

Cold-start 100.00 86.36 ±23.16 6.17 ± 1.52
GPRHpp 100.00 86.39 ±23.07 6.40 ± 0.73
GMRHpp 100.00 86.38 ±23.12 7.29 ± 1.32
GPRCrl 100.00 86.47 ±23.16 4.54 ± 0.55
GMRCrl 100.00 86.51 ±23.22 4.71 ± 0.70

Comparing (q,u) and (q,u0), we conclude that predicting the control trajectory from
the memory does not give a significant benefit compared to computing it based on q.
However, control trajectory is still important to be included in the warm starts, as
omitting them in (q) increases the number of iterations. Finally, comparing (q) and (u),
we conclude that warm starting using only the joint configuration trajectory performs
better than using only control trajectory, which has higher cost and number of iterations.

4.3.4 Multi-step Motion: Warm Start vs Cold Start

Finally, we use the single-step motions as a building block for multi-step locomotion, as
described in Section 4.2.3. We use HPP Loco3D to generate 50 contact sequences, each
consists of P = 3 footsteps. GPRHpp, GMRHpp, GPRCrl and GMRCrl generate the initial
guesses of the joint configuration trajectory q while the control trajectory is computed
based on q, as in Section 4.3.2. The warm starts are then given to Crocoddyl, and the
results are presented in Table 4.4. Interestingly the Hpp database does not perform
better than the cold-start (indeed, it is the opposite). This could be due to the fact that
we build the motion using a concatenation of three single-step motions, each step starts
and ends with zero velocity. The nonoptimality of the Hpp database, added with the
nonoptimality of the multi-step motion strategy, seem to render the warm start to be not
useful at all. On the contrary, warm starting using the Crl database still speeds-up the
convergence, although not as much as in the single-step case (Section 4.3.2). An example
of multi-step locomotion warm start produced by GPR is given in Fig. 4.3.
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4.4 Conclusion and Future Work

We have presented a framework for learning a memory of motion to warm start an
optimal control solver. The proposed approach manages to reduce the average number
of solver iterations from ∼9.5 to only ∼3.0 iterations for the single-step motion and from
∼6.2 to ∼4.5 iterations for the multi-step motion, while maintaining the solution quality.

This chapter shows a preliminary result of warm starting an optimal control solver. In
the current formulation, Crocoddyl does not include constraints such as torque limit
or obstacle avoidance, and we are working towards this direction. When the optimal
control formulation becomes more realistic and complex, the solver would need even
higher computational time, and the proposed warm starting approach would potentially
be even more useful. The final goal is to use the whole framework to control the real
robot using MPC.

In this work, we decompose the multistep locomotion into single-step motions, with
the initial and goal contact locations as the task that needs to be provided by some
other methods. Another potential strategy is to define the task to be the final root pose
instead of the contact location. The memory will then determine the contact location to
reach the desired root pose. This may allow more flexibility in generating the multi-step
motions, as only the root trajectory needs to be provided instead of the contact sequence.
Another issue with the single-step decomposition strategy is that the predicted motion
has zero velocity at the beginning and the end of each step. We can include the initial
and goal root velocity in the task definition, but the task space and hence the required
number of samples will increase. While random sampling is used in this work to generate
the tasks, active learning [107] can reduce the required number of samples.
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5 Probabilistic iLQR for Short
Time Horizon MPC

In the previous chapters, we have discussed various supervised learning methods for
warm starting motion planning and optimal control. Starting from this chapter, we
consider the second formulation, i.e., by first transforming the cost function into an
unnormalized PDF and approximating the density using a surrogate model. In this
chapter, we show that we can obtain a trajectory distribution from an iLQR solver in
the form of a Gaussian distribution. This is similar to using Laplace approximation to
approximate the PDF using a Gaussian distribution, where the Gaussian is centered
at the mode (i.e., the optimal solution) and the covariance is the inverse of the cost
function’s Hessian, except that we use an approximation of the Hessian (since we
approximate the dynamics as linear at every iLQR iteration). We then show that
tracking this distribution by a short-horizon MPC controller is more cost-efficient
and robust compared to tracking the mean or using an iLQR feedback controller.
The proposed method is validated with kinematic control of 7-DoF Franka Emika
manipulator and dynamic control of 6-DoF quadcopter in simulation.

Publication Note

The material presented in this chapter is adapted from the following publication:
• T. S. Lembono and S. Calinon, “Probabilistic iterative LQR for short time

horizon MPC,” in Proc. IEEE/RSJ Intl Conf. on Intelligent Robots and Systems
(IROS), 2021, pp. 579–585

Supplementary Material and Source Codes

Video related to this chapter is available at:
https://youtu.be/vjQKqiFCuBg

Source codes related to this chapter are available at:
https://github.com/teguhSL/optimal_control_distribution
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Chapter 5. Probabilistic iLQR for Short Time Horizon MPC

5.1 Introduction

Optimal control is a versatile problem formulation that has a large number of applications.
With the increasing computational power, it can be used in more complex systems with
high degrees of freedom. While the term control suggests that the formulation is used to
find an optimal control input of a given problem, it is often used also for planning, i.e., to
find the state trajectory that minimizes the cost function, typically for a long time horizon
to anticipate future events. For example, optimal control is used for planning multiple
quadcopters trajectories in a constrained space [109], biped walking generation [110, 111],
centroidal dynamics trajectory [41, 112], whole-body motion planning [37, 44], and visual
servoing [113]. The planned trajectory is usually tracked by some other controller, e.g.,
PID controller, or shorter time horizon MPC [113]. The formulation is convenient as
one can derive the cost function from the desired behavior and obtain the corresponding
optimal state and control trajectory.

However, most optimal control approaches focus on finding only a single optimal output.
When the optimal control problem (OCP) is only one part of a multi-step process, which
is often the case when it is used for planning, this can be an important limitation. For
example, the optimal trajectory may not be feasible for the subsequent step due to the
presence of a new obstacle or model errors. In this chapter, we consider a probabilistic
formulation of OCP that allows us to obtain not only a single output, but a probability
distribution of the output that minimizes the OCP cost.

Among many algorithm variants to solve OCP, iterative Linear Quadratic Regulator
(iLQR) [7] is often used in robotics due to its computational efficiency. By iteratively
approximating the cost function and the dynamics as quadratic and linear, respectively,
an LQR subproblem is solved at each step. It has been used for high dimensional systems
such as quadruped and humanoid robots [44], as shown in Chapter 4. We show that
a probabilistic solution of iLQR can be obtained efficiently by using the information
provided by a standard iLQR solver.

The probabilistic treatment of OCP is discussed by Kappen et al. [114], who formulate
it as minimizing Kullback-Leibler (KL) divergence. The optimal control solution is the
product of the free dynamics and the exponentiated cost (i.e., the exponent of the cost
function is considered as an unnormalized probability distribution). Toussaint [115]
shows that using an approximate inference method (similar to expectation propagation)
to solve an optimal control problem results in an algorithm that is similar to iterative
Linear Quadratic Gaussian (iLQG). These works, however, concentrate on improving the
solver’s efficiency, and not many works actually use the probabilistic solution, except in
Guided Policy Search (GPS) where the probabilistic distribution of the iLQR solution is
used to provide off-policy samples for reinforcement learning [116].

In this chapter, we propose to use the probability distribution in the context of a tracking
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Figure 5.1 – Tracking an iLQR trajectory of a quadcopter. The current position, the
goal position, the initial planned trajectory, and the obstacles are shown in green, red,
white, and black, respectively. At the current state, an upward velocity disturbance is
introduced to the system. For MPCmarg, the short horizon OCP reference trajectory
(shown in cyan) remains along the planned trajectory because it does not depend on
the current state. For MPCcond, the reference trajectory is calculated by conditioning
the trajectory distribution on the current state. Since the disturbance adds an upward
velocity, the reference trajectory adjusts accordingly, as shown in yellow.

controller. Instead of tracking only the optimal solution, we use a short horizon Model
Predictive Control (MPC) to track the trajectory distribution. We show that it improves
the tracking performance significantly, with lower cost and better stability. Given a
disturbance, a controller tracking only the mean will require the controller to react stiffly
to perturbations in all directions, while a controller tracking the distribution can react
more intelligently, as it knows in which direction it can move without increasing the cost
function too much.

In short, our contribution is twofold. First, we show how to obtain a probability
distribution of iLQR solution as a Gaussian distribution using the terms available from a
standard iLQR solver. Then we propose a tracking strategy with adaptive gains to follow
this distribution using a short time horizon MPC controller, and show that it improves
the tracking performance in terms of the total cost and stability, compared to tracking
only the mean.

The outline of the chapter is as follows. In Section 5.2 we first explain how to obtain the
probability distribution of an LQR problem. In Section 5.3, we extend this approach to
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iLQR and show how to track the resulting distribution using a short time horizon MPC. In
Section 5.4, we evaluate the method qualitatively on two different systems: manipulator
and quadcopter moving around obstacles, and compare the proposed controller against
baselines. Section 5.5 concludes the chapter.

5.2 Background

5.2.1 Optimal Control Problem (OCP)

A general discrete OCP consists of a cost function

C(x,u) =
T−1∑
t=0

ct(xt,ut) + cT (xT ,uT ), (5.1)

subject to the dynamics
xt+1 = f(xt,ut). (5.2)

OCP may also have equality and inequality constraints. The objective of solving OCP is
to find the sequence of state and control trajectories (x∗,u∗) that minimizes the cost
function while respecting the dynamics. In robotics, given the system’s high degree of
freedom and complexity, most researchers rely on numerical optimization to solve the
problem. One of the popular methods is iterative LQR [7] due to its fast computation
time. More discussion on OCP can be found in Section 2.1.3.

5.2.2 Probabilistic Solution of Time-Varying Finite Horizon Linear
Quadratic Regulator (LQR)

A time-varying finite horizon LQR problem is a subclass of OCP with time-varying linear
dynamics

xt+1 = Atxt +Btut,

and quadratic costs

C(x,u) =
T−1∑
t=0

(x>t Qtxt + u>t Rtut) + x>TQTxT .

For such class of problems, the solution can be obtained analytically. We focus here on
the batch least-squares solution of LQR. We can write the cost function in batch form as

C(x,u) = x>Qsx+ u>Rsu, (5.3)

where Qs = blockdiag(Q0,Q1, . . . ,QT ) and Rs = blockdiag(R0,R1, . . . ,RT−1) are
block diagonal matrices, and the state trajectory x is a function of the control sequence
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u, i.e.,

x = Sxx0 + Suu. (5.4)

Substituting (5.4) to (5.3), we obtain

C(x,u) = u>(S>uQsSu +Rs)u+ 2u>S>uQsSxx0 + x>0S>xQsSxx0.

Note that the cost is quadratic in u. As discussed in Section 2.2.2, we can view this
probabilistically and obtain the probability distribution of u as a Gaussian distribution
N (µu,Σu), where

µu = −(S>uQsSu +Rs)−1S>uQsSxx0, (5.5)
Σu = (S>uQsSu +Rs)−1. (5.6)

The mean is obtained as the optimum of the cost function in (5.3) by setting the gradient
equal to zero, while the covariance matrix is the inverse of the cost function’s Hessian.

This distribution tells us that u has the highest probability at the mean µu (corresponding
to the point with the lowest cost), and Σu explains how the probability changes along
any direction. With this distribution, we know how to move away from the mean while
avoiding significant increase in the cost function. We can also obtain the distribution of
the state trajectory, since x is a linear transformation of u according to (5.4), namely

p(x) = N (x|Sxx0 + Suµu,SuΣ−1
u S

>
u ). (5.7)

More details about the probability distribution of LQR can be found in [117, 118].

5.3 Method

In this section, we first describe how to obtain the solution of an iLQR problem as a
Gaussian distribution. The key insight is to note that each step of iLQR solves an LQR
subproblem, of which we can find the probability distribution of the solution. We then
show how to track this distribution using a short time horizon MPC.

5.3.1 Probabilistic Solution of iLQR

iLQR can be used to solve more general problems than LQR involving non-quadratic
cost functions and nonlinear dynamics. Starting from an initial guess (x0,u0), iLQR
iteratively refines this guess by approximating the dynamics as linear and the cost
function as quadratic around the current solution, and solve an LQR problem to improve
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the solution. More details on solving an iLQR problem can be found in Section 2.1.3.

Let us assume that we have reached convergence and obtain the optimal solution as
(x∗,u∗). If we again approximate the cost function and the dynamics to obtain a new
LQR subproblem around this solution, its solution would be δu∗ = 0, because the
optimization gradient is zero at local optima, and the cost function cannot be reduced
further. However, the optimal solution δu∗ = 0 does not contain much information
about the cost function and the underlying optimization problem. Since this is an LQR
problem, we can obtain not only the optimal solution but also the distribution of the
solution, as discussed in Section 2.2.2.

We consider the quadratic cost functions and the linear dynamics at the final iteration
k = K. As explained in Section 5.2.2, we can compute the probability distribution of δu
as p(δu) = N (0,Σδu∗), where Σδu∗ is calculated using (5.6). The precision matrices Qs

and Rs are computed from the cost derivatives, i.e.

Qs = blockdiag(cxx,0, cxx,1, · · · , cxx,T ),
Rs = blockdiag(cuu,0, cuu,1, · · · , cuu,T−1).

Now the mean of this p(δu) is a zero vector, corresponding to an optimal solution at
convergence. The covariance Σδu∗ tells us how to move away from the mean while
keeping a low cost. Since u = u∗+ δu, we obtain p(u) = N (u∗,Σu∗) where Σu∗ = Σδu∗ .
That is, the distribution of u is centered around the optimal solution u∗, with the same
covariance as δu.

Since δx = Sxδx0 + Suδu, the probability distribution of δx can be computed as

p(δx) = N (0,Σδx∗), with Σδx∗ = SuΣδu∗S
>
u . (5.8)

Furthermore, x = x∗ + δx, so p(x) = N (x∗,Σx∗), where Σx∗ = Σδx∗ . Note that the
probability distribution is computed based on the terms that are available from a standard
iLQR solver, i.e. the derivatives of the costs and the dynamics. Indeed, we can just run
a standard solver until convergence, and extract all the dynamics and cost derivatives to
construct the trajectory distribution N (x∗,Σx∗).

The probability distribution is obtained by approximating the cost function and the
dynamics. Technically, a Gaussian distribution propagated by nonlinear dynamics would
not remain as Gaussian distribution. We obtain a final Gaussian distribution of the
overall trajectory because of the linear approximation of the dynamics at each iLQR step,
similar to what is done in Extended Kalman Filter [119]1. Therefore, this distribution

1In Bayesian inference, we can view our probabilistic solution as Laplace approximation of the posterior
distribution, but we use Gauss-Newton approximation to approximate the Hessian.
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only holds locally near the optimal solution (x∗,u∗). Nevertheless, it still contains
important information on the local behavior of the cost function and the dynamics
around this optimal solution. We will show that this information will be beneficial for
the next step, i.e., tracking the optimal trajectory.

5.3.2 Tracking Distribution using Short Time Horizon MPC

From the previous section, we obtain the probability distribution of the state trajectory
p(x) = N (x∗,Σx∗). Most optimal control approaches only consider the optimal solution
x∗. As discussed in Section 5.1, the OCP is often an intermediary step to generate a
trajectory, which is then tracked by using another controller. This controller can be a
simple PID controller or a short time horizon MPC [113] that tracks x∗. We argue that
tracking only the optimal solution is suboptimal because it does not contain sufficient
information about the underlying cost functions. When the system faces disturbances,
the controller will force the system to go back to the optimal solution, although the
disturbance may be acceptable according to the desired behavior.

Consider as an example the problem of controlling a bicopter to reach a goal position.
The mean and the samples from the trajectory distribution are shown in Fig. 5.2c. The
main objective is the position of the bicopter at the final time step to be at the goal.
This results in a wide trajectory distribution in-between, signifying that it is acceptable
to deviate from the mean in the middle of the trajectory. When there is a disturbance, a
controller tracking the mean will force the system to come back to the mean, although
this is not necessary according to our cost function (which reflects the desired behavior).
In contrast, if the controller knows about the distribution, it knows when a disturbance is
acceptable and hence does not apply strong correction, following a minimal intervention
principle [117, 120, 121].

To track the distribution p(x), we propose to use a short time horizon MPC. At each
time step, we solve an OCP with horizon Ts, which is much shorter than the long horizon
T used to plan the trajectory in Section 5.3.1. We solve this short horizon OCP with
iLQR just as we do for the long horizon OCP, but in practice we can use any OCP solver
for this part. The cost function

ct(xt,ut)=(xt − x̄t)>Qt(xt − x̄t) + l(xt,ut) + u>t Rut (5.9)

is designed to track a reference trajectory, where x̄t is the reference state at time t,
l(xt,ut) is the collision cost, and the precision matrices Qt are designed to correspond
to the probability distribution of x̄t. If x̄t has a large variance, we do not want to track
this state too precisely, so Qt should be small, and vice-versa.

How to relate x̄t and Qt to the trajectory distribution N (x∗,Σx∗) that we find earlier?
One way is to use the marginal distribution pm(xt) = N (x∗t ,Σx∗,t), where x∗t is the
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Algorithm 4 Tracking iLQR distribution
1: Solve the long horizon (T ) OCP by iLQR;
2: Calculate p(x) = N (x∗,Σx∗);
3: for t = τ < T do
4: Estimate the current state xτ ;
5: Extract the probability p(xτ :τ+Ts) from p(x);
6: Compute the conditional probability pc(xτ+1:τ+Ts |xτ );
7: Extract the ref. traj. distribution pc(xt|xτ ) from pc(xτ+1:τ+Ts

|xτ ) for t = τ + 1 to τ + Ts;
8: Construct the cost function of the short horizon (Ts) OCP (Eq. 5.9);
9: Solve the short horizon (Ts) OCP using iLQR;

10: Execute the first control input ut;
11: end for

component of x∗ at time t, and Σx∗,t is the corresponding block matrix, so that x̄t = x∗t
and Qt = Σ−1

x∗,t. However, when we do this, we neglect the correlation between the
different time steps in Σx∗ . Instead, we can use the conditional distribution based on
the current state.

At time step t = τ , we observe the current state at xτ . We first extract the probability
p(xτ :τ+Ts) from p(x), and write this in partition format

p

(
xτ

xτ+1:τ+Ts

)
= N

((
µ1
µ2

)
,

(
Σ11 Σ12
Σ21 Σ22

))
.

We can then condition on xτ to obtain pc(xτ+1:τ+Ts |xτ ) = N (µc,Σc) where

µc=µ2+Σ21Σ11(xτ − µ1), Σc=Σ22−Σ21Σ−1
11 Σ12.

The conditional distribution pc(xt|xτ ) = N (µc,t,Σc,t) can then be obtained from
pc(xτ+1:τ+Ts |xτ ) for t = τ + 1 to τ + Ts. µc,t is the tth element of µc, with the
corresponding block diagonal Σc,t. This can be used to set x̄t = µc,t and Qt = Σ−1

c,t in
(5.9).

We demonstrate in the next section that formulating the tracking controller to follow the
reference trajectory distribution will improve the tracking performance. The complete
algorithm is given in Table 4.

It is also possible to use the long horizon OCP in MPC fashion. However, the long horizon
requires longer computational time, making it difficult to be used in real-time. The
computation time is linear with respect to the time horizon T . Formulating the controller
as a short time horizon MPC to track the distribution speeds up the computational time
significantly, while still being able to consider the future events using the distribution.
With shorter computational time, the short horizon MPC can better adapt to real time
changes such as new obstacles along the trajectory. We can also add hard constraints to
the OCP, e.g., using the augmented Lagrangian method [122].
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Figure 5.2 – Trajectory distribution for different systems, shown at selected axes. The
mean trajectory is shown as a black line, and the trajectory samples drawn from the
distribution are shown as red thin lines. The goal is shown in green.

5.4 Experiments

Fig. 5.2 shows the probability distribution on several systems, i.e., inverted pendulum (1
DoF), unicycle (3 DoF), and bicopter (3 DoF). The system description can be found in
[120, 49, 70]. The distribution is determined by both the dynamics and the cost function.
As we put a high cost at t = T to reach the goal and low cost at t < T , the distribution
is narrow around the goal and quite wide in the middle. Thus the tracking controller
knows that deviation from the mean is more tolerable in the middle of the trajectory,
which agrees with our intuition.

We quantitatively evaluated the proposed algorithm on a robotic manipulator (i.e., Franka
Emika robot) and a quadcopter, with the task to move from an initial configuration to a
goal location while avoiding obstacles. Following Algorithm 4, a long horizon iLQR is
first solved to obtain the trajectory distribution p(x) that reaches the goal. The cost
function is defined as

C(x,u) =
T−1∑
t=0

(
(xt−xgoal)>Q(xt−xgoal)+u>t Rut+l(xt,ut)

)
+(xT−xgoal)>QT (xT−xgoal),

(5.10)
where Q and QT are the precision matrices, Q being much smaller than QT . l(xt,ut)
is a collision avoidance cost formulated as a potential field that is active only when the
quadcopter is in collision. After running the iLQR solver until convergence, we can
compute the state trajectory distribution p(x) = N (x∗,Σx∗). Section 5.4.1 describes
various tracking algorithms to be compared, with the results discussed in Section 5.4.2.

5.4.1 Tracking Algorithms

To illustrate the benefit of tracking the trajectory distribution, we compare four different
algorithms:
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iLQR Feedback Control (iLQRfeed)

iLQRfeed tracks the mean trajectory x∗ using the feedforward control input u∗ and the
feedback term Kt,

ut = u∗t +Kt(xt − x∗t ),

where xt is the current observed state. While this requires very little computation, the
feedback gain is only good around the planned trajectory (x∗,u∗), and it can be unstable
for large disturbance.

Short time horizon MPC tracking the mean trajectory (MPCmean)

MPCmean solves an OCP problem at each time step with the cost function in (5.9).
The reference state is obtained from the planned trajectory, i.e., x̄t = x∗t , whereas the
precision matrix Qt is set to be the same as QT in (5.10), i.e., a high-gain tracking.

Short time horizon MPC tracking the marginal distribution (MPCmarg)

MPCmarg solves an OCP problem at each time step with the cost function in (5.9). x̄t
and Qt are set according to the marginal distribution pm(xt) as described in Section 5.3.2.

Short time horizon MPC tracking the conditional distribution (MPCcond)

MPCcond solves an OCP problem at each time step with the cost function in (5.9).
x̄t and Qt are set according to the conditional distribution pc(xt|xτ ) as described in
Section 5.3.2.

5.4.2 Tracking Comparison

We run the experiments on two systems, the 7-DoF Franka Emika manipulator and 6-DoF
quadcopter. The manipulator task is kinematic control to reach a desired end effector
pose where the state x ∈ R14 consists of the joint angles and velocities, and the control
u ∈ R7 is the joint acceleration command. The dynamics of the system is therefore linear
(i.e., double integrator), but the cost is non-quadratic as it involves the end effector pose.
The quadcopter task is dynamic control to reach a desired goal location where the state
x ∈ R12 consists of the position, orientation, and its corresponding velocities, while the
control u ∈ R4 consists of the four propellers thrusts. For both systems, the horizon is
set to be T = 150 and Ts = 30 for the long and short horizon, respectively, with 50 ms
interval. The long horizon is set to be long enough to reach the goal at the end of the
trajectory, while the short horizon is set to be as short as possible while still managing to
obtain good performance. As the computation time of DDP is linear with respect to the
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horizon length, the iteration time for short horizon DDP is around 5 times faster than
the long horizon DDP. The cost function is defined in (5.10). Fig. 5.1 shows an example
of the optimal iLQR trajectory x∗ for the quadcopter, shown in white.

