
Integrating Code Reviews into Online Lessons to
Support Software Engineering Education

Juan Carlos Farah1, Basile Spaenlehauer1, Maŕıa Jesús Rodŕıguez-Triana2,
Sandy Ingram3, and Denis Gillet1

1 École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland,
{juancarlos.farah,basile.spaenlehauer,denis.gillet}@epfl.ch

2 Tallinn University, Tallinn, Estonia,
mjrt@tlu.ee

3 University of Applied Sciences (HES-SO), Fribourg, Switzerland,
sandy.ingram@hefr.ch

Abstract. The use of peer code review exercises is well established in
software engineering education. Nevertheless, challenges involving stu-
dents’ ability to perform code reviews have been identified as barriers
to successfully integrating code reviews in educational settings. We have
previously proposed code review notebooks as a way to address this is-
sue. Code review notebooks resemble computational notebooks but focus
on reviewing rather than executing code and can serve to introduce stu-
dents to the code review process. In this study, we evaluated the effects
of using a code review notebook via a case study whereby 25 university
students were taught how to identify code style issues in JavaScript. Our
mixed-method analysis suggests that the code review notebook format
encourages students to reflect on their learning process and can result in
short-term learning gains. These findings could serve instructors looking
to incorporate code review exercises into their practice.

Keywords: code review, software engineering education, online lesson

1 Introduction

Code reviews—the process whereby code written by one programmer is cross-
checked by another programmer for potential bugs or issues—are standard prac-
tice in software engineering. Most studies addressing the use of code reviews
in education focus on peer code reviews, in which students complete a pro-
gramming assignment and review each other’s submissions [12]. Peer review has
been championed as a way to teach students to provide and receive constructive
criticism [2], as well as to build collaboration skills [24]. Furthermore, the ris-
ing popularity of social coding platforms (e.g., GitHub, GitLab) as pedagogical
tools has resulted in students being exposed to professional code review tools
and processes as part of their education [10]. Nevertheless, one of the challenges
of using peer code review in education is the fact that students often lack the
ability to perform code reviews [12]. In this paper, we present the evaluation

2 Juan Carlos Farah et al.

of an online lesson format aimed at teaching students how to perform code re-
views. We refer to lessons following this format as code review notebooks, as they
resemble computational notebooks, but focus on performing code reviews and
not on executing code. By completing lessons featuring code review notebooks,
students could both learn about the code review process through example code
snippets and get practical experience through interactive exercises.

In a previous study [8], we assessed the usability of the code review note-
book format, achieving positive results. In this study, we focus on the format’s
effectiveness in achieving short-term learning gains, encouraging students to re-
flect on their learning process, and providing a satisfactory learning experience.
We conducted a case study comprising a within-subjects experiment with 25
university students. The findings from our mixed-method analysis suggest that
code review notebooks could serve as a way to introduce students to software
engineering concepts such as programming best practices, as well as to illustrate
how the code review process works. Students would therefore be better equipped
to participate in peer code review exercises. Through this evaluation, we aim to
consolidate the design of online lessons aimed at preparing students for the code
review process as a part of their software engineering education.

2 Background and Related Work

In a recent systematic literature review, Indriasari et al. reported that the first
“use of peer code review in a programming course was published in 2003”, with
187 studies published as of April 2019 [12]. Indriasari et al. also emphasize that
the most common approach to incorporating code reviews into educational con-
texts is to include them as a peer review exercise. To provide the technological
context for these peer code review exercises, instructors often integrate social
coding platforms or bespoke tools (e.g., CaptainTeach [18], EduPCR [26], Cae-
sar [23]), specifically designed for peer code review. These peer code review tools
provide functionalities that are particularly useful to instructors, such as code
partitioning and automatic review assignment [23]. Indeed, Indriasari et al. un-
derline that “[one] of the main benefits of peer code review, particularly in large
classes, is to assist the instructor in providing timely feedback to students” [12].
Nevertheless, properly motivating and training students to provide feedback is a
challenge that these same authors identify as a barrier to the successful adoption
of peer code review exercises in the classroom. If students are expected to review
code submitted by their peers, they should be able to do so satisfactorily, as oth-
erwise the exercise is neither useful for the student conducting the review nor for
the student receiving the feedback. To address this challenge, a few studies have
proposed focusing on teaching the code review process to individual students,
namely, work by Ardıç et al. [3], Ribeiro Guimarães [19], and Song et al. [21].
Our work is most aligned with this line of research.

