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Abstract 
Optical microscopy has been widely used in various fields and especially for biomedical applications. Optical Diffrac-

tion tomography (ODT) is a branch of optical microscopy that can be used for quantitative 3D imaging of different 

samples including biological samples (i.e. cells, tissues) with a label-free, non-invasive approach. The quantitative 

measure of the 3D reconstruction is referred to as the refractive index with is a distinct property for each material and is 

cross-linked to the dry mass of biological samples. Being a label-free imaging technique, ODT can be used in diverse 

studies including immune cells drug delivery applications, red blood cells monitoring and characterization, and live 

imaging of different samples including human tissues and c-elegans. By changing the angle of illumination of the inci-

dent light beam and acquiring intensity and/or holographic measurements for the sample through a limited numerical 

aperture (NA) imaging system, the 3D shape of the sample can be estimated. 

The limited-NA imaging system usually results in the so called “missing cone problem”, where the cone refers to the 

missing spectral frequencies that are not collected by the limited-NA imaging system which forms a cone-like shape. 

This “missing cone problem” usually results in an elongation along the optical axis. In addition, the missing cone prob-

lem is always accompanied with an underestimation of the 3D refractive index reconstruction which generally degrades 

the reconstruction quality. Another challenge in ODT is the common need for holographic measurements and phase 

unwrapping algorithms to reconstruct the 3D refractive index of the sample. While holographic systems could be easy 

to implement, phase unwrapping could be a serious problem for highly wrapped samples and the vulnerability of the 

phase unwrapping algorithms to any speckle noise introduced by the highly coherent laser beam. 

As mentioned above, the typical approach for 3D reconstruction is to spatially scan the illumination incident k-vectors 

by the use of galvo-mirrors or the use of spatial light modulators (SLM) which have a better mechanical stability as 

compared to galvo-mirrors since there is no moving parts. On the other hand, SLMs usually suffer from low frame rate 

and thus can be hardly used for high-speed live imaging. Another approach is to use digital micro-mirror devices 

(DMDs) which are much faster than SLMs but suffer from being binary switches (i.e. on/off). The use of time-

multiplexing techniques can be solution for getting greyscale-images (i.e. sinusoidal grating as in structured illumina-

tion microscopy) which results in better reconstructions. However, time-multiplexing lowers the speed of DMDs by a 

factor of 256 for 8-bit greyscale images. 

In this thesis, we study the different challenges described above. First, we study different reconstruction techniques and 

assess the fidelity of each reconstruction results by means of structured illumination and phase conjugation. By recon-

structing the 3D refractive index of the sample using different algorithms (i.e. Born, Rytov, and Radon) and then per-

form a numerical back-propagation of experimentally measured structured illumination pattern we are able to assess the 

fidelity of each reconstruction algorithms without prior information about the 3D RI distribution of the sample. 

The second part of the thesis is concerned with the 3D reconstruction of samples using intensity-only measurements 

which the need to holographically acquire them. We show that using intensity-only measurements, we could still be 

able to reconstruct the 3D volume of the sample with edge-enhanced effects which was proven useful for drug delivery 

applications in which nano-particles were identified on the cell membrane of immune T-cells in a drug delivery studies. 

Such reconstruction technique would result in more robust imaging system where the commercial imaging microscope 

systems can be incorporated with LEDs for high-quality speckle noise-free imaging systems. In addition, we show that 

under certain conditions, we can be able to reconstruct the 3D refractive index distribution of different samples. 

The third part of the thesis is contributing to high-speed complex wave-front shaping using DMDs. In that part, new 

modulation technique is demonstrated that can boost the speed of the current time-multiplexing techniques by a factor 

of 32. The modulation technique is based on amplitude modulation where an amplitude modulator is synchronized with 
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the DMD to modulate the intensity of each bit-plane of an 8-bit image and then all the modulated bit-planes are linearly 

added on the detector. Such modulation technique can be used not only for structured illumination microscopy but also 

for high-speed 3D printing applications as well as projectors. 

 The last part is concerned with using deep learning approaches to solve the missing cone problem usually accompanied 

with optical imaging due to the limited numerical aperture of the imaging system. Two techniques are discussed; the 

first is based on using a physical model to enhance the quality of the 3D RI reconstruction and the second is based on 

using deep neural network to solve the missing cone problem. 

Keywords 

Optical diffraction tomography, 3D refractive index reconstruction, structured illumination, intensity-only measure-

ments, spatial light modulation 
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Résumé 
La microscopie optique a été largement utilisée dans divers domaines et notamment pour des applications biomédicales. 

La tomographie par diffraction optique (ODT) est une branche de la microscopie optique qui peut être utilisée pour 

l'imagerie 3D quantitative de différents échantillons, y compris des échantillons biologiques (c'est-à-dire des cellules, 

des tissus) avec une approche non invasive et sans marquage. La mesure quantitative de la reconstruction 3D est appe-

lée indice de réfraction avec une propriété distincte pour chaque matériau et est réticulée à la masse sèche des échantil-

lons biologiques. Étant une technique d'imagerie sans marquage, l'ODT peut être utilisé dans diverses études, y compris 

les applications d'administration de médicaments aux cellules immunitaires, la surveillance et la caractérisation des 

globules rouges et l'imagerie en direct de différents échantillons, y compris les tissus humains et les c-elegans. En modi-

fiant l'angle d'éclairage du faisceau lumineux incident et en acquérant des mesures d'intensité et/ou holographiques pour 

l'échantillon via un système d'imagerie à ouverture numérique (NA) limitée, la forme 3D de l'échantillon peut être esti-

mée. 

Le système d'imagerie à NA limité entraîne généralement le « problème du cône manquant », où le cône fait référence 

aux fréquences spectrales manquantes qui ne sont pas collectées par le système d'imagerie à NA limité qui forme une 

forme de cône. Ce « problème de cône manquant » se traduit généralement par un allongement le long de l'axe optique. 

De plus, le problème du cône manquant s'accompagne toujours d'une sous-estimation de la reconstruction de l'indice de 

réfraction 3D qui dégrade généralement la qualité de la reconstruction. Un autre défi de l'ODT est le besoin commun de 

mesures holographiques et d'algorithmes de déroulement de phase pour reconstruire l'indice de réfraction 3D de l'échan-

tillon. Alors que les systèmes holographiques pourraient être faciles à mettre en œuvre, le déroulement de phase pourrait 

être un problème sérieux pour les échantillons d'échantillons fortement enveloppés et la vulnérabilité des algorithmes de 

déroulement de phase à tout bruit de speckle introduit par le faisceau laser hautement cohérent. 

Comme mentionné ci-dessus, l'approche typique pour la reconstruction 3D consiste à balayer spatialement les vecteurs 

k incidents d'éclairage à l'aide de galvo-miroirs ou à l'aide de modulateurs spatiaux de lumière (SLM) qui ont une meil-

leure stabilité mécanique par rapport aux galvo-mirrors puisque il n'y a pas de pièces mobiles. D'un autre côté, les SLM 

souffrent généralement d'une faible fréquence d'images et peuvent donc être difficilement utilisés pour l'imagerie en 

direct à haute vitesse. Une autre approche consiste à utiliser des dispositifs numériques à micro-miroir (DMD) qui sont 

beaucoup plus rapides que les SLM mais souffrent d'être des commutateurs binaires (c'est-à-dire marche/arrêt). L'utili-

sation de techniques de multiplexage temporel peut être une solution pour obtenir des images en niveaux de gris (c. 

Cependant, le multiplexage temporel réduit la vitesse des DMD d'un facteur 256 pour les images en niveaux de gris 8 

bits. 

Dans cette thèse, nous étudions les différents défis décrits ci-dessus. Tout d'abord, nous étudions différentes techniques 

de reconstruction et évaluons la fidélité de chaque résultat de reconstruction au moyen d'un éclairage structuré et d'une 

conjugaison de phase. En reconstruisant l'indice de réfraction 3D de l'échantillon à l'aide de différents algorithmes 

(c'est-à-dire Born, Rytov et Radon), puis en effectuant une rétro-propagation numérique du motif d'éclairage structuré 

mesuré expérimentalement, nous sommes en mesure d'évaluer la fidélité de chaque algorithme de reconstruction sans 

informations sur la distribution RI 3D de l'échantillon. 

La deuxième partie de la thèse s'intéresse à la reconstruction 3D d'échantillons à l'aide de mesures d'intensité seule né-

cessitant de les acquérir holographiquement. Nous montrons qu'en utilisant uniquement des mesures d'intensité, nous 

pourrions encore être en mesure de reconstruire le volume 3D de l'échantillon avec des effets d'amélioration des bords, 

ce qui s'est avéré utile pour les applications d'administration de médicaments dans lesquelles des nanoparticules ont été 

identifiées sur la membrane cellulaire de la T-immunitaire cellule dans une étude d'administration de médicament. Une 

telle technique de reconstruction se traduirait par un système d'imagerie plus robuste où les systèmes de microscopes 

d'imagerie commerciaux peuvent être incorporés avec des LED pour des systèmes d'imagerie sans bruit de chatoiement 
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de haute qualité. De plus, nous montrons que sous certaines conditions, nous pouvons être en mesure de reconstruire la 

distribution 3D de l'indice de réfraction de différents échantillons. 

La troisième partie de la thèse contribue à la mise en forme de front d'onde complexe à grande vitesse à l'aide de DMD. 

Dans cette partie, une nouvelle technique de modulation est démontrée qui peut augmenter la vitesse des techniques de 

multiplexage temporel actuelles par un facteur de 32. La technique de modulation est basée sur la modulation d'ampli-

tude où un modulateur d'amplitude est synchronisé avec le DMD pour moduler l'intensité de chaque plan binaire d'une 

image à 8 bits, puis tous les plans binaires modulés sont ajoutés linéairement sur le détecteur. Une telle technique de 

modulation peut être utilisée non seulement pour la microscopie à illumination structurée, mais également pour les 

applications d'impression 3D à grande vitesse ainsi que pour les projecteurs. 

La dernière partie concerne l'utilisation d'approches d'apprentissage en profondeur pour résoudre le problème du cône 

manquant généralement accompagné de l'imagerie optique en raison de l'ouverture numérique limitée du système 

d'imagerie. Deux techniques sont discutées; le premier est basé sur l'utilisation d'un modèle physique pour améliorer la 

qualité de la reconstruction RI 3D et le second est basé sur l'utilisation d'un réseau neuronal profond pour résoudre le 

problème du cône manquant. 

Mots-clés 

Tomographie par diffraction optique, 3D reconstruction d'indice de réfraction, éclairage structuré, mesures d'intensité 

uniquement, modulation spatiale de la lumière.
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 Introduction 
 

Optical imaging is extensively used in the investigation of different physical and biological phe-

nomena including red blood cells morphology [1-2], cancer detection [3-4], and neuron imaging [5-

7]. Compared to transmission electron microscopy and scanning electron microscopy, optical imag-

ing is characterized by being a non-invasive imaging technique, and therefore is considered an im-

portant way for biological imaging causing minimal harm to various biological samples while being 

able to generate high quality images with sub-micron resolution. Owing to these characteristics, 

optical microscopy has a key role in biomedicine for diagnosis and treatment purposes [8, 9]. 

 

Optical imaging can be divided into 2 main branches; fluorescent and label-free imaging. Fluores-

cent imaging is widely used in biological and medical applications in which the fluorescent markers 

act as the contrast agents to identify different organelles within cells and/or tissues [10]. By select-

ing the appropriate dye, one can study the behavior of a specific organelle while suppressing the 

signal from other organelles. For example, 6-diamidino-2-phenylindole (DAPI) is commonly used 

for imaging the nucleus where it reaches the maximum efficiency when excited by light with wave-

length between 354 nm and 362 nm while the maximum emission is reached at wavelengths be-

tween 458 nm and 462 nm. On the other hand, DASPMI (4-Di-1-ASP, D288) and DASPEI (D426) 

are commonly used for imaging mitochondria. 

 

Optical scattering is governed by the morphology and the refractive index contrast between the 

sample of interest and the background. Optical scattering is closely related to the contrast of a mi-

croscopic image. Depending on how much a sample scatters the light, the contrast can be estimated 

especially for negligible absorption. Since most optical microscopes use visible light to image bio-

logical samples, the absorption is often negligible and only the scattering affects the image contrast. 

Weak scattering, as in the case of thin tissue slices and cellular imaging, will result in very weak 

image contrast and the sample is usually referred to as “phase object” since it affects significantly 

the phase of the incident field while the amplitude is almost the same. This makes it very hard to 

identify such samples in bright-field imaging mechanism. High contrast images can be recorded 

either by converting the phase of the sample to a phase-dependent intensity image or by directly 

measuring the phase of the sample. Intensity images are usually measured by using fluorescent-

labels or phase contrast imaging introduced by Zernike [11]. 

 

Fluorescent imaging is very popular within the biomedical world especially for imaging of thin tis-

sues which act like transparent objects and thus need a contrast agent to highlight the features inside 

the cells. However, fluorescent imaging still has some limitations. First, while providing images 

with high resolution, the images do not represent any quantitative measures of the sample including 

the dry mass of the samples which can be related to metabolic and cellular functionalities. Second, 

fluorescent imaging is usually associated with photo-bleaching which make it hard to be used for 

long-term imaging. Third, while some dyes are appropriate with live cells, many others require that 

the cells be fixed which limit the functionality of fluorescent imaging for live imaging purposes. In 

addition, when used with live cells, they can be photo-toxic which usually alters the morphology of 

the sample and affects its metabolic state. 
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A breakthrough to enhance the contrast of an intensity image occurred in the 1930s without the use 

of labelling dyes by Zernike. To understand the mechanism of operation of Zernike’s phase contrast 

microscopy, let’s assume the total field, U, as the sum of the incident field Uin  and the scattered 

field from the sample under the microscope with  the 2 fields interfering  with each other in an on-

axis interferometer configuration. For weak phase modulation, the total field can be expressed as 

[12]:  

( , )

2 2 2 2

U( , ) = |U| e    U  [1 + ( , )]

|U | =|U | [1+ ] |U | ,

j x y

in

in in

x y j x y 





 
  (1.1) 

where ϕ(x,y) is the phase delay map of a sample. As can be seen from equation 1.1, the intensity 

profile for such sample, denoted as, |U|2, shows weak spatial modulation which results in negligible 

contrast.  

To enhance the contrast of the intensity image, Zernike introduced additional π /2 phase shift be-

tween the scattered and the incident field using a phase mask. By doing so, the total field, U pc  (i.e. 

for phase contrast), is defined as: 

2 2 2 2

U ( , ) = U  { + ( , )}

|U | |U | [1 2 ] |U | [1 2 ]

pc in

pc in in

x y j j x y

       
  (1.2) 

Equation 1.2 shows that using a phase mask that introduce a π /2 phase shift and therefore the phase 

shifts are converted in intensity variations within the image which results in a better contrast.  

 

As a continuation to on-axis interferometry, Gabor introduced the concept of in-line holography 

where he showed that the intensity image retrieved from the in-line holography is composed of an 

“in-focus” image in addition to an “out-of-focus” image [13]. Due to this “Twin” image problem, 

in-line holography usually encounters problems in order to retrieve the phase of the object.  To 

solve this problem, 2 solutions were proposed. The first solution is to use phase-shifting interferom-

etry by assuming that the intensity profile of an image is expressed as [14]: 

0( , ) ( , ) 2 ( , ) cos[ ( , ) ],R s R sI x y I I x y I I x y x y      (1.3) 

where 0 denotes the phase shift between the reference and the scattered field.  By tuning the phase 

shift between the 2 arms at 0 0, / 2, ,3 / 2    , one can solve for the phase of the sample ( , )x y

as expressed below: 

00 0 ( , ) ( , ) 2 ( , ) cos[ ( , )]R s R sI I x y I I x y I I x y x y             (1.4) 

01 /2 ( , ) ( , ) 2 ( , ) sin[ ( , )]R s R sI I x y I I x y I I x y x y             (1.5) 

02 ( , ) ( , ) 2 ( , ) cos[ ( , )]R s R sI I x y I I x y I I x y x y               (1.6) 

03 3 /2 ( , ) ( , ) 2 ( , ) sin[ ( , )]R s R sI I x y I I x y I I x y x y                                                    (1.7) 

And eventually the phase will be given as: 
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1 3 1
3 1 0 2

0 2

( , ) arg( , ) tan
I I

x y I I I I
I I

  
   


  (1.8) 

While this technique will retrieve the phase accurately, it has the disadvantage of increased time and 

energy consumption since 4 intensity measurements are needed for the phase retrieval.  

 

The second solution was due to Upatnieks and Leith who proposed to use an off-axis interferometer 

which use spatial modulation instead of temporal modulation as in phase-shifting interferometry 

[15]. In this configuration, a small tilt is introduced between the reference arm and the sample arm 

which results in shifting in the Fourier domain the “out-of-focus” image with respect to the “in-

focus” image and thus the phase extraction is done with only 1 intensity measurement which is ex-

pressed as: 

2 2 2 * *( , )  | | | | | | ,R t R t R t t RI x y U U U U U U U U       (1.9) 

where 
( )r r

x yj k x k y

RU e


 is defined by the angle tilt between the reference and the sample beam 

which translates into shift in the Fourier domain by (
r

x
k ,

r

y
k ), tU is the total field from the sample. 

Figure 1-1 shows an example of off-axis interferometry where the DC term (
2 2| | | |R tU U ) is cen-

tered in the Fourier space while the +1 order (
*

R tU U ) and the -1 order (
*

t RU U ) are centered-

symmetric around the origin.  
 

 

Figure 1-1.  Off-axis holography. (a) Hologram of HCT116 cell. (b) Fourier transform of the sample showing 

the DC term, +1 order and the -1 order. 

However, this speed enhancement comes at the expense of a limited space-and-width product. De-

pending on the field of interest, one should properly choose between phase-shifting or spatial-

shifting interferometry to yield the best images of the sample of interest. Nowadays, the recording 

media (i.e. sensors) and image reconstruction techniques are digital and that is why the whole field 

is called “Digital Holography” [16]. Both interferometric techniques are generally referred to as 

quantitative phase imaging (QPI) which are widely used in many digital holographic microscopic 

systems (DHM) [17-18]. 

 

It should be mentioned that a proper selection of the tilt angle is needed to ensure complete isolation 

of the cross-terms with respect to the DC term and an accurate extraction of the complex field  tU . 

Given that the numerical aperture of the objective lens is equivalent to a circular low pass filter of 

Holograms and spectrum
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radius B in the Fourier domain, we need to select the tilt angle to be large enough to isolate the de-

sired term from the DC term to avoid any distortions in the extracted complex field. This can be 

estimated if we assumed the maximum coverage in the Fourier space as shown in Figure 1-2. 

 

Figure 1-2. Fourier domain for best spectral coverage 

 

From Figure 1-2, to ensure complete separation between the +1 order and the DC term, the reference 

tilt angle should satisfy the following condition: 
3

| |
2

r B
k    (1.10) 

In addition, since for maximum coverage the x and y components of the k-vector should be the 

same to ensure maximum utilization of space bandwidth, then: 

2 3
sin( )

2 2

B



   (1.11) 

And thus the minimum tilt angle along x and y of the reference beam with respect to the sample 

beam is given as: 

1

min

3
sin

2 22

B




   (1.12) 

On the other hand, the tilt angle should not exceed a certain limit such that the carrier frequency of 

the reference arm does not exceed Nyquist’s limit where the maximum angle is given by: 

1

max

sin 1

2

sin ,
2

d

d






  



  

  (1.13) 

where d is the pixel size on the detector plane and  is the wavelength of the light source. 

 

Finally, we can identify an inequality for proper selection of the reference tilt angle along x and y 

axis as below: 

 

NΔk

NΔk

+1 order

DC term

-1 order
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sin sin

22 22

B

d

 




          (1.14)  

 

Having the knowledge on the tilt angle between the reference and the sample arm, we can shift the 

“-1 order” to the center of the Fourier domain, this is mathematically expressed as: 
( ) 2 2 *( , ) ( , ) | | | |

r r
x yj k x k y

R R R t R R t R tI x y e I x y U U U U U U U U U


      (1.15) 

Applying a low pass filter based on the numerical aperture of the objective lens followed by apply-

ing an inverse Fourier transform we can finally extract the complex field  tU from which we can 

obtain with the phase explicitly as shown in Figure 1-3. 

 

 

Figure 1-3. Phase extraction for the HCT116 cell shown in Fig. 1 after shifting and filtering the “-1 order” 

 

It should be noted here that the phase shown in Figure 1-3 is wrapped and phase unwrapping will be 

necessary for correct characterization of the sample as will be shown later in the chapter. 

 

While the complex field extraction shows the relative phase of the sample, it is not sufficient for full 

characterization of the sample. The phase map shown above is a result of the incident wave propa-

gating through a complex structure and thus for fully recovering of the 3D refractive index map, we 

need to add another dimension in the data acquisition. This is usually done either by scanning rotat-

ing the sample or the rotating the illumination beam.  

 

Sample rotation is used in micro-fluidic channels and optical tweezers, however it suffer from me-

chanical stability especially when dealing with biological samples. On the other hand, illumination 

rotation is widely used in tomographic imaging through galvo-mirrors, spatial light modulators 

(SLM), or digital micro-mirror devices (DMD). While galvo-mirror can be reach higher speed than 

SLMs, SLMs offer higher mechanical stability. On the other hand, the DMD has been presented as 

a promising candidate for high speed tomographic imaging based on structured illumination (SI) 

schemes. 

 

On the other hand, illumination rotation scanning is more feasible for imaging biological samples. 

However, 3D reconstructions usually have anisotropic resolution with poor axial resolution as com-

pared to lateral resolution which also results in 3D reconstructions suffering from the missing cone 

problem which results from the limited NA of the imaging objective lens. Figure 1-4 shows the 

complex field extracted for different illumination angles. 
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Figure 1-4. Complex field for an HCT116 cell at different illumination angles. As explained earlier, being a 

“phase object” the amplitude does not add any information while the phase shows high contrast. (a) shows a 

simplified schematic for the imaging process in which the illumination angle of the incident field is varied 

and the complex field is measured while (b) shows the complex field extracted from the holographic system. 

 

 

To reconstruct the 3D RI distribution for a specific sample, we need to combine multiple 2D QPI 

projections that are acquired from different illumination angle as shown in Figure 1-4. We refer to 

this process as Optical diffraction tomography (ODT) [9, 12, 19-20]. ODT is capable of decoupling 

information concerning the morphology and the refractive index from the 2D QPI data without the 

need for labeling. In addition, the RI can provide information about the dry mass for different cellu-

lar organelles inside the cell/tissue and can provide information about the metabolic state and inter-

cellular functionalities. However, before going to deep detail about the reconstruction process, we 

first need to highlight some critical aspects in understanding the optical scattering of samples and 

how the sample alters the illumination field after passing through it. 

 

To understand the interaction  between the optical field and the sample, we need to define a physi-

cal model that we usually refer to as the “Forward model” which actually solves Maxwell’s equa-

tions that govern the optical scattering within the medium given an incident field which we assume 

to be a plane wave with a certain illumination wave-vector. The main limitation for accurate solu-

tion of the Maxwell-equation is the fact that optical scattering is a non-linear function of the dielec-

tric constant of the scattering medium. This makes it difficult to define a forward model that accu-

rately defines such a non-linear relationship. One way to imagine such relation is to assume a situa-

tion where we have a cell phantom and measure the scattered field from this phantom. If we insert-

ed a second, identical cell phantom along the propagation direction, the resulting scattered field 

would not be a linear summation of the two individual scattered fields. The reason for this is that for 

multiple scattering events, the scattered field from the first event is considered as the input illumina-

tion for the second scattering event and so forth as shown in Figure 1-5 [12]. 
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Figure 1-5. Scattering events within the sample for (a) weakly scattering, (b) intermediate scattering and (c) 

highly scattering samples 

To make it easier to reconstruct the 3D RI distribution, it is common to neglect any non-linear ef-

fects within the sample and assume linear scattering models. This is usually referred to as weak-

scattering model and is valid as long as the scattered field has much lower magnitude than the inci-

dent field. Depending on the imaging scheme, one can further neglect the effect of diffraction as 

would be the case in X-ray computed tomography (CT) where the operating wavelength of the light 

beam is much smaller than the physical dimensions of the sample being imaged (i.e. human body or 

complete organs) [21]. However, this is not the case when imaging micro-scale samples in which 

the wavelength of the visible light is comparable to the physical dimensions of the sample of inter-

est. In that case diffraction should be accounted for. We usually refer to such a model that accounts 

for diffraction but neglects multiple scattering events as the Wolf transform in which various 2D 

fields are mapped into the 3D Fourier space for the 3D RI distribution to be reconstructed [12, 19].  

 

The Wolf transform relates the 2D measurements into the 3D frequency space by mapping each 2D 

field with the corresponding illumination.  The k-vectors of the angular spectrum of each 2D meas-

urement is represented as a spherical cap in the 3D Fourier domain governed by the relation: 

2 2 2

z x yk k k k    assuming coherent illumination with 0

2
k n




 where  is the wavelength of the 

coherent illumination, 0n  is the refractive index of the surrounding medium and ( , , )x y zk k k are the 

coordinates of the k-space. Each spherical cap occupies a different position in the #D frequency 

domain depending on the illumination k-vectors ( , )in in

x yk k . In this way he recorded fields will form 

the limited-NA 3D scattering potential from which we can estimate the 3D spatial distribution of 

the RI by taking the 3D Fourier transform of the measured 3D spectrum. The process of RI recon-

struction, however, holds many challenges and difficulties. 

 

The first problem is inherent and is referred to as the missing cone problem. In order to fully recov-

er the 3D information of the sample, one would need to capture the scattered field from the sample 

in 360 degrees. However, due to the limited numerical aperture (NA) of the illumination and imag-

ing objective lenses, we are able to only capture the scattered fields that make it through the NA of 

the objective lens. As a result, the 3D RI reconstruction does not reflect the true RI distribution of 

the sample. The missing cone problem not only results in under-estimation of the RI but it also re-

sults in elongation along the optical axis (i.e. for illumination rotation). If instead of rotating the 

angle of the illuminating beam we rotate the sample, the missing frequency information along the 

rotation axis results in the “missing apple core”. 

 

The second problem involved with conventional 3D RI reconstruction is the need for 2D QPI data. 