After solving the long horizon iLQR to obtain the trajectory distribution p(x) =
N (x∗,Σx∗), we track the trajectory using the algorithms in Section 5.4.1. During
tracking we introduce external velocity disturbance to the system, and evaluate how
well the algorithms overcome the disturbance with varying magnitude. We consider
two types of disturbance: impulse and time-varying disturbance, each of which has
three levels of disturbance: small, medium, and large. For the impulse disturbance, we
introduce external velocity disturbance for a short time, i.e., during 2 time steps, with the
magnitude of (0.5, 1.5, 3.) for manipulator and (0.2, 0.7, 1.5) for quadcopter (the units are
m/s and rad/s for linear and angular velocity, respectively) in random direction. For the
time-varying disturbance, we introduce time-varying velocity disturbance between t = 30
and t = 100 with the magnitude of (0.1, 0.3, .6) for manipulator and (0.07, 0.2, 0.4) for
quadcopter. These numbers are chosen to specifically demonstrate the different relative
performance among the controllers at each level of disturbance, as will be discussed
shortly after this. After each task completion, we evaluate the cost of the resulting state
and control trajectories by using the original cost function in (5.10). For each disturbance
level, we run N=50 experiments with disturbance in random direction. As the costs vary
greatly between each experiment, we normalize the cost by the minimum cost achieved
at each experiment, so a cost of value 1.0 means that the method achieves the best cost
for that particular experiment. The mean and standard deviation of the normalized cost
for each method is given in Table 5.1 and 5.2.

The results from both tables give the same conclusions, i.e., the relative performance
of the controllers are the same for both impulse and time-varying disturbance. For
the Franka Emika experiment, iLQRfeed has the best performance for all disturbance
levels. However, it only performs best at small disturbance for the quadcopter. As the
disturbance increases, iLQRfeed becomes less reliable and the cost increases. We observe
that iLQRfeed often becomes very unstable at large disturbance, resulting in diverging
movements (these samples were not considered in the results of Table 5.1 and 5.2). Large
disturbance move the system far from the planned trajectory where the feedback gain is
no longer valid. This is especially true for underactuated systems such as bicopter and
quadcopter where each control is not directly associated with a particular state, because
the optimal feedback gain changes its sign (not only magnitude) according to the current
system state. Note that the standard deviation of iLQRfeed cost at large disturbance in
Table 5.1 and 5.2 for quadcopter is very high. On the other hand, the kinematic control
of manipulator involves a linear dynamic and fully actuated system, so the feedback gain
remains good at large disturbance.

The three remaining controllers are more stable even at large disturbance. MPCmean has
the largest cost among the three because it tries to track the mean trajectory precisely
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Table 5.1 – Tracking performance cost comparison (impulse disturbance)

System Method Disturbance

Small Medium Large

Franka Emika

iLQRfeed 1.00 ± 0.0 1.00 ± 0.0 1.00 ± 0.0
MPCmean 1.02 ± 0.0 1.03 ± 0.0 1.05 ± 0.0
MPCmarg 1.02 ± 0.0 1.03 ± 0.0 1.07 ± 0.0
MPCcond 1.01 ± 0.0 1.01 ± 0.0 1.01 ± 0.0

Quadcopter

iLQRfeed 1.00 ± 0.0 1.10 ± 0.3 1.99 ± 2.9
MPCmean 1.48 ± 0.1 2.58 ± 1.0 3.41 ± 1.2
MPCmarg 1.26 ± 0.0 1.23 ± 0.1 1.25 ± 0.2
MPCcond 1.08 ± 0.0 1.05 ± 0.0 1.20 ± 0.4

Table 5.2 – Tracking performance cost comparison (time-varying disturbance)

System Method Disturbance

Small Medium Large

Franka Emika

iLQRfeed 1.00 ± 0.00 1.00 ± 0.0 1.00 ± 0.0
MPCmean 1.02 ± 0.00 1.03 ± 0.0 1.05 ± 0.0
MPCmarg 1.02 ± 0.00 1.03 ± 0.0 1.06 ± 0.0
MPCcond 1.01 ± 0.00 1.01 ± 0.0 1.01 ± 0.0

Quadcopter

iLQRfeed 1.01 ± 0.06 1.33 ± 0.7 2.60 ± 4.4
MPCmean 1.54 ± 0.18 3.06 ± 1.3 4.49 ± 2.0
MPCmarg 1.26 ± 0.03 1.25 ± 0.1 1.26 ± 0.2
MPCcond 1.07 ± 0.02 1.05 ± 0.1 1.20 ± 0.6

without knowing the underlying cost function and the desired behavior. MPCmarg
performs better because it takes into account the variance of the planned trajectory, but
it ignores the correlations between different time steps. The smallest cost is achieved by
MPCcond because it computes the future reference trajectory by considering the current
state, i.e., by computing the conditional distribution. This enables the controller to adapt
to the disturbance better. In practice, it means that the controller exerts less control to
overcome the disturbance while still achieving the objective.

Fig. 5.1 illustrates the difference with the quadcopter experiment. The planned trajectory
x∗ is shown in white. At the current state, an upward velocity disturbance is introduced
to the system. Since MPCmean and MPCmarg do not consider the current state when
computing the reference trajectory, the disturbance does not affect its reference trajectory
(shown in cyan), which is always along the planned trajectory x∗. On the other hand, the
reference trajectory for MPCcond is computed by conditioning on the current state. The
algorithm knows that the quadcopter is moving with an additional upward velocity, and
it adjusted the reference trajectory accordingly (shown in yellow). While MPCmean and
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MPCmarg force the quadcopter to go back to the mean, MPCcond use the information
from the distribution more effectively to move according to the desired behavior. Note
that the cost function in (5.10) dictates that the important task is to reach the goal at
the end, while the path in-between is less important. This is well represented by the
trajectory distribution.

However, the conditional distribution is also obtained from local approximation. This
means that for very large disturbance, it can still result in undesired behavior, such as
producing a reference trajectory that has a high cost. We indeed find that MPCmarg is
more stable than MPCcond at very large disturbance. We can see in Table 5.1 and 5.2 that
the normalized cost of MPCcond increases to almost the same as MPCmarg at the large
disturbance level. At even larger disturbance, we observe that MPCmarg performs the
best and most stably. However, the local approximation does not affect MPCcond as much
as iLQRfeed, because the conditional distribution is only used as the reference trajectory,
while the underlying controller in MPCcond still considers the actual dynamics around
the current state to compute the control command during the tracking. In contrast,
for iLQRfeed, the local approximation from the planning step directly determines the
controller gain, which remains unchanged during tracking. This poor approximation
results in unstable controllers at large disturbance, especially for underactuated and
highly nonlinear systems such as quadcopter.

5.4.3 Discussion

In this work, we have shown an example of kinematic control of a serial manipulator with
non-quadratic cost functions. We did not use dynamic control for this system because the
derivative of the dynamics (the matrix At) is often unstable, i.e., some of its eigenvalues
are outside the unit circle. Since computing the distribution involves the multiplication
of the matrices

∏T−1
t=1 AT−t, the unstable eigenvalues causes the resulting matrix to be

numerically poor and the distribution cannot be computed. More research still needs to
be done to handle this issue.

The proposed framework can also be extended to control systems with both state and
control constraints. Augmented Lagrangian iLQR (AL-iLQR) is discussed in [122] to
handle such systems. Note that each iteration in AL-iLQR still solves an LQR problem,
so we can still obtain the distribution as we do here. The resulting distribution would
take the constraints into consideration, i.e., having higher probability when the trajectory
satisfies the constraints.
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5.5 Conclusion and Future Work

In this chapter, we have shown that by obtaining the distribution of solution from iLQR
and tracking this distribution, the resulting controller is more cost-efficient and robust to
disturbance. The tracking performance has been shown to be better than tracking only
the mean trajectory or using the iLQR feedback controller. The latter is very unstable
when moving far from the planned trajectory due to large disturbance, especially for
underactuated systems such as quadcopter. The iLQR distribution can be calculated
using the information available from a standard iLQR solver. The method can also be
extended to constrained OCP methods such as Augmented Lagrangian iLQR [122].
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6 Learning Constrained Distribu-
tions of Robot Configurations

In high-dimensional robotic systems, the manifold of the valid configuration space often
has a complex shape, especially under constraints such as end effector orientation or
static stability. In this chapter, we propose a generative adversarial network approach
to learn the distribution of valid robot configurations under such constraints. It
can generate configurations that are close to the constraint manifold. We present
two applications of this method. First, by learning the conditional distribution with
respect to the desired end effector position, we can do fast inverse kinematics even
for very high degrees of freedom systems. Then, we use it to generate samples for a
sampling-based constrained motion planner to reduce the necessary projection steps,
speeding up the computation. We validate the approach in simulation using the 7-DoF
Franka Emika manipulator and the 28-DoF Talos humanoid robot.

This chapter is a result of the joint work with E. Pignat and J. Jankowski. E. Pignat
helped in formulating and providing the codes for GAN, and J. Jankowski helped in
the experiment with the Franka Emika manipulator.

Publication Note

The material presented in this chapter is adapted from the following publication:
• T. S. Lembono, E. Pignat, J. Jankowski, and S. Calinon, “Learning constrained

distributions of robot configurations with generative adversarial network,”
IEEE Robotics and Automation Letters (RA-L), vol. 6, no. 2, pp. 4233–4240,
2021

Supplementary Material and Source Codes

Video related to this chapter is available at:
https://youtu.be/tEsclKWS38

Source codes related to this chapter are available at:
https://github.com/teguhSL/learning_distribution_gan
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Chapter 6. Learning Constrained Distributions of Robot Configurations

6.1 Introduction

Generative Adversarial Network (GAN) [67] is a powerful method to learn complex
distributions. It is particularly popular in computer vision to learn the distribution
of images from a dataset. Some of the applications include generating high resolution
images [123], text-to-image synthesis [124], and interactive art [125]. Considering the
recent success of deep learning techniques in robotics, e.g., [126], we propose to adapt
GAN to the context of robotics, i.e., to learn the distribution of valid robot configurations
in constraint manifolds.

In robotics, configuration space refers to the space of possible robot configurations that
may include joint angles for revolute joints, joint translations for prismatic joints, and the
base pose for floating-based robots. This concept is very important in motion planning,
because the planning often needs to be done in the configuration space. Due to the
presence of constraints, the valid configurations lie in some manifold of the configuration
space, the shape of which can be complicated and often cannot be parameterized
explicitly. Inequality constraints, such as obstacle avoidance, result in a manifold with
non-zero volume, and the standard approach to sample from this manifold is to do
rejection sampling. For equality constraints (such as fixed feet locations or end effector
orientation), however, the manifold volume is reduced to zero, as the manifold has lower
dimension than the original space. Rejection sampling does not work in this case because
there is zero probability that the random sample will be on the manifold. A common
approach is to project the random samples to the manifold, and this projection step
takes a significant portion of the planning computation time. By using GAN to learn
the distribution of valid robot configurations on a manifold, we can sample from this
manifold effectively, such that the generated samples are close to the desired manifold.

Having learned the valid distributions, we show that it can be used in two applications:
inverse kinematics (IK) and sampling-based constrained motion planning. Analytical
IK is typically only available for robots with 6-DoF or lower. For higher DoF robots,
the most common method is to use numerical IK where we start with an initial robot
configuration (often selected randomly by uniform sampling), and rely on optimization to
find the configuration that reach the desired pose while satisfying the constraints. In our
proposed framework, we show that GAN can produce good initial configurations that are
close to achieving the target, resulting in a faster numerical IK with higher success rate as
compared to uniform sampling initialization. Furthermore, sampling-based constrained
motion planning also involves a high number of projections of random samples to the
constraint manifold. We show that by replacing the uniform sampling with GAN, the
planning time can be reduced significantly.

One particular difficulty of learning a distribution is when the target distribution is
multimodal, as is the case in many robotic systems. For example, the conditional
distribution of a 6-DoF manipulator given a desired end effector pose is multimodal
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(a) (b) (c)

Figure 6.1 – Using GAN for obtaining approximate IK solutions. The targets are depicted
in yellow. In (a), the target is reachable. When the target is out of reach (b), GAN still
outputs a configuration close to the constraint manifold. We can also give the four limbs
position as the IK targets (c).

because there are many different configurations that are associated with the pose. To
overcome this, we propose to use an ensemble of neural networks as the generator in
GAN. Each neural network can converge to a different mode, and we get better coverage
of the distribution as compared to using a single network.

The remainder of the chapter is as follows. In Section 6.2, we review existing work
on learning sampling distributions and constrained-based motion planning. Section 6.3
describes the GAN framework and how we use it for inverse kinematics and constrained
motion planning. The experiments with 7-DoF Franka Emika and 28-DoF Talos [103]
are presented in Section 6.4. Finally, we conclude with a few remarks in Section 6.5.

6.2 Related Work

6.2.1 Learning Sampling Distribution

In [127, 128], Gaussian Mixture Model (GMM) is used to learn the sampling distribution
based on previously planned paths. The distribution is used to either generate biased
samples for the sampling algorithm or to construct a repetition roadmap that guides
towards finding the solution. It speeds up the computation compared to uniform sampling,
but it is difficult to generalize to different situations (e.g., different obstacles). Moreover,
GMM does not scale well to higher dimensional systems. GMM is also used in [129]
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Figure 6.2 – The proposed GAN framework for learning the distribution of valid robot
configurations. The generator consists of an ensemble of Nnet neural networks, while the
discriminator consists of a single neural network. Besides a Gaussian noise as in standard
GAN, we also add the end effector target(s) as additional input to the generator. The
output of the generator is then augmented by additional features, i.e., the corresponding
end effector poses, before being given to the discriminator.

to learn the feasibility constraint of center of mass (CoM) position with respect to the
whole-body dynamics. Conditional Variational Autoencoder (CVAE) is used in [130], also
trained based on data from demonstrations or planned paths, but it is not implemented
on constrained systems. Convolutional Autoencoder is used in [131] to learn the motion
manifold of human motion, but not in the context of motion planning.

In contrast to the above approaches, we propose to use Generative Adversarial Network
(GAN) to learn the sampling distribution of constrained robotic systems and apply it
to the 7-DoF Franka Emika and the 28-DoF Talos. GAN scales better with higher
dimensions compared to GMM, and it is easy to learn a conditional distribution with
respect to some task (such as end effector pose). We use it to initialize IK very efficiently
while considering various constraints (joint limit, static stability, foothold location). A
similar effort to initialize IK is done in [132] by storing previously computed end effector
configurations in an octree data structure, indexed by the end effector positions. However,
in that work, each limb is treated separately from the body, and only the kinematics is
considered without any stability criterion when retrieving the initial guess. Our GAN
approach produces configurations that are already close to the constraint manifold, which
can include the stability criterion. In [133], GAN is successfully used to learn inverse
kinematics and dynamics of 8-DoF robot manipulator with the real data, but it does
not consider any constraint on the robotic system. Furthermore, we show that the GAN
sampler can also be used to improve the sampling-based constrained motion planning
algorithm.
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6.2.2 Constrained Motion Planning

A review of various approaches in sampling-based motion planning for constrained systems
can be found in [134]. Among the others, projecting the samples to the constraint manifold
is a simple but very generalizable way of extending the standard Rapidly-exploring
Random Tree (RRT) to constrained problems. Instead of doing rejection sampling, the
samples are projected to the constraints manifold [135, 34]. While it works well, the
projection steps take most of the planning time. In [35], Yang et al. compare various
algorithms for motion planning of humanoid robot. They report that the projection step
takes more than 95% of the planning time. Several research lines attempt to reduce this
time computation. For example, in [136], Stilman et al. use the tangential direction of
the constraint manifold to always move while staying close to the manifold. In [137],
Kanehiro et al. simplify the humanoid structure by splitting it into multiple 6-DoF
structures and then perform analytical IK.

In our proposed method, we can generate samples that are already close to the constraints
manifold, and the approach is generalizable to most robotic systems. This will reduce
the necessary number of projection steps significantly and hence lower the computation
time. Additionally, optimization-based approaches such as CHOMP [3] and TrajOpt [4]
can solve constrained planning quickly by including the constraints in the optimization
problem. However, since the problem is highly nonlinear, these methods often require
good initial guesses, otherwise they may have a lower success rate even for simple
problems [8]. In contrast, sampling-based motion planning can find a global solution
with probabilistic completeness guarantee [34], provided that the sampler can cover the
entire feasible configuration space, which is the case for uniform sampling.

6.3 Method

In this section, we present the proposed GAN framework for learning the robot distribution.
We then propose two applications: inverse kinematics and constrained motion planning.

6.3.1 Generative Adversarial Framework

In the generative adversarial framework [67], a generator G(z;θG) is trained to transform
the input noise {z} drawn from pz(z) (typically a unit Gaussian) into samples {q} that
look similar to the data distribution. To do this, a discriminator D(q;θD) is trained in
parallel to output the probability p(q) that tells whether q comes from the dataset or
the generator. The training of GAN is therefore like a game between the generator and
the discriminator where one tries to beat the other. The generator and discriminator
are neural networks (with parameters θG and θD, respectively) trained with Stochastic
Gradient Descent (SGD).
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In our approach, GAN is trained to generate configurations {q} that lie in some constraints
manifold. The following sections explain some changes to standard GAN that we propose
to better suit robotic applications. Unlike in images, we can more easily incorporate
several forms of prior knowledge of what constitutes good configurations in the form of
additional cost functions and transformations. To better handle multimodal distributions,
we use an ensemble of neural networks as the generator. The framework is depicted in
Fig. 6.2.

Additional inputs

In standard GAN, the input to the generator is a noise sampled from a Gaussian
distribution. To obtain a conditional distribution, we include the task parameters as
additional inputs to the generator. The task parameters here correspond to the desired
end effector pose(s), but other additional tasks are also possible.

Additional costs

The training cost for the generator normally consists of the cost of tricking the discrimi-
nator to classify its samples as dataset samples. In robotics, however, we can add other
costs that can be used to evaluate the quality of the samples based on the knowledge of
the robotic system. Here we include several costs:

• The cost of end effector targets cee(q). From the samples generated by G, we can
compute the forward kinematics to obtain the end effector positions and compare
this to the desired end effector target (given as the input to the generator).

• The cost of static stability cs(q). To achieve static stability, the CoM projection on
the ground should be located inside the foot support polygon.

• The cost of joint limits cl(q). The cost is zero if it is within the limit, and increasing
outside the limit.

Output Augmentation

Instead of feeding the configurations directly to the discriminator, we augment the config-
urations by some transformations, e.g., end effector poses. This helps the discriminator
to discern between good and bad samples according to the relevant features. Other
transformations such as CoM location can also be added.
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(a) (b) (c)

Figure 6.3 – Illustrative example of a 2-DoF robot with obstacles. (a) shows the robot
with circular obstacles. The configurations (i.e., joint angles) that are not in collision
are plotted in (b) and (c) as red circles. We learn this distribution using GAN. In (b),
we use one neural network as the generator, and the GAN samples are plotted as blue
crosses. We see that the samples do not cover the whole distribution. Using an ensemble
of 5 networks in (c), we manage to cover most of the distribution.

Ensemble of networks

When the desired distributions are multimodal, GAN often converges to only some modes
of the distribution. This is known as the Helvetica scenario or mode collapse [67]. For
example, when the desired distribution is a GMM, GAN may converge to only some of the
mixture components, and not all of them. This is a major problem in the robotics context,
especially for motion planning, because omitting some portion of the configuration space
means reducing the probability of finding feasible solutions. To overcome this, we use
an ensemble of Nnet neural networks as the generator. Given an input, each network
generates a corresponding robot configuration, and each one is trained as a standalone
generator. When the desired distribution is multimodal, each network may converge to a
different mode.

The advantage of using an ensemble of networks as the generator can clearly be seen using
an illustrative 2-link robot example. Fig. 6.3a shows the setup of the robot surrounded
by obstacles. The configuration consists of the two joint angles. The valid configurations
(i.e., the ones without collision) are plotted in Fig. 6.3b and Fig. 6.3c as red circles, and
GAN is trained to learn this distribution. When using only one network for the generator,
GAN converges to only some part of the configuration space, as depicted in Fig. 6.3b
(the GAN samples are plotted as blue crosses). Using Nnet = 5 networks, we manage to
cover most of the configuration space (Fig. 6.3c).
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6.3.2 Inverse Kinematics

The computation time for numerical IK really depends on how close the initial guess
is to the optimal solution. As discussed in Section 6.3.1, we can obtain good initial
guesses by sampling from GAN while giving the end effector poses as additional inputs
to the generator. The resulting configurations would be close to the desired poses and
the constraint manifold, reducing the required number of IK iterations significantly.

Finally, although the formulation here is presented for inverse kinematics, the same
formulation can be used to project robot configurations to the constraint manifold
by omitting the cost on the end effector position. Further details will be provided in
Section 6.4.

6.3.3 Constrained Motion Planning

The standard approach in sampling-based constrained motion planning [34] is based on
RRT, with the addition of the projection step; each sample added to the tree is projected
first to the constraint manifold. The projection step is formulated as an optimization
problem as discussed in Section 6.3.2. Algorithm 5 describes the steps for constrained
RRT (cRRT) for reaching a goal in task space, starting from an initial configuration q0.
We refer to [34] for more details of the algorithm.

First, we start with a tree G initialized with the node q0. From the given goal task in
Cartesian space, we compute K goal configurations (by numerical IK). The following
iterations then attempt to extend the tree to one of these goals. At each iteration,
a random sample qrand is generated. Nearest neighbor algorithm is used to find the
nearest node qanear in the tree, and we then extend the tree from qanear to qrand. The last
configuration obtained from the extension step is denoted as qareached. Next, we extend
the tree from qareached to one of the goal configurations, qg,k, chosen to be the one nearest
to qareached. The last configuration obtained from the extension step is denoted as qbreached.
If qbreached is equal to qg,k, we stop the iteration, and compute the path from the root
node q0 to qg,k. Otherwise, we continue with the next iteration until the goal is reached
or the maximum number of iteration is exceeded.

In the extension step, we iteratively move from qanear to qrand with a step size ∆qstep,
project the resulting configuration to the manifold, and check for collision. The extension
stops when the projection fails or it is in collision.

GAN sampling

As reported in [35], the projection steps dominate the computation time with more
than 95% of the total time. Instead of uniform sampling, we propose to use the GAN
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Algorithm 5 Constrained RRT with goal sampling
INPUT: q0,xg
OUTPUT: the path {qi}|Ti=0

1: G.init(q0)
2: {qg,i}|Ki=0 ← SampleGoal(xg)
3: while n < max_iter do
4: qrand ← SampleConfig()
5: qnear ← NearestNeighbor(G, qrand )
6: qareached ← ConstrainedExtend(G, qnear, qrand )
7: qg,k ← NearestNeighbor({qg,i}|Ki=0, q

a
reached )

8: qbreached ← ConstrainedExtend(G, qareached, qg,k )
9: if qbreached = qg,k then
10: P ← ExtractPath(T, q0, qg,k)
11: return P
12: end if
13: end while

framework to generate the samples. This will give us samples that are already quite close
to the manifold and hence reduce the computation time significantly.

To generate samples from the GAN framework, we first determine the task space region
of interest, i.e., a box that covers the reachable points of the robot’s end effector. We
sample points inside this box and use it as the target for the generator. Together with
the Gaussian noise, we can then obtain a set of configurations that are near to the target
and require fewer projection steps. As the generator consists of Nnet neural networks, we
choose one out of the Nnet configurations randomly as the output of the sampler.

