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Abstract 

For field research of non-visual effects of light, accurate measurement of personal light exposure is 

required. A consensus framework for light-dosimetry could improve non-visual field research and 

ensure comparability between studies. Here we present a review of methodologies used in non-visual 

light-dosimetry studies published to date, focussing on considerations regarding the measurement and 

preparation of personal light exposure data. Overall, a large variability in the studies’ methodologies is 

observed, highlighting the need for a consensus framework. We propose methodological 

considerations that should be included in such a framework and that can guide future studies. 

Furthermore, we highlight important points that should be addressed in future research to ensure 

compatibility between different dosimetry studies. Taken together, this review effort underlines the 

importance of a systematic approach to light-dosimetry in order to harness all the power of integrative 

lighting research in real-life. 
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1. Introduction 

Decades of research have shown that light has behavioural and physiological effects unrelated to 

human vision, mediated by a dedicated neural pathway. Through this pathway, light sets our biological 

clock,1 directly affects various aspects of physiology and behaviour,2 and may thereby be related to 

health and wellbeing.3 Much of what is known about these non-visual effects of light has been 

established by extensive laboratory research, indicating that responses are modulated by different light 

exposure characteristics.4 However, real-life light exposure resembles nothing like laboratory stimuli, 

but consists of complex patterns of light of different quantity and quality, as a result of moving 
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through our indoor and outdoor environments. Therefore, more field research is needed to complement 

and evaluate findings from controlled laboratory studies, and answer pressing questions pertaining to 

implications in applied contexts, such as architecture and lighting design, therapeutical applications, 

shift-work, transcontinental travel, and personal lifestyle.5  

Due to the complexity of personal light exposure patterns and the uncontrolled nature of field 

research, it is crucial that results from different studies are comparable and repeatable, as well as 

transferable to applied contexts. This can be achieved by agreeing on standardised operating 

procedures for setting up and reporting lighting research studies.5 A crucial aspect in non-visual 

lighting research is the accurate description of the lighting conditions under investigation. For 

experimental studies, guidelines for quantifying and reporting lighting conditions have recently been 

published.6–8 However, these guidelines have only limited applicability for field research, where light 

exposure cannot be controlled. Thus, to date it is still unclear how to adequately measure, quantify, 

and analyse personal light exposure data with respect to non-visual responses. 

Given the complexity of light exposure and its relationship with non-visual responses in real-life, 

accurate measurement of personal light exposure (i.e., dosimetry) is crucial. The dosimetry process – 

also called the dosimetry chain – consists of a series of steps (links), each of which has the potential to 

introduce additional uncertainty in the final research outcome.9 Broadly, these links can be categorised 

as (1) selecting optical quantities, (2) calibrating dosimeters, (3) selecting a measurement setup, (4) 

processing the measured data, (5) calculating light exposure metrics, and (6) linking metrics to 

measured responses.9 Importantly, different execution of each link may lead to substantial differences 

in the results, complicating their interpretation and comparison across studies. Therefore, agreement 

on standardised procedures for each link is urgently needed.9  

In the present article, we set out to laying the groundwork for a consensus framework for non-

visual light-dosimetry studies. To achieve this, we assembled a comprehensive set of dosimetry field 

studies published to date, which is taken as a basis for discussing methodological considerations for 

each link in the dosimetry chain. Herein, we review methodologies employed in previous dosimetry 

studies for measurement and preparation of personal light exposure data. Furthermore, we aim to 

identify crucial gaps in knowledge that need to be specifically addressed and clarified in future 

research. 

As a brief note on nomenclature, throughout this article, the term light exposure is used to refer to 

the time series of light a person is exposed to and not to the quantity luminous exposure HV. 

Furthermore, the term light level is used as a generic term where multiple light quantities are 

applicable within a given context (e.g., illuminance, alpha-opic irradiance etc). 
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2. Review method 

2.1 Search strategy 

To collect a comprehensive set of light-dosimetry field studies, a forward and backward citation 

search method was used, allowing for an efficient assembly of relevant studies within the same 

domain. Two of the first light-dosimetry studies in the context of chronobiology were chosen as a 

starting point,10,11 from which eligible dosimetry studies published to date were identified by means of 

forward and backward citation search using the Web of Science citation database (forward and 

backward search) and the individual papers’ reference list (forward search), within the period of 

January–March 2021. 