In a previous study [8], we presented a code review application that could be
used to scaffold code review notebooks. Our evaluation using standard instru-
ments for measuring user experience (System Usability Scale [5] and the short

Integrating Code Reviews into Online Lessons 3

version of the User Experience Questionnaire [20]) suggested that students rated
the usability of the code review notebook and the underlying code review appli-
cation positively. The current study builds on these results, this time addressing
the potential code review notebooks have to support learning experiences for
software engineering students.

3 Methodology

The purpose of our evaluation was to address one main research question:

What are the effects of using a code review notebook on students’ expe-
riences learning to identify code quality issues in JavaScript?

To frame our evaluation, we focused on three aspects of the learning expe-
rience: (i) learning gains achieved, (ii) self-reflection on the learning experience,
and (iii) feedback regarding the lesson. We evaluated our code review notebook
through a case study focusing on these three aspects. Our study consisted of a
within-subjects experiment that took place in an online learning environment.
In this section, we present the methodology used for our evaluation.

3.1 Context

To perform our evaluation within an educational setting, the context for our case
study was an asynchronous online lesson4 on code linting. The process of linting
code dates back to the 1970s and involves the use of static analysis tools designed
to detect issues in software [13]. Linting tools are often used in industry to enforce
code quality standards and help automate code reviews. It is therefore pertinent
to teach the concept of code linting using a code review notebook, especially
since the code review process has also been proposed as a pedagogical tool for
introducing students to code quality standards [15]. In our case, we specifically
introduced students to ESLint [25], a linting tool designed for JavaScript, as well
as the Airbnb JavaScript Style Guide [1], a popular configuration for ESLint. In
the following sections, we highlight the technological and pedagogical contexts
used to carry out our study in an educational setting.

Technological Context Our code review notebook was implemented on the
Graasp digital education platform [9]. Graasp allows instructors to create on-
line learning experiences featuring a varied set of web-compatible resources.
Instructors can therefore prepare an online lesson comprising textual explana-
tions alongside multimedia content and interactive applications. To prevent over-
whelming students with content, instructors can divide the lesson into phases,
which the students can explore using a vertical navigation bar. For our imple-
mentation, we followed the code review notebook format. Textual explanations

4 The online lesson is available here: https://graasp.eu/s/sm12t9.

4 Juan Carlos Farah et al.

Fig. 1. Code quality issues were explained using text accompanied by a code snippet
containing the issue and another snippet illustrating a possible solution.

regarding the code review process and code linting were intercalated with images
and code snippets. Code snippets were presented using the code review applica-
tion [8], which allowed students to annotate each line of code with comments.
Furthermore, a text input application was used to allow students to answer
open-ended questions. This online lesson—depicted in Fig. 1—was shared with
students via a link, which they could access anonymously.

Pedagogical Context Our online lesson was structured following the Fixer
Upper pedagogical pattern, whereby students are presented with code “that is
generally sound but [contains] carefully introduced flaws [that] can both intro-
duce a complex topic early and serve as a way to introduce error analysis and
correction” [4]. The lesson was structured into seven phases that students were
meant to navigate in order. The first phase (Getting Started) introduced the first
code snippet that would serve to highlight the code style issues that would be
addressed in the lesson. Students were presented with an exercise comprising a
code snippet and were asked to annotate it with any potential issues they could
identify. This initial exercise served as a pre-test to gauge the student’s initial
knowledge of code reviews, linting, and JavaScript best practices. In the second

Integrating Code Reviews into Online Lessons 5

phase (Introduction), we formally introduced the lesson with a short textual in-
troduction to linting. The third phase (ESLint) presented ESLint and the Airbnb
JavaScript Style Guide. The fourth (Styling) and fifth (Best Practices) phases
made up the core of the lesson. In these phases, we used the code quality issues
seeded into the pre-test as examples and walked the student through them using
(i) an explanation based on the ESLint documentation and Airbnb JavaScript
Style Guide, (ii) a code snippet highlighting the issue, and (iii) a code snippet
illustrating a possible solution. Fig. 1 depicts the fourth phase, highlighting an
explanation block featuring the code review application. In a sixth phase (Ex-
ercise), we presented an exercise that served as a post-test to gauge students’
short-term learning gains. A seventh phase (Conclusion) served as a wrap-up,
presenting the answers to the post-test and asking students to provide (i) a short
reflection on their performance and (ii) feedback regarding the lesson.

