
Citation: . Micromachines 2022, 1, 0.

https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Submitted to Micromachines for

possible open access publication

under the terms and conditions

of the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Using Algorithmic Transformations and Sensitivity Analysis
to Unleash Approximations in CNNs at the Edge
Flavio Ponzina* , Giovanni Ansaloni , Miguel Peón-Quirós , David Atienza

Embedded Systems Laboratory (ESL), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne
* Correspondence author: Flavio Ponzina: flavio.ponzina@epfl.ch

Abstract: Previous studies have demonstrated that, up to a certain degree, Convolutional Neural 1

Networks (CNNs) can tolerate arithmetic approximations. Nonetheless, perturbations must be 2

applied judiciously, to constrain their impact on accuracy. This is a challenging task, since the 3

implementation of inexact operators is often decided at design time, when the application and 4

its robustness profile are unknown, posing the risk of over-constraining or over-provisioning the 5

hardware. Bridging this gap, we propose a two-phase strategy. Our framework first optimizes the 6

target CNN model, reducing the bitwidth of weights and activations and enhancing error resiliency, 7

so that inexact operations can be performed as frequently as possible. Then, it selectively assigns 8

CNN layers to exact or inexact hardware based on a sensitivity metric. Our results show that, within a 9

5% accuracy degradation, our methodology, including a highly inexact multiplier design, can reduce 10

the cost of MAC operations in CNN inference up to 83.6% compared to state-of-the-art optimized 11

exact implementations. 12

Keywords: Approximate computing, CNN quantization, ensembling methods. 13

1. Introduction 14

The edge computing paradigm [1] is fostering a revolution in Artificial Intelligence 15

(AI), impacting scenarios ranging from personalized healthcare to autonomous driving 16

and automatic text generation [2][3][4]. By shifting data processing from the cloud to 17

end devices, edge computing enables increasing efficiency dramatically, because data 18

acquisitions do not need to be transmitted over energy-hungry radio links. Moreover, local 19

processing results in low latencies and high responsiveness, which are often crucial for 20

edge devices. 21

Edge AI applications are often realized as Convolutional Neural Networks (CNNs). 22

These architectural models are usually structured as a sequence of processing layers, each 23

extracting increasingly abstract features from the input data to perform classification 24

or detection tasks. Recent research efforts [5][6] have highlighted that the architectural 25

redundancy of CNNs makes these models resilient to perturbations. To increase their 26

robustness even more, the authors of [7] observe that algorithmic optimizations can increase 27

the intrinsic resiliency of CNNs against errors. They propose a solution that transforms 28

a target single-instance CNN into a resource-constrained ensemble of CNNs, improving 29

robustness towards memory upsets while not increasing computational workload and 30

memory requirements. 31

Nevertheless, CNN inference often demands the execution of millions of multiply- 32

accumulate (MAC) operations and large memories to store parameters, straining the 33

capabilities of ultra-low power embedded systems. Two main optimization avenues have 34

been proposed in the literature to address this challenge. Pruning approaches [8] entail the 35

removal of specific neural connections or entire computational blocks from CNN models, 36

while quantization strategies [9] reduce the bitwidth of CNN weights and/or activations. 37

A third path to optimize the run-time performance of CNNs is the use of approximate 38

operators that trade-off arithmetic correctness for efficiency [10]. In this work, we introduce 39
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a two-stage methodology where we employ inexact arithmetic in carefully selected CNN 40

layers to further increase inference efficiency of CNN models. In contrast to previous 41

works [11], a key aspect of our optimization loop is that accuracy degradation is effectively 42

controlled, independently of the approximation degree of the multiplier itself. 43