2.2 Selection criteria 

The main objective of this review was to identify light-dosimetry studies that covered the entire 

dosimetry chain from measurement to quantification and subsequent analysis of the collected light 

exposure data, the ultimate intent being to highlight methodological considerations in the dosimetry 

procedure and to identify metrics for the quantification of personal light exposure patterns. Therefore, 

studies were only eligible if personal light exposure data was measured with wearable light meters 

over a period of at least 24 hours and if the measured light data was included as a dependent or 

independent variable in the analysis. This criterion excluded studies that measured 24h-light exposure 

with static devices only (i.e., the device was not worn by the subject) or that measured light exposure 

but did not report any analyses of these measurements. Consequently, many intervention studies where 

personal light exposure was monitored but not analysed as a major dependent or independent variable 

were excluded, except for three studies. Specifically, the study by Peeters et al.12 was included because 

personal light exposure was a primary dependent variable in the analysis, and Phillips et al.13 and 

Zeitzer et al.14 were included because multiple light exposure metrics were analysed.  

In addition, to narrow the scope of this review, we primarily focused on dosimetry studies in the 

context of the non-visual effects of light; specifically, pertaining to sleep-wake regulation, circadian 

entrainment, and direct physiological and behavioural responses (e.g., alertness, cognitive 

performance, mood etc.). As a result, studies that measured personal light exposure in a different 

context (e.g., myopia, UV-light) were excluded, except for three myopia-related studies where the 

methodology added novel content to the review. Specifically, the studies by Alvarez and Wildsoet15 

and Ulaganathan et al.16 were included because effects of sampling frequency on the accuracy of 

calculated light exposure metrics were investigated. Moreover, the study by Read et al.17 was included 

because metrics are described that have not been used in any of the other studies already included in 

the review. 
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2.3 Final Set of Studies 

In total, 104 studies were deemed eligible and formed the set of dosimetry field studies reviewed here. 

An overview of the selected studies10–113 and study related characteristics is presented in the appendix 

(Table A1.1). 

3. Methodological considerations 

3.1 Dosimetry setup and measurement 

3.1.1 Dosimeter selection and optical quantities 

Personal light exposure is usually measured with lightweight wearable devices (dosimeters; see Figure 

1). A wide range of different technologies exists on the market, reflected in the variety of dosimeters 

employed by the reviewed dosimetry studies (see Table 1). The dosimeters can broadly be categorised 

into dedicated light meters or wrist-worn actigraphy devices with light sensors (note that most wrist-

worn dosimeters can also be adapted to be worn elsewhere). Furthermore, devices differ in their 

spectral sensitivity and resolution. Most devices listed here measure photopic illuminance (e.g., 

Actiwatch-L), or spectral irradiance in the visible range across three channels (red, green, blue; e.g., 

Actiwatch Spectrum). Three devices include a sensor calibrated to approximate the circadian spectral 

sensitivity (i.e., LuxBlick, Daysimeter, Dimesimeter), while only two dosimeters were used that have 

a higher spectral resolution. 

The optical quantities a dosimeter can measure is an important consideration for non-visual 

dosimetry, since the spectral composition of personal light patterns (i.e., the “relative spectral diet”, 

see Webler et al.115) can drastically vary over time. While historically, dosimeters have been 

developed to measure light for the visual system (i.e., photometric), we now know that the description 

of light in photometric terms is usually not appropriate when studying non-visual effects of light.116 

Consequently, new standards such as CIE S 026:2018117 were developed, defining spectral sensitivity 

functions, quantities, and metrics to describe light for non-visual responses (i.e., alpha-opic quantities).  

