
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Scaling Language Features for Program Verification

Georg Stefan SCHMID

Thèse n° 8030

2022

Présentée le 22 juillet 2022

Prof. R. Guerraoui, président du jury
Prof. V. Kuncak, directeur de thèse
Prof. Ph. Rümmer, rapporteur
Dr D. Vytiniotis, rapporteur
Prof. C. Koch, rapporteur

Faculté informatique et communications
Laboratoire d’analyse et de raisonnement automatisés
Programme doctoral en informatique et communications

To my parents

Acknowledgements
Doing a PhD has been a humbling experience. When I started my studies I was full of naive

enthusiasm for building the next great thing in static checking and getting it “out there” for lots

of people to play with. My advisor, Viktor, indulged me in my adventures and I got to explore

a wide range of topics over the following years, leading up to the thesis that you’re about to

read (or, more likely, skim). I thank Viktor for the freedom, guidance and wisdom he offered

throughout my studies. Above all, though, I thank him for being the kind and thoughtful

person he is — I think he doesn’t get enough credit for that.

I also thank the members of my thesis jury, Rachid Guerraoui, Christoph Koch, Philipp Rüm-

mer and Dimitrios Vytiniotis for their insightful comments and an enjoyable discussion during

the oral exam. I am especially grateful towards Dimitrios, who took a chance on me after

we had run into each other at a workshop. Working with him and the team at DeepMind

(Dominik, Michael, Norman, Tamara and collaborators like Adam) exposed me to an exciting

new domain and I learned a lot in little time. Most importantly, it inspired me to pursue more

such collaborations in the future!

Getting from the beginning of the PhD to its conclusion means following a long and winding

path, and I am indebted to many companions that guided me along. In compiling this list I

am bound to miss some names that ought to be in it, but let me try nonetheless.

Firstly, I thank my colleagues in LARA: Etienne, Ravi, Regis, Mikaël, Andreas, Sarah, Manos,

Marco, Stevan, Jad, Nicolas, Romain, Romain, and (the new generation!) Dragana, Rodrigo,

Simon and Mario. I learned much from you, and my work on Stainless would have been

impossible without the tremendous research and engineering done by lab mates past and

present. I should also note that much credit is due to the brilliant undergraduate and Master’s

students that I was fortunate to have as collaborators over one or several semesters. In that

regard I am especially thankful to Maxime, Antoine and Yann. And, of course, Fabien, Sylvie

and Natascha also come to mind — they are the unsung heroes keeping LAMP & LARA afloat

technically and logistically!

Early on in my PhD I found a second home of sorts in our sister-lab, LAMP. I am grateful to

have had the chance to work alongside Martin and take an active part in the lab life, both

academically and socially. The LAMPions are an incredible bunch, and I will fondly remem-

ber the many adventures I had in, around and outside of EPFL with Vojin, Dmitry, Eugene,

Mano, Nada, Sandro, Séb, Felix, Allan, Denys, Paolo, Jonathan, Fengyun, Nico, Guillaume,

Olivier, Aggelos, Anatolii, and Alex. The same goes for the Scala center crew, especially Julien,

Guillaume, Darja, Martin, Jamie, Jorge and Ólafur.

i

Acknowledgements

I also had the great fortitude of stumbling upon amazing teams in industry during my studies,

making it worthwhile to escape not once, but twice from EPFL’s campus. I already mentioned

my lasting impressions with Dimitrios’ team. Two years earlier I got to spend an amazing

summer in Munich, tinkering on compilers with Tobias, Jaro, Benedikt and many others in

the V8 team. Not only are they terrific engineers, they also share many of my hobbies and

interests, and I always look forward to visiting Munich thanks to that.

Of course the list doesn’t end there. EPFL is a large place, and (sometimes!) I managed to

break out of my programming-language bubble to hang out with a few of the other amazing

folks spread around the campus. Right across the yard there were Jonas, Arseniy, David,

Stuart, Marios, Sahand and Adrien, ready to dispense light coffee chat or dish out sage advice

(depending on which was needed). Adrien, in particular, has been both a reliable source of

comic relief, and, above all, a great friend. And then there are the many people with whom I

often hiked, biked, travelled, played Spikeball or simply had a good time by the lake and at Sat:

Patrik, Georg, Beril, Cey, Fredrik, Helena, Hermina, Cesare, Kostas, Lauriane, . . .

A few special thanks are in order for the peers that were pivotal to my thesis: Nicolas, who has

proven to be an amazing engineer time and time again, and helped me along with Stainless

and life in general over coffee and beers. Jad, who is, undoubtedly, the best interactive proof

assistant I know and without whom much of the work in Part II would have been untenable.

Olivier, in whom I found not only a resourceful collaborator, but also a great friend and teacher

of many skills I hadn’t even considered I needed (like when I got a three-hour, mandatory,

intensive crash course in the game of Skat during a train ride to Milan).

My acknowledgments cannot be complete without speaking of the many long-distance bike

tours I enjoyed with Ólaf, Ronja, Olivier and Mia. These trips became a fixture in our summers,

a yearly milestone of sorts, that allowed me to disconnect from research for two weeks, recharge

my batteries, and refine said card-playing skills.

Last, but not least, I thank my family for the loving and unquestioning support they have

provided over all those years. Having my parents, sister, grandparents and aunt to fall back on

is a great privilege indeed, and I strive to be as dependable to those around me, as my family

is to me. Finally, I thank Mia, who has saved me from many dire-looking situations with her

sometimes forceful, often level-headed, but always earnest advice. Above all, I am thankful for

her infinite patience, and showing me the bright days that lie ahead.

Lausanne, February 2022 G. S.

ii

Abstract
Formal verification of real-world software systems remains challenging for a number of rea-

sons, including lack of automation, friction in specifying properties, and limited support for

the diverse programming paradigms used in industry. In this thesis we make progress towards

a better verification experience in general-purpose programming languages by contributing

improvements both to the automated checking and the specification of safety properties in

languages combining functional and imperative features. We present our extensions in two

parts – reasoning about shared mutable data, and types as specifications – both of which

ultimately rely on reductions of expressive surface languages to a functional core. Throughout,

we instantiate our techniques for the particular example of Scala, a mixed-paradigm language

widely-used in industry.

The first part shows how to extend a verifier for higher-order functions and immutable data to

support imperative programs with shared mutable data. We build upon Stainless, a contract-

based verification system that relies on SMT solvers to automatically verify a large fragment

of Scala. Our technique extends Stainless to check general heap-manipulating programs

against modular specifications in the style of dynamic frames. A novelty of our approach is the

translation of imperative function contracts that encodes frame conditions using quantifier-

free formulas in first-order logic, instead of relying on quantifiers or on dedicated separation

logic reasoning. Our quantifier-free encoding enables SMT solvers to both prove safety and to

report counterexamples relative to the semantics of procedure contracts.

In the second part we turn to types and type-level programming as an alternative means of

specifying correctness properties. While dependent types have been studied extensively for

purely-functional languages, we investigate their applications to languages with subtyping

and (abstractions of) imperative features. We first study a calculus that provides type-level

computation through singleton types and allows abstraction of state and IO through a non-

deterministic choice operator. This allows for modelling interactions with existing imprecisely-

typed and impure code. Our calculus is formalized and mechanically proven correct using

the Coq proof assistant. In addition, we develop a prototypical implementation in the Scala

compiler and study typical type-level programming use cases in the Scala ecosystem.

Keywords: functional programming, imperative programming, formal verification, depen-

dent type systems, counterexample finding, shared mutable data, dynamic frames

v

Résumé
La vérification formelle des systèmes logiciels dans des utilisations réelles reste difficile pour

un certain nombre de raisons, notamment le manque d’automatisation, les difficultés dans la

spécification des propriétés et le manque de support pour divers paradigmes de programma-

tion utilisés dans l’industrie. Dans cette thèse, nous progressons vers une meilleure expérience

de vérification dans les langages de programmation généraux en apportant des améliorations

à la vérification automatisée ainsi que la spécification des propriétés de sécurité dans les

langages combinant des caractéristiques fonctionnelles et impératives. Nous présentons nos

contributions en deux parties - une première qui traite des données mutables partagées, puis

une seconde qui aborde l’utilisation de types en tant que spécifications. Les deux parties sont

basées sur la réduction de langages de surface expressifs à un noyau fonctionnel. Tout au long,

nous instancions nos techniques pour l’exemple particulier de Scala, un langage à paradigmes

mixtes largement utilisé dans l’industrie.

La première partie démontre comment étendre un vérificateur pour des fonctions d’ordre

supérieur et des données immuables afin de supporter des programmes impératifs avec des

données mutables partagées. Nous faisons usage de Stainless, un système de vérification

basé sur des contrats qui s’appuie sur des solveurs SMT pour vérifier automatiquement un

large fragment de Scala. L’intégration de notre technique permet à Stainless de vérifier des

programmes généraux qui manipulent le tas par rapport à des spécifications modulaires

dans le style des cadres dynamiques. Une nouveauté de notre approche est la traduction

des contrats qui encodent les conditions de cadre des fonctions impératives en utilisant

des formules sans quantificateur en logique du premier ordre, au lieu de s’appuyer sur des

quantificateurs ou sur la logique de séparation. Notre encodage sans quantificateur permet

aux solveurs SMT de prouver la sécurité et, surtout, de rapporter des contre-exemples aux

contrats des procédures.

Dans la deuxième partie, nous nous tournons vers les types et la programmation au niveau du

type comme moyen alternatif de spécifier les propriétés de correction. Alors que les types dé-

pendants ont été largement étudiés pour les langages purement fonctionnels, nous abordons

ici leurs applications aux langages avec sous-typage et des (abstractions de) traits impératifs.

