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Abstract: In this study, we present an analytical modeling framework for wind turbine wakes under
an arbitrary pressure gradient imposed by the base flow. The model is based on the conservation of
the streamwise momentum and self-similarity of the wake velocity deficit. It builds on the model
proposed by Shamsoddin and Porté-Agel, which only accounted for the imposed pressure gradient
in the far wake. The effect of the imposed pressure gradient on the near wake velocity is estimated by
using Bernoulli’s equation. Using the estimated near wake velocity as the starting point, the model
then solves an ordinary differential equation to compute the streamwise evolution of the maximum
velocity deficit in the turbine far wake. The model is validated against experimental data of wind
turbine wakes on escarpments of varying geometries. In addition, a comparison is performed with a
pressure gradient model which only accounts for the imposed pressure gradient in the far wake, and
with a model that does not account for any imposed pressure gradient. The new model is observed
to agree well with the experimental data, and it outperforms the other two models tested in the study
for all escarpment cases.
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1. Introduction

Wind turbine wakes can result in significant power losses within a wind farm, as they
reduce the power available to the downwind turbines, as well as enhance the fluctuating
loads experienced by these turbines [1]. Understanding and predicting these wakes is
crucial, especially during the planning and layout optimization phase of a wind farm.
Computationally inexpensive analytical tools are widely popular in the wind energy
community for this purpose, as they offer fast and reasonably accurate estimations of wind
turbine wakes, which enables testing different layout configurations and wind conditions in
a relatively short time. Given their paramount importance, a number of analytical models
for wind turbine wakes have been proposed over the years.

Most attempts to analytically model wind turbine wakes assume an underlying flat
homogeneous terrain, which implies a zero pressure gradient situation. Early attempts
at analytical modeling of wind turbine wakes started with Jensen [2], who applied mass
conservation downwind of the turbine and assumed a top-hat distribution of the velocity
deficit. Later, Frandsen et al. [3] used mass and momentum conservation around a wind
turbine to estimate the velocity deficit in the wake. Similar to Jensen [2], they also assumed
a top-hat distribution of the velocity deficit across the rotor cross-section. Based on the
empirical evidence of a self-similar Gaussian distribution of velocity deficit in the turbine
wake, Bastankhah and Porté-Agel [4] proposed an analytical model for the wake velocity
deficit derived from streamwise mass and momentum conservation. Their model has since
been adapted to different scenarios, such as wakes of turbines under yawed conditions [5],
or the ones experiencing wind veer effects [6]. Recent advances in the analytical modeling
of wakes include the so-called super-Gaussian model, which transitions from a top-hat
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profile in the turbine near wake to a Gaussian profile in the far wake [7], a model for
the wake velocity and added turbulence intensity based on a combination of analytical
and numerical studies [8], analytical models for yawed turbine wakes [9] and for added
streamwise turbulence intensity in the wake [10].

It is highly likely that wind turbines sited in complex flow conditions, such as het-
erogeneous surface roughness conditions or topographies, experience a pressure gradient
imposed by the base flow. This pressure gradient can significantly affect the evolution of the
turbine wake, such as the recovery of the wake center velocity deficit and the expansion of
the wake. Most conventional wake modeling approaches, however, assume zero pressure
gradient and a homogeneous base flow velocity. A practical approach to model wakes in
topography, for instance, is to superpose the velocity deficit in the flat terrain on top of
the topography. Although simple, this approach has been shown to work only for terrains
with very gentle slopes [11,12]. Brogna et al. [13] proposed a modified form of the Gaussian
model [4] to be used for their wind farm optimization study in topography. More recently,
Farrell et al. [14] presented a wind farm wake model for varying base flow velocity field.
They also based their wake model on the Gaussian model [4], while keeping the reference
base flow velocity spatially variable. Hu et al. [15] presented a genetic algorithm based
approach for siting wind turbines in complex terrain. To account for wake effects, they used
an adapted Jensen model and Gaussian model based on the Brogna et al. [13] formulation.
These approaches, however, do not explicitly account for the imposed pressure gradient,
as the underlying models are derived under the assumption of a flat terrain. Recent years
have seen an increased interest in data-driven approaches to the estimation of wake effects
in wind farms on flat terrain (see e.g., [16-18]). On complex terrain, the problem complexity
increases further due to the dependence of the flow characteristics (such as the imposed
pressure gradients) on site-specific terrain characteristics. This hinders the applicability of
data-driven modeling to complex terrains due to limitations related to available data for
training purposes.