In other words, the need for holographic imaging systems. While holographic systems offer access 

to the complex field (i.e. amplitude and phase), they do suffer from critical problems. The first 

(a) (b) (c)
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problem is the speckle noise introduced with coherent detection which might affect the quality of 

the 3D reconstruction due to the limited signal to noise ratio (SNR). Another problem is related to 

phase stability which is related to any laser or mechanical fluctuations which can be fixed by re-

cording holograms without the sample which shall correct to any phase drift but can be time con-

suming. 

 

Another problem is more related to 3D live imaging. Current technologies usually suffer in terms of 

speed of the scanning devices that are available, typically Galvo-mirrors, SLM and DMDs. While 

galvo-mirrors are widely used in ODT, they usually suffer from the mechanical stability and can 

thus affect the quality of the 3D RI reconstruction. On the other hand, SLMs offer much better me-

chanical stability. However, this comes at the expense of the modulation speed of the SLM to gen-

erate plane waves with different illumination k-vectors. Recently, DMD has been increasingly used 

in ODT applications in a structured illumination scheme. While DMD offers high mechanical sta-

bility and also high “amplitude” modulation speed, to incorporate the DMD into structured illumi-

nation scheme, time-multiplexing has been used. However, this will dramatically limit the modula-

tion speed by a factor of 256 of the original binary modulation speed. 

 

In the course of my Ph.D., we tried to address the 3 problems mentioned above. In the upcoming 

chapters we will address each problem separately and try to tackle each one.  

 

In Chapter 2, we go through the theory governing our work that will be used repetitively through 

the thesis. We start from the wave equation and derive the Helmholtz equation which governs light 

scattering inside inhomogeneous media, and it is followed by the first-order approximations: Born 

and Rytov. Afterward, the Wolf-transform is explained. In addition, we go through the Radon trans-

form which neglects any diffraction from the sample. 3D RI reconstruction of a sample measured in 

transmission configuration usually suffers from the so-called “missing cone” problem. Different 

imaging scenarios are discussed to solve this problem including sample rotation or using a 90 de-

grees imaging modality which does not suffer from this limitation.  

 

In chapter 3, we present a method that provides a quantitative metric of the accuracy of the three 

dimensional reconstruction for optical tomography. The method relies on spatial light modulation of 

the illumination beam through the sample and numerical back-propagation of the phase conjugated 

experimentally measured optical field through the 3D reconstruction of the object. The fidelity of 

this reconstruction provides a quantitative measure of the accuracy of the 3D reconstruction without 

direct access to the ground truth about the 3D object. 

 

In chapters 4 & 5, a new approach to optical diffraction tomography (ODT) based on intensity 

measurements is presented. By applying the Wolf transform directly to intensity measurements, we 

observed unexpected behavior in the 3D reconstruction of the sample. Such a reconstruction does 

not explicitly represent a quantitative measure of the refractive index of the sample; however, it 

contains interesting qualitative information. This 3D reconstruction exhibits edge enhancement and 

contrast enhancement for nanostructures compared with the conventional 3D refractive index re-

construction and thus could be used to localize nanoparticles such as lipids inside a biological sam-

ple. When the illumination and the imaging NA are identical, we show that using our technique the 

3D RI distribution can be reconstructed. 

 

In chapter 6, DMD will be discussed for high speed complex field representation. Digital micro-

mirror devices (DMDs) have been deployed in many optical applications. As compared to spatial 

light modulators (SLMs), they are characterized by their much faster refresh rates (full-frame re-

fresh rates up to 32 kHz for binary patterns) compared to 120 Hz for most liquid crystal SLMs. 

DMDs however can only display binary, unipolar patterns and utilize temporal modulation to repre-
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sent with excellent accuracy multiple gray-levels in display applications. We used the built-in time 

domain dynamic range representation of the DMD to project 8-bit complex-fields. With this meth-

od, we demonstrated 8-bit complex field modulation with a frame time of 38.4 ms (around 0.15 s 

for the entire complex-field). We performed phase conjugation by compensating the distortions 

incurred due to propagation through free-space and a scattering medium. For faster modulation 

speed, an electro-optic modulator was used in synchronization with the DMD in an amplitude mod-

ulation mode to create grayscale patterns with frame rate ~ 833 Hz with display time of only 1.2 ms 

instead of 38.4 ms for time multiplexing gaining a speed up by a factor of 32. 

 

 

The last 2 chapters introduce of concept of using deep learning approaches to solve the missing 

cone problem previously mentioned in this chapter.  

 

In chapter 7, we propose an iterative reconstruction scheme for optical diffraction tomography 

which exploits the split-step non-paraxial (SSNP) method as the forward model. Compared to the 

beam propagation method used in learning tomography (LT-BPM), the improved accuracy of SSNP 

maximizes the information retrieved from measurements without relying on prior assumptions 

about the sample. Rigorous evaluation of learning tomography based on SSNP (LT-SSNP) using 

both synthetic and experimental measurements confirms its outstanding performance for various 

samples. 
Equation Chapter (Next) Section 1 
In Chapter 8, we accurately reconstruct three-dimensional (3-D) refractive index (RI) distributions 

from highly ill-posed two-dimensional (2-D) measurements using a deep neural network (DNN). 

Strong distortions are introduced on reconstructions obtained by the Wolf transform inversion 

method due to the ill-posed measurements acquired from the limited numerical apertures (NAs) of 

the optical system. Despite the recent success of DNNs in solving ill-posed inverse problems, the 

application to 3-D optical imaging is particularly challenging due to the lack of the ground truth. 

We overcome this limitation by generating digital phantoms that serve as samples for the discrete 

dipole approximation (DDA) to generate multiple 2-D projection maps for a limited range of illu-

mination angles. The presented samples are red blood cells (RBCs), which are highly affected by 

the ill-posed problems due to their morphology. The trained network using synthetic measurements 

from the digital phantoms successfully eliminates the introduced distortions. Most importantly, we 

obtain high fidelity reconstructions from experimentally recorded projections of real RBC sample 

using the network that was trained on digitally generated RBC phantoms. Finally, we confirm the 

reconstruction accuracy using the DDA to calculate the 2-D projections of the 3-D reconstructions 

and compare them to the experimentally recorded projections. 
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 Theory 

 
 

1. Light Scattering from Inhomogeneous Media  
 

Maxwell’s equations describes the light interaction with matter. To describe the effect of an inho-

mogeneous medium on an incident electric field, we first start by the “wave equation” which can be 

derived from Maxwell’s equation. 

 

The “wave equation” can be formulated as follows [12]: 
2

2

2 2

( ) ( ) ( , )
( , ) ( ) ( ( , )) ( ( , ).( ( ))) ,

t
t t t

c t

 
 


       



r r E r
E r r E r E r r  (2.1) 

where E  is the electric field vector, c is the speed of light in vacuum. and  are the relative elec-

tric permittivity and relative magnetic permeability of the inhomogeneous medium, respectively.   

and   are the natural logarithms of  and  , respectively. 

 

Assuming a monochromatic plane wave given by: 

 
2

( . ) 2

2 2 2
( , )  A      ,j wtt e w

c t c

  
   



k r E
E r E   (2.2) 

where w  is the angular frequency given by 0w k c , where 0k  is the wavenumber in free-space. 

Hence equation 1 can be rewritten as follows: 

 

2 2

2

( ) ( )
( , ) ( , ) ( ) ( ( , )) ( ( , ).( ( )))t w t t t

c

 
        

r r
E r E r r E r E r r  (2.3) 

By further assuming (1) a non-magnetic medium with ( ) 1 r and thus neglecting the first term on 

the right hand side and (2) slowly varying electric permittivity along the spatial coordinates, equa-

tion 3 can be further simplified to: 

 
2 2 2

0 ( , ) 0,k n w  E r E   (2.4) 

where ( )n r is the 3D refractive index in the spatial domain and is related to the relative electric 

permittivity by ( ) ( )n r r . 

 

By further assuming an isotropic medium, we will focus on the scalar version of equation 2.4: 
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2 2 2

0( , ) ( ) ( , ) 0U w k n U w  r r r   (2.5) 

For an object whose refractive index distribution is ( )n r in a surrounding medium with refractive 

index 0n , we define the scattering potential as 
2

2 20
0( , ) ( ( , ) )

4

k
F w n w n


 r r .  Equation 2.5 can then 

be expressed as: 

 
2 2 2

0 0( , ) ( , ) 4 ( , ) ( , )U w k n U w F w U w   r r r r   (2.6) 

The total field ( )U r can be described as the sum of the incident field ( )iU r  and the scattered field 

( )sU r and equation 6 can be decomposed into 2 equations: 

 
2 2 2

0 0( , ) ( , ) 0i iU w k n U w  r r   (2.7) 

In which equation 2.7 satisfies propagation in a homogenous medium (i.e. ( , ) 0F w r ). The second 

equation is concerned with the scattered field and given equation 2.6 and 2.7, the scattered field 

should satisfy the following the equation: 

 
2 2( ) ( , ) 4 ( , ) ( , ),sk U w F w U w   r r r   (2.8) 

 

where 0 0k k n . 

 

To solve equation 2.8, one could use the Helmholtz equation for the Green’s function ( ')G r r : 

 

  
2 2( ) ( ') 4 ( ') ,k G      r r r r   (2.9) 

 

where ( ') r r  is the three-dimensional Dirac delta function. A valid expression for the Green’s 

function that satisfies equation 2.9 would be: 

 
| '|

( ')  
| ' |

jke
G



 


r r

r r
r r

  (2.10) 

 

Using equations 2.8-2.10, the scattered field ( )sU r  can be expressed as follows: 

 

( ) ( ') ( ') ( ') 's

V

U F U G d r r r r r r   (2.11) 

And hence the total field can be expressed as 

 

( ) ( ) ( ') ( ') ( ') 'i

V

U U F U G d  r r r r r r r   (2.12) 

While equation 2.12 is linear with respect to the incident fields, it is nonlinear with respect to the 

scattering potential distribution.  In order to accurately solve this equation nonlinear techniques are 
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usually used to account for such nonlinearity (i.e. multiple scattering). However, for weakly scatter-

ing semi-transparent samples, equation 2.12 can be linearized and the weakly scattering approxima-

tions can be used to reconstruct a reasonable estimate 3D distribution for the refractive index map. 

In the following section different models accounting for weakly scattering samples will be dis-

cussed along with 3D reconstructions. Such models are referred to as “Inverse models based on 

first-order approximations”. 

 

2. Optical Diffraction Tomography 

 
Optical diffraction tomography (ODT) is the process of acquiring different projections from multi-

ple angles and then use the information to reconstruct the 3D refractive index distribution. To do so, 

equation 2.12 is used to relate the measured total field to the scattering potential. However, as men-

tioned before, such equation is nonlinear with respect to the scattering potential and a direct-inverse 

model cannot be utilized to solve such equation. However, for weakly scattering transparent sam-

ples, this equation can be linearized and a linear relation between the scattered field and the scatter-

ing potential can be retrieved and a good estimate for 3D refractive map can be reconstructed. 

 

 

3. Direct-Inversion Models based on First-order approximation 

1. First-order Born approximation  

 

For weakly scattering objects, we can assume that the measured total field is approximately equal to 

the incident field plus the component of the field that was scattered only once.  

 

Under this assumption, equation 2.11 can be approximated as follows: 

 

  

( ) ( ') ( ') ( ') ' s i

V

U F U G d r r r r r r   (2.13) 

 

Equation 2.13 is linear in terms of the scattered field and the scattering potential and a direct-

inverse model can be used to reconstruct the scattering potential from the measured scattered field. 

Equation 2.13 is usually referred to as the “Born approximation” or more precisely “First-order 

Born approximation”. 

 

To solve the integral term on the right-hand side of equation 2.13, we use the integral form of the 

Green’s function given by: 
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 (2.14) 

 

where ( , , )x y zk ks ks ks k s denotes the k-vector along the three coordinates while zs satisfies the 

following equation: 

 
2 2 2 2

2 2 2 2

1 ,    1

    1,    1,

z x y x y

x y x y

s s s s s
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    
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  (2.15) 
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where the former equation describe a homogenous wave that propagate away from the scatterer 

while the latter express an evanescent wave that exponentially decays along | |z . 

 

Assuming plane-wave illumination: 

 
0 0 00

( )( . )
( ) ,x y zj ks x ks y ks zj

iU e e
 

 
k r

r   (2.16) 

 

where 0 0 0 0 0( , , )x y zk ks ks ks k s is the illumination k-vector of the incident plane wave. By substi-

tuting equations 2.15-2.16 into equation 2.13, we get: 
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Eq. 2.17 can be expressed as: 

[ ]( )

0 0( ) ( , ; , ) ,x y zjk s x s y s z

s x y x y x yU a s s s s e ds ds

 
 
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  r  (2.18) 

where 
( )

0 0( , ; , )x y x ya s s s s
is the 2D Fourier transform of the 2D measurements (the projections) ob-

tained by illuminating the sample with a plane wave in a direction ( 0 0,x ys s ) and it is given by: 

 

0 0 0[( ) ' ( ) ' ( ) ']( )
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ik
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s

         r  (2.19) 

 

From equations 2.18 and 2.19, we obtain the following equation: 
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where F~(..)  is the 3D Fourier transform of the scattering potential F(r). Hence, 

 

0 0 0[ ( ), ( ), ( )] ( , )
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zjks zz
x x y y z z s x y

ks
F k s s k s s k s s U ks ks e

j



      (2.21) 

Equation 2.21 relates directly the 2D Fourier transforms of the measured scattered fields to the scat-

tering potential of the 3D object in the Fourier space. In practice, objective lenses are used to image 

biological samples and hence in the Fourier space the spectrum of the sample is low pass filtered by 

a circular filter whose radius is proportional to the numerical aperture (NA) of the objective lens. 

The 2D Fourier transform of the scattered field is mapped as a spherical cap into the 3D Fourier 

space of the object governed by the relation 2 21z x ys s s   . We refer to the 3D Fourier space of 

the object as the kappa space 0( ) κ k k  depending on the illumination k-vector 0k as shown in 

Figure 2-1. The process of mapping the 2D scattered field into the kappa space is the foundation of 

the Fourier diffraction theory and was first described in a paper by Wolf [19]. We refer to it as the 

“Wolf Transform”. 
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Figure 2-1. Wolf Transform procedures. First, the complex field is extracted from the holograms as shown in 

the left-hand side of the figure, then the 2D Fourier transform is computed as shown in the middle column 

and then the 2D Fourier transform is computed as a spherical cap in the kappa-space as shown in the right-

hand column. 

2. First-order Rytov approximation 

The Rytov method of reconstructing a 3D object from its 2D projections is a close relative of the 

Wolf transform.  
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The first-order Rytov approximation can be derived starting from equation 2.6: 

2 2( ) ( ) 4 ( ) ( )U k U F U   r r r r  

If we assume that the total field is purely phase modulated by the object then it takes the form 
( )( )U e r

r
 where 

( ) ( ) ( )i s   r r r
 is the phase of the total field assumed to be the sum of the 

phase of the incident wave and the phase due to the object.  This is the first-order Rytov expansion 

[12]. Substituting in Eq. (2.6) we get the following set of equations: 

2 ( ) 2 ( ) ( )4 ( ) e k e F e     r r r
r   (2.22) 

( ) 2 ( ) ( )( ) 4 ( ) e k e F e      r r r
r   (2.23) 

( ) 2 ( ) ( )( ( ). ) 4 ( ) e k e F e       r r r
r r   (2.24) 

2 ( ) 2 ( ) 2 ( ) ( )( ). ( ( )) . 4 ( ) e e k e F e          r r r r
r r r  (2.25) 

2 2 2( ) ( ( )) 4 ( )k F       r r r   (2.26) 

2 2 2 2 2( ) ( ) ( ( )) ( ( )) 2 ( ). ( ) 4 ( )i s i s i s k F                 r r r r r r r  (2.27) 

Equation 2.27 can be decomposed into 2 equations for the incident field and with perturbation as 

follows: 

2 2 2( ) ( ( )) 0i i k     r r   (2.28) 

By plugging in equation 2.28 into 2.27 we get: 

2 2( ) ( ( )) 2 ( ). ( ) 4 ( ) s s i s F           r r r r r  (2.29) 

Considering the following identity: 

2 2 2( ( ) ( ))  ( ). ( ) ( ). ( ) 2 ( ) ( ) g r h r g r h g r h g h r       r r r  (2.30) 

And assuming plane wave illumination, 
( ) ( . ) 2 2( ) ( ) ( ) ( )i inj

i i iU e A r e U r k U r


    
r k r

r , equation 

2.30 becomes: 

2 2 2( ( ) ( ))  ( ). ( ) ( ). ( ) 2 ( ) ( ) ( )i s i s i s s i iU r k U r U r U r r           r r r r  (2.31) 

Re-ordering equation 2.31: 

2 2 2( ). ( ) 2 ( ) ( ). ( )  ( ( ) ( )) ( ). ( )i s i i s i s i sU r U r r U r k U r          r r r r  (2.32) 

Multiplying equation 2.29 by ( )iU r we get: 

2 2( ) ( ) 2 ( ) ( ). ( ) [( ( )) 4 ( )] ( ) i s i i s s iU U F U           r r r r r r r r  (2.33) 

By equating the left-hand side of equation 2.32 and 2.33 we get: 
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2 2 2( ( ) ( )) ( ). ( ) [( ( )) 4 ( )] ( )i s i s s iU r k U r F U        r r r r r  (2.34) 

For weakly scattering objects, we can neglect the effect of this term 
2( ( ))s r and equation 2.34 

becomes: 

2 2( ) ( ). ( ) 4 ( ) ( )i s ik U r F U    r r r   (2.35) 

By noting the similarity between this equation and equation 2.8, we solve for ( ). ( )i sU r  r  using the 

same Green’s function integral we used before:  

( ). ( ) ( ') ( ') ( ') ',i s i

V

U r F U G d  r r r r r r   (2.36) 

where 
| |

( ) ln ln
| |

s

i i

U U
j

U U
   r , where   is the unwrapped phase after passing through the sam-

ple. Equation 2.36 looks similar to equation 2.11 except for replacing ( )sU r by ( ). ( )i sU r  r . 

3. Phase unwrapping for Rytov approximation 

As shown in Eq. 2.36, an accurate measure of the phase is required to reconstruct the scattering po-

tential. A common problem when extracting the phase from the hologram is that for thicker sam-

ples, the phase becomes wrapped and thus an efficient phase unwrapping algorithm is needed to 

retrieve the true phase [22]. Phase wrapping problem can be expressed mathematically as: 

( 2 )j je e     (2.37) 

This problem results in wrong calculation of the phase along the 2D (x, y) grid. Figure 2-2 shows the 

effect of applying phase unwrapping on the wrapped phase. 
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Figure 2-2. Phase unwrapping. The right column shows how the phase profile is highly different than the one 

in the left column. 

 

 

4. Validity of Born and Rytov approximations 

 
The validity of the first-order Born approximation is limited to the phase shift from the sample does 

not exceed π as explained in [23]: 

 

 
2

 n.L  [ ],phase shift





   Born Approx.  (2.38) 

 

where L  is the thickness of the sample. Equation 2.38 highly limits the applicability of Born ap-

proximation for biological samples which usually have wrapped phases and Born approximation 

will not be valid in that case. 

 

On the other hand, the Rytov approximation is only valid when: 

 

  
2( ( )) 4 ( ) 4 ( ),s F F    r r r   (2.39) 
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where 
2

2 20
0( ) ( ( ) )

4

k
F n n


 r r . For weakly scattering objects, ( )F r can be approximated to 

2

0
0( ) ( )

2

k
F n n


 r and equation 2.39 becomes 

2 2 2

0 0 0 0( ( )) 2 n 2 n,s k n k n    r   (2.40) 

which is only valid when 
2 2

0 0( ( ))  ns k n r and therefore we reach the condition for the validity 

of the Rytov approximation as follows [23]: 

 
2 2

2

0

( ( ))
n     [ ]

4

s

n

 






r
Rytov Approx.  (2.41) 

An interesting fact in the Rytov approximation is that the size of the sample L is not a factor in the 

Rytov approximation as the case in the Born approximation. However, it is the gradient of ( )s r

over one wavelength that is important and not the actual phase shift. Therefore Rytov approxima-

tion will be valid as long as the phase shift over a single wavelength is small. 

4. Filling in the K-space using the “Wolf Transform” in transmission 

As mentioned before, each projection is mapped as a spherical cap in the kappa-space and then an 

inverse 3D Fourier transform is applied to get the final scattering potential in the spatial domain 

from which we get an estimate about the 3D refractive index distribution. We usually refer to the 

3D kappa-space as the Ewald’s sphere in which each projection is mapped as a spherical cap (i.e. 

diffraction models) into the Ewald’s sphere depending on the imaging scenario. 

To understand more, let’s first have a look about the Ewald’s sphere in the spectral domain to gain 

an understanding about the mapping process. We first assume that we only change the illumination 

angle of the incident field without any sample rotation and without changing the operating wave-

length of the laser source. Figure 2-3(a, i) shows the case for normal incidence onto the sample. 

Since we are imaging with an objective lens with a limited numerical aperture (NA), we cannot 

cover all the scattered frequencies of the sample. However, we only capture a portion of those fre-

quencies that makes it through the objective lens NA. Thus, we can represent those collected fre-

quencies as a spherical cap whose projection in the (kx, kz) plane would be a circular arc represent-

ed by the red arc in Figure 2-3(a, i). This result in underestimation and elongation of the retrieved 3D 

RI distribution along the optical axis as will be shown later. 
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Figure 2-3 Mapping the scattered frequencies of the object into the Ewald’s sphere in transmission for (a) 

normal incidence and (b, c) oblique illumination. (i, j, k) show the object scattered frequencies distributed on 

the spherical cap (i.e. red arc) defined by the numerical aperture of the objective lens. (l, m, n) show the 

mapping of different spherical caps onto the Ewald’s sphere support for different illumination angles. Illumi-

nation angles cannot reach higher value than  which is defined by the numerical aperture of the objective 

lens. (d) shows the Ewald’s sphere support after mapping all the projections, changing the illumination an-

gles to cover the whole numerical aperture of the objective lens results in the donut shape. L is the limiting 

Ewald’s sphere which is the largest frequency domain covered by the scattered frequencies when all the pos-

sible incidence directions are mapped. Note that a transmission imaging system can only collect angle sub-

tended by 90  . 

L is the limiting Ewald’s sphere which is the largest frequency domain covered by the scattered 

frequencies when all the possible incidence directions are mapped. Note that a transmission imaging 

system can only collect angle subtended by 90  .  

Depending on the illumination and imaging modalities, the resolution will vary [24]. The illumina-

tion scanning transmission configuration for spiral scanning results in a lateral ( ,x yr ) and axial ( zr ) 

resolution of the 3D reconstruction as follows: 

,

, 0 0

2 2 2
 

24 sin( ) 4
4

spiral

x y

x y

r
k k n NA

NA

   





   


  (2.42) 
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while for circular scanning, we get the following: 

,

, 0 0

2 2 2
  

24 sin( ) 4
4

circular

x y

x y

r
k k n NA

NA

   





   


 (2.44) 

0 0 0
0

2 2 2
  ,

2[1 cos( )] [1 cos( )]
[1 cos( )]

circular

z

z

r
k k n n

n

   

 


   
  



 (2.45) 

where 0n  is the immersion medium for the objective lens and 0 sin( )NA n  is the numerical aper-

ture for liquid immersion objectives. 

For 0 1n  and assuming low NA objective lens, equations 2.44 and 2.46 can be rewritten using Tay-

lor’s approximation: 

2
2 20

2 2 2
=

2 12 [1 cos( )]
2 [1 1 ( sin ( ))] 2. .sin ( )

2

spiral

z

z

r
k k NA

    

  


   
 

  

 (2.46) 

2 2
20 0

2 2 2 2
=

2 sin ( )[1 cos( )]
[1 1 ( sin ( ))]

2

circular

z

z

r
k k n NA

    

  


   
 

  

 (2.47) 

Please notice how that different illumination schemes result in different axial resolution as given by 

equations 2.43 and 2.45 in which the spiral scanning (i.e. filling in the whole NA of the objective 

lens) results in a better axial resolution by a factor of 2 than in the case of the circular scanning. 

 

5. 3D Refractive Index Reconstruction using Born and Rytov approxima-

tions  

From Born and Rytov approximations: 

( ) ( ') ( ') ( ') ' s i

V

U F U G d r r r r r r (Born) 

( ). ( ) ( ') ( ') ( ') 'i s i

V

U r F U G d  r r r r r r  (Rytov) 

It is noticed that the right hand side of the 2 equations are identical and thus the same procedures 

can be followed for the 3D RI reconstruction by simply replacing the scattered field ( )sU r  by 

( ). ( )i sU r  r . However, for accurate substitution of ( )s r , we need to first applying the phase un-

wrapping algorithm as previously explained in section III(c). Figure 2-4 shows the different recon-

struction from the Born and Rytov approximation for the same HCT116 cell shown in Figure 2-2. 
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Figure 2-4. Difference between 3D refractive index distribution based on Born and Rytov approximation. It 

is noted that the Born approximation suffers from underestimation in the RI distribution which might be 

attributed to the phase wrapping phenomenon shown in Fig. 2-2.  

Figure 2-4 shows how the Rytov approximation is able to get a better estimate of the refractive index 

reconstruction. For example, literature shows that for biological samples the refractive index of the 

cytoplasm is around 1.35-1.37 while that lipids have the higher index around 1.4 which is highly 

matching with the 3D RI estimate from the Rytov approximation. Figure 2-5 shows the YX view at 

different depths for the Rytov approximation which shows how the image gets out of focus as we 

move away from the best plane of focus of the imaging system. 

 

Figure 2-5. Defocusing problem in the Rytov reconstruction when we move away from the best plane of 

focus of the objective lens. 
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It is also noticed how the YZ view is elongated along the direction of propagation (z-axis) which is 

a consequence of the so-called “missing cone” problem. The missing cone problem comes from the 

fact that we can only collect the scattered frequencies within the numerical aperture of the objective 

lens and therefore missing the scattering frequencies along z as shown in Figure 2-6. This result in 

an elongation along the optical axis as observed in Figure 2-5 and Figure 2-6. 

 

Figure 2-6. Missing cone problem. The left-column shows how the frequency components are low pass fil-

tered by the limited NA of the objective lens which results in an elongation as shown in the right-most col-

umn. In addition, it is noticed how the RI map is underestimated in the bottom row as compared to the upper 

row. This underestimation is a consequence of blocking a portion of the energy in the spectral domain and 

thus the same amount will be blocked in the spatial domain which results in lower RI value. 