Nous étudions d’abord un système déductif qui fournit un calcul au niveau du type via des

types singletons et permet l’abstraction de l’état et de l’IO via un opérateur de choix non

déterministe. Cela permet de modéliser les interactions avec le code imprécis et impur. Notre

système déductif est formalisé et prouvé mécaniquement correct à l’aide de l’assistant de

preuve Coq. De plus, nous développons une implémentation prototypique dans le compila-

vii

Résumé

teur Scala et étudions des cas d’utilisation typiques de la programmation au niveau du type

dans l’écosystème Scala.

Mots-clefs : programmation fonctionnelle, programmation impérative, vérification for-

melle, types dépendants, génération de contre-exemples, données modifiables partagées,

cadres dynamiques

viii

Contents
Acknowledgements i

Abstract v

List of Figures xiii

1 Introduction 1

1.1 State of the Art . 2

1.2 Thesis . 3

1.3 Contributions . 5

2 Background: Two Approaches to Static Safety in Scala 7

2.1 The Scala Programming Language . 7

2.2 Type-Level Programming . 10

2.2.1 The Scala 2 Idiom: Implicitly-Resolved Traits as Type-Level Functions . . 11

2.2.2 Progress in Scala 3: Match Types . 12

2.3 Contract-Based Verification . 13

2.3.1 Verifying Scala using Stainless . 14

2.3.2 Example: Encoding Types as Predicates . 15

2.4 Dealing with State . 20

I Decidable and Expressive Reasoning about Heaps in Stainless 25

3 Verifying Mutable Data in Scala 29

3.1 First Example: Stack . 29

3.2 Extended Example: Map on a Tree . 29

3.3 First-Class Heaps . 35

4 Heap Encoding 39

4.1 Encoding tmap . 39

4.2 Translation Rules . 42

4.3 Quantifier-Free Frame Conditions . 45

4.4 First-Class Heaps . 46

4.5 Allocations . 47

ix

Contents

5 Evaluation 49

5.1 Shallowly-Mutable Data Structures . 49

5.2 Mutable Linked Lists and Queues . 50

5.3 Slices, Monolithic and Cell-Based Arrays . 51

5.4 Fork-Join Parallelism . 51

II Type-Level Programming in a Language with Subtyping 55

6 First-Class Type-Level Programming for Scala 59

6.1 Example: Safe Join . 59

6.2 Example: Safe Zip . 61

6.3 Discussion: From Choices to Existentials . 62

7 A Calculus for Type-Level Computation 65

7.1 Syntax and Semantics . 65

7.2 Lowering to a Deterministic Language . 67

7.3 The Type System . 70

7.3.1 Type Inference and Underlying Types . 70

7.3.2 Subtyping and Type Normalization . 72

7.3.3 Subtyping Existential Types . 74

7.4 Untangling Trails . 74

7.5 From Rules to Algorithms . 76

8 Soundness by Reduction to System FR 77

8.1 Embedding Terms . 77

8.2 Embedding Types . 77

8.3 Formalized Soundness Statement . 78

9 A Prototypical Implementation in Dotty 81

9.1 Pattern Matching . 81

9.2 Two Modes of Type Inference . 82

9.3 Approximating Side Effects . 83

9.4 Virtual Dispatch . 83

9.5 Termination . 84

10 Use Case 85

10.1 A Type-Safe Database Interface . 85

10.2 Comparison to an Existing Technique . 88

11 Related Work 91

11.1 Leon and Stainless . 91

11.2 Static Safety through Metaprogramming in Scala 92

11.3 Dependent Types for General-Purpose Programming 93

11.4 Proof Assistants and Verification-Oriented Languages 96

x

Contents

11.5 Verification of Heap-Manipulating Programs . 97

12 Conclusion 101

A An SMT-LIB Encoding of Heaps 105

B Verifying an Inductive Heap Property 107

Bibliography 111

Curriculum Vitae 125

xi

List of Figures
3.1 A mutable stack. 30

3.2 A tree with mutable leaves and a parallelizable in-place map, including read and

write frame conditions. The ++ symbol denotes union of sets, as in Scala. 31

3.3 Functional correctness of the tmap method including the abstraction function,

the invariant, and a proven lemma about purely functional lists. We use ∩ to

display intersection of sets, and use ; for the empty set of heap references

Set[AnyHeapRef](). The ++ symbol denotes concatenation of functional lists

and union of sets, as in Scala. 34

4.1 The data types of the tmap example in Figure 3.2 after our encoding. 40

4.2 The result of encoding the minimally-specified tmap method of Figure 3.2. We

use ⊆ to typeset subsetOf, ∈ for contains, and abbreviate Set[AnyHeapRef] by

RSet. 40

4.3 Selected terms and types of the languages before and after heap encoding. . . . 42

4.4 Basic rules of the term translation relation h,ρ,µ;Γ` t. t′. We abbreviate the

relation as t . t′, since the omitted arguments are merely passed through by the

above rules. The form let x = t1 as T in t2 is syntactic sugar for downcasts (see

Section 4.2). 45

4.5 Syntax of the surface language with first-class heaps and related term translation

rules. The symbol U denotes the universal set of all HeapRefs. 46

5.1 Evaluation results. For each benchmark we list the # of verification conditions

discharged, the # lines of Scala code (including annotations), the total runtime

T, the time spent checking VCs C, and the particular amount of time spent on

VCs of heap contracts HC. Timings are given in seconds. 50

5.2 An interface for asynchronous computations and a sequential specification for

fork-join parallelism. The ??? denotes unimplemented code in abstract classes. 52

7.1 The terms and types for λnd
<:{}. 66

7.2 The term evaluation rules and evaluation contexts. 66

7.3 The terms and types in λdet
<:{}. Constructs not present in λnd

<:{} are marked in gray . 68

7.4 The rules for lowering programs in λnd
<:{} to λdet

<:{}, yielding a deterministic program

without the non-deterministic choose[B] construct. 69

7.5 The inference and checking rules. 71

xiii

List of Figures

7.6 The subtyping rules. 72

7.7 The type normalization rules. 73

7.8 The rules of beta-delta reduction. 73

7.9 The untangle function U and additional auxiliary functions. 75

8.1 The embedding of λdet
<:{} terms and types into System FR. 78

10.1 Comparing the compilation times of two implementations of list concatenation

(left) and join (right) on a logarithmic scale. 88

xiv

1 Introduction

Software plays a crucial role in modern life: Automation through computers has thoroughly

transformed our economy, most of our relationships are now mediated by machines, and

scientific progress routinely comes down to our ability to process ever larger quantities of data.

Just among the most valuable publicly-traded companies, the majority are chiefly concerned

with the development of software and hardware. But as the footprint of computers across

society grows, so does the impact of their failures.

Unfortunately, designing software that does the right thing, and implementing it in a reason-

able amount of time is hard. Over the years, industry and academia have put forth a range

of approaches to prevent faulty software, or at least mitigate its negative impact. Software

development processes address the social aspect of discovering a project’s set of requirements,

building consensus with stakeholders, and coordinating the implementation by a team of

software engineers. On the technical side, software engineers have also found value in ideas

that stem from more established engineering disciplines. Fault tolerance and redundancy, in

particular, are central to the smooth operation of the distributed systems underlying today’s

cloud infrastructure.

The activity that software engineers spend most of their time on, however, is the design and

implementation of individual software components. Software testing is the most widely-

deployed approach to discover and address bugs early on in the development process. Ideas

such as property-based testing and fuzzing further improve the efficacy of this approach, but

the enormous number of possible inputs makes exhaustive testing intractable for all but the

simplest software components.

Formal verification, on the other hand, establishes strong guarantees about the correctness of

a software artifact by showing that an implementation adheres to some formal specification.

While, in principle, this makes for a very attractive means of achieving reliability, very little

software so far has been developed in tandem with machine-checkable correctness proofs.

Arguably, specifying, implementing and proving programs correct is simply a difficult task,

oftentimes not considered worth the additional development effort. Nonetheless, there are

1

Chapter 1. Introduction

early indications that this is changing, as the cost of software failure increases and the quality

of tools improves. For instance, Microsoft has been successfully using formal verification

to ensure the correctness of critical software components such as drivers [BCLR04], a hy-

pervisor [LS09], complex distributed systems [HHK+15] and an implementation of the TLS

protocol stack [BBDL+17]. Similarly, Amazon has begun investing significantly in the formal

correctness of their cloud services [NRZ+15, BJA+21], bringing verification to a wider audience

of software developers and the general-purpose languages they use.

In this thesis I try to address some of the issues holding verification back from being adopted

more broadly, and propose solutions that are both ergonomic and apply to programming

languages used in industry today. Below, I give a (very) brief history of software verification,

introduce the central questions addressed by my thesis, and outline its concrete contributions.

1.1 State of the Art

Formal verification is one of the longest-standing challenges in software development. From

the outset of computer science in the 1930s, pioneers such as David Hilbert, Kurt Gödel,

Alonzo Church and Alan Turing were interested in which formal statements could be decided

in a fully-automated way [HA28]. This included properties about programs themselves, such

as termination, as posed in Turing’s famous halting problem, and had to be answered in the

negative [Göd31, Chu36, Tur37]. In fact, as Rice showed later, any non-trivial property about

programs is undecidable [Ric53].

Over the following decades a number of mechanical and electronic designs realized the univer-

sal computing model previously envisioned by Church and Turing. In short time computers

proved to be tremendously useful and versatile tools, assuming the right kind of programming,

which remained more art than craft, much less a science. Just as today, programmers were

largely undeterred by the apparent difficulty of producing correct programs.