Unfortunately, the impact of inexact circuits on CNNs output quality degradation 44

cannot be evaluated at design time, when these operators are selected, because the impact 45

on accuracy also depends on the model structure and the task complexity. The authors 46

of [11] analyzed the impact of different inexact multipliers on the convolutional and fully 47

connected layers of the VGG16 model, and found that the first and last layers are partic- 48

ularly sensitive to approximation. Therefore, to obtain a positive accuracy vs. efficiency 49

trade-off, they suggest a hybrid approach where only the central layers are executed using 50

approximate multipliers. In this work, we demonstrate that inexact multipliers have a 51

limited impact on efficiency when applied alone to baseline CNN models, especially when 52

compared to quantization. Nevertheless, a judicious use of these circuits in highly opti- 53

mized (quantized) models can further improve efficiency. Hence, we carefully map them 54

to execute specific CNN layers and combine them with orthogonal state-of-the-art CNN 55

optimization strategies to fully exploit their benefits. To guide the selection of CNN layers 56

where inexact arithmetic can be applied, while abiding by a certain user-defined accuracy 57

level, we propose a heuristic method that evaluates the resiliency of individual layers by 58

performing a sensitivity analysis. This approach logically separates the approximation de- 59

gree of the employed inexact multiplier from the user-defined accuracy threshold, making 60

these two values independent input parameters in our proposed methodology. 61

The contribution of this paper is three-fold: 62

• We demonstrate that, when applied to baseline CNN models, approximate multipliers 63

can only marginally improve inference efficiency while preserving accuracy. Thus, 64

we combine inexact computing with other optimization strategies, showing how 65

approximate multipliers can be effectively employed to fully exploit energy savings. 66

• We present a two-stage accuracy-driven methodology that combines ensemble meth- 67

ods, heterogeneous quantization, and a selective use of inexact operators to improve 68

energy efficiency in CNNs at the edge, while increasing their resilience towards the 69

noise introduced by approximate multipliers. 70

• To introduce the use of inexact arithmetic in our optimized model, we propose a novel 71

heuristic-based approach that exploits the results of a preliminary analysis evaluating 72

the sensitivity to approximation of individual CNN layers; thus, it ultimately tailors 73

the design to user-specified accuracy requirements, irrespective of the approximation 74

level of the selected multiplier. 75

The rest of the paper is organized as follows: in Section 2, we put our work in perspec- 76

tive of related research efforts. Then, the proposed methodology is detailed in Section 3. 77

The adopted experimental setup is presented in Section 4, while results are discussed in 78

Section 5. We summarise our findings in Section 6. 79

2. Related Works 80

2.1. Quantization 81

While CNNs are typically trained using floating-point representations for intermediate 82

values (activations) and parameters (weights), it is known that, during inference, more 83

energy- and storage- efficient alternatives can be adopted with little impact on accuracy. As 84

an example, [12] proposes an implementation where either 8 or 16 bits are employed to 85

represent weights, while [13] introduces binarized CNNs, in which both weights and acti- 86

vations are constrained to be either −1 or +1, thus using a single bit for their representation, 87

but at the cost of important accuracy degradation. 88

Recent works propose heterogeneous per-layer quantization strategies in which the 89

activation and weight bitwidths are assigned according to the layer robustness, to increase 90

efficiency while preserving accuracy. While, in principle, quantization may be performed 91

considering arbitrary bitwidths [14], such fine-grained flexibility usually incurs in vast 92
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overheads. Additional logic can instead be minimized when the adopted quantization 93

levels are SIMD standard bitwidths (e.g., quantization on 16, 8, or 4 bits, as in [15][12]), 94

since, in this case, word-level parallelism can be effectively employed. 95

2.2. Ensembles of CNNs 96

Ensemble methods targeting CNNs have been investigated and proved to improve 97

classification accuracy, at the cost of dramatically increasing memory and computational 98

requirements due to the replication and deployment of several CNN models [16]. To 99

avoid this pitfall, the authors of [7] compress CNNs via filter pruning by a factor equal 100

to the number of instances deployed in the ensemble, so that the resulting architecture 101

does not require more computation and storage than the single-instance original model. 102