The only existing models that account for the effect of an imposed pressure gradient on
wakes are the ones proposed by Shamsoddin and Porté-Agel [19,20] and in turn successfully
applied by them to study the wake of a wind turbine sited upstream of a hill [21]. These
models solve an ordinary differential equation (ODE) for the streamwise evolution of
the maximum velocity deficit under pressure gradient, which is derived by applying
streamwise momentum conservation in a control volume. A self-similar Gaussian profile
of the wake velocity deficit is assumed, which has recently been verified by Dar et al. [22]
and Dar and Porté-Agel [23] in different topographies. The invariance of the ratio between
the maximum velocity deficit and wake width to the pressure gradient is used to close the
system of equations, and to obtain the wake width under the pressure gradient situation. In
order to obtain a numerical solution, a boundary condition is required to solve the ordinary
differential equation for the streamwise evolution of the maximum velocity deficit. In
their original work [19-21], the surrounding base flow imposes a zero pressure gradient
at the turbine location and becomes non-zero from a certain location downstream of the
turbine. Therefore, the maximum velocity deficit at the first streamwise position is assumed
to be the same with or without the imposed pressure gradient. While true for the above-
described scenario or for the situations where the imposed pressure gradient at the turbine
location is small enough, the assumption may not be valid for situations where there
is significant imposed pressure gradient at the turbine location. One such example is
a wind turbine sited close to the edge of an escarpment, where the pressure gradient
induced by the escarpment is high closer to the edge and vanishes as we move further away
from it. Dar and Porté-Agel [23] applied the model of Shamsoddin and Porté-Agel [20]
to predict the wake velocity deficit of a turbine sited close to the edge of an escarpment.
They observed that the model worked well for the escarpments with a sloped or a smooth
leading-edge, but its performance degraded with the increase in the sharpness of the
escarpment’s leading-edge.
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The objective of the current work is to develop an analytical modeling framework that
can be applied in situations where the turbine experiences an arbitrary pressure gradient
imposed by the base flow. The new model develops on the one proposed by [20], where
Bernoulli’s equation is used to estimate a theoretical near-wake velocity under a non-zero
imposed pressure gradient. This near-wake velocity is then used to obtain maximum wake
velocity deficit at the start of the turbine far wake, where an ordinary differential equation
is solved. The model is validated against the experimental data and compared with the
results from two existing models [4,20]. The rest of the article is structured as follows: the
analytical modeling framework is detailed in Section 2; validation of the model against
experimental data and comparison with other models is performed in Section 3; finally, a
summary of the work and concluding remarks are given in Section 4.

2. Analytical Modeling Framework
2.1. Problem Formulation

The mean streamwise velocity deficit in a wind turbine wake is known to show a self-
similar Gaussian shape in the far wake in flat terrain [4], as well as in topography [22,23],
and can therefore be expressed as:

Uy (x) — Uy (x, 1)
Uy (x)

= C(x)ei(Z‘fr(x)z), 1

where U, (x) is the velocity in the base flow (flow without turbine), Uy, (x, r) is the velocity in
the wake flow, C(x) is the normalized maximum velocity deficit at a certain streamwise lo-
cation, o(x) is the wake width, x is the streamwise distance, and r is the radial distance from
the wake center. For the sake of brevity, the term velocity is used to refer to mean stream-
wise velocity throughout the article, unless otherwise stated. Here, the wake velocity deficit
is assumed to be axisymmetric around the wind turbine center. In situations where the
velocity deficit is not perfectly axisymmetric, as stated by Shamsoddin and Porté-Agel [20],
the problem is solved for an equivalent wake width expressed as a geometric mean of the
lateral and vertical wake widths.

The base flow velocity Uy (x) is only represented as a function of the streamwise
distance, although in some situations it can also vary in other directions. For instance,
in the case of two dimensional topography it can vary in both streamwise and vertical
directions. Following Shamsoddin and Porté-Agel [21], the base flow velocity in the
streamwise direction at the hub height of the turbine can be used as an approximation
for Uy (x). Alternatively, in the case of highly sheared or three-dimensional base flow, an
averaged velocity within the rotor’s projected area can be chosen to represent the base flow,
although this approach would require more information on the base flow. The imposed
pressure gradient is represented by the streamwise gradient of the base flow velocity,
where dUj,/dx = 0 corresponds to the zero pressure gradient (ZPG), dU, /dx > 0 indicates
a favorable pressure gradient (FPG), and dU,/dx < 0 represents an adverse pressure
gradient (APG).

