
Citation: Ponzina, F.; Ansaloni, G.;

Peón-Quirós, M.; Atienza, D. Using

Algorithmic Transformations and

Sensitivity Analysis to Unleash

Approximations in CNNs at the Edge.

Micromachines 2022, 13, 1143.

https://doi.org/10.3390/mi13071143

Academic Editors: Arman Roohi and

Juvenal Rodriguez-Resendiz

Received: 10 June 2022

Accepted: 13 July 2022

Published: 19 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Using Algorithmic Transformations and Sensitivity Analysis to
Unleash Approximations in CNNs at the Edge
Flavio Ponzina * , Giovanni Ansaloni , Miguel Peón-Quirós and David Atienza

Embedded Systems Laboratory (ESL), École Polytechnique Fédérale de Lausanne (EPFL),
1015 Lausanne, Switzerland; giovanni.ansaloni@epfl.ch (G.A.); miguel.peon@epfl.ch (M.P.-Q.);
david.atienza@epfl.ch (D.A.)
* Correspondence: flavio.ponzina@epfl.ch

Abstract: Previous studies have demonstrated that, up to a certain degree, Convolutional Neural
Networks (CNNs) can tolerate arithmetic approximations. Nonetheless, perturbations must be
applied judiciously, to constrain their impact on accuracy. This is a challenging task, since the
implementation of inexact operators is often decided at design time, when the application and
its robustness profile are unknown, posing the risk of over-constraining or over-provisioning the
hardware. Bridging this gap, we propose a two-phase strategy. Our framework first optimizes the
target CNN model, reducing the bitwidth of weights and activations and enhancing error resiliency,
so that inexact operations can be performed as frequently as possible. Then, it selectively assigns
CNN layers to exact or inexact hardware based on a sensitivity metric. Our results show that, within a
5% accuracy degradation, our methodology, including a highly inexact multiplier design, can reduce
the cost of MAC operations in CNN inference up to 83.6% compared to state-of-the-art optimized
exact implementations.

Keywords: approximate computing; CNN quantization; ensembling methods

1. Introduction

The edge computing paradigm [1] is fostering a revolution in Artificial Intelligence
(AI), impacting scenarios ranging from personalized healthcare to autonomous driving and
automatic text generation [2–4]. By shifting data processing from the cloud to end devices,
edge computing enables increasing efficiency dramatically, because data acquisitions do
not need to be transmitted over energy-hungry radio links. Moreover, local processing
results in low latencies and high responsiveness, which are often crucial for edge devices.

Edge AI applications are often realized as Convolutional Neural Networks (CNNs).
These architectural models are usually structured as a sequence of processing layers, each
extracting increasingly abstract features from the input data to perform classification
or detection tasks. Recent research efforts [5,6] have highlighted that the architectural
redundancy of CNNs makes these models resilient to perturbations. To increase their
robustness even more, the authors of [7] observe that algorithmic optimizations can increase
the intrinsic resiliency of CNNs against errors. They propose a solution that transforms
a target single-instance CNN into a resource-constrained ensemble of CNNs, improving
robustness towards memory upsets while not increasing computational workload and
memory requirements.

Nevertheless, CNN inference often demands the execution of millions of multiply–
accumulate (MAC) operations and large memories to store parameters, straining the
capabilities of ultra-low-power embedded systems. Two main optimization avenues have
been proposed in the literature to address this challenge. Pruning approaches [8] entail the
removal of specific neural connections or entire computational blocks from CNN models,
while quantization strategies [9] reduce the bitwidth of CNN weights and/or activations.

Micromachines 2022, 13, 1143. https://doi.org/10.3390/mi13071143 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13071143
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-9662-498X
https://orcid.org/0000-0002-8940-3775
https://orcid.org/0000-0002-5760-090X
https://orcid.org/0000-0001-9536-4947
https://doi.org/10.3390/mi13071143
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13071143?type=check_update&version=1

Micromachines 2022, 13, 1143 2 of 11

A third path to optimize the run-time performance of CNNs is the use of approximate
operators that trade arithmetic correctness for efficiency [10]. In this work, we introduce a
two-stage methodology where we employ inexact arithmetic in carefully selected CNN
layers to further increase inference efficiency of CNN models. In contrast to previous
works [11], a key aspect of our optimization loop is that accuracy degradation is effectively
controlled, independently of the approximation degree of the multiplier itself.

Unfortunately, the impact of inexact circuits on CNNs output quality degradation
cannot be evaluated at design time, when these operators are selected, because the impact
on accuracy also depends on the model structure and the task complexity. The authors
of [11] analyzed the impact of different inexact multipliers on the convolutional and fully
connected layers of the VGG16 model, and found that the first and last layers are partic-
ularly sensitive to approximation. Therefore, to obtain a positive accuracy vs. efficiency
trade-off, they suggest a hybrid approach where only the central layers are executed using
approximate multipliers. In this work, we demonstrate that inexact multipliers have a
limited impact on efficiency when applied alone to baseline CNN models, especially when
compared to quantization. Nevertheless, a judicious use of these circuits in highly opti-
mized (quantized) models can further improve efficiency. Hence, we carefully map them
to execute specific CNN layers and combine them with orthogonal state-of-the-art CNN
optimization strategies to fully exploit their benefits. To guide the selection of CNN layers
where inexact arithmetic can be applied, while abiding by a certain user-defined accuracy
level, we propose a heuristic method that evaluates the resiliency of individual layers by
performing a sensitivity analysis. This approach logically separates the approximation de-
gree of the employed inexact multiplier from the user-defined accuracy threshold, making
these two values independent input parameters in our proposed methodology.