3.2 Participants

We recruited 27 students pursuing degrees in technical subjects via our internal
networks at the École Polytechnique Fédérale de Lausanne and the School of En-
gineering and Architecture of Fribourg in Switzerland. Students were informed
that this was an optional, ungraded exercise. Two students did not complete the
post-test and were therefore excluded from our analysis. A total of 22 students—
9 female and 13 male—completed an optional demographics questionnaire. Of
these students, 17 were currently completing a master’s degree, while 5 were en-
rolled in a bachelor’s program. Students were also asked to report on a scale of 1
to 5—with 1 being Beginner and 5 being Expert—their programming experience
both overall and specifically using JavaScript. Results show that while students’
programming experience was above average (x̄ = 3.18, Mode = 4), they were
mostly uninitiated in JavaScript (x̄ = 1.95, Mode = 1).

3.3 Procedure

Our study took place in January 2022 and was conducted remotely. Students
were sent a link to the code review notebook described in Section 3.1 and were
instructed to take a total of 30 minutes to complete the evaluation. Students
accessed the online lesson anonymously and completed an initial exercise that
served as a pre-test before going through the code review notebook and then
taking a post-test. Upon completion of the online lesson, students were directed
to an online questionnaire that included an optional demographics section.

3.4 Instruments

To address our research question, we operationalized the first aspect—learning
gains—using a bespoke instrument based on data from the pre- and post-tests.
Learning gains were calculated as the difference between a student’s post- and
pre-test scores, with a possible range from −100% to 100%, inclusive. The second

6 Juan Carlos Farah et al.

aspect—self-reflection—was addressed via a question5 asking students to provide
feedback on their performance in short answer form. Finally, the third aspect—
feedback—comprised an open-ended question6 asking students to provide their
thoughts on the lessons as well as any comments or suggestions.

3.5 Data Analysis

The dataset used for our analysis was extracted from the Graasp platform using
its learning analytics pipeline [7]. To analyze our data, we followed a mixed-
method approach. Quantitative data were analyzed using descriptive and infer-
ential statistics. Specifically, we report the sample mean (x̄), median (x̃), and
standard deviation (s), and use a dependent t-test for paired samples to compare
the distributions of pre-test and post-test scores. Qualitative data were analyzed
using line-by-line data coding [6]. We also performed sentiment analysis on the
self-reflection and feedback comments. For this analysis, we used VADER [11]—
a sentiment analysis model trained on social media data—to assign a sentiment
score ranging from −1 to +1 to each comment.

4 Results

In this section, we outline our results following the three aspects of our study.

4.1 Learning Gains

In the pre-test, students detected 14.5% of issues on average (x̄ = 14.5%, x̃ =
9.09%, s = 13.1%), while in the post-test, the mean increased to x̄ = 48.6% (x̃ =
50.0%, s = 23.1%). The differences between the pre- and post-test resulted in a
mean learning gain of x̄ = 34.0% (x̃ = 35.7%, s = 20.0%, xmin = −1.95%, xmax =
71.4%), with all students except one achieving positive learning gains. To assess
the distribution of learning gains (and therefore the distribution of the differences
between the pre- and post-test) we performed a Shapiro-Wilk test, which did not
show evidence of non-normality (W = 0.967, p = 0.578). Indeed, Fig. 3 depicts
a histogram of the learning gains, visually suggesting a normal distribution. A
dependent t-test for paired samples showed that there is a significant difference
in the distribution of the pre- and post-test scores (t(24) = 8.51, p < 0.001).
Fig. 2 illustrates the differences between both distributions.