The objective of the current study is to present an analytical modeling framework that
can predict the evolution of a wind turbine wake under an arbitrarily imposed pressure
gradient, provided that the wake evolution under zero pressure gradient and the base
flow under pressure gradient are known. The inputs for the zero pressure gradient wake
evolution are the same as those required by the Gaussian model developed by Bastankhah
and Porté-Agel, i.e., the turbine thrust coefficient and wake width [4].

2.2. Model Derivation

Following Shamdsoddin and Porté-Agel [20], the integral form of the streamwise
momentum equation for an axisymmetric wind turbine wake under pressure gradient can
be written as:
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dC(x) _

4 /OO Uy (Up — Uy )27trdr + /00 %(Ub — Uy)2mtrdr =0, ()
dx Jo 0o dx

where the first term on the left-hand side represents the contribution of the turbine thrust,
and the second term accounts for the effect of pressure gradient on the turbine wake. The
term (U, — Uy ) vanishes far from the wake center in a plane normal to the streamwise
direction. In deriving the above equation, the continuity equation is used, and viscous
effects are neglected. Moreover, the mean pressure gradient is represented by U, (dU,,/dx).
Substituting Equation (1) into Equation (2) and replacing fooo exp(—r?/20%)27trdr with
27to? under the assumption of axisymmetry yields the following:

2(x 2(x
% [Znug(x)az(x) (C(x) - C2( )>] + ndu;i >(72(x)C(x) =0. (3)

In the case of zero pressure gradient, the second term on the left-hand side of Equation (3)
vanishes, and the following solution is obtained (see Bastankhah and Porté-Agel [4]):

Colx) = max®) _q o _Cr_ @
ubo 8(‘70[()7‘) )2

where Cy(x) is the normalized maximum velocity deficit under ZPG, AUy is the maxi-
mum velocity deficit, Uy is the reference base flow velocity under ZPG, Cr is the turbine
thrust coefficient, oy (x) is the wake width under ZPG, and D is the turbine rotor diameter.
Once Cy(x) is obtained, we can compute the invariant ratio between the maximum velocity
deficit and wake width such as:

_ Go(x) Uy

Ap(x) = A(x) o0(x)

®)
where Ap and A are the ratios under zero and non-zero pressure gradients, respectively. The as-
sumption of the invariance has been verified for different pressure gradient situations [19,20,24]
and is used here to obtain the wake width under pressure gradient:

C(x) Uy (x)

o(x) = Ao(x)

(6)

and to eventually solve Equation (3), which yields the following ordinary differential
equation for C(x) (as obtained by Shamsoddin and Porté-Agel [20]):

-1

dx

Uy (x)

1dU (x) C3(x) CHx)\ d [U;(x)
4 ;x /\%(x)+<C3(x)_ 2 )dx(x\%(ﬂ)]' 7

In order to obtain a numerical solution for C(x) from Equation (7), a boundary con-
dition is needed. In their original work, Shamsoddin and Porté-Agel [20] defined the
boundary condition as:

3 aex) - 20())

C(xi) = Co(x:), ®)

which implies that at the starting point of the model (x;), regarded as the start of the far
wake (or alternatively the end of the near wake), the maximum velocity deficit is the same
under a zero or non-zero pressure gradient. This assumption is valid in situations where
the imposed pressure gradient is zero at the turbine location and becomes non-zero from a
certain location in the far wake of the turbine. In fact, in their validation study [20] and
application of the model to wake flows over hills [21], the pressure gradient by the terrain
was imposed in the far wake, which resulted in the aforementioned boundary condition.
However, if we consider a situation where the imposed pressure gradient at the turbine
location or in its near wake is non-zero, the above-stated boundary condition does not hold.
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Examples of such situations can be easily found, for instance, the wake of a turbine sited
close to the edge of an escarpment and on top of a hill or a building.