Another limitation shown in Figure 2-6 is underestimation of the RI value of the Rytov as compared 

to the ground truth. The reason for this is that the limited NA objective lens blocks part of the ener-

gy components in the Fourier domain, and since energy is conserved in the spectral and spatial do-

main, this translates into less energy in the spatial domain which translates to lower RI value in the 

reconstruction process. 

6. Solving the missing cone problem with different imaging scenarios 

In this section we propose different illuminations scenarios to solve the missing cone problem in-

cluding 90 degrees geometry and sample rotation configuration as shown in Figure 2-7. 
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Figure 2-7. Illustrative schematics and Ewald’s sphere for different imaging scenarios. (a)–(c) spiral Illumi-

nation scanning method. (a) Schematic for transmission configuration. (b) Mapping of single acquisition into 

the Ewald’s sphere. (c) Mapping all the acquisitions using illumination scanning in transmission configura-

tion. (d)–(f) Sample rotation method. (d) Sample rotation while the illumination beam is fixed. (e) Mapping 

of single acquisition into the Ewald’s sphere for sample rotation. (f) Mapping all the acquisitions using sam-

ple rotation in transmission configuration. (g)–(i) 90 degrees geometry. (g) Schematic for 90 degrees config-

uration. (h) Mapping of single acquisition into the Ewald’s sphere. (i) Mapping all the acquisitions using 90 

degrees configuration. 

Figure 2-8 shows the frequency support for transmission, and 90 degrees geometry. While transmis-

sion yields slightly higher RI contrast, 90 degrees geometry is able to minimize the elongation along 

the optical axis.  
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Figure 2-8. Coverage of the k-space of the object depending on the imaging geometry. 

Another way to minimize the missing cone problem is to rotate the object instead of scanning the 

illumination angle as shown in Figure 2-9 (i.e. rotation around x-axis) [25]. 

On the other hand, sample rotation usually suffers from worse lateral resolution as compared to il-

lumination scanning configuration as given by: 
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This is evident in Figure 2-10 where we can see that high frequency features can be captured by 

scanning the illumination angle but not with sample rotation. 
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Figure 2-9. Illumination scanning and sample rotation coverage in the kappa-space. We see how the missing 

cone problem is solved when rotating the sample while the illumination direction is fixed to normal inci-

dence. However, we see how the frequency support is similar to an apple core, this is called “missing apple 

core” problem. 

 

Figure 2-10. Lower resolution in the sample rotation in which the illumination scanning scenario is able to 

detect the high frequency features of the sample. 

The best way is to combine both the angular scanning and the sample rotation for an isotropic reso-

lution in 3D and to solve the missing cone problem along the direction of propagation as shown in 

Figure 2-11 where a better frequency support is visible when combining both scenarios. Figure 2-12 

shows an example in which the combination of the 2 techniques resulted in better resolving power 

at the respective depth.  
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Figure 2-11. Illumination scanning, sample rotation, “illumination scanning + sample rotation” coverage in 

the kappa-space. 

 

Figure 2-12. Comparison between different imaging modalities at different depths. 

The best quality attained is reached by combining mesh scanning with sample rotation which can be 

described by Figure 2-13. In Figure 2-13 (a) we see the well-known doughnut shape with the missing 

cone problem along Kz while (b) and (c) shows the case when the mesh scanning is combined with 

sample rotation around y-axis with angle (0, 90) and (0,45,90,135), respectively. Figure 2-13 (d) 

shows an almost isotropic sphere along the 3 coordinates when mesh scanning is combined with 

sample rotation between 0 and 360 degrees with step size of 20 degrees. Such a perfect sphere 

which we refer to as “illumination scanning sample rotation – ISSR” results in an isotropic resolu-

tion along the 3 spatial coordinates given by [25]: 
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Figure 2-13. Frequency support for different imaging modalities. (a) Illumination mesh scanning only, (b) 

illumination mesh scanning and sample rotation by 0 and 90 degrees, (c) illumination mesh scanning and 

sample rotation by 0, 45, 90, and 135 degrees, and (d) illumination mesh scanning and rotation between 0 

and 360 degrees with step of 20 degrees. 

An alternative to the direct inversion methods (Born and Rytov) that rely on ignoring the effects of 

multiple scattering, is to use a nonlinear forward model that accounts for multiple scattering and 

iterative optimization and also solve the missing cone problem based on different computational 

forward models explained in [26-30]. 

7. Diffraction-Less Optical Tomography (Back-projection algorithm) 

Unlike diffraction tomography described in the previous sections, filtered-back projection tomogra-

phy does not solve the Helmholtz equation [21]. However, it assume that the measured phase is the 

integration of the RI distribution along a straight line and totally ignores light diffraction inside the 

sample. As a result, it deals with the measured complex field as the projection of the 3D map along 

the direction of the incident plane wave. Therefore, one could build the 3D k-space by simple map-

ping the 2D Fourier transform of the measured fields with the corresponding incidence angle which 

is followed by an inverse 3D Fourier transform to reconstruct the 3D RI distribution. The back-

projection algorithm is valid as long as the features size of the sample is much bigger than the oper-

ating wavelength and that is why this approach is in X-ray CT scan in which the wavelength is 

much smaller than the size of the organs. However, for biological imaging when the imaging cells 

and/or tissues, the visible wavelength is comparable to the features size and this limits the recon-

struction quality. Ignoring the wavelength value with respect to the features size of the sample re-

sults in mapping in the 3D k-space as a straight line instead of a spherical cap as shown in Figure 

2-14. Usually we refer to the back-projection reconstruction as the “Radon” reconstruction. 
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Figure 2-14. K-space coverage: Back-projection versus diffraction tomography 

 

Figure 2-15 shows an image reconstruction using the radon transform for different number of projec-

tions. As can be observed, the higher the number of projections the better the reconstruction quality.  

 
Figure 2-15. Effect of the number of projections on the reconstruction quality 

The term “filtered” comes from the fact that we apply a filter for each projection to correct for the 

blurring associated with the back-projections. In other word, each projection is filtered before the 

back-projection process to correct the blurring effect. Figure 2-16 shows the difference between fil-

tered and unfiltered back-projection algorithm for the same image in Figure 2-15 for 2 projections 

and 60 projections in which the blurring is completely removed by the filtered back-projection. 
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Figure 2-16. Filtered versus Unfiltered back-projection 
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 A Method for Assessing the Fideli-

ty of Optical Diffraction Tomography Recon-

struction Methods using Structured Illumina-

tion 

 

This work has been published in [A. B. Ayoub, T.-A. Pham, J. Lim, M. Unser, and D. Psaltis, “A 

method for assessing the fidelity of optical diffraction tomography reconstruction methods using 

structured illumination,” Opt. Commun. 454, 124486 (2020)]. 

 

A.B. Ayoub built the optical setup, carried out the experiments, and the assessment.  

 

1. Introduction 

Light microscopy plays an important role in many fields and especially in label-free detection 

and characterization of microstructures and biological cells/specimens which becomes a primary 

goal for biomedical applications.  Optical Diffraction Tomography (ODT) is an example of such 

quantitative characterization of biological specimens by reconstructing the 3D refractive index 

(RI). Several reconstruction methods have been employed for the RI reconstruction [9, 13, 19, 

31-47]. Since ODT does not require staining, it can be used in various biological studies includ-

ing immune cells [48], red blood cells [49], and embryos [50]. ODT images are formed by first 

recording the complex field of projections taken at different illumination angles.  Excluding dig-

ital phantoms and samples for which we have a-priori knowledge (i.e. 3D printed samples), we 

generally lack information about the ground truth of 3D samples. This lack of information be-

comes particularly serious in biomedical applications since accurate characterization is neces-

sary for diagnosis and cure. For example, in cellular imaging, this lack of information leads to 

uncertainty in the calculation of the RI of the sample which is interrelated to the protein concen-

tration inside the cells. One way to quantify this uncertainty is through the use of phantom ob-

jects such as beads or microspheres. However, this way cannot be generalized to biological 

samples since their ground truth is not available.  

In this paper we describe and experimentally demonstrate a method that provides a comparative 

metric for assessing the relative performance of reconstruction algorithms for arbitrary 3D ob-

jects without having access to their ground truth. To do this, digital phase conjugation and back-

propagation through inhomogeneous media were used. The distortion imposed on an optical 

field propagating through an inhomogeneous medium with negligible absorption can be undone 
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if the transmitted field is holographically recorded and the phase conjugate reconstruction of the 

hologram is made to propagate backwards through the sample [51-54]. This is conveniently 

done in the optical domain by illuminating the recorded hologram with a plane wave counter-

propagating to the plane wave used to record the hologram.  When the incident beam illuminat-

ing the object is spatially modulated by a 2D pattern (an image), the field arriving at the holo-

gram plane is a distorted version of the 2D illumination pattern. Through phase conjugation, this 

distortion is removed and the field arriving back at the input plane is ideally an exact replica of 

the original image. Deviations from this ideal condition can occur due to limited spatial band-

width, absorption or other losses in the optical path. Any imperfection in the holographic re-

cording and play-back of the hologram (including speckle) can also contribute to deviations of 

the phase conjugate reconstruction from the original image projected through the sample. In a 

carefully designed optical system in which the coherent noise is minimal (i.e. due to dust parti-

cles or multiple reflections from optical elements), we can generally obtain excellent phase con-

jugate reconstructions since the medium where the beam propagates through is well defined. 

The phase conjugate image is also strongly affected by any changes in the 3D object in the time 

between the recording of the hologram and the play-back. If the effect of noise is negligible, 

then any distortions in the phase conjugate image can be attributed to changes in the object it-

self. This effect has been used for many applications including imaging through diffusing media 

[51], turbidity suppression in biological samples [52, 53] and imaging through turbid media 

[54].  In this paper we use this effect to assess the accuracy of the estimate of a 3D reconstruc-

tion.  

Figure 3-1 shows the overall idea behind the proposed assessment technique. First, different hol-

ograms from different illumination angles of the 3D object are recorded on a sCMOS camera 

using the experimental setup that is described below. Using this information, we can reconstruct 

the 3D refractive index map using well known algorithms (i.e. Radon [38], Born [19] and Rytov 

[35]). On the same setup, we illuminate a known pattern onto the sample with structured illumi-

nation by recording a pattern on the spatial light modulator (SLM). The pattern gets distorted by 

the 3D sample as it propagates through the 3D sample along the optical path.  Phase conjugation 

of the distorted pattern is performed digitally by computationally propagating the conjugate of 

the experimentally measured field through the 3D object whose index distribution has been es-

timated using the above mentioned algorithms. Using accurate digital wave propagation and as-

suming perfect 3D reconstruction, we expect a faithful digital reconstruction of the pattern that 

was presented on the SLM.  Distortions in the digital reconstruction of the 2D pattern that was 

placed on the SLM are partially due to inaccuracies of the 3D reconstruction algorithm. Meas-

urement of the degree of distortion in the digital reconstruction of the SLM pattern provides a 

quantitative metric which we can use to compare ODT reconstruction algorithms. 
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Figure 3-1. The overall scheme of the proposed assessment technique 

The three commonly used reconstruction algorithms were tested: Radon [38], Born [19] and 

Rytov [35]. Comparisons between Born and Rytov have been performed in literature in different 

optical regimes [55-56]; however, such studies cannot directly be translated to arbitrary sharped 

samples such as biological samples. The proposed method in the paper can work as a good re-

construction assessment tool for any other reconstruction method [46, 57, 58]. The goal of this 

paper is to present the assessment method and therefore we did not include a comprehensive 

comparison of the entire set of reconstruction algorithms. 

 

2. Materials and Methods 

2.1. Experimental setup and samples 

The optical system shown in Figure 3-2 used a diode pumped solid state (DPSS) 532 nm laser. 

The laser beam was first spatially filtered using a pinhole. A beam-splitter separated the input 

beam into a signal and a reference beam in an off-axis geometry. The signal beam was directed 

to the sample at different angles of incidence using a reflective liquid crystal on silicon (LCOS) 

spatial light modulator (SLM) (Holoeye PLUTO VIS, pixel size: 8 m, resolution: 1080x1920 

pixels) that modulates the phase of the incident beam. Different illumination angles were ob-

tained by displaying blazed gratings on the SLM.  In the experiments presented here, a blazed 

grating with a period of 25 pixels (200 m) was rotated a full 360° with a resolution of 1 degree 

for a total of 361 projections, including normal incidence to be able to measure the shift of the k 

vectors with respect to it. Two 4f systems between the SLM and the sample permitted filtering 

of higher orders reflected from the SLM (due to the pixilation of the device) as well as 240x an-

gular magnification of the SLM projections onto the sample. Using a 100X oil immersion objec-

tive lens (OBJ1) with NA 1.4 (Olympus), the incident angle on the sample corresponding to the 

200 m grating was about 37°. A third 4f system after the sample includes a 100X oil immer-
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sion objective lens (OBJ2) with NA 1.45 (Olympus). The sample and reference beams were col-

lected on a second beam-splitter and projected onto a scientific complementary metal-oxide-

semiconductor (sCMOS) camera (Andor Neo 5.5 sCMOS, pixel size: 6.5 m, resolution: 2150 x 

2650 pixels). The samples used were HCT-116 human colon cancer cells and Panc-1 human 

pancreas cancer cells which were cultured in McCoy 5A growth medium (Gibco) supplemented 

with 10% fetal bovine serum (Gibco). #1 coverslips were treated with a 5 µg/mL solution of fi-

bronectin (Sigma) in phosphate-buffered saline (PBS) and let it to dry at room temperature. 

Cells at passage 18 were removed from culture flasks using trypsin, seeded directly onto the fi-

bronectin-treated coverslips, and incubated 24 hours in a 37C/5% CO2 atmosphere until cells 

adhered and spread on the coverslips. Each sample was fixed for 10 minutes at room tempera-

ture in 4% paraformaldehyde in PBS, rinsed twice with PBS, and sealed with a second co-

verslip. 

 

Figure 3-2. Experimental tomographic setup. (M: Mirror, L: Lens, OBJ: Objective lens, BS: Beam splitter). 

Pinhole-based spatial filter cleans out the beam spatially. The Higher orders cleaning filter removes the un-

needed higher orders that might interfere at the image plane on the sample causing image deterioration. 

2.2. Propagation model 

To ensure accurate propagation through inhomogeneous medium, we used the Lippmann-

Schwinger Equation (LSE) [59, 60]. The Lippmann–Schwinger equation is the same as the integral 

equation described in Born and Wolf [12].This integral equation is formulated as follows 

         incE r E r   G r r E r' η r' dr'      (3.1) 

Where incE and E  are the incident and total field respectively of wavelength λ. G(r) denotes the 

Green function, 
2

2

2

( )
( ) ( 1)

m

n r
r k

n
   is the scattering cross-section of the sample of refractive index

( )n r with 
2

mk n



 the optical wavenumber in the medium of refractive index mn . 

Our numerical propagation is divided in two sequential steps: 

 
1

incE  I –  G η E


   (3.2) 

Experimental Setup

Sample Beam  

M

M M
Reference Beam

OBJ2OBJ1

532 nm DPSS (0.3W) 

SLM

sCMOS Camera

Iris Diaphragm

½ Waveplate

BSL
L

L
LBS

LL

Spatial Filter

Higher Orders Removal Filter Illumination 4f system Imaging 4f system



A Method for Assessing the Fidelity of Optical Diffraction Tomography Reconstruction Methods using Structured Illumination 

47 

 meas meas meas

incE  G   E η E    (3.3) 

Where  , incE  denote the scattering cross-section of the sample and the incident field discretized in 

the region of interest (i.e., which includes the sample), and G denotes the discrete convolution with 

the Green function. Similarly, measG denotes the discrete convolution with the Green function that 

gets the scattered field at the sensors position and 
meas

incE is the incident field at the sensors position. 

In Eq. (3.2), we compute the discrete total field E in the region of interest by inverting a matrix. In 

this work, we use the BiConjugate Gradients Stabilized Method to iteratively compute the matrix 

inverse [61]. In Eq. (3.3), measE refers the total field at the sensor positions. The LSE method is very 

accurate since beyond the scalar assumption, there is no further approximation. The multiple scat-

tering events (including reflections) are fully accounted for as opposed to the beam propagation 

method. 

2.3.  Tomographic reconstruction methods 

For 3D RI reconstruction, three computational techniques were considered; Radon, Born, and 

Rytov. ODT was first described by Wolf [19, 31] and refined by Devaney [35]. Like the first order 

Born approximation, the first order Rytov approximation is also a linearization of the inverse scat-

tering problem but it has been found to yield superior results for biological cells and has been the 

most commonly used technique for linear ODT [35, 47]. One of the main differences between the 

Rytov and the Born models is the phase unwrapping that is explicit in the Rytov model [23]. This 

unwrapped phase is used instead of the field in the inversion formula introduced by Wolf (which we 

refer to as the Wolf transform). The third technique, the Radon direct inversion based reconstruction 

[38], is a filtered back-projection reconstruction algorithm that is based on diffraction-free model 

thus it generates errors when it comes to diffracting objects with spatial variations comparable to 

the wavelength of light.  A phase unwrapping algorithm was used to unwrap the phase [22] of the 

holographically recorded projections. Two examples of such projections are shown in Figure 3-3. In 

the studied samples (i.e. HCT-116 cells and Panc-1 cells), the accumulated phase from the samples, 

whose thickness is around 8 m, exceeds 2π at some regions depending on the proteins distributions 

as shown in Figure 3-3 (a, b).   Both Radon and Born fail to reconstruct the 3D refractive index dis-

tribution due to considerable diffraction, and high phase accumulation by the sample, respectively. 

Slices in x-y and x-z of the 3D reconstructions of the two cells are shown in Figure 3-4. Notice that 

the methods based on the Born and Rytov approximations are significantly different in estimating 

the refractive index distribution. 
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Figure 3-3.  Unwrapped phase of (a) HCT-116 cell and (b) Panc-1 cell for normal incidence. Phase unwrap-

ping was done using PUMA algorithms. Color bars are in Radians. 

Cancer cells usually have a RI of cytoplasm that range between 1.36-1.39 due to excess RNA and 

protein [36]. As observed in Figure 3-4(a), this index range is probably under-estimated (i.e. around 

1.32) due to high phase delay that Born cannot deal with. On the contrary, the Rytov approximation 

shows better agreement with what is expected from the biology of cells. The estimated index of the 

cytoplasm is around 1.365 which is within the expected range. Another interesting feature is the 

lipids which are composed of fats, sugars and proteins and are characterized by their high proteins 

concentrations and thus high RI value. This is in agreement with the Rytov reconstructions where 

we can see bright spots which do not show up in the Born approximation [36]. In Figure 3-4(b), it is 

obvious how the Born under-estimates the RI value of the nucleus as well where it should have 

much higher RI than the surrounding media (i.e., water) [36]. This could be because phase unwrap-

ping is not considered and that is why we can see enhanced edges at the boundaries of the cell at the 

point where the phase wraps while the higher phase is under estimated. In addition the RI contrast 

between nucleus and medium is quite low in case of Born. On the other hand, Rytov agrees with 

literature where the high RI contrast is clear [36, 62-64]. 

 

Figure 3-4. 3D reconstruction based on Radon, Born, and Rytov techniques for (a) HCT-116 cell and (b) 

Panc-1 cell. 

3. Assessment results 

We quantitatively assess the performance of each of the three reconstruction methods (i.e. Radon, 

Born, and Rytov) in the same experimental setup using digital phase conjugation method as de-

scribed earlier. First we illuminated the 3D sample with a phase modulated beam with an image of 

Einstein or the 1951 USAF resolution test chart that are displayed on the SLM. The phase modulat-

ed beam that comes through the sample is holographically recorded on the sCMOS camera. The 

wrapped phase of such an image is shown in Figure 3-5. Structured illumination was used instead of 

plane waves since structured illumination by its own can be thought of as many plane waves propa-
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gating at the same time and hence probe a larger portion of the 3D spectrum of the object. In addi-

tion, assessment using structured illumination ensures fairness as these patterns were not used in the 

tomographic reconstruction. In order to measure the incident field, we repeat the exact same meas-

urement by propagating through the media (clear PBS liquid between two coverslips). We consider 

the measurement we obtain from this step as the “Original” pattern since there is minimal distortion 

along the optical path. The second step in the assessment is done computationally by back-

propagating the modulated output (i.e. picture of Einstein or the USAF resolution test chart modu-

lated with the HCT-116/Panc-1 phase delay) through the reconstructed 3D refractive index (RI) 

map.  We use the Lippmann-Schwinger Equation (LSE) propagation model described above 

[59, 60]. The LSE method requires a larger memory and longer processing time (as compared to the 

beam propagation method [65] where reflections are neglected) however this method is more accu-

rate. From these two steps, we expect an accurate refractive index reconstruction to result in a clean 

reconstruction of the original structured illumination pattern. Comparison with the original pattern 

measured from the experiment without the cell gives us a quantitative measure of the accuracy of 

the ODT method. Figure 3-6 shows the retrieved Einstein and 1951 USAF resolution test chart for 

the case of Radon, Born, and Rytov approximations as compared to the original field using this pro-

cedure. 

 

Figure 3-5. Wrapped phase of Einstein/USAF chart after propagating through the HCT-116/Panc-1 cell. 

To quantify the error, the mean square error (MSE) between the measured and retrieved fields is 

calculated. Assessment was done for reconstructions provided by Radon, Born, and Rytov approx-

imations as shown in Tables 1, and 2. The MSE in the case of Born reconstruction is high as com-

pared to Radon and Rytov (at least 3 times higher than MSE for Rytov). This is due to the fact that 

both Radon and Rytov make use of the unwrapped phase whereas the Born reconstruction algorithm 

is implemented on the complex field. The Radon reconstruction scheme depends on the unwrapped 

phase; however it ignores diffraction which limits its performance as compared to Rytov which 

have the best performance by taking into account phase unwrapping, and diffraction. 

4/2/2019 14

5 um

5 um
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Figure 3-6. Retrieved projected fields using Radon, Born, and Rytov for (a) Einstein through HCT-116 cell, 

and (b) USAF chart through Panc-1 cell. 

Table 1. MSE percentage for Radon, Born and Rytov based Reconstruction techniques for Einstein 

Radon Born Rytov 

8.83% 34.73% 6.39% 

 

Although the MSE values are changing from one case to another (depending on phase profile, di-

mensions and diffraction strength), the three reconstructions follow the same trend where Born has 

the worst performance as compared to Radon and Rytov. 

Table 2. MSE percentage for Radon, Born and Rytov based Reconstruction techniques for USAF chart 

Radon Born Rytov 

16.19% 24.58% 7.97% 

 

 

 

Equation Chapter (Next) Section 1 
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 3D Reconstruction of weakly scat-

tering objects from 2D intensity-only meas-

urements using the Wolf transform 

 

This work has been published in [A.B. Ayoub, Joowon Lim, Elizabeth E. Antoine, and Demetri Psal-

tis, "3D reconstruction of weakly scattering objects from 2D intensity-only measurements using the 

Wolf transform," Opt. Express 29, 3976-3984 (2021)]. 

 

A.B. Ayoub built the optical setup, carried out the experiments, and reconstructions.  

 

1. Introduction 

Optical Diffraction Tomography (ODT) is a powerful label-free measurement tool which can be 

used for high-speed live imaging of transparent objects in three-dimensional space [9, 19, 23, 32, 

36-37, 66-68]. By acquiring 2D projections from different illumination angles and extracting their 

complex amplitudes, an estimate of the 3D refractive index (RI) distribution of an object can be 

reconstructed using inverse scattering models [23]. To obtain the complex amplitude, a digital hol-

ographic microscopy (DHM) setup is needed. An advantage of ODT over conventional phase imag-

ing techniques is that, by recording both amplitude and phase of the scattered field, it can provide 

quantitative information about the sample. An alternative to using DHM to measure both the ampli-

tude and phase at the detector is the measurement of only the intensity of the total field, which can 

subsequently be used to retrieve the phase. For example, phase can be inferred from non-

holographic intensity measurements using the transport of intensities principle [69]. In the context 

of ODT, M. Maleki et al. used an iterative scheme based on the Gerchberg-Saxton algorithm (GS) 

[70] to retrieve the phase map from the intensity profile for each 2D projection [71]. The same 

group used intensity measurements to retrieve an RI estimate through a direct inversion procedure 

[72]. In their work, the intensity of the far-field was measured for different illumination angles. The 

intensity measurement includes not only a component from which the 3D object can be reconstruct-

ed, but also a twin image whose contribution to the final 3D reconstruction was negligible in their 

study.  More recently, other works that used a direct inversion approach to retrieve the refractive 

index distribution out of the intensity measurements have also been demonstrated using detailed 

modeling of the propagation of light through the 3D sample in reflection geometry [73-75]. An al-

ternative approach to direct inversion is a reconstruction of the 3D RI distribution of a sample from 

far-field intensity by using complex iterative schemes which minimize an error function [59, 30, 76-

82]. Tian and Waller used this approach with LED illumination [78], and more recently, Pham et al. 

[80] used an iterative reconstruction scheme based on the Lippmann-Schwinger forward model us-

ing intensity measurements. Chowdhury et al. used a beam propagation model (BPM) as the for-

ward model  [81] to estimate the 3D refractive index from intensity-only measurements, where 

high-resolution reconstructions were obtained with lateral and axial resolutions of ≤ 240 nm and ≤ 
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900 nm, respectively.  R. Ling et al. [82] took yet another approach to intensity diffraction tomog-

raphy, deriving phase and absorption transfer functions as a function of the pupil function, power of 

illumination beam, and the Green’s function. In their work, the cost function consists of (1) the data 

fidelity term which is the difference between the actual measurement and the predicted measure-

ment from the forward model and (2) Tikhonov regularization which was the l2 regularization of 

the permittivity. By imposing a minimum total energy constraint on the cost function, a closed form 

for the real and imaginary part of the permittivity by manipulating the regularization parameters. 

While this approach produces a refractive index measurement from intensity-only measurements, is 

only accounts for single scattering events and requires regularization and minimization operations.  