The contribution of this paper is three-fold:

• We demonstrate that, when applied to baseline CNN models, approximate multipliers
can only marginally improve inference efficiency while preserving accuracy. Thus,
we combine inexact computing with other optimization strategies, showing how
approximate multipliers can be effectively employed to fully exploit energy savings.

• We present a two-stage accuracy-driven methodology that combines ensemble meth-
ods, heterogeneous quantization, and a selective use of inexact operators to improve
energy efficiency in CNNs at the edge, while increasing their resilience towards the
noise introduced by approximate multipliers.

• To introduce the use of inexact arithmetic in our optimized model, we propose a novel
heuristic-based approach that exploits the results of a preliminary analysis evaluating
the sensitivity to approximation of individual CNN layers; thus, it ultimately tailors
the design to user-specified accuracy requirements, irrespective of the approximation
level of the selected multiplier.

The rest of the paper is organized as follows: in Section 2, we place our work in
perspective of related research efforts. Then, the proposed methodology is detailed in
Section 3. The adopted experimental setup is presented in Section 4, while results are
discussed in Section 5. We summarize our findings in Section 6.

2. Related Works
2.1. Quantization

While CNNs are typically trained using floating-point representations for intermediate
values (activations) and parameters (weights), it is known that, during inference, more
energy- and storage-efficient alternatives can be adopted with little impact on accuracy.
As an example, Reagen et al. [12] propose an implementation where either 8 or 16 bits are
employed to represent weights, while Courbariaux et al. [13] introduce binarized CNNs,
in which both weights and activations are constrained to be either −1 or +1, thus using a
single bit for their representation, but at the cost of important accuracy degradation.

Recent works propose heterogeneous per-layer quantization strategies in which the
activation and weight bitwidths are assigned according to the layer robustness, to increase

Micromachines 2022, 13, 1143 3 of 11

efficiency while preserving accuracy. While, in principle, quantization may be performed
considering arbitrary bitwidths [14], such fine-grained flexibility usually incurs vast over-
heads. Additional logic can instead be minimized when the adopted quantization levels
are SIMD standard bitwidths (e.g., quantization on 16, 8, or 4 bits, as in [12,15]), since, in
this case, word-level parallelism can be effectively employed.

2.2. Ensembles of CNNS

Ensemble methods targeting CNNs have been investigated and proved to improve
classification accuracy, at the cost of dramatically increasing memory and computational
requirements due to the replication and deployment of several CNN models [16]. To
avoid this pitfall, the authors of [7] compress CNNs via filter pruning by a factor equal
to the number of instances deployed in the ensemble, so that the resulting architecture
does not require more computation and storage than the single-instance original model.
Their proposed resource-constrained ensembles are more accurate and robust against
memory errors than equivalent single-instance CNNs. In this work, we consider resource-
constrained ensembles of CNNs in a different context: as an avenue to increase CNNs’
tolerance towards arithmetic approximations.

2.3. Approximate Computing in CNNS

In a broad sense, the approximate computing paradigm encompasses strategies trading
off the exactness of computed results with computing performance metrics such as run-time
and/or energy [17]. In the context of this paper, methods related to Approximate Logic
Synthesis are of particular relevance. In particular, they are able to derive inexact, but
extremely energy efficient, arithmetic circuits for commonly used operators [18]. These
operators can then be employed as building blocks for complex accelerators [19].

This approach is of particular interest when targeting CNN accelerators, as they usually
present highly parallel and computation-intensive structures, where a major contribution
to resource and energy budgets is the arithmetic logic in their datapaths [20,21]. Indeed,
several studies have advocated the use of inexact circuits in CNNs [11,22]. The authors of
these works highlight that, when considering CNNs, multipliers are the most amenable
target for approximation. In particular, multipliers typically present a high energy footprint
(e.g., with respect to adders) and because neural networks require a very high number of
multiplications. We also focus on approximating multiply operations in our work, but,
as opposed to [11,22], we adopt an application mapping perspective, aiming to leverage
the available energy-saving opportunities in inexact hardware target while controlling
degradations in accuracy.

3. Proposed Methodology

To effectively explore the large space of candidate designs due to the combination of
ensembling methods, heterogeneous quantization, and inexact operators to improve CNN
inference efficiency, we employ the methodology summarized in Figure 1. Our method-
ology accepts as input a single-instance CNN. First, it applies the concept of embedded
ensembles to increase the robustness of the CNN model. Second, it applies heterogeneous
quantization to reduce the use of memory bandwidth and computational resources in each
layer. Third, it analyzes the layers of the baseline CNN model to evaluate their sensitivity to
approximation. Finally, it maps the obtained ensemble on approximate hardware resources,
leveraging their lower power consumption to further increase inference efficiency. These
four steps are implemented offline in two stages.