In the following, we present a simplified theoretical estimation of the near wake
velocity under a non-zero pressure gradient. Prior to that, it is useful to review some
basic characteristics of the wind turbine’s near wake. The flow in the near wake is greatly
influenced by the turbine characteristics, and a common approach is to assume a gradual
transition from a top-hat velocity distribution behind the rotor to a Gaussian distribution
at the end of the near wake. This is due to the growth of the shear layer behind the rotor
periphery, which expands radially with the increase in the streamwise distance, as the outer
flow mixes with the wake flow. The wake center velocity is assumed to be theoretically
constant in the near wake region, as the shear layer does not grow enough to re-energize the
wake center in this region. Bernoulli’s equation has been applied to the regions upstream
and downstream of the turbine to estimate the near wake velocity for a wind turbine under
uniform inflow and zero pressure gradient [5,25]. This theoretical near wake velocity has
been used to estimate the end of the near wake and to provide a limit for the maximum
velocity deficit obtained from an analytical model in various challenging scenarios, such as
wind turbines in yawed conditions or the ones experiencing vertical wind veer [5,6]. It has
also been implemented in different low-fidelity wake modeling utilities to estimate wake
velocity at the start of the far wake (see e.g., [14]).

A schematic of the turbine wake is shown in Figure 1, where position 1 corresponds to
an upstream location undisturbed by the turbine, position 2 is immediately in front of the
rotor, position 3 is immediately behind the rotor, and position 4 corresponds to the location
in the wake where the wake pressure becomes equal to the base flow pressure and there is
no mixing between the outer (base) flow and wake flow. The conditions defined here for
the application of Bernoulli’s equation are similar to those used for actuator discs placed in
a confined flow with a spatially heterogeneous base flow velocity [26,27]. Following [5,25],
Bernoulli’s equation for the control volumes up- and down-stream of the turbine can be
written as:

1 1
upstream: Py; + Epugl = PE + Epuz, 9)

1 1
downstream: P, + Epulzg = Py + Epugw/ (10)

where Py is the base flow pressure upstream of the turbine (position 1 in Figure 1), and
Uy is the base flow velocity at the same location, the values of which can be obtained from
the base flow information. Furthermore, Py and Py are pressure values at the front and
back sides of the rotor, and the velocities at these positions Ug are assumed to be the same.
The wake center velocity in the near wake is Uy, (position 4 in Figure 1).

Subtracting Equations (9) and (10) result in:

1 _
[Pblfpnw]JFEP[u%l*uﬁw]*[PJJ{*PR]:Or (11)
where [P{ — Pg] = (1/2)pU%.Cr, Uyt is the base flow velocity at the turbine location, and
in the case of ZPG, [Py; — Puw] = 0. However, in the presence of a pressure gradient in the
base flow, the later pressure difference can be obtained by applying Bernoulli’s equation on
the base flow between positions 1 and 4:

1
[Py1 — Puw] = Ep[ulgzl - ul%l]' (12)

where Uy, is the base flow velocity at position 4. After substituting the base flow pressure
difference and pressure difference across the rotor in Equation (11), we obtain the following
relation for U,;,:

Upw = /U2, — U2,Cr. (13)
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In the case of ZPG, Uy; = Uyt = Uy, and it can be easily shown that the above
equation reduces back to the well known relation: U, /Uyr = +/1 — Cr. Finally, the
maximum velocity deficit for the boundary condition of Equation (7) can be written as:

_ u)’l w

C(x,«) =1 ﬁ/
X1

(14)
where Uy,; is the base flow velocity at the end of the near wake. In the case of a zero
pressure gradient imposed by the base flow at the turbine location, the above equation
reduces back to Equation (8).
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Figure 1. Schematic of a wind turbine wake.

3. Model Validation

Following the derivation, we aim to validate the model with experimental data. For
this purpose, we use the experimental data from Dar and Porté-Agel [23]. In their experi-
ments, a miniature wind turbine (WiRE-01) is placed one rotor diameter downstream of
the edge of an escarpment, where the shape of the escarpment is varied between a forward-
facing step with different edge curvatures and a ramp-shaped escarpment. Figure 2 shows
the geometrical details of the escarpments used in the experiments, and the normalized
base flow velocity at the turbine hub height. As can be seen, the variation in the base flow
velocity is high closer to the turbine (x/D = 0, where D is the rotor diameter), and reaches
almost a constant value about five rotor diameters downstream of the turbine. Different
escarpment shapes also show differences in their base flow velocities, which indicates a
difference in the imposed pressure gradient. The chosen experiments are well-suited to
test the new model, as the imposed pressure gradient is higher closer to the edge of the es-
carpment (i.e., at the turbine location) and differs between the escarpments, which enables
us to test the model under different pressure gradients. Table 1 presents a description of
the escarpments.