The Wolf transform [19]  is a well-known operator which maps the 2D Fourier transform of the 

measured field for each 2D projection onto a spherical cap in the 3D Fourier domain to reconstruct 

the scattering potential. Multiple 2D projections are measured, and their Fourier transform is incor-

porated in the 3D Fourier domain of the object. This is followed by an inverse 3D Fourier transform 

to reconstruct the refractive index map spatially. The Born reconstruction is obtained when the 

complex field of the 2D projections that serve as the input to the Wolf transform is used without 

unwrapping the phase while the Rytov reconstruction is obtained by utilizing the unwrapped phase 

[23]. In this paper, we apply the Wolf transform to the amplitude only of the total field, which can 

be obtained from an intensity-only measurement and obtain 3D reconstructions. We show that we 

obtain reconstructions whose shape is same as the Born and Rytov methods but the contrast mecha-

nism is different, displaying a strong enhancement of nanostructures within the 3D sample. The 

aims of this work are to examine the effect of applying the Wolf transform on intensity-only meas-

urements and to elucidate the physical phenomena seen in the resulting reconstructions. We provide 

a theoretical analysis for the twin image effect, usually seen in on-axis holography (i.e., Gabor ho-

lography) [83], which we observe using the Wolf transform. Finally, we demonstrate the effect of 

the twin image on the final 3D reconstruction using experimental measurements and suggest possi-

ble biological applications of the present study. 

 

2. Principle 

The experimental system we used is shown in Figure 4-1[84]. A diode-pumped solid-state (DPSS) 

532 nm laser was used. The laser beam is spatially filtered and collimated with a pinhole and a pair 

of lenses. Signal and reference beams are separated in an off-axis configuration using a non-

polarizing beam splitter. The signal beam illuminates the sample with oblique illuminations in a 

conical illumination scenario over a full 360° rotation with a resolution of 1° for a total of 361 pro-

jections, including normal incidence. Oblique illuminations are obtained using blazed gratings writ-

ten on a spatial light modulator (SLM) (Holoeye; pixel size = 8 μm and resolution = 1080x1920 

pixels). Higher orders from the SLM are filtered using an iris diaphragm. Using an objective lens 

OBJ1 (Olympus: numerical aperture =1.4, 100X, oil immersion) as the illuminating lens, the angle 

of incidence on the sample is 35°. A 4f system after the sample includes an objective lens OBJ2 

(Olympus:   numerical aperture = 1.45, 100X, oil immersion) and a regular lens to image the sample 

onto the detector. For holographic detection, the signal and reference beams are combined using a 

non-polarizing beam splitter and projected onto a scientific complementary metal-oxide-

semiconductor (sCMOS) camera (Andor Neo 5.5 sCMOS, pixel size=6.5 μm, resolu-

tion=2150×2650 pixels). HCT116 human colon cancer cells were cultured in McCoy 5A growth 

medium (Gibco) supplemented with 10% fetal bovine serum (Gibco). #1 coverslips were treated 

with a 5 µg/mL solution of fibronectin (Sigma) in phosphate-buffered saline (PBS) and air-dried at 

room temperature. Cells at passage 11 were detached from culture flasks using trypsin, seeded di-

rectly onto the fibronectin-treated coverslips, and incubated 24 hours in a 37C/5% CO2 atmosphere 

until cells adhered and spread on the coverslips. Each sample was fixed for 10 minutes at room 
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temperature in 4% paraformaldehyde in PBS, rinsed twice with PBS, and sealed with a second co-

verslip. 

 

 

Figure 4-1. Experimental tomographic setup. (M: Mirror, L: Lens, OBJ: Objective lens, BS: Beam splitter) 

An iris diaphragm is used to block the extra orders generated by the SLM due to its limited fill factor. 4f 

systems represented by the dotted rectangular blocks are used to obtain an imaging plane at the best plane of 

focus of the immersion objective lenses. 

The 2D field incident in the detector of the ODT system is 
0

( , , )
t

E x y z z  where x, y, z are the Carte-

sian coordinates of the system and 0z  is the plane of best focus along the optical axis. The detected 

intensity is 

2 2 2
2 cos( )t i s i s s iE E E E E        (4.1) 

where 
tE is the amplitude of the total field, 

iE is the amplitude of the incident field, 
sE is the am-

plitude of the scattered field, and s i  is the difference between the phases of the scattered and in-

cident fields. For weakly scattering objects (
sE <<

iE ) and defining ,| | 1ij

i iE e E


  , then equation 

(4.1) can be rewritten as follows: 
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where s i     . Due to the assumption of weakly scattering objects ( 1sE  ), 
tE can be approxi-

mated as follows: 
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  (4.3) 

Multiplying both sides of equation (4.3) by ij

iE e


 , we obtain: 
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  (4.4) 

Although the term on the left-hand side of equation (4.4) is not the complex scattered field, it does 

include the phase information contained in the scattered field term sE . We refer to sE as the principal 

image to differentiate it from the twin image (the 3rd term in Eq. 4.4). Equation 4 relates the meas-

urement obtained from an intensity-only imaging system (i.e., ij

tE e
 ) to the information accessible 

only when using a holographic setup (i.e. sE ). Equation 4 includes the contribution of the scattered 

field to the intensity measurement. However, it also contains the contributions of the twin image 

2*1

2
ij

sE e
  in addition to

ij
e



.  

Since ij
e

  does not include the scattering effect of the sample, it does not result in any index pertur-

bation and does not contribute to the final 3D reconstruction.   We will show that under certain con-

ditions the term 2* ij

sE e
  (the complex conjugate of sE  shifted by 2 ik in Fourier domain where  is the 

propagation vector of the incident plane wave), results in an inverted phase and negative RI contrast 

compared to sE   and acts approximately as a cancelling term to sE  .When the numerical aperture of 

the optical system (OBJ2 in Figure 4-1) is large enough to allow the twin image to reach the detec-

tor, then this approximate cancelation effect is most prominent for the plane of best focus. This is 

experimentally observed as we report later in this paper. Figure 4-2 demonstrates the importance of 

multiplying the total field amplitude 
tE (middle column) by the incident field ij

e
  (right column) for 

correct mapping in the Fourier domain before applying the Wolf transform (c.f. Equation (4.4)). 

Although this step is not critical for reconstructions using iterative schemes as in [21-24], it is cru-

cial for reconstructions using the Wolf transform, which relies on the direct inversion of the scatter-

ing potential. With normal incidence (top row), the scattered field 
1

2
sE  (solid red circle) and twin 

image *1
( )
2

i ij j

se E e
   (orange dashed circle) are both centered in the Fourier domain, overlapping. 

However, under oblique plane wave illumination (second and third rows), the scattered field and its 

twin image are both shifted off-center when the uncorrected total field is plotted (middle column). 

Multiplying by the incident field ( )i ij i k r
e e


  (right column) results in the scattered field remaining 

fixed at the center (as with normal incidence) while only the twin image is shifted. This has a pro-

found effect on the summation of projections used to obtain the scattering potential, as it means that 

the summed scattered fields are mapped correctly in 3D Fourier-space. In contrast, their twin imag-

es rotate around them according to the k-vectors of the incident field. 
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Figure 4-2. The amplitude of measured total field and associated 2D Fourier transforms (logarithmic scale). 

The middle column shows the Fourier transform of the raw intensity map where the principal image (red 

circle) and the twin image (orange circle) appear concentric for normal illumination and symmetrically shift-

ed around the origin for different oblique illuminations. The right-most column shows the Fourier transform 

of the raw intensity map after shifting by ik in the frequency domain as a result of multiplying by the incident 

wave in the spatial domain. Scale bar = 9 µm.  

3. Results 

The contribution of the scattered field and its twin image to the total scattering potential is demon-

strated in Figure 4-3 for various projections taken at different illumination angles. y refers to the 

inclination angle of the conical illumination from the y-axis where y=0 refers to kx =0 while y=90 

refers to ky=0. Fig. 3A shows the fields shown in the third column of Figure 4-2 after masking out 

frequencies outside the limited NA of the imaging system. Figure 4-3(B) shows the summation over 

all projections when each is mapped with its own k-vector. For the scattered field (
1

2
sE ), all fre-

quency components are retained by the NA filter (Figure 4-3(B-I)); however, since *1
( )
2

i ij j

se E e
  is not 

centered around the origin, the high frequency components are removed by the NA of the imaging 

lens (OBJ2) as seen in Figure 4-3(B-II). This term therefore affects the contrast in the 3D reconstruc-

tion.  
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Figure 4-3.  (A), The spectrum of the different field components as a function of (kx, ky) of the scattered 

field (left) and its twin image (right) for different illumination angles, (B) 3D Fourier transform of the esti-

mated scattering potential as a function of the spatial frequency components ( , ,x y z   ) of the object plotted 

in 2D at 0z  for (I) the scattered fields and (II) the twin images. Panel (B) shows how the 2D projections 

are mapped inside the 3D Fourier space of the object where the colored circles in Panel (A) are mapped ac-

cording to the incident k-vector
i

k . Note that the size of the scattering potential in B(I) at  is not  (4k*NA) as 

shown by the green dotted line since we are not illuminating with the maximum possible angle allowed by 

the numerical aperture of the objective lens. 

In Figure 4-4, we see the contributions of each component of the recorded field amplitude (c.f. Eq. 

4.4) at different axial slices in the 3D reconstruction of an HCT116 cell. We first note that the re-

construction based only on 
1

2
sE (Figure 4-4(A), also shown in Fourier space in Figure 4-3(B-I)) is 

materially the same as the Born reconstruction (scaled by ½). This reconstruction was obtained us-

ing the holographic recording mode of our experimental set-up. The inverted contrast of the twin 

image component (Figure 4-4(B)) is evident at all planes. 
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Figure 4-4. HCT116 cell XY slices of 3D reconstructions at different depths obtained from (left) holographic 

measurements of the complex field and (right) intensity-only measurements.  Columns (A), (B) and (C) were 

retrieved using the holographic mode in our optical setup, while column (D) represents the intensity-only 

measurement, Columns (C) and (D) show high structural similarity index which validate the proposed study. 

Scale bar = 9 µm. Colorbar shows the estimated RI map for (A) and (B) while it shows the modified refrac-

tive index map for (C) and (D) using the proposed method.  

The sum of the principal image and the twin image is shown in Figure 4-4(C). In the plane of best focus z=0, 

the low frequencies cancel one another and disappear almost entirely due to the inverted sign of the twin 

image. However, because the high-frequency components of the twin image are outside the NA filter (c.f. 

Figure 4-3), this component only contributes to the low frequencies of the scattering potential, resulting in an 

edge-enhanced image at different planes along  z (where z is the propagation direction).  Figure 4-4(D) shows 

the 3D reconstruction obtained directly using intensity-only measurements as input to the Wolf transform. 

According to our analysis, this reconstruction is equivalent to the reconstruction obtained using the full com-

plex field (Figure 4-4(C)).We confirmed the similarity between columns C and D by calculating the structural 

similarity index (SSIM) [85]. The SSIM, computed for each XY slice and averaged over all slices (160 slices 

in our analysis), was 99 ± 0.2% over the 3D volume, quantitatively validating the approximations used to 

derive equation (4.4). This result demonstrates the feasibility of applying this method for intensity-only 3D 

reconstruction of complex samples and confirms our explanation for the qualitative observations of contrast 

phenomena. The observed increase in contrast as we move away from the plane of best focus is due to the 

fact the principal image diffracts differently from the twin image due to the conjugation. Finally, we compare 

our proposed intensity-only 3D reconstruction with those obtained using the classical Born and Rytov ap-

proximations (Figure 4-5). As the Born reconstruction is retrieved by using the complex field (i.e. no phase 

unwrapping involved), we observed that it shows an inverted contrast in specific regions within the cell as 

compared to the Rytov reconstruction which is implemented based on the unwrapped phase. Compared to 

Born and Rytov, which give a quantitative estimate of the RI, the amplitude-only reconstructions produce a 

modified RI-like measurement with artificially enhanced edges in regions of high phase gradients. For cellu-
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lar imaging, this enables efficient localization of elements such as lipids and the cell membrane which are 

difficult to identify from RI alone. Despite not getting the true refractive index map, the proposed technique 

is able to highly localize nanostructures inside the sample or on the surface (i.e. lipids in biological samples). 

This is demonstrated in Thomsen et al. [86], in which we used the 3D reconstructions from intensity meas-

urements to localize Polylactic acid (PLA) particles with 200-220 nm diameter on the membranes of T-cells. 

These measurements were used to validate results obtained from standard fluorescence-based imaging. 

 

 
Figure 4-5. HCT116 cell XY slices of 3D reconstructions at different depths obtained using Born, Rytov, and 

intensity-based reconstruction methods.  While Born and Rytov provide a quantitative estimate of the 3D 

refractive index map, intensity-based reconstruction shows a modified refractive index map where only the 

high frequency components inside the cell (i.e. cell membrane and lipid structures). Scale bar = 9 µm. 

4. Supplementary information 

4.1. Defining the modified scattering potential due to the intensity measurement 

 

Starting from equation 4.4: 
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Although the term on the left hand side of equation (4.4) is not the complex scattered field, it does include 

the phase information contained in the scattered field term sE . We will refer to sE as the principal image in 
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order to differentiate it from the twin image due to the third term in Equation (4.4).  Equation 4.4 is the key 

formula for this work, as it relates the measurement obtained from an intensity-only imaging system to the 

information accessible only when using a holographic setup, sE . In what follows, we analyze the effect of 

the additional terms, *1
(1 )

2
i ij j

se E e
 

 , on the final 3D reconstruction from both theoretical and experimental 

perspectives. 

 

We assume that the incident field is a plane wave with propagation vector . By measuring the scattered 

field at z=0 along the direction , one Fourier component of the 3D spectrum of the scattering 

potential  can be retrieved: 

 
~ ~

( ) ( , )
2

z

s x y

k
F E k k

j



   (4.5) 

                                                                                        

where 

 

 ,  

 

where
 

~

( , )s x yE k k is the 2D Fourier transform of ( , , 0)sE x y z  ,  is the 3D spatial frequency of the scattering 

potential, 0

2
k




 ,  is the wavelength of the illumination beam, and 0n is the refractive index of the sur-

rounding medium. Equation (4.5) is referred to as the Wolf transform.  

 

By applying equation (4.5) for different 2D projections and integrating in the 3D Fourier domain, the 3D 

spectrum can be measured. Subsequently, ( )F r can be spatially reconstructed using an inverse 3D Fou-

rier transform. Finally, ( )n r  is retrieved using the following equation:  
2 2

2 20 0

0 0( ) ( ( ) )
4 2

k k
F r n r n n n

 
      (4.6) 

where 
  
Dn = n(r) - n

0
and the approximation holds for small  Dn . 

 

Similar to equation 4.5, we can define a modified scattering potential, , that is related to the 2D Fourier 

transform of the modulated amplitude of the total field ij

tE e


 rather than the complex scattered field sE . 

The modified scattering potential  is calculated by applying a 2D Fourier transform to equation (4.4) as 

follows: 
~

( )

2

~~
*

( ) { }    
2

1 1
[ ( , ) ( , ) ( 2 , 2 )] 

2 2 2

ix iyj k x k yz

m D t
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j


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
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

        

 (4.7) 
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where 2 {.}DFT denotes the 2D Fourier transform. Since ( , )x ix y iyk k k k   does not contain any scattering 

from the sample. As shown in Figure 4-6, using this term only to reconstruct the 3D shape of the sample re-

sults in no RI contrast since this term does not contains any scattering effects from the sample.  

 

 
Figure 4-6. RI reconstruction from applying the Wolf transform on the incident field ( ( , )x ix y iyk k k k   ). 

 

Therefore, the modified scattering potential is further simplified to: 

 
~
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  (4.8) 

 

4.2. Mapping of the twin image into 3D kappa space 

 

We use Equation 4.8 to examine how the modified reconstruction (
~

( )mF  ) is affected by the twin image by 

plotting the twin image in 2D Fourier space (Figure 4-7). Figure 4-7(a) shows the 2D Fourier transform of 
~

*( 2 , 2 )s x ix y iyE k k k k    where the blue dotted circle indicates the 2 iyk  shift. The “rugby-ball” overlap shown 

in red corresponds to the part of the twin image that passes through the numerical aperture of the objective 

lens (OBJ2) and contributes to the reconstruction. When the 2D spectrum is mapped to 3D kappa space, the 

rugby-ball spectrum is distributed over a spherical cap given by ( 2 2 2

0 0, , ( )x y z x yk k k k n k k   ) as shown in 

Figure 4-7 (b). Figure 4-7(b) includes a 3D rendering of the spherical cap as well as its 2D projections. Note 

that the center point of rugby-ball spectrum (marked with a blue X in Figure 4-7), representing the DC term of 

the scattered field (located at ), is mapped to the origin in 3D kappa space according to the relation 

 . The mapping in Figure 4-7(b) indicates that there is a low-pass filtering effect on the twin image, 

as its higher frequency components are outside the NA and excluded from the final result. We can infer from 

Figure 4-7 that illumination at the NA-limited maximum angle would eliminate overlap between the twin 

image and the optical system NA in Fourier space, reducing the rugby-ball spectrum to zero. 
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Figure 4-7. Mapping of the twin image from 2D Fourier space to in 3D object spectrum space (kappa space). 

(a) The blue dashed circle represents the spectrum of the twin image for ( , , ) while 

the green circle represents the numerical aperture of the optical system. The red “rugby-ball” region repre-

sents the portion of the twin image that passes through the numerical aperture. (b) Mapping of the twin im-

age into the 3D spectrum of the object space results in distribution of the 2D rugby-ball shaped spectrum 

onto a 3D spherical cap. 

From Figure 4-7, we conclude that 02( )th k NA k  and 2 2

02 ( ) tw k NA k  , where tk is the tangential illumina-

tion vector.   

 

When the sample is illuminated in a conical pattern (as in our illumination scenario), tk is given as: 

2 2 2 2

0 0 0 0 0 0( sin sin ) ( sin cos ) sint ix iy ill i ill i illk k k k n k n k n          (4.9) 

where 0 0 0 0 0 0[ , , ] [ sin sin , sin cos , cos ]ix iy iz ill i ill i illk k k k n k n k n     , ill is the conical illumination angle and i is 

the azimuthal angle along the cone.   

 

In order to estimate the individual contributions of the principal and twin images to the spatial distribution of 

the 3D reconstruction, their spatial frequencies must be mapped accurately. To this end, we compared the 

mapping into 3D kappa space of the spatial frequencies of the principal image with those of the conjugated 

principal image and those of the twin image (Figure 4-8). Figure 4-8 (a) shows the (
 
k

y
-k

z
) cross-section of 

the 3D spherical cap at 0x  for the principal image, where colored spots are used to indicate a set of dis-

tinct spatial frequencies. By taking the conjugate of the scattering potential in the spatial domain, we obtain 

the spectrum shown in Figure 4-8 (b). The mirroring of the spherical cap around the origin is as expected, 

since conjugation in spatial domain results in conjugation and mirroring in the frequency domain (equation 

4.7): 
~

~
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Figure 4-8. Cross-section of the spherical cap, at 0x  , in the 
  
(k

y
,k

z
) plane for the (a) principal image, (b) 

conjugated principal image 
~

* ( )F  , (c) twin image, and (d) overlaid conjugated principal image and twin 

image. In parts (c) and (d), the red part of the line corresponds to the red rugby-ball of Figure 4-7.  The col-

ored spots show the same set of spatial frequencies for the four plots.  

 

In contrast, the spherical cap of the twin image (Figure 4-8 (c)) is in exactly the same position as that of the 

principal image (Figure 4-8(a)) because both share the same vector. However, because the 2D spectra of 

both the principal and twin images are centered around ik (which is mapped to the origin of 3D Kappa space 

as shown in Figure 4-7), the positions of the frequencies in the example set (colored spots) are reversed. 

Comparison of the twin image with the conjugated principal image (Figure 4-8 (d) shows that their spatial 

frequencies are closely aligned (highlighted by the black rectangle in Figure 4-8 (d)), resulting in the twin 

image producing a similar reconstruction to that which would be obtained from the conjugated principal 

image.  

 

Another observation related to the twin image is that it shows an inverted contrast compared to the conjugat-

ed principal image. This inversion is attributed to the missing minus sign in the twin image term (
~

*1
( 2 , 2 )

2 2

z

s x ix y iy

k
E k k k k

j
    ) as compared to the conjugated principal image (minus sign in the right hand 

side multiplied by zk  in
~ ~

* *( ) ( , )
2

z

s x y

k
F E k k

j



  ).   

 

From the previous discussion in Figure 4-7 and Figure 4-8, it is reasonable to rewrite the modified scattering 

potential as follows: 
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  (4.11) 

 

where 1

3 {.}DFT  is the inverse 3D Fourier transform, {.}LPF is the low pass filtering from the rugby-ball 

shaped spectrum as shown in Figure 4-7, is the error resulting from the imperfect alignment between 

and the twin image as shown in Figure 4-8, and is the corresponding error function in the spatial 

domain. Equation 4.11 can be further simplified by assuming non-absorbing objects ( ) and 

hence the modified scattering potential in the 3D object space can be retrieved as follows: 
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F r HPF F r O r

  

  
  (4.12) 

where {.}HPF is high pass filtering applied to . Figure 4-9 shows the 3D reconstruction using conven-

tional Rytov reconstruction and our approach for Jurkat cells (T lymphocytes) modified with nanoparticles in 

PBS where the high pass filtering effect is observed. Jurkat cells (clone E6-1, cat. no. TIB-152) were ob-

tained from ATCC. Nanoparticle-modified cells and unmodified control cells were fixed for 20 min in 4% 

paraformaldehyde solution in PBS, washed twice with PBS, and sedimented on a coverslip by centrifugation 

(3 min, 200g). Cells were then left for 15-minutes to maintain perfect adherence to the coverslip. 
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Figure 4-9. 3D reconstruction using intensity measurements at the different axial positions.  Scale bar = 10 

µm. 

 

The effect of this filtering is also evident in the RI reconstruction at the best plane of focus (z=0) (Figure 

4-10), where high frequency features appear sharp while low frequency features are blurred.  

 

 

Figure 4-10. 3D reconstruction using intensity measurements at the best plane of focus.  Scale bar = 9 µm. 

 

4.3. Effect of numerical aperture of the imaging lens (OBJ2) on the contribution of the twin image 

to the 3D reconstruction 

 

To further investigate the relationship between the twin image and the final reconstruction, we nu-

merically varied the NA of the imaging objective lens from 0.8 to 1.333 (Figure 4-11). Figure 4-11 

shows the modified refractive index map in the 3D object space ( mn ) governed by equation (4.13): 
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  (4.13) 

As expected from the visualization of the relationship between NA and the twin image (Figure 4-7), 

reducing the NA weakens the contribution of the twin image to the final reconstruction and the re-

construction from the intensity-only measurement approaches the reconstruction obtained using the 

Born approximation with complex measurements. In comparison, increasing the NA increases the 

contribution of the twin image, producing a reconstruction with reduced contrast. At the maximum 

NA of 1.333 (limited by the use of a water-based medium surrounding the sample), only the very 

highest frequencies remain in the reconstruction.  Lower contrast was seen as the contribution of the 
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twin image is getting higher as we increase the NA of the objective. Figure 4-11, the contribution of 

the twin image is increased as NA increased but with the illumination angle fixed which is why the 

when the illumination angle matches exactly with the numerical aperture, the twin image will be 

eliminated. In other words, regardless the numerical aperture, when the illumination angle is exactly 

the same as the maximum angle allowed by the numerical aperture, the twin image will be com-

pletely eliminated. This was expressed in Figure 4-11 but with changing “digitally” the numerical 

aperture while the illumination angle was fixed. By decreasing the NA of the imaging system (i.e. 

illumination angle is approaching more the maximum angle from this digitally-modified NA), the 

contribution of the twin image appears to decrease and thus better contrast is revealed. Better SNR 

can be achieved by using a laser diode (bandwidth of few nanometers) which significantly reduce 

the speckle noise (improve the SNR) as compared to solid state laser. 

 

Figure 4-11. Modified RI reconstruction for numerical apertures (a) 0.8, (b) 1.0, and (c) 1.333. Increasing the 

numerical aperture increases the contribution of the twin image to the reconstruction, eliminating low-

frequency information and reducing overall contrast.  Scale bar = 9 µm. 

 

 

 

 

Equation Chapter (Next) Section 1 

NA = 1.333NA = 1NA = 0.8

1.32 1.35

NA = 0.8 NA = 1 NA = 1.333
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 Optical Diffraction Tomography 

using nearly in-line Holography with broad-

band LED source 
This work has been published in [Ayoub, A.B.; Roy, A.; Psaltis, D. Optical Diffraction Tomography Using 

Nearly In-Line Holography with a Broadband LED Source. Appl. Sci. 2022, 12, 951. 

https://doi.org/10.3390/app12030951]. 

 

A.B. Ayoub calibrated the optical setup, carried out the experiments, and performed the reconstructions. 
 
 

1. Introduction 

Optical Diffraction Tomography (ODT) has been an emerging tool for label-free imaging of differ-

ent semi-transparent samples in three-dimensional space [9, 19, 23, 32, 36-37, 47, 66-68]. Being 

semi-transparent, such objects do not strongly alter the amplitude of the field. However, the total 

phase delay at a particular wavelength as a function of the refractive index contrast between the 

sample and the surrounding medium, the thickness of the sample. Due to this ambiguity, one cannot 

distinguish between those parameters from just 2D images and 3D imaging would be essential to 

decouple the refractive index contrast from the thickness of the sample by reconstructing the 3D 

map of the refractive index contrast (3D RI). Hence, to reconstruct the 3D RI map of different semi-

transparent samples, a holographic detection is needed to extract the phase of the field after passing 

through the sample. Then, by acquiring different holograms from different illumination angles, the 

3D RI map can be reconstructed using inverse scattering models [23].   

 

Holographic detection was introduced by Gabor who used “in-line” holography.  He showed that 

the intensity image retrieved from the in-line holography is composed of an “in-focus” image in 

addition to an “out-of-focus” image (i.e. “Twin” image) [13]. Due to this “Twin” image problem, 

in-line holography usually encounters problems in order to retrieve the phase of the object. Upat-

nieks and Leith proposed “off-axis” holography [15]. In this configuration, a small tilt is introduced 

between the reference arm and the sample arm which results in shifting in the Fourier domain the 

“out-of-focus” image with respect to the “in-focus”. Since then, “off-axis” interferometry has been 

widely used in ODT by first extracting the phase before using the inverse models [17-18, 33]. 