Micromachines 2022, 13, 1143 4 of 11

Stage A: CNN design optimization

Ensembling
Per-Layer

Quantization
Sensitivity
Analysis

Arithmetic
Approximation

Baseline
CNN

Heterogeneously
Quantized Ensemble

Ordered
Layers

Approx. Multiplier

Optimized
Design

Constrained
Ensemble

III IVIII

Stage B: Inexact Arithmetic

Figure 1. The proposed two-stage methodology to CNN inference efficiency. It combines the use of
heterogeneously quantized ensembles with a selective use of inexact arithmetic operators.

3.1. Stage A: Robustness-Aware CNN Optimization

Starting from a single-instance floating-point model, our optimization framework
first derives the structure of an ensemble implementation that improves accuracy and
robustness against data perturbations (I in Figure 1). As in [7], we use pruning and
replication to build ensembles with no memory or computational overheads compared
to the initial single-instance CNN. Specifically, to build an ensemble composed of M
instances, we drop a certain number of convolutional filters from the initial CNN structure
(i.e., coarse-grain filter pruning), until its memory and computational requirements are
reduced by a factor M. The resulting pruned architecture is then replicated M times, and
each instance is independently trained, starting from different (random) weight values, to
increase variability and ultimately improve accuracy. Uniform quantization on 8 bits for
the weights and 16 bits for the activations (i.e., 8/16 quantization) is applied during the last
training epochs, without affecting the accuracy of the baseline floating-point model [12].

The generated ensemble of CNNs is then optimized by including a (further) hetero-
geneous quantization in the CNN instances building the ensemble (II in Figure 1). We
consider each instance individually and proceed per layer in topological order, reducing
the bitwidth of the operands to only 4 bits for the weights and 8 bits for the activations (i.e.,
4/8 quantization). The 4/8 quantization level is applied to a certain layer if the resulting
accuracy meets the user-defined constraint. Otherwise, the previous 8/16 quantization is
retained. This process ends when all layers have been evaluated. CNN ensembling and
per-layer quantization are employed synergically. On one side, the higher accuracy and
robustness of ensembles serves as a support for unleashing more aggressive approxima-
tions. On the other side, a per-layer quantization reduces memory and computational
requirements and improves efficiency by enabling the use of simpler (and therefore more
efficient) multipliers for the execution of 4/8 quantized layers.

3.2. Stage B: Mapping on Inexact HW Resources

The use of approximate multipliers mandates a cautious approach, because relying
entirely on inexact arithmetic can have a critical impact on accuracy. Thus, in the second
stage of our proposed methodology, we adopt an accuracy-driven heuristic method to
select, among the layers that are quantized at an 8/16 level, the ones robust enough to
be implemented using the target approximate multiplier. The heuristic orders the layers
according to their sensitivity (III in Figure 1). We measure sensitivity by instantiating
the selected approximate multiplier in only one layer of the single-instance uniformly
quantized model at a time and evaluating the resulting inference accuracy. This analysis
is performed on the initial single-instance model. We extend the obtained results to the
CNN instances composing the generated ensemble. On one side, we have observed that
the same analysis, performed on each CNN instance, produced very similar results. Hence,
these results suggest that layers’ resiliency may be more closely associated with their size

Micromachines 2022, 13, 1143 5 of 11

and structure than with their actual weight values. On the other side, such an approach
reduces optimization run-time as the analysis is executed only once. Moreover, in contrast
to an impractical exhaustive exploration, this heuristic can efficiently scale to large CNN
applications. Indeed, being L the number of convolutional and fully connected layers, the
computational complexity of our strategy is O(L). Indeed, the per-layer quantization and
use of inexact multipliers are applied in sequence, and are themselves of linear complexity.
In contrast, an exhaustive search, while it would guarantee to find optimal solutions, would
also need to enumerate all the possible configurations. Hence, its complexity isO(3L), since
3 alternative implementations exist for each layer (i.e., 4/8 quantization, 8/16 quantization,
8/16 quantization with inexact multipliers).

As we show in Section 5, reducing the bitwidth of the operands involved in MAC
operations has a larger impact on energy consumption than the use of approximate logic
(on a larger bitwidth). For this reason, our methodology applies heterogeneous quantiza-
tion before introducing approximate operators. Additionally, we observe that using any
approximate multipliers on 4/8 quantized layers has an adverse impact on accuracy. There-
fore, approximation is possibly applied only to those layers that, after the heterogeneous
quantization are still kept at an 8/16 bitwidth.

Finally (IV in Figure 1), we combine the results of the sensitivity analysis with the
optimized ensemble, iteratively introducing approximate multipliers in the CNN instances,
starting from the least sensitive layers. This phase terminates when no further layer can be
approximated while abiding by the accuracy constraint.