4.2 Self-Reflection

A total of 23 students provided a short open-ended answer to a question asking
them to reflect on their performance in the post-test. Comments ranged from

5 “Did you manage to find all of these [issues]? If not, which ones did you miss? Did
you find any of them particularly tricky/helpful?”

6 “What did you think about this lesson? Any comments, suggestions, or feedback?”

Integrating Code Reviews into Online Lessons 7

Pre-Test Post-Test

0

20

40

60

80

100

G
ra

de
 (%

)

*** p < 0.001

Pre-Test versus Post-Test Grades

Fig. 2. Boxplots showing the differences
between the pre- and post-test scores.

10 0 10 20 30 40 50 60 70 80
Learning Gain (%)

0

1

2

3

4

5

N
um

be
r

of
 S

tu
de

nt
s

Distribution of Learning Gains

Fig. 3. Histogram depicting the distribu-
tion of learning gains achieved.

34 to 553 characters in length (x̄ = 189.1, x̃ = 151.0, s = 131.7). Of the 23
students who provided a self-reflection, 2 students did so without identifying the
specific issues they found problematic, while 17 students specifically reported
issues they had missed. For students who mentioned specific issues, they reported
a mean of x̄ = 59.6% (x̃ = 55.8%, s = 26.5%, xmin = 11.1%, xmax = 100.0%)
of issues they had missed. A sentiment analysis of these comments revealed
that they had a negative sentiment on average (x̄ = −0.278, x̃ = −0.340, s =
0.546). Fig. 4 shows the distribution of the sentiment scores and Fig. 5 a plot
of these sentiment scores against their corresponding student’s learning gain. A
simple linear regression was performed to test if learning gains were an adequate
predictor of sentiment scores (R2 = 0.115, F (1, 21) = 2.733, p = 0.113), but the
results were not significant.

4.3 Feedback

In addition to a self-reflection, 22 students provided feedback in the form of
responses answering an open-ended question about their overall satisfaction
with the lesson. Comments ranged in length from 4 to 924 characters (x̄ =
177.3, x̃ = 132.5, s = 188.4) and the sentiment analysis performed on these com-
ments yielded a positive mean sentiment of x̄ = 0.556 (x̃ = 0.668, s = 0.374).
Fig. 6 shows the distribution of these sentiment scores and Fig. 7 the relationship
between sentiment scores and learning gains. Once more, we performed a simple
linear regression to test if learning gains were an adequate predictor of the sen-
timent scores, yielding results that were not significant (R2 = 0.165, F (1, 19) =
3.767, p = 0.0673). Finally, using line-by-line coding, we identified prominent
themes that were present in the feedback. On the one hand, 15 students high-
lighted the positive aspects of the lesson, describing it as “clear”, “good”, and

8 Juan Carlos Farah et al.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Sentiment Score

0

1

2

3

4

5

6

N
um

be
r

of
 S

tu
de

nt
s

Distribution of Self-Reflection Sentiment Scores

Fig. 4. While the distribution of students’
self reflection sentiment scores was wide, it
shows a tendency towards negative scores.

0 10 20 30 40 50 60 70
Learning Gain (%)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Se
lf

-R
ef

le
ct

io
n

Se
nt

im
en

t S
co

re

Self-Reflection Sentiment Score versus Learning Gain

Fig. 5. There is a negative relationship
between learning gains and self-reflection
sentiment scores, but learning gains did
not significantly predict sentiment scores.

“useful”. This is best summarized by one particular student, who described the
lesson as follows: “[The lesson is] very pedagogical, [it] gives a good first overview
without being too dense or discouraging, [and] makes you want to learn more by
yourself !”7. On the other hand, 3 students pointed out their lack of experience
in the chosen programming language as a limitation, while 3 different students
found the lesson difficult.

5 Discussion

The results of our study suggest that using a code review notebook to support
an online lesson on software engineering education leads to tangible short-term
learning gains. The fact that—on average—students detected 34% more code
quality issues in the post-test than in the pre-test indicates that the lesson
had a considerable impact on students’ understanding of what constitutes good
quality JavaScript code and on their ability to detect and annotate issues present
in the code snippet. These results suggest that our online lesson format could
serve to address one of the issues identified by Indriasari et al. [12], namely, that
students often lack the skills necessary to perform code reviews [24]. Specifically,
our lesson format could be used to address issues similar to the one experienced
by Stalhane et al., who reported that almost all students found only 2-3 out of
20-30 defects (10%), even though they were expected to find around 60% [22].