6.4 Experimental Results

We implemented the proposed method on two systems: the 7-DoF Franka Emika and
28-DoF Talos. The dataset is created by uniformly sampling random configurations and
projecting them to the constraints manifold. A data point corresponds to a configuration
that satisfies the specified constraints. We use N = 25000 samples to train GAN for
both Franka Emika and Talos. The training time takes under 15 minutes, which is quite
fast due to the additional cost functions in Section III.A that help the convergence of
the GAN training. The generator consists of Nnet = 10 neural networks with 2 hidden
layers, each has 200 nodes, while the discriminator is a neural network with 2 hidden
layers (each has 20 nodes for Franka Emika and 40 nodes for Talos). Nnet is determined
by training the generator several times with different numbers of neural networks and
choose the one with the best performance on the motion planning task. ReLu is used as
the activation function. We train the networks using Stochastic Gradient Descent (SGD).
All experiments are run on a processor Intel i7-8750H CPU @ 2.20GHz × 12.
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Table 6.1 – Comparing Projection and IK initialized by uniform sampling vs GAN
sampling. The asterisk signifies that the corresponding values are computed only for the
successful trials.

Robot Task Sampling Success Tave(ms) T ∗
ave(ms) Opt. Steps∗

Franka Emika
Projection Uniform 98.6 4.2 ± 6.8 3.6 ± 3.6 6.5 ± 6.2

GAN 100.0 1.0 ± 0.2 1.0 ± 0.2 1.9 ± 0.4

IK Random 76.4 29.3 ± 43.5 8.8 ± 7.5 7.9 ± 5.4
GAN 88.6 12.5 ± 30.2 2.2 ± 2.2 2.9 ± 1.7

Talos
Projection Uniform 84.4 20.5 ± 25.3 10.5 ± 9.8 8.7 ± 7.3

GAN 100.0 2.1 ± 1.2 2.1 ± 1.2 2.1 ± 1.0

IK Uniform 82.6 28.7 ± 31.1 15.7 ± 13.0 10.4 ± 7.8
GAN 100.0 2.8 ± 0.7 2.8 ± 0.7 2.5 ± 0.6

Table 6.2 – Comparing constrained RRT using uniform sampling vs GAN sampling.

Robot Sampling Success Tave(s) Opt. Steps E

Franka Emika Random 100.0 1.44 ± 1.23 2065.7 ± 1763.2 116.5 ± 93.6
GAN 99.0 0.74 ± 0.66 902.5 ± 796.5 59.7 ± 60.7
Hybrid 100.0 0.90 ± 0.77 1200.3 ± 1036.8 68.1 ± 56.6

Talos (Task 1) Uniform 100.0 1.20 ± 0.99 464.4 ± 390.7 16.2 ± 12.4
GAN 100.0 0.28 ± 0.13 74.0 ± 34.3 10.2 ± 7.3
Hybrid 100.0 0.43 ± 0.25 131.4 ± 80.0 13.5 ± 10.0

Talos (Task 2)
Uniform 100.0 0.92 ± 0.82 327.8 ± 306.7 13.9 ± 13.1
GAN 100.0 0.60 ± 0.35 127.0 ± 74.9 36.7 ± 29.4
Hybrid 100.0 0.66 ± 0.44 182.3 ± 130.0 25.9 ± 19.5

Talos (Task 3) Uniform 100.0 3.94 ± 3.63 1154.0 ± 1083.2 98.7 ± 72.4
GAN 100.0 1.05 ± 1.43 179.0 ± 197.0 52.1 ± 158.6
Hybrid 100.0 1.11 ± 0.94 228.7 ± 203.0 40.8 ± 51.1

6.4.1 Projection and Inverse Kinematics

As described in Section 6.3.2, the projection and IK are formulated as optimization
problems by defining several cost functions based on the desired constraints. The
optimization problem is solved using Gauss-Newton algorithm. µ and µ̄ are set to 10−4

and 10−6. We compare initializing the projection and IK by GAN sampling against
uniformly sampling random configurations within the joint limits, which we denote as
uniform sampling. We set a certain threshold for each cost function, and the optimization
is run until all the residuals are below the thresholds.
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Franka Emika:The robot configuration consists of 7 joint angles. The main cost function
for IK consists of 3 terms: a) joint limit, b) EE orientation constraint, and c) EE position.
The orientation is constrained such that the gripper is always in the horizontal position.
We also add a secondary cost function, i.e., a posture cost that regularizes around a
nominal configuration. The projection has the same set of cost functions as IK, except
for the EE position.

Talos:The robot configuration consists of 28 joint angles (7 for each arm, 6 for each leg,
and 2 for the torso) and 6 numbers for the base pose. The main cost function for IK
consists of the following terms: a) joint limit, b) static stability, c) the feet pose, and
d) the right-hand position. The secondary cost function is defined as the posture cost
around the nominal configuration, which is chosen to be the initial configuration given
to the IK solver except for the left arm (which is regularized around a default posture).
The EE is set to be at the right hand. The feet are constrained to remain at the same
location. The task is to reach the desired location of the right hand, while respecting the
constraints. For the projection, we omit the cost on the EE position.

We evaluate the methods with N = 500 tasks, and the result is shown in Table 6.1. Tave
is the average computation time when considering all tasks, while T ∗ave and Opt. Steps∗

denote the average computation time and the number of optimization steps of only
the successful tasks. We can see that using GAN speeds up both projection and IK
computation significantly, around 2-5 times faster than uniform sampling, even when
considering only the successful results. GAN samples only require around 2-4 optimization
steps to achieve convergence. Uniform sampling also has a lower success rate, as can be
expected for a nonlinear optimization problem (starting far from the optimal solution
reduces the success rate). When the optimization cannot find the solution, it continues
optimizing until reaching the maximum iteration, hence spending high computational
time (namely, Tave is higher than T ∗ave). In practice, Tave is the one we actually observe,
since there is no way to avoid bad random samples.

Besides the quantitative results shown in Table 6.1 and 6.2, we observe that GAN produces
configurations that are still close to the manifold even when the target is infeasible, i.e.,
too far from the arm reach (Fig. 6.1b). Additionally, we can also extend the target
variables to include the left hand and both feet, so that we can do approximate IK for
all the four limbs simultaneously using GAN (Fig. 6.1c). We refer to the supplementary
video for better visualization of the infeasible target IK and the multi-limbs IK.

6.4.2 Motion Planning

To use the GAN sampling in a sampling-based motion planner, the sampler must have
good coverage of the distribution, especially when it is multimodal. We have shown
in Fig. 6.3 that using the ensemble of neural networks help GAN to cover a complex
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(a) (b)

(c) (d)

Figure 6.4 – Samples generated by GAN for Franka Emika (a) and Talos (b) using the
proposed GAN framework. The samples correspond to the desired end effector positions
as shown in red. GAN manages to generate multimodal configurations with large variance.
In contrast, (c) and (d) shows the samples generated by the same framework but when
the discriminator is omitted. We see here that the ensemble of networks converges to
only one mode with very low variance both for Franka Emika (c) and Talos (d).

distribution. In addition to this, the discriminator also helps to increase the coverage.
Indeed, without providing the dataset to the discriminator and train it together with
the generator, even the ensemble of neural networks cannot have good coverage of the
distributions, and often they converge to one mode only. Fig. 6.4a-b shows samples
generated by GAN for Franka Emika and Talos by giving the desired EE position (shown
in red). For both robots, the generated samples belong to multiple modes with good
variance. In contrast, Fig. 6.4c-d show samples generated by GAN while removing the
discriminator and training using only the additional cost functions in Section III.A (to be
strict in terminology, this makes it no longer an adversarial network, but this is done to
demonstrate the necessity of the discriminator). Without the discriminator, the samples
do not have large variance and converge to only one mode, despite using the ensemble of
networks.

We then use GAN sampling in constrained motion planning for both Franka Emika
and Talos, as described in Algorithm 5. For Franka Emika, the task is to move the
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(a) (b)

(c) (d)

Figure 6.5 – Constrained motion planning tasks for Franka Emika (a) and Talos ((b),
(c) and (d)).

end effector from above the table to one of the shelves, as shown in Fig. 6.5a, while
maintaining the gripper in the horizontal position. For Talos, we consider three different
environments in Fig. 6.5b-d in increasingly more difficult order, similar to the ones used
in [35]. The task is to move from a random initial configuration above a table to reach a
specified target position with the right hand below the table while satisfying the static
stability and joint limits. For each environment, we run N = 100 random tasks. We
compute K = 10 goal configuration for each task. Each task is run until it is successful
or it reaches the maximum number of extension steps, which is set to be 500. In the case
of failure, the planning is repeated until a maximum of two times and the total time is
taken.

We compare three different sampling methods: uniform, GAN, and hybrid sampling.
Hybrid sampling combines the uniform and GAN sampling. It outputs GAN samples
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with a probability of p and uniform samples with a probability of 1− p. By including
the uniform sampling, we can keep the probabilistic completeness guarantee of the
planner. From the experiment, we observe that a value of p = 0.8 performs the best. An
adaptive value is also possible, i.e., starting with p = 1 and decreasing it as the number
of extensions grows, such that it converges to uniform sampling when the planner still
cannot find any solution after a long time.

The result can be seen in Table 6.2. Tave, Opt. Steps, and E denote the average planning
time, the number of optimization steps, and the number of extension steps in planning
(ConstrainedExtend in Algorithm 5) for one task.

For both Franka Emika and Talos, GAN results in a significant reduction in the com-
putation time, around 2-4 times faster than the uniform sampling. This gain is mainly
due to the fewer optimization steps necessary to project the resulting configurations, as
discussed in the previous section. The high success rate of GAN sampling also indicates
that it manages to cover a good proportion of the configuration space, at least for the
tasks that we consider here.

On the other hand, the comparison between GAN and hybrid sampling strategy is
interesting. In most cases, GAN is faster than hybrid sampling. However, hybrid
sampling sometimes requires fewer extension steps than GAN. We also observe that GAN
sometimes fails a task, while hybrid sampling is successful, such as the case in the Franka
Emika experiment. This shows that hybrid sampling can explore the distribution more
effectively than GAN in these tasks. Its overall computation time is still higher than
GAN, though, because it requires more optimization steps due to the uniform sampling
components.

6.4.3 Discussion

From the experiment results, we showed that GAN can generate good quality samples
close to the desired manifold. In addition, we can conclude from the motion planning
results that it has good coverage over the distribution. There is no guarantee, however,
that the distribution is perfectly covered, so in some rare cases the motion planning
may fail to find a feasible solution, but using a hybrid sampling strategy recovers the
completeness guarantee.

We managed to get good performance even with quite a basic GAN structure. Note that
the GAN framework was trained without considering collision, unlike in the example
of the 2-link robot in Section III.A. This means that the resulting sampler does not
depend on the environment, and it works directly in any environment even with moving
obstacles. We also showed that the framework is easily adapted to different robots by
the experiments on the Franka Emika and Talos robot. Given any new robot and its
constraints, we only need to formulate the cost functions corresponding to the constraints,
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generate the dataset, and train the GAN quickly.

The stability criteria that we used here is static stability. In [133] and [138], GAN has
been shown to work well for problems with dynamics, so it is possible to extend our
approach to generate more dynamical motions by including dynamic stability criteria
such as Zero Moment Point (ZMP) [39] or Contact Wrench Cone Margin [139].

Since GAN is a very flexible tool, there are a lot of potential improvements. As in [130],
by generating many planning data in a given environment, we can condition GAN on
the initial and goal configurations to obtain samples that are relevant for the task. GAN
also works well with high dimensional inputs such as images, so it would be possible to
train with the environment representation (e.g., voxel data or heightmap) to generate
samples that avoid collisions in different environments. Furthermore, since we can
condition GAN on the desired end effector pose, we could combine the task-space biasing
strategy [140, 141] with the GAN sampler.

In this chapter, we used an ensemble of networks as the generator to cover the multimodal
distribution. There are also other methods that attempt to handle this mode collapse issue,
e.g., using Wasserstein loss [142] or unrolled GANs [143], which could be investigated in
further work.

6.5 Conclusion

We have presented a GAN framework to learn the distribution of valid robot configurations
under various constraints. The method was then used for inverse kinematics and sampling-
based constrained motion planning to speed up computational time. We validated the
proposed method on two simulated platforms: 7-DoF Franka Emika manipulator and
28-DoF Talos humanoid robot. In all settings, the proposed method managed to reduce
the computational time significantly (up to 5 times faster) with a higher success rate.
The method is very general and easily applicable to other robotic systems.
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7 Tensor Train for Global Optimiza-
tion Problems in Robotics

In this chapter, we consider techniques from multilinear algebra, i.e., tensor methods,
to approximate the unnormalized PDF induced by the cost function. By using an
efficient algorithm, we can approximate a high-dimensional function using a compact
representation and with efficient computation. Unlike in previous chapters where the
database construction, data representation, and the learning methods are separate,
our proposed method provides a unified way to do all those tasks by performing tensor
operations. The proposed method can generate approximate solutions for a given
task in the order of milliseconds. In many problems that we consider here (including
inverse kinematics and motion planning), the approximate solutions have low costs
and come from multiple modes. During the training, our method does not require any
gradient information from the cost function, and hence is quite robust at finding the
global optima or at least good local optima.

This chapter is a result of the joint work with S. Shetty and T. Löw. My part
was to formulate the optimization problems for evaluating the method and to draw
the connection with other existing works, e.g., Variational Inference for multimodal
trajectory optimization and database approaches for building a memory of motion. S.
Shetty and T. Löw worked on the tensor formulation and performed the experiments.

Publication Note

The material presented in this chapter is adapted from the following publication.
• S. Shetty, T. S. Lembono, T. Löw, and S. Calinon, “Tensor train for global

optimization problems in robotics,” Submitted article under review, 2022,
https://sites.google.com/view/ttgo/home

Supplementary Material and Source Codes

Videos and source codes related to this chapter are available at:
https://sites.google.com/view/ttgo/home
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Chapter 7. Tensor Train for Global Optimization Problems in Robotics

7.1 Introduction

In the first part of this thesis (Chapter 3 and 4), we have discussed several approaches
to build a memory of motion based on function approximation and a database of good
solutions. While such approaches are easy to formulate, they suffer from two issues.
Firstly, building a good database is often challenging, since the solver often cannot find
even a feasible solution for difficult problems without good initialization. Furthermore,
predicting an initial guess from the database is also challenging when the underlying
optimization problem is multimodal. We have presented several ideas that address these
two issues, e.g., building the dataset in two stages (using a global planner and then a
local optimizer), and using a mixture model (BGMR) to handle multimodal data. In this
chapter, we propose another approach based on tensor methods we call Tensor Train
for Global Optimization (TTGO). Unlike the database approaches, TTGO does not
require an explicit dataset built by another method, and it handles multimodal problems
naturally.

The proposed approach combines several different techniques, mainly: Tensor Train (TT)
decomposition for function approximation [144], sampling from TT model [145], and
numerical optimization using cross approximation technique [146]. In contrast to the
database approach, we firstly transform the cost function to an unnormalized probability
density function and then approximate the density function using TT decomposition [144],
a technique from multilinear algebra. TT models, as shown recently by [145], allow
fast procedures to generate exact samples from the density model. Furthermore, we
extend this approach to generate samples from a conditioned TT model with controlled
priority for high-density regions (which in turn correspond to the low-cost regions) that
can then be used as approximate solutions. This approach allows us to obtain a richer
set of solutions, especially for multimodal problems. As it does not use any gradient
information, it is also less susceptible to getting stuck at local optima.

A cost function is usually a function of the task parameters (e.g., the desired end effector
pose) and the optimization variables (e.g., the robot configuration for an inverse kinematics
problem or the joint angle trajectory for motion planning). We can formulate the problem
of minimizing a cost function as maximization of the corresponding probability density
function. Previous work that attempt to approximate the probability density function
using Variational Inference (e.g., [66, 147, 64]) usually treat the task parameters as
constant, so the cost function is only a function of the optimization variables. In
contrast, TTGO allows us to handle varying task parameters by approximating the joint
probability distribution of the task parameters and the optimization variables. It exploits
the correlation between the task parameters and the optimization variables (for example,
a slight change in the task parameter usually results in a small change in the solution)
that give the problem a low-rank structure, enabling the TT model to approximate the
density function compactly. Once the model is trained, we can condition the model on
the specific task parameters, and then generate samples that are approximate solutions
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to the corresponding task parameters. This allows us to generate approximate solutions
quickly during online execution for various tasks.

Our approach neither requires any external database of good solutions nor a separate
regression model to retrieve approximate solutions from the database. With access only
to the definition of the cost function (the gradient is not required), we build our database
in the offline phase compactly in TT format in an unsupervised manner, i.e., without the
need of another solver. Due to its structure, the TT representation allows efficient ways
to retrieve approximate solutions in the online phase in the order of milliseconds, thus
avoiding any need for a separate regression model for inferring the solution. When the
underlying problem is multimodal, the retrieved solutions will also come from multiple
modes.

In summary, our contributions are as follows:

• We propose a principled approach called TTGO (Tensor Train for Global Opti-
mization) to obtain approximate solutions to a given optimization problem. The
approximate solutions are close to the global optima (or the good local optima)
and can then be used to initialize gradient-based solvers for further refinement.

• Our approach builds an implicit database in Tensor Train (TT) format by only
using the definition of the cost function in an unsupervised manner, i.e., without
requiring any gradient information or another solver.

• In the online phase, our approach can produce approximate solutions very quickly
for a given task (i.e., in the order of milliseconds and linearly scaling with the
dimensionality of the problem) by using samples from a conditioned TT model.

• We propose a prioritized sampling technique where we can adjust between sampling
from only the high-density region (to obtain only the best solution) or from the whole
distribution (to obtain a greater variety of solutions) via a continuous parameter.

• When the underlying optimization problem is multimodal, our approach can find
multiple solutions that correspond to a given task.

• The approach is demonstrated on some benchmark optimization functions to show
that it can find global optima and multiple solutions robustly. We show the
relevance of the approach to robotics problems by applying it to inverse kinematics
and motion planning problems with a 7-DoF manipulator.

The chapter layout is as follows. In Section 7.2, we provide a literature survey on warm
starting numerical optimization, multimodal optimization, and tensor methods. Section
7.3 explains the necessary background on tensor train modeling that is used in this
chapter. Then, in Section 7.4, we describe the TTGO method proposed in this chapter.
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Section 7.5 presents the evaluation of our algorithm. We first test it on benchmark
functions for numerical optimization. To showcase the relevance of our approach for
robotics, we then apply it to inverse kinematics and motion planning problems with
manipulators. In Section 7.6 and 7.7, we conclude the chapter by discussing how our
approach could lead to new ways of solving a variety of problems in robotics. We also
discuss here the limitations and future work.

7.2 Related work

This work intersects with several research directions. Firstly, we target robotics appli-
cations that are formulated as optimization problems. Our framework provides a way
to predict a good initialization for the optimization solver. At the same time, it also
provides a principled way to obtain multiple solutions of a given optimization problem.
Finally, the proposed framework relies on tensor methods. We discuss each topic briefly
in this section.

7.2.1 Optimization in Robotics

Many problems in robotics are formulated as optimization problems. For example, recent
work in motion planning relies on trajectory optimization to plan the robot motion (e.g.,
CHOMP [3], STOMP [5], TrajOpt [148], GPMP [149]). Inverse kinematics for high
dimensional robots is usually formulated as nonlinear least squares optimization [2] or
Quadratic Programming (QP) [27]. In control, optimization-based controllers take the
form of Task Space Inverse Dynamics (TSID) controller formulated as QP problem [6],
or finite horizon optimal control [44, 48]. The optimization framework offers a convenient
way to transfer the high-level requirement (e.g., energy efficiency, maintaining orientation)
to cost functions or constraints. Furthermore, the availability of off-the-shelf optimization
solvers and tools for automatic gradient computations allow researchers to focus more on
the problem formulation.

However, most of the solvers used in robotics are local optimizers whose performance
depend highly on the initialization, especially since most robotics problems are highly
non-convex. Even state-of-the-art solvers such as TrajOpt can fail on a simple problem
with poor initialization [8]. The initialization determines both the convergence speed,
the solution quality, and the success rate of the solver. This motivates further research
on how to predict good initialization for a given optimization problem.

7.2.2 Predicting good initialization

A majority of works that attempt to predict good initialization rely on a database
approach, often called trajectory library [9] or memory of motion [70]. The idea is to
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first build a database of precomputed solutions offline. This database can be constructed
from expert demonstrations [102], using the optimization solver itself [84], or using the
combination of a global planner and the optimization solver [45]. Once the database
is constructed, we can predict a good initial guess (i.e., a warm start) for a given task
by formulating it as a regression problem that maps the task to the initial guess. We
can then use the database to train different function approximation techniques (e.g.
k-Nearest Neighbors, Gaussian Process Regression, Gaussian Mixture Regression, Neural
Network) to learn this map. During online execution, we query the function approximator
to provide us with the initial guess of a given problem. While the formulation is easy to
implement, especially since there are many function approximators easily available, the
database approach suffers from two main issues: non-convexity and multimodality.

Firstly, the database approach requires computing good solutions to be stored in the
database. With the complexity of general robotics problems, computing the solutions
is often not trivial. The database ideally covers the whole range of possible tasks, but
many tasks are difficult to solve without a good initialization to the solver. Some work
overcome this by relying on a global planner to provide the good initialization when
building the database [45, 93], but it remains difficult to cover the whole solution space
efficiently.

Let us assume that we can obtain a good database, and we want to train the function
approximators. Many problems in robotics are multimodal, i.e., there are multiple
different solutions for a given task. Approximating this one-to-many mapping is difficult
for most function approximators, which tend to average the different modalities resulting
in poor predictions. Some work attempt to handle the multimodal prediction using
mixture models, with Gaussian Mixture Regression [8] or Mixture Density Networks [150],
but while they perform better than the standard function approximators, we still observed
some averaging behaviors that result in poor predictions. One of the reasons is related
to the problem of constructing the database; for the mixture models to perform well, the
database should contain enough data points from each mode, which is difficult to ensure
in practice.

7.2.3 Multimodal Trajectory Optimization

Related to the problem of building the database above, most optimization solvers only
produce one (locally) optimal solution. When more solutions are needed, heuristics
approaches such as initialization from a uniform distribution (random initialization) or
manually-defined waypoints are usually used. A more principled way transforms the cost
into an unnormalized probability density function (PDF) and uses probability density
estimation techniques, most commonly using Variational Inference [66, 147, 64]. This
allows us to obtain multimodal solutions when multiple modes exist or to explore the
whole solution space when the possible solutions are infinite.
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The work closest to our approach is SMTO [66]. It approximates the unnormalized
PDF with a GMM using Variational Inference by minimizing the forward KL divergence.
Forward KL requires sampling from the target PDF, which is not feasible in practice.
[66] tries to solve this issue by relying on importance sampling, where the samples are
generated from a proposal distribution and their importance is weighted by the ratio
between the proposal density and the target density. It allows them to obtain multiple
solutions to a given optimization problem. However, the main limitation of the method
is the requirement of a good proposal distribution and the locally optimal nature of the
method. The approximate model can be optimized only around the generated samples
from the proposal distribution. It means the resulting distribution will not deviate a lot
from the proposal distribution. Especially, when some modes are not explored by the
initial samples, the approximate model will not be able to cover these modes after the
subsequent iterations. Furthermore, unlike our approach, it does not allow distribution
of computation into offline and online phase, i.e., all the computation needed to solve a
given task is done in the online phase.

While SMTO [66] attempts to obtain multiple solutions from finitely many modes,
[147] proposes LSMO that explores an infinite homotopic solution. It learns latent
representations of solutions that can be used to generate an infinite set of solutions by
modifying the continuous latent variables. Instead of using a GMM, it uses a neural
network parameterized with the latent variables to approximate the PDF. Again, this
approach solves one optimization problem at a time and the computation time is high for
online operations. Our approach, by distributing the computation into offline and online
phases, allows us to solve multiple optimization problems approximately in the offline
phase and provide fast approximate solutions in the online phase. It can also handle the
cases with either finite modes (as in [66]) or uncountably many solutions (as in [147]),
as will be shown in Section 7.5.