4. Experimental Setup

To gauge the potential benefits of our strategy, we consider in this work a diverse
collection of CNN applications, comprising AlexNet [23], VGG16 [24], GoogLeNet [25],
ResNext [26] and MobileNet [27]. In all cases, we adopt Top-1 as accuracy metric, and
CIFAR-100 as dataset [28]. All the benchmarks are trained in PyTorch [29], using fake
quantization functions as in [30] for the last 20 training epochs. As in [7], we build ensembles
containing 2, 4, or 8 instances and present in our results the configuration achieving the
highest accuracy. Across experiments, efficiency is measured as the energy required by
all exact and inexact multiplications executed in an inference. The energy impact of MAC
operations at the chip level is architecture-dependent: it may be relatively low in single-core
platforms where data movements account for the largest fraction of energy consumption,
but it can dominate in multi-core edge AI accelerators comprising hundreds of processing
elements [31].

Compared to the approximation approach implemented in [6], where inexactness is
achieved reducing operands’ precision (i.e., similar to what quantization does), we simulate
the behavior of the employed (possibly inexact) multipliers in a C++ inference solver that
also measures inference accuracy. Additionally, in contrast to [11], where approximation
is applied to float16 arithmetic by using approximation matrixes that simulate inexact
operators, we consider two different integer approximate multipliers, as presented in [32].
Their structure is derived by employing a multi-objective Cartesian genetic programming
approach (CGP), while using different exact implementations as starting point. Among
the large number of potential candidates provided by this library, we select two inexact
multipliers that vastly differ in the magnitude of introduced arithmetic approximation, to
showcase the effect of operators with either a large or a small degree of inexactness. We
adapt their structure to match the bitwidth of input and output operands in our quantized
layers: for example, the 16-bit multipliers in [32] are overdimensioned for 8/16 layers, as
one input operand (the weight) requires only 8 bits. Therefore, we modify the original
Verilog implementation, adjusting the bitwidth of input and output operands, as well as the
bitwidth of the connected internal components. We characterize the power consumption
of the circuits using Synopsys Design Compiler, employing HVT cells from the 40LP
TSMC technology library (40 nm, low power). The error induced by approximation is
measured in terms of Mean Relative Error (MRE) by running a simulation over all the

Micromachines 2022, 13, 1143 6 of 11

possible input combinations. The synthesis and simulation results are summarized in
Table 1. Exact16 and Exact8 are exact multipliers used in 8/16 and 4/8 layers, respectively,
while MulF6B and Mul8VH are approximate multipliers used only in 8/16 layers, with
the latter offering more energy savings at the cost of a larger impact on precision. In
contrast to [22], where the use of inexact multipliers is limited to fully connected layers,
we also introduce approximation in convolutional ones, because they account for a large
percentage of MACs in our benchmarks. As a proof of concept of our approach, we consider
a target system featuring two exact multiplier implementations (Exact16 and Exact8) and
an approximate one (either MulF6B or Mul8VH in our experiments).

5. Experimental Results
5.1. Synergic Use of Ensembles and Heterogeneous Quantization

As reported in Table 1, the energy savings achieved through arithmetic approximation
alone are of 15% when using the MulF6B inexact multiplier. Higher savings can be obtained
by considering more aggressive implementations such as Mul8VH that also introduce
larger perturbations. Alternatively, 4/8 bits quantization reduces the energy consumption
of multiply instructions by 85%, even when using an exact multiplier (Exact8). This finding
motivates our iterative approach, where quantization is applied before the introduction of
inexact multipliers, hence enabling a larger number of layers to be executed using Exact8 (II
in Figure 1). We present in Figure 2 the accuracy/efficiency trade-off achieved in different
benchmarks and design configurations. Black circles correspond to the baseline implemen-
tation used as a reference for comparison and refer to single-instance implementations
adopting the same 8/16 bitwidth in all layers. In line with what has been already described
in [7], we observe that ensemble-based implementations (blue circles) improve the accuracy
of single-instance CNNs, because the limited accuracy drop of individual pruned CNNs is
largely compensated by the higher generalization capability of ensembles. Green circles
represent the second step of our proposed methodology and correspond to the heteroge-
neously quantized ensembles. Layers quantized to 4/8 bits are computed using the Exact8
multiplier, which produces energy savings ranging from 22.1% in ResNext up to more than
80% in VGG16.

Table 1. Operands bitwidth, mean relative error and power characterization of the multipliers used
in our experiments.

Bitwidth MRE Power Area
(IN1 × IN2) (%) (µW) (µm2)

Exact16 (8 × 16) N/A 277.5 622.5
MulF6B (8 × 16) 5.9× 10−5 237.3 441.7
Mul8VH (8 × 16) 1.9× 10−3 137.3 192.9

Exact8 (4 × 8) N/A 39.9 94.8

As previously suggested, it is possible to further increase the energy savings by
substituting the Exact16 implementation used in 8/16 layers with an inexact alternative,
such as MulF6B (F) or Mul8VH (�). Instead, we keep the Exact8 multiplier in 4/8 layers,
since arithmetic approximations in small-bitwidth operators do not result in high overall
energy gains, but have a large impact on accuracy.