 

Several limitations remain that limit the use of ODT in biological imaging. These limitations in-

clude phase instability due to interferometry and laser fluctuations, and speckle artifacts due to the 

high coherence of the laser source. To overcome these limitations, Lei Tian, Laura Waller and co-

workers used a relatively broadband source (i.e. LED illumination) to illuminate the sample for 

Fourier ptychographic and 3D imaging [78, 87-89]. In particular, in [78], Tian and Waller used 

LED illumination and demonstrated an iterative reconstruction scheme with a multi-slice forward 

model to estimate the 3D complex RI distribution by minimizing an error function between the in-

tensity patterns estimated from the forward model. Their approach showed in-focus reconstruction 

at different depths while taking multi scattering phenomena into account. 
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In recent years, this approach was demonstrated both in reflection and transmission configurations 

[73-75, 90-92]. For example, a motion-free illumination scanning scheme was demonstrated for 3D 

RI reconstruction using an LED ring that mimics a circular scanning approach [82]. Other ap-

proaches to intensity diffraction tomography include the use of iterative schemes to reconstruct the 

3D RI map from 2D intensity images using non-linear iterative schemes that minimize an error 

function [80, 81]. These models usually starts with an initial guess of the 3D RI that it keep modify-

ing by minimizing the error between the actual measurement from the experiment and the intensity 

profile from the forward physical model. 

 

 In the earlier work [78] the phase and absorption transfer functions were calculated in the spatial 

domain using the intensity images as a function of the illumination angle. In this work, we use LED 

illumination and apply the Fourier diffraction theorem or Wolf Transform [19, 93] in order to re-

construct the 3D scattering potential in the 3D Fourier space followed by a 3D inverse Fourier 

transform to produce the 3D RI distribution. The reconstructions showed higher resolution, lower 

speckle noise and high contrast reconstructions compared to the results we presented earlier for a 

Wolf transform reconstruction applied to projections obtained with a laser illumination [93].  

 

We begin by discussing the use of the Fourier diffraction theorem on the “on-line” intensity data for 

the retrieval of the 3D RI map of the sample. We describe the theory behind our work, we then 

show the reconstructed 3D RI map. After that, we show the effect of slight misalignment of the il-

lumination on the quality and contrast of the 3D RI reconstruction. Finally, we show the effect of 

adding different wavelength on the final reconstruction. 
 

 

2. Theory 

The intensity pattern captured by the detector of the ODT system is ( , )tI x y  with x and y being the 

horizontal and the vertical dimensions of the 2D intensity pattern. The detected intensity is given 

by: 
2 2

2 cos( )t i s i s s iI U U U U        (5.1)    

, where tI  is the intensity pattern after passing through the sample, iU is the amplitude of the inci-

dent field, sU is the amplitude of the scattered field, and s i  is the difference between the phas-

es of the complex scattered and the incident field which carry the phase information of the sample. 

For weakly scattering samples (i.e. Born approximation) we can assume that ( sU << iU ) and de-

fining ,| | 1ij

i iU e U


  , then equation (5.1) can be rewritten as follows: 

1 2 cos( )t sI U      (5.2) 

, where  = s i  . Equation 5.2 can be further simplified to: 

1 2 cos( )

 =1

t s

j j

t s s

I U

I U e U e 



  

  

  
  (5.3) 

Multiplying both sides of equation (5.3) by ij

iE e


 , we obtain: 
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  (5.4) 

Equation 4 includes the effect of the scattered field (i.e. sU ) which we refer to as the “Principal” 

image and its complex conjugate (i.e.
2* ij

sU e


) which we refer to as the twin image. As has been 

shown previously [93], at illumination angles less than the numerical aperture, the two terms tend to 

cancel each other which results in a low contrast 3D reconstruction while maintaining the high fre-

quency features of the sample. Figure 5-1 shows the effect of changing the illumination angle on the 

2D intensity image of a simulated digital phantoms where different illumination angels were as-

sumed. Please note the 2D Fourier transform of the corresponding intensity images includes two 

circles in the Fourier domain. Each circle is the result of the spectral filtering applied by the limited 

numerical aperture of the objective lens. From equation 5.3, we see that we have 3 terms; Zero-

order term (first term on the right-hand side), and the two cross terms. The shift of the two circles 

from the DC term depends on the illumination angle of the incident plane wave (i.e. iE ). 

 

Figure 5-1. Intensity images and its 2D Fourier transforms for on-axis and off-axis configurations with dif-

ferent illumination angles. As can be seen from the figures, as the incident illumination vector   approaches 

the numerical aperture of the objective lens, the 2 cross terms can be decoupled and the principal term can be 

retrieved. Scale bar = 8 μm. 

In other words, for normal incidence, the two circles completely overlap with each other. However, 

as we increase the illumination angle, the shift between the two circles increases until we reach the 

limit of the numerical aperture, at which point we see that the two circles are tangent to each other. 

Only when the illumination is at the maximum angle permitted by the NA of the objective lens, the 

complex field can be retrieved from the intensity image as would be the case for an off-axis inter-

ferometric setup with a separate reference arm for holographic detection. 
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Figure 5-1 shows that for an accurate extraction of the scattered field, the sample should be illumi-

nated with the maximum angle permitted by the NA of the objective lens. The scattered field can be 

extracted by simply multiplying the intensity measurement with the incident plane wave which re-

sults in shifting the spectrum in the Fourier domain. This is followed by spectral filtering of the 

“Principal” image with a circular filter whose size is dependent on the NA of the objective lens as 

shown in Figure 5-2. 

 

Figure 5-2. Processing of the 2D intensity images before mapping into the 3D Fourier space. The left-most 

panel shows the intensity measurements and the corresponding Fourier transform. The middle panel shows 

the effect of multiplying by the incident plane wave which results in centring the scattered field highlighted 

by the white circles. The final step is the filtering of the scattered field with a circular filter whose size 

matches the size of the numerical aperture in the Fourier space declared by the red circle. Scale bar = 8 μm. 

From Figure 5-2, it can be seen that only when the illumination and imaging NA are matched, we 

can extract the complex scattered field from the intensity image. This can be experimentally 

demonstrated by illumination along a circular cone whose center is perfectly aligned with the imag-

ing objective lens. This is demonstrated in the experimental setup described in the following sec-

tion. 

By multiplying the intensity image with the incident plane-wave to shift the spectrum in the Fourier 

domain, the scattered field spectrum becomes centered around the origin. To filter out the complex 

scattered field in the Fourier domain, we apply a low pass filter given by the following equation: 

2( , ) { { }}ij

s x y D tU k k LPF FFT I e


   (5.5) 

, where ( , )s x yU k k  is the 2D Fourier transform of ( , )sU x y , {.}LPF represents a circular low pass fil-

ter whose radius is given by 0k NA , where 0k is the wave number in free-space. 

By extracting the complex field along the direction ( , , )x y zk k k k for each illumination k-vector 

( , , )in in in

in x y zk k k k , one Fourier component of the 3D spectrum of the scattering potential 
~

( )F   can 

be retrieved: 

2 { }D tFFT I
tI

tI

ij

ts tI I e




2 { }D tsFFT I

Filtering

Filtered 

Fourier transform

x
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ky
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where 
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where
 

~

( , )s x yE k k is the 2D Fourier transform of ( , )sE x y ,   is the 3D spatial frequency of the scat-

tering potential, 0

2
k




 ,  is the wavelength of the illumination beam, and 0n is the refractive 

index of the surrounding medium. Equation (2) is referred to as the Wolf transform [19]. 

By applying equation (5.6) for different 2D projections and integrating in the 3D Fourier domain, 

the 3D spectrum
~

( )F  can be measured. Subsequently, ( )F r can be spatially reconstructed using an 

inverse 3D Fourier transform. Finally, ( )n r  is retrieved using the following equation: 

2

02

0

4
( ) ( )n r F r n

k


    (5.7) 

 

3. Experimental setup and 3D RI reconstructions 

The experimental setup used in our experiments combines a standard bright field microscope (Am-

Scope T490B-DK 40X-2000X) with an LED ring illumination unit (Adafruit, ID: 1586, 24 LED 

pixels) that replaces the existing LED in the microscope as shown in Figure 5-3. The LED ring has a 

radius of around 30 mm. For imaging, an objective lens of magnification 40x and NA of 0.65 was 

used (Plan Achro). Images were captured using a scientific color CMOS camera (Thorlabs Zelux, 

resolution: 1440x1080, pixel size: 3.45 μm). The LED ring was driven using an Arduino kit (Ar-

duino Uno). For proper synchronization, Matlab script was used to synchronize the LED ring with 

the camera for different illumination angles. 
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Figure 5-3. Experimental setup. (a) bright-field microscope equipped with an LED ring. (b) Schematic of the 

system with its different parts. (OBJ: objective lens, L: lens, det.: detector). The LED ring is perfectly 

aligned with the optical axis for better quality of the reconstruction. The distance (h) is controlled to ensure 

perfect match between the illumination and imaging NA. 

Practically, as described in the previous section, the center of the LED ring was aligned with the 

optical axis. As we will show later, any misalignment will severely affect the quality of the recon-

struction. In addition, the illumination and imaging NA were matched by controlling the distance 

between the sample and the LED ring to ensure proper extraction of the “Principal” field only from 

the intensity measurement. 

As shown in Figure 5-3(b), the distance (h) is controlled so that the illumination and imaging NA are 

perfectly matched. In other words, the distance (h) should satisfy the following condition: 

2 2
sin OBJ

r
NA

r h
  


  (5.8) 

Figure 5-4 shows an example for a raw image taken for a cheek cell extracted from human mouth. 

Figure 5-3(b) shows the 2 circles (i.e. cross terms) as expected from the theory. As explained in the 

previous section by carefully aligning the LED ring to match the imaging NA, we are able to com-

pletely decouple the 2 cross terms for proper reconstruction of the 3D RI distribution. 

h
r

(a) (b)
det.

L

OBJ
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Figure 5-4. Intensity raw image from the experimental setup. (a) 2D intensity image for human cheek cell. 

(b) 2D Fourier transform of the image shown in (a). 

 

Pre-processing of the images is done by subtracting the background from the raw images to remove 

any noise from the camera or the ambient environment, the background is retrieved by applying a 

low pass filter onto the raw images. The normalized intensity profile is then calculated as follows: 

t Bkg

n

Bkg

I I
I

I


   (5.9) 

To retrieve the illumination angle, we adopted a previously developed algorithm which retrieve the 

illumination angle by detecting the boundaries and distance between the center of the circle and the 

DC point [94]. After acquiring different projections by illuminating individual the LEDs sequential-

ly, the 3D RI reconstruction is retrieved by mapping the filtered Fourier transform shown in Figure 

5-2 into the 3D kappa-space. This is followed by taking the 3D inverse Fourier transform of the 

scattering potential in the kappa-space to calculate the 3D RI distribution. Figure 5-5 shows an ex-

ample for the 3D RI reconstruction for the cheek cell shown in Figure 5-4. 
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Figure 5-5. 3D RI reconstruction at different depths the left column is the highlighted regions at z=-1 μm 

(dark blue) and z=0 μm (red). The images show the high resolution due to the use of partially incoherent 

LED source in which the speckle noise is highly minimized. 

Figure 5-6shows another example for a Human Cheek cell where the bacterial structures are clearly 

detected with their refractive index contrast higher than the cytoplasm of the cell agreeing with re-

sults reported in the literature [75, 95].  

 

Figure 5-6. 3D RI reconstruction at different depths. The red box is a magnified picture of the highlighted 

red region. It shows the higher refractive index of this bacterial structures as compared to the cytoplasm of 

the cell. 
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4. Effect of misalignment on the reconstruction quality 

In this section we study the effect of optical misalignment on the quality of the 3D reconstruction. 

As described in the above sections, it is critical that the illumination and imaging NA are identical 

(i.e. conical illumination with the center aligned with the optical axis). Any misalignment will result 

that the “Principal” and the “Twin” images overlapping which will alter the contrast quality of the 

final 3D RI reconstruction. To study this, the same optical setup was used, however, the LED was 

slightly misaligned from the optical axis. Figure 5-7 show an image for 2 LED illumination. As 

clearly seen, when the “Principal” and the “Twin” image overlap (i.e. in Fourier transform) we see 

very low contrast in the intensity images since the “Principal” and the “Twin” image tend to cancel 

each other [93]. However, for the other case when they do not overlap, we see that the contrast is 

enhanced. As a result of this effect, the final 3D RI reconstruction will not reflect the true 3D refrac-

tive index distribution of the sample since we cannot retrieve the complex scattered field “alone” 

from the intensity images because of the overlapping circles for certain projections. Fig. 8 shows 

the retrieved 3D RI distribution as a result of optical misalignment. From the figure, it is observed 

how the bacteria highlighted in blue box takes an RI value less than the surrounding medium (i.e. 

water) which does not agree with literature [75, 95] this is also contradict the reconstruction shown 

in Figure 5-6 when the LED where perfectly aligned and the illumination and imaging NA were 

matched. This error in the 3D RI re-construction might be attributed to the twin image and the prin-

cipal image overlapping which results in wrong calculation of the 3D reconstructions. In addition 

we see that the refractive index contrast decreased due to the cancelation of the low frequency com-

ponents from the overlapping of the principal and the twin image. 

 

Figure 5-7. Effect of misalignment on the captured intensity images. For overlapping circles we see the low 

contrast images which is not the case when they minimally or do not overlap. 
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Figure 5-8. 3D RI reconstruction for misaligned LED ring. As shown in the red box, the contrast is highly 

suppressed as a result of the cancelation of the low spatial frequency due to the overlap between the two 

circles in some of the projections. On the other hand, as shown in the dark blue box, we see an artifact where 

the contrast is inverted for the bacterial structure which does not agree with literature [75, 95] where the bac-

terial structures have higher refractive index than cytoplasm. 

 

5. ODT using wavelength diversity 

Finally, 3D RI reconstruction based on wavelength diversity is discussed in this section. Since the 

LED ring supports “RGB” colors, we captured images at 3 different wavelengths; red (623 nm), 

green (515 nm) and blue (468 nm). Theoretically, this corresponds to mapping at different Ewald’s 

sphere with different radius
2

illum

k



  as shown in Figure 5-9. 

 

Figure 5-9. Filling of the Ewald's sphere for 2 projections at different illumination wavelength (i.e. red and 

blue). 
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Practically, objective lenses suffer from chromatic aberrations which results in the image not being 

in best focus at different wavelength as shown in Figure 5-9. This results in mismatching when map-

ping the projections onto the Ewald’s sphere which results in an inaccurate estimation of the final 

3D RI distribution. One as to correct for this is by acquiring different intensity images at different 

focal planes and correct for the aberrations by calculating the cross-correlation function between 

those images and a reference image [96] which effectively corrects for these aberrations.  

 

Figure 5-10. Chromatic aberrations of the objective lens. (a) Sample is in focus at Green illuminations 

whereas in (b) we see that at blue illumination the sample is out of focus due to the aberrations. 

To correct for the chromatic aberrations we took a different approach using Fresnel propagation to 

refocus the image digitally since we have access to the scattered field in that case. This was per-

formed on two steps; first we reconstruct the 3D RI distribution without calibrating for the aberra-

tions at Red and Blue (given that green channel is in focus). Then, by monitoring the reconstruc-

tions, the fields are back-propagated by the distance where the sample is displaced from the best 

plane of focus (z=0). Figure 5-11 shows an example for the reconstructions along YZ for Green and 

Blue. Note how the reconstruction for blue illumination is displaced along the optical axis. 

 

Figure 5-11. Effect of chromatic aberrations on the 3D RI reconstruction at green illumination (left) and blue 

illumination (right). Please not how the 3D reconstruction at blue is shifted from the z=0 plane due to chro-

matic aberrations. 
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The second step is to back-propagate the complex field extracted from the intensity image by the 

distance z to refocus it using Fresnel propagation as follows: 

{ { } }zjK z

calib uncalibE IFFT FFT E e


   (5.10) 

Figure 5-12 shows the effect of refocusing on the displacement along the optical axis on the XY slice 

at z=0 (best plane of focus) in which the image become in focus after calibrating for the chromatic 

aberrations. 

 

Figure 5-12. Calibration of the chromatic aberrations for blue illumination. (a) XY slice at z=0 after calibra-

tion and (b) before calibration. 

 

After calibrating each wavelength channel, the 3D RI distribution is retrieved by combing all the 

calibrated projections into the 3D kappa-space which results in additional filling of the Ewald’s 

sphere and hence more accurate reconstructions. However, this is based on the assumption that the 

sample does not have strong dispersion and thus the RI value is almost constant at different wave-

lengths. Figure 5-13 shows the frequency support in the kappa-space and the corresponding XY slic-

es at different depths. While we don’t observe enhancement in the optical resolution by going from 

1 wavelength to 3 wavelengths, imaging at multiple wavelengths can still be advantageous in other 

aspects. For example, instead of capturing 24 projections each projection corresponds to each LED, 

we can simultaneously operate 3 LED pixels each with different color and then decouple them in 

the post processing since we have an RGB camera. This increases the throughput of the system by a 

factor of 3 [96, 97]. In addition the incoherent superposition of the 3 RGB images increases the 

SNR of the reconstructed 3d object. This is not visually evident in Fig. 13 because the image quality 

was already high with a single color but in cases where we want to carry out high speed recording 

and we operate at low light levels, the aid of the RGB illumination can prove helpful. Finally, we 

can use the wavelength scanning in reflection or 90 degree configuration. This would result in a 

resolution enhancement along the axial direction helping resolve the missing cone problem. 
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Figure 5-13. 3D RI reconstruction using wavelength diversity. (a) XY slices at different propagation depth. 

(b) Ewald's sphere frequency support. 
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 High speed, complex wavefront 

shaping using the digital micro-mirror device 

 
This work has been published in [Ayoub, A.B., Psaltis, D. High speed, complex wavefront shaping 

using the digital micro-mirror device. Sci Rep 11, 18837 (2021). https://doi.org/10.1038/s41598-

021-98430-w]. 

 

A.B. Ayoub built the optical setup, carried out the experiments, and the simulations. 
 

1. Introduction 
 
SLMs have been widely used in optical applications including wave-front shaping and light focus-

ing [52, 98-104]. A main limitation of liquid crystal SLMs is their low refresh rates, typically less 

than 120 Hz. This limitation can make it impossible to achieve high performance in applications 

that require high speed such as beam focusing in live samples. This has opened the door for another 

technology, DMDs, to be used for similar applications [67, 105-109]. As opposed to SLMs, DMDs 

are characterized by their much faster refresh rates. DMD devices have a maximum refresh rate of 

32 KHz [110]. However, as an “on-off’ device, DMD allows only binary amplitude-modulation as 

compared to the grayscale and phase modulation that is possible  with  SLMs.  Despite its binary 

amplitude-modulation, it was shown that DMDs can outperform SLMs in beam-shaping applica-

tions [111]. In [112], Conkey et.al demonstrated the use of Lee computer generated holograms 

[113] to achieve beam focusing in scattering media with signal to background ratio up to ~160 in ~ 

34 ms. An improved optical performance was achieved by projecting Lee holograms on the DMD 

along with spatial filtering and misaligned optical lenses for phase modulation using “Super-pixel” 

technique where each super-pixel is composed of multiple pixels of the DMD [114]. In [115], 

Drémeau et.al used the DMD as a binary input in a reference-less optical system for beam focusing. 

A Bayesian phase retrieval algorithm [116] was used to precisely estimate the transmission matrix 

as well as for beam focusing through a white paint layer which acted as the highly scattering medi-

um. In recent years [117], Wang et.al implemented a binary-based digital optical phase conjugation 

(DOPC) system based on the use of DMD instead of SLMs. They used phase retrieval methods to 

design a binary computer generated hologram and demonstrated speed enhancement by approxi-

mately 2 orders of magnitude as compared to a liquid crystal SLM with a low playback latency of 

~5 ms.    

In display application, the DMD is used to modulate the time integrated light intensity through se-

quential pulse width modulation [118-121]. In the context of optical diffraction tomography [122], 

Lee et.al demonstrated a time-multiplexing structured illumination control scheme using DMDs 

[123]. In their paper, the authors showed an improved performance by using time-multiplexed 8-bit 

amplitude modulation as compared to binary amplitude modulation (i.e. Lee holograms) in which 

the unwanted artifacts were diminished.  

In this paper, we use a DMD to perform complex (amplitude and phase) modulation.  We used the 

built-in dynamic range feature of the DMD device and to control the frame time of the DMD, to 

project an 8-bit image in 38.4 ms (256x150 µs). We show that by splitting the complex field into 
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real and imaginary parts and using the time modulation scheme of the DMD we were able to syn-

thesize a complex signal.  We demonstrated this method for wavefront shaping by phase conjugat-

ing a measured field in free space and/or passing through a scattering medium. This paves the way 

for imaging and optical phase conjugation systems that are fast, digital accuracy without compro-

mising light efficiency. Finally, to increase further the frame rate for grayscale modulation using the 

DMD, we modulated the intensity of the illuminating beam for each bit-plane while fixing the time 

for each bit-plane. Using this modulation scheme, the frame time for each grayscale image was re-

duced to 1.2 ms (8x150 µs). 

In what follows, we first introduce the basic concept we use in the paper. After that, in the next sub-

section in the methods section, we show how we used this technique for phase conjugation applica-

tions. We refer to this method as Opto-Electronic Phase Conjugation (OEPC) to distinguish it from 

conventional Digital Phase Conjugation. The results section was divided into 3 sub-sections. The 

first two are experiments that demonstrate phase conjugation conducted using our time-multiplexed 

technique. The last sub-section shows a new modality for using the DMD which is amplitude 

modulation scheme. 

 

2. Methods 
2.1. Complex wavefront shaping with DMD 

We consider a complex field 
( , )( , ) ( , ) j x yf x y A x y e  where ( , )A x y is the 2D amplitude and 

( , )x y is the 2D phase pattern. We represent a complex pattern on the DMD by presenting   posi-

tive and negative portions of real and imaginary parts of the complex field, sequentially.  In order to 

represent the grayscale of the real and imaginary parts of the complex field, we take advantage of 

the time modulation feature of the DMD. ( , )f x y  can be written as follows: 

 

8 8
1 1

1 1

( , ) Re{ ( , )} * Im{ ( , )}

2 * 2                      

f x y f x y i f x y

BR i BI 

 
 

 

 

 

  
 (6.1) 

Where BR  and BI are the   bit-planes for the real and imaginary parts, respectively. In our op-

tical system, the field is interferometrically measured at the detector.  This allows us to reconstitute 

the complete complex field by temporal integration on the detector which aggregates the contribu-

tions of each of the bit planes of both real and imaginary parts. Alternatively, the summation can be 

done post-detection on the computer.   

We used the experimental setup shown in Figure 6-1.  
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Figure 6-1. Optical setup. (M: Mirror, L: Lens, OBJ: Objective lens, BS: Beam splitter). 4f systems are used 

to image DMD pattern onto the detector with a spatial magnification defined by the 4f systems. 

 
A continuous wave (CW) laser at 725nm was used in all our experiments. The laser beam is spatial-

ly filtered and collimated with a pinhole and a pair of lenses. The signal beam is reflected from the 

DMD device (DLP4500NIR .45 WXGA near-Infrared, resolution: 912x1140, pixel pitch: 10.8 µm, 

Ajile Light Industries). A 4f system was used to image the DMD plane onto the detector plane to 

retrieve in-focus images. For holographic detection, the signal and reference beams are combined 

using a non-polarizing beam splitter and projected onto a complementary metal-oxide-

semiconductor (CMOS) camera (Edmund optics, pixel size=3.45 µm, resolution=2056×1542 pix-

els). Although in the current experiment there is no object to be imaged, objective lenses were used 

to allow the DMD to be used for imaging applications. 

The grayscale image was translated into 8 binary bit-planes (corresponding to the 8-bit image) and 

the 8 binary images were displayed onto the DMD sequentially to be captured onto the detector 

within a limited exposure time in a time-multiplexing manner. Since time-multiplexing is used, this 

means that the least significant bit-plane will be displayed for 1 time unit while the most significant 

bit-plane will be displayed for 128 time units (i.e. 1 time unit = 150µs). This was repeated for both 

the real and the imaginary parts of the image. Figure 6-2 demonstrates successful phase modulation 

as a result of this technique. Each of the real and the imaginary parts were projected, one at a time, 

onto the DMD in a time multiplexing fashion. After capturing the two grayscale mages of the real 

and the imaginary parts, they were added digitally onto the computer which is equivalent to phase 

modulation by the DMD as seen in Figure 6-2. 
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Figure 6-2. Phase modulation using DMD where no amplitude modulation is observed. 

For phase maps whose phase exceeds π/2 radians, we split the real and imaginary parts into positive 

and negative values and displayed each one separately onto the DMD. This is expressed by Eq. 6.2: 

 

8 8
1 1

1 1

8 8
1 1

1 1

( , ) Re{ ( , )} * Im{ ( , )}

[ 2 2 ]

*[ 2 2 ]     

p n

p n

f x y f x y i f x y

BR BR

i BI BI

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

  (6.2) 

Where 
pBR  and 

nBR  are the   bit-planes for the positive and negative parts of the real compo-

nent, respectively, while 
pBI  and 

nBI are the   bit-planes for the positive and negative parts of 

the imaginary component, respectively. 

 

2.2. Opto-electronic phase conjugation (OEPC) using DMD 

 

Assuming an initial complex field ( iU ) incident on a scattering medium, we can write the output as 

follows: 

 

     o io iU T U   (6.3) 

, where ioT  is the transmission matrix describing the propagation of iU through the scattering medi-

um.  After taking the complex conjugate of this function and propagate through the same medium, 

we get: 

 

10 μm
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*

* * *         ( )    

final oi o

oi io i oi io i

U T U

T T U T T U



 
  (6.4) 

 

Assuming a perfect time-symmetric system (i.e. 
1 *

oi ioT T  ), equation 6.4 simplifies to: 

* * 1 * *  =   final oi io i oi oi i iU T T U T T U U    (6.5) 

 

Figure 6-3. OEPC optical setup. (a) DMD projector grid showing the pixel orientation (b) Recording step is 

performed first to record the hologram after free-space propagation.  The second step is the (c) playback 

where the complex conjugate of the detected field is displayed onto the DMD and the original field is re-

trieved. M: Mirror, BS: Beamsplitter. 

Equation (6.5) shows how OEPC removes the aberrations associated with the medium (i.e. free 

space propagation or mouse liver tissue in our experiments) and the input field is retrieved. In order 

to demonstrate OEPC using the DMD, a simplified interferometric setup was used as shown in Fig. 