Eventually, researchers such as Robert Floyd [Flo67a], Tony Hoare [Hoa69] and Edsger Dijkstra

[Dij76] paved the way for a mathematically rigorous treatment of software. The 70s and

80s saw a flurry of advances in programming languages, both in terms of theory and in

tooling available to practitioners. Among the most exciting developments besides higher-level

compilers was the introduction of automated theorem provers. The first program verifiers,

such as the Stanford Pascal Verifier [LGvH+79], lifted the systematic, but manual process of

proving correctness in calculi like Hoare’s, and provided a glimpse of how programs and proofs

might be developed in a single unified process.

While much of the foundational technology to verify software existed by the late 80s, we didn’t

learn how to apply it to larger-scale projects until recently. Programmers, mostly coming

out of the academic community, have since built and proven correct artifacts of impressive

size, such as compilers [Ler09, KMNO14], an operating system kernel [KEH+09], and the

encryption protocol stack underlying most of the internet [BBDL+17]. Many of these were

2

1.2. Thesis

initially impressive merely in that they could be achieved at all, covering complex correctness

properties and hundreds of thousands of lines of code. In effect, these projects established

and improved bounds of what engineering effort is necessary to build trustworthy software.

In practice, successful verified software projects (like those mentioned above) tend to be

written a) from scratch, b) with a clear idea of the specification, and c) implemented in

verification-oriented languages. The latter roughly fall into two categories. Proof assistants,

such as Coq [BC04], Isabelle [NPW02] or HOL4 [SN08], restrict themselves to languages with

clear logical semantics, but have high barriers to entry, making it challenging to develop large

software systems with them. On the other hand, verifiers for general-purpose programming

languages make it easier to integrate with existing software ecosystems and apply standard

development practices, but typically limit themselves to “well-behaved” features or tailor the

language to be “verification-first“ [SHK+16, Lei10, HMWC15].

1.2 Thesis

While much progress has been made over the past decades, the cost of developing verified

software is still significant. Furthermore, the software industry and its tools are evolving

rapidly, and verification technology has arguably failed to keep pace.

This thesis is my attempt to move verification one step closer to modern software development.

I describe verification techniques that apply to high-level programming languages and provide

significant automation. The particular context of my work is Scala, a high-level, mixed-

paradigm programming language that combines object-oriented and functional features.

Scala has seen broad adoption in industry and has influenced many other language designs in

recent years, so it is my expectation that the techniques described herein will apply to a range

of modern and future languages.

Broadly speaking, I am interested in two questions:

• How can we build program verifiers that support the full generality of imperative pro-

grams, but retain the simplicity of functional abstractions whenever possible?

• How can we leverage the type system to concisely specify programs in languages with

subtyping and imperative features?

Program Verifiers for High-Level, Imperative Languages

To address the first question, my work expands upon a long history of automated theorem

provers and verifiers. In particular, I build on Stainless, a program verifier that already supports

a significant chunk of the Scala language, but only a very restricted fragment of imperative

programs.

3

Chapter 1. Introduction

Languages combining functional with imperative programming are a somewhat rarely-explored

area in the design space of verification. As noted above, large-scale verified software projects

tend to be carried out using specialized toolchains, such as dedicated program verifiers or

proof assistants. These tools typically specialize either in reasoning about imperative or func-

tional programs, which puts verifiers such as F* [SHK+16] and Stainless into a rather unique

position. Both have functional foundations, rely on SMT solvers like Z3 [dMB08b] to discharge

proof obligations in first-order logic, but ultimately target languages with imperative idioms

and thus require reasoning about the heap. More to the point, they resemble the kind of

languages that programmers in industry actually develop large projects in, but simultaneously

provide the functional abstractions that facilitate proofs.

Stainless further differentiates itself by combining some of the features typically found (sep-

arately) in verifiers and model checkers: it is not only sound for proofs, but also sound and

complete wrt. counterexamples. In other words, the tool will automatically generate failing

test cases if and only if such cases exist. Great care has been taken in Stainless’ design to

maintain this property in the presence of higher-order functions and state. That being said,

Stainless has, so far, restricted itself to reasoning about unshared mutable data, ruling out

programs that alias objects.

The first part of this thesis is dedicated to lifting this restriction by introducing a new reduction

from imperative to functional programs with arrays. Specifying the behavior of effectful

functions wrt. the heap typically requires the use of universal quantification. Alas, SMT

solvers are generally unable to report models in the presence of such quantifiers, meaning

that Stainless would lose its ability to report counterexamples. Our encoding sidesteps the

issue by translating to a generalized, but decidable theory of arrays, extending Stainless to

support the “full” imperative fragment of Scala without compromising its existing features.

Specification through Types

In the second part I turn my attention to the issue of specifying functional correctness proper-

ties through type annotations in languages with subtyping and imperative features.

Most program verifiers, including Stainless, employ explicit annotations at the level of func-

tions, which are typically referred to as contracts (as popularized in Eiffel [Mey97]), or pre-

and postconditions, denoting the particular conditions that must hold at function entry and

exit. But there are good reasons to revisit this widespread choice of specification mechanism.

Alternative verification systems such as LiquidHaskell [VSJ+14, VRJ13, VBJ15] have shown that

there is great potential in leveraging the type system to express and propagate specifications,

because it lowers the annotation burden on programmers, and allows more safety properties

to be checked in a highly-automated manner.

Independently of these developments, communities of existing industrial programming lan-

guages are increasingly (ab)using their advanced typing features to recover the kind of precise

4

1.3. Contributions

reasoning usually reserved to verifiers. For instance, Scala and TypeScript possess enough

type-level machinery to encode arbitrary computation on types [Die17], which can, with some

effort, be used to encode functional contracts. In Scala this has been realized by combining

various type system features, such as higher-kinded types, F-bounded polymorphism, and

implicit resolution.

The resulting style of type-level programming emulates dependently-typed languages [McB02],

but leaves much to be desired in terms of performance and ergonomics. The second part of

this thesis tackles this issue and proposes a principled solution to type-level programming in

an existing, industrial programming language. In particular, we explore how one might retrofit

dependent types in Scala, which notably requires dealing with subtyping and imperative

constructs.

In summary, the existing mechanisms to solve both of these problems – specification and

checking of programs mixing functional and imperative features – constitute good starting

points with clean functional foundations. Throughout this thesis we leverage the idea that new,

more powerful mechanisms can be implemented by reducing to the underlying functional

core language.

Thesis Statement

Verification of general-purpose programming languages with both functional and object-

oriented features is feasible and practical by reduction to a higher-order, functional language.

Reductions can extend functional program verifiers to enable reasoning about shared mutable

data by modelling heaps as arrays in a decidable first-order theory. Reductions can also model

type-level programming in an imperative language with subtyping by using a translation to

a dependently-typed, pure calculus that introduces additional parameters. Such reductions

thus increase the expressiveness of existing type systems and scale the language fragment

supported by traditional program verifiers.

1.3 Contributions

This thesis is structured in two technicals parts. Part I discusses how to encode imperative

programs manipulating shared mutable data, while retaining a) simplicity of reasoning about

functional code, and b) the ability to report counterexamples, i.e., concrete program inputs

that violate a specification.

In particular, the first part of this thesis makes the following contributions:

• We describe a novel translation of frame conditions into quantifier-free formulas of

combinatory array logic [dMB09], yielding a heap encoding that can reliably produce

abstract counterexamples modulo function contracts.

5

Chapter 1. Introduction

• We show how to soundly incorporate into our approach the notion of first-class heaps,

affording additional flexibility in proving lemmas about inductive heap predicates, while

coming at essentially no additional cost in translation. First-class heaps also increase

our system’s expressive power in that they enable proofs of hyperproperties.

• We show how this encoding can be integrated with an expressive program verifier such

as Stainless. Our implementation supports a mixture of imperative and functional

features, including higher-order functions and generics, and provides dynamic frames

as a modular specification mechanism.

Part II explores a new foundation for specifying and checking expressive properties through

the type system of statically-typed, general-purpose languages such as Scala that combine

functional with object-oriented programming.

In summary, the second part of this thesis contains the following contributions:

• We present our calculus λnd
<:{}, which illustrates the novel elements of our extension to

Scala. The type system ofλnd
<:{} combines dependent types, subtyping and a generalization

of singleton types to non-deterministic terms. We demonstrate how the interplay of

these features allows us to leverage term-level programs for type-level computation.

• We provide a soundness proof of λnd
<:{} by reusing reducibility semantics of System FR

[HVK19]. We prove the soundness of our rules. These proofs are mechanized using the

Coq proof assistant [BC04].

• We show a concrete use-case of our system by implementing it as an extension of Scala,

and using it to develop a strongly-typed wrapper for Apache Spark [ZXW+16]. Thanks to

dependent types, we can statically ensure the type safety of database operations such as

join and filter. We compare our implementation with an equivalent implicit-based one

and show significant compilation time savings.

The work in Part I will appear at VMCAI 2022 under the name “Generalized Arrays for Stainless

Frames”. The work in Part II was done in close collaboration with

• Olivier Blanvillain, who contributed throughout the entire project, but especially to the

prototypical implementation in Dotty (the Scala 3 compiler), and

• Jad Hamza, who took charge of the proof mechanisation in Coq which, in turn, informed

subsequent changes in the calculus.

It has previously been published as a technical report [SBHK20].

6

2 Background: Two Approaches to
Static Safety in Scala

In this chapter I will briefly tour some salient features of the Scala programming language, and

Stainless, a program verifier for Scala. Our focus will be on two advanced, but complementary

mechanisms for achieving safety guarantees statically in Scala: type-level programming and

contract-based verification. I will demonstrate through a few examples what can and cannot

yet be verified, in particular in the presence of mutable data. The identified shortcomings will

set the stage for extensions to both approaches that I describe in later chapters of this thesis.