Currently the main limitation for the measurement of alpha-opic quantities is the limited 

availability of dosimetry devices that spectrally match the alpha-opic sensitivities. With the exception 

of devices used in two studies,19,26 none of the dosimeters listed here match all alpha-opic sensitivities 

with sufficient accuracy.118 Only one of the commercially available devices (i.e., the Actiwatch 

Spectrum) approximates the melanopic sensitivity function by a linear combination of photosensor 

outputs.118 Note that the ActTrust dosimeter can be modified to provide a sufficient spectral match to 

the melanopic sensitivity curve as described previously119; however, no study in this review used this 

modified device. Given that the melanopic sensitivity curve matches the sensitivity of non-visual 

responses for a wide range of conditions, as suggested in a recent comprehensive review of several 

experimental studies,120 dosimetry studies could use devices that match this curve (see 66,69,81) until 
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sufficiently spectrally resolved devices become available. Such devices could contain broadband 

photosensors matching the alpha-opic sensitivities directly (i.e., analogous to the sensor in the 

Daysimeter); however, these sensors are then constrained by assumptions on the underlying 

neurophysiology. Therefore, devices from which (parts of) the visible spectrum can be sufficiently 

recovered in order to calculate alpha-opic quantities offer a significant advantage over the former type 

of devices, as further elaborated on in the Discussion section. 

3.1.2 Dosimeter assessment and calibration 

Light-dosimeters have been found to vary substantially in optical performance between and within 

models as assessed in a range of studies.118,121–123 Many of the devices assessed in these specific 

performance assessment studies were used by the reviewed dosimetry studies. However, only some of 

the reviewed studies (N=26) report that dosimeters were validated and calibrated against an industry-

standard light sensor (Figure 2A). Among the studies that provided a description of the validation and 

calibration procedure (N=19), a variety of methods were used: notably, validation was performed for 

different reference lighting conditions, including artificial light sources (N=13), simulated daylight 

(N=2), and/or under naturalistic indoor or outdoor conditions (N=6).  

 
Figure 1. Example of different dosimeter types and positions: A) LuxBlick light-dosimeter for measurement at eyelevel (image 
retrieved from Hubalek et al.56), B) Spectrace141 light-dosimeter worn at the chest, C) ActTrust wrist-worn actigraphy and light-
dosimetry device. 

A)

B) C)
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The diversity of calibration methods used in dosimetry studies highlights the need for 

standardised assessment and calibration procedures. Typically, optical performance of photometers is 

assessed in terms of spectral sensitivity, directional response, and response linearity as defined in the 

standard ISO/CIE 19476:2014.124 However, current standards are not readily applicable for the 

characterisation of light-dosimeters for non-visual effects research, therefore novel methods are 

needed.118 Published optical performance metrics can help guiding the selection of an appropriate 

dosimeter for a given study. For non-visual effects research, devices that have good spectral sensitivity 

for matching the five α-opic sensitivity functions should be preferred.117 However, trade-offs between 

spectral and directional mismatch should be considered, since the arrangement of multiple 

photosensors may affect directional responses.118 The impact of directional mismatch may also depend 

on where the device is worn and how the data is aggregated. That is, high movement at the wrist or 

aggregation over longer time periods may cancel out directional mismatches.125 Moreover, the linear 

range and dynamic resolution that is required should be considered depending on the lighting 

conditions expected in the study.  

The standard ISO/CIE 19476:2014124 also describes calibration procedures for photometry 

devices; however, this standard may not be applicable to dosimeters that measure non-photometric 

quantities (e.g., spectral irradiance, alpha-opic irradiance). As a result, several methods have been 

described by individual studies.122,126–128 An important aspect to consider during calibration is the 

selection of a calibration light source that matches the lighting conditions typically encountered during 

the study. For studies with various lighting conditions, it has been recommended to calibrate devices 

to an overcast sky at noon,122 or by averaging across several light sources.129 Note that ambient 

conditions (i.e., temperature and humidity) can also substantially impact sensor accuracy and, ideally, 

should be calibrated for accordingly. However, this calibration is difficult for the many available light-

dosimeters that do not include sensors to measure ambient conditions.  

3.1.3 Dosimeter position 

For research on the non-visual effects of light, the amount of light reaching the eye (corneal light 

exposure) is of primary interest; therefore, the position of the dosimeter on the body is an important 

consideration. Among the reviewed studies, only very few measured light exposure at eye-level (N=9), 

whereas most measured at the wrist (N=67) and some at the chest (N=22; Figure 2B). Measurements 

at eye-level require a specific setup (e.g., LuxBlick; see Figure 1) and might be perceived as more 

obtrusive than at the wrist or chest, 130 which may explain the small number of studies measuring at 

this position. While both wrist and chest measurements may be less obtrusive, the large number of 

studies measuring at the wrist can be partly explained by the frequent use of actigraphy devices, 

allowing concomitant measurement of light exposure and sleep-wake activity within a single device. 