3. The detector used in this experiment is a CMOS camera (Photonfocus Inc., resolution: 

1312x1280, pixel size: 8 µm). First, the setup was calibrated to ensure pixel-to-pixel alignment be-

tween the DMD and the camera. The incident angle is chosen to be at θ degrees with respect to the 

direction normal to the DMD surface. Given that the DMD has an “on” and “off” state beam at ±12º 

with respect to the normal direction, θ was chosen to be around 12º relative to the normal direction 

as shown in Fig. 3(b). Owing to the specific distribution of the pixels in the DMD, (Figure 6-3(a)), 

interpolation was used in order to successfully align the pixels of the DMD and SLM. As seen in 

Figure 6-3(a), the center-to-center distance between two successive columns (i.e. Cn-1 and Cn) is 10.8 

µm while the distance between two successive rows is equal to 5.4 µm (i.e. 10.8/2 µm) as given by 

the DMD specification. This difference was accommodated by the use of interpolation to ensure 

successful mapping of the detector image onto the DMD screen. After calibrating the system, the 

recording step (Figure 6-3(b)) was performed to by displaying phase and/or amplitude maps as ex-

pressed by equation (6.2). After acquiring the image on the CMOS detector, the hologram was pro-

cessed and the complex field was extracted on a personal computer and its complex conjugate was 

displayed back onto the DMD (Figure 6-3(c)) and finally the original non-distorted image is recon-

structed by adding the real and the imaginary parts digitally. 
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3. Results 
3.1. OEPC for diffracted pattern after passing through scattering media 

 
An experiment was performed with a scattering medium in between the DMD and the detector as 

shown in Figure 6-4. The scattering medium was a 10 µm-thick fixed mouse liver-tissue sandwiched 

between a standard cover-slide of 1mm thickness and a coverslip of 170 µm thickness. 

 

 

Figure 6-4. Experimental setup with the scattering medium inserted in between the DMD and the camera (M: 

Mirror, L1&L2: Lenses, d = 28 cm). 

 

In the OEPC experiment, a simple object (a binary amplitude circular mask of ~430 µm diameter) 

was displayed on the DMD and the reflected light was captured by the detector. By extracting the 

complex field of the acquired hologram, taking its complex conjugate and feeding it back to the 

DMD with the scattering medium in place, we were able to retrieve the original pattern. Figure 6-5 

shows the diffracted and the refocused spot after OEPC. The right panel of Figure 6-5 shows how we 

get a full-width at half-maximum (FWHM) of 250 µm whereas the defocused spot has a FWHM of 

400 µm. 

 

Figure 6-5. Intensity pattern before and after refocusing using OEPC technique. (a) Diffracted intensity pat-

tern after propagating through the scattering medium  path while (b) shows the intensity pattern after OEPC. 

A similar experiment was performed with the USAF target being the input amplitude-only field 

passing through the same scattering medium (i.e. liver tissue). The image on the left hand-side of 
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Figure 6-6 shows the diffracted intensity pattern through the sample while the right hand-side image 

shows the refocused USAF target after compensating the effect of defocusing and scattering 

through the sample. 

 

 

Figure 6-6.Intensity pattern before and after refocusing using OEPC. (a) Diffracted intensity pattern after 

propagating through the scattering medium while (b) shows the intensity pattern after OEPC. 

3.2. Grayscale modulation using amplitude modulator synchronized with the DMD 

In order to boost further the speed of grayscale modulation using the DMD, amplitude modulation 

was used instead of time modulation. As shown in Figure 6-7, an electro-optic modulator (Thorlabs, 

EO-AM-NR-C1) was used to modulate the light intensity for each bit-plane. In this case we used 

light intensity instead of light amplitude since holographic recording was not used on the camera. 

Therefore the calibration was done for intensity recording. The NI PCIe-6321 data acquisition tool 

was used for fast synchronization permitting speeds up to 90 KHz which is much faster than the 

DMD speed (6.6 KHz). Figure 6-7 shows the calibration process of the amplitude modulator (AM). 

A photodetector (Thorlabs, PDA36A-EC) was used to measure the voltage signal from the AM as a 

function of the applied voltage. As the characteristic half-wave voltage (Vπ) at 725nm for the AM 

was around 240V, high voltage was needed to get the full modulation range which was generated 

using a high voltage amplifier (HVA200, Vin=-10:10, Vout=-200:200, Thorlabs). A quarter wave 

plate (QWP) was used to get the full range since Vπ is higher than the maximum possible voltage 

generated by the voltage amplifier. 

1 mm
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Figure 6-7. Amplitude modulation. (a) Calibration system for the amplitude modulator. (b) Amplitude modu-

lation (orange) as a function of the applied voltage (blue) without the QWP. (c) Amplitude modulation (or-

ange) as a function of the applied voltage (blue) with the QWP. Comparing (b) and (c), adding the QWP 

resulted in creating an input circular polarization which resulted in getting the complete modulation range. 

A look-up-table (LUT) is extracted from Figure 6-7(c) to modulate the 8 bit-planes of the 8-bit gray-

scale image. After calibrating the AM, the amplitude modulator was synchronized with the DMD 

and images were recorded using the camera as shown in Figure 6-8. With such modulation scheme a 

maximum achievable frame rate of 833 Hz could be reached (i.e.
1

150 x8s
). Using this ampli-

tude-modulation scheme, we showed efficient grayscale modulation for sinusoidal grating using the 

DMD. 

 

Figure 6-8.  Amplitude modulation using AM synchronized with the DMD. 

Figure 6-9 shows an example of amplitude modulation for a sinusoidal grating with a grating period 

of 15 pixels displayed onto the DMD and imaged by the camera where it shows the effectiveness of 

our proposed scheme as compared to binary grating where the higher diffraction orders are visible 

as shown in Figure 6-9 (b1). For the amplitude modulation case, higher orders are highly suppressed 

while the 0th, +1, -1 orders are dominant. 
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The DMD consists of individually-controlled mirrors, and this creates many diffraction orders 

[124]. This phenomenon is shown in Figure 6-10 where the pattern recorded on the DMD (a square) 

is repeated multiple times. The photograph in Figure 6-10 was taken by placing the camera close to 

the DMD in order to capture the multiple patterns and demonstrate the effect. 

During the performance of the experiment it was noticed that using a lens (L3 in Figure 6-8) with 

higher focal length showed better reconstructed images. This is due to the fact that as the lens gets 

far from the DMD, additional diffracted orders from the DMD miss the lens and are not captured by 

the camera while only the zero-diffracted beam is able to pass through the lens and be captured by 

the camera. Notice that in practice, this approach is not light efficient, and a lens design such as the 

one used in display applications [125, 126] that captures all the diffracted orders and superimposes 

them on the camera is preferable. 

 

 

 

Figure 6-9. Sinusoidal grating projected from the DMD using amplitude modulation scheme. (a1-a2) The 

recorded gratings. (b1-b2) Fourier transform of recorded gratings. (a1, b1) show the binary grating and the 

associated Fourier transform where the diffraction noise (artifacts) are dominant. (a2, b2) show the sinusoi-

dal grating and the associated Fourier transform in which the 3 main orders are visible with no visible dif-

fraction artifacts. 
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Figure 6-10. Diffraction patterns from the DMD as a result of mirror deflections. 

To further validate our results, phase modulation was performed as described earlier in which the 

complex field is divided into real and imaginary components and then each component was present-

ed separately using the electro-optic amplitude modulation scheme. We recorded directly intensity 

on the camera where the signals corresponding to the different bit planes were integrated on the 

camera. The real and imaginary parts were read-out and were added digitally on the pc to form the 

complex field. A blazed grating and a binary phase grating were synthesized on the DMD. As 

shown in Figure 6-11, the blazed grating shows all the power focused into the +1 order. On the other 

hand, the binary phase grating resulted in multiple orders as expected. 
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Figure 6-11. Phase gratings projected from the DMD using amplitude modulation scheme. (a1-a2) The rec-

orded gratings. (b1-b2) Fourier transform of recorded gratings. (a1, b1) show the blazed grating and the as-

sociated Fourier transform where the diffraction noise (artifacts) are dominant. (a2, b2) show the binary 

phase grating and the associated Fourier transform in which the multiple orders are present. 

 

4. Discussion 

In the optical OEPC experiments, the curvature of the DMD surface was corrected digitally by ac-

quiring another hologram with all the DMD pixels in the “on” state (i.e. background hologram), 

then all the collected holograms for the real and the imaginary parts were corrected by dividing the 

extracted fields over the background field, this resulted in a clean image without phase-artifacts as 

shown in Figure 6-2-Figure 6-6. For the time-multiplexing scheme, the 8-bit frame rate is rather low 

(~26 frames per second). This speed can be further boosted using a faster commercially available 

DMD [127] (refresh rates ~ 32 KHz instead of 6.6 KHz) and also reducing the region of interest 

(ROI) on the DMD if the application allows a smaller number of pixels. For instance, using the 

same DMD we used in our study, by decreasing the ROI to 16x1140 instead of 912x1140, refresh 

rates can be boosted to 100 KHz (corresponding to a complex-field display rate ~110 frames per 

second). The speed of time modulation technique can be further enhanced by using 4-bit images 

instead of 8-bit images which will yield a speed enhancement by a factor of 16. Figure 6-12 shows 

the effect of changing the number of bits used in the DMD when carrying out OEPC on the focus-

ing quality after passing through the scattering medium (the liver tissue). It is observed that both 4-

bit and 8-bit modulation depth resulted in a well preserved focused spot however with a speed en-

hancement factor of 16 with a display time of 2.4ms (2.4ms = 150µsx16) with an effective frame 

rate of 415 frames per second. 
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Figure 6-12. Effect of changing the modulation depth on the focusing quality. (a) 2-bit, (b) 4-bit, (c) 8-bit. 

(b), and (c) show well preserved focused spot while (a) shows stronger artifacts. 

Table 1 shows a comparison between amplitude and time modulation schemes in terms of the frame 

rate for the used DMD whose refresh rate is 6.66 KHz. 

Table 1. Comparison between different modulation schemes in terms of frame rate/display time 

Modulation\specs Frame rate Minimum Display time 

Binary (1-bit) 6.6KHz  150 s  

Time (8-bit) 
8

6.66
26

2

KHz
Hz   

838.4 150 x2ms s  

Time (4-bit) 
4

6.66
416

2

KHz
Hz   

42.4 150 x2ms s  

Amplitude (8-bit) 6.66
833

8

KHz
Hz   

1.2 150 x8ms s  

Amplitude (4-bit) 6.66
1665

4

KHz
Hz   

0.6 150 x4ms s  

 

Current DMD technologies have refresh rate as high as 32 KHz which would scale up the modula-

tion speed as shown in Table 2. 

Table 2. Comparison between different modulation schemes in terms of frame rate/display time for DMD 

with refresh rate of 32 KHz. 

Modulation\specs Frame rate Minimum Display time 

Binary (1-bit) 32KHz  31.25 s  

Time (8-bit) 
8

32
125

2

KHz
Hz   

88 31.25 x2ms s  

Time (4-bit) 
4

32
2

2

KHz
KHz   

40.5 31.25 x2ms s  

Amplitude (8-bit) 32
4

8

KHz
KHz   

250 31.25 x8s s   

(c) 8-bit(b) 4-bit(a) 2-bit

1 mm
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Amplitude (4-bit) 32
8

4

KHz
KHz   

125 31.25 x4s s   
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 High fidelity optical diffraction 

tomography of strongly scattering samples 

This work has been published in [Lim, J., Ayoub, A.B., Antoine, E.E. et al. High-fidelity optical dif-

fraction tomography of multiple scattering samples. Light Sci Appl 8, 82 (2019). 

https://doi.org/10.1038/s41377-019-0195-1]. 

 

A.B. Ayoub built the optical setup, and carried out the experiments. 

 

 

1. Introduction 

Quantitative-phase imaging (QPI) enables the measurement of the phase-contrast information of 

transparent samples such as biological cells. QPI contrast is generated from the refractive index (RI) 

contrasts within and around a sample. Because this contrast mechanism is endogenous, quantitative-

phase information does not require external labeling, such as immunostaining, which may perturb 

the sample. QPI contains the coupled information of sample thickness and RI contrast. Optical dif-

fraction tomography (ODT) provides the 3D RI distribution of a sample by combining multiple 2D 

QPI measurements from various illumination angles [12, 34]. Reconstructed tomograms provide 

structural information that has been extensively utilized to study hematology [128, 129], morpho-

logical parameters [130], and biochemical information [68] which are summarized in several review 

papers [34, 122, 131, 132]. In ODT, the way in which multiple 2D measurements are combined into 

unified 3D information is critical. Under the assumption of a weakly scattering sample, the Wolf 

transform [19] has been widely used. Depending on how the 2D projections are processed, we ob-

tain either the Born or Rytov approximations for the Wolf transform1. Each method has its limita-

tions [23], but the Rytov approximation is known to be more appropriate than the Born approxima-

tion for many biological applications [47]. However, when a sample is thicker and more complex, 

the Rytov approximation is no longer valid. This limits the usefulness of ODT for imaging complex 

samples. 

Recently, methods have emerged to overcome the limitations of the Born and Rytov approximations 

by taking multiple scattering into account [57, 59, 60, 76, 78, 80]. It was shown using Mie theory 

[57] that learning tomography (LT) [26,76], an approach that exploits the beam propagation method 

(BPM) as the forward model to capture multiple scattering, has superior performance compared 

with that of the conventional imaging method based on the Rytov approximation. We refer to it as 

LT-BPM. LT uses the forward model of dividing 3D samples into multislices followed by slice-by-

slice propagations. Due to the multislice modeling of forward models by LT, the resulting structure 

is similar to that of a neural network, and we can use the error back-propagation algorithm to calcu-

late the gradient. The BPM consists of two steps: non-paraxial diffraction followed by phase modu-
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lation. The diffraction step used in the BPM assumes 0 0 0( , , )k n x y z k n , where 0k  is the free-

space wavenumber, 0n is the RI of the medium, and ( , , )n x y z  represents RI variations. In addi-

tion, the phase modulation steps use a distance, dz/cosθ, to modulate the phase throughout propaga-

tion, given the propagation step (dz) and the illumination angle (θ). However, for thicker and more 

complex samples, as light propagates through the samples, multiple diffracted beams of light are 

generated, and it is not valid to use one single value, dz/cosθ, to represent optical path lengths. This 

deviation from the fixed distance, dz/cosθ, increases with increasing the illumination angle due to 

the nature of the cosine function [27]. 

In this chapter, we show that the accuracy of LT reconstructions of a 3D object is increased when 

we use the split-step non-paraxial (SSNP) method rather than the BPM. We refer to it as LT-SSNP. 

The SSNP method exploits not only the field but also the derivative of the field along the optical 

axis to model the propagation [28, 29]. While the BPM requires this approximation, 

0 0 0( , , )k n x y z k n , to decouple diffraction from phase modulation, SSNP does not require the 

approximation, benefiting from propagating the derivative of the field at the same time. Phase mod-

ulation affects the derivative and is used concurrently in the next step of the diffraction calculation. 

LT-SSNP uses the same iterative scheme used in LT-BPM. To fairly assess LT-SSNP and compare 

it with the LT-BPM, synthetic measurements are generated using Mie theory and the discrete dipole 

approximation (DDA). For spherical and cylindrical objects, Mie theory provides the analytical 

solution to the Helmholtz equation [133]. Therefore, the solution of Mie theory takes into account 

multiple scattering. Here, we also use the DDA to simulate light scattering by an arbitrarily shaped 

sample to generate more complex synthetic data. The DDA is a general method for calculating the 

scattering and absorption caused by an arbitrarily shaped sample represented by finite discrete di-

poles [134]. These dipoles react not only to incident light but also to one another, which places the 

resulting fields under high orders of scattering. It has been shown that the DDA works well for 

samples whose RI values fairly match those of the surroundings, such as biological cells in a liquid 

medium [135]. Therefore, we use Mie theory for multiple cylinders and the DDA for a cell phan-

tom, as well as a cluster of 15 red blood cells (RBCs). After generating synthetic measurements by 

using either Mie theory or the DDA, the LT-BPM and LT-SSNP are used to reconstruct the 3D RI 

of each sample, and the accuracy of each reconstruction is evaluated quantitatively. 

In this analysis, we include an investigation of the performance of each algorithm with respect to 

regularization. The iterative reconstruction scheme used for both the LT-BPM and LT-SSNP mini-

mizes a cost function that comprises two terms: data fidelity and regularization. The data fidelity 

term is defined by whether the forward model applies either the BPM or the SSNP, and the regular-

ization term introduces prior knowledge about the sample characteristics such as edge sparsity and 

non-negativity. The relative importance of the two terms in the cost function is controlled by the 

regularization parameter. We compare the LT-BPM and LT-SSNP by using varying regularization 

parameters with the goal of minimizing the influence of the regularization term so that the results 

are primarily based on the forward model rather than on prior knowledge. For the simulations de-

scribed, we confirm that LT-SSNP shows lower dependency on the regularization parameter due to 

the accuracy of SSNP. In other words, the use of a more accurate forward model permits LT-SSNP 

to extract more information from the measurements and to rely less on regularization. More im-



High fidelity optical diffraction tomography of strongly scattering samples 

95 

portantly, for highly aggregated samples subject to significant multiple scattering, LT-SSNP allows 

individual objects and structures to be clearly distinguished, while this observation cannot be made 

when using the LT-BPM. 

We validate the proposed method by using experimental ODT data from a yeast cell and from 

HCT116 human colon cancer cells. To image biological cells with fine details, it is critical to reduce 

the influence of the regularization term, as high regularization not only smooths out the imaging 

artifacts but also useful information, leading to deterioration in the quality of the reconstruction. 

Tomograms of a yeast cell reconstructed by using LT-SSNP show successful results with high qual-

ity even with a very low regularization parameter, while the LT-BPM fails to recover fine details 

within and around the cells. In the case of experimental measurements of biological cells, the true 

RI distribution is not known, which prevents the direct assessment of the accuracy of the various 

ODT methods. To overcome this issue, we generate two sets of semisynthetic measurements by 

using the DDA for each of the RI reconstructions from the LT-BPM and LT-SSNP. A comparison 

of the discrepancies between the semisynthetic and experimental measurements reflects the proxim-

ity of each solution to the real RI values. 

Finally, we explore the capacity of LT-SSNP to produce accurate reconstructions with a reduced 

number of illumination angles [136, 137]. This is of particular interest because the number of scan-

ning angles is directly related to the measurement time. A comparison of each reconstruction meth-

od for a varying number of scanning angles indicates that learning approaches provide a dramatic 

improvement over conventional methods. Overall, the more accurate forward model used in LT-

SSNP translates to excellent results even with low regularization and a small number of illumina-

tion angles. 

2. Results 

In this section, we compare the LT-BPM and LT-SSNP, which belong to the same family of LT 

reconstruction schemes, except for the forward models, namely, the BPM and the SSNP, respective-

ly. LT minimizes the cost function, which consists of two terms as follows: 

( ) ( ) 2

2

1

1
ˆ argmin || ( ) || ( )

2

L
l l

K K
x P

l

x y S x R x
L






    (7.1) 

where the first term is the data fidelity term and R is the 3D total variation (TV) [138] regularization 

term to impose edge sparsity on the solution. The relative importance between two terms is con-

trolled by the regularization parameter,  . 
( )l M

Ky   denotes the experimental measurements at the 

Kth slice for each illumination angle l , and L  is the total number of angles. 
( )( )l

KS x represents the 

estimate by a forward model (either the BPM or the SSNP) at the Kth slice, which is the last slice of 

the volume, to be compared with 
( )l

Ky  given a current solution, 
Nx . 

NP is a convex set 

that imposes a non-negativity constraint. In the supplementary section, we describe the calculation 

of the gradient for SSNP. Once we calculate the gradient of the data fidelity term in Eq. (7.1), the 

optimization scheme uses the fast iterative shrinkage-thresholding algorithm (FISTA) [139] as ex-
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plained in [26] for 3D isotropic TV regularization, with eight randomly chosen angles in each itera-

tion. 

2.1.  Multiple cylinders by using Mie theory 

We applied the LT-BPM and LT-SSNP on a highly scattering simulated sample consisting of a 

3 × 3 grid of cylinders. Each cylinder is 6 μm in diameter with an RI of 1.05 immersed in air. The 

center-to-center distance is 9 μm. We varied the regularization parameter to investigate the accuracy 

of the forward model for each algorithm. The results are presented by mapping the difference be-

tween the reconstructed tomogram for each method and the known solution, as shown in Figure 7-1 

(a). The LT-BPM shows many artifacts inside the cylinders and smearing of the RI in the region 

between the cylinders. These artifacts of the forward model cannot be eliminated even by increasing 

the regularization parameter. Regularization only smooths out the overall reconstruction. In con-

trast, LT-SSNP clearly distinguishes each cylinder without interstitial artifacts even with the weak-

est regularization parameter tested, that is, 0.25τ = 0.01. Interestingly, increasing the regularization 

parameter to 4τ = 0.16 reduces the reconstruction quality when using the LT-SSNP algorithm. The 

total Error, which is defined as follows: 

2

2

|| ||
( , )

|| ||

recon true
recon true

true

x x
Error x x

x


   (7.2) 

was also calculated as a function of the iteration number, as shown in Figure 7-1 (b). reconx is the 

reconstructed RI contrast from the medium RI, and truex is the ground truth RI contrast. Figure 7-1  

(b) displays the Error plots of the LT-BPM and LT-SSNP by using the regularization parameter that 

produced the lowest Error value for each algorithm: 4τ = 0.16 for the LT-BPM and τ = 0.04 for LT-

SSNP. This analysis quantitatively confirms the better accuracy of LT-SSNP. In the case of multi-

ple cylinders, it is critical to model distortions in the wavefront (phase modulation) introduced by 

the precedent samples, which determine the illumination on subsequent samples. We further ana-

lyzed this scenario by varying the number of layers in multiple cylinders and summarized the re-

sults in the supplementary section. 
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Figure 7-1. Reconstruction results of cylinders using the LT-BPM and LT-SSNP for various regularization 

parameters (τ = 0.04). (a) Difference maps between reconstructions from the LT-BPM/LT-SSNP and the 

ground truth (reconstruction—truth). (b) Plots of the Error of the LT-BPM and LT-SSNP by using the regu-

larization parameter that produced the minimum Error value 

 

2.2.  RBC cluster using discrete dipole approximation 

To investigate the performance of each algorithm with highly scattering samples in 3D, we per-

formed a similar test on a simulated cluster of RBCs. The shape of a single RBC is sketched in Fig-

ure 7-2 (a), while the organization of the cluster is shown in Figure 7-2(b). Reconstructions were per-

formed by using various regularization parameters; for each algorithm, we show only the recon-

struction by using the regularization parameter that gives the lowest Error: 8τ = 0.2 for the LT-BPM 

and τ = 0.025 for LT-SSNP.  
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Figure 7-2. Reconstruction results of a RBC cluster using the LT-BPM and LT-SSNP. (a) Parameters used to 

define the shape of the RBC. (b) 3D rendering of the RBC cluster, which consists of 15 identical RBCs. (c) 

3D RI and difference maps for a cluster of 15 RBCs. Top to bottom: ground truth, Rytov approximation, LT-

BPM, and LT-SSNP (τ = 0.025). Left: xy, yz, and xy slices of the 3D RI. Right: difference maps between the 

reconstructed RI and the ground truth. 

In Figure 7-2 (c), Figure 7-3, different slices (xy, yz, and xz) of the 3D RI distributions resulting from 

each method are presented, along with the difference map with respect to the ground truth. Both the 

LT-BPM and LT-SSNP show better reconstructions compared with reconstructions based on the 

Rytov approximation, which is expected since Rytov does not consider multiple scattering. By 

comparing the LT-BPM and LT-SSNP, we can see that the RI tomogram resulting from LT-SSNP 

shows clearer and more accurate reconstructions of each RBC, producing homogeneous RI distribu-

tions within each RBC. 
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Figure 7-3. Reconstruction results of a cell phantom by using Rytov, the LT-BPM, and LT-SSNP at four 

different z planes (τ = 0.025). Left column: the yz slice, with the z-positions of the yx slices indicated by 

using dashed lines. Second through fifth columns: yx slices at the positions indicated in the left column. 

 

2.3. Cell phantom using discrete dipole approximation 

To evaluate the LT-BPM and LT-SSNP algorithms on a sample whose RI values are not homoge-

neous and which contains fine details, we generated a synthetic cell phantom. The phantom contains 

four different RI values corresponding to the cytoplasm, nucleus, nucleolus, and lipids [140]. Syn-

thetic measurements were made by using the DDA in the same manner as for the RBCs. Again, we 

present for each algorithm only the results obtained by using the regularization parameter that pro-

duced the lowest Error value (4τ = 0.1 for the LT-BPM and τ = 0.025 for LT-SSNP). The recon-

struction results are shown in Figure 7-3. The reconstructions obtained with the LT-BPM show that 

the cytoplasmic regions are highly distorted, similar to the artifacts observed inside the cylinders 

and RBCs. More importantly, the small lipids indicated by the red arrows are hardly distinguishable 

due to the inaccuracy of the BPM. By contrast, the LT-SSNP not only distinguishes the shapes of 

fine structures but also correctly positions them along the optical axis. 
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2.4. Experimental validation using a yeast cell 

To validate the relative performances of the LT-BPM and LT-SSNP on experimental data, we ac-

quired ODT images of a yeast cell. Again, we evaluated different regularization parameters for the 

reconstructions obtained by using the LT-BPM and LT-SSNP. Figure 7-4 shows the reconstruction 

results for a slice close to the image plane. For both the LT-BPM and LT-SSNP, the high regulari-

zation parameter 4τ = 0.1 results in too much smoothing, and it becomes difficult to resolve fine 

details. Therefore, it is necessary to reduce the regularization parameter.  

 

Figure 7-4. Reconstruction results of a yeast cell by using the LT-BPM and LT-SSNP for various regulariza-

tion parameters (τ = 0.025) 

However, in the case of the LT-BPM, lowering the value of the regularization parameter introduces 

artifacts similar to those present in the simulation results in the previous section. By contrast, the 

LT-SSNP can reconstruct fine details without introducing strong artifacts. Therefore, we used 

τ = 0.025 for the LT-BPM and τ/4 = 0.00625 for LT-SSNP and further analyzed the sample for dif-

ferent z planes, as shown in Figure 7-5. Since we used higher regularization for the LT-BPM, we can 

clearly see that images tend to be smoothed out and fine details are lost, as indicated by the red ar-

rows in Figure 7-5. By contrast, the LT-SSNP reveals structures that are not observable in the Rytov 

and LT-BPM reconstructions. In addition, even with the higher regularization, the LT-BPM still 

shows several artifacts, as indicated by the black arrows in Figure 7-5. 
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Figure 7-5. Reconstruction results of yeast cell using Rytov, LT-BPM and LT-SSNP at three different z 

planes (𝜏 = 0.025). 