2.1 The Scala Programming Language

Scala is somewhat unique in its fusion of the object-oriented and functional programming

paradigm. Its type system is built around subtyping and a notion of multiple inheritance

(through classes and traits), yet unlike other object-oriented languages it encourages the use of

purely-functional primitives wherever possible. In particular, its standard library is bifurcated

along the lines of immutable and mutable data structures; programmers can (and often do)

choose either depending on their use case. In addition, much thought in Scala’s design has

been put into maintaining interoperability with the JVM ecosystem, making it easy to interface

with existing Java code.

It is worth noting that despite significant industry adoption, Scala is an actively evolving

language. From its inception it served as a testbed for new ideas in language design, and

it continues to do so with the release of major version 3 in May 2021. With the promotion

of “Dotty” (the working title of Scala 3’s new compiler) comes a host of changes, including

many new language features (some of which we will touch upon later), and a completely new

whitespace-based syntax. In the interest of accessibility and coherence between different

chapters, I will present all code examples in the familiar Scala 2 syntax that Dotty continues to

support.1

1Stainless does not yet possess a stable Scala 3 frontend, making Scala 2 syntax the natural choice for examples
throughout this thesis.

7

Chapter 2. Background: Two Approaches to Static Safety in Scala

Consider the following Scala program defining a data type List[T] that represents purely-

functional linked lists in the classical way:

sealed trait List[T]

case class Nil[T]() extends List[T]

case class Cons[T](head: T, tail: List[T]) extends List[T]

In this example, List[T] corresponds to an algebraic data type (ADT) with exactly two con-

structors, the empty list Nil, and Cons(x, xs) where x represents the head of the list and

xs its tail. The case keyword requests automatically derived implementations for equality,

hashing and pretty-printing for Nil and Cons.

Scala’s type system allows for more general type hierarchies than just ADTs. For instance, the

Option[T] data type (analogous to Haskell’s Maybe) found in the standard library is defined

approximately as follows:

sealed trait Option[+T]

case object None extends Option[Nothing]

case class Some[+T](value: T) extends Option[T]

Several differences from our definition of List[T] stand out: Firstly, the type parameter

T of Option[T] is prefixed by a plus sign, indicating that the data type is covariant in this

parameter. Secondly, Nonewas defined as a case object, indicating that only a single instance

of None is desired (it is a so-called singleton). On the term level we can refer to its unique

value as None, and analogously we can refer to the singleton type of that particular instance

as None.type. Finally, None does not possess any type parameter of its own, but instead

extends the type constructor Option[_] instantiated at type Nothing, i.e., the bottom of Scala’s

subtyping hierarchy. Thanks to covariance, we get that None.type <: Option[Nothing] <:

Option[T] <: Option[Any] <: Any for arbitrary T, allowing us to use None polymorphically:

None: None.type // None is typeable at its singleton type (its most precise type)

None: Option[Nothing]

None: Option[Boolean]

None: Option[Int]

None: Any // None is well−typed (typeable at top type Any)

Similarly to None we could have defined Nil to be a case object extending List[Nothing]

and made List[T] covariant. Beyond these examples Scala also allows for non-sealed traits

and classes, permitting client code to extend those parts of the type hierarchy.

We can define methods on List[T] as part of the trait. For instance, the following method

lastOption computes the last element of the list, if any:

trait List[T] {

def lastOption: Option[T] =

8

2.1. The Scala Programming Language

this match {

case Nil() => None

case Cons(x, Nil()) => Some(x)

case Cons(_, xs) => xs.lastOption

} }

Much like Java, Scala is based on a type system built around subtyping, but in many ways goes

beyond what is available in comparable languages. Among other things, Scala supports multi-

ple inheritance through traits, higher-kinded types, and various forms of metaprogramming

through a combination of implicits, reflection and macros. We will touch upon some of

these features later, but, for the time being, let us simply note that Scala often allows multiple

ways to solve the same problem. Case in point, the lastOption method shown above could

have equally been expressed using virtual dispatch (though this would be somewhat wasteful

given the closed nature of the List data type):

sealed trait List[T] {

def lastOption: Option[T] // abstract method

}

case class Nil[T]() extends List[T] {

def lastOption: Option[T] = None

}

case class Cons[T](head: T, tail: List[T]) extends List[T] {

def lastOption: Option[T] =

tail match {

case Nil() => Some(head)

case _ => tail.lastOption

}

}

The lastOption method also illustrates pattern matching, another staple of functional pro-

gramming. While we know from other object-oriented languages that virtual dispatch or

specialization can be used to encode higher-order functions, Scala naturally provides first-

class support for the latter. As a simple example, consider this method that produces a new

list by applying a function f to each element:

sealed trait List[T] {

def map[U](f: T => U): List[U] =

this match {

case Nil() => Nil()

case Cons(x, xs) => Cons(f(x), xs.map(f))

} }

9

Chapter 2. Background: Two Approaches to Static Safety in Scala

This concludes our tour of Scala’s basic features. In the remainder I will discuss two particular

ways of achieving additional safety at compile-time.

2.2 Type-Level Programming

Scala provides a number of advanced type system features such as higher-kinded types, F-

bounded polymorphism, generalized algebraic data types (GADTs), path-dependent types,

type members, and implicit programming. While useful on their own, put together, these

features enable a paradigm often called type-level programming. As a result, Scala program-

mers can enforce a surprisingly large range of properties just by using (and abusing) the type

checker.

This approach is popular with DSL and library authors, as it allows them to produce safer public

interfaces, and relies on nothing but the standard type checker to detect and report errors.

Examples of such libraries include strongly-typed wrappers for database and data processing

interfaces (by reflecting table schemas into Scala’s types; for example, Frameless [Fra21]),

Refined [Tho21], an encoding of refinement types with a pre-defined set of predicates and

combinators, and Shapeless [Sab21], which provides various strongly-typed data structures

and is intended to serve as a standard library for type-level programming in Scala.

As a simple example of such a data-structure we will consider heterogeneous lists [KLS04].

The idea is to generalize the concept of tuples to lists whose shape and distinct element types

are tracked statically, so that type-level functions can operate upon them generically. Hetero-

geneous lists have long served as a concise benchmark for new typing features, illustrating the

ergonomics, performance and safety of type-level programming approaches.2

We start by defining the corresponding data type HList:

sealed trait HList

case object HNil extends HList

case class HCons[H, T <: HList](head: H, tail: T) extends HList

For example, the tuple type (Int, Boolean) would be represented by an HList containing

an Int followed by a Boolean:

// Analogous to ‘(1, true) : (Int, Boolean)‘

HCons(1, HCons(true, HNil)) : HCons[Int, HCons[Boolean, HNil.type]]

Note that HList possesses exactly two constructors: The singleton HNil, and HCons[H, T],

which can only be instantiated with T <: HList. This rules out non-sensical instantiations

such as HList[Int, Int]. Subtyping thus serves the role typically taken on by GADTs and

promoted data types [YWC+12] in Haskell.

2See, for instance, the Data.HList library of Haskell and its discussion of alternative implementations.

10

2.2. Type-Level Programming

2.2.1 The Scala 2 Idiom: Implicitly-Resolved Traits as Type-Level Functions

To leverage this generic representation of tuples we would now like to define type-level func-

tions that, e.g., project out the n-th element of an HList, or concatenate two such lists. In Scala

2 this is typically achieved by means of implicit resolution [OBL+18], a form of type-based

program synthesis that is deeply integrated with Scala’s existing type checker.

The idea of the Scala 2 idiom is to encode type-level functions as traits with type parameters

for each input and one type-parameter for the output.

trait Concat[Xs <: HList, Ys <: HList, Out <: HList] {

def apply(xs: Xs, ys: Ys): Out

}

Implicits can then be used to provide exactly those instances of Concat[Xs, Ys, Out] that

informally satisfy Xs ++ Ys == Out, with apply performing the actual concatenation of two

HLists on the term-level.

// Define implicit instances of Concat in the trait’s companion object.

object Concat {

implicit def concatNil[Ys <: HList]: Concat[HNil.type, Ys, Ys] =

new Concat[HNil.type, Ys, Ys] {

def apply(xs: HNil.type, ys: Ys) = ys

}

implicit def concatCons[X, Xs0 <: HList,

Ys <: HList,

Out0 <: HList]

(implicit ev: Concat[Xs0, Ys, Out0]):

Concat[HCons[X, Xs0], Ys, HCons[X, Out0]] =

new Concat[HCons[X, Xs0], Ys, HCons[X, Out0]] {

def apply(xs: HCons[X, Xs0], ys: Ys) =

HCons(xs.head, ev.apply(xs.tail, ys))

}

}

This allows us to define a function concat that takes two HLists and returns the concatenated

HList, while retaining the exact shape and element types of the resulting list.

def concat[Xs <: HList, Ys <: HList, Out <: HList]

(xs: Xs, ys: Ys)(implicit ev: Concat[Xs, Ys, Out]): Out =

ev.apply(xs, ys)

Upon every invocation of concat with xs: Xs and ys: Ys we require an implicit derivation

of Concat[Xs, Ys, Out]. This effectively coaxes the Scala type checker into performing the

11

Chapter 2. Background: Two Approaches to Static Safety in Scala

computation for us at compile-time:

// Concatenate various hlists and check against the expected result types.

def example[Ys <: HList](x1: Int, x2: String,

ys: Ys, zs: HList): Unit = {

val xs = HCons(x1, HCons(x2, HNil))

concat(HNil, xs):

HCons[Int, HCons[String, HNil.type]]

concat(xs, xs):

HCons[Int, HCons[String,

HCons[Int, HCons[String, HNil.type]]]]

concat(xs, ys):

HCons[Int, HCons[String, Ys]]

concat(xs, zs):

HCons[Int, HCons[String, HList]]

}

While this approach to type-level computation has been very popular in the Scala community,

it also presents several shortcomings:

• Programming style: Instead of expressing concat as a simple recursive function, we

had to adopt a logic programming style. The actual term-level computation is expressed

in terms of method calls to several anonymous classes.