7.2.4 Tensor Methods

Tensor factorization techniques (also called Tensor Networks) are extensions of matrix
factorization techniques into multidimensional arrays (i.e., tensors). These techniques
approximate a given tensor compactly using a set of lower-dimensional arrays (called
factors). In addition to the compact representation, they allow efficient algebraic op-
erations to be performed on them. Popular tensor factorization techniques include
CP/PARAFAC decomposition, Tucker decomposition, Hierarchical Tucker decomposi-
tion, and Tensor Train (TT), see [151, 152] for general surveys, and see [153, 154] for
applications in machine learning and signal processing. Tensor factorization techniques
have also been used in robotics to solve control problems that were previously considered
to be intractable [155, 156, 157].

Tensor Train (TT) decomposition, also known as Matrix Product States (MPS), provides
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a good balance between expressive power and efficiency of the representation, and it is
equipped with robust algorithms to find the decomposition [158]. TT decomposition
has been used to solve problems involving high-dimensional integration of multivariate
functions in [159, 155]. [145] used it to approximate probability density functions, with a
fast procedure to sample from a probability distribution represented using the TT format.
TT decomposition has also been used for data-driven density modeling (or generative
modeling) [160, 161, 162, 163].

In [164, 146], it has been demonstrated that TT decomposition can be used for gradient-
free optimization and that its performance is competitive with state-of-art global optimiza-
tion algorithms such as CMA-ES and GA. These approaches using TT decomposition for
global optimization are similar to evolutionary strategies as they solve one optimization
problem at a time (too slow for the use-cases in robotics applications) and can provide
only one solution. We take a different direction in this work; we work with the probability
density function (corresponding to the cost function) which is approximated using a TT
decomposition and use efficient ways to sample from high-density regions of this surrogate
model to approximate the solutions. This allows us to distribute the computationally
intensive part to an offline phase and solve many optimization problems fast in an online
phase. Moreover, our approach can be used for finding multiple solutions.

7.3 Background

In this section, we first describe what a tensor is (Section 7.3.1) and how a multivariate
function can be approximated using a tensor (Section 7.3.2). The size of the tensor
increases exponentially with the number of dimensions, rendering the naive approach of
computing the whole tensor intractable for high-dimensional functions. We then describe
how to overcome the curse of dimensionality by relying on tensor factorization techniques
that allow efficient computation and storage of the tensor. We start with the matrix case
for an easier example (Section 7.3.3 and 7.3.4) and proceed with the extension for the
higher-order tensor (Section 7.3.5 and 7.3.6). When the target function is an unnormalized
probability density function (PDF), we can construct a probability distribution from the
tensor model (Section 7.3.7), allowing us to sample (Section 7.3.8-7.3.9) and condition
(Section 7.3.10) on some of the dimensions.

7.3.1 Tensors

A tensor is a multidimensional array and as such, it is a higher-dimensional generalization
of vectors and matrices. A vector can be considered as a first-order tensor and a matrix
as a second-order tensor. The order of a tensor, therefore, refers to the number of
dimensions (or modes) of the multidimensional array.
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The shape of a d-th order tensor P ∈ Rn1×···×nd is defined by a tuple of integers
n = (n1, . . . , nd). We define the index set I of the tensor P to be a set I = {i =
(i1, . . . , id), ik ∈ {1, . . . , nk}, k ∈ {1, . . . , d}}. This is used to uniquely identify the
elements of the tensor. We denote the i-th element of the tensor P by Pi.

A fiber is the higher-order analogue of matrix row and column which is a vector obtained
by fixing every index but one. Similarly, a slice of a tensor is a matrix obtained by fixing
every index but two.

7.3.2 Tensors as Discrete Analogue of a Function

In many applications, tensors arise naturally from the discretization of multivariate
functions defined on a rectangular domain. Consider a function P : Ωx ⊂ Rd → R with
a rectangular domain Ωx = ×dk=1Ωxk , i.e., a Cartesian product of the intervals of each
dimension. Unless stated otherwise, we discretize the intervals uniformly. We discretize
each bounded interval Ωxk ⊂ R into nk number of elements. X = {x = (xi11 , . . . , x

id
d ) :

xikk ∈ Ωxk , ik ∈ {1, . . . , nk}} represents the discretization set and the corresponding index
set is defined as IX = {i = (i1, . . . , id) : ik ∈ {1, . . . , nk}, k ∈ {1, . . . , d}}. We have
a canonical bijective discretization map that maps the indices to the tensor elements,
i.e, X : IX → X defined as X(i) = (xi11 , . . . , x

id
d ), ∀i = (i1, . . . , id) ∈ IX . With such

a discretization, we can obtain a tensor P, a discrete analogue of the function P , by
evaluating the function at the discretization points given by X . i.e., Pi = P (X(i)), i ∈ IX .
To simplify the notation, we overload the terminology and define Px = PX−1(x),∀x ∈ X .
Note that given a discrete analogue P of a function P , we can approximate the value
P (x) for any x ∈ Ωx by interpolating between certain nodes of the tensor P .

For a high-dimensional function, naively approximating it using a tensor is intractable due
to the complexity of both the computation and the storage of the tensor (O(nd) where n
is the maximum number of discretization and d is the dimension of the function and hence
the order of the tensor). Tensor factorization solves the storage issue by representing a
tensor with its factors that have a smaller number of elements. While many factorization
techniques still require the computation of the whole tensor, one particular factorization
technique called cross-approximation allows us to directly compute the factors by using
only a function that can evaluate the value of the tensor given an index, hence solving
the computation issue. The following sections start by discussing matrix factorization
and cross-approximation for approximating 2D functions to provide some intuition and
then extend it to higher-order tensors.
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7.3.3 Separation of Variables using Matrix Factorization

Consider a continuous 2D function

P (x1, x2) : Ωx ⊂ R2 → R. (7.1)

Let Ωx = Ωx1 × Ωx2 be the rectangular domain formed by the Cartesian product
of intervals so that x1 ∈ Ωx1 and x2 ∈ Ωx2 . We can find a discrete analogue P
(which is a matrix in 2D case) of this function by evaluating the function on a grid-like
discretization of the domain Ωx. Let us discretize the interval Ωx1 and Ωx2 with n1
and n2 discretization points respectively. Let (x1

1, . . . , x
n1
1 ) and (x1

2, . . . , x
n2
2 ) be the

corresponding discretization points of the two intervals. The discretization set is then
given by X = {x = (xi11 , x

i2
2 ) : ik ∈ {1, . . . , nk}, k ∈ {1, 2}} and corresponding index set

is IX = {i = (i1, i2) : ik ∈ {1, . . . , nk}, k ∈ {1, 2}}. The corresponding discrete analogue
is then given by the matrix defined as

Pi1,i2 = P (xi11 , x
i2
2 ), ∀(i1, i2) ∈ IX . (7.2)

We can find a factorization of the matrix P to represent it using two factors (P 1,P 2)
with P 1 ∈ Rn1×r and P 2 ∈ Rr×n2 so that the elements of P can be approximated using
the factors as

Pi1,i2 ≈ P 1
i1,: P

2
:,i2 . (7.3)

The matrix factorization can be realized, for example, using QR, SVD, or LU decomposi-
tions. Such a factorization offers several advantages: firstly, it can be used to represent
the original matrix P compactly if the rank r is low. Moreover, as we now show, it
can be used to represent the function P in a separable form. First, note that (7.3) can
only be used to evaluate the function P at the discretized points in X . For a general
x = (x1, x2) ∈ Ωx, we can use linear interpolation between the rows (or columns) and
define the vector values functions

p1(x1) = x1 − xi11
xi1+1

1 − xi11
P 1
i1+1,: + xi1+1

1 − x1

xi1+1
1 − xi11

P 1
i1,:,

p2(x2) = x2 − xi22
xi2+1

2 − xi22
P 1

:,i2+1 + xi2+1
2 − x2

xi2+1
2 − xi22

P 2
:,i2 ,

(7.4)

where xikk ≤ xk ≤ xik+1
k , p1(x1) : Ωx1 ⊂ R→ R1×r and p2(x2) : Ωx2 ⊂ R→ Rr×1. Note

that we could also use higher-order polynomial interpolation here.
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Then, we have the approximation for the function P in a separable form,

P (x1, x2) ≈ p1(x1)p2(x2), ∀(x1, x2) ∈ Ωx

=
r∑
j=1
p1
j (x1)p2

j (x2).
(7.5)

Such a factorization of multivariate functions as a sum of product of univariate functions
is an extremely powerful representation. For example, the integration of the multivariate
function can be computed using integration of the univariate functions (factors) [159, 155].
If the multivariate function in hand is a probability density function, such separable
representation also allows elegant sampling procedures (e.g., using conditional distribution
sampling [145]) which will be discussed in Section 7.3.8.

In many engineering applications, we mostly deal with functions that have such separable
forms. Moreover, we often have functions characterized by some smoothness improving
separability. The degree of separability of the function P determines a certain low-rank
structure in the discrete analogue P of the function (often indicated by the number of
sums in the sum of products of univariate functions representation). This implies that
the rank r of the factors would be low and thus the number of parameters to represent
the factors is low.

The approximation accuracy of (7.5) also depends on the number of discretization points
and on the decomposition technique that we use to find the factors. For the case of 2D
functions, a common approach is to use matrix decomposition techniques such as QR,
SVD or LU decomposition to find the factors. However, a standard implementation of
these algorithms require the whole matrix P to be computed and stored in memory, and
incurs a computational cost of O(n1n2). Although the resultant factors would require
low memory for storage, if the discretization is very fine (i.e., n1 and n2 are very large
numbers), computing and storing the matrix P becomes expensive and inefficient.

A particular factorization technique called the cross approximation method avoids the
above problem. It can directly find the separable factors without having to compute and
store the whole tensor in memory. In the next section, we briefly explain the matrix
cross approximation technique and some of its interesting features that are exploited in
TTGO.

7.3.4 Matrix Cross Approximation

Suppose we have a rank-r matrix P ∈ Rn1×n2 . Using cross-approximation (a.k.a. CUR
decomposition or skeleton decomposition), this matrix can be exactly recovered using
r independent rows (given by the index vector i1 ⊂ {1, . . . , n1}) and r independent
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columns (given by the index vector i2 ⊂ {1, . . . , n2}) of the matrix P as

P̂ = P:,i2 P
−1
i1,i2

Pi1,:,

provided the intersection matrix Pi1,i2 (called submatrix) is non-singular. Thus, the
matrix P , which has n1n2 elements, can be reconstructed using only (n1 + n2 − r)r of
its elements (see Figure 7.1).

Now suppose we have a noisy version of the matrix P = P̃ +E with ‖E‖ < ε and P̃
is of low rank. For a sufficiently small ε, rank(P̃ ) = r so that the matrix P can be
approximated with a lower rank r (i.e., rank(P ) ≈ r). Then, the choice of the submatrix
Pi1,i2 (or index vectors i1, i2) for the cross approximation requires several considerations.
The maximum volume principle can be used in choosing the submatrix which states that
the submatrix with maximum absolute value of the determinant is the optimal choice.
If Pi∗1,i∗2 is chosen to have the maximum volume, then by skeleton decomposition we
have an approximation of the matrix P given by P̂ = P:,i∗2P

−1
i∗1,i
∗
2
Pi∗1,:. This results in a

quasi-optimal approximation:

‖P − P̂ ‖2 < (r + 1)2 σr+1(P ),

where σr+1(P ) is the (r + 1)-th singular value of P (i.e., the approximation error in the
best rank r approximation in the spectral norm). Thus, we have an upper bound on
the error incurred in the approximation which is slightly higher than the best rank r
approximation (Eckart–Young–Mirsky theorem).

Finding the maximum volume submatrix is, however, an NP-hard problem. However,
many heuristic algorithms that work well exist in practice by using a submatrix with a
sufficiently large volume, trading off the approximation accuracy for the computation
speed. One of the widely used methods is the maxvol algorithm [165] which can provide,
given a tall matrix P ∈ Rr×n2 (or Rn1×r), the maximum volume submatrix Pi∗1,i∗2 ∈ Rr×r.
The cross approximation algorithm uses the maxvol algorithm in an iterative fashion to
find the skeleton decomposition as follows:

1. Input: P ∈ Rn1×n2 , the approximation rank r for the skeleton decomposition.

2. Find the columns index set i∗2 and the row index set i∗1 corresponding to the
maximum volume submatrix.

(a) Randomly choose r columns i2 of the matrix P and repeat the following until
convergence:
• Use maxvol to find r row indices i1 so that Pi1,i2 is the submatrix with
maximum volume in P:,i2 .
• Use maxvol to find r column indices i2 so that Pi1,i2 is the submatrix
with maximum volume in Pi1,:.
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3. Output: Using the column index set i∗2 and the row-index set i∗1 corresponding
to the maximum volume submatrix, we have the skeleton decomposition P̂ ≈
P:,i∗2P

−1
i∗1,i
∗
2
Pi∗1,:.

In the above algorithm, during the iterations the matrices P:,i2 (or Pi1,:) might be
non-singular. Thus, a more practical implementation uses the QR decomposition of
these matrices and the maxvol algorithm is applied to the corresponding Q factor to
find the columns (or rows) of the submatrix. Furthermore, instead of a random choice
in step (2.1), one can choose the r columns from the multinomial distribution given by
p(i2) = ‖P:,i2‖

‖P ‖ , i2 ∈ {1, . . . , n1} without sample replacement.

Note that, in the above algorithm, the input is only a function to evaluate the elements
of the matrix P (i.e., we do not need the whole matrix P in computer memory). Some
features of cross approximation algorithms are highlighted below:

• The factors in a cross approximation method consist of elements of the actual data
(rows and columns) of the original matrix and hence it improves interpretability.
For example, SVD does projection onto the eigenvectors which could be abstract,
whereas cross approximation does projection onto the vectors formed by rows and
columns of the actual data of the matrix which are more meaningful.

• Since cross approximation algorithms follow the maximum volume principle, the
factors are composed of high magnitude elements of the original matrix with high
probability [165]. This is very useful for TTGO as we are interested in finding the
maxima from a tensor (discrete analogue of a probability density function) and the
skeleton decomposition preserves this information.

• Cross approximation algorithms directly find the factors without computing and
storing the whole matrix.

7.3.5 Tensor Train Decomposition

Similar to matrix factorization, tensor factorization allows us to represent a tensor by its
factors. Among the popular factorization techniques, we concentrate in this work on the
Tensor Train (TT) decomposition. TT decomposition encodes a given tensor compactly
using a set of third-order tensors called cores. A d-th order tensor P ∈ Rn1×···×nd

in TT format is represented using a tuple of d third-order tensors (P1, . . . ,Pd). The
dimension of the cores are given as P1 ∈ R1×n1×r1 ,Pk ∈ Rrk−1×nk×rk , k ∈ {2, . . . , d−1},
and Pd ∈ Rrd−1×nd×1 with r0 = rd = 1. As shown in Figure 7.2, the i-th element of
the tensor in this format, with i ∈ I = {(i1, . . . , id) : ik ∈ {1, . . . , nk}, k ∈ {1, . . . , d}}, is
simply given by multiplying matrix slices from the cores:

Pi = P1
:,i1,:P

2
:,i2,: · · ·P

d
:,id,:, (7.6)
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Figure 7.1 – For a given matrix P (top-left), suppose we know r independent columns
indexed by i2 = (i2,1, . . . , i2,r), i.e., P:,i2 ∈ Rn1×r and r independent rows indexed by i1 =
(i1,1, . . . , i1,r), i.e., Pi1,: ∈ Rr×n2 , with their intersection Pi1,i2 ∈ Rr×r being nonsingular.
Then, by skeleton decomposition we have P̂ = P:,i2P

−1
i1,i2

Pi1,:. If rank(P ) = r, then
P̂ = P (bottom row). For r < rank(P ) we obtain a quasi-optimal approximation,
P̂ ≈ P (middle row). The right figures show the rows and columns selected from the
original matrix by the cross approximation algorithm to find the skeleton decomposition.

where Pk:,ik,: ∈ Rrk−1×rk represents the ik-th frontal slice (a matrix) of the third-order
tensor Pk. The dimensions of the cores are such that the above matrix multiplication
yields a scalar. The TT-rank of the tensor in TT representation is then defined as the
tuple r = (r1, r2, . . . , rd−1). We call r = max (r1, . . . , rd−1) as the maximal rank. For any
given tensor, there always exists a TT decomposition (7.6) [144].

Similarly to (7.5), we can also obtain a continuous approximation of the function P as

P (x1, . . . , xd) ≈ P 1(x1) · · ·P d(xd), (7.7)

where P k(xk), k ∈ {1, . . . , d} is obtained by interpolating each of the core, analogously
to the matrix example in (7.4) (see Appendix B.1 for more detail). We overload the
terminology again to define the continuous TT representation as

Px = P (x1, . . . , xd), ∀x ∈ Ωx.

Due to its structure, the TT representation offers several advantages for storage and
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Figure 7.2 – TT decomposition is an extension of matrix decomposition techniques to
higher dimensional arrays. With a matrix decomposition, we can access an element of
the original matrix by multiplying appropriate rows or columns of the factors. Similarly,
an element of a tensor in TT format can be accessed by multiplying the selected slices
(matrices represented in red color) of the core tensors (factors). The figure depicts
examples for a 2nd order, 3rd order, and a 4th order tensor.

computation. Let n = max(n1, . . . , nd). Then, the number of elements in the TT
representation is O(ndr2) as compared to O(nd) elements in the original tensor. For
a small r and a large d, the representation is thus very efficient. As explained in
Section 7.3.3, the existence of a low-rank structure (i.e., a small r) of a given tensor
is closely related to the separability of the underlying multivariate function. Although
separability of functions is not a very well understood concept, it is known that smoothness
and symmetry of functions often induces better separability of the functions. By better, we
mean fewer low-dimensional functions in the sum of products representation. The degree
of smoothness can be formally defined using the properties of higher-order derivatives,
however, roughly speaking, it implies the degree of variation of the function across its
domain. For example, a probability density function in the form of a Gaussian Mixture
Model (GMM) is considered to become less smooth as the number of mixture components
(i.e., multi-modality) increases or the variance of the component Gaussians decreases
(i.e., sharper peaks).
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7.3.6 TT-Cross

The popular methods to find the TT decomposition of a tensor are TT-SVD [144],
TT-DMRG [159], and TT-cross [166]. TT-SVD and TT-DMRG, like matrix SVD, require
the full tensor in memory to find the decomposition, and hence they are infeasible for
higher-order tensors. TT-cross approximation (TT-cross) is an extension of the cross
approximation technique explained in Section 7.3.4 for obtaining the TT decomposition
of a tensor. We refer the readers to Appendix B.2 for more detail on how the matrix
cross-approximation algorithm described in Section 7.3.4 can be adapted to find the
TT decomposition using TT-cross. It is appealing for many practical problems as it
approximates the given tensor with a controlled accuracy, by evaluating only a small
number of its elements and without having to compute and store the entire tensor in the
memory. The method needs to compute only certain fibers of the original tensor at a
time and hence works in a black-box fashion.

Suppose we have a function P and its discrete analogue P (a tensor). Given a maximal
TT-rank r for the approximation, TT-cross returns an approximate tensor in TT format
P̂ = TT-cross(P, r) to the tensor P by querying only a portion of its elements (O(ndr2)
evaluations instead of O(nd)). This is very efficient if the TT-rank r of the tensor is low,
which is typically the case in many engineering applications, including robotics. Thus,
TT-cross avoids the need to compute and store explicitly the original tensor, which may
not be possible for higher-order tensors. It only requires computing the function P that
can return the elements of the tensor P at various query points, i.e., the fibers of the
tensor P .

7.3.7 TT Distribution

Suppose we use the tensor P in TT format to approximate an unnormalized probability
density function P within the discretization set X of the domain Ωx. We can then
construct the corresponding probability distribution that we call TT distribution,

Pr(x) = |Px|
Z

, x ∈ Ωx, (7.8)

where Z is the corresponding normalization constant.1 Due to the separable structure
of the TT model, we can get the exact samples from the TT distribution in an efficient
manner without requiring to compute the normalization factor Z. In the next section, we
provide details about sampling from the above distribution for the discrete case x ∈ X
which is adapted from a continuous version introduced in [145].

1Alternatively, we could also define the TT distribution to be Pr(x) = P2
x
Z
. All the techniques,

such as conditional sampling and prioritized sampling, used in this chapter can also be adapted to this
distribution. However, for simplicity of presentation, we do not consider it here.
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7.3.8 Sampling from TT distribution

Consider a probability distribution given by (7.8). For the simplicity of the presentation,
we assume Z = 1 as we will not require the normalization constant to be known for
sampling from the above distribution. The distribution can be expressed as a product of
conditional distributions

Pr(x1, . . . , xd) = Pr1(x1)Pr2(x2|x1) · · ·Prd(xd|x1, . . . , xd−1), (7.9)

where
Prk(xk|x1, . . . , xk−1) = σk(x1, . . . , xk)

σk−1(x1, . . . , xk−1)
is the conditional distribution defined using the marginals

σk(x1, . . . , xk) =
∑
xk+1

· · ·
∑
xd

Pr(x1, . . . , xd).

Let σ0 = 1. Now, using the above definitions, we can generate samples x ∼ Pr by
sampling from each of the conditional distributions in turn. Each conditional distribution
is a function of only one variable, and in the discrete case it is a multinomial distribution,
with
for k = 1, . . . , d do
xk ≈ Prk(xk|x1, . . . , xk−1)

end for

However, this is computationally intensive as sampling xk requires the conditional distri-
bution Prk which in turn requires the evaluation of the summation over several variables
to find the marginal σk. It results in a computational cost that grows exponentially
with the number of dimensions. This is where the TT format provides a nice solution
by relying on the separability of the function. Let P be the discrete analogue of the
function Pr (or P as Z = 1), a tensor in TT format, with the discretization set X . Let
the TT model be given by the cores (P1, . . . ,Pd), then we have

σk(x1, . . . , xk) =
∑
xk+1

· · ·
∑
xd

Pr(x),

≈
∑
xk+1

· · ·
∑
xd

|Px|,

=
∑
xk+1

· · ·
∑
xd

|P1
:,x1,:| · · · |P

k
:,xk,:||P

k+1
:,xk+1,:| · · · |P

d
:,xd,:|,

= |P1
:,x1,:| · · · |P

k
:,xk,:|

(∑
xk+1

|Pk+1
:,xk+1,:|

)
· · ·
(∑

xd

|Pd:,xd,:|
)
,

(7.10)

where
∑
xk
|Pk:,xk,:| is the summation of all the matrix slices (absolute values) of the third-

104



7.3. Background

Algorithm 6 TT-CD Sampling with Sample Prioritization
Require: TT Blocks P = (P1, . . . ,Pd) corresponding to the distribution Pr, sample

priority α ∈ (0, 1)
Ensure: N α−prioritized samples {(xl1, . . . , xld)}Nl=1 from the distribution Pr
1: π̂d+1 ← 1
2: for k ← d to 2 do
3: π̂k = (

∑
xk
Pk:,xk,:)π̂k+1

4: end for
5: Φ1 ← 1 ∈ RN×1

6: for k ← 1 to d do
7: πk(xk) = Pk:,xk,:π̂k+1, ∀xk
8: for l = 1, . . . , N do
9: pk(xk) = |Φk(l, :)πk(xk)|, ∀xk

10: pk ← pk
max pk

11: pk ← p
1

1−α+ε
k , where ε is positive and ε ≈ 0

12: pk(xk)← pk(xk)∑
xk
pk(xk) ,∀xk (normalization)

13: Sample xlk from the multinomial distribution pk
14: Φk+1(l, :) = Φk(l, :)Pk:,xl

k
,:

15: end for
16: end for

order tensor (cores of TT). Thus, the TT-format reduces the complicated summation
into one-dimensional summations. Noting that the same summation terms appear over
several conditionals Prk, we can have the an algorithm, i.e., Tensor Train Conditional
Distribution (TT-CD) sampling [145], to efficiently get the samples from Pr.