On one hand, Figure 2 shows that approximate multipliers can be effectively em-
ployed together with heterogeneous quantization to obtain up to 39.9% additional energy
savings. On the other hand, the approximation introduced by certain multipliers when
indiscriminately used in all 8/16 layers can be too large, resulting in an unacceptable
accuracy degradation. This observation motivates a more judicious selection of the layers
where inexact multipliers should be used, limiting their impact on accuracy (III in Figure 1).

Micromachines 2022, 13, 1143 7 of 11

5.2. Sensitivity Analysis for a Layer-Based Selective Use of Inexact Arithmetic

We observed in Figure 2 that highly inexact multipliers, such as Mul8VH, can produce
high energy savings, but at the cost of a critical impact on classification accuracy. Hence,
in this section, we investigate the robustness of individual layers against the arithmetic
approximations induced by an inexact multiplier, to select those robust enough to endure
approximate computation. To do so, we employ such an inexact operator in one layer
at a time, using the Exact16 implementation to execute all the other layers. We use the
obtained inference accuracy as a metric to determine each layer’s resiliency. We consider
the Mul8VH multiplier to describe our analysis because its large impact on accuracy better
illustrates our results.

Initial CNN

I in Figure 1 II in Figure 1

Figure 2. Accuracy/efficiency trade-off in single-instance CNNs (black) compared to uniformly
(blue), and heterogeneously (green) quantized ensembles. The use of inexact multipliers in all the
layers kept at an 8/16 quantization level (red markers) results in large accuracy losses.

The outcome of this analysis is summarized in Figure 3, where we show the accuracy
drop corresponding to the use of Mul8VH in different layers. This analysis indicates that
the robustness of convolutional and fully connected layers varies in different benchmarks.
As an example, in AlexNet, the intermediate layers are the most robust ones (i.e., they cause
the least accuracy drop when approximated), while the most robust layers of VGG16 and
GoogLeNet are the last ones. Similarly, no clear relationship exists between the robustness
of a certain layer and the number/percentage of MAC operations required for its execution.

1 2 3 4 5 6 7
AlexNet

5
10
15
20
25
30

Ac
cu

ra
cy

 D
ro

p
(%

)

1 3 5 7 9 11 13 15
VGG16

1
2
3
4
5

1 3 5 7 9 11 13
GoogLeNet

2
4
6
8

10

1 3 5 7 9 11 13 15 17
ResNext

2
4
6
8

10

1 4 7 10 13 16 19 22 25 28
MobileNet

2
4
6
8

10

Figure 3. Accuracy drop when using Mul8VH in a single selected layer. The X-axis indicates the layer
index in which Mul8VH is adopted.

In all the evaluated benchmarks, the first convolutional layer is always highly sensitive
to arithmetic approximation. Since it also executes a small fraction of the total MAC
operations, a naive approach that simply performs inexact arithmetic in the entire model
except for the first layer decreases the accuracy degradation by 6.9%, while reducing the
potential energy savings by just 1.5% on average. Nevertheless, a more accurate approach
can lead to a better accuracy/efficiency trade-off. Consequently, we include the described
sensitivity analysis in our methodology (III in Figure 1), and use it to order the layers
from the least to the most sensitive ones. Next, at each iteration, the target approximate
multiplier is iteratively employed in one additional 8/16 quantized layer of each CNN
instance forming the ensemble, until the accuracy degradation becomes unacceptable. As
opposed to our solution, an exhaustive exploration to select the optimal mapping of inexact
multipliers in the described CNN design is an impractical approach. Indeed, even for

Micromachines 2022, 13, 1143 8 of 11

simple architectures composed of relatively few layers such as AlexNet, an exhaustive
search would take more than two months to complete when run on a Tesla V100 GPU
(from NVIDIA, Santa Clara, CA, USA), while our heuristic approach terminates in just a
few hours.

5.3. Overall Methodology Evaluation

In the previous sections, we have described individual steps of the methodology
illustrated in Section 3. Instead, in this last round of experiments, we evaluate the optimized
design at the output of our methodology, in terms of accuracy and energy reduction of
multiply operations. To this end, we consider heterogeneously quantized ensembles of
CNNs and employ Mul8VH as a candidate approximate multiplier. Then, we iteratively
select layers to be approximated as dictated by the sensitivity metric. We have previously
shown in Figure 2 that the use of the highly inexact Mul8VH in every 8/16 quantized layer
incurs very high accuracy degradations. We herein showcase that, by instead selectively
employing it only in robust layers, high energy gains can be achieved while preserving
accuracy. To include a highly optimized baseline in these experiments, we compare the
final outcome of our methodology with the presented heterogeneously quantized ensemble
using exact arithmetic operators. Additionally, we also compare our ultimate solution with
the same quantized ensemble using the target approximate multiplier (i.e., Mul8VH) in all
8/16 layers.