7 “Très pédagogique, donne un bon premier aperçu sans pour autant être trop dense et
décourageant, donne envie d’aller apprendre plus par soi-même !” (Translated from
French by the authors.)

Integrating Code Reviews into Online Lessons 9

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Sentiment Score

0

1

2

3

4

5

6

7

8

N
um

be
r

of
 S

tu
de

nt
s

Distribution of Feedback Sentiment Scores

Fig. 6. The distribution of sentiment
scores for the feedback provided was pre-
dominantly positive.

0 10 20 30 40 50 60 70
Learning Gain (%)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Fe
ed

ba
ck

 S
en

ti
m

en
t S

co
re

Feedback Sentiment Score versus Learning Gain

Fig. 7.While there is a slightly positive re-
lationship between learning gains and feed-
back sentiment scores, learning gains did
not significantly predict sentiment scores.

According to the authors, one of the possible explanations for this gap could be
that the “process was unfamiliar and hence daunting” [22] for students. Thus, a
code review notebook similar to the one used in this study could be exploited to
guide students through the code review process before exposing them to more
complicated code review exercises. Our work also sheds light on how to help
address some of the concerns teachers have with the peer code review process. In
a study of two computer science university-level courses, Kubincová et al. noted
that teachers perceived the feedback provided by students (to other students)
as focusing mostly on minor coding issues [14]. By harnessing a code review
notebook similar to the one used in our experiment, teachers could provide
specific examples of both the type of issues that they want students to look out
for, as well as the way they want students to highlight these issues when they
encounter them while reviewing their peers’ code.

Our analysis of the self-reflection comments provides evidence that students
took the time to reflect on the learning experience. Exercises promoting self-
reflection have been shown to be positively correlated with student success
in software engineering courses [17] and students have reported finding self-
reflection helpful [16]. Instructors could harness answers from these exercises in
conjunction with the performance on code reviews to identify learning gaps, and
thus personalize teaching strategies targeting students struggling with the con-
cepts at hand. Furthermore, while the sentiment analysis of these self-reflection
comments yielded a negative score on average, this result could be due to the
way the question was posed to students. More concretely, the fact that we specif-
ically asked students to reflect on the issues they had not been able to identify
could have negatively biased the sentiment scores of their responses.

10 Juan Carlos Farah et al.

Conversely, the feedback provided was overall positive, indicating that the
lesson content and the code review notebook format were predominantly well-
received by students. Specific themes and comments that emerged from our
qualitative analysis highlight the potential that code review notebooks have to
serve as an introduction to complicated or broad topics that students can then
go on to explore on their own. As there are a vast number of issues that can be
encountered when performing an open-ended code review exercise, using a code
review notebook to motivate the most common ones could be useful for instruc-
tors looking to prepare students for open-ended peer code review exercises.

Finally, the regression analysis performed shows that learning gains were not
a good predictor of either the sentiment score of students’ self-reflection com-
ments or students’ feedback on the lesson. While this study’s sample size is
limited, the results of our regression analysis could suggest that actual perfor-
mance on the code review exercises was independent of motivation to reflect on
the learning experience and of the perception of the lesson itself. This makes
these types of lessons more adequate as a first exposure to the code review pro-
cess for novice programmers, who should not feel discouraged if they do not
perform as well as expected.