Their proposed resource-constrained ensembles are more accurate and robust against 103

memory errors than equivalent single-instance CNNs. In this work, we consider resource- 104

constrained ensembles of CNNs in a different context: as an avenue to increase CNNs’ 105

tolerance towards arithmetic approximations. 106

2.3. Approximate computing in CNNs 107

In a broad sense, the approximate computing paradigm encompasses strategies trading 108

off the exactness of computed results with computing performance metrics such as run-time 109

and/or energy [17]. In the context of this paper, methods related to Approximate Logic 110

Synthesis are of particular relevance. In particular, they are able to derive inexact, but 111

extremely energy efficient, arithmetic circuits for commonly used operators [18]. These 112

operators can then be employed as building blocks for complex accelerators [19]. 113

This approach is of particular interest when targeting CNN accelerators, as they usually 114

present highly parallel and compute-intensive structures, where a major contribution to 115

resource and energy budgets is the arithmetic logic in their datapaths [20] [21]. Indeed, 116

several studies have advocated the use of inexact circuits in CNNs [22][11]. The authors of 117

these works highlight that, when considering CNNs, multipliers are the most amenable 118

target for approximation. In particular, multipliers typically present a high energy footprint 119

(e.g., with respect to adders) and because neural networks require a very high number of 120

multiplications. We also focus on approximating multiply operations in our work, but, 121

as opposed to [22][11], we adopt an application mapping perspective, aiming to leverage 122

the available energy-saving opportunities in inexact hardware target while controlling 123

degradations in accuracy. 124

3. Proposed methodology 125

To effectively explore the large space of candidate designs due to the combination of 126

ensembling methods, heterogeneous quantization, and inexact operators to improve CNN 127

inference efficiency, we employ the methodology summarized in Fig. 1. Our methodology 128

accepts as input a single-instance CNN. First, it applies the concept of embedded ensembles 129

to increase the robustness of the CNN model. Second, it applies heterogeneous quantization 130

to reduce the use of memory bandwidth and computational resources in each layer. Third, it 131

analyzes the layers of the baseline CNN model to evaluate their sensitivity to approximation. 132

Finally, it maps the obtained ensemble on approximate hardware resources, leveraging 133

their lower power consumption to further increase inference efficiency. These four steps 134

are implemented offline in two stages. 135
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Stage I: CNN design optimization
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Figure 1. The proposed two-stage methodology to CNN inference efficiency. It combines the use of
heterogeneously quantized ensembles with a selective use of inexact arithmetic operators.

3.1. Stage 1: Robustness-aware CNN optimization 136

Starting from a single-instance floating-point model, our optimization framework 137

first derives the structure of an ensemble implementation that improves accuracy and 138

robustness against data perturbations (Fig. 1.I). As in [7], we use pruning and replication 139

to build ensembles with no memory or computational overheads compared to the initial 140

single-instance CNN. Specifically, to build an ensemble composed of M instances, we 141

drop a certain number of convolutional filters from the initial CNN structure (i.e., coarse- 142

grain filter pruning), until its memory and computational requirements are reduced by a 143

factor M. The resulting pruned architecture is then replicated M times, and each instance 144

is independently trained, starting from different (random) weight values, to increase 145

variability and ultimately improve accuracy. Uniform quantization on 8 bits for the weights 146

and 16 bits for the activations (i.e., 8/16 quantization) is applied during the last training 147

epochs, without affecting the accuracy of the baseline floating-point model [12]. 148

The generated ensemble of CNNs is then optimized by including a (further) hetero- 149

geneous quantization in the CNN instances building the ensemble (Fig. 1.II). We consider 150

each instance individually and proceed per layer in topological order, reducing the bitwidth 151

of the operands to only 4 bits for the weights and 8 bits for the activations (i.e., 4/8 quanti- 152

zation). The 4/8 quantization level is applied to a certain layer if the resulting accuracy 153

meets the user-defined constraint. Otherwise, the previous 8/16 quantization is retained. 154