The results for a maximum accuracy drop of 5% are shown in Figure 4. Red squares
indicate the achieved accuracy/energy trade-off of our solution. Conversely, the green
circles on the left of each series report the energy/accuracy of the described baseline, while
the rightmost black squares represent the solution relying on inexact arithmetic only in
8/16 layers. This comparison showcases that our proposed methodology outperforms
state-of-the-art alternatives for a certain user-defined accuracy level, further increasing
energy savings up to 21% compared to heterogeneous quantization alone and harnessing
up to 78% of the energy gains achievable when employing Mul8VH in all CNN layers (a
solution that results in unacceptable accuracy degradations). The limited energy gains
obtained in VGG16 when introducing inexact multipliers (i.e., less than 4%, even when
relying on inexact arithmetic in all 8/16 layers) are due to the high effectiveness of the
aggressive heterogeneous quantization. Figure 2 shows that VGG16 achieves almost 80%
of energy reduction via quantization (green circle). This result indicates that the majority
of its layers employs a 4/8 quantization and can therefore use the Exact8 multiplier. As
a consequence, the limited number of layers kept to an 8/16 quantization level prevents
further significant energy reductions. When compared to baseline exact single-instance
implementations, our results achieve 59.4%, 83.6%, 42.7%, 39.9%, 82.6% energy reductions
for an accuracy degradation limited to 5% in AlexNet, VGG16, GoogLeNet, ResNext and
MobileNet, respectively.

0 5 10 15 20 25 30
Energy Reduction (%)

10
20
30
40
50
60
70
80

Ac
cu

ra
cy

 (%
)

AlexNet
0 1 2 3

Energy Reduction (%)

10
20
30
40
50
60
70
80

VGG16
0 5 10 15 20 25 30

Energy Reduction (%)

10
20
30
40
50
60
70
80

GoogLeNet
0 5 10 15 20 25 30

Energy Reduction (%)

10
20
30
40
50
60
70
80

ResNext
0 2 4 6 8 10

Energy Reduction (%)

10
20
30
40
50
60
70
80

MobileNet

Ensemble, Per-layer Quant.—All Exact Ensemble, Per-layer Quant.—All Mul8VH Our Solution

Figure 4. Our solution, where approximate arithmetic is executed only in specifically selected
layers (red squares), is compared with heterogeneously quantized ensembles either employing
Exact16 (green circles) or Mul8VH (black squares) in all 8/16 layers. The overall energy savings
achieved only via quantization in the presented ensembles (green circles, here considered as baseline
implementations) can be retrieved from Figure 2 (also marked as green circles).

Micromachines 2022, 13, 1143 9 of 11

To further demonstrate the benefits of using a proper selection of approximated
layers, we present a detailed exploration targeting the VGG16 benchmark in Figure 5.
Therein, we show the accuracy obtained by single-instance CNNs and ensembles, where
the Mul8VH multiplier is employed in an increasing number of layers, comparing the
achieved accuracy when using our sensitivity-based approach with an alternative in which
layers are approximated in topological order. Our results confirm the additional robustness
of ensembles and demonstrate that the topological approach fares far worse than our
proposed sensitivity-based one, because fewer layers can be arithmetically approximated
for a target accuracy or, alternatively, far lower accuracy is obtained for the same number
of approximated layers. Indeed, Figure 5 indicates that, with our approach, Mul8VH
can be used in 7 layers in VGG16 and in 13 layers in the corresponding ensemble, while
still limiting the accuracy degradation to 5% in each version, and achieving 19.6% and
43.7% energy reductions, respectively. In contrast, introducing approximation following a
topological order limits the achievable energy reduction to 10.2% and 31.9% for the same
accuracy level.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Layers using Mul8VH

20

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

Ensemble(8), Sensitivity Order
Ensemble(8), Topological Order
Single-Instance, Sensitivity Order
Single-Instance, Topological Order

Figure 5. Accuracy drop when using Mul8VH in the N least sensitive layers (solid lines) or in the
first N topologically ordered layers (dashed lines) of VGG16.

5.4. Area Impact of Deploying Multiple Multiplier Circuits

To support the execution of both exact and inexact arithmetic in 8/16 layers (i.e., using
either Exact16 or an approximate multiplier), and the exact arithmetic in 4/8 layers (i.e.,
using the Exact8 implementation), three different multipliers have to be deployed. As
an example, considering MulF6B as a candidate approximate multiplier, a total area of
1159 µm2 is required to instantiate the two exact multipliers, Exact16 and Exact8, and the
selected inexact multiplier, MulF6B. The resulting configuration has an area overhead of
86% with respect to Exact16 alone. Nonetheless, the Exact16 multiplier can be implemented
by combining Exact8 units, resulting in just 6% area increment. This solution enables the
execution of two 8-bit multiplications simultaneously (i.e., SIMD) when the multiplier is
used in 4/8 layers, which can be exploited at the application level to speed-up inference
execution. Results are summarized in Figure 6 and show that the area overhead for execut-
ing both exact and inexact arithmetic in our design ranges from 31%, when considering
the highly inexact Mul8VH, up to 71% for the MulF6B. Consequently, the ability of our
methodology to handle highly inexact multipliers can limit the area overhead. Indeed,
their deployment alongside the exact multiplier in the final design demands for a lower
area footprint with respect to less inexact implementations. At the same time, their use
still increases efficiency and guarantees a user-defined output quality thanks to a judicious
per-layer mapping. Finally, although the trade-off between accuracy and efficiency could
be explored more deeply instantiating different approximate multipliers in different layers
(i.e., according to their degree of resiliency), our results indicate that the significant area
overhead of these circuits may limit such an approach.