A serious limitation for quantification of the reconstruction accuracy for real biological samples 

such as this yeast cell is the fact that the true RI distribution is unknown. However, we were able to 

further evaluate the differences between the LT-BPM and the LT-SSNP by using the semisynthetic 

measurements generated by using the DDA as shown in Figure 7-6.  
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Figure 7-6. (a) Overall scheme of semisynthetic measurement generation by using the DDA. (b) Phase-

difference maps for two randomly selected angles and the average for all angles. The color bar is in radians. 

(c) Calculation of the projection error in retrieved-phase information from experimental measurements and 

semisynthetic data. 

While we generated synthetic measurements by using synthetic samples in all previous cases, the RI 

reconstructions obtained by using the LT-BPM and the LT-SSNP served as samples for the DDA to 

generate semisynthetic measurements in this case. The projection error—the difference in phase 
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information between the experimental data and these simulated measurements—reflects how close 

the solution is to the true RI distributions, as shown in Figure 7-6 (a). Figure 7-6 (b) maps the 2D 

projection error for two randomly selected angles as well as the average across the full set of angles 

for each algorithm. In the case of the LT-BPM, differences are clearly observed when compared 

with the LT-SSNP, which shows remarkable consistency with the experimental measurements. We 

quantified the mean projection error (radians/pixel) for each and used this metric to quantify the 

accuracy of the LT-SSNP compared with that of the LT-BPM (Figure 7-6(c)). The average projec-

tion error across all angles was 65% lower for the LT-SSNP than for the LT-BPM. 

2.5. Data compression demonstrated on experimental data—HCT116 cells 

The tomographic reconstruction based on the Wolf transform and the Rytov approximation directly 

maps multiple 2D measurements into the 3D Fourier space. Therefore, any missing information in 

measurements directly deteriorates the final reconstruction. However, the LT-SSNP is an iterative 

reconstruction scheme. The iterative reconstruction begins with an initial guess (usually based on 

the Rytov approximation), and the initial solution is updated based on the calculated error gradient 

by using the forward model. In addition, prior knowledge about the sample is imposed on the cur-

rent guess during the iterative process. Therefore, even if the measurements are underdetermined 

due to missing measurements, the learning approaches can fill in some of the missing information. 

This idea was validated by reducing the number of illumination angles used for each method. The 

experimental data used for this investigation were ODT images of a pair of HCT116 human colon 

cancer cells. These cancerous epithelial cells contain information in small structures relative to the 

size of the cell and highlight the importance of reconstructions that can capture these fine details. 

Reconstructions were performed by using Rytov, linear tomography [57], and the LT-SSNP by us-

ing different numbers of projection angles (45, 24, 12, and 4) uniformly spaced in the range from 0 

to 360°. The linear tomography method uses the same iterative reconstruction scheme as the LT-

SSNP, except with single scattering as the forward model. For the quantitative analysis, we also 

compare the structural similarity index (SSIM) [141] for reconstructions from compressed meas-

urements with the full measurement case, namely, 360 angles at the focal plane. The results, plotted 

in Figure 7-7, show a dramatic improvement in the reconstruction quality for linear tomography and 

the LT-SSNP because the two methods iteratively fill up empty components introduced from miss-

ing measurements but using different forward models. In the case of the HCT116 cells, Rytov pro-

duces fairly good reconstructions that reveal intracellular structures with 360 full projections, de-

spite the underestimation due to the missing-cone problem. The Rytov reconstructions, on the other 

hand, rapidly deteriorate as the number of illumination angles decreases. Compared with Rytov and 

linear tomography, the LT-SSNP is more robust in the number of projections, providing reconstruc-

tions with only four scanning angles with nearly the same quality as reconstructions by using the 

full 360-angle data, as confirmed by the SSIM in Figure 7-7(b). We believe that the LT-SSNP can 

benefit from both the iterative scheme and an accurate forward model. In addition, we further tested 

the compression using the cell phantom, which has higher RI contrasts; the results have been added 

to the supplementary section. 
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Figure 7-7. (a) Reconstruction results of HCT116 human colon cancer cells by using Rytov, linear tomogra-

phy, and the LT-SSNP for a downsampled number of scanning angles. (b) Structural similarity index plot 

with respect to the reconstruction by using each method with full measurements. 

3. Discussion 

In this study, we have proposed a new tomographic reconstruction algorithm, the LT-SSNP, which 

is based on the SSNP forward model, for imaging complex highly scattering samples with fine de-

tails. By benefiting from the accuracy of the SSNP, the LT-SSNP extracts a maximum amount of 

information from measurements rather than relying on prior assumptions and generalizations about 

the sample structure. The LT-SSNP was quantitatively evaluated and compared with the previous 

algorithm, the LT-BMP, by using synthetic measurements. These synthetic measurements with a 

known solution were generated by using Mie theory for multiple cylinders, and the DDA for an 

arbitrarily shaped cluster of RBCs and a cell phantom. 

In the case of multiple cylinders, the LT-SSNP shows clear reconstruction of each sample without 

introducing artifacts. The more interesting point is that the LT-SSNP does not require strong regu-

larization. This is because the SSNP forward model is accurate enough that regularization is not 

necessary to compensate for poor data fidelity, while the LT-BPM could not properly carry out the 

reconstruction even with high regularization. For the RBC cluster in 3D, the LT-SSNP returns more 

homogeneous distributions even with a lower value of the regularization parameter than that of the 
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LT-BPM. This fact is critical when imaging complex samples because too much regularization 

smooths out fine structures and makes them impossible to resolve. The cell phantom simulation 

confirms the performance of the LT-SSNP on a sample with high-resolution information. The LT-

SSNP is more accurate and permits the use of a lower regularization parameter, which allows de-

tails of the 3D refractive index to be identified without artificially being smoothed out by regulari-

zation. 

Importantly, the added capabilities of the LT-SSNP are dramatic for imaging biological samples 

containing information across many scales, as confirmed by applying it to tomographic images of a 

yeast cell. The reconstructed tomograms by using the LT-SSNP clearly reveal structures that are not 

observable in the case of Rytov and the LT-BPM. Semisynthetic measurements based on the RI 

reconstructions of the LT-BPM and the LT-SSNP numerically validate the accuracy of the LT-

SSNP reconstructions. The averaged phase-difference map represents how close the reconstruction 

using each method is to the real sample. In contrast to the averaged phase-difference map of the LT-

BPM, which produces many discrepancies inside the sample, LT-SSNP shows consistency with the 

experimental measurements. The numerical evaluation shows that the LT-SSNP produces a 65% 

reduction in the projection error compared with that of the LT-BPM. 

Furthermore, we explored the capacity of learning approaches to enable data compression by reduc-

ing the number of scanning angles. The LT-SSNP shows a dramatic improvement in image quality 

by using a small number of illumination angles when compared with the conventional direct inverse 

method by using the Rytov approximation. Even with a low number of projections, the LT-SSNP 

benefits from its weak dependency on the regularization parameter. 

4. Materials and Methods 

4.1. Simulation 

We used Mie theory to derive the field scattered by multiple cylinders (2D) [142]. A total of 101 

illumination angles uniformly distributed between −45° and 45° were used. To perform a deeper 

assessment of the LT-BPM and LT-SSNP algorithms, we also tested on synthetic measurements in 

arbitrary-shaped samples: an RBC cluster and a cell phantom.  

For RBC simulations, the discrete dipole approximation [134, 143] was applied to an RBC cluster, 

in which the surface of each RBC is defined by using the following equation: 

4 2 2 4 2 22 0S z z P Qz R          (7.3) 

where ρ is the radius in cylinder coordinates (ρ2 = x2 + y2) and S, P, Q, and R are parameters de-

rived from d, h, b, and c shown in Figure 7-2 (a), respectively. In this paper, d, h/d, b/d, and c/d were 

set to 7.7 μm, 0.3542, 0.1752, and 0.6196, respectively, as suggested in ref. 36. We refer interested 

readers to previous studies [144, 145] for a more complete presentation of the DDA simulation of 

an RBC. By using a single simulated RBC, a cluster consisting of 15 identical RBCs was generated, 

as shown in Figure 7-2 (b). In addition, we generated a synthetic cell phantom with four different RI 

values corresponding to the cytoplasm, nucleus, nucleolus, and lipids [140]. To derive the scattered 

field from the cluster and the cell phantom, samples were scanned by using 40 uniformly distributed 

illumination angles on a circle with an incident angle of 45°. For every simulation mentioned above, 
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the sample with an RI of n was immersed in air, and the wavelength used was 600 nm. This is 

equivalent to a case in which the RI of the medium is n0 and the sample with an RI of n × n0 is il-

luminated at a wavelength of 600 × n0 nm. The number of dipoles per wavelength for both simula-

tions was set to 12. Table 1 summarizes the numerical and experimental parameters used for the 

simulations as well as for the experiments. 

Table 7-1. Reconstruction parameters 

 

4.2. Experiments 

The experiments were performed by using a conventional optical diffraction tomography configura-

tion in which a spatial light modulator was used to control the illumination angle. A total of 360 

holograms were recorded for each sample in a circular pattern with 1° resolution at an incidence 

angle of 35°. Additional details about the optical setup and sample preparation are provided in the 

supplementary section. 

4.3. Semisynthetic simulation 

The semisynthetic measurements were calculated by using the reconstruction results acquired from 

the LT-BMP and the LT-SSNP as samples for the DDA. The size of the dipole was set to 

λ/12n0=0.033nm, where λ = 0.532 nm is the wavelength of the laser and n0 = 1.338. Both the values 

were set from the values used in the experiments. The grid size of the reconstructions from the LT-

BPM and the LT-SSNP was 99 nm. The reconstruction results were interpolated to a grid, one pixel 

of which was the size of a dipole. Then, we quantized the RI values by using the following equa-

tion: round(nreconn0×1000)/1000, where nrecon denotes the reconstructed RI values. Simulations 

were performed for 160 nonoverlapping angles, which were calculated from the experiments. 

4.4. Reconstruction algorithm 

We implemented the algorithms by using custom scripts in MATLAB R2018a (MathWorks Inc., 

Natick, MA, USA) on a desktop computer (Intel Core i7-6700 CPU, 3.4 GHz, 32 GB of RAM). To 

accelerate the computation, a graphic-processing unit (GPU, GeForce GTX 1070) with custom-

made functions based on the compute unified device architecture (CUDA) was utilized. The gradi-

 Size μm / pixel n   Iterations 

Cylinders 1024 × 256 0.15 1.05 1e-3 90 400 

RBCs 512 × 512 × 180 0.15 1.05 1e-3 57 200 

Cell phantom 350 × 350 × 128 0.15 
1.0245(cytoplasm), 1.0210(nucleus) 

1.0413( nucleolus ), 1.0886(lipids) 
1e-3 57 200 

Yeast 150 × 150 × 80 0.1 NA 0.25e-3 163 200 

HCT116 256 × 256 × 170 0.1 NA 0.25e-3 160 200 

 C
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ent, calculated from a data fidelity term, D(x), was ∂D(x)/∂x, the amplitude of which is proportional 

to the amplitude of D(x). The LT-BPM and the LT-SSNP use different data fidelity terms. The LT-

BPM calculates the difference in the fields u(x,y,z). In contrast, the LT-SSNP requires differences 

in both u(x,y,z) and its derivative du(x,y,z)/dz. Therefore, calibration of the optimization parameters 

between the methods is necessary to make the LT-BPM and the LT-SSNP use similar optimization 

parameters. The FISTA requires two parameters: step size (γ) and regularization parameter (τ). The 

calibration of those parameters can be performed by calculating the ratio C between 
2

2|| ( , , ) ||u x y z  

and 
2

2|| ( , , ) ( , , ) ||u x y z du x y z . We approximated this as the average value of 
2(1 )zik  for the 

illumination zk s , which corresponds to a case in which u(x,y,z) is replaced with a planar wave,

1 ( )xx yy zzi k k k
e

 
. Therefore, the LT-BPM, which uses the parameters γ and τ, can be directly compared 

with the LT-SSNP, which uses the parameters γ/C and τ × C. For convenience, we labeled the fig-

ures according to the parameters used for the LT-BPM. The actual parameter values for the LT-

SSNP can be easily calculated given C, which is provided in Table 1. The total number of iterations 

used in the FISTA is also provided in Table 1. Twenty iterations were used for the TV optimization 

step in all cases. 

4.5. Overall scheme of the learning tomography 

Both algorithms (LT-BPM and LT-SSNP) start from measured electric fields (including both ampli-

tude and phase information) from the holographic data. An initial guess of the RI distributions is 

obtained by using the Rytov tomographic reconstruction method. By using either the BPM or the 

SSNP as the forward model, the scattered field is estimated given the plane-wave illumination 

propagating through this initial guess. The square of the difference between the estimated and the 

measured fields is the cost function, which is minimized by adjusting the index values contained in 

the forward model through the FISTA. At the same time, an intermediate step of regularizations 

such as smoothness and non-negativity is included. This process is repeated until the total cost func-

tion converges. 

4.6. Split-step non-paraxial method 

In this section, we briefly describe the SSNP in 3D [28, 29], which is the physical forward model 

used in the LT-SSNP. Bhattacharya and Sharma [146] implemented this method by using a matrix 

formalism for wave propagation in 3D. Here, we describe a fast Fourier transform implementation 

for more efficient use of memory. The propagation of a scalar wave u(x,y,z) through a medium 

n(x,y,z) in 3D must satisfy the following wave equation: 

2 2 2
2 2

02 2 2
( ) ( , , ) ( , , ) ( , , ) 0u x y z k n x y z u x y z

x y z

  
   

  
 (7.4) 

where k0 = 2π/λ is the free-space wavenumber for a given wavelength λ in a vacuum. Eq. (7.4) can 

be written in matrix form as: 

( , , )
( , , ) ( , , )

d x y z
x y z x y z

dz


v
H v   (7.5) 
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where, 

( , , )

( , , ) ( , , )

u x y z

x y z u x y z

z

 
  
 

 

v   (7.6) 

and 

2 2
2 2

02 2

0 1

( , , )
( ( , , )) 0

x y z
k n x y z

x y

 
      
   

H  (7.7) 

When we consider an inhomogeneous sample immersed in a homogeneous medium, n0, it is possi-

ble to split the matrix H into two terms that correspond to diffraction and phase modulation. Note 

that no approximation is assumed up to this point. We refer interested readers to the supplementary 

section for a detailed explanation. 

5. Supplementary section 

5.1. Split-step non-paraxial method 

By applying the finite difference method for a small step, z  to solve Eq. 7.5, we can get the fol-

lowing equation: 

( , , ) exp( ( , , ) ) ( , , ).x y z z x y z z x y z   v H v   (7.8) 

When we consider an inhomogeneous sample immersed in a homogeneous medium, 0n , it is possi-

ble to split the matrix 𝐇  and 𝐇  which correspond to diffraction and refraction, respectively, 

 2 2
1 2 2 2 22 2

0 00 02 2

0 1
0 0

( , , ) ( , , ) ( , , ) .
( ( , , )) 0( ) 0

x y z x y z x y z
k n n x y zk n

x y

 
  

               

H H H (7.9) 

Using Eq. 7.9, we can define 𝐏 = exp (𝐇 ∆𝒛) and 𝐐 = exp (𝐇 ∆𝒛), then Eq. 7.8 can be split into 

two steps, 

( , , ) ( , , ).x y z z x y z  v QPv   (7.10) 

We omitted the notation of  , ,x y z  in 𝐏, 𝐇 , 𝐐 and 𝐇  for the sake of brevity. Using the Taylor 

series expansion, 𝐏 can be written as 

2 3

1 1
1

0 ( ) ( )
...

0 2! 3!

I z z
z

I

   
      
 

H H
P H   (7.11) 

𝐐 can be simplified as follows: 
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2

0
,

0

I
z

I

 
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 

Q H   (7.12) 

  

since (𝐇 
𝑚) is 0  when 𝑚 is higher than 1.  

 

5.2. Numerical implementation 

We will denote the scalar field at the k-th slice by the vector 𝐮k ∈ ℂ
𝑀 and the derivative of the field 

with respect to the optical axis, z  , by the vector 𝐮′k ∈ ℂ
𝑀 . The RI contrast of an inhomogeneous 

medium in 3D is represented by the vector 𝐱 = 𝐧 − 𝑛0 ∈ ℝ
𝑁  and  𝐱k ∈ ℝ

𝑀 denotes the k-th slice 

of 𝐱. Derivative operations 𝐇  in Eq. 7.9 can be implemented by taking the discrete Fourier trans-

form (DFT) of the input signal, followed by Fourier kernel, and taking the inverse DFT again. Us-

ing Eq. 7.11 and Eq. 7.12, we can rewrite a discretized version of Eq. 7.10 for numerical implemen-

tation as follows: 
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where 
2

0 0( ) )(2k k k kk n z  g x x x x , where represents the hadamard product.  

5.3. Calculation of the gradient 

In previous work [26], it has been shown that the gradient of 𝐷(𝑙)(𝐱) and its Hermitian can be writ-

ten as: 

( ) ( )
( ) ( ) ( ) ( )

1

( ) ( )
[ ( )] Re ( ( ) ) ( )} .[ ] { [ ]}

l l
l l l H l

K K K

N

D D
D

x x

  
   

  

x x
x S x y S x

x
 (7.15) 

In practice, we are interested in the column vector: 

( ) ( ) ( ) ( )[ ( )] Re ( )} ( ( ) ) .{[ ] }l H l H l l

K K KD


  


x S x S x y
x

 (7.16) 

Using Eq. 7.13 and Eq. 7.14, we can calculate the following: 
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Since 
𝜕𝐒0
(𝑙)
(𝐱)

𝜕𝐱
= 0, it is possible to calculate the Hermitian of Eq. 7.17 by recursion [26]. 

5.4. Experimental setup 

The optical system shown below used to acquire the data shown in this study used a diode pumped 

solid state (DPSS) 532 nm laser. The laser beam was first spatially filtered using a pinhole spatial 

filter. A beamsplitter was used to separate the input beam into a sample beam and a reference beam. 

The sample beam was directed onto the sample at different angles of incidence using a reflective 

LCOS spatial light modulator (SLM) (Holoeye) with a pixel size of 8 μm and resolution of 

1080x1920 pixels. Different illumination angles were obtained by projecting blazed gratings on the 

SLM. In the experiments presented here, a blazed grating with a period of 25 pixels (200 μm) was 

circularly rotated with a resolution of 1 projection per degree for total projections. Two 4f systems 

between the SLM and the sample permitted filtering of higher orders reflected from the SLM (due 

to limited fill factor and efficiency of the device) as well as magnification of the SLM projections 

onto the sample. Using a 100X oil immersion objective lens with NA 1.4 (Olympus), the incident 

angle on the sample corresponding to the 200 μm grating was 35°. The magnification of the illumi-

nation side was defined by the 4f systems we used before the sample. A third 4f system after the 

sample includes a 100X oil immersion objective lens with NA 1.45 (Olympus). The sample and 

reference beams were collected on a second beamsplitter and projected onto a scientific CMOS 

(sCMOS) camera (Neo, Andor) with a pixel size of 6.5 μm and resolution of 2150 x 2650 pixels. 
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Figure 7-8. Schematic for the experimental setup (M: Mirror, L:Lens, OBJ: Objective lens, BS: Beam split-

ter). 

 

5.5. Sample preparation 

Yeast cells were grown in a solution of agar with a refractive index of 1.338 (a change of 0.00125 

for 0.5% increase in the Agar concentration). 2g pure agar powder (AppliChem) was dissolved in 

100 mL water, heated to 80C, and subsequently cooled, all while stirring with a magnetic stirrer. 

Once the solution reached 40C, 2g fresh grocer’s yeast was added to the solution. The yeast-agar 

solution was immediately pipetted onto a #1 coverslip and covered with a second coverslip and fi-

nally allowed to cool to room temperature for complete gel formation. 

HCT-116 human colon cancer cells were cultured in McCoy 5A growth medium (Gibco) supple-

mented with 10% fetal bovine serum (Gibco). #1 coverslips were treated with a 5 µg/mL solution of 

fibronectin (Sigma) in phosphate-buffered saline (PBS) and air-dried at room temperature. Cells at 

passage 11 were detached from culture flasks using trypsin, seeded directly onto the fibronectin-

treated coverslips, and incubated 24 hours in a 37C/5% CO2 atmosphere until cells adhered and 

spread on the coverslips. Each sample was fixed for 10 minutes at room temperature in 4% para-

formaldehyde in PBS, rinsed twice with PBS, and sealed with a second coverslip. 
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 Three-dimensional tomography of 

red blood cells using deep learning 

This work has been published in [Joowon Lim, Ahmed B. Ayoub, and Demetri Psaltis "Three-

dimensional tomography of red blood cells using deep learning," Advanced Photonics 2(2), 026001 

(24 March 2020). https://doi.org/10.1117/1.AP.2.2.026001]. 

 

A.B. Ayoub built the optical setup, and carried out the experiments. 

 

1. Introduction 

When we look at a three-dimensional (3-D) object in a conventional microscopy, we can only see a 

two-dimensional (2-D) projection at one time. Therefore, we need more information in order to ex-

tract the 3-D shape from the 2-D measurement. If we make a holographic measurement where we 

record both amplitude and phase, measuring at different z planes is equivalent to a single measure-

ment followed by the digital propagation to multiple planes. Therefore, with coherent detection, a z-

scan does not provide extra information compared to the single 2-D recording. Another dimension 

that can be exploited is the illumination angle θ. The measurements in the x, y, θ dimensions can be 

converted to the 3-D spatial domain by defining the physical relationship between the illuminating 

fields at the different angles and the corresponding measurements. However, most of the time, the 

2-D measurements are incomplete due to the limited numerical apertures (NAs) of the optics, result-

ing in an inversion process that is highly ill-posed.  

Optical diffraction tomography (ODT) is a 3-D imaging method that utilizes multiple 2-D meas-

urements acquired by changing the angle of illumination. The contrast mechanism in ODT is en-

dogenous index. It, therefore, does not require external labeling. ODT provides 3-D refractive index 

(RI) distributions [12] that contain morphological and biochemical information, which have been 

widely used to study various biological samples, which are summarized in recent review papers [34, 

122, 131, 132]. Under the assumption of weak scattering, multiple 2-D measurements in (x,y,θ) can 

be directly inverted to yield the 3-D RI information in (x , y , z ) using the Wolf transform [19], 

which is the transformation that maps the spatial frequencies of the 2-D spectrum of the projections 

to the spatial frequencies of the 3-D spectrum of the object. However, direct inversion reconstruc-

tion methods based on the Wolf transform suffer from the missing cone problem—a consequence of 

the missing spatial frequencies that are not accessible due to the limited NAs of the optics [77]. 
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The missing cone problem has been intensively investigated due to its importance [77, 147]. Previ-

ous approaches are model-based iterative reconstruction (MBIR) schemes, which exploit regulariza-

tions based on our prior knowledge, such as non-negativity or sparsity constraints. In other words, 

MBIR schemes find a solution that is not only consistent with the measurements but also sparse in 

the regularization domain. The choice of regularization is critical. However, it requires extensive 

understanding of the characteristics of the forward models, including the degree of ill-posedness 

intertwined with the characteristics of the samples. This makes the problem challenging. 

Recently, deep neural networks (DNNs) have been successful in various optical applications, such 

as enhancement of the transverse resolution [148], phase retrieval from intensity measurements 

[149, 150], digital staining [151, 152], classification/segmentation based on holograph-

ic/tomographic measurements [153-155], and others [149, 156, 157]. There are some previous 

demonstrations of the benefits of applying DNNs to the reconstruction of RI values in ODT [158-

160]. As far as we know, nobody has succeeded before in using DNNs to reconstruct arbitrary 3-D 

RI distributions from limited angle measurements taking diffraction and multiple scattering into 

account. 

In this chapter, we describe a method based on DNNs to solve the long-standing missing cone prob-

lem and demonstrate it using red blood cell (RBC) samples. Despite the potential capacity of 

DNNs, the lack of the ground truth prevents us from applying DNNs on the ODT reconstruction, 

unlike other DNN optical imaging applications, such as digital staining or phase retrieval where we 

can access the target images. Our approach relies on the formation of digital phantoms followed by 

accurate digital models, which provide the 2-D measurements. The digital 2-D projections are used 

to form a rough 3-D image of the object using the Wolf transform under the Rytov approximation 

[19]. By training a DNN with the pairs of images from the Wolf transform and the corresponding 

digital phantoms, we can learn the distortions introduced due to the incomplete measurements in a 

data-driven way. 

2. Main Idea 

We demonstrate the method by using RBC samples that are highly affected by the missing cone 

problem. The shape of RBCs is flat and biconcave showing narrow dimple regions at the center, 

which requires high-frequency components along the optical axis to fully resolve the structures [2, 

49]. In Figure 8-1 (a), we observe that cross sections of the Rytov reconstruction are underestimated 

and elongated along the z axis when compared with the corresponding sections of the ground truth. 

The k-space representation of the Rytov reconstruction can be considered as the low-pass filtered 

version of the k-space of the ground truth under the weak scattering assumption. Looking at the k-

space of the ground truth, the frequency components are more broadly distributed in the zk axis 

compared to ones in the yk axis since the sample is broad in the y axis but has the narrow biconcave 

shape in the z axis. While high-frequency components are required to fully resolve the thin struc-

ture, most of them are lost because they are inaccessible due to the limited NAs as indicated by the 

red triangles. This results in the high distortions in the final Rytov reconstruction. In general, Rytov 
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reconstructions of RBCs show holes in the middle making it hard to retrieve meaningful infor-

mation, such as cell volume, surface, and RI values. 

 

 

Figure 8-1. The missing cone problem and overall scheme of the main idea. (a) Demonstration of the missing 

cone problem for a single RBC. The left two columns show the Rytov reconstruction and the right two col-

umns show the ground truth. The first row displays the scattering potential, which can be converted to RI 

distributions, and the second row displays the k-spaces corresponding to the first row. (b) Overall scheme of 

the network. 

A DNN can be trained to recover those missing high frequencies, which are especially important for 

forming tomograms of RBCs. The network reconstructs the original RBC with the Rytov recon-

struction as the initial condition in the training of the DNN, as shown in Figure 8-1 (b). We refer to 

the network as TomoNet throughout this paper. The input to the network is the Rytov reconstruc-

tion of an RBC and the output is the enhanced image of the same RBC. The input is also relayed 

directly to the output of the network where it is summed with the correction calculated by the DNN. 