This process ends when all layers have been evaluated. CNN ensembling and per-layer 155

quantization are employed synergically. On one side, the higher accuracy and robustness 156

of ensembles serves as a support for unleashing more aggressive approximations. On the 157

other side, a per-layer quantization reduces memory and computational requirements and 158

improves efficiency by enabling the use of simpler (and therefore more efficient) multipliers 159

for the execution of 4/8 quantized layers. 160

3.2. Stage 2: Mapping on inexact HW resources 161

The use of approximate multipliers mandates a cautious approach, because relying 162

entirely on inexact arithmetic can have a critical impact on accuracy. Thus, in the second 163

stage of our proposed methodology, we adopt an accuracy-driven heuristic method to 164

select, among the layers that are quantized at an 8/16 level, the ones robust enough 165

to be implemented using the target approximate multiplier. The heuristic orders the 166

layers according to their sensitivity (Fig. 1.III). We measure sensitivity by instantiating 167

the selected approximate multiplier in only one layer of the single-instance uniformly 168

quantized model at a time and evaluating the resulting inference accuracy. This analysis 169

is performed on the initial single-instance model. We extend the obtained results to the 170

CNN instances composing the generated ensemble. On one side, we have observed that 171

the same analysis, performed on each CNN instance, produced very similar results. Hence, 172

these results suggest that layers resiliency may be more closely associated with their size 173

and structure than with their actual weight values. On the other side, such an approach 174
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reduces optimization run-time as the analysis is executed only once. Moreover, in contrast 175

to an impractical exhaustive exploration, this heuristic can efficiently scale to large CNN 176

applications. Indeed, being L the number of convolutional and fully connected layers, the 177

computational complexity of our strategy is O(L). Indeed, the per-layer quantization and 178

use of inexact multipliers are applied in sequence, and are themselves of linear complexity. 179

In contrast, an exhaustive search, while it would guarantee to find optimal solutions, it 180

would also need to enumerate all the possible configurations. Hence, its complexity is 181

O(3L), since 3 alternative implementations exist for each layer (i.e., 4/8 quantization, 8/16 182

quantization, 8/16 quantization with inexact multipliers). 183

As we show in Section 5, reducing the bitwidth of the operands involved in MAC 184

operations has a larger impact on energy consumption than the use of approximate logic 185

(on a larger bitwidth). For this reason, our methodology applies heterogeneous quantiza- 186

tion before introducing approximate operators. Additionally, we observe that using any 187

approximate multipliers on 4/8 quantized layers has an adverse impact on accuracy. There- 188

fore, approximation is possibly applied only to those layers that, after the heterogeneous 189

quantization are still kept at an 8/16 bitwidth. 190

Finally (Fig. 1.IV), we combine the results of the sensitivity analysis with the opti- 191

mized ensemble, iteratively introducing approximate multipliers in the CNN instances, 192

starting from the least sensitive layers. This phase terminates when no further layer can be 193

approximated while abiding by the accuracy constraint. 194

4. Experimental Setup 195

To gauge the potential benefits of our strategy, we consider in this work a diverse 196

collection of CNN applications, comprising AlexNet [23], VGG16 [24], GoogLeNet [25], 197

ResNext [26] and MobileNet [27]. In all cases, we adopt Top-1 as accuracy metric, and 198

CIFAR-100 as dataset [28]. All the benchmarks are trained in PyTorch [29], using fake 199

quantization functions as in [30] for the last 20 training epochs. As in [7], we build ensembles 200

containing 2, 4, or 8 instances and present in our results the configuration achieving the 201

highest accuracy. Across experiments, efficiency is measured as the energy required by 202

all exact and inexact multiplications executed in an inference. The energy impact of MAC 203

operations at the chip level is architecture-dependent: it may be relatively low in single-core 204

platforms where data movements account for the largest fraction of energy consumption, 205

but it can dominate in multi-core edge AI accelerators comprising hundreds of processing 206

elements [31]. 207

Compared to the approximation approach implemented in [6], where inexactness is 208

achieved reducing operands’ precision (i.e., similar to what quantization does), we simulate 209

the behaviour of the employed (possibly inexact) multipliers in a C++ inference solver that 210

also measures inference accuracy. Additionally, in contrast to [11], where approximation 211

is applied to float16 arithmetic by using approximation matrixes that simulate inexact 212

operators, we consider two different integer approximate multipliers, as presented in [32]. 213