Only few studies measured actigraphy at the wrist and light at another position with separate devices 

(N=12), or with a single device that is transferred to the wrist for actigraphy during sleep (N=3).  
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Table 1. Overview of dosimeter models used in previous studies sorted by frequency of use. 

Device Name Manufacturer Primary purpose Output N 

Actiwatch-L MiniMitter (now Philips Respironics) Actigraphy Ev 25 
Actillume Ambulatory Monitoring Inc. Actigraphy  Ev 14 
Actiwatch 2 Philips Respironics Actigraphy Ev 12 
Actiwatch Spectrum Philips Respironics Actigraphy W, R, G, B 10 
Daysimeter Lighting Research Center Light Ev, CS 6 
HOBO Pendant Onset Computer Co. Light Ev 6 
Actiwatch-L CamNtech Ltd. Actigraphy Ev 4 
Dimesimeter Lighting Research Center Light Ev, CS 3 
MotionWatch 8 CamNtech Ltd. Actigraphy Ev 3 
StowAway Onset Computer Co. Light Ev 3 
Custom various various Ev 3 
Actiwatch Plus Philips Respironics Actigraphy W, R, G, B 2 
GeneActiv Activinsights Ltd. Actigraphy Ev 2 
Lightlog LightlogProject Light W, R, G, B 2 
Actiwatch RGB CamNtech Ltd. Actigraphy W, R, G, B  1 
ActTrust Condor Instruments Actigraphy W, R, G, B 1 
CSA AM Computer Science Applications Inc. Actigraphy Ev 1 
Daqtometer 2.4 Daqtix GmbH Actigraphy Ev 1 
LightWatcher Object-Tracker Light W, R, G, B, UV, IR 1 
LuxBlick Hubalek et al.56 Light Ev, Ec 1 
MotionLogger-L CamNtech Ltd. Actigraphy Ev 1 
RaySeG Eto et al.38 Light R, G, B, UV  1 
Sleepwatch-L Ambulatory Monitoring Inc. Actigraphy Ev 1 
Custom  Adamsson et al.19 Light Range 400-750 nm (50 nm res.) 1 
Custom Cain et al.26 Light Range 340-780 nm (15 nm res.) 1 

Note: Ev = Illuminance, W = white light, R = long-wavelength irradiance, G = medium-wavelength irradiance, B = short-wavelength 
irradiance, UV = ultra-violet light, IR = infrared light, CS = Circadian Stimulus, Ec = irradiance weighted by c(λ)114. This table does 
not list all available devices, but only devices that were used in the reviewed studies. 

 

As most studies did not measure light exposure at eye-level, it is important to study to what 

extent corneal light exposure can be estimated from measurements at other positions. Yet surprisingly 

few studies have addressed this question. An early study that is frequently cited reported high 

correlation between measurements at the wrist and the forehead;10 however, the validity of these 

findings is limited due to dosimeter saturation at higher illuminance levels. Furthermore, correlation 

does not show the amount and direction of deviations at different light levels. Another study in 

postsurgical in-hospital patients reported little average deviation (<10 lx) between wrist and eye-level 

measurements up to 5000 lx;131however, the findings may not be generalisable to normal living 

conditions. To our knowledge only one study examined different measurement positions under normal 

living conditions for an extended period, reporting little deviation between illuminance at eye-level 

and the chest, but large deviation for the wrist, which generally underestimated eye-level exposure, 

especially at higher illuminance levels.125 

While this preliminary evidence suggests that measurements at the chest may be more accurate 

than at the wrist for estimating corneal light exposure, systematic variations in measurements at 

different positions should be considered. Aarts et al.123 found that both wrist and chest measurements 
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deviated substantially more from eye-level measurements under indoor conditions compared to 

outdoor conditions, which was especially pronounced for wrist measurements. Moreover, under indoor 

conditions wrist measurements tended to overestimate and under outdoor conditions underestimate 

eye-level exposure, corroborating earlier studies. Additionally, under indoor conditions, systematic 

variations have been observed for different activities, body postures and gaze directions.132 

Interestingly, this study also found that the exposure threshold associated with phase shifts of dim light 

melatonin onset (DLMO) estimated from eye-level measurements was not associated with phase shifts 

when using the same threshold for wrist measurements, likely due to overestimation of eye-level 

exposure. 