Micromachines 2022, 13, 1143 10 of 11

0 20 40 60 80 100 120 140 160 180
Relative Area Occupation (%)

Exact 16

SIMD Exact 8/16

Mul8VH

MulF6B

+6%

+31%

+71%

Figure 6. Comparison of the area of different multiplier combinations. Our proposal uses the exact
multiplier for 4/8 layers in a SIMD configuration, while, in 8/16 layers, it employs either an inexact
multiplier or the exact one in its native 16-bits configuration. By enabling the use of highly inexact
multipliers (e.g., Mul8VH), our methodology reduces area overheads.

6. Conclusions

In this paper, we have proposed a new methodology to design highly efficient CNNs
by concurrently exploiting ensembling, heterogeneous quantization, and inexact multipli-
ers to reduce inference energy while controlling accuracy degradation. Our results indicate
that ensembling is able to improve both accuracy and robustness against arithmetic ap-
proximation, without any overhead in terms of computational and storage resources. On a
diverse and representative collection of CNN benchmarks, we have shown in this work
that, thanks to a sensitivity-based analysis, approximate multipliers can be effectively
employed in conjunction with heterogeneous quantization, enabling energy savings in
multiply operations up to 83.6%, within a 5% limited loss of accuracy reduction. Our
methodology favorably compares with homogeneous alternatives, as employing highly
inexact multipliers in the homogeneous case results in very high performance degrada-
tions. Moreover, we have shown that lower benefits (limited to 15% in case of MulF6B in
our experiments) can be harnessed by homogeneously employing multipliers with a low
approximation degree.

Author Contributions: All authors have equally contributed to the development of this work. All
authors have read and agreed to the published version of the manuscript.

Funding: This work has been supported by the EC H2020 WiPLASH (GA No. 863337), the ERC Con-
solidator Grant COMPUSAPIEN (GA No. 725657) and the Swiss NSF ML-Edge (GA No. 200020_182009)
projects.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile Edge Computing: A Survey. IEEE Internet Things J. 2018, 5, 450–465.

[CrossRef]
2. Forooghifar, F.; Aminifar, A.; Cammoun, L.; Wisniewski, I.; Ciumas, C.; Ryvlin, P.; Atienza, D. A self-aware epilepsy monitoring

system for real-time epileptic seizure detection. Mob. Netw. Appl. 2019, 1–14. [CrossRef]
3. Chishti, S.O.; Riaz, S.; BilalZaib, M.; Nauman, M. Self-driving cars using CNN and Q-learning. In Proceedings of the 2018 IEEE

21st International Multi-Topic Conference (INMIC), Karachi, Pakistan, 1–2 November 2018.
4. Guo, J.; Lu, S.; Cai, H.; Zhang, W.; Yu, Y.; Wang, J. Long text generation via adversarial training with leaked information.

In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.
5. Koppula, S.; Orosa, L.; Yağlıkçı, A.G.; Azizi, R.; Shahroodi, T.; Kanellopoulos, K.; Mutlu, O. EDEN: enabling energy-efficient,

high-performance deep neural network inference using approximate DRAM. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, Columbus, OH, USA, 12–16 October 2019.

6. Venkataramani, S.; Ranjan, A.; Roy, K.; Raghunathan, A. AxNN: Energy-efficient neuromorphic systems using approximate
computing. In Proceedings of the 2014 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED),
La Jolla, CA, USA, 11–13 August 2014.

http://doi.org/10.1109/JIOT.2017.2750180
http://dx.doi.org/10.1007/s11036-019-01322-7

Micromachines 2022, 13, 1143 11 of 11

7. Ponzina, F.; Peón-Quirós, M.; Burg, A.; Atienza, D. E2CNNs: Ensembles of Convolutional Neural Networks to Improve
Robustness Against Memory Errors in Edge-Computing Devices. IEEE Trans. Comput. 2021, 70, 1199–1212. [CrossRef]

8. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning filters for efficient convnets. arXiv 2016, arXiv:1608.08710.
9. Wu, J.; Leng, C.; Wang, Y.; Hu, Q.; Cheng, J. Quantized convolutional neural networks for mobile devices. In Proceedings of the

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.
10. Han, J.; Orshansky, M. Approximate computing: An emerging paradigm for energy-efficient design. In Proceedings of the 2013

18th IEEE European Test Symposium (ETS), Avignon, France, 27–30 May 2013.
11. Hammad, I.; El-Sankary, K. Impact of Approximate Multipliers on VGG Deep Learning Network. IEEE Access 2018, 6, 60438–60444.