7.3.9 Prioritized Sampling

The previous section explains how to sample from a TT distribution. In some applications,
however, we do not necessarily want to sample from the whole distribution, but instead to
focus on obtaining samples from the high-density region (e.g., when we only want to find
the modes of the distribution). It is possible to adjust the previous sampling procedure
to allow prioritized sampling. Namely, we can choose a hyperparameter α ∈ (0, 1) to
prioritize samples from higher-density regions in the distribution Pr(x) given by (7.3.7).
α = 0 leads to generating exact samples from the true TT distribution whereas α = 1
leads to sampling from regions closer to the mode of the distribution. Values of α higher
than 0 reduce the likelihood of generating samples from low-density regions of the TT
distribution. This algorithtm is described in Algorithm 6. The prioritized sampling can
be relaxed by setting α = 0 in the algorithm, resulting in the standard sampling procedure
described in Section 7.3.8. Note that the algorithm allows parallel implementation to
quickly generate a large number of samples.
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7.3.10 Conditional TT Model and Distribution

Suppose we want to fix a subset of variables in x and find the corresponding conditional
distribution of the remaining variables. Without loss of generality, let x be segmented
as x = (x1,x2) ∈ Ωx = Ωx1 × Ωx2 with x1 ∈ Ωx1 ⊂ Rd1 , x2 ∈ Ωx2 ⊂ Rd2 . i.e., x1
corresponds to the first d1 variables in x. We are interested in finding the conditional
distribution Pr(x2|x1) of the TT distribution given in (7.8).

Suppose x1 takes a particular value xt. We can obtain Pr(x2|x1 = xt) by defining a
conditional TT model Px1=xt using TT model P as

Pxtx2 = P(xt,x2)∀x2 ∈ Ωx2 .

In other words, the TT cores of Px1=xt are then given by

(Pxt)k =

P
k
:,xtk ,:

, k ∈ {1, . . . , d1}
Pk, k ∈ {d1 + 1, d1 + d2}

(7.11)

Given the above-defined conditional TT model, we can obtain the conditional distribution
as

Pr(x2|x1 = xt) =
|Pxtx2 |
Z1

,∀x2 ∈ Ωx2 . (7.12)

Given x1 = xt, we can sample x2 from this distribution using Algorithm 6 with the
conditional TT model Px1=xt .

7.4 Methodology

7.4.1 Problem Definition

Cost functions in a robotics application often depend on two kinds of variables: task
parameters that are constant for a given optimization problem and decision variables
that are the variables being optimized (i.e., optimization variables). The task parameters
parameterize the possible tasks that could be encountered in a given application by the
robot. For example, in an inverse kinematics (IK) problem with obstacles, the task
parameters can be the desired end effector pose and the decision variables can be the
robot configuration, i.e., the joint angles. In most applications, we can anticipate the
possible range of the task parameters (e.g., the robot workspace for IK). This means that
ideally, we can solve the optimization problem many times for the whole range of task
parameters offline, and use this experience to speed up the online optimization for a new
task.
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We further note that the cost function in robotics is often a piecewise smooth function that
imposes a certain structure (i.e., low-rank structure as explained in Section 7.3) among
the variables of the cost function. For example, similarity in task parameters corresponds
to a certain similarity in the solutions to the optimization problem. Furthermore, there
can be strong correlations between the decision variables due to the cost function (e.g.,
the movements of the manipulator joints are correlated when it needs to maintain the
same orientation). Capturing this structure will enable us to model the relation among
the variables compactly instead of relying on database approaches that store every single
data point. To the best of our knowledge, such a structure has not been well exploited
so far, despite the fact that it exists in many robotic applications.

In this chapter, we propose a framework that exploits such a structure to gather experience
in the offline phase for faster optimization in the online phase. As discussed in Section 7.2,
the common approach using database and function approximators does not work well
when the optimization problems are highly non-convex with many poor local optima and
the solutions are multimodal. Our framework provides a principled solution to these two
problems. The following section presents the approach in detail.

7.4.2 Overview of the Proposed Approach

Given an optimization problem, our Tensor Train for Global Optimization (TTGO)
framework predicts approximate solution(s) that can be refined using an optimization
solver. The refinement can be done using standard Newton-type solvers such as SLSQP or
L-BFGS-B, so we focus our discussion on the problem of predicting a good approximation
of the solution.

Our approach first transforms the cost function into an unnormalized Probability Density
Function (PDF) and approximates it using a surrogate probability model, namely a TT
distribution. We view the cost function as a function of the optimization variables and
the task parameters which parameterize the optimization problem. Hence, the surrogate
model approximates the joint distribution of the task parameters and the optimization
variables. During online execution, when the user specifies a task parameter, we condition
this surrogate model on the corresponding task parameter. Then, we can sample from this
conditional distribution to obtain approximate solutions corresponding to the specified
task parameters. When the underlying PDF is multimodal, the samples will also come
from the multiple modes. These samples are good candidates for the solutions. We can
then select the best sample(s) by evaluating the corresponding cost functions and take
the sample(s) with the lowest cost (when multiple solutions are needed, we can keep
several best samples). In the second stage, these proposals for the optima are refined
using a suitable optimization technique, e.g. Newton-type solvers if the objective function
is differentiable.
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The feasibility of such an approach depends on the properties of the surrogate probability
model, namely:

• The surrogate probability model should be able to approximate a wide range
of probability density functions we encounter in robotics by using only the cost
function definition.

• Conditioning and sampling from the surrogate probability model determine the
speed of the online execution and hence it should be fast.

The first requirement comes from the fact that we do not usually have access to the
samples from the true probability distribution; we only have the definition of the density
function (corresponding to the cost function) that can return the value of the function at
a query point.

In our approach, we propose to use the TT distribution (Section 7.3.7) as the surrogate
model that satisfies the above requirements. The TT model defining the TT distribution
corresponds to the discrete analogue of the given unnormalized PDF, and it can be
obtained efficiently using TT-Cross algorithm (Section 7.3.6). The efficiency is in terms of
the number of evaluations of the target function to be modeled, the memory requirement,
and the speed of computation. The resultant TT distribution allows fast sampling
procedures (see Section 7.3.8). Since we use the samples from the TT distribution as
the solution candidates, we are often mainly interested in samples from the high-density
regions (i.e., the low-cost regions). This can be accomplished using the prioritized
sampling procedures for TT distribution (see Section 7.3.9).

In the following section, we provide the mathematical formulation of the approach.

7.4.3 Mathematical Formulation

Let x1 ∈ Ωx1 be the task parameter, x2 ∈ Ωx2 be the decision variables and x = (x1,x2).
Let C(x1,x2) be a nonegative cost function. Given the task parameter x1 = xt, we
consider the continuous optimization problem in which we want to minimize C(xt,x2)
w.r.t x2:

x∗2 = arg min
x2

C(x1,x2)

s.t. x1 = xt,

x2 ∈ Ωx2 .

(7.13)

We assume that Ωx1 ∈ Rd1 , Ωx2 ∈ Rd2 are both rectangular domain and let Ωx =
Ωx1 × Ωx2 ⊂ Rd with d = d1 + d2. TTGO decomposes the procedure to solve such an
optimization problem into two steps:
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1. Predict an approximate solution x̂∗2 that corresponds to the given x1 = xt, then

2. Improve the solution x̂∗2 using a local search (e.g., Newton type optimization) to
obtain the optimal solution x∗2.

To find the approximate solution(s) x̂∗2, we first convert the above optimization problem of
minimizing a cost function into maximizing an unnormalized probability density function
P (x1,x2) using a monotonically non-increasing transformation,

x∗2 = arg max
x2

P (xt,x2)

s.t. x1 = xt,

x2 ∈ Ωx2 .

(7.14)

For example, we can define P (x) = e−βC(x) with β > 0. Without loss of generality, in
the remainder of the chapter we consider optimization problems to be of type (7.14) with
the objective function being the density function.

In this probabilistic view, the solution x∗2 corresponds to the mode, i.e., the point with
the highest density, of the conditional distribution P (x2|x1 = xt). In general, however,
we do not have an analytical formula of P (x2|x1 = xt), and finding the mode is as
difficult as solving the optimization problem in (7.13). TTGO overcomes this issue by
first approximating the unnormalized PDF P (x1,x2) using a TT model as the surrogate
model to obtain the joint distribution Pr(x1,x2). Given the task x1 = xt, we condition
the TT model to obtain the conditional distribution Pr(x2|x1 = xt). Finally, the TT
model allows us to sample easily from its distribution to produce the approximate
solution(s) x̂∗2.

Approximating the unnormalized PDF using TT model

As described in Section 7.3, a TT model can approximate a multivariate function as
its discrete analogue, i.e., by discretizing the function on a rectangular domain and
storing the value in a tensor. For a high-dimensional function, however, it is intractable
to construct and store the whole tensor. To avoid the curse of dimensionality, we rely
on TT decomposition that allows us to store the tensor in a very compact form as TT
cores. We use the TT-cross algorithm that allows us to compute the TT cores without
having to construct the whole tensor, reducing the complexity of both the storage and
the computation significantly.

Given the unnormalized PDF P (x1,x2), TTGO uses the TT-Cross algorithm (see Section
7.3.6) to compute its discrete analogue approximation, i.e., P, in the TT format. The
construction of P only requires the computation of P (x1,x2) at selected points (x1,x2)
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in the rectangular domain. Instead of computing every single possible value of P in the
discretized domain (O(nd)), the TT-Cross algorithm only requires O(ndr2) cost function
evaluations, where n is the maximum number of discretization and r is the maximum
rank of the approximate tensor. More details on how to approximate the function using
the TT decomposition are described in Section 7.3.

The tensor model P is an approximation of the unnormalized PDF. We can construct
the corresponding normalized TT distribution Pr(x) with (7.8), which requires the
normalization constant as per the definition. However, as described in Section 7.3.8, we
can sample from the TT distribution without calculating the normalization constant.
Hence, in practice we can generate the samples by working directly with the unnormalized
density P .

Conditioning TT Model

After approximating the joint distribution, we can condition it on the given task. Given
the task parameter x1 = xt ∈ Ωx1 , we first condition the TT model P to obtain Pxt .
We then use it to construct the conditional TT distribution Pr(x2|x1 = xt) as described
in Section 7.3.10. This is the desired surrogate probability model for P (x2|x1 = xt).

Sampling

As described in Section 7.3.8, it is possible to sample efficiently from a TT distribution.
The sampling procedure consists of a repeated sampling of each dimension separately
from a multinomial distribution, as described in Algorithm 6. Furthermore, a sampling
parameter α ∈ (0, 1) can be chosen to the adjust the sampling priority (see Section 7.3.9).
When α = 0, the samples will be generated from the whole distribution (i.e., exact
sampling), including from the low-density region (albeit with a lower probability). Higher
α will focus the sampling around the area with higher density. This is ideal for robotics
applications, as some applications require a very good initial solution for fast optimization
(in that case, α is set near to one to obtain the best possible solution) while some others
prefer the diversity of the solutions (by setting a small α). As the sampling procedures
can be done in parallel, we can generate many samples and select the best few samples
according to their cost function values as the solution candidates x̂∗2.

7.4.4 TTGO Algorithm

1. Training Phase (Offline):

(a) Given:

• Cost function C(x1,x2),
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• Rectangular domain Ωx = Ωx1 × Ωx2

(b) Transform the cost function into an unnormalized PDF P (x1,x2).
(c) Discretize the domain Ωx into X = X1 ×X2.
(d) Using TT-Cross, construct the TT-Model P as the discrete analogue of P (x)

with discretization set X .

2. Inference Phase (Online):

(a) Given: The task-parameter x1 = xt ∈ Ωx1 , the desired number of solutions
K.

(b) Construct the conditional TT Model Pxt from P (see Section 7.3.10).
(c) Generate N samples {xl2}Nl=1 with the sampling parameter α ∈ (0, 1) from the

TT distribution Pr(x2|x1 = xt) = |Pxt
x2 |
Z (Algorithm 6).

(d) Evaluate the cost function at these samples and choose the best-K samples as
approximation for the optima {x̂∗l2 }Kl=1.

(e) Fine-tune the approximate solutions using gradient-based approaches on
C(xt,x2) to obtain the optima {x∗l2 }Kl=1.

7.5 Experiments

In this section, we evaluate the performance of the proposed algorithm with several
applications.2 We first apply it to some benchmark functions for numerical optimization
solvers to show the capability of TTGO to find global optima and multiple solutions
consistently. We then apply it to robotics applications, i.e., numerical inverse kinematics
and motion planning of manipulators. Besides qualitatively observing the solutions, we
also perform quantitative analyses to evaluate the quality of the approximate solutions
produced by TTGO. We consider three different metrics:

• ci, the initial cost value of the approximate solutions.

• cf, the cost value after refinement.

• Success, the percentage of samples that converge to a good solution, i.e., with the
cost value below a given threshold.

For comparison, we use random samples from the uniform distribution across the whole
domain to initialize the solver. We also use TTGO with different values of α to observe
the effect of prioritized sampling. We then evaluate the performance as follows. First, we
generate 100 random test cases within the task space. For each test case, we generate N

2 A PyTorch-based implementation of TTGO and the accompanying videos are available at
https://sites.google.com/view/ttgo/home
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samples and take the best sample (in terms of the initial cost value) as the approximate
solution. We use the number of samples N ranging from 1 to 1000 and generate the
samples using both methods (TT and uniform distribution). We use the SLSQP solver
to optimize this sample according to the given cost function. Finally, we evaluate the
three metrics on this sample, i.e., the initial cost ci, the final cost after refinement cf ,
and the convergence status. We then compute the average performance of both methods
across the whole test cases. The results for the robotics applications can be found in
Table 7.1-7.3 and will be explained in the corresponding sections.

7.5.1 Benchmark functions

We apply our framework to extended versions of some benchmark functions for numerical
optimization techniques, i.e., Rosenbrock and Himmelblau functions. They are known
to be notoriously difficult for gradient-based optimization techniques to find the global
optima, which could be more than one. Some of the functions also have some parameters
that can change the shape of the functions. We consider these parameters as the task
parameters, hence making the problem even more challenging. The benchmark functions
are considered as the cost functions and we transform them to obtain a suitable probability
density function. In addition, we also include a sinusoidal function to show that TTGO
can handle a cost function with an infinite number of global optima, and a mixture of
Gaussians to test the performance of TTGO on a high-dimensional multimodal function.

Furthermore, we also evaluate the prioritized sampling approach proposed in this chapter.
We show how the sampling parameter α influences the obtained solutions. When α is
small, the generated samples cover a wide region around many different local optima.
When α is close to one, the obtained samples are observed to be very close to the global
optima. All the results can be observed in Figure 7.3- 7.8, where the samples from the
TT distribution (without any refinement by another solver) are shown as blue dots. The
contour plot corresponds to the cost function in Figure 7.3-7.7 and the density function
in Figure 7.8, where the dark region is the region with low cost (i.e., high density).

In all of the test cases, we observe that the solutions proposed by TTGO are close to
the actual optima and that the refinement using SLSQP quickly leads to global optima
consistently. When there exist multiple solutions, we are also able to find them. Note
that the task parameters influence the locations of the global optima, and TTGO can
adapt accordingly by conditioning the model on the given task parameters. In all of the
following cases, we choose a uniform discretization of the domain with the number of
discretization points nk = 500 set for each variable to construct the TT model.

Except for the sinusoidal function, uniform sampling requires a large number of samples
to reach the global optima. For the mixture of Gaussians case, it fails most of the time to
get the global optima even after the refinement step. In contrast, we could consistently
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(a) α = 0 (b) α = 0.5 (c) α = 0.75 (d) α = 0.9

Figure 7.3 – 1000 samples (shown as blue dots) from the TT distribution of a 2D sinusoidal
function for different values of α. The function has an infinite number of global optima
(on the dark circles) and we see that TTGO is able to sample from these regions. As we
increase α, the samples become more concentrated on the circles.

get the optima using TTGO with few samples. In fact, by using α close to 1, we could
find the global optima with just one sample from the TT distribution.

Sinusoidal Function:

C(x) = 1− 0.5(1 + sin
(
4π||x||/

√
d
)
)

P (x) = 1− C(x),

where x = x2 = (y1, y2), ,Ωx2 = [−2, 2]2 with no task parameters. For this function, find-
ing the optima is not a difficult problem. However, as the cost function has uncountably
many global optima (on the circles separated by one period of the sinusoidal function),
we use it to test the approximation power of TT-model and check the multimodality in
the TTGO samples. As we can see in Figure 7.3 for d = 2, the samples from the TT
model mainly come from the modes corresponding to the optima and the nearby region
with cost values comparable to the optimal cost. At α = 0, we can still observe a few
samples in the white area (low density region), and as we increase α, the samples become
more concentrated in the dark area, i.e., high-density region.

Rosenbrock Function:

C(a, b, y1, . . . , yd1) =
d2/2∑
k=1

(y2k−1 − a)2 + b(y2k−1 − y2
2k)2

P (x) = exp
(
−C(x)2

)
,

where x = (x1,x2), x1 = (a, b), x2 = (y1, . . . , yd2), Ωx1 = [−1.5, 1.5]× [50, 150], Ωx2 =
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[−2, 2]d2 . The function is similar to a banana distribution which is quite difficult to
approximate. The cost function C(x) for a specified (a, b) has a unique global minima at
(a, a2, . . . , a, a2). However, if we do not initialize the solution from the parabolic valley
area (see Figure 7.4), a gradient-based solver will have difficulty in converging to the
global optima quickly. We can see from Figure 7.4 that TTGO samples are concentrated
around this region, allowing most of them to reach the global optima after refinement. In
fact, by increasing the α, the TTGO samples are already very close to the global optima
(as shown in red).

Figure 7.5 shows how the task parameters x1 = (a, b) change the shape of the function
with respect to x2 and consequently the location of the global optima. After the offline
training, we condition our TT model on these task parameters and sample from the
conditional distribution Pr(x2|x1 = (a, b)). We can see in this figure that TTGO can
adapt to the new task parameters easily, as the samples are concentrated around the
new global optima.

We also test TTGO performance on Rosenbrock functions for d2 up to 30 and find that
it can find the global optima consistently. We show in the figures the results for the 2D
case, which are easier to visualize.

Himmelblau’s function:

C(a, b, y1, y2) = (y2
1 + y2 − a)2 + (y1 + y2

2 − b)2

P (x) = exp
(
−C(x)2

)
,

where x = (x1,x2), x1 = (a, b), x2 = (y1, y2), P (x) = exp(−C(x)), Ωx1 = [0, 15]2, Ωx2 =
[−5, 5]2. The cost function C(a, b, y1, y2) for a given (a, b) has multiple distinct global
optima and many local optima. The samples from the TT distribution Pr(x2|x1 = (a, b))
are shown in Figure 7.6–7.7 for different choice of task parameters and the prioritized
sampling parameters α. We can see that TTGO can generate samples from all of the
modes consistently according to the task parameters.

Mixture of Gaussians:

P (x) =
J∑
j=1

αj exp
(
−βj ||x− aj ||2

)
,

We use an unnormalized mixture of Gaussian functions to define the probability function
P (x) to test our framework for high-dimensional multimodal functions. For verification,
we design the mixture components so that we know the global optima a priori by carefully
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(a) (a, b) = (1, 100) (b) (a, b) = (−1, 100) (c) (a, b) = (0.5, 60) (d) (a, b) = (0, 140)

Figure 7.4 – 1000 samples from the conditional TT distribution of a Rosenbrock function
for various choices of the task parameters (a, b) and α = 0. The function has a unique
global optimum at (a, a2) as shown in red. As the task parameters change, the global
optimum moves accordingly, but TTGO is still able to sample from the high-density
regions.

choosing the centers, mixture coefficients and variances. We test it for various values
for the number of mixtures J , β ∈ [1, 1000] and the dimension d ∈ (2, . . . , 50) of x. We
choose x = (x1,x2) with Ωx = [−2, 2]d for various choices of values and dimension of
x. As TTGO does not differentiate between task parameters and optimization variables
internally, we could consider various possibilities to segment x into (x1,x2) as task
parameters and decision variables. We tested this problem for d < 100, and our approach
could consistently find the optima with less than 100 samples from the TT-model, for
arbitrary choice of variables being conditioned as task parameters. In contrast, finding the
optima using Newton-type optimization with random initialization is highly unlikely for
βj > 1 and d > 10, even after considering millions of samples from uniform distribution
for initialization.

Figure 7.8 shows one particular example with J = 10, βj = 175 and d = 50. To visualize,
we choose x1 ∈ Rd−2 and x2 ∈ R2, and we generate 1000 samples from the conditional
TT distribution Pr(x2|x1). With low values of α, the samples are generated around all
the different modes, but as α is increased, the samples become more concentrated around
the mode with the highest probability.

7.5.2 Inverse Kinematics

We consider here the optimization formulation of Inverse Kinematics (IK), i.e., numerical
IK instead of analytical one. The task parameters x1 then correspond to the desired end
effector pose, while the decision variables x2 are the joint angles. We use approximately
n2 = 50 discretization points for each of the joint angles (∼ 5◦) and approximately n1 =
200 discretization points (∼ 0.5cm) for each task parameter. Ωx1 ⊂ R3 is the rectangular
space that includes the robot workspace. Ωx2 = ×d2

k=1[θmink , θmaxk ], Ωx2 ⊂ Rd2 where
[θmink , θmaxk ] represents the joint angle limits for the k-th joint.
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(a) α = 0 (b) α = 0.5 (c) α = 0.9 (d) α = 1

Figure 7.5 – 1000 samples from the conditional TT distribution of a Rosenbrock function
with the task parameters a = 1, b = 100 and various values of α. As α increases, the
samples become more concentrated around the global optimum (as shown in red).

(a) (a, b) = (13, 5) (b) (a, b) = (7, 11) (c) (a, b) = (3, 3) (d) (a, b) = (3, 14)

Figure 7.6 – 1000 samples from the conditional TT distribution of a 2D Himmelblau
function for various choices of the task parameters (a, b) and α = 0. The location of the
multiple global optima (in red) depend on the task parameters, but TTGO is able to
generate the samples from the high-density regions.

We consider two IK problems: 6-DoF IK to clearly demonstrate the multimodal solutions
and 7-DoF IK with obstacle cost to consider the infinite solution space. In both cases,
we transform the cost function into a density function as P (x) = exp

(
−C(x)2).

Inverse Kinematics for 6-DoF Robot:

A 6-DoF robot has a finite number of joint angle configurations that correspond to a
given end effector pose. In this section, we consider the 6-DoF Universal Robot that
can have up to 8 IK solutions. While there is an analytical solution for such robots, it
is a nice case study to illustrate the capability of TTGO to approximate multimodal
distributions in a robotics problem where the modes are very distinct from one another.
We constrain the end effector orientation to a specific value (i.e., facing upward without
any free axis of rotation), and set the end effector position as the task parameter. Hence,
x1 ∈ Ωx1 ⊂ R3 while x2 ∈ Ωx2 ⊂ R6, so d = 9, where Ωx1 is the rectangular domain
enclosing the workspace of the manipulator.
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(a) α = 0 (b) α = 0.5 (c) α = 0.9 (d) α = 1

Figure 7.7 – 1000 samples from the conditional TT distribution of a 2D Himmelblau
function with task parameters a = 7, b = 11 for various values of α. As α increases, the
samples become more concentrated around the global optima.