• Performance: Implicit resolution incidentally does the right thing, but was never de-

signed to drive general-purpose computation. The corresponding search algorithm in

Scala’s type checker makes for a rather inefficient interpreter, leading to significantly

increased compilation times [Tor17, Can18, KMV19]. In addition, the desire to optimize

for such use cases has led to the introduction of various heuristics over the years, making

implicit search brittle once one wanders off the beaten path.

• Accessibility: Developing new type-level functions using this idiom is somewhat of a

dark art among Scala developers. The use of implicits often makes it hard to understand

why one’s program fails to compile. Furthermore, to deal with functions more compli-

cated than concat, additional tricks such as low-priority implicit instances and auxiliary

type members may be needed.

2.2.2 Progress in Scala 3: Match Types

To address some of these issues, Scala 3 introduces match types, a type-computation mech-

anism similar to type families in Haskell. The idea is to add a new form of type resembling

the term-level match expression, and apply normalization steps during type checking. Conse-

quently, our concat example can be expressed as follows:

12

2.3. Contract-Based Verification

type Concat[Xs <: HList, Ys <: HList] <: HList =

Xs match {

case HNil.type => Ys

case HCons[x, xs0] => HCons[x, Concat[xs0, Ys]]

}

def concat[Xs <: HList, Ys <: HList](xs: Xs, ys: Ys): Concat[Xs,Ys] =

xs match {

case xs: HNil.type => ys

case xs: HCons[_, _] => HCons(xs.head, concat(xs.tail, ys))

}

The above snippet illustrates how match types enable type-level programming in a functional

style, and eliminate much of the verbosity found in the implicit-based solution. The term-level

function concat is expressed recursively, as is its type-level counterpart Concat. By ascribing

Concat[Xs, Ys] as the result type, the user instructs Scala’s type checker to ensure that

concat in fact always produces an abstract Concat[Xs, Ys]. Conversely, the type checker

will infer precisely-typed instances of HList at call sites of concat, meaning that our function

example from before will pass without further modifications.

Match types were developed concurrently with the solution we present in the second part of

this thesis. While they address many of the same painpoints, the match type approach stops

short of unifying terms and types, as one would expect in a dependently-typed system. This

means that acquiring precisely-typed term-level functions like concat still requires explicit

duplication on the type level. In fact, given the current implementation of match types,

concat must syntactically reflect the structure of Concat. If one wishes to express the function

differently (for instance, in order to gain efficiency), they need to fall back to unsafe casting.

2.3 Contract-Based Verification

The techniques presented so far rely on a deep integration with the type checker, and shine

when they are used to prove properties that enjoy a privileged representation in the type

system. For instance, Scala’s type checker is excellent at ensuring the structural properties

of data: it does so efficiently and ergonomically, but can nonetheless provide useful error

messages when things go wrong. Through some clever encodings (that we gave a taste of in

the previous section) it can also prove more involved functional properties. For instance, we

might use HLists to ensure that a zip function will only ever be applied to two lists of the

same length. Unfortunately, proving more complex properties quickly becomes cumbersome

without some notion of type-level computation and an automated proof system to go with it.

In this section I will give an overview of contract-based verification, an alternative approach

to ensuring safety statically. I will introduce the underlying ideas by the example of Stainless,

a verification pipeline for Scala. Stainless extracts Scala programs after type checking, and

13

Chapter 2. Background: Two Approaches to Static Safety in Scala

progressively lowers function-level contracts to verification conditions, that are then dis-

charged by an automated theorem prover. Unlike current type-level programming techniques

in Scala, Stainless allows for the verification of deeper properties, such as checking that the

implementation of a red-black tree is functionally correct.

2.3.1 Verifying Scala using Stainless

Scala’s many features conspire to make it not only a language of great expressivity, but also

a rather challenging target for formal verification. A program verifier for a realistic subset of

Scala must provide support for its well-behaved functional fragment (including higher-order

functions), but also for imperative features such as shared mutable data, virtual dispatch

and open type hierarchies. Verifying Scala thus means solving many challenging aspects

of program verification (perhaps with the notable exception of memory safety, which is a

non-issue on the JVM).

Stainless is a particular verification pipeline [HVK19, KH21] that addresses a significant chunk

of these challenges. At its heart, Stainless is an automated verifier for higher-order functional

programs that progressively unfolds function invocations and uses SMT solvers such as Z3

[dMB08b] to discharge proof obligations over theories such as uninterpreted functions, al-

gebraic data types and bit-vectors. Unlike many similar tools, Stainless avoids the use of

universal quantification and triggers in its encoding to first-order logic. This is remarkable,

in that it yields a system that is sound and complete for counter-examples, and yet provides

a high degree of automation for proving functional correctness. In other words, Stainless

requires relatively few annotations to make proofs go through (as we will see later), but – given

enough time – can also produce concrete program inputs that violate a program’s specification,

if and only if those specifications are in fact violated.

As a simple example of what we mean by contract-based, consider the following Scala function

computing n factorial:3

def fac(n: BigInt): BigInt = {

require(n >= 0)

if (n <= 1) 1 else n * fac(n - 1)

} ensuring (_ > 0)

Note that besides the usual recursive implementation, fac also features a precondition

require(...) and a postcondition ensuring(...). In particular, we assume that fac may

only be called with non-negative n, and would like to ensure that it only ever returns positive

results. If we invoke Stainless on this example, it will automatically verify that the implementa-

tion satisfies the given specification by virtue of an inductive proof. If, on the other hand, we

try to prove some property about fac that does not hold, Stainless will eventually produce a

counterexample for us.

3BigInt is Scala’s built-in type for arbitrary-precision integers.

14

2.3. Contract-Based Verification

def facIsStrictlyMonotonic(n: BigInt): Unit = { require(n >= 0); () }

ensuring (_ => fac(n) < fac(n+1))

For instance, in the above example we assert that fac is strictly monotonic. By unfolding

the function definition on both sides the verifier quickly discovers that the property may be

violated (for instance, when n equals zero).

2.3.2 Example: Encoding Types as Predicates

We will now consider an extended example to provide a tour of Stainless’ features and demon-

strate its expressive power. Taking inspiration from the kind of type-level computation seen in

Section 2.2, we will, for the moment, avoid most of Stainless’ support for Scala typing features,

and show how one might emulate various type constraints through contracts.

The combination of algebraic data types and higher-order functions alone (which forms the

core of Stainless) provides a highly-expressive language into which we can encode many of

the advanced type system features. Below we will consider the example of Lisp-like data upon

which we impose strongly-typed structures such as homogeneous lists.

We start by defining a simplified “top” type that, as in Lisp, distinguishes between Nil, pairs

(Cons) and Atoms:

sealed trait Top

case object Nil extends Top

case class Cons(fst: Top, snd: Top) extends Top

case class Atom(value: Int) extends Top

Values of type Top are Lisp-like in that they describe s-expressions, making no distinction

between different data types. For simplicity, we assume Atoms merely store some 32-bit integer.

Recursive Types as Inductive Predicates. We can impose structure upon a Lisp-like value

using an inductive predicate such as isList below:

// A predicate describing lists embedded in the Top type hierarchy.

def isList(xs: Top): Boolean =

xs match {

case Cons(_, xs0) => isList(xs0)

case Nil => true

case _ => false

}

Stainless allows us to simply define such predicates as pure functions and then refer to them

in contracts. For instance, we might require that the input given to a function computing the

length of a list satisfy this predicate:

15

Chapter 2. Background: Two Approaches to Static Safety in Scala

def length(xs: Top): BigInt = {

require(isList(xs))

xs match {

case Cons(x, xs0) => 1 + length(xs0)

case Nil => 0

// case Atom(_) => *no need*!

}

}

Stainless will generally ensure exhaustiveness of pattern matching, and report a counterex-

ample when a feasible scrutinee is unhandled. We are nonetheless allowed to omit a case

for Atoms in the above example – Stainless infers by unfolding the precondition isList(xs)

that xs will necessarily be either Nil or Cons. By the same mechanism it also deduces that

isList(xs0), establishing the precondition necessary for the recursive call to length(xs0).

Following this approach of using isList to stand in for a dedicated List type, we can define

some more interesting functions such as list concatenation:

// Concat, maintaining list property and proving another property (length)

// concat : List => List => List

def concat(xs: Top, ys: Top): Top = {

require(isList(xs) && isList(ys))

xs match {

case Cons(x, xs0) => Cons(x, concat(xs0, ys))

case Nil => ys

}

} ensuring (res => isList(res) &&

length(res) == length(xs) + length(ys))

Compared to the length function, we face two additional challenges: Above all, we would

like to establish that the data structure returned from concat is again a list, i.e., isList(res).

While we are at it, we might also want to provide a stronger guarantee about the resulting

list; namely, that its length length(res) equals the length of the two input lists. Since both

of these properties follow directly from an inductive proof structured like the recursion in

concat, Stainless can deduce this fully automatically.

Type Constructors as Higher-Order Functions. So far we have been using inductive predi-

cates (i.e., pure, recursive functions) to describe recursive, but monomorphic data structures.