[CrossRef]
12. Reagen, B.; Gupta, U.; Pentecost, L.; Whatmough P.; Lee, S.K.; Mulholland, N.; Brooks, D.; Wei, G.Y. Ares: A framework for

quantifying the resilience of deep neural networks. In Proceedings of the 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), San Francisco, CA, USA, 24–28 June 2018.

13. Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized neural networks: Training deep neural networks with
weights and activations constrained to +1 or −1. arXiv 2016, arXiv:1602.02830.

14. Zhou, A.; Yao, A.; Guo, Y.; Xu, L.; Chen, Y. Incremental network quantization: Towards lossless cnns with low-precision weights.
arXiv 2017, arXiv:1702.03044.

15. Denkinger, B.; Ponzina, F.; Basu, S.; Bonetti, A.; Balási, S.; Ruggiero, M.; Peón-Quirós, M.; Rossi, D.; Burg, A; Atienza, D. Impact
of memory voltage scaling on accuracy and resilience of deep learning based edge devices. IEEE Design Test 2019, 37, 84–92.
[CrossRef]

16. Amin-Naji, M.; Aghagolzadeh, A.; Ezoji, M. Ensemble of CNN for multi-focus image fusion. Inf. Fusion 2019, 51, 201–214.
[CrossRef]

17. Mittal, S. A survey of techniques for approximate computing. Acm Comput. Surv. 2016, 48, 1–33. [CrossRef]
18. Scarabottolo, I.; Ansaloni, G.; Constantinides, G.A.; Pozzi, L.; Reda, S. Approximate Logic Synthesis: A Survey. Proc. IEEE 2020,

108, 2195–2213. [CrossRef]
19. Ansaloni, G.; Scarabottolo, I.; Pozzi, L. Judiciously spreading approximation among arithmetic components with top-down

inexact hardware design. In International Symposium on Applied Reconfigurable Computing; Springer: Cham, Switzerland, 2020.
20. Chen, T.; Du, Z.; Sun, N.; Wang, J.; Wu, C.; Chen, Y.; Temam, O. Diannao: A small-footprint high-throughput accelerator for

ubiquitous machine-learning. ACM SIGARCH Comput. Archit. News 2014, 42, 269–284. [CrossRef]
21. Gao, M.; Pu, J.; Yang, X.; Horowitz, M.; Kozyrakis, C. Tetris: Scalable and efficient neural network acceleration with 3d memory.

In Proceedings of the 22nd International Conference on Architectural Support for Programming Languages and Operating
Systems, Xi’an, China, 8–12 April 2017.

22. Mrazek, V.; Sarwar, S.S.; Sekanina, L.; Vasicek, Z.; Roy, K. Design of Power-Efficient Approximate Multipliers for Approximate
Artificial Neural Networks. In Proceedings of the 2016 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), Austin, TX, USA, 7–10 November 2016.

23. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the
NIPS 2012: Neural Information Processing Systems Conference, Lake Tahoe, NV, USA, 3–8 December 2012.

24. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
25. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015.

26. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings of
the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

27. Howard, A.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

28. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images; University of Toronto: Toronto, ON, Canada, 2009.
29. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch:

An imperative style, high-performance deep learning library. arXiv 2019, arXiv:1912.01703.
30. Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard, A.; Adam. H.; Kalenichenko, D. Quantization and training of neural

networks for efficient integer-arithmetic-only inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–23 June 2018.

31. Genc, H.; Haj-Ali, A.; Iyer, V.; Amid, A.; Mao, H.; Wright, J.; Schmidt, C.; Zhao, J.; Ou, A.; Banister, M.; et al. Gemmini: An agile
systolic array generator enabling systematic evaluations of deep-learning architectures. arXiv 2019, arXiv:1911.09925.

32. Mrazek, V.; Hrbacek, R.; Vasicek, Z.; Sekanina, L. EvoApprox8b: Library of Approximate Adders and Multipliers for Circuit
Design and Benchmarking of Approximation Methods. In Proceedings of the Design, Automation & Test in Europe Conference &
Exhibition (DATE), Lausanne, Switzerland, 27–31 March 2017.

http://dx.doi.org/10.1109/TC.2021.3061086
http://dx.doi.org/10.1109/ACCESS.2018.2875376
http://dx.doi.org/10.1109/MDAT.2019.2947282
http://dx.doi.org/10.1016/j.inffus.2019.02.003
http://dx.doi.org/10.1145/2893356
http://dx.doi.org/10.1109/JPROC.2020.3014430
http://dx.doi.org/10.1145/2654822.2541967

	Introduction
	Related Works
	Quantization
	Ensembles of CNNS
	Approximate Computing in CNNS

	Proposed Methodology
	Stage A: Robustness-Aware CNN Optimization
	Stage B: Mapping on Inexact HW Resources

	Experimental Setup
	Experimental Results
	Synergic Use of Ensembles and Heterogeneous Quantization
	Sensitivity Analysis for a Layer-Based Selective Use of Inexact Arithmetic
	Overall Methodology Evaluation
	Area Impact of Deploying Multiple Multiplier Circuits

	Conclusions
	References