3.1.4 Recording interval 

In light-dosimetry the recording interval or epoch length defines the rate at which individual light 

exposure measurements are recorded and therefore determines the temporal resolution and accuracy at 

which changes in light exposure can be captured. Among the studies under review, epoch lengths 

ranged from 100ms to 5min, with 1min and 30s being the most used (N=51 and N=16, respectively; 

Figure 2C). Note that these epochs indicate the rate at which samples are recorded but do not 

necessarily reflect the sampling rate of the photosensors, as some dosimeters record an aggregated 

value of several samples across the given interval. 

Epoch lengths are usually selected to optimise battery and memory usage, since dosimeters are 

often employed continuously for several days in a row. However, while longer epochs may help to 

conserve battery power and reduce memory load, the accuracy with which light exposure is measured 

may be affected, resulting in a trade-off between battery/memory usage and accuracy. For example, it 

has been found that epochs of 3min or longer lead to a loss of accuracy relative to shorter epochs when 

calculating cumulative light exposure and time spent under bright light conditions.15,16 On the other 

hand, while longer epochs may reduce accuracy, it is not yet known how much interpretability is 

gained by increasing recording rate. 

 

 
Figure 2. Frequency of methods used across the reviewed studies: A) dosimeter calibration and, if applicable, calibration light 
sources, B) dosimeter positions, C) recording intervals, and D) log-transformation sequence (Aggr. = transformation of 
aggregated data, Raw = transformation of raw data). NR = not reported. 
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3.2 Data preparation 

3.2.1 Data cleaning 

Due to the uncontrolled nature of light-dosimetry, measured data may contain invalid or artifact data. 

Two major sources of invalid data are periods where the dosimeter was not worn or when the light 

sensors were obstructed. Invalid periods were identified by some studies (N=18) based on concomitant 

inactivity longer than a given timeframe, which ranged from 5–120min across studies. Some studies 

additionally examined the light data for smooth periods with little fluctuation, indicating invalid 

periods. 31,69,81 Furthermore, several methods for identifying measurement artifacts due to sensor 

obstruction have been reported. Some studies (N=13) identified artifacts as light measurements below 

a threshold value during day- or wake-time, ranging from 0–10 lx across studies. Other methods 

involved the identification of temporary drops in the data,26 unusually high rate of change,74 and 

outlier detection methods.105 Moreover, some studies removed remaining noise in the data with 

smoothing methods, by using simple moving average (SMA) filters with different window sizes 

between 5–20min,32,79,85,104 or local regression smoothing (LOESS).108 The latter procedure preserves 

peaks in the signal better than a SMA filter, but it can be computationally expensive for large datasets. 

Note that smoothing methods can also be used as an analytical procedure; for example, to quantify 

light dose in time by mimicking non-visual response characteristics.81 Beside smoothing, some studies 

(N=15) averaged the data into bins (e.g., hourly averages), which can also be considered a means to 

remove noise in the data. However, as with smoothing methods, it is important to consider logarithmic 

transformation when aggregating data, as discussed in the next section. 

Although cleaning measured personal light exposure data is an important step in the dosimetry 

process, nearly no studies have systematically investigated what cleaning methods and parameters are 

most appropriate for these kinds of data. To our knowledge, only one study has examined 

identification thresholds for sensor obstruction, showing that dosimetry measurements in a very dim 

laboratory environment without coverage by clothing did not fall below 1lx.88 

3.2.2 Logarithmic Transformation 

Personal light exposure data can cover a large range of light levels over several orders of magnitude 

and usually follow a log-normal distribution.133 Therefore, analyses may require logarithmic 

transformation of the data to ensure a normal distribution and enable interpretability. An important 

consideration when applying log-transformation is the sequence in which the data is transformed, 

aggregated, and analysed, particularly regarding the question whether the transformation should be 

applied before or after quantifying the “raw” light data. Amongst the reviewed studies, less than half 

applied a log-transformation, either before (N=35) or after (N=12) quantification (Figure 2D). A major 

rationale for transforming the data was to ensure normality for statistical analyses (N=10). 