In order to apply the pressure gradient model, we need two main inputs: the base
flow velocity under the pressure gradient and the characteristics of the turbine wake under
the zero pressure gradient (Cy(x) and op(x)). For the maximum velocity deficit under ZPG
Co(x), we use Equation (4), which requires the turbine thrust coefficient Ct and wake width
00(x). From experiments [23], the thrust coefficient of 0.8 is used, which does not change
between the flat and escarpment cases [5,23]. To obtain the ZPG wake width, we use the
linear growth of wake width in the far wake region [1]:
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op(x)
D

= ko +6, (15)

where k is the wake growth rate in ZPG, and € is the initial wake width. The wake growth
rate kg can be related to the streamwise turbulence intensity (T) in the flow, where several
linear relations between the streamwise turbulence intensity and the wake growth have
been proposed in the literature [28,29]. Here, we use the relation proposed by Brugger et
al. [29], which states kg = 0.30 x T1I, as it fits the wake growth rate found experimentally
for the miniature wind turbine in flat terrain by Bastankhah and Porté-Agel [5]. As the
pressure gradient model does not explicitly relate the turbulence intensity change in ZPG
and PG conditions, we take the rotor-averaged turbulence intensity in the base flow at the
turbine location to compute the wake growth rate for the ZPG wake. This is performed in
order to account for the change in the turbulence intensity between the zero and non-zero
pressure gradient situations. The theoretical normalized wake width € value of 1/+/8 is
used at the end of the near wake [5]. Following [5,30], the end of the near wake is assumed
to be the position where the theoretical and experimental velocity deficit maximum on the
escarpments become equal. The near wake length obtained by this criterion is very similar
to the one obtained from theoretical relations derived for flat terrain [5,31].

40 T T T T T
13 (a)
30 12 r- _
5o M 1=
S 10 = I
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0 . . . 08¢ . . .
-60 -45 -30 -15 0 15 0 2 4 6
x [em) z/D

Figure 2. Side view of the escarpment geometry (a) and normalized base flow velocity at the hub
height on top of the escarpments (b). Colors represent the respective escarpment shapes. The figure
is adapted from Dar and Porté-Agel [23].

Table 1. Description of different validation cases and some key parameters.

Case Description U, [ms™'] ky=03TI Cr Uy [ms]
FFS-1 Sharp 90° Edge 4.7 0.0380
FFS-II 5% radius of curvature with respect to height 4.6 0.0290 355
FFS-III  10% radius of curvature with respect to height 4.52 0.0231
Ramp 33° maximum slope 4.34 0.0155

In order to use Equation (13), we need to define position 4 in Figure 1. Mathemati-
cally speaking, this position should be chosen such that Equation (13) yields a real value.
A choice of position 4 where Equation (13) results in an imaginary number would indi-
cate a breakdown of the theory, which could be similar to the situation of actuator discs
with thrust coefficients above 1 in the classical one-dimensional momentum theory [32].
Following [26,27], from a physical perspective, position 4 should correspond to a location
where the pressure in the wake flow becomes equal to that in the base flow, and there is
no mixing between the (outer) base and wake flow. Figure 3 shows the contours of the
normalized turbulence kinetic energy in the turbine wake for different escarpment cases.
Behind the turbine top tip level, a region of high turbulence kinetic energy can be observed,
which is relatively thin closer to the turbine but starts to expand in the vertical direction
from a certain position downstream, corresponding to the position where tip vortices start
to breakdown and the outer flow starts to mix with the wake flow. Therefore, position 4
should be chosen before the region of high turbulence kinetic energy starts to expand in
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the vertical direction. However, it should not be picked too close to the turbine to avoid
influence of the pressure drop across the rotor.

A common approach in the literature [3,33,34] is to assume one rotor diameter down-
stream of the turbine as the distance where pressure in the wake and base flow equalizes.
This position also lies within the region where the turbulence kinetic energy does not start
to grow for all the cases. Therefore, we choose one rotor diameter downstream of the
turbine as a common assumption for position 4 in all cases. It is to be noted that the choice
of position 4 used here might not be universal, and future work should investigate this. The
above discussion comes from the one-dimensional momentum theory for actuator discs,
and in reality, the structure of the turbine near wake is much more complex. As shown
by [5], the measured near-wake velocity deficit for the miniature turbine is higher than
the theoretical one and varies instead of being a constant. This difference is attributed to
several factors, including the wake of the nacelle and rotation of the wake. Although a
simplified approximation, the theoretical near wake velocity provides useful information
on the wake flow, such as the end of the near wake and a theoretical estimation for the
velocity at the start of the far wake [5,14,30].