Their structure is derived by employing a multi-objective Cartesian genetic programming 214

approach (CGP), while using different exact implementations as starting point. Among 215

the large number of potential candidates provided by this library, we select two inexact 216

multipliers that vastly differ in the magnitude of introduced arithmetic approximation, to 217

showcase the effect of operators with either a large or a small degree of inexactness. We 218

adapt their structure to match the bitwidth of input and output operands in our quantized 219

layers: for example, the 16-bit multipliers in [32] are overdimensioned for 8/16 layers, as 220

one input operand (the weight) requires only 8 bits. Therefore, we modify the original 221

Verilog implementation, adjusting the bitwidth of input and output operands, as well as the 222

bitwidth of the connected internal components. We characterize the power consumption 223

of the circuits using Synopsys Design Compiler, employing HVT cells from the 40LP TSMC 224

technology library (40 nm, low power). The error induced by approximation is measured 225

in terms of Mean Relative Error (MRE) by running a simulation over all the possible 226

input combinations. The synthesis and simulation results are summarized in Table 1. 227
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Table 1. Operands bitwidth, mean relative error and power characterization of the multipliers used
in our experiments.

Bitwidth MRE Power Area
(IN1 · IN2) (%) (uW) (um2)

Exact16 (8 · 16) N/A 277.5 622.5
MulF6B (8 · 16) 5.9 × 10−5 237.3 441.7
Mul8VH (8 · 16) 1.9 × 10−3 137.3 192.9

Exact8 (4 · 8) N/A 39.9 94.8

Exact16 and Exact8 are exact multipliers used in 8/16 and 4/8 layers, respectively, while 228

MulF6B and Mul8VH are approximate multipliers used only in 8/16 layers, with the latter 229

offering more energy savings at the cost of a larger impact on precision. In contrast to [22], 230

where the use of inexact multipliers is limited to fully connected layers, we also introduce 231

approximation in convolutional ones, because they account for a large percentage of MACs 232

in our benchmarks. As a proof of concept of our approach, we consider a target system 233

featuring two exact multiplier implementations (Exact16 and Exact8) and an approximate 234

one (either MulF6B or Mul8VH in our experiments). 235

5. Experimental results 236

5.1. Synergic use of ensembles and heterogeneous quantization 237

As reported in Table 1, the energy savings achieved through arithmetic approxima- 238

tion alone are of 15 % when using the MulF6B inexact multiplier. Higher savings can 239

be obtained by considering more aggressive implementations such as Mul8VH that also 240

introduce larger perturbations. Alternatively, 4/8 bits quantization reduces the energy 241

consumption of multiply instructions by 85%, even when using an exact multiplier (Exact8). 242

This finding motivates our iterative approach, where quantization is applied before the 243

introduction of inexact multipliers, hence enabling a larger number of layers to be executed 244

using Exact8 (Fig. 1.II). We present in Fig. 2 the accuracy/efficiency trade-off achieved in 245

different benchmarks and design configurations. Black circles correspond to the baseline 246

implementation used as a reference for comparison and refer to single-instance implemen- 247

tations adopting the same 8/16 bitwidth in all layers. In line with what has been already 248

described in [7], we observe that ensemble-based implementations (blue circles) improve 249

the accuracy of single-instance CNNs, because the limited accuracy drop of individual 250

pruned CNNs is largely compensated by the higher generalization capability of ensembles. 251