We can go one step further and also emulate parametric and refinement types. The analogy so

far has been to replace types by predicates. Since predicates are merely functions, they remain

first-class citizens in Stainless:

type Pred = Top => Boolean // A predicate

16

2.3. Contract-Based Verification

If we take the analogy further, then higher-order functions of type Pred => Pred are to predi-

cates Pred as type constructors * => * are to proper types *. In other words, we can view a

type constructor like List[_] as a predicate transformer which takes a predicate p (represent-

ing type argument T) and produces another predicate (representing the list type instantiated

at T):

// Like ‘isList‘, but ensuring predicate ‘p‘ for each element:

// isListWith : Pred => Pred

def isListWith(p: Pred)(xs: Top): Boolean =

xs match {

case Cons(x, xs0) => p(x) && isListWith(p)(xs0)

case Nil => true

case _ => false

}

This definition allows us to parameterize the list predicate further by restricting each individual

element. For example, we could express “lists containing only atoms of positive value” by first

defining the auxiliary predicate

def isPosAtom(x: Top): Boolean =

x match {

case Atom(value) => value > 0

case _ => false

}

and then using the composite predicate isListWith(isPosAtom)(xs). When accessing an

element x of such a list, Stainless can now deduce that x > 0 and use this to prove the

safety of other operations (e.g., that dividing by x is well-defined). In effect, constraining

a function parameter xs: Top with the above composite predicate is much like declaring

it with a composite type List[{a: Atom where a.value > 0}] in a system that supports

parametric polymorphism (List[...]), subtyping (using the constructor Atom as a dedicated

type, implying a type test) and refinement types ({... where a.value > 0}).

Analogously to type parameters, we must now parameterize functions by the predicate p:

// Concat, maintaining T−list property

// concat : forall T. List[T] => List[T] => List[T]

def concat(p: Pred)(xs: Top, ys: Top): Top = {

require(isListWith(p)(xs) && isListWith(p)(ys))

xs match {

case Cons(x, xs0) => Cons(x, concat(p)(xs0, ys))

case Nil => ys

}

} ensuring (res => isListWith(p)(res))

17

Chapter 2. Background: Two Approaches to Static Safety in Scala

On the other hand, length only requires xs to be a list, so if we would like it to remain

unchanged we could redefine isList in terms of isListWith:

def tru(x: Top): Boolean =

true

def isList(xs: Top): Boolean =

isListWith(tru)(xs)

Proving Lemmas. Hanging onto isList and leaving length unchanged comes at a price.

Stainless cannot automatically deduce isList from isListWith(p), so we have to provide

a lemma whenever both predicates are in play. We run into this issue if we try to prove the

original variant of concat that comes with additional guarantees about the length of the

resulting list:

// Essentially, List[T] <: List[Any].

def lemmaListWithIsList(p: Pred)(xs: Top): Unit = {

require(isListWith(p)(xs))

xs match {

case Cons(_, xs0) => lemmaListWithIsList(p)(xs0)

case _ => ()

}

} ensuring (_ => isList(xs))

// Concat, maintaining T−list property and proving another property (length)

def concat(p: Pred)(xs: Top, ys: Top): Top = {

require(isListWith(p)(xs) && isListWith(p)(ys))

val res = xs match {

case Cons(x, xs0) => Cons(x, concat(p)(xs0, ys))

case Nil => ys

}

lemmaListWithIsList(p)(xs)

lemmaListWithIsList(p)(ys)

lemmaListWithIsList(p)(res)

res

} ensuring (res => isListWith(p)(res) &&

length(res) == length(xs) + length(ys))

Note that in the postcondition of concat we invoke length with xs, ys and res, as be-

fore, but concat’s precondition now refers to isListWith(p) rather than isList. An issue

arises: Stainless knows that isListWith(p)(xs) holds, but not whether isList(xs), i.e.,

isListWith(tru)(xs). The role of lemmaListWithIsList here is to, effectively, prove covari-

ance of List[_], and correctly deduce that List[T] <: List[Any], yielding isList(xs) in

18

2.3. Contract-Based Verification

the postcondition of the lemma.

Unfortunately, Stainless cannot automatically insert invocations of lemmaListWithIsList, so

we had to provide hints in the above example. On the other hand, a more uniform encoding

would have circumvented this issue altogether: we could have instead added a predicate

parameter p to length and used isListWith(p) in its precondition (analogously to typing

length : forall T. List[T] => BigInt), removing the necessity for a lemma. Conversely,

one could also define length as a total function on Top, returning some dummy value for

non-lists and remove the precondition entirely. Stainless provides considerable freedom in

structuring one’s proofs, and different encodings may be desirable depending on the properties

we are trying to show overall.

Nesting via Partial Application. Finally, partially-applied functions allow us to nest predicates,

and thereby also encode composite applications of type constructors. For instance, we might

want to define flatten which concatenates a list of lists into one “flat” list:

// flatten : forall T. List[List[T]] => List[T]

def flatten(p: Pred)(xss: Top): Top = {

require(isListWith(isListWith(p))(xss))

xss match {

case Cons(xs, xss0) => concat(p)(xs, flatten(p)(xss0))

case Nil => Nil

}

} ensuring (res => isListWith(p)(res))

Note that we encoded List[List[T]] as isListWith(isListWith(p))(xss), i.e., we par-

tially applied isListWith to provide the resulting predicate to the outer isListWith.

Discussion. Stainless verifies the entirety of examples seen so far in a matter of seconds, pro-

viding static checks that are both efficient and highly expressive compared to the alternatives

available in Scala’s existing type checker. For this subsection we purposefully chose the encod-

ing of typing features to give a verification benchmark whose desired properties are intuitively

clear, but that also illustrates some of the trade-offs involved (i.e., a more specialized verifier

like a type checker will do a better job at propagating constraints than Stainless).

One significant drawback of our encoding of generics is that it turns type parameters into

term parameters which are then additionally passed to functions at runtime. Given our usage

of p: Pred above this is unnecessary, however – after all, only the contracts, but not the

result of these functions depend on p. Stainless thus provides some facilities for erasing

computationally irrelevant parts. Firstly, we can mark certain parameters and code blocks

as @ghost, which prompts Stainless to check that they indeed do not influence the result.

Secondly, contracts (the require and ensuring clauses) and @ghost code are removed from

19

Chapter 2. Background: Two Approaches to Static Safety in Scala

generated code through an integration with Scala’s build tool.

Finally, taking type information into account is extremely useful when verifying programs, so

Stainless also supports many of Scala’s typing features out of the box. That is, we could have

equally defined List[T] as in Section 2.1 and made functions such as length and concat

parametric in T, and Stainless would have nonetheless been able to infer the exhaustivity

of pattern matches et cetera. Internally, Stainless uses a series of lowerings to transform

programs from an expressive type system approaching Scala’s to one of possibly-parametric

algebraic data types and refinement types. By the time Stainless emits verification conditions

to an SMT solver, the resulting encoding bears some similarity to the “manual” approach seen

in this section.

2.4 Dealing with State

One particular area for which neither Scala’s type system nor Stainless provide comprehensive

reasoning capabilities is imperative code – in particular in the presence of shared mutable

data structures.

Scala’s type checker generally treats mutable data by over-approximation: Unlike immutable

bindings (val x: T) mutable fields and variables (var x: T) are not considered stable prefixes

under Scala’s notion of dependent object types [RA16]. This means that one cannot refer to x

in a singleton type and inference will never yield such precise types either, but instead widen

to the underlying type T. Ideas like type state [SY86] and session types [HVK98] have been

implemented successfully in Scala [CP16, SY16], but only offer coarse-grain guarantees.

On the other hand, Stainless has historically provided precise reasoning about imperative

programs assuming the absence of aliasing. In particular, Blanc [Bla17] introduced initial

support for local mutation and an effectively linear fragment of imperative, heap-manipulating

programs in Leon, which was expanded upon in its successor, Stainless.

In the remainder I will take our well-worn linked list example to illustrate the benefits and

issues with shared mutable data. Recall the definition of the polymorphic List[T] datatype

we saw in Section 2.1:

sealed trait List[T]

case class Nil[T]() extends List[T]

case class Cons[T](head: T, tail: List[T]) extends List[T]

We can efficiently access the head and the tail of a given list, or prepend an element to it.

val xs: List[T] = ???

xs.head // O(1)

xs.tail // O(1)

Cons(???: T, xs) // O(1)

20

2.4. Dealing with State

Note that ???[S] is a Scala idiom to indicate an unimplemented computation of type S. At

runtime, this expression will simply throw a NotImplementedError. In the above code snippet

the two occurrences of ??? rely on Scala’s local type inference to figure out the required type

instantiations, namely, at List[T] and T.

Certain other list operations, such as accessing the last element, require a traversal of the entire

data structure, but can be memoized once computed, and thus retain referential transparency.

For convenience, Scala provides lazy val fields whose value is computed once upon the first

access to the field, and stored within the object for later accesses.

sealed trait List[T] {

// The last element of the list, if any.

// Amortized runtime in O(1)

lazy val lastOption: Option[T] =

this match {

case Nil() => None

case Cons(x, Nil()) => Some(x)

case Cons(_, xs) => xs.lastOption

}

}

Unfortunately, other operations such as appending elements and concatenation require

rebuilding the entire list, and a naive solution thus ends up taking linear time. For instance,

consider the canonical implementation of appending to a list:

trait List[T] {

def append(y: T): List[T] =

this match {

case Nil() => Cons(y, Nil())

case Cons(x, xs) => Cons(x, xs.append(y))

}

}

To append an element to a list, we traverse the entire struture, create a singleton list containing

only the new element y, and finally prepend each of the existing elements in reverse order.