Interestingly, four studies provide an explicit rationale for transforming raw data,65,92,108,109 referring to 
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log-linearity observed in non-visual dose-response curves.134,135 Contrastingly, Scheuermaier et al.88 

argue that log-transformation should be applied after aggregating the data, in order to account for brief 

episodes of very bright light. 

Indeed, the sequence of log-transformation may substantially affect the results. Take for example 

the hypothetical light exposure pattern of an office worker between 12:00–13:00h, who during work is 

exposed to 200 lx and who goes outside for a lunch break at 12:30h, being exposed to 10000 lx. The 

calculated hourly means for this individual would be around 103.71 (~5100 lx) with log-transformation 

after aggregation, and 103.15 (~1400 lx) with log-transformation before aggregation. Realistically this 

difference could be even greater depending on the fluctuation of light levels. This potentially huge 

impact on aggregated light exposure makes it impossible to compare data such as mean hourly light 

exposure between studies that aggregated and transformed the data in a different sequence. Moreover, 

analyses of non-visual responses may be affected, such as when using linear models to examine acute 

effects of hourly light exposure. Note that although it can be argued that mean light exposure may not 

be the right metric to analyse non-visual effects, it is still the most widely used metric to describe and 

compare personal light exposure patterns across all studies reviewed here. 

Logarithmic stimulus-response relationships are well established in psychophysics (i.e., 

Fechner’s law), and non-visual responses to light are no exception: logarithmic relationships to light 

intensity have been described for circadian phase resetting,136 melatonin suppression,134 and acute 

alertness.135 Some findings from cell recordings suggest that logarithmic encoding of light intensity 

may happen at the level of retinal ganglion cells, whose neuronal firing response is directly 

proportional to the detected amount of photons on a logarithmic scale.137–139 However, no study has yet 

specifically addressed what these findings imply for the measurement of time-series light exposure 

data. 

4. Discussion and recommendations 

In this review we presented an overview of methods employed by previous dosimetry studies to 

measure and prepare personal light exposure data. Overall, a large variability in methodologies was 

observed across all studies. Personal light exposure was measured with a variety of dosimeters, at 

different positions on the body, and with different recording intervals. Very few studies measured 

spectrally resolved light exposure. Dosimetry devices were often not reported to be calibrated, and 

studies that calibrated the devices used a variety of different methods. Regarding data preparation, the 

few studies that report data-driven cleaning procedures used several different methods and parameters 

to identify invalid light exposure data. Discrepancy was also observed in the application and sequence 

of log-transformation of the light data. In the following, we briefly discuss methodological 

implications based on these findings and provide recommendations for future dosimetry studies, as 

well as important points that need to be addressed in future research.   
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4.1 A note on accuracy in dosimetry for non-visual effects of light 

As emphasized throughout this review, research of non-visual effects demands an accurate description 

of lighting conditions to improve the validity of research findings and ensure comparability and 

transferability of results across studies.7 This holds especially for dosimetry, to avoid additional 

uncertainty in the presence of the plethora of confounders in field research. However, since an 

increase in accuracy often comes at the expense of factors such as practicality and cost, one of the 

central questions in dosimetry is how much accuracy is required at each dosimetry step, for analysing 

the relationship between measured non-visual responses and light exposure.  

Given that dosimetry inherently refers to the study of the absorption of a physical quantity by the 

human body, it makes sense that dosimetry methods and metrics are biologically relevant. In theory, 

many of the methods discussed in this review could be based on neurophysiological mechanisms, for 

example, using smoothing methods that reflect temporal integration of the light signal. However, one 

of the central challenges in dosimetry is that our understanding of the mechanisms underlying signal 

encoding, adaptation, and photic integration in the non-visual system is still incomplete. These 

uncertainties make it difficult to define accuracy limits for spectral and temporal resolution, and 

dynamic range, which is further complicated by large inter-individual differences in light sensitivity.140 

In light of these uncertainties, instead of basing accuracy limits on assumptions of the underlying 

biology, it might be more appropriate to consider how the physical signal itself can be measured more 

accurately within the given technological and practical constraints, for instance, by using information 

theoretic approaches (see Section 4.3). 