Green circles represent the second step of our proposed methodology and correspond to the 252

heterogeneously quantized ensembles. Layers quantized to 4/8 bits are computed using 253

the Exact8 multiplier, which produces energy savings ranging from 22.1 % in ResNext up 254

to more than 80 % in VGG16. 255

As previously suggested, it is possible to further increase the energy savings by 256

substituting the Exact16 implementation used in 8/16 layers with an inexact alternative, 257

like MulF6B (⋆) or Mul8VH (■). Instead, we keep the Exact8 multiplier in 4/8 layers, since 258

arithmetic approximations in small-bitwidth operators do not result in high overall energy 259

gains, but have a large impact on accuracy. 260

On one hand, Fig. 2 shows that approximate multipliers can be effectively employed 261

together with heterogeneous quantization to obtain up to 39.9 % additional energy savings. 262

On the other hand, the approximation introduced by certain multipliers when indiscrim- 263

inately used in all 8/16 layers can be too large, resulting in an unacceptable accuracy 264

degradation. This observation motivates a more judicious selection of the layers where 265

inexact multipliers should be used, limiting their impact on accuracy (Fig. 1.III). 266
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5.2. Sensitivity analysis for a layer-based selective use of inexact arithmetic 267

We observed in Fig. 2 that highly inexact multipliers, such as Mul8VH, can produce 268

high energy savings, but at the cost of a critical impact on classification accuracy. Hence, 269

in this section, we investigate the robustness of individual layers against the arithmetic 270

approximations induced by an inexact multiplier, to select those robust enough to endure 271

approximate computation. To do so, we employ such an inexact operator in one layer 272

at a time, using the Exact16 implementation to execute all the other layers. We use the 273

obtained inference accuracy as a metric to determine each layer’s resiliency. We consider 274

the Mul8VH multiplier to describe our analysis because its large impact on accuracy better 275

illustrates our results. 276

Initial CNN

Fig, 1.I Fig.1.II

Figure 2. Accuracy/efficiency trade-off in single-instance CNNs (black) compared to uniformly
(blue), and heterogeneously (green) quantized ensembles. The use of inexact multipliers in all the
layers kept at an 8/16 quantization level (red markers) results in large accuracy losses.
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Figure 3. Accuracy drop when using Mul8VH in a single selected layer. The X-axis indicates the layer
index in which Mul8VH is adopted.

The outcome of this analysis is summarized in Fig. 3, where we show the accuracy 277

drop corresponding to the use of Mul8VH in different layers. This analysis indicates that 278

the robustness of convolutional and fully connected layers varies in different benchmarks. 279

As an example, in AlexNet, the intermediate layers are the most robust ones (i.e., they cause 280

the least accuracy drop when approximated), while the most robust layers of VGG16 and 281

GoogLeNet are the last ones. Similarly, no clear relationship exists between the robustness 282

of a certain layer and the number/percentage of MAC operations required for its execution. 283

In all the evaluated benchmarks, the first convolutional layer is always highly sensitive 284

to arithmetic approximation. Since it also executes a small fraction of the total MAC 285

operations, a naive approach that simply performs inexact arithmetic in the entire model 286

except for the first layer decreases the accuracy degradation by 6.9 %, while reducing the 287

potential energy savings by just 1.5 % on average. Nevertheless, a more accurate approach 288

can lead to a better accuracy/efficiency trade-off. Consequently, we include the described 289

sensitivity analysis in our methodology (Fig. 1.III), and use it to order the layers from the 290

least to the most sensitive ones. Next, at each iteration, the target approximate multiplier is 291

iteratively employed in one additional 8/16 quantized layer of each CNN instance forming 292

the ensemble, until the accuracy degradation becomes unacceptable. As opposed to our 293

solution, an exhaustive exploration to select the optimal mapping of inexact multipliers in 294

the described CNN design is an impractical approach. Indeed, even for simple architectures 295

composed of relatively few layers like AlexNet, an exhaustive search would take more 296
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employing Exact16 (green circles) or Mul8VH (black squares) in all 8/16 layers. The overall energy
savings achieved only via quantization in the presented ensembles (green circles, here considered as
baseline implementations) can be retrieved from Fig. 2 (also marked as green circles).