6 Limitations and Future Work

Our study has some limitations worth highlighting. First, as previously men-
tioned, while the sample size achieved in this study is suitable for an initial
within-subjects short-term learning gains analysis, data from more subjects
could allow us to consolidate our findings and draw clearer conclusions with
respect to how learning gains are related to self-reflection and feedback. Second,
our learning activity took place outside the formal classroom, as an optional exer-
cise. This might have resulted in sample bias, as those students who responded
to our request for participation might have been students already motivated
enough to take part in an ungraded exercise. To address this, the experiment
should be reproduced in the context of a formal software engineering course,
possibly as a mandatory—albeit ungraded—exercise, which would provide us
with a possibly less-biased cohort of students. Third, this study focuses on one
particular use of code review notebooks, which concerns introducing code linting
concepts for JavaScript programming. In order to generalize our conclusions, it
is necessary to replicate our methodology with code review notebooks tackling
other subjects—such as introducing basic programming concepts (e.g., loops,
conditional statements, functions)—that could also be applicable to software
engineering education. Finally, while feedback on the lesson was mostly positive,
some negative comments regarding the usability of the interface emerged during
our analysis. In future work, we aim to address these limitations and explore the
potential to expand the code review notebook to more use cases.

Integrating Code Reviews into Online Lessons 11

7 Conclusion

In this paper, we presented results from a case study aimed at assessing the
impact of code review notebooks on students’ learning experiences in the context
of an online lesson on detecting code quality issues in JavaScript. Results from
our mixed-method analysis provide insight into the potential for code review
notebooks to help students learn how to perform code reviews. Our findings
are particularly pertinent to practitioners who use or are looking to incorporate
code reviews into their courses. By introducing the code review process using
an online lesson following the code review notebook format, instructors could
prepare students to conduct reviews that are both useful for themselves and for
the student receiving the feedback. As more instructors adopt such approaches,
research into how best to scaffold these online lessons for different audiences (e.g.,
age groups, fields of study) could shed more light on the impact our approach
could have in domains outside of software engineering education.

References

1. Airbnb: Airbnb JavaScript Style Guide (2012). URL airbnb.io/javascript/

2. Anewalt, K.: Using Peer Review as a Vehicle for Communication Skill Development
and Active Learning. Journal of Computing Sciences in Colleges 21(2), 148–155
(2005)

3. Ardıç, B., Yurdakul, İ., Tüzün, E.: Creation of a Serious Game for Teaching Code
Review: An Experience Report. In: Proceedings of the 2020 IEEE 32nd Conference
on Software Engineering Education and Training (CSEE&T), pp. 204–208. IEEE,
New York, NY, USA (2020). DOI 10.1109/CSEET49119.2020.9206173

4. Bergin, J.: Fourteen Pedagogical Patterns. In: M. Devos, A. Rüping (eds.) Euro-
PLoP 2000. Universitaetsverlag Konstanz (2000)

5. Brooke, J.: SUS: A ‘Quick and Dirty’ Usability Scale. In: Usability Evaluation In
Industry. CRC Press, London, UK (1996)

6. Charmaz, K.: Constructing Grounded Theory: A Practical Guide through Quali-
tative Analysis. Sage, London, UK (2006)

7. Farah, J.C., Soares Machado, J., Torres da Cunha, P., Ingram, S., Gillet, D.: An
End-to-End Data Pipeline for Managing Learning Analytics. In: 2021 19th In-
ternational Conference on Information Technology Based Higher Education and
Training (ITHET). IEEE, New York, NY, USA (2021). DOI 10.1109/ITHET50392.
2021.9759783

8. Farah, J.C., Spaenlehauer, B., Rodŕıguez-Triana, M.J., Ingram, S., Gillet, D.: To-
ward Code Review Notebooks. In: 2022 International Conference on Advanced
Learning Technologies (ICALT), pp. 209–211. IEEE, New York, NY, USA (2022).
DOI 10.1109/ICALT55010.2022.00068

9. Gillet, D., Vonèche-Cardia, I., Farah, J.C., Phan Hoang, K.L., Rodŕıguez-Triana,
M.J.: Integrated Model for Comprehensive Digital Education Platforms. In:
2022 IEEE Global Engineering Education Conference (EDUCON), pp. 1586–1592.
IEEE, New York, NY, USA (2022). DOI 10.1109/EDUCON52537.2022.9766795

10. Hsing, C., Gennarelli, V.: Using GitHub in the Classroom Predicts Student Learn-
ing Outcomes and Classroom Experiences: Findings from a Survey of Students

12 Juan Carlos Farah et al.

and Teachers. In: Proceedings of the 50th ACM Technical Symposium on Com-
puter Science Education, pp. 672–678. ACM, New York, NY, USA (2019). DOI
10.1145/3287324.3287460