Once all the required inputs for the pressure gradient model have been obtained, we
compute the maximum velocity deficit under pressure gradient using Equation (7) with
the new boundary condition given by Equation (14) and wake width using Equation (6). In
addition to the new model, we also test the pressure gradient model by Shamsoddin and
Porté-Agel [20], and the Gaussian model by Bastankhah and Porté-Agel [4].

FFS-II FFS-III Ramp
I BN
== (.04
i _ 0.02
L 0
1 2 3 4 1 2 3 4 1 2 3 4
xz/D x/D x/D

Figure 3. Contours of the normalized turbulence kinetic energy in the turbine wake.

A comparison of the maximum velocity deficit normalized by the hub height velocity
between the experiments and the analytical models is shown in Figure 4 (left panels). The
new pressure gradient model is represented by ‘PG-New’, whereas the pressure gradient
model by Shamsoddin and Porté-Agel [20] is named ‘PG-SPA’, and the zero pressure
gradient model (Gaussian model) by Bastankhah and Porté-Agel [4] is named ‘ZPG’.
The imposed pressure gradient depends on two factors: the shape of the escarpment,
as a sharper edge would induce a higher pressure gradient, and the distance from the
escarpment leading edge, as the pressure gradient would reduce with the increase in the
distance from the escarpment edge. As a result, the differences between the different
models compared here are also dependent on the same two factors. In general, the new
pressure gradient model predicts the maximum velocity deficit reasonably well for all
escarpments, as it accounts for the imposed pressure gradient at the turbine location. The
PG-SPA model performs well for the ramp-shaped escarpment, as the imposed pressured
gradient at the turbine location is lowest in this case. For the forward facing step cases,
however, its performance degrades with the increase in the sharpness of the escarpment
edge, where it works for the FFS-III case at distances greater than five rotor diameters, but
underestimates the maximum velocity deficit for the other two FFS escarpments. This is
due to the fact that the imposed pressure gradient is higher at the turbine location than
in the far wake, and the PG-SPA model does not account for it, thereby underestimating
the maximum velocity deficit. The zero pressure gradient model also underestimates the
maximum velocity deficit for almost all the cases as it cannot account for the contribution
of the pressure gradient to the velocity deficit.

The escarpments impose an adverse pressure gradient on the flow, which is known
to slow down the recovery of the turbine wake compared to that under the zero pressure
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gradient [20,24]. This explains why the models that do not account for the imposed pressure
gradient at the turbine location underestimate the maximum velocity deficit. It can also
be noted that for the two forward-facing step escarpments with relatively sharper edges
(FFS-I and FFS-II), the PG-SPA and ZPG models show very similar values of the maximum
velocity deficit. This is due to the fact that in the mentioned cases, the base flow velocity
at the start of the far wake is almost the same with and without the escarpment. In other
words, these escarpments not only induce the highest pressure gradient closer to the
escarpment edge, but they also show the fastest decay in the induced pressure gradient
with downstream distance. Therefore, at around four rotor diameters downstream of the
turbine (five rotor diameters from the escarpment edge), the pressure gradient induced by
the escarpments in the FFS-I and FFS-II cases is almost zero; as the PG-SPA model does not
account for the imposed pressure gradient at the turbine location, it yields values similar to
the ZPG model.

| o Experiments = = =ZPG PG-SPA——PG-New |

0.6f ' ' ' D
2
04t O _ _ . emmm=mT 1

s

Figure 4. Comparison of the maximum normalized velocity deficit (left) and equivalent wake width
(right) between the experiments and the analytical models. The solid gray line shows the theoretical
maximum velocity deficit assuming a fixed near wake velocity.

Following the maximum velocity deficit, the equivalent wake width obtained from
the analytical models is compared with the experimentally obtained one in Figure 4 (right
panels). The ZPG wake width is smaller than the experimental equivalent wake width. This
is to be expected, as an adverse pressure gradient results in a larger wake width compared
to the zero pressure gradient one [20,24]. The PG-SPA underestimates the wake width for
the FFS-I and FFS-II cases, but works well for the rest of the cases. The wake width obtained
from the new pressure gradient model is observed to agree well with the experimental data
for all the cases.