(a) α = 0 (b) α = 0.5 (c) α = 0.9 (d) α = 0.99

Figure 7.8 – 1000 samples from the conditional TT distribution of a mixture of Gaussians
with J = 10, d = 50, βj = 175, and various values of α. For visualization, we choose the
the first d− 2 coordinates of µj to be the same for all j and choose the task-parameters
to be the first d − 2 coordinate of the centers. This density function has one global
optimum (in red) and some other modes that are comparable to the global optimum. As
α increases, the samples become more concentrated around the mode with the highest
density.

We observe that TTGO is able to retrieve most of the 8 IK solutions for a given end
effector pose. Figure 7.9 shows the refined samples from TTGO by conditioning the TT
distribution on a desired end effector position. This validates our claim that TTGO is
able to approximate multimodal solutions even for a complex distribution.

Inverse Kinematics for 7-DoF Robot with Obstacle Cost:

Unlike a 6-DoF robot, a 7-DoF robot can have an infinite number of joint angle configu-
rations that correspond to a given end effector pose. It can also have several distinct
solution modes as in the 6-DoF case. Furthermore, we add an obstacle cost to the
optimization formulation such that the feasible solution is collision-free. We use the same
collision cost that is used in CHOMP [3], i.e., by using the precomputed Signed-distance
Function (SDF) to compute the distance between each point on the robot link to the
nearest obstacle. When there are obstacles, the standard way of doing numerical IK
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(a) (b) (c) (d)

Figure 7.9 – 8 IK solutions of the UR10 robot for a given pose from TTGO samples after
refinement, shown from four different views. 5 of the solutions are drawn transparently
to provide better visualization. The desired end effector position is shown in red.

is to generate multiple solutions and check for collision until we obtain one that is
collision-free. When the environment is cluttered with collision objects, the success rate
of this approach can be low, meaning that the user needs to generate a lot of IK solutions
before finding one that is collision-free. The addition of an obstacle cost helps the solver
to directly optimize a collision-free configuration, but at the same time, it increases
the non-convexity of the problem significantly. The solver can get stuck very easily at
poor local optima, especially with a large weight on the obstacle cost. This makes it an
interesting case study to showcase the TTGO capability of avoiding poor local optima.
We demonstrate that TTGO could be used to find solutions robustly.

We first test the IK with obstacle cost for a 3-DoF planar robot to provide some intuition
on the effectiveness of TTGO. Figure 7.10 and Figure 7.11 show some samples from
TTGO conditioned on the target end effector position (shown in red). By setting α = 1,
we focus the sampling around the mode of the distribution, enabling us to obtain a very
good solution even with only 1 sample (Figure 7.10). As we decrease α to 0.8 and retrieve
more samples, we can see that multiple solutions can be obtained easily (Figure 7.11).
Note that even without the refinement step, all samples reach the goal closely while being
collision-free.

We then apply the formulation on the 7-DoF Franka Emika robot, where the collision
environment is set to be a table, a box, and a shelf. The task parameters correspond
to the end effector position in the shelf, while the gripper is constrained to be oriented
horizontally with one free DoF around the vertical axis. Hence, x1 ∈ R3 while x2 ∈ R7,
so d = 10. The number of parameters of the TT cores is 1.4× 107 whereas the original
tensor P has 1× 1018 parameters. TT-cross found the tensor in TT-format using only
2× 108 evaluations of the function P . For this application, a rank of 60 already produces
satisfactory performance.

Figure 7.12 shows samples generated from a TT distribution on a given end effector
position after refinement. Note that unlike in the 6 DoF case, we can see here a continuous
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set of IK solutions due to the additional degrees of freedom. We also note that distinctly
different modes of solutions can also be observed in this case, as can be seen in the
accompanying video.

The result can be seen in Table 7.1. We can see that TTGO consistently outperforms
uniform sampling by a wide margin across the three metrics. The initial cost values
of TTGO samples are much lower than uniform samples, and after refinement, they
converge to smaller cost values on average. The success rates of TTGO samples are
also much higher. Furthermore, from qualitative analysis, the approximate solutions of
TTGO are very close to the optimized solution. It is especially important to note that
the best out of 1000 uniform samples (bottom right corner of the table) is still worse
than a single sample from TTGO with α > 0.75 (top left corner).

We can see the effect of prioritized sampling by comparing the performance of different
values of α. In general, using higher values of α improves the performance, as we
concentrate the samples around the high-density region. TTGO samples with α = 0.9
have impressive performance with 94% success rates even by using only one sample per
test case. However, higher α means less diversity of solutions, so a trade-off between
solution quality and diversity needs to be considered when choosing the value of α. Note
that even with α = 0 we still obtain a very good performance by using as few as 10
samples.

7.5.3 Motion Planning of Manipulators

In this section, we apply our framework to the motion planning of the Franka Emika
robot to find robot motions that avoid obstacles. Note that it is generally a very high-
dimensional problem. Given a robot with m DoF and considering T time intervals, the
optimization variables x1 have mT dimensions. If we want to ensure that the solution
avoids small obstacles, the number of time discretization should be large, i.e, bigger
than 100 in the case of CHOMP. That gives us more than 700 dimensions for motion
planning with a Franka Emika robot. To reduce the dimensionality, we use movement
primitives with basis functions as the trajectory representation, as commonly done in
learning from demonstration [30, 57]. With this representation, the optimization variables
consist of the superposition weights of the basis functions, which is much smaller than the
number of configurations. Furthermore, our specific formulation of movement primitives,
as described in Appendix B.5, ensures that the motion always starts from the initial
configuration and ends at the given final configuration. When the goal is given in the
task space, this means that we need to first find the corresponding final configuration,
e.g., using IK. In our motion planning formulation, we treat both the final configuration
and the weights of the basis functions as optimization variables and solve them jointly.
Finally, the cost function consists of the reaching cost, the joint limit cost, the smoothness
cost, and the obstacle cost (the same cost as used in IK). More details on the motion
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The performance measures for three different applications with the Franka Emika
manipulator. We compare the performance of TTGO for warm starting a given gradient-
based solver (namely, SLSQP) against initialization from uniform distribution. The three
performance metrics are the cost at the initialization (ci), the cost after optimization(cf )
using the solver and the success rate. The criteria for success is that cf ≤ 0.25. We
compute the average of each of these measures over 100 randomly chosen test cases. Each
of the target points are chosen so that they are sufficiently away from the surface of the
obstacle but they are not guaranteed to be feasible.

Table 7.1 – Inverse kinematics of the Franka Emika robot

Method α

# Samples

1 10 100 1000

ci cf Success ci cf Success ci cf Success ci cf Success

TTGO

0.9 1.04 0.01 94.0 0.55 0.02 98.0 0.37 0.02 98.0 0.26 0.02 99.0
0.75 1.52 0.07 84.0 0.65 0.02 95.0 0.37 0.02 95.0 0.24 0.03 97.0
0.5 2.01 0.08 88.0 0.85 0.04 93.0 0.43 0.04 93.0 0.28 0.01 98.0
0 2.88 0.17 71.0 1.23 0.05 91.0 0.68 0.05 91.0 0.39 0.04 96.0

Uniform - 8.42 1.22 37.75 4.47 0.91 45.5 2.56 0.5 59.25 1.59 0.24 75.0

Table 7.2 – Target Reaching

Method α

# Samples

1 10 100 1000

ci cf Success ci cf Success ci cf Success ci cf Success

TTGO

0.9 3.99 0.17 62.0 1.1 0.09 86.0 0.71 0.1 86.0 0.58 0.09 88.0
0.75 5.63 0.21 53.0 1.29 0.14 72.0 0.78 0.1 86.0 0.56 0.1 83.0
0.5 4.53 0.17 50.0 1.54 0.14 64.0 0.96 0.11 83.0 0.62 0.1 84.0
0 6.7 0.31 46.0 2.06 0.18 60.0 1.3 0.12 82.0 0.84 0.12 86.0

Uniform - 13.85 1.34 19.25 4.79 0.91 28.75 3.02 0.68 41.0 2.06 0.45 53.5

Table 7.3 – Pick-and-Place

Method α

# Samples

1 10 100 1000

ci cf Success ci cf Success ci cf Success ci cf Success

TTGO

0.9 2.41 0.16 70.0 1.41 0.15 81.0 1.05 0.15 79.0 0.87 0.14 89.0
0.75 3.25 0.17 66.0 1.71 0.17 66.0 1.31 0.14 84.0 1.01 0.15 78.0
0.5 4.31 0.26 54.0 2.33 0.19 62.0 1.66 0.17 77.0 1.29 0.18 76.0
0 6.2 0.27 48.0 2.98 0.23 48.0 2.17 0.21 58.0 1.61 0.18 71.0

Uniform - 9.64 0.78 23.75 5.23 0.63 30.25 3.95 0.49 39.5 3.07 0.39 44.25
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planning formulation can be found in Appendix B.4

We consider two different motion planning tasks as follows:

1. Target Reaching: From the initial configuration θ0 ∈ Rm, reach a target location
pd ∈ R3.

2. Pick-and-Place: From the initial configuration θ0 ∈ Rm, reach two target loca-
tions p1

d (picking location) and p2
d (placing location) in sequence before returning

to the initial configuration θ0.

For the target reaching problem, the task parameter is the target location x1 = pd and
the decision variables x2 = (θ1,w). Here, θ1 ∈ Ωθ ⊂ Rm is the joint angle defining
the final configuration and w = (wk)mk=1 ∈ RJm, where wk = (wkj )Jj=1 ∈ RJ are the
superposition weights of the basis functions representing the motion from θ0 to θ1. We
use J = 2 and m = 7 for the 7-DoF Franka Emika manipulator, so the total number of
dimensions for the reaching task is d = 3 + 7 + 2× 7 = 24.

For the pick-and-place problem, the task parameters are the two target locations (pick and
place location): x1 = (p1

d,p
2
d). The decision variables are x2 = (θ1,θ2,

01w, 12w, 20w),
where θ1 and θ2 are the configurations corresponding to the two target points, w =
(01wk, 12wk, 20wk)mk=1 where uvw ∈ RJm are the weights of the basis functions represent-
ing the movement from the configuration θu to θv. Hence, the total number of dimensions
for the pick-and-place task is d = 2× 3 + 2× 7 + 3× 2× 7 = 62.

We use the transformation P (x) = exp
(
−C(x)2). The target location pd for target

reaching and p1
d in the pick-and-place problem are inside the shelf as in the IK problems

(picking location). For the pick-and-place task, the second target location p2
d is on the

top of the box (drop location). We discretize each of the task parameters using 100
points and the decision variables with 30 points. We use radial basis functions with
J = 2, which we find sufficient for our applications. The bounds on the weights of basis
function for a joint are the same as the joint limits i.e., (wkmin, wkmax) = (θmink , θmaxk).

Figure 7.13 shows some examples of a reaching task for a 3-DoF planar manipulator. We
can see here that the TTGO samples lead to good solutions, i.e., they avoid collisions
while reaching the target quite accurately. In comparison, random sampling initialization
often results in poor local optima, where the final solutions still have collisions even after
the refinement. Figure 7.14 shows the same reaching task for the Franka Emika robot,
where the multimodality of the solutions is clearly visible. We also test the trajectory on
the real robot setup as shown in Figure 7.16 and 7.17.

The results are presented in Table 7.2 and 7.3. Similarly to the IK results, TTGO
outperforms uniform sampling by a wide margin across all metrics. In reaching tasks and
especially in pick-and-place tasks, uniform sampling performs quite badly in terms of
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(a) (b) (c) (d)

Figure 7.10 – A single sample taken from a conditional TT distribution with α = 1
for inverse kinematics of a 3-link planar manipulator in the presence of obstacles (gray
spheres). The yellow circle and the green segments depict the base and the links of the
robot, respectively. The target end effector positions are shown in red. The samples are
very close to the targets and collision-free, even without refinement.

(a) (b) (c) (d)

Figure 7.11 – Best 10 out of 50 samples taken from a conditional TT distribution with
α = 0.8 for inverse kinematics of a 3-link planar manipulator in the presence of obstacles.
The samples are already close enough to the optima even without refinement and the
multimodality of the solutions is clearly visible.

success rates, since the tasks are much more difficult than the IK problem. Taking only
1 TTGO sample also does not produce satisfying performance here (i.e., ∼ 60− 70%)
success rates, but using 10-100 samples already makes a good improvement. In pick-and-
place tasks, since we consider the three different phases as a single optimization problem,
it becomes quite complicated, and low values of α do not provide good success rates,
but prioritized sampling with α = 0.9 manages to achieve 89% success rates using 1000
TTGO samples.
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(a) (b) (c) (d)

Figure 7.12 – The samples taken from a conditional TT distribution for the IK of a
Franka Emika manipulator in the presence of obstacles, after refinement. We can see
that there is a continuous set of solutions due to the additional degrees of freedom.

(a) TTGO Task-1 (b) TTGO Task-2 (c) Random Task-1 (d) Random Task-2

Figure 7.13 – Motion Planning of Planar Manipulators: The task is to reach a given target
point in the square region depicted in cyan (task space) from a fixed initial configuration
(dark green configuration). The final configuration and the joint angle trajectory to reach
the target point are the decision variables. The approximate solutions from TTGO for
two different tasks are given in (a) and (b) (before refinement). The solution obtained
by a gradient-based solver with random initialization could result in poor local optima
as can be seen in (c) and (d).

7.6 Discussion

7.6.1 Quality of the Approximation

In this chapter, we used a TT model to approximate an unnormalized PDF. The quality
of the approximation highly depends on the TT-rank. A nice property of TTGO that
is derived from the TT-cross method is that the model capacity can be incrementally
augmented (i.e., non-parametric modeling). By increasing the number of iterations of
TT-cross and allowing a higher rank of the TT model, the approximation accuracy can
be improved continuously. Furthermore, we can also use the continuous version of the
TT model to allow continuous sampling. For initialization purposes, though, we found
that the discrete version is enough, as the initialization does not have to be precise.
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(a) (b) (c) (d)

Figure 7.14 – Best 3 out of 1000 samples taken from a conditional TT distribution
with α = 0.75 for the reaching task of a manipulator in the presence of obstacles, after
refinement. The initial configuration is shown in white, while the final configuration is
shown in red, green, and blue, for each solution. The end effector path is shown by the
dotted curves. The multimodality is clearly visible from these three solutions.

(a) (b) (c) (d)

Figure 7.15 – A sample taken from a conditional TT distribution for the pick-and-place
task, after refinement. (a) to (d) represent the same motion in different perspectives. In
green, we see the picking configuration (from the shelf) and placing configuration (on the
box), while the initial configuration is shown in white. The end effector positions in the
shelf and the box are the task parameters.

When training the TT model, we can evaluate the quality of the approximation by picking
a set of random indices, computing the value of the approximate function at those indices,
and comparing it against the actual function value. This is an important evaluation
for most applications that aim at finding an accurate low-rank TT decomposition of
a given tensor across the whole domain. For our case, though, we are only interested
in the maxima of the function, and we do not really care about the approximation
accuracy in the low-density region, i.e., the region with the high cost. Even if TT-cross
cannot find an accurate low-rank TT representation across the whole domain (e.g., due
to non-smoothness), it can still capture the maximal elements robustly [146, 165] as the
interpolation in the TT-cross algorithm is done using the high magnitude elements. In
practice, we found that even when the approximation errors do not converge during the
training, the resulting samples from the TT model are still very good as initialization.
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(a) (b) (c) (d)

Figure 7.16 – Real robot implementation of one of the TTGO solutions for the reaching
task. (a) to (d) shows the motion from the initial configuration to the final configuration.

(a) (b) (c)

(d) (e) (f)

Figure 7.17 – Real robot implementation of one of the TTGO solutions for the pick-and-
place task. (a) and (f) represent the initial and the final configuration of the robot (same
in this case), (a) to (c) show the motion from the initial configuration to the picking
configuration, (c) to (e) show the motion from the picking configuration to the placing
configuration.

7.6.2 Computation Time

The computation time of TTGO can be divided into offline computation, i.e., the time
to construct the TT model P, and online computation, i.e., the time to condition the
TT model on the given task parameters and to sample.

The offline computation time depends on the number of TT-cross iterations, the maximum
rank r, and the discretization (i.e., how many elements along each dimension of the
tensor). The number of function evaluations has O(ndr2) complexity hence linear in terms
of the number of dimensions and the number of discretization points. The computation
time of a single cost function also has a significant influence on the TTGO computation
time. However, we used parallel implementation with GPU that allows us to construct
all of the models in our applications in less than one hour.

The rank r and the number of iterations of TT-cross also determine the variety in the
solutions proposed by TTGO. If the application does not demand multiple solutions, we
can keep the maximum allowable rank of the TT model and the number of iterations of
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(b) d = 70

Figure 7.18 – Sampling Time: The sampling procedure has a computational complexity
of O(ndr2) and it is independent of the application. (a) and (b) show the computation
time curves for two different values of d with the size of each mode being n = 100. For
each figure, we show the sampling time for two different ranks as shown in red (r = 10)
and green (r = 50).

TT-cross to be very low which results in a significant saving in offline computation time
and the sampling time in the online phase. However, for the experiments in this chapter
we kept the rank r to be reasonably large (about r = 60 for IK and motion planning
problems with manipulators) so that we could obtain a variety of solutions from TTGO.

For most of the 2D benchmark functions, it takes less than 0.01s to obtain the TT
model. For the high-dimensional mixture of Gaussians and Rosenbrock functions with
d < 30, we could obtain good enough TT-models in less than 60s. It takes about 30s
for the inverse kinematics problem with the Franka Emika robot, which corresponds
to 30 iterations of TT-cross. Finally, the target reaching task takes around 10 minutes
while the pick-and-place task takes around 1 hour. The motion planning computation
time is relatively slower due to the time for computing a single cost function since we
compute the obstacle cost at small time intervals. It can be made faster by considering
the continuous collision cost as done in TrajOpt [148], since it allows us to use coarser
time discretization for evaluating the collision cost, resulting in a faster evaluation of the
cost function.

For the online computation time, the conditioning time is insignificant as it is very fast,
so we focus on the sampling time. Unlike the TT model construction, the sampling
time does not depend on the cost function and only depends on the size of the tensor.
The computation complexity is O(ndr2). Results of sampling time evaluation with the
different number of samples averaged over 100 tests are given in Figure 7.18. We show

126



7.6. Discussion

the results for d = 7 and d = 70, roughly corresponding to the IK and the pick-and-place
task, respectively. We can see that due to the parallel implementation, generating 1000
samples is not much different compared to generating 1 sample. For the IK problem,
generating 1 sample takes around 1-3 ms, which is comparable to the solving time of a
standard IK solver. For the pick-and-place task, generating 1 sample takes around 15ms,
much faster than a typical computation time for motion planning (typically in the order
of 1s).

The offline training uses an NVIDIA GEFORCE RTX 3090 GPU with 24GB memory,
while the sampling time evaluation is performed on an AMD Ryzen 7 4800U laptop.

7.6.3 Comparison With Previous Work Using Variational Inference

As described in Section 7.2.3, the work closest to our approach is SMTO [66] that also
transforms the cost function into an unnormalized PDF. SMTO uses Variational Inference
to find the approximate model as a Gaussian Mixture Model (GMM) by minimizing the
forward KL divergence. Its main limitation, however, is that it requires a good proposal
distribution to generate the initial samples for training the model. These samples are
used to find the initial GMM parameters, and subsequent iterations sample directly from
the GMM. Hence, the initial samples have a large effect on the final solutions. When
the initial samples do not cover some of the modes, subsequent iterations will have a
very small chance of reaching those modes. We verified this by running the open-source
codes provided by the author. Even for the 4-DoF manipulator example (Figure 7 in
their paper), with the standard parameters given by the author, SMTO cannot find a
single solution when the position of the obstacles are changed to increase the difficulty
of the motion planning problem (e.g., by moving the large obstacle closer to the final
configuration). It starts to find a solution only after we increased the covariance of the
proposal distribution by 10-100 times the standard values, because the initial samples
can then cover the region near the feasible solutions. Furthermore, when we added one
more obstacle, SMTO failed to find any solution, even with the higher covariance and a
larger number of samples. In comparison, we have shown in this chapter that TTGO
can solve difficult optimization problems reliably while also providing multiple solutions.
Their 4-DoF setup is in fact very similar to our planar manipulator example in Figure
7.13, and we have shown that TTGO can consistently produce good solutions for different
target locations. Since TTGO does not use any gradient information to find the TT
model, it does not get stuck in poor local optima easily. We provide more detail on the
comparison in Appendix B.6.

In [147], the author proposed another method called LSMO to handle functions with
an infinite set of solutions by learning the latent representation. As we showed in
Section 7.5.1 for sinusoidal and Rosenbrock functions, TTGO is naturally able to handle
these kinds of distributions, even without any special consideration or change on the
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method.

Unlike TTGO, SMTO and LSMO need to solve every single optimization problem from
scratch. In TTGO’s terminology, this corresponds to the task parameters being constant—
a special case of the problem formulation considered so far in this chapter. For such
problems, since we only have a single task, the training phase in TTGO can be much
faster by using a very low TT rank (r < 10 almost always works for most optimization
problems without task parameters) and fewer iterations of TT-cross. The advantage of
TTGO in such applications as compared to other global optimization approaches such as
CMA-ES is that TTGO can provide multiple solutions. For example,we have presented
TTGO as a novel framework to provide approximate solutions of an optimization problem.
By applying it on several challenging benchmark optimization functions and robotics
applications (inverse kinematics and motion planning), we have shown that TTGO can
provide diverse good quality solutions even for challenging optimization problems in
which the random initialization of solvers often fails. Furthermore, it can provide multiple
solutions from different modes (when these different options exist). We have also shown
that we can adjust the sampling priority, i.e., either to focus on obtaining the best
solution or to produce more diverse solutions. All of these features can be very helpful for
initializing optimization solvers on challenging problems. The method could potentially
be applied to other robotics challenges that can be formulated as optimization problems
such as task and motion planning or optimal control, as we plan to investigate in future
work. we could find the optima of a 50D mixture of Gaussians with 5 components and
30D Rosenbrock considered in Section 7.5.1 in less than 2 seconds. In this way, TTGO
can be considered as a tool for global optimization that can offer multiple solutions.
Appendix B.6 discuss this in more detail.

In this chapter, however, we proposed TTGO as a more generic tool. By anticipating and
parameterizing the possible optimization problems using the task parameters, TTGO
allows distribution of the computational effort into the offline and the online phase.
In practice, this means that most of the computation time takes place during offline
computation, while the online computation (conditioning on the TT model and sampling
from it) only takes a few milliseconds. SMTO and LSMO, in comparison, take several
minutes to solve a single motion planning problem for the 7-DoF manipulator case.
Similarly, most trajectory optimization solvers (e.g., CHOMP, TrajOpt) and global
optimization solvers (e.g., CMA-ES) can only solve a given optimization problem at each
run.

7.6.4 Multimodality

As we have shown in this chapter, TTGO is able to generate samples from multiple modes
consistently. Furthermore, continuing the iteration of TT-cross will result in covering
more modes as the rank of TT-model can be dynamically increased in the TT-cross
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algorithm. However, unlike GMM, it is not easy to sample from only a specific mode,
or to identify how many modes there are in a given problem. If we need to cluster the
samples, standard clustering algorithms such as k-means clustering can be used.

7.6.5 Further possible extensions

As test cases for TTGO, we considered in this chapter two robotics problems that are
commonly formulated as optimization problems with specific formulations of the IK and
the motion planning problems. However, the proposed method is more general and can
be applied to a variety of applications in robotics. For example, we can consider other
choices of task parameters, e.g., by including the initial configuration, the end effector
orientation, or even the position of obstacle(s) as task parameters.