Not only is the asymptotic runtime of append in O(n) (where n is the length of the list), but it

also requires keeping O(n) additional stack space when we reach the base case.4

On modern architectures this performance issue is seriously compounded by a phenomenon

known as pointer chasing: Since most architectures nowadays employ multi-level cache

hierarchies, the cost of accessing heap memory is non-uniform, and programs that operate on

4This can, in principle, be alleviated by implementing append in terms of a tail-recursive list reversal, followed
by a prepend and another list reversal. Obviously, the reduction in memory consumption is paid for by a higher
constant factor in the linear runtime.

21

Chapter 2. Background: Two Approaches to Static Safety in Scala

a small working set of data may execute significantly faster. Expert programmers go out of their

way to design programs that achieve a high level of such data locality, often yielding orders

of magnitude speed-ups. Even worse than the pointer chasing, the above implementation of

append also induces a linear number of additional allocations (proportional to the number of

existing list elements).

More often than not the list we are extending is simply discarded after the append operation.

Creating an entirely new, almost identical list is rather wasteful in those cases. While linear

type systems [Wad90b] and related optimization techniques [UdM19] might try to identify

such opportunities automatically, it is still more typical that programmers take manual control,

and implement a version of append that modifies a mutable data structure in-place.

Consider the following definition of a Node[T] data type that is iso-morphic to the purely-

functional type List[T] shown before:

case class Node[T](value: T, next: Option[Node[T]])

We can represent every List[T] as an Option[Node[T]] and vice-versa. That is, we map

Nil() to None, Cons(x, Nil()) to Some(Node(x, None)) and so forth. Node[T] is closer to

the definition of a linked-list node typically seen in imperative programming languages such

as the C family. To achieve in-place updates of the list structure the next field ought to become

mutable. In Scala we can explicitly opt into mutability by declaring the next field as var:

case class Node[T](value: T, var next: Option[Node[T]])

We additionally define a wrapper type that encapsulates the initial node and can meaningfully

represent empty lists:

case class LinkedList[T](var root: Option[Node[T]])

Already, this new data type allows us to define append as an operation that mutates a LinkedList[T]

in-place. But we can do better: if we include a shortcut to the last element of the list, that

allows us to sidestep the linear traversal in append.

case class LinkedList[T](var root: Option[Node[T]],

var last: Option[Node[T]])

At this point we can efficiently implement append for LinkedList[T]:

def append[T](ll: LinkedList[T], newValue: T): Unit = {

val newNode = Some(Node(newValue, None))

if (ll.last == None)

ll.root = newNode

else

ll.last.get.next = newNode

ll.last = newNode

22

2.4. Dealing with State

}

Unfortunately, we have now introduced two complications in the verification of append.

Firstly, keeping track of modifications to a ll: LinkedList[T] has become considerably

harder, since the last node will be aliased, i.e., reachable both through ll.last and through a

series of references starting from ll.root and following repeated .next fields. Modifications

to one will thus affect our interpretation of the other. Secondly, to make sense of how ll.last

relates to ll.next and prove anything of interest about append, we need to maintain an

invariant that characterizes ll.last.

Stainless in its existing form cannot help us reason about LinkedList[T], because of the

first issue, shared mutable data. In Part I of this thesis we address this shortcoming without

sacrificing any of Stainless’ other strengths like reasoning about higher-order functions and

counterexample-completeness. In fact, we leverage its support for functional abstractions

to describe inductive heap predicates like those needed to characterize ll.last (our second

issue), and ultimately prove correctness of procedures like append.

23

Part IDecidable and Expressive
Reasoning about Heaps

in Stainless

25

In this first part we will see how a verifier such as Stainless can be extended to support

reasoning about programs with shared mutable state, while retaining the ability to produce

counterexamples.

Formal verification of programs with shared mutable data structures is a long-standing prob-

lem. Among the most promising techniques used in today’s verification tools are separation

logic and dynamic frames. Separation logic [ORY01] with bi-abduction [CDOY11] has proved

practical; its variant is implemented in the Infer tool [DFLO19] used by Facebook. It is also a

common framework for foundational semantic-based approaches for reasoning about state

inside the Coq proof assistant [JKJ+18]. On the other hand, we are attracted to dynamic

frames [Kas06] because they are both semantically straightforward and expressive. Tools

that embrace them, such as Dafny [Lei10], were used to verify complex software systems at

Microsoft [HHK+15]. Separation logic and dynamic frames are closely related and one can

view separation logic as a logical framework that infers sets that represent dynamic frames

in certain circumstances. This was first illustrated by the VeriCool verifier [SJP12], rigorously

analyzed in subsequent research [PS12], and used to relate subsets of VeriFast [JSP+11] to

Chalice [JS13, LMS09].

In the following we introduce an alternative approach for reasoning about mutable programs

and present its realization in the Stainless verifier [HVK19] for a subset of the Scala program-

ming language [OSV19]. Like the dynamic frames approach, we use constrained sets of objects

to specify frame conditions. Like Dafny, our tool uses SMT solvers to establish properties

instead of dedicated symbolic execution for heap-manipulating programs as in several other

approaches [BCO05, DPJ08, JSP+11, MSS16]. We also model the heap as a function from

storage locations to values.

However, our encoding of frame conditions is different from the one in Dafny. Whereas

Dafny makes use of universal quantifiers with triggers to encode frame conditions (expressing

that all non-modified locations remain the same), we avoid quantifiers and instead use the

generalized theory of arrays [dMB09] of Z3. Notably, this expressive array theory retains com-

pleteness guarantees for satisfiability checking of quantifier-free formulas even in the presence

of model-based theory combination [dMB08a] with other decidable theories. Thanks to our

new encoding and the decision procedures of Z3, our verification tool can report meaningful

counterexamples for invalid properties, even in those cases where the bodies of methods are

abstracted by their modifies clauses. In contrast, SMT solvers either refuse to report coun-

terexamples to satisfiability for formulas with universal quantifiers, or permit extraction of

assignments that may or may not be witnesses to satisfiability. Unlike Dafny, which reduces

programs to a guarded-command language Boogie [BCD+05], our approach reduces impera-

tive code to recursive functional programs that manipulate data types supported by the Z3

SMT solver [dMB08b], building on the existing Stainless infrastructure. While Stainless could

already deal with imperative constructs [Bla17], the supported fragment did not permit any

aliasing. In contrast, the new encoding we describe enables Stainless to verify shared mutable

data structures.

27

Our approach reduces verification conditions to functional programs but need not encode

immutable algebraic data types using the heap. Read-only functions do not return a heap

in our encoding, whereas functions that do not read mutable references do not even take a

heap argument. The result is a better verification experience on a mix of purely functional

and mutable code, compared to a more uniform encoding. This feature enables users to

leverage the expressive power of recursive functional programming in implementation and

specification, and encourages the use of executable specifications. Following this paradigm, we

further allow users to define inductive heap predicates as Boolean-typed recursive functions.

Lemmas about such predicates typically require inductive proofs and the ability to explicitly

relate to states at different program points. We propose first-class heaps as a solution which

provides the necessary fine-grained control and is readily expressible using our approach.

Outline

In the remainder we rely on running examples to demonstrate how our technique enables

the specification and verification of Scala programs containing mutable data (Chapter 3). We

then sketch our encoding into recursive functions via the extended array theory [dMB09]

(Chapter 4), and discuss our experience with the tool on verifying shared mutable data struc-

tures (Chapter 5). Our implementation is part of Stainless5 and can be tested on examples in

frontends/benchmarks/full-imperative/ via the --full-imperative flag.

5An archived artifact and the current version of Stainless are available at https://zenodo.org/record/5683321
and https://github.com/epfl-lara/stainless, respectively.

28

https://zenodo.org/record/5683321
https://github.com/epfl-lara/stainless

3 Verifying Mutable Data in Scala

3.1 First Example: Stack

As a simplest example to illustrate a mix of functional and imperative programming, Figure 3.1

presents a mutable stack implementation using the textbook singly-linked list. The code is

valid Scala accepted by the Scala 2.12/2.13 compilation pipeline given appropriate library

imports. The data structure is simple to specify: a minimal specification would only include

reads and modifies clauses, with bodies of functions themselves serving as specifications.

While in general functions might read and modify arbitrary computable Sets of objects, here

we only access this, i.e. the instance of Stack itself.

Figure 3.1 extends such basic specification by introducing the abstraction function list

and calling it in postconditions (ensuring) to re-state the precise effect of the function. For

instance, the postcondition of push states that list == a :: old(list), meaning that the

result of invoking parameter-less abstraction function list in the post-state is structurally

equivalent (==) to element a cons-ed (::) with list evaluated in the pre-state (old(list)).

The proofs of all these conditions in push and pop are trivial and our system performs them

in a fraction of a second. The clients can reason about the behavior of stack by referring to

the immutable list, which is suited for inductive proofs, much like such list data types in

proof assistants Coq [BC04] and Isabelle [NPW02]. Users can create shared references to such

mutable stacks, which goes beyond what was possible with the previous, unique-mutable-

reference model of Stainless, inherited from Leon [Bla17, Ch. 3].