4.2 A proposal for guidelines and recommendations 

Based on the findings of this review we propose guidelines and recommendations for future dosimetry 

studies, summarised in Table 2. It is important to note that these recommendations are based on 

current knowledge, while several points demand further investigation (see Section 4.3). Therefore, it is 

crucial that methods and parameters used at each step in the dosimetry process are reported in 

necessary detail, either in the article itself or provided in the supplementary material. Insufficient 

reporting hinders transparency, reproducibility, and comparability, which is essential for research of 

non-visual effects in the field to be successful. 

A crucial aspect in dosimetry is the selection of an appropriate dosimeter model, which depends 

on the context and aims of a given study. For research on the non-visual effects of light, devices that 

spectrally match the alpha-opic sensitivity curves should be preferred; however, given current limited 

availability of such devices, at least dosimeters that match the melanopic sensitivity curve should be 

used. In any case, we strongly recommend to always validate and calibrate dosimeters, and report a 

(reference to the) description of the calibration setup and procedure, including at least the calibration 

light sources used and which type(s) of calibration were performed (e.g., spectral, intensity, 

temperature calibration). 
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Table 2. Proposed guidelines and recommendations for dosimetry studies 

Issue Recommendation 

Dosimeter 
Selection 

• Select dosimeters with a spectral resolution appropriate to the aim of the study: for research on non 
visual responses, ideally, select devices that spectrally match the alpha-opic sensitivities.  

• Consider optical performance characteristics in relation to study context and measurement setup. 

Calibration  • Calibrate devices; Select reference light sources based on study context.   
• Report description of validation and calibration procedure, including the reference light sources used. 

Dosimeter 
Position 

• Position dosimeter at eye-level for precise measurements, otherwise at chest. Use dosimeter in tandem 
with wrist-actigraphy if needed. 

• Consider context dependent direction and amount of deviation from corneal exposure. 
• Consider obtrusiveness and practical issues; Carefully instruct participants to avoid sensor obstruction. 

Recording 
Interval 

• Select shortest epoch possible to achieve desired battery life. 
• Avoid epochs longer than 2min. 

Data Cleaning • Use data-driven methods to verify or replace subjective reports. 
• Use multiple variables to identify invalid periods (e.g., light exposure and activity).  
• Explain how and why given methods and parameters are selected.  

Log-
Transformation 

• Consider the impact of log-transformation sequence; Compare analyses for different sequences. 
• Report geometric means alongside arithmetic means. 

 

Another important consideration are contextual factors, such as lighting conditions, 

environments, activities, and body positions expected during the study. These factors may determine 

the amount and direction of deviation from corneal exposure for different measurement positions, 

which can affect the analysis of non-visual responses. For example, using sensitivity thresholds based 

on corneal exposure for the analysis of light exposure measured at the wrist under predominantly 

indoor conditions may prevent detecting an effect, due to overestimation of corneal exposure. 

Similarly, contextual factors should be considered for selecting dosimeter models, calibration light 

sources, and data cleaning methods. 

Furthermore, dosimetry methods should be selected to achieve the highest accuracy within the 

given study constraints, avoiding assumptions on the underlying biology. The latter is particularly 

important for data preparation, as it is still unclear how the non-visual system encodes and integrates 

light information over time. Therefore, we recommend evaluating a range of different methods and 

parameters during analyses and include a detailed description of the selected cleaning methods and 

transformation sequence. Moreover, alongside the arithmetic mean, the geometric mean and/or other 

measures of central tendency should be reported. 

4.3 Future work 

While the proposed recommendations given above are based on current knowledge and may form the 

basis of a framework for non-visual light dosimetry, we have identified several important points that 

need to be addressed in further research for such a framework to be able to become fully operational 

(see Table 3). Importantly, more research investigating systematic interactions between factors related 

to the study context (e.g., lighting conditions, activities etc.) and dosimetry methods are urgently 

needed, for example, to evaluate different dosimeter positions or improve data cleaning methods. On a 

long-term basis, more research studying underlying neurophysiological mechanisms such as photic 
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integration and sensitivity adaptation is required to inform dosimetry methods. Such research would be 

especially insightful regarding the sequence of logarithmic transformation, given the widespread use 

of this method in dosimetry data analysis. 