A comparison of the normalized velocity deficit profiles between the analytical models
and experiments is shown in Figure 5. The velocity deficit profiles obtained from the
new pressure gradient model are observed to agree well with the experimentally obtained
profiles for all escarpment cases. As shown by Dar and Porté-Agel [23], the wake width in
the lateral and vertical directions can vary depending on the escarpment shape. However,
as mentioned earlier, in the current modeling approach, we solved the problem for an
equivalent wake width (0 = , /0y,07). Comparing the experimental and (new) analytical
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velocity deficit profiles in the lateral and vertical direction shows that this approach works
well. The PG-SPA and ZPG models, on the other hand, yield underestimated velocity
deficit profiles for the most part. The PG-SPA model underestimates the velocity deficit
profiles for the FFS-I and FFS-II cases, whereas it shows reasonable agreement for FFS-III
case for downstream distances greater than five rotor diameters. For the ramp-shaped
escarpment, it shows good agreement for all downstream distances. The ZPG model gives
reasonable results at a downstream distance greater than five rotor diameters in the case
of the ramp-shaped escarpment, which can be related to the fact that the effect of the
pressure gradient is lowest for the ramp-shaped escarpment at high downstream distances.
In general, we can say that the new pressure gradient model can successfully predict the
velocity deficit in the turbine wake for all escarpment cases and outperforms the other two
models tested in the study.
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Figure 5. Comparison of the normalized vertical (left) and lateral (right) velocity deficit profiles
between the experiments and the analytical models for different escarpments.

4. Concluding Remarks

Wind turbines sited in heterogeneous terrain experience varying levels of pressure
gradient. In the current work, we have developed an analytical modeling framework that
can predict the velocity deficit downstream of a wind turbine under an arbitrary imposed
pressure gradient. The model is based on the cross-stream integration of the streamwise
momentum conservation equation, and the self-similarity of the wind turbine wake velocity
deficit. It solves an ordinary differential equation to estimate the maximum velocity deficit
in the far wake, where a theoretical estimate of the near wake velocity under pressure gra-
dient is used as a boundary condition. The current model builds on a previously proposed
one, which only accounted for the effect of imposed pressure gradient in the turbine far
wake. With the new model, we can also account for the effect of an imposed pressure
gradient at the turbine location, which increases the number of applications the model can
be used for. The pressure gradient model requires the base flow velocity under the pressure
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gradient, and the wake characteristics (maximum velocity deficit and wake growth rate)
under a zero pressure gradient as input parameters.

A validation of the new model against experimental data is performed. The experi-
mental study involves a wind turbine placed close to the edge of escarpments of varying
shapes. The turbine experiences varying levels of pressure gradient depending on the shape
of the escarpment. The maximum velocity deficit and equivalent wake width obtained
from the new model agree well with the experimental data for all cases. The velocity deficit
profiles obtained analytically also show good agreement with both lateral and vertical
velocity deficit profiles obtained experimentally. A comparison with another pressure
gradient model and a model without any pressure gradient effects is also included. The
new pressure gradient model is observed to outperform the other two models tested in
the study for all cases. The other pressure gradient model worked for certain cases with
relatively small imposed pressure gradients at the turbine location; however, its perfor-
mance degraded for the cases with high imposed pressure gradients at the turbine location.
Finally, the zero pressure gradient model only worked in the far wake of the escarpment
with a smooth slope ahead of the turbine. Therefore, with the new modeling approach, we
have extended the capability of analytical models to predict the wake velocity deficits of
turbines experiencing an arbitrary imposed pressure gradient.
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Nomenclature

U [ms™1] Time-averaged streamwise velocity
U, [ms~!']  Base flow velocity

Uy, [ms™1]  Wake flow velocity

C Maximum normalized velocity deficit
r [m] radial distance from turbine center
o [m] wake width

x [m] streamwise distance/coordinate

z [m] vertical distance/coordinate

y [m] lateral distance/coordinate

Als™Y invariant ratio

Cr thrust coefficient

k wake growth rate

TI rotor-averaged turbulence intensity
AU [ms~!]  velocity deficit

D [m] rotor diameter

subscripts

0 zero-pressure gradient

b base flow

w wake flow

1,4, T position 1, 4, or turbine

nw near wake

R rotor

h hub height

max maximum
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