3.2 Extended Example: Map on a Tree

Moving to a slightly more complex example, Figure 3.2 shows a binary tree data whose interior

nodes are immutable but whose leaves are mutable and store values of generic type T. We

support a fragment of Scala with functional features (such as pure first-class functions) as

well as imperative features (mutable fields) and object-oriented features (traits and dynamic

dispatch). For any class, users explicitly opt into mutability and heap reasoning by inheriting

29

Chapter 3. Verifying Mutable Data in Scala

1 case class Stack[T](private var data: List[T]) extends AnyHeapRef
2 {
3 // An abstraction function describing the mutable stack as an immutable list.
4 def list: List[T] = {
5 reads(Set(this))
6 data
7 }
8

9 def push(a: T): Unit = {
10 reads(Set(this))
11 modifies(Set(this))
12

13 data = a :: data // executable code
14 } ensuring(_ ⇒ list == a :: old(list))
15

16 def pop: T = {
17 reads(Set(this))
18 modifies(Set(this))
19 require(!list.isEmpty)
20

21 val n = data.head // executable code
22 data = data.tail // executable code
23 n // executable code
24 } ensuring (res ⇒ res == old(list).head && list == old(list).tail)
25 }

Figure 3.1 – A mutable stack.

30

3.2. Extended Example: Map on a Tree

1 case class Cell[T](var value: T) extends AnyHeapRef
2

3 case class Leaf[T](data: Cell[T]) extends Tree[T]
4 case class Branch[T](left: Tree[T], right: Tree[T]) extends Tree[T]
5

6 sealed abstract class Tree[T]
7 {
8 // The set containing all cells in the tree.
9 @ghost def repr: Set[AnyHeapRef] = this match {

10 case Leaf(data) ⇒ Set[AnyHeapRef](data)
11 case Branch(left, right) ⇒ left.repr ++ right.repr
12 }
13

14 // A minimally−specified map function over the tree.
15 def tmap(f: T ⇒ T): Unit = {
16 reads(repr)
17 modifies(repr)
18

19 this match {
20 case Leaf(data) ⇒ data.value = f(data.value)
21 case Branch(left, right) ⇒ left.tmap(f); right.tmap(f)
22 }
23 }
24 }

Figure 3.2 – A tree with mutable leaves and a parallelizable in-place map, including read and
write frame conditions. The ++ symbol denotes union of sets, as in Scala.

31

Chapter 3. Verifying Mutable Data in Scala

from AnyHeapRef. For instance, in our example the class Tree inherits from AnyHeapRef. It is

also marked as sealed, indicating that all of Tree’s subclasses are defined locally (as opposed

to Scala’s default behavior of keeping type hierarchies open). In effect, Tree constitutes an

algebraic data type with constructors Leaf and Branch.

Our focus is the method def tmap(f: T ⇒ T) on the Tree class, which applies an in-place

transformation f to all leaf cells. For example, given a tree: Tree[BigInt], invoking tree.tmap(n

⇒ n + 1) increments the values in all the leaves of tree by one. The method recursively

traverses the tree and updates all cells upon reaching the leaves.

Verifying Effects. Figure 3.2 is also a minimally-specified program accepted by our tool, which

automatically verifies the conformance of tmap to its declared effects. The reads clause indi-

cates that the only mutable references that tmap reads are given by the value returned from

auxiliary function repr, which computes the set of mutable cells in a given tree. Similarly,

modifies indicates that these are the only sets the method is allowed to modify, which means

that all other mutable objects remain the same after a call to tmap. The @ghost annotation en-

sures that the repr function is not accidentally executed, but can only be used in specifications

that are erased at run time.

If we try to omit a reads or modifies clause, or incorrectly define repr to not descend into

subtrees, the tool reports a counterexample showing that the specification reads or modifies

is violated, with a message such as

tmap body assertion: reads of Tree.tmap invalid

pointing to an undeclared effect, e.g. on line 20 of Figure 3.2.

Counterexamples. Our approach enables the generation of counterexamples on the basis of

function contracts alone. Consider the following test method:

def test[T](t: Tree[T], c: Cell[T], y: T) = {

reads(t.repr ++ Set[AnyHeapRef](c))

modifies(t.repr)

t.tmap(x ⇒ y)

} ensuring(_ ⇒ c.value == old(c.value))

If we mark tmap using the @opaque annotation to prevent it from being unfolded and try to

verify test, the system reports a counterexample, such as this one:

Found counter−example:
t: Tree[T] → Leaf[Object](HeapRef(12))
c: HeapRef → HeapRef(12)

32

3.2. Extended Example: Map on a Tree

y: T → SignedBitvector32(1)
heap0: Map[HeapRef, Object] →
{HeapRef(12) → Cell(Cell[Object](SignedBitvector32(0))), ∗ →
SignedBitvector32(2)}

indicating that, when tmap is approximated with its effects, the ensuring clause can be

violated when tree t contains precisely the reference c.

Tools such as Dafny have difficulties in discovering such counterexamples, as they rely on an

encoding of frame conditions that involves quantifiers. Aiming for soundness of counterexam-

ples, the underlying SMT solvers may refuse to produce any output or, in some cases, may

produce an assignment that is not guaranteed to be a model. This limitation is due to the

fact that certifying that a model exists in the presence of general quantifiers is a very difficult

problem. Generalized arrays [dMB09] avoid it by “building in” restricted forms of quantifiers

into the semantics of pointwise (map) operators, improving the predictability.

Verifying Functional Correctness. To illustrate specification of stronger correctness proper-

ties, we show that tmap behaves like map on purely functional lists. This stronger specification

of tmap is in the ensuring (postcondition) clause of the version of tmap in Figure 3.3 (line

18). The property is interesting because it gives us assurance of correctness while being

able to write code that reuses memory locations and permits parallelization. The property

is expressed by defining an abstraction function [AL91] toList that maps the tree into the

sequence of elements stored in its leaf cells. (The purely functional List data type and the

map function on lists are defined in the standard library of Stainless.) To prove the ensuring

clause, it is necessary to introduce a precondition for tmap, expressed using the construct

require(valid). The valid method returns true when all subtrees store disjoint cells. The

tmap method may then only be called when this predicate holds. The assertion on line 14

follows directly from valid and expresses disjointness of the side effects of calls on line 15.

In many cases our tool can automatically prove properties of interest thanks to SMT solvers

and the unfolding algorithm of Stainless. For instance, the valid method (which we use to

establish separation of subtrees) does not depend on the content of mutable cells, but only on

the identity of references. Our tool checks this independence thanks to the absence of reads

and modifies clauses in the signature of valid. Because it does not depend on mutable state,

valid trivially continues to hold after each invocation of tmap on line 15.

On the other hand, showing complex properties such as functional correctness may require

more elaborate reasoning. The first challenge in our example is to establish on line 16, after

the modifications have taken place, the correctness property we desire for each subtree, i.e.,

left.toList == oldList1.map(f) and right.toList == oldList2.map(f). This requires

using the heap separation between left and right (witnessed by valid) to deduce that the

two recursive calls are in fact entirely independent of another. This, in turn, requires taking

into account tmap’s modifies clause, which states that only objects in repr are modified.

33

Chapter 3. Verifying Mutable Data in Scala

1 def tmap(f: T ⇒ T): Unit = { // strong specification
2 reads(repr)
3 modifies(repr)
4 require(valid)
5 @ghost val oldList = toList
6

7 this match {
8 case Leaf(data) ⇒
9 data.value = f(data.value)

10 ghost { check(toList == oldList.map(f)) }
11

12 case Branch(left, right) ⇒
13 @ghost val (oldList1, oldList2) = (left.toList, right.toList)
14 assert(left.repr ∩ right.repr == ;)
15 left.tmap(f); right.tmap(f)
16 ghost { lemmaMapConcat(oldList1, oldList2, f) }; ()
17 }
18 } ensuring (_ ⇒ toList == old(toList.map(f))) // main property
19

20 def valid: Boolean = // tree invariant: subtrees store disjoint cells
21 this match {
22 case Leaf(data) ⇒ true
23 case Branch(left, right) ⇒
24 left.repr ∩ right.repr == ; &&
25 left.valid && right.valid
26 }
27

28 def toList: List[T] = { // abstraction function
29 reads(repr)
30 this match {
31 case Leaf(data) ⇒ List(data.value)
32 case Branch(left, right) ⇒ left.toList ++ right.toList
33 }
34 }
35

36 def lemmaMapConcat[T,R](xs: List[T], ys: List[T], f: T⇒R): Unit = {
37 xs match {
38 case Nil() ⇒ ()
39 case Cons(_, xs) ⇒ lemmaMapConcat(xs, ys, f)
40 }
41 } ensuring (_ ⇒ xs.map(f) ++ ys.map(f) == (xs ++ ys).map(f))

Figure 3.3 – Functional correctness of the tmap method including the abstraction function, the
invariant, and a proven lemma about purely functional lists. We use ∩ to display intersection
of sets, and use ; for the empty set of heap references Set[AnyHeapRef](). The ++ symbol
denotes concatenation of functional lists and union of sets, as in Scala.

34

3.3. First-Class Heaps

In previous works such a clause is encoded in one of two ways. Systems such as Dafny

encode frame axioms as quantified first-order formulas and rely on triggers to automate

their instantiation. In contrast, separation logic verifiers explicitly control the choice of

frame, and thus move the burden of instantiations out of the SMT solver. We propose a third

solution, which is to encode the frame conditions as quantifier-free assumptions in array

theory, injected at each function call site. Our approach avoids the need for quantifiers, but

retains the automation of SMT solvers.

Despite that automation and the decidability of the generalized array theory, the size and com-

plexity of SMT formulas may overwhelm the solver. In such cases the user can add auxiliary

assertions, e.g., expressed through assert and check statements in Figure 3.3. Furthermore,

certain properties may require explicit guidance on inductive proofs when reasoning does

not follow the pattern of functions that are iteratively unfolded. In such cases, we need to

introduce lemmas and prove them using recursion to express inductive arguments, as with

lemmaMapConcat defined in lines 36-41 and instantiated on line 16. This lemmas is inde