Therefore, the network learns to extract the difference between the input and the output. In other 

words, given the low-pass filtered input, the network synthesizes the missing high-pass filtered in-

formation using data-driven features from a large number of examples. By combining the low-pass 

filtered input with the high-pass synthesized output from the network, we can achieve the full reso-

lutions in the transverse and axial planes. 
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For training, we digitally generated many RBCs that are different in shape and RI value using the 

RBC model, as shown in Figure 8-2 (a) [144]. For detailed information of the generation of different 

RBCs, we refer interested readers to Appendix A. Then, each RBC served as a sample for DDA 

simulations to generate accurate synthetic measurements, as shown in Figure 8-2 (b) [134, 143]. A 

total of 40 uniformly spaced measurements were acquired by scanning on a circular pattern while 

maintaining a fixed illumination angle of 36 deg with respect to the z axis. The RBC phantoms gen-

erated using the model [Figure 8-2 (a)] originally lie in the xy plane. We implemented the various 

orientations of RBCs that can occur by randomly rotating each sample in the yz and xy planes. The 

DDA method was then used to calculate the 2-D projections of each 3-D phantom for each of the 40 

illumination angles [Figure 8-2 (c)]. These calculations were used to form 3-D reconstructions using 

the Rytov method, which served as the input to the network.6 Each Rytov reconstruction was paired 

with the corresponding synthetic RBC that was used to generate the calculations. Figure 8-2 (c) 

shows two example pairs, one without rotation and the other with rotation. 

 

Figure 8-2. Dataset generation. (a) RBC model parameters. (b) Synthetic measurements generation using the 

DDA. (c) Generation of synthetic measurements for two RBCs: one RBC lying in the xy plane and the same 

RBC but randomly rotated. The pairs of the Rytov reconstructions and the ground truth RBCs are presented. 

The scale represents the normalized RI, which is calculated by dividing the RI values of a sample by the RI 

of the background. (d) Schematic description of the z-shift variant property of the Rytov measurement. 
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For each RBC pair, we want to augment the dataset by shifting each example in all the axes. To do 

so, it is important to consider the shift properties of the Rytov reconstruction along each axis. We 

start from the integral solution to the Helmholtz equation: 

( ) ( ') ( ') ( ')s
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U F U G d r r r r r r'   (8.1) 
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is the Green’s function of the 3-D Helmholtz 

equation. The ( )iU r and ( )U r are the incident and total electric fields, respectively, and the 

( )sU r is the scattered electric field, ( ) ( ) ( )s iU U U r r r .  The term ( )sU r , on the left-hand 

side, can be measured at the image plane, as shown in Figure 8-2 (d). It is intuitive to see that moving 

the sample in the xy plane results in the same shift in the plane of the measurement of the scattered 

field. When the sample is translated in z, however, the measured scattered field will be the propa-

gated version of the original unshifted measurement. Assuming that the sample is weakly scattering, 

the Rytov approximation uses the phase of the field itself, and Eq. 8.1 can be rewritten as follows: 
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The left term of Eq. 8.1 ( ) ( ) ( )s iU U U r r r  is replaced with the first Taylor expansion of it 
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It, therefore, loses the propagation property of the scattered field. We refer this 

term as ( )s RytovU  r . In other words, we must recalculate ( )z shift

s RytovU 

 r when an object is shifted in 

the z axis and the result of this calculation is different than distally propagating the field 

( )s RytovU  r . 

Taking these properties into consideration, we augmented the set of training examples by generaliz-

ing shifted versions of the original pairs. For the shift in the xy plane, we added an xy-shifted ver-

sion of each pair in addition to the original pair (without any shift). The shift was randomly selected 

during training. For the shift in the z axis, after generating the 40 projections for an RBC centered at 

z=0, we digitally propagated the simulated measurements, ( )U r  and ( )iU r , to four different z 

planes (−2Δz, −Δz, +Δz, and +2Δz) and calculated the corresponding ( )s RytovU  r  values at each 

plane. This was followed by their Rytov reconstructions to obtain examples of RBCs shifted along 
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the z axis. In this work, Δz was set to 122 nm, which corresponds to one pixel of reconstruction 

grid. Rytov reconstructions were paired with the shifted RBCs in the z axis. 

 

3. Method 

3.1. Network Training 

We trained a U-Net-type DNN in the regression manner using the following weighted 2l -norm as 

the cost function [161, 162]: 

2

2

|| ||
( , )

|| ||

recon true
recon true

true

x x
Error x x

x


   (8.3) 

where reconx  is the output from the network given Rytovx , and truex  is calculated from the ground 

truth RI contrast. Here, x  represents the RI contrast multiplied by a scalar value, which is calculat-

ed as 0( )c n n , where n  represents sample RI distributions and 0n  is the RI of medium. The sca-

lar c  was introduced for normalization of values; c  can be either 40 for  Rytovx  or 20 for truex . 

Negative components of input and output of the network were discarded. We implemented the net-

work using PyTorch (1.2.0) and compute unified device architecture toolkit (10.0) on a desktop 

computer (Intel Core i7-6700 CPU, 3.4 GHz, 32 GB RAM) with a graphic processing unit (GPU, 

GeForce GTX 1070). The network was trained using the Adam optimizer with the learning rate of 

1×10−4, and it decayed half after every 10 epochs [163]. The mini-batch size was 8 and the total 

number of epoch was 50. 

Figure 8-3 describes the network structure. It is very similar to the U-Net proposed in [161, 162], 

except for slight modifications [164, 165]. The input is skip-connected and summed to the output of 

the network. Therefore, the network learns the residual difference between the Rytov reconstruction 

and the ground truth [162]. All biases in the convolutional layers were set to zero and fixed. Zeros 

were padded for convolution layers of which kernel sizes are bigger than 1 so that the dimensions 

stay equal before and after the convolutions. The negative slope of leaky rectified linear unit 

(RELU) was set to 0.01. For the normalization layer, affine transform was turned off. For the trans-

pose convolutional layers, the kernel size was set to 6×6×6 with the zero padding of 2×2×2 and the 

stride of 2×2×2. 
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Figure 8-3. Schematic description of the network structure. Here c  represents the number of channels writ-

ten at each block. WN, weight normalization; LRLU, leaky RELU; and LN, layer normalization. 

 

3.2. Experiment 

The optical setup is described in Figure 8-4 [84]. It includes a diode pumped solid state 532 nm la-

ser. The laser beam was first spatially filtered using a pinhole spatial filter. A beamsplitter was used 

to split the input beam into a sample beam and a reference beam. The sample beam was directed 

onto the sample at different angles of incidence using a reflective liquid crystal on silicon spatial 

light modulator (SLM) (Holoeye) with a pixel size and resolution of 1080×1920pixels. Different 

illumination angles were obtained by projecting blazed gratings on the SLM. In the experiment pre-

sented here, a blazed grating with a period of 25 pixels was rotated a full 360 deg. Two 4F systems 

between the SLM and the sample permitted filtering of higher orders reflected from the SLM (due 

to limited fill factor and efficiency of the device) as well as magnification of the SLM projections 

onto the sample. Using a 100× oil immersion objective lens with NA 1.4 (Olympus), the incident 

angle on the sample corresponding to the grating was 36 deg. The magnification of the illumination 

side was defined by the 4F systems we used before the sample. A third 4F system after the sample 

includes a 100× oil immersion objective lens with NA 1.45 (Olympus). The sample and reference 

beams were collected on a second beamsplitter and projected onto a scientific CMOS (sCMOS) 

camera (Neo, Andor) with a pixel size and resolution of 2150×2650 pixels. 
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Figure 8-4. Schematic for the experimental setup. M, mirror; L, lens; OBJ, objective lens; and BS, beamsplit-

ter. 

 

Blood sampling was performed by terminal intracardiac puncture on wild-type Balb/cByJ adult 

mice, in agreement with the Swiss legislation on animal experimentation (authorization number 

VD3290). RBCs were then isolated from blood plasma by centrifuging using Eppendorf-Centrifuge 

5418 at 400 rpm for 3 min. RBCs were then fixed using glutaraldehyde with concentration of 0.25% 

in phosphate-buffered saline (PBS) followed by centrifuging for 1 min and washing three times 

with PBS to remove any fixation reagents traces. To ensure strong adhesion between the RBC and 

the coverslip, coverslip was coated with 0.1% poly L-lysine diluted in PBS with molecular weight 

ranging between 1000 and 5000gm/mol. 

4. Results 

4.1. Synthetic Data 

Results obtained with the TomoNet are displayed in Figure 8-5 for two different RBCs. Here, we 

only present centered RBCs without shifts in the xy plane. The first row shows RI reconstructions 

of Rytov, TomoNet, and the ground truth. The second row displays the difference map from the 

ground truth (reconstruction – the ground truth). In other words, blue regions in the difference map 

display underestimated parts and yellow regions show elongated regions. As expected, the Rytov 

reconstructions underestimate the RI values and elongate the RI distributions along the optical axis. 

Especially, the central dimple region of the RBC is significantly deteriorated. This is because the 

dimple region is thin and requires high frequencies for its reconstruction. By contrast, TomoNet 

shows excellent reconstruction results since it estimates accurately the values of these high frequen-

cies from the data in the training set. In other words, the TomoNet implements super-resolution for 

3-D samples revealing spatial details beyond the classical resolution limit. We quantitatively as-

sessed the accuracy of the TomoNet over the Rytov reconstruction by calculating the following 

metric: 
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where reconn  is the reconstructed RI contrast and truen  is the ground truth RI contrast. Here, n  

represents the RI contrast, which is defined as 0( )n n , where n  represents the sample RI distri-
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butions and 0n  is the RI of medium. We discarded the negative values when calculating the error 

metric. The mean error values over all test RBCs are 0.5929 for the Rytov method and 0.0084 for 

the TomoNet, which confirms the improved performance of the network. The trained network accu-

rately reconstructs RBCs and it does so in less than 10 ms on a GPU (GeForce GTX 1070). 

. 

 

Figure 8-5. Reconstruction results using two examples from the test datasets. (a) Results for an RBC without 

rotation and (b) results for another RBC with rotation. The scale represents the normalized RI, which is cal-

culated by dividing the RI values of a sample with the RI of background. 
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4.2. Experimental Data 

We applied the network trained with digital phantoms to the Rytov reconstruction of a mouse RBC 

formed from experimental measurements. In the experiment, the samples were circularly scanned at 

the illumination angle of 36 deg in 9-deg steps resulting in 40 measurements, matching the parame-

ters we used to generate the digital training data. As shown in Figure 8-6, the Rytov reconstructions 

using the measurements show severe distortions, especially at the dimple region as we also ob-

served in the synthetic data. With the Rytov reconstruction as its input, the TomoNet reconstructs 

RI tomograms without those artifacts resulting in the biconcave morphology. We verified the great 

improvement in the quality of the reconstructions visible in Figure 8-6, by using a quantitative meth-

od [30] to evaluate the reconstruction accuracy of 3-D objects when the ground truth is not accessi-

ble. This was possible by generating semisynthetic measurements. 

 

Figure 8-6. Reconstruction of mouse RBC from experimental data using the network trained on synthetic 

data. The images to the left show the Rytov reconstruction, which is the input to the network. The images to 

the right show the results of the TomoNet. 

As described in Figure 8-7 (a), following the reconstruction of the RI distributions from the experi-

mental measurements, we generated semisynthetic 2-D projections using an accurate forward model 

such as the DDA at each illumination angle. By comparing the digital projections with the corre-

sponding 2-D experimental measurements, the difference between them reflects how close the 3-D 

reconstruction is to the ground truth. It is noteworthy that we did not use the forward model in-

volved in the reconstruction to generate the digital projections to be fair. 
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Figure 8-7. Validation of the experimental result using semisynthetic measurements. (a) Overall scheme of 

semisynthetic measurement generation using DDA. (b) Phase difference maps for two randomly selected 

angles and the average maps for all angles. The color bars are in radians. Calculation of projection errors in 

retrieved phase information from experimental and semisynthetic measurements. 

 

Figure 8-7 (a) shows two examples of phase maps from digital projections. For each digital projec-

tion, we calculated the projection error map, the difference in phase information between experi-

mental and simulated measurements, along with the mean projection error map over all angles. Fig-

ure 7(b) displays two randomly selected projection error maps as well as the mean projection error 

maps for the Rytov and the TomoNet. In the case of Rytov, we can clearly see the mismatch be-

tween experimental and digital projections in the mean projection error map. By contrast, the mean 

projection error map of TomoNet shows excellent consistency. We further quantitatively confirmed 

the improvement in performance of TomoNet over Rytov by calculating the metric,

2

exp

1

|| || /
L

l l

syn

l

N 


 , where L is the total number of angles, N  is the total number of pixels, 

and exp and syn are the phase maps from experimental and semisynthetic measurements, respec-

tively. As shown in Figure 8-7 (b), the average of the metric shows twofold improvement of Tomo-

Net over the Rytov method. 

5. Appendix A: Dataset Generation 

The shape of the surface of an RBC can be modeled by the following equation: 

4 2 2 4 2 22 0S z z P Qz R          (8.5) 
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where   is the radius in cylindrical coordinates 
2 2 2)( x y   and S, P, Q, and R are the param-

eters derived from d, h, b, and c shown in Fig. 2(a) [144]. To generate various RBCs, the d, h, and b 

values in microns were randomly selected from normal Gaussian distributions whose mean values 

were 7.65, 2.84, and 1.44 and standard deviations were 0.67, 0.46, and 0.47. c/d and the normalized 

RI values, ( n − 0n )/ 0n , were sampled from uniform distributions whose ranges were (0.56, 0.76) 

for c and (1.0355, 1.596) for the normalized RI [144]. To avoid nonrealistic shapes, several criteria 

were applied to limit the parameter values in the following ranges: h<0.95×d/2 and b≤h. In addition, 

we limited the derived geometrical parameters such as cell volume (V μm3), surface (S μm2), and 

sphericity index (SI), 6√πV/S3/2, to fall within the normal ranges: 66<V<130, 98<S<162, and 

0.494<SI<0.914.24 The cell surface was calculated using the equation, πd[d/2+2h×(sinh−1e)/e], 

where e=2√9d2−4h2/5h [166]. Finally, RBC shapes were downsampled with a factor, 7.65/5.8, 

since the mean diameter of mouse RBCs is 5.8μm, compared to the 7.65μm for humans [167]. A 

total of 100 different RBCs were generated and each of them was randomly rotated in the yz plane 

(uniform distribution: [0, π/6]) and the xy plane (uniform distribution: [0, 2π]) resulting in 200 dif-

ferent RBCs (100 without rotation and 100 with rotation). 

To generate synthetic measurements using the DDA, each RBC was illuminated at the incident an-

gle of 36 deg for 40 angles, which were uniformly distributed on a circle. The illumination wave-

length λ was 396 nm and the size of each dipole was set to λ/12=33nm. The background medium in 

the simulation was air and the sample RI was set to the normalized RI. For 2-D measurements, the 

size of the grid was 256×256 with a pixel size of 99 nm. After that, the measurements were 

downsampled by cropping in k-space resulting in a pixel size of 122 nm. The original phantom de-

fined using dipoles interpolated to a sampling grid that matched the pixel size of the measurements. 

Measurements for 200 randomly generated RBCs were digitally refocused to five different planes 

resulting in 1000 pairs. Totally 800, 100, and 100 pairs were used for training, validation, and test, 

respectively. For the training and validation, we doubled the datasets by adding the randomly shift-

ed sets on top of the original sets, resulting in 1600 and 200 pairs. The random shift varied at every 

iteration. For the rotated RBCs, after generating the measurements, we reversely rotated the Rytov 

reconstructions and the paired ground truth RBCs in the xy plane, resulting in rotations only in the 

yz plane to simplify the training. For the experimental data, since we do not know the rotation angle 

in the xy plane, we applied ellipsoidal fitting on a binary mask generated by applying Otsu thresh-

olding on the maximum projection map of Rytov [168]. By analyzing the short and long axes, we 

extracted the orientation of the RBC. Since the Rytov reconstruction is shift-invariant in the xy 

plane, we simply interpolated in the xy plane for rotation. 

6. Appendix B: Semisynthetic Simulation 

The semisynthetic measurements were calculated using reconstruction results acquired from Rytov 

and TomoNet as samples for the DDA simulations. The pixel size of these reconstructions was 122 

nm. Since the size of dipole was set to 0/ 6 67n nm  , where 532nm  , 0 1.334n  , the 

reconstructions were interpolated to a grid, one pixel of which was the size of a dipole. Then, we 

discretized the RI values as round 0( / x1000) /1000n n , and the negative values were discarded. 
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 Conclusion 

 

In chapter 1, optical imaging was described with its main 2 branches; fluorescent imaging and label-

free imaging. Phase contrast imaging by Zernike was described in which a phase mask is inserted 

along the propagation to create a phase difference between the incident field and the scattered field 

from the sample. As a result, the phase delay originated from the different refractive index between 

the sample and the surrounding medium is converted to an intensity variation and high contrast im-

ages can be retrieved to highlight the sample from the surrounding medium. Another approach is to 

build an “off-axis” holographic system with a separate reference arm combined with the sample arm 

via a beam-splitter as suggested by Upatnieks and Leith as a continuation to the work started by 

Gabor. By doing so, one can retrieve the complex field from the intensity pattern (i.e. Hologram). 

This is usually referred to as Quantitative Phase Imaging (QPI) and is the driving principle in digital 

holography microscopy (DHM). However, to retrieve the 3D information about the refractive index, 

we would need to illuminate the sample from different illumination angles and then use inverse 

models to generate the 3D RI distribution out of the different 2D phase maps. We refer to this pro-

cess as optical diffraction tomography (ODT). In this thesis we study different aspects of ODT in-

cluding the assessment of 3D RI reconstruction without access to the ground truth, using “on-line” 

holography to generate 3D RI reconstruction and finally possibility to acquire images at a high pace 

with the help of light modulators such as DMDs. 

 

In chapter 2, the theory underlying the light scattering from inhomogeneous media is explained. 

Starting from the wave-equation we can derive an expression that relates the scattering potential, 

incident field and the Green’s function to the total field. Such equation is usually referred to as the 

lippmann-schwinger equation (LSE). Out of this equation, different direct-inversion models based 

on weakly-scattering approximation (i.e. usually called first-order approximations) are derived in-

cluding Born and Rytov approximations. While these models are direct and simple, they usually fail 

for samples that experience highly-scattering events. In addition, such reconstruction, usually suffer 

from the so-called “missing cone” problem where due to the limited NA of the objective results in 

missing spatial frequency around the axis of propagation. Different experimental and computational 

approaches are discussed to solve such problem. Experimentally, a proposed solution would be to 

image not in transmission but in a 90 degrees geometry (i.e. camera is at 90 degrees from the direc-

tion of the incident field), or to image in transmission but with including sample rotation in addition 

to illumination scanning approaches. 
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In chapter 3, a method to assess the performance of the fidelity of different 3D RI reconstruction is 

proposed. On the contrary of samples where the ground truth is known (i.e. fabricated samples),                                                                                                                                                                                                               

biological samples does not possess such property. As a result an assessment method for such re-

constructions is highly needed. We showed how structured illumination can be used to assess the 

performance of different reconstruction schemes through the use of an SLM for both angular scan-

ning and structured illumination. Having the same experimental setup for angular and structured 

illumination without the burden of alignment and/or mechanical instabilities, it is possible to evalu-

ate the performance of the different reconstruction algorithms by quantifying the error between dif-

ferent reconstructions based on the retrieved field from the digitally back-propagated output field 

recorded on the detector using the LSE. This assessment method is useful when imaging biological 

samples where the ground-truth cannot be known while the reconstructions need to be validated.  

However, there are some critical aspects to highlight. First, while in this chapter we showed only 3 

different reconstructions (i.e. Born, Radon, and Rytov), any reconstruction method can be assessed 

with our technique. The second aspect is that while we described the assessment based on structured 

illumination, it is not limited to it. Plane-wave illumination can be used as well since the assessment 

technique is general to any illumination pattern (i.e. phase conjugation). As long as we have access 

to the illumination field and the total field after propagating through the sample, our technique is 

valid.  

 

In chapter 4, we proposed a new technique for the 3D reconstruction of samples using the Wolf 

transform from intensity measurements.  Compared to other reconstruction schemes (i.e. Born, 

Rytov) that require optical interferometry to extract the phase, our approach is less demanding in 

which it only requires 2D intensity maps to perform the 3D reconstruction.  As compared to [14] 

where the far-field intensity was detected and the twin image was neglected, in this work, the twin 

image was carefully analyzed and was shown to strongly affect the final reconstruction from the 

intensity measurements. As a result of the twin image, the 3D reconstruction from the intensity 

measurement resulted in the high frequency features within the sample to prevail as compared to 

holographic measurements. Other approaches can be followed to obtain a quantitative measure of 

the refractive index from intensity measurements. One approach could be to illuminate with the 

maximum possible angle that passes through the objective lens to minimize the effect of the twin 

image, producing enhanced contrast and a quantitative measure of the RI. Another possible ap-

proach would be implementation of a neural network to map 3D RI maps (i.e. Born, Rytov) to the 

3D reconstruction from the intensity measurement, implicitly removing the twin-image effect from 

the reconstructions. One limitation of neural networks is that their fidelity is strongly sample-

dependent, meaning that that they must be retrained for any given class of sample (e.g. cell type, 

tissue type, etc.), so their utility for biological application may be limited. The proposed method is 

only limited to the weak scattering assumption. For multiple scattering samples, iterative recon-

struction schemes can be used with forward models that take multiple scattering into account. We 

expect this intensity-only reconstruction to serve as an initial guess for those iterative reconstruction 

algorithms which usually suffer from local minima when initialized with zero values. In conclusion, 

we observed intriguing results by applying the Wolf transform to intensity-only measurements, ob-

taining edge-enhanced reconstructions when compared to complex field measurements. By using a 
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holographic setup, we were able to investigate the physics behind this reconstruction method and 

compare the RI maps obtained from complex field measurements with the 3D reconstruction ob-

tained from intensity only. 

 

In chapter 5, as a continuation to chapter 4, we presented a technique for 3D refractive reconstruc-

tion using the Wolf transform based on intensity measurements. The technique relies on mapping 

the extracted scattered field into the 3D Fourier space and then taking an inverse 3D Fourier trans-

form to retrieve the 3D RI in the spatial domain. The reconstructions showed signal-to-noise ratio 

due to the use of partially incoherent illumination source which led to minimizing the speckle noise 

usually detected in coherent detection. To retrieve the 3D RI distribution, the illumination and the 

imaging NA must be perfectly matched (i.e. using conical illumination) in which any slight mis-

match will severely affect the reconstruction accuracy as we have shown. Finally, we investigated 

the effect of adding other illumination wavelength and showed how to correct for the chromatic 

aberrations from the objective lens. 

 

In chapter 6, high speed complex wavefront shaping using the digital micro-mirror device was 

demonstrated. The DMD was used in a time-multiplexing mode which allows for 8-bit grayscale 

image representation on the DMD within 38.4 ms allowing for focusing in live samples or for other 

applications without compromising the accuracy. For higher modulation rates, amplitude modula-

tion was demonstrated with maximum achievable frame rate for 8-bit images of 833Hz yielding a 

speed up by a factor of 32 as compared to time multiplexing schemes. The method we demonstrated 

relies on time integrating holographic recordings of the fields or intensity patterns corresponding to 

multiple binary patterns on the DMD. The method is particularly useful for optical systems that use 

digital holography. The method might also be useful in applications where the projected pattern is 

integrated in time by a light sensitive material such as a fluorescent molecule in imaging or a photo-

initiator molecule in 3D printing. 

 

In chapter 7, we have proposed a new tomographic reconstruction algorithm, the LT-SSNP, which 

is based on the SSNP forward model, for imaging complex highly scattering samples with fine de-

tails. By benefiting from the accuracy of the SSNP, the LT-SSNP extracts a maximum amount of 

information from measurements rather than relying on prior assumptions and generalizations about 

the sample structure. The LT-SSNP was quantitatively evaluated and compared with the previous 

algorithm, the LT-BMP, by using synthetic measurements. These synthetic measurements with a 

known solution were generated by using Mie theory for multiple cylinders, and the DDA for an 

arbitrarily shaped cluster of RBCs and a cell phantom. Importantly, the added capabilities of the 

LT-SSNP are dramatic for imaging biological samples containing information across many scales, 

as confirmed by applying it to tomographic images of a yeast cell. The reconstructed tomograms by 

using the LT-SSNP clearly reveal structures that are not observable in the case of Rytov and the 

LT-BPM. Semisynthetic measurements based on the RI reconstructions of the LT-BPM and the LT-

SSNP numerically validate the accuracy of the LT-SSNP reconstructions.  
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Furthermore, we explored the capacity of learning approaches to enable data compression by reduc-

ing the number of scanning angles. The LT-SSNP shows a dramatic improvement in image quality 

by using a small number of illumination angles when compared with the conventional direct inverse 

method by using the Rytov approximation. Even with a low number of projections, the LT-SSNP 

benefits from its weak dependency on the regularization parameter. 

In chapter 8, we presented a DNN approach for reconstructing tomograms of RBCs with greatly 

improved image quality and super-resolution capability, especially enhancing the axial resolution. 

We digitally generated various RBCs and used them to generate synthetic measurements using the 

DDA to overcome the lack of the ground truth. The network trained on the synthetic data accurately 

reconstructs RI distributions of RBCs resolving the problems caused by the missing cone problem. 

We applied the trained network on experimental data to utilize extracted features from the synthetic 

datasets. Despite the lack of the ground truth for the experimental result, we further validated the 

result of the network using semisynthetic measurements, and it confirmed the great improvement. 

In this work, we focused on one specific cell type, RBCs, since it is relatively easy to model them. 

More importantly, RBCs are highly distorted by the missing cone problem, which prevents us from 

retrieving meaningful information for various applications. However, we believe that the proposed 

scheme can be further extended to other types of sample by carefully designing phantoms to statis-

tically capture information in the generated dataset. 
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Institute of Electrical and Electronics Engineers (IEEE), Alexandria Student Branch, Egypt 

■   Reporting and Publications Team Lead                                                                     Sep 2012 – Jun 2013  

LANGUAGES               

■   Arabic (Native language), English (Proficient), French (Elementary) 

SKILLS                         

Optics: Holography, microscopy, 3D imaging, spatial light modulation, metrology. 

Biology:  Cell   Culture,   Sample   Preparation   and   Fixation   Protocols,   histology   slides. 

Materials: Raman spectroscopy, scanning electron microscopy, UV-VIS spectroscopy, elipsometry. 

Computer skills: Microsoft Office, MATLAB, Python, Lumerical, OptiFDTD, Adobe Illustrator. 

INTERESTS                 

Running, Photography, Reading.  
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