TTGO approximates the joint distribution of the task parameters and the decision
variables. In the TT model, it does not differentiate between these two types of variables
internally. While in this chapter we always conditioned the model on the given task
parameters, we could actually choose any subset of variables from the joint distribution
to condition on. For example, for the IK problem, it is possible to also condition on one
of the joints, when we want to set a particular value for that joint. For the pick-and-place
task, it is even possible to condition only on the first target point, and the second target
point is treated as the decision variables. This means that we can obtain possible values
of placing locations that are optimal with respect to the cost functions and the first
target point. This flexibility does not exist in most other existing methods tackling
similar problems, and it would be interesting to further extend this capability in other
robotics applications.

Other robotics problems can be considered as long as they can be formulated as op-
timization problems. For example, optimal control formulates the problem of finding
the control commands as an optimization problem. There are recent works that used a
database approach to warm start an optimal control solver (as described in Section 7.2.2),
which could potentially be improved by the use of TTGO. Note here that such control
problems can be more challenging than the planning problems presented here as the
cost function is sharper (i.e., a slight change in the control command can result in a
very different state trajectory and hence the cost value). Further research would then be
required to adapt TTGO to such problems. Furthermore, some applications such as task
and motion planning [167] or footstep planner for legged robots [168] can be formulated
as Mixed Integer Programming. Since TTGO does not require gradient information,
such a combination of discrete and continuous optimization provides another interesting
application area to be explored.

In this chapter, we obtained the TT model (correspondingly the TT distribution which
captures the low cost solutions) in an unsupervised manner using TT-cross with access

129



Chapter 7. Tensor Train for Global Optimization Problems in Robotics

to only the definition of the cost function. This approach was motivated by the fact
that in many applications we do not have the access to the samples (or solutions) that
correspond to low cost for different task parameters. However, if we have a database of
good solutions (i.e., optimal solutions corresponding to different possible task parameters),
we can still use TTGO in an alternative way. In such cases, instead of using TT-cross to
obtain the TT model, we can use other modeling techniques such as supervised learning
or density estimation techniques as described in [160], [162], [163]. Such approaches,
due to the expressive power and generalization abilities of TT models, can still capture
multiple solutions while allowing fast ways to retrieve solutions as described in this
chapter. However, in robotics applications as described in Section 7.1, obtaining the
database of good solutions is a challenging problem.

The choice of transformation used to obtain the probability function from the cost function
plays an important role in TTGO. In this chapter, we used an exponential function as
the transformation function, however, a study on other possible transformation functions
should be investigated in future work. Moreover, in many robotics applications, the
user has the flexibility to design the cost function. This will also play a role in TTGO,
as smoother functions can be captured as a low rank TT model using TT-cross with
significantly lower computational cost. In the robotic applications considered in this
chapter we used the standard cost functions and it was non-smooth due to the cost on
collision avoidance. However, a smoother cost function could still potentially be designed
for such applications. This could improve the performance and the computation time
given in this chapter.

7.6.6 Limitations

One of the major limitations of TTGO is to scale it to very high-dimensional problems.
While we have tested TTGO up to d = 100 dimensions, many robotics problems involve an
even higher number of dimensions. For example, a standard motion planning formulation
of a 7-DoF manipulator in CHOMP can easily exceed 100 dimensions. In this chapter, we
overcome this issue by relying on motion primitive representations, which works well for
some trajectory planning applications. For other purposes, we may need to rely on other
nonlinear dimensionality reduction techniques as preprocessing such as autoencoders to
determine the choice of task parameters and the decision variables for TTGO.

Although constraints like joint limits can be handled naturally in TTGO, other constraints
in the optimization problem needs to be handled by imposing a penalty on the constraint
violation in the cost function itself (i.e., formulated as soft constraints, similar to the
problem formulation in evolutionary strategies and reinforcement learning). This may
not be ideal for some applications in robotics that require hard constraints. However,
the existing techniques for constrained optimization are mostly gradient-based, hence
sensitive to initialization. Thus, we could still use TTGO for initializing such solvers.

130



7.7. Conclusion

Note that to achieve fast offline computation time, TTGO requires a batch of cost
function evaluations to be processed in parallel. Without such parallelization available
for computation, the time to find the TT model using TT-cross would be too long.

7.7 Conclusion

In this chapter, we have presented TTGO as a novel framework to provide approximate
solutions of an optimization problem. By applying it on several challenging bench-
mark optimization functions and robotics applications (inverse kinematics and motion
planning), we have shown that TTGO can provide diverse good quality solutions for
challenging optimization problems in which the random initialization of solvers often
fails. Furthermore, it can provide multiple solutions from different modes (when these
different options exist). We have also shown that we can adjust the sampling priority, i.e.,
either to focus on obtaining the best solution or to produce more diverse solutions. All
of these features can be very helpful for initializing optimization solvers on challenging
robotics problems. The method could potentially be applied to other robotics tasks that
can be formulated as optimization problems such as task and motion planning or optimal
control, as we plan to investigate in future work.
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8 Discussion

8.1 Warm Starting Optimal Control Problem

In Chapter 4, we have discussed the problem of warm starting an OCP. In that chapter,
we always performed the prediction at the beginning of the motion. In practice, however,
we often solve an OCP in a receding-horizon MPC fashion. This implies that the memory
of motion may need to be queried at every MPC step, instead of only at the beginning,
and the time budget for refining the initial guess is limited by the MPC control frequency.
Furthermore, when running an MPC controller, it is common to initialize every MPC
iteration with the solution from the previous iteration. When there is no big change in
the OCP between two subsequent iterations, such initialization would already be very
good, and memory initialization would not be necessary. When there is a significant
change in the OCP, though, such as a moving obstacle, a moving target, or a large
disturbance, initialization using the previous solution may not be sufficient anymore,
and the memory of motion may provide a better initialization. In [45], we investigated
the problem of warm starting a whole-body MPC controller for the Talos humanoid
robot. The task was to move the robot’s hand to track a moving target while avoiding a
collision object, i.e., a pole. Instead of predicting the trajectory for the whole movement,
we only predict for the MPC horizon. To do that, we construct the dataset by running
the MPC controller itself in simulation, initialized by a constrained-RRT planner [34]
such that the solver can find solutions that are collision-free. While the collision object
is very simple, the MPC solver cannot perform well without a good initialization, i.e.,
the hand will simply stop in front of the pole without knowing that it can get around
the obstacle. In [45], we showed that the initialization from the memory helps the MPC
controller to avoid the poor local optima. Figure 8.1 shows some snapshots of both the
simulation and the experiment.

We also implemented a similar idea for the case of a whole-body MPC controller to control
Anymal locomotion for climbing stairs with trotting motion. Similarly to Section 8.1, we
also used the MPC controller to generate the dataset. Figure 8.2 shows an example of
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Figure 8.1 – The humanoid robot Talos 1 performing reactive collision avoidance while
following a moving target, driven by a whole-body MPC controller initialized by the
memory of motion at 100 Hz.

the Anymal climbing stairs. Similarly to [45]), the solver has some challenges in avoiding
the obstacles without good initialization. In [169], we showed that the initialization from
the memory of motion improves the success rates of the trotting motion.

8.2 Environment Representation

In Chapter 3-7, we always assumed that the environment is static. It implies that when
the environment changes, we need to re-generate the predictive models. However, in
many applications, the environment often remains unchanged except for a few moving
obstacles (e.g., a personal robot working in a kitchen will find that the kitchen will be
mostly the same except for some moving objects). We could potentially consider the
positions of these moving obstacles as additional inputs to the predictive model when
building the database. Moreover, since some of our proposed models can provide many
solutions, we could filter these solutions according to their collision status.

A more ambitious target is to consider handling major changes in the environment. To
do this, we need to use a good environment representation as an additional input to
the model. In some applications such as legged robot navigation, a 2.5D representation
such as a heightmap is often used [170, 171, 172]. Such a representation, however, is not
suitable for manipulation tasks where we need to consider the 3D obstacles. Voxel-based
representation exists where we generate a 3D grid of the task space and specify whether
each grid point has an obstacle, but the amount of parameters to represent it becomes
quite large. In [173], Strudel et al. use PointNet architecture to find a good representation
of a point cloud in the context of motion planning.

In [150], we considered an alternative environment representation called Tensor-Train -
Signed Distance Function (TT-SDF). For a given environment, we first computed a 3D
tensor that contains the SDF values (i.e., the distance to the nearest obstacle surface)
of all of the discretized points in the environment. We then used a Tensor Train (TT)
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(a) (b) (c)

(d) (e) (f)

Figure 8.2 – Anymal climbing stairs with 15cm height and 30cm width with the whole-
body MPC controller.

decomposition, the same technique used in TTGO, to find a low-rank representation of
the tensor. This allows us to have a more compact representation of the environment
which is then used as an input to the predictive model. Figure 8.3 shows some slices
of the SDF tensor with different ranks representing the environment on the left of the
figure. We can see that as the rank is lower, the resulting SDF matrix slice loses the
detail. For the trajectory prediction, however, we do not need to know the fine detail of
the environment, so a low-rank representation can still be useful to capture the main
features of the environment. Note that the rank-2 tensor only requires 320 parameters
compared to 64000 in the original tensor (2x2x2m environment with 0.05m discretization).
In [150], we showed that such representation is enough to predict good initializations in a
given random environment. We have tested it on a point mass and a quadcopter motion
planning. Since the data is multimodal, we used MDN as the function approximator.

8.3 Predicting Value Function

In most of this thesis, we concentrated on using the memory of motion to provide a
good initialization. However, a memory of motion could also potentially be used to
predict some other useful information. In Chapter 3, for example, we considered using
the memory of motion to choose between several possible goals. Another interesting
possibility, especially in the context of MPC, is to predict the value function.

A value function provides the information about how valuable it is to be in a state x at
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Figure 8.3 – Examples of SDF function plots associated to the environment (left) made of
three obstacles at different height. From left to right are the raw SDF and the low-rank
approximation with rank 10, 5, and 2, respectively. The table at the bottom left shows
the number of parameters for a given rank.

time t (for finite-horizon problem) when considering the long-term goal. If we have a
perfect value function, we can reduce an optimal control problem from a finite horizon
problem to a one time step optimization, since the value function can tell us where to
move optimally with respect to the goal. However, computing the value function is often
intractable. This motivates some works that try to predict the value functions based on
previous experience [174, 175], which can be seen as another form of memory of motion.
Since the value function would not be approximated perfectly, we cannot reduce the
horizon to one time step, but we can reduce the length of the horizon quite significantly.

In [113], we applied the idea to Visual Predictive Control (VPC), i.e., visual servoing
using an MPC formulation. We used the memory of motion to predict not only the
initialization but also the waypoints, i.e., the local goals (in the forms of visual features)
to be reached by the robot at the end of the current horizon. These waypoints were then
used to formulate the terminal cost function of the VPC problem, effectively serving
as the approximate value function. The terminal cost informs the solver that the robot
should try to reach this waypoint at the end of the horizon. This allowed us to reduce the
horizon from 30 time steps to only 3 time steps while achieving even better performance
than the long horizon VPC. Without the value function, the solver would not be able to
consider the long-term goal and get stuck at poor local optima.

In [176], we applied a similar idea to Multi-Contact Receding-Horizon Planning (RHP),
where the optimization solver plans the center-of-mass trajectory and the footstep
locations of a biped walking through an unstructured environment full of rubbles. We
used the memory of motion to predict a local objective, i.e., the optimal center of mass
position and the footstep location at the end of the horizon, and construct a terminal
cost function to reach this local objective. Again, we found that the approximate value
function prediction allows us to reduce the planning horizon from 2-3 steps to only 1
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step. This makes the online RHP execution feasible since the computation time is now
within the time budget. Figure 8.5 shows an example of the planned motion, where we
used TSID to track the planned center-of-mass trajectory and the footstep locations.

8.4 Evaluating Warm Start Performance

Using machine learning to predict the initialization in a way removes some burden
from the learning algorithms, as we do not require them to be very precise. For many
applications considered in this thesis, accurate prediction (especially for control problems)
using only machine learning is very challenging. On the other hand, evaluating the
performance of the initialization is not very straightforward.

During the training of the model, especially in supervised learning, the most convenient
way to test the prediction quality is to compare it against the ground truth, usually a test
set separated from the training set, using standard metrics such as the L2 norm of the
difference between the predicted value and the ground truth. For multimodal problems,
however, such a metric does not provide very useful insight into the model performance,
as we may be comparing a good prediction against the ground truth solution but coming
from a different mode, resulting in a large prediction error. Furthermore, a model with
better accuracy based on the test set does not necessarily perform significantly better
than another model with less accuracy, as we saw in Chapter 4 with GPR and GMR.
Indeed, the optimizer may require a similar number of iterations to converge when it is
initialized by two different initial guesses, even when one is closer to the optima.

The number of iterations to convergence is also not very useful when evaluating the
warm start performance. We observed that in many problems, even though the initial
guess is very close to the optima, it only speeds up the convergence by at most two
times compared to a standard initialization. This depends on both the optimization
problems and the solvers. For an unconstrained convex problem, starting with a good
initial guess close to the optima may require only 1-2 iterations, especially when using
Newton method. In nonconvex problems with many constraints, on the other hand, the
optimization solver may continue to improve the solution without converging, resulting in
a large number of iterations even though the solution may already be feasible. Concerning
the solver, some solvers can benefit from good initialization better than other solvers.
For example, when evaluating the GAN sampler in Chapter 6, we did a comparison
between using L-BFGS-B and Gauss-Newton as the optimization solver. When provided
with good initialization, L-BFGS-B still requires around 10 iterations until convergence,
while Gauss-Newton requires only around 3 iterations. This is because Gauss-Newton
provides a good approximation of the Hessian for a nonlinear least-squares problem, while
L-BFGS-B still requires several iterations to find a good approximation of the Hessian.

Some works [177, 178] consider the evolution of the cost function values over the op-
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(a) (b) (c)

(d) (e) (f)

Figure 8.4 – Robot experiment using the memory of motion: VPC is able to avoid the
occlusion and achieve the desired task. (a) to (c) show the robot moving the end effector
such as the visual features (shown in blue) moves to match the desired visual features
(shown in red) while avoiding the blurred area at the center (shown as white box). (d) to
(f) shows the VPC failure when initialized by previous solutions, the robot is stuck at a
local optima and does not move anymore.

timization iterations when initialized by the warm start or the standard initialization.
This provides more useful information, as we can often see from the plots that the
good initialization has a low initial cost value and reaches an acceptable value with few
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Figure 8.5 – Snapshots of our simulation on the terrain with moderate slopes (5-12
degrees).

iterations, even though the convergence may take longer. In robotics, we often do not
need the solver to converge, as long as the solutions are feasible. In practice, we can set
some thresholds with respect to the cost function values and stop the iterations as soon
as the cost value is below the threshold regardless of the convergence.

Ultimately, the most useful way of evaluating the prediction quality is by implementing
it on the real system and testing the actual target metric, e.g., the success rates or the
final cost value. These metrics take much longer to compute compared to testing against
the ground truth data, but they provide a more solid and useful evaluation. While it is
more difficult to train the model using these metrics, some works construct the memory
of motion by iterating between training the memory of motion based on the dataset and
using the memory of motion in a real setting to gather more training data based on its
real performance [70, 179].

8.5 Supervised Learning versus Probability Density Esti-
mation

In the first part of this thesis, we have explored various supervised learning techniques to
predict the initialization. The advantages of the supervised learning formulation are that
it is easy to formulate and there are a lot of function approximation techniques available.
However, as we have shown in Part I, using those techniques as a black box may result in
poor prediction, especially for multimodal problems. While several models such as GMM
and MDN can improve the prediction in such cases, we still need to ensure that the
different modes are sufficiently covered in the dataset. Furthermore, standard supervised
learning only uses the prediction accuracy with respect to the ground truth (i.e., the
dataset) to train the predictive model. In multimodal problems, however, prediction
accuracy may not correspond to the main objective, i.e., providing an initialization that
is near to good local optima. In the motion planning case, for example, a model may
predict a good motion that completes the task succesfully (e.g., reaching the target while
avoiding the obstacles), but such a motion does not exist in the database. In that case,
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the prediction accuracy of the model will be low, although the performance is actually
good. This is because such supervised learning models do not consider the actual cost
function when training the models, although we have access to the cost function.

In Part II, we explored other models that make better use of our knowledge about the cost
function. We first transformed the cost function into a (possibly unnormalized) PDF and
used various probability density estimation techniques to approximate the PDF. These
techniques, in our view, provide much better predictions compared to supervised learning,
as the information about the cost function is used to construct/train the predictive
model. The model predicts approximate solutions that have good probabilities of having
low-cost values instead of simply imitating the dataset. In the proposed GAN framework
(Chapter 6), for example, we used the cost functions related to the IK to train the
generator, on top of the standard cost function based on the discriminator output. It
help the generator to avoid averaging the multimodal solutions, even when we use a
standard MLP as the generator (compare this with training the MLP in a supervised
manner, where it will average the different modes). In Chapter 7, we used a tensor to
approximate the unnormalized PDF that corresponds to the cost function, allowing us
to sample approximate solutions from high-density regions, i.e., regions with low-cost
values. In conclusion, using the cost functions for training the predictive model helps in
providing good and rich initializations, especially when such cost functions are readily
available for the given tasks.

While Chapter 5 is limited to optimal control problems solved by iLQR, the methods
in Chapter 6 and 7 are more general. Given an optimization problem, it is possible to
approximate the corresponding PDF by using either GAN or TT model. However, there
are several important differences between the two methods. While it is easier for GAN to
scale up to higher dimensions (it has been used for generating videos), GAN requires a
dataset of good solutions generated by some other methods. This makes it more difficult
to apply it on challenging optimization problems, as generating a good dataset that covers
the whole solution space is not trivial. In contrast, TTGO does not require a dataset
generated by another method. It only requires the cost function definition, making it
more easily applicable to general optimization problems. Furthermore, as described in
Chapter 6, GAN often converges to only a subset of the modes. While this was mitigated
in Chapter 6 by using an ensemble of networks as the generator, it remains heuristics
and there is no guarantee that the different networks will converge to different modes.
In contrast, TTGO handles multimodal problems naturally without any heuristics. As
we continue the training and the maximum rank is increased, the capacity of the model
will continue to grow and it can cover more modes (unlike GAN, which is limited by the
structure of the generator and the discriminator). It is more difficult, however, to scale
TTGO to very high-dimensional problems compared to GAN. Moreover, the sampling
time for GAN is faster than TTGO. With these differences, the two methods are quite
complementary and exploring both methods for other optimization problems in robotics
would be an interesting future direction.
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8.6 Comparison with Deep Reinforcement Learning

Recently, Deep Reinforcement Learning (Deep RL) has gained popularity due to its
impressive performance on challenging tasks, including in legged robots locomotion [116,
170, 171, 180, 181, 182]. RL models can also be seen as another form of memory of
motion where we use the experience to train a policy network. There is, however, an
important difference with the approaches considered in this thesis. In most RL works,
the aim is to use the learned model to directly control the robot. The model is hence
required to be very precise and reliable, which are difficult to ensure. In most cases,
they accomplish this at the expense of a huge computation cost and a long training
time. On the contrary, in our approach, we only require the model to provide an initial
guess that helps the solver to avoid poor local optima and to speed up the computation.
The required precision is achieved by the optimization solver, which is model-based.
This gives us a more predictable and reliable behavior as compared to RL methods.
Additionally, for most of the works in this thesis, the computation only requires between
a few seconds to at most a few hours with a standard computer.
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9.1 Conclusion

In this thesis, we have explored the idea of using a memory of motion to improve the
performance of optimization solvers for a wide range of robotics problems in the field of
motion planning and robot control. The memory of motion consistently improves the
solver’s performance in terms of the computational speed, the quality of the solutions, and
the success rates. We considered two different formulations in this thesis, i.e., supervised
learning and probability density estimation.

In Part I, we formulated the problem of constructing the memory of motion as a regression
problem to learn the mapping from the task descriptors to the initial guess, and we used
various supervised learning techniques to solve the regression problem. In Chapter 3,
we proposed an ensemble method that combines different function approximators (i.e.,
k-Nearest Neighbors (k-NN), GMR, and GPR) to initialize an optimization-based motion
planner. We showed that GMR can handle multimodal problems better than GPR, but
GPR outperforms GMR when there is no multimodality. Combining several function
approximators with different characteristics results in a significant increase in the success
rates. In Chapter 4, we considered warm starting an optimal control problem for biped
locomotion on a flat ground. Besides predicting the state trajectory, we also need to
provide the initial guess of the control sequence. We considered different combinations
of initialization elements and show that providing both the state trajectory and control
sequence as initialization results in the best performance.

The techniques in Part I do not make use of the cost function in the training loop. As
such, they only imitate the solutions in the database, and the resulting predictions do
not necessarily have a low cost, especially in the case of multimodal problems. In Part
II, we considered a different formulation by first transforming the cost function into an
unnormalized PDF. We then considered several different techniques to approximate the
PDF. In Chapter 5, we made use of the fact that iLQR solves an optimal control problem
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by solving an LQR problem at each iteration. Since the solution of an LQR problem
can be interpreted as a Gaussian distribution, we proposed an approximate solution to
an iLQR problem as a Gaussian distribution centered at the optimal solution, while the
covariance is the inverse of the (approximate) Hessian. This is similar to using Laplace
approximation to approximate the posterior distribution, except for the fact that the
Hessian is approximate (since the dynamics is approximated as a linear function). We
showed that tracking this distribution with a short-term horizon MPC results in a more
robust and control-efficient controller compared to tracking only the optimal solution
(i.e., the mean of the distribution).

In Chapter 6, we used a modified GAN framework to approximate the probability density
induced by the cost function. We first generated a dataset using the cost function, but
instead of solving a regression problem as done in Part I, we used the dataset to train
both a generator and a discriminator in an adversarial manner. Furthermore, we also
trained the generator with the original cost function, in addition to the standard cost
function based on the discriminator output. It helps the generator to avoid averaging
multiple modes even when using a standard MLP. To help the generator to cover a larger
portion of the distribution, we used an ensemble of networks that are proven to be able
to produce multiple solutions. We showed that the proposed method can generate good
samples from the constrained manifold in the robot configuration space.

In Chapter 7, we explored the use of tensor methods to approximate an unnormalized
PDF induced by a cost function. The PDF is first discretized over a rectangular domain,
and we consider a tensor as the discrete approximation of the PDF. We then use the
TT-cross algorithm to compute the TT decomposition of the tensor, which allows us
to have a compact representation of the tensor model. Moreover, TT-cross also allows
us to construct the tensor model without having to compute and store all the elements
in it. Since the method does not rely on gradient information, we observed that it
can often find the global optima even for challenging problems. After the training, we
can condition the TT model on a given task parameter to obtain the corresponding
approximate solutions quickly, in the order of milliseconds. We tested the proposed
method first on some benchmark functions and then on robotics problems including
inverse kinematics with obstacles and motion planning. We showed that the methods
can provide good approximate solutions that come from multiple modes when they exist.

We discussed in Chapter 8 that the use of cost functions in the training loop is important
when predicting good initialization compared to simply imitating the dataset. We also
discussed the challenge of evaluating the warm start quality. Finally, we presented several
other works that are not included in the main chapters, including warm starting MPC
solver, considering environment representation using a TT decomposition, and using the
memory of motion to predict the value function to shorten the MPC horizon.

In conclusion, we have shown that the concept of memory of motion has a significant

144



9.2. Future Works

benefit to the optimization solver. There are various methods and approaches available to
provide such initialization, of which we have explored quite a few in this thesis. As more
and more problems are cast as optimization problems, exploring the memory of motion
idea will continue to be interesting and relevant to the robotics community. Finally, in
the next sections, we consider some future directions that can be pursued in this field.