To facilitate the development of a future consensus framework and standards for light-dosimetry, 

it is of interest to examine in how far current standards in light metrology can be recycled and adapted. 

For example, the CIE already proposes standards for the calibration and performance characterisation 

of photometers (ISO/CIE 19476:2014124). However, these standards are limited to photometric 

measurements, and may not be appropriate for the measurement of alpha-opic quantities as 

recommended in the new standard CIE S 026:2018117. Some suggestions for how these standards can 

be adapted have already been put forward by Price et al.118. Similarly, an effort for developing 

consensus reporting standards for light-intervention studies (ENLIGHT141) is currently under way, 

which could in future be expanded to light-dosimetry in general. Such reporting standards may also 

contain guidelines for reporting the intended use of light-dosimetry in intervention-studies, since 

intervention studies often make little use of collected dosimetry data.  

In parallel, information theoretic approaches focussing on increasing measurement accuracy 

within the given technological and practical constraints should be explored. Specifically, novel data-

driven methods may be used to increase spectral and temporal resolution of dosimeters, as described in 

a complementary paper142 and briefly introduced in the following. Spectral and temporal resolution 

historically have been constrained by technological limits to size, weight, power, and cost of 

dosimeters. However, recent advances in sensor technology and signal processing methods, such as 

compressed sensing,143 challenge conventional limitations. Such methods demonstrate that for 

compressible (i.e., non-random) signals, the amount of information encoded can be much smaller than 

prescribed under classic sampling theorems. Compressed sensing effectively finds the simplest 

representation of a signal by exploiting regularities in the structure and properties of encoded signals. 

In practice, sensors based this method can reduce the amount of encoded information at the source by 

a factor of 10,144 enabling high spectral resolution at a small size and cost. Recent work on a 

compressed sensing dosimeter named Spectrace145, developed by the authors, has already 

demonstrated the ability to recover 5 nm resolution data over the visible range from 14 narrowband 

photodiodes,142 all in an autonomous wearable form no larger than a USB stick. As with compressed 

spectral sensing, sparse representation and forecasting can also be used to construct adaptive sampling 

rates that respond to changes in the environment (e.g., sample more when the scene changes and less 

when it is stable). Such approaches offer low-power and compact hardware forms without information 

loss. Taken together, information theoretic approaches offer novel ways of increasing accuracy in 

dosimetry within the given constraints, while avoiding the uncertainty introduced by making 

assumptions on human biology. 
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Table 3. Important points to be addressed in further research 

Outlook Point to address 

Short-term • Evaluation of optimal reference light source(s) for dosimeter calibration. 
• Development of standardised calibration protocols.  
• Investigation of the effects of different lighting conditions and activities on measurements at different 

positions. 
• Evaluation, validation, and development of new and existing data cleaning methods. 
• Investigation of the effects of transformation sequence on dosimetry outcomes. 
• Exploration of novel information theoretic approaches to increase measurement accuracy within constraints. 

Long-term • Investigate neurophysiological mechanisms to inform dosimetry methods and metrics. 

 

5. Conclusion 

With this article we discuss the status quo in dosimetry methodology to form a basis for further work 

towards a consensus framework for light-dosimetry studies. This review is the first to highlight the 

prevalent variability in methodologies employed by light-dosimetry studies during the past three 

decades, underscoring the need for standardised operating procedures to improve the comparability 

and repeatability of dosimetry studies. Moreover, by collecting this diverse set of methodologies, we 

were able to reveal important gaps in knowledge that need to be addressed in further research. At the 

same time, we show what methods are available for measuring and preparing personal light exposure, 

and what to consider and avoid when conducting light-dosimetry studies. With this work we would 

like to bring the topic of light-dosimetry to greater attention, with the hope to provide researchers with 

the required knowledge to perform high quality studies and inspire more research in this direction. 

Furthermore, we want to emphasise the importance of carefully considering each step in the dosimetry 

process as each methodological decision may substantially affect the final study results. In the 

forthcoming second part of this review, methods for quantifying and analysing personal light exposure 

with respect to the non-visual system will be discussed. 
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