11. Hutto, C.J., Gilbert, E.: VADER: A Parsimonious Rule-Based Model for Sentiment
Analysis of Social Media Text. In: Proceedings of the Eighth International AAAI
Conference on Weblogs and Social Media, pp. 216–225. AAAI, Palo Alto, CA, USA
(2014)

12. Indriasari, T.D., Luxton-Reilly, A., Denny, P.: A Review of Peer Code Review
in Higher Education. ACM Transactions on Computing Education 20(3) (2020).
DOI 10.1145/3403935

13. Johnson, S.C.: Lint, A C Program Checker (1978)
14. Kubincová, Z., Homola, M.: Code Review in Computer Science Courses: Take One.

In: H. Xie, E. Popescu, G. Hancke, B. Fernández Manjón (eds.) Advances in Web-
Based Learning – ICWL 2017, Lecture Notes in Computer Science, vol. 10473, pp.
125–135. Springer, Cham, Switzerland (2017). DOI 10.1007/978-3-319-66733-1 14

15. Li, X., Prasad, C.: Effectively Teaching Coding Standards in Programming. In:
Proceedings of the 6th Conference on Information Technology Education (SIGITE
'05), pp. 239–244. ACM, New York, NY, USA (2005). DOI 10.1145/1095714.
1095770

16. Minocha, S., Thomas, P.G.: Collaborative Learning in a Wiki Environment: Ex-
periences from a Software Engineering Course. New Review of Hypermedia and
Multimedia 13(2), 187–209 (2007). DOI 10.1080/13614560701712667

17. Pedrosa, D., Fontes, M.M., Araújo, T., Morais, C., Bettencourt, T., Pestana, P.D.,
Morgado, L., Cravino, J.: Metacognitive Challenges to Support Self-Reflection of
Students in Online Software Engineering Education. In: 2021 4th International
Conference of the Portuguese Society for Engineering Education (CISPEE). IEEE,
New York, NY, USA (2021). DOI 10.1109/CISPEE47794.2021.9507230

18. Politz, J.G., Krishnamurthi, S., Fisler, K.: CaptainTeach: A Platform for In-Flow
Peer Review of Programming Assignments. In: Proceedings of the 2014 Conference
on Innovation & Technology in Computer Science Education (ITiCSE '14), p. 332.
ACM, New York, NY, USA (2014). DOI 10.1145/2591708.2602687

19. Ribeiro Guimarães, J.P.: Serious Game for Learning Code Inspection Skills. Mas-
ter’s thesis, Universidade do Porto (2016)

20. Schrepp, M., Hinderks, A., Thomaschewski, J.: Design and Evaluation of a Short
Version of the User Experience Questionnaire (UEQ-S). International Journal
of Interactive Multimedia and Artificial Intelligence 4(6), 103–108 (2017). DOI
10.9781/ijimai.2017.09.001

21. Song, X., Goldstein, S.C., Sakr, M.: Using Peer Code Review as an Educational
Tool. In: Proceedings of the 2020 ACM Conference on Innovation and Technology
in Computer Science Education, pp. 173–179. ACM, New York, NY, USA (2020)

22. Stalhane, T., Kutay, C., Al-Kilidar, H., Jeffery, R.: Teaching the Process of Code
Review. In: Proceedings of the 2004 Australian Software Engineering Conference
(ASWEC '04), pp. 271–278. IEEE, New York, NY, USA (2004)

23. Tang, M.: Caesar: A Social Code Review Tool for Programming Education. Mas-
ter’s thesis, Massachusetts Institute of Technology (2011)

24. Trytten, D.A.: A Design for Team Peer Code Review. ACM SIGCSE Bulletin
37(1), 455–459 (2005). DOI 10.1145/1047124.1047492

25. Zakas, N.C.: ESLint (2013). URL eslint.org
26. Zong, Z., Wang, Y., Schunn, C.D.: Why Students Want to Provide Feedback to

their Peers: Drivers of Feedback Quantity and Variation by Type of Course. Journal
of Psychology in Africa 31(4), 336–343 (2021)