than two months to complete when run on a Tesla V100 GPU, while our heuristic approach 297

terminates in just a few hours. 298

5.3. Overall methodology evaluation 299

In the previous sections, we have described individual steps of the methodology 300

illustrated in Section 3. Instead, in this last round of experiments, we evaluate the optimized 301

design at the output of our methodology, in terms of accuracy and energy reduction of 302

multiply operations. To this end, we consider heterogeneously quantized ensembles of 303

CNNs and employ Mul8VH as a candidate approximate multiplier. Then, we iteratively 304

select layers to be approximated as dictated by the sensitivity metric. We have previously 305

shown in Fig. 2 that the use of the highly inexact Mul8VH in every 8/16 quantized layer 306

incurs very high accuracy degradations. We herein showcase that, by instead selectively 307

employing it only in robust layers, high energy gains can be achieved while preserving 308

accuracy. To include a highly optimized baseline in these experiments, we compare the 309

final outcome of our methodology with the presented heterogeneously quantized ensemble 310

using exact arithmetic operators. Additionally, we also compare our ultimate solution with 311

the same quantized ensemble using the target approximate multiplier (i.e., Mul8VH) in all 312

8/16 layers. 313

The results for a maximum accuracy drop of 5 % are shown in Fig. 4. Red squares 314

indicate the achieved accuracy/energy trade-off of our solution. Conversely, the green 315

circles on the left of each series report the energy/accuracy of the described baseline, while 316

the rightmost black squares represent the solution relying on inexact arithmetic only in 317

8/16 layers. This comparison showcases that our proposed methodology outperforms 318

state-of-the-art alternatives for a certain user-defined accuracy level, further increasing 319

energy savings up to 21 % compared to heterogeneous quantization alone and harnessing 320

up to 78 % of the energy gains achievable when employing Mul8VH in all CNN layers 321

(a solution that results in unacceptable accuracy degradations). The limited energy gains 322

obtained in VGG16 when introducing inexact multipliers (i.e., less than 4%, even when 323

relying on inexact arithmetic in all 8/16 layers) is due to the high effectiveness of the 324

aggressive heterogeneous quantization. Fig. 2 shows that VGG16 achieves almost 80% of 325

energy reduction via quantization (green circle). This result indicates that the majority 326

of its layers employs a 4/8 quantization and can therefore use the Exact8 multiplier. As 327

a consequence, the limited number of layers kept to an 8/16 quantization level prevents 328

further significant energy reductions. When compared to baseline exact single-instance 329

implementations, our results achieve 59.4 %, 83.6 %, 42.7 %, 39.9 %, 82.6 % energy reductions 330

for a accuracy degradation limited to 5 % in AlexNet, VGG16, GoogLeNet, ResNext and 331

MobileNet, respectively. 332

To further demonstrate the benefits of using a proper selection of approximated layers, 333

we present a detailed exploration targeting the VGG16 benchmark in Fig. 5. Therein, we 334

show the accuracy obtained by single-instance CNNs and ensembles, where the Mul8VH 335
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Figure 5. Accuracy drop when using Mul8VH in the N least sensitive layers (solid lines) or in the
first N topologically ordered layers (dashed lines) of VGG16.

multiplier is employed in an increasing number of layers, comparing the achieved accuracy 336

when using our sensitivity-based approach with an alternative in which layers are approxi- 337

mated in topological order. Our results confirm the additional robustness of ensembles and 338

demonstrate that the topological approach fares far worse than our proposed sensitivity- 339

based one, because fewer layers can be arithmetically approximated for a target accuracy 340

or, alternatively, far lower accuracy is obtained for the same number of approximated 341

layers. Indeed, Fig. 5 indicates that, with our approach, Mul8VH can be used in 7 layers in 342