9.2 Future Works

9.2.1 Other Usages of a Memory of Motion

The basic idea of a memory of motion is that we use our previous experience to guide
future tasks. We have so far considered several usages of a memory of motion, e.g.,
to provide the initialization, or to predict the value function. Other potential usages
of memory of motion can also be explored. For example, in manipulation tasks, force
interactions with the environment or the objects to be manipulated can be quite intricate,
and using the memory to provide the expected force profile can be interesting to explore.
Some work from the learning from demonstration field has explored this idea by using the
Dynamical Movement Primitives (DMP) to encode both state and force trajectory [73].
As simulation tools and optimization-based solvers for contact manipulations improve,
we can potentially generate a database of such force information and use the memory to
predict the expected force profile for a given task. Another possibility is in the field of
multi-contact locomotion [168], where the memory of motion can be used to predict the
good contact locations or the optimal contact surfaces to make contact with. A similar
problem in task and motion planning [167], where the robot needs to choose the optimal
discrete sequence of tasks while optimizing the continuous motions at the same time, can
also benefit from the memory of motion.

9.2.2 Data Generation

Generating a dataset of optimal solutions is not trivial for many optimization problems.
The standard approach of random initialization and using the optimization solvers to
obtain the optimal solution, as used in most of this thesis, can miss many important
solutions, especially for challenging tasks. TTGO (Chapter 7) offers a nice solution to
the data generation by integrating the dataset construction, representation, and learning
in one model, i.e., the TT model. However, to scale up to higher dimensional problems
(i.e., higher than 100 dimensions), further research has to be done. Iterating between
data generation and model training, as done in [70, 179] can potentially be explored.
Furthermore, active sampling strategy [183, 184] can also be investigated to build a
minimally sufficient dataset.

In [150], we have attempted to consider an environment representation in the memory of
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motion. Besides finding the proper environment representation, generating a random 3D
environment is also not trivial. If we consider the voxel-based representation, there is
practically intractable number of possible environments that can be generated. However,
not all of those possibilities have real practical values. Instead, most works simply pick a
set of possible environment primitives and generate a random environment by mixing
those primitives. For example, in [185, 186], they generate a random table environment
by picking several objects from a fixed set and dropping them randomly from above
the table. In [170], Chemin et al. set some standard environment primitives such as
stairs, flat ground, and rubbles, and generate a random combination of them. These
ideas can be adapted to other applications, although it is not always easy to determine
these primitives.

9.2.3 Using the Cost Functions in the Training

In Part II, we have considered using the cost functions to train the predictive model,
specifically by transforming it into an unnormalized PDF. There are other ways to include
it in the training, e.g., by performing iterative learning between training the model and
generating new data using the trained model [70]. We can also use the cost functions as
the additional loss functions to train the supervised learning model, especially if we can
get access to the gradient of those cost functions, similar to what we did in Chapter 6.
Finally, the emerging class of differentiable simulators [187, 188] opens the possibility of
differentiating cost functions that were previously intractable, such as in the simulation of
legged robot locomotion or robot manipulation involving contacts with the environment
or the objects.

9.2.4 Trajectory Representation

In many applications, the output of the predictive model is a trajectory of some quantities,
e.g., the robot state, the control command, etc. Such outputs are very high-dimensional,
and the variables are usually highly correlated due to the smoothness property or some
synergy between the different joints. It is difficult to ask the predictive model to output
the whole trajectory in the raw state, as the correlations will be difficult to enforce.
Finding a low-dimensional representation that keeps the correlation structure of the
trajectory will help the predictive model to provide a better prediction.

In this thesis, we concentrated on using either Radial Basis Functions (RBFs) or Principal
Component Analysis (PCA) to represent a trajectory. This simple representation manages
to capture the basic correlation between the output variables and enforce the smoothness
property, and in our applications, we found that they produce good enough results.
More sophisticated nonlinear dimensionality reduction techniques such as Mixture of
Probabilistic Principal Component Analyzers (MPPCA) [189] and Mixture of Factor
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Analyzers (MFA) [190] can also be considered. However, these methods cannot ensure
that the constraints are satisfied, e.g., joint limit or dynamic stability, or even nearly
satisfied. In the case of locomotion task, it is especially difficult to ensure that the
resulting predicted trajectory is located in the motion manifold, i.e., that the stationary
foot remains in place while the other is moving, or that the trajectory is dynamically stable.
In Chapter 6, our proposed GAN framework manages to learn a latent representation of
the configuration space, such that samples generated from this latent space are still close
to the constraint manifold. As emphasized earlier, the use of cost functions in the model
training helps to constrain the predictions within the manifold. However, we have only
applied the GAN framework to predict a specific configuration instead of a full trajectory.
Other works also learn the latent representation of walking motion [191, 192, 193] and
managed to obtain some meaningful results. Using these kinds of representations in the
memory of motion can result in better performance as the predicted trajectory can retain
the correlations that exist between the variables.

147





A List of Publications

The following is the list of publications by the author during the course of the doctorate
study:

• T. S. Lembono, F. Suárez-Ruiz, and Q.-C. Pham, “SCALAR-simultaneous calibra-
tion of 2d laser and robot’s kinematic parameters using three planar constraints,”
in Proc. IEEE/RSJ Intl Conf. on Intelligent Robots and Systems (IROS), 2018, pp.
5570–5575

• ——, “SCALAR: Simultaneous calibration of 2-d laser and robot kinematic param-
eters using planarity and distance constraints,” IEEE Transactions on Automation
Science and Engineering, vol. 16, no. 4, pp. 1971–1979, 2019

• T. S. Lembono, A. Paolillo, E. Pignat, and S. Calinon, “Memory of motion for
warm-starting trajectory optimization,” IEEE Robotics and Automation Letters
(RA-L), vol. 5, no. 2, pp. 2594–2601, April 2020

• E. Pignat, T. Lembono, and S. Calinon, “Variational inference with mixture model
approximation for applications in robotics,” in Proc. IEEE Intl Conf. on Robotics
and Automation (ICRA), 2020, pp. 3395–3401

• T. S. Lembono, C. Mastalli, P. Fernbach, N. Mansard, and S. Calinon, “Learning
how to walk: Warm-starting optimal control solver with memory of motion,” in
Proc. IEEE Intl Conf. on Robotics and Automation (ICRA), 2020, pp. 1357–1363

• A. Paolillo, T. S. Lembono, and S. Calinon, “A memory of motion for visual
predictive control tasks,” in Proc. IEEE Intl Conf. on Robotics and Automation
(ICRA), 2020, pp. 9014–9020

• T. S. Lembono, E. Pignat, J. Jankowski, and S. Calinon, “Learning constrained
distributions of robot configurations with generative adversarial network,” IEEE
Robotics and Automation Letters (RA-L), vol. 6, no. 2, pp. 4233–4240, 2021

149



Appendix A. List of Publications

• E. Dantec, R. Budhiraja, A. Roig, T. Lembono, G. Saurel, O. Stasse, P. Fernbach,
S. Tonneau, S. Vijayakumar, S. Calinon, et al., “Whole body model predictive
control with a memory of motion: Experiments on a torque-controlled talos,” in
Proc. IEEE Intl Conf. on Robotics and Automation (ICRA), 2021, pp. 8202–8208

• T. S. Lembono and S. Calinon, “Probabilistic iterative LQR for short time horizon
MPC,” in Proc. IEEE/RSJ Intl Conf. on Intelligent Robots and Systems (IROS),
2021, pp. 579–585

• L. Brudermüller, T. Lembono, S. Shetty, and S. Calinon, “Trajectory prediction
with compressed 3d environment representation using tensor train decomposition,”
in Proc. IEEE Intl Conf. on Advanced Robotics (ICAR), 2021, pp. 633–639

• A. Razmjoo, T. S. Lembono, and S. Calinon, “Optimal control combining emulation
and imitation to acquire physical assistance skills,” in Proc. IEEE Intl Conf. on
Advanced Robotics (ICAR), 2021, pp. 338–343

• H. Girgin, T. S. Lembono, R. Cirligeanu, and S. Calinon, “Optimization of robot
configurations for motion planning in industrial riveting,” in Proc. IEEE Intl Conf.
on Advanced Robotics (ICAR), 2021, pp. 247–252

• J. Wang, T. S. Lembono, S. Kim, S. Calinon, S. Vijayakumar, and S. Ton-
neau, “Learning to guide online multi-contact receding horizon planning,” in Proc.
IEEE/RSJ Intl Conf. on Intelligent Robots and Systems (IROS), 2022

• S. Shetty, T. S. Lembono, T. Löw, and S. Calinon, “Tensor train for global op-
timization problems in robotics,” Submitted article under review, 2022, https:
//sites.google.com/view/ttgo/home

150

https://sites.google.com/view/ttgo/home
https://sites.google.com/view/ttgo/home


B Appendices to Chapter 7

B.1 Interpolation of Tensor Cores

Given the discrete analogue tensor P of a function P , we can obtain the continuous
approximation by interpolating the TT cores, in a similar way as in the matrix case in
Section 7.3.3. For example, we can use a linear interpolation for each core (i.e., between
the matrix slices of the core) and define a matrix-valued function corresponding to each
core k ∈ {1, . . . , d},

P k(xk) = xk − xikk
xik+1
k − xikk

Pk:,ik+1,: + xik+1
k − xk

xik+1
k − xikk

Pk:,ik,:, (B.1)

where xikk ≤ xk ≤ x
ik+1
k and P k : Ωxk ⊂ R→ Rrk−1×rk with r0 = rd = 1. This induces a

continuous approximation of P given by

P (x1, . . . , xd) ≈ P 1(x1) · · ·P d(xd). (B.2)

Note that a higher-order polynomial interpolation can also be used if needed.

B.2 TT-Cross Algorithm

In this section, we outline TT-cross algorithm for finding a TT decomposition. Here, we
only sketch the algorithm for a fixed rank approximation and highlight how it can be
adapted to adjust the rank of the approximation dynamically, as used in this chapter.
For more detail, we refer the readers to [197, 166, 159].

1. Input: d-th order tensor P ∈ Rn1×···×nd , approximation rank r = (r1, . . . , rd−1)

2. Set: r0 = 1, rd = 1, n0 = 1, nd+1 = 1
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3. Initialize: randomly choose initial column index sets jk = (jk1 , . . . , jkrk) ⊂ (1, . . . , nk+1 · · ·nd),
for k = 1, . . . , d− 1

4. Unfold the tensor P along mode 1 into matrix: P 1 = Rn1×n2···nd

5. Repeat until convergence:

(a) for k = 1, . . . , d− 1 (forward sweep)

• using MAXVOL to find the row index set ik = (ik1, . . . , ikrk) ⊂ (1, . . . , nkrk−1)
corresponding to the maximum submatrix of P k

:,jk

• reshape the matrix P k
ik,: into matrix P k+1 ∈ Rnk+1rk×nk+2···nd .

(b) reshape matrix P d ∈ Rndrd−1×1 appropriately (mode-2 unfolding) to obtain
the TT-core Pd ∈ Rrd−1×nd×1

(c) for k = d− 1, . . . , 1 (backward sweep)

• using MAXVOL to find the column index set jk = (jk1 , . . . , jkrk) ⊂
(1, . . . , nk+1 · · ·nd) corresponding to the maximum submatrix of P k

ik,:

• reshape the matrix P k
:,jk(P

k
ik,jk

)−1 ∈ Rnkrk−1×rk appropriately (mode-2
unfolding) to obtain the TT-core Pk ∈ Rrk−1×nk×rk

6. Output: The TT cores Pk for k = 1, . . . , d

Note that in practice, the MAXVOL and matrix operations are performed using the QR
decomposition of the matrices in the above algorithm to avoid numerical instabilities.
Moreover, in a practical implementation of the above algorithm the matrices P k need
not be computed, we directly work with the function that returns its elements (or sub-
matrices) given the indices. Commonly used convergence criteria include the maximum
number of iterations in TT-cross (forward and backward sweeps in the above algorithm)
and a lower bound on the change in the norm of the TT approximation over successive
iterations of TT-cross. In the algorithm, the rank r can also be adapted dynamically
after each iteration by either reducing the index set or augmenting it with a randomly
chosen enrichment set for each mode during the iterations. We refer to [166, 145] for the
details.

B.3 Inverse Kinematics Formulation

The cost function for the inverse kinematics problem in Section 7.5.2 is given by

C(x) = 1
3

(
Cp(θ,pd)

βp
+ Cobst(θ)

βobst
+ Corient(θ)

βorient

)
, (B.3)

where x = (x1,x2) and:
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• Cp(θ,pd) = ‖pd − p(θ)‖, Euclidean distance of the end effector position from the
desired position.

• Cobst(θ) represents the obstacle cost based on the Signed Distance Function (SDF).
The links are approximated as a set of spheres (as done in CHOMP), and we use
the SDF to compute the distance from each sphere to the nearest obstacle.

• Corient(θ) represents the cost on the orientation of the end-effector. In our applica-
tion, we specify a desired orientation of the end-effector, given by quaternion qd,
while allowing a rotation around the axis of rotation vd which corresponds to the
z-axis of the world frame. This constraints the gripper orientation to be horizontal
while allowing rotation around the z-axis. This is suitable for picking cylindrical
objects from a shelf. The cost is then Corient(θ) = 1− < v(θ),vd >2 where v(θ)
represents the screw axis (computed from the quaternion) of the actual end-effector
frame w.r.t. the desired frame. Alternatively, if the application demands a variation
in the desired orientation, one could use the pose (pd, qd) directly as the task
parameter.

• βp, βobst, βorient are scaling factors for each cost. Intuitively, they represent the
acceptable value for each cost. We use βp = 0.05, βobst = 0.01 , and βorient = 0.2
for the orientation.

For the IK problem of the 6-DoF UR10 robot, there is no obstacle cost, and the orientation
is specified to be identity (corresponding to upward-facing end-effector orientation)
without any free axis of rotation.

B.4 Motion Planning Formulation

For both the reaching and the pick-and-place tasks, the cost function, x = (x1,x2), is
given by

C(x) = 1
4

(
Cp(x)
βp

+ Cobst(x)
βobst

+ Corient(x)
βorient

+ Ccontrol(x)
βcontrol

)
(B.4)

with the following objectives:

• Cp(x) represents the cost on the end effector position(s) from the target location(s).

• Cobst(x) represents the cost incurred from the obstacles computed using SDF as in
Section 7.5.2 but accumulated for the whole motion.

• Corient(x) represents the cost on the orientation of the end effector at the target
location(s).

• Ccontrol(x) represents the cost of the length of the joint angle trajectory and the
length of the end effector trajectory.
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• βp, βobst, βorient, βcontrol are scaling factors for each cost. Intuitively, they represent
the acceptable nominal cost value for each cost. We use βp = 0.05, βobst = 0.1,
βorient = 0.2, βcontrol = 2.

We consider the initial configuration of the manipulator to be fixed (we can relax this
condition by considering the initial configuration as a task parameter). In the reaching
task, the objective is to reach an end effector target location on the shelf. In the pick-
and-place task, the objective is to reach a target on the shelf to pick an object, then
move to another target above the box to place the object, and finally move back to the
initial configuration.

We consider the target to be in Cartesian space instead of the configuration space. Note
that an optimization-based motion planning solver can handle both types of targets
by adjusting the reaching cost term. Reaching a target in the configuration space is
usually an easier optimization problem as it provides a clear gradient to the solver,
which is not the case for reaching a Cartesian target. On the one hand, a Cartesian
target implies a larger solution space, as the target may correspond to more than one
configuration. On the other hand, the locally optimal behavior of a gradient-based solver
means that it will try to reach the target with the configuration that is closest to the
initial configuration, especially if it is initialized by a stationary trajectory at the initial
configuration. When such a solution is not feasible, it is difficult for a gradient-based
solver to find another solution with a final configuration significantly different from the
initial one, except with a good initialization. An alternative is to first determine several
possible final configurations using IK, and then use the motion planning solvers to reach
those configurations. However, choosing the good configurations as the target is not
trivial, as we cannot easily guess whether a particular configuration is reachable from
the initial configuration. Even when it can find a solution, the solution may be highly
suboptimal.

In our formulation, we consider the IK problem and the motion planning problem
simultaneously. The decision variables consist of two parts: the robot configuration(s)
that correspond to the Cartesian target(s), and the joint angle trajectory that reaches
those configurations. While simultaneously optimizing them is quite difficult, our TTGO
formulation allows us to obtain even multiple solutions. To reduce the dimensionality
of the problem, we represent the joint angle trajectory using motion primitives, as
described in Section B.5. Given the initial and final configuration, our motion primitives
formulation ensures that the movement always starts from the initial configuration and
ends at the final configuration while satisfying joint limits.

Consider anm-DoF manipulator. The configuration of the manipulator can be represented
using the joint angles θ = (θ1, . . . , θm) ∈ Rm. We can assume that the domain of the
joint angles is bounded by a rectangular domain Ωθ = ×mi=1[θmini , θmaxi ]. We represent
the trajectory evolution in terms of the phase of the motion, i.e., t ∈ (0, 1) with t = 1

154



B.5. Motion Primitives

representing the end of the motion.

B.5 Motion Primitives

In our motion planning formulation, we generate motions using a basis function rep-
resentation that satisfies the boundary conditions (with respect to phase/time) and
the limits of the trajectory (the magnitude) while maintaining zero velocity at the
boundary. Suppose we are given a choice of basis functions φ = (φk)Jj=1, φj(t) ∈ R, ∀t ∈
[0, 1]. For example, we could use radial basis functions φj(t) = exp

(
−γ(t− µj)2) with

µj ∈ [0, 1], γ ∈ R+. We define a trajectory using a weighted combination of these basis
functions as τ̂(t) =

∑J
j=1wjφj(t). We transform this trajectory so that the boundary

conditions and joint limits are satisfied.

Given the trajectory τ̂(t), t ∈ [0, 1], and the boundary conditions τ(0) = τ0, τ(1) = τ1
and the limits τmin ≤ τ(t) ≤ τmax, we can transform τ̂(t) to obtain a trajectory τ(t) =
Ψ(τ̂(t), τ0, τ1, τmin, τmax) such that τ(0) = τ0, τ(1) = τ1 and τmin ≤ τ(t) ≤ τmax. We
define the transformation Ψ as follows:

1. Input: τ̂ , τ0, τ1, τmin, τmax

2. Discretize the time interval [0, 1] uniformly to obtain {ti}Ni=0 so that dt = ti+1 − ti,
t ∈ {ti}Ni=0.

3. Define ẑ(t) = τ̂(t) + τ0− τ̂(0) + t(τ1− τ0 + τ̂(0)− τ̂(1)), which satisfies the specified
boundary conditions.

4. Clip the trajectory within the joint limits to obtain z(t) = clip(ẑ(t), τmin, τmax).
The clipping will result in non-smoothness.

5. Smoothen the trajectory z(t) to obtain the desired trajectory τ(t): To do this, we
append the trajectory z(t) with the same values as initial value in the beginning
and with the final value at the end. Then we can apply a moving average filter
over the trajectory. This creates the desired smooth trajectory τ(t) that has zero
velocity at the boundary.

This way we can generate smooth motion while satisfying the boundary conditions and
the joint limits, and maintain zero velocity at the boundary.

B.6 TTGO with Constant Task Parameters

In this chapter, we described TTGO in its generic form, where we consider varying
task parameters when training the TT model. This allowed us to produce approximate
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Figure B.1 – A distribution of 50 smooth trajectories generated by transforming tra-
jectories generated by using two radial basis functions with weights chosen uniformly
in the range [−1, 1]. The transformations are done to maintain a boundary condition
τ0 = −0.25, τ1 = 0.25 and the limits τmin = −1, τmax = 1.

solutions to a given task quickly by conditioning the TT model. However, TTGO can also
be used when we only want to solve a single task. In this particular case, the TT model
corresponds to the probability distribution of only the optimization variables, and the
training will require significantly less time as compared to the generic form. A maximum
TT-rank < 5 works well for the applications considered in this chapter. In terms of the
computation time and the quality of solution, it is comparable to evolutionary strategies
such as CMA-ES or GA, but TTGO can offer multiple solutions.

For such applications, our work is closely related to TTOpt [146] which is a gradient-free
discrete optimization method based on TT-cross. The performance of the method has
been shown to be competitive to evolutionary strategies. In this approach, the objective is
to maximize a reward function (analogous to the probability density function in TTGO).
TTOpt discretizes the reward function and it assumes that the maximal element of the
discrete analogue of the reward function closely approximates the maximum of the reward
function. The maximum of the discrete analogue is found using TT-cross. Here, the main
interest to use TT-cross is not for building a TT approximation but the following feature
of TT-cross: the maximal elements of the tensor is highly likely to be in the maximum
volume submatrix which is found using maxvol in TT-cross and the maximal element
of the submatrix increases monotonically over the iterations. During each iteration of
TT-cross, the maximal element from the submatrix found using maxvol is stored in
the memory and updated in the following iterations until convergence. Unlike TTOpt,
TTGO uses TT-cross to model the density function first and uses the samples from the
TT model to approximate a solution which is then refined using local search techniques,
while providing the option of estimating multiple solutions.
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To test the performance of TTGO as a single task optimizer, we have applied it to motion
planning of both the 2-D planar robot and Franka Emika manipulatorLausanne-Gare,
Lausanne, Switzerland. We set the initial and the desired final configurations, and TTGO
finds the trajectory to move to the final configuration while avoiding the obstacles. The
joint angle trajectory is represented using the motion primitives as described in Appendix
B.5, thus the optimization variables are the weights of the basis functions. We used 2
radial basis functions for each joint.

For the 2-D planar robot, we replicate the setting in Figure 7 of [66], but we move the
obstacle positions and add two more obstacles to increase the difficulty of the problem.
With a fixed task parameter, the training of the TT model only takes less than 7 seconds,
and we easily obtain multiple solutions. Figure B.2 shows four solutions obtained by
TTGO after the refinement step. We can clearly see the multimodality of the solutions.

For the Franka Emika manipulator, we use the same setting as in Section 7.5, i.e.,
with the shelf, table, and box as the collision objects. In addition, we add a cost to
maintain the end effector pose (horizontal) throughout the trajectory. The initial and
final configurations are set such that both end effector positions are located within the
shelf, and they are computed using TTGO for IK, as explained in Section 7.5.2. With this
setting, we are able to obtain multiple solutions consistently for all possible scenarios (we
test with different end effector positions within the shelf) with 10 iterations of TT-cross
and a maximal TT-rank of 5. With the fixed task parameter, it only takes under 5
seconds to obtain the solutions (includes TT modeling, sampling and fine tuning). Some
solutions for a given task are shown in Figure B.3.

In comparison, SMTO [66] takes around 2 minutes to solve the 2-D planar robot problem
and 1 minute to solve the 7-DoF manipulator example (using their matlab codes), whereas
LSMO [147] takes even longer, i.e., more than five minutes (according to their paper).
For the 2-D example, SMTO fails to find any solution when we added more obstacles as
in Figure B.2, even after increasing the covariance by 100 times. This is because none
of the initial samples from the proposal distribution is close to the feasible region. We
also tried increasing the number of samples from 600 (standard value) to 2000, but it
still cannot find any solution. Furthermore, adding the number of samples by ∼ 3 times
increases the computation time of SMTO by ∼ 3 times, i.e., from ∼ 150s to ∼ 500s.
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(a) (b) (c) (d)

Figure B.2 – Four different solutions obtained by TTGO for a motion planning task with
4-link planar manipulator. The initial and final configuration are given (dark green) and
the optimization variables are the weights of the basis functions (two basis functions per
joint) that determine the joint angle trajectory.

(a)

Figure B.3 – Solutions from TTGO for motion planning of a manipulator from a given
initial configuration to a final configuration. The obtained joint angle trajectories result
in different path for the end effector which are highlighted by dotted curves in different
colors. The multimodality is clearly visible from these solutions.
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