VGG16 and in 13 layers in the corresponding ensemble, while still limiting the accuracy 343

degradation to 5 % in each version, and achieving 19.6 % and 43.7 % energy reductions, 344

respectively. In contrast, introducing approximation following a topological order limits 345

the achievable energy reduction to 10.2 % and 31.9 % for the same accuracy level. 346

5.4. Area impact of deploying multiple multiplier circuits 347

To support the execution of both exact and inexact arithmetic in 8/16 layers (i.e., using 348

either Exact16 or an approximate multiplier), and the exact arithmetic in 4/8 layers (i.e., 349

using the Exact8 implementation), three different multipliers have to be deployed. As 350

an example, considering MulF6B as a candidate approximate multiplier, a total area of 351

1159um2 is required to instantiate the two exact multipliers, Exact16 and Exact8, and the 352

selected inexact multiplier, MulF6B. The resulting configuration has an area overhead of 353

86% with respect to Exact16 alone. Nonetheless, the Exact16 multiplier can be implemented 354

by combining Exact8 units, resulting in just 6 % area increment. This solution enables the 355

execution of two 8-bit multiplications simultaneously (i.e., SIMD) when the multiplier is 356

used in 4/8 layers, which can be exploited at the application level to speed-up inference 357

execution. Results are summarized in Fig. 6 and show that the area overhead for executing 358

both exact and inexact arithmetic in our design ranges from 31 %, when considering 359

the highly inexact Mul8VH, up to 71 % for the MulF6B. Consequently, the ability of our 360

methodology to handle highly inexact multipliers can limit the area overhead. Indeed, 361

their deployment alongside the exact multiplier in the final design demands for a lower 362

area footprint with respect to less inexact implementations. At the same time, their use 363

still increases efficiency and guarantees a user-defined output quality thanks to a judicious 364

per-layer mapping. Finally, although the trade-off between accuracy and efficiency could 365

be explored more deeply instantiating different approximate multipliers in different layers 366

(i.e., according to their degree of resiliency), our results indicate that the significant area 367

overhead of these circuit may limit such an approach. 368



Version July 20, 2022 submitted to Micromachines 10 of 12

0 20 40 60 80 100 120 140 160 180
Relative Area Occupation (%)

Exact 16

SIMD Exact 8/16

Mul8VH

MulF6B

+6%

+31%

+71%

Figure 6. Comparison of the area of different multiplier combinations. Our proposal uses the exact
multiplier for 4/8 layers in a SIMD configuration, while, in 8/16 layers, it employs either an inexact
multiplier or the exact one in its native 16-bits configuration. By enabling the use of highly inexact
multipliers (e.g., Mul8VH), our methodology reduces area overheads.

6. Conclusions 369

In this paper, we have proposed a new methodology to design highly efficient CNNs 370

by concurrently exploiting ensembling, heterogeneous quantization, and inexact multipli- 371

ers to reduce inference energy while controlling accuracy degradation. Our results indicate 372

that ensembling is able to improve both accuracy and robustness against arithmetic ap- 373

proximation, without any overhead in terms of computational and storage resources. On a 374

diverse and representative collection of CNN benchmarks, we have shown in this work 375

that, thanks to a sensitivity-based analysis, approximate multipliers can be effectively 376

employed in conjunction with heterogeneous quantization, enabling energy savings in 377

multiply operations up to 83.6 %, within a 5 % limited loss of accuracy reduction. Our 378

methodology favorably compares with homogeneous alternatives, as employing highly 379

inexact multipliers in the homogeneous case results in very high performance degrada- 380

tions. Moreover, we have shown that lower benefits (limited to 15 % in case of MulF6B in 381

our experiments) can be harnessed by homogeneously employing multipliers with a low 382

approximation degree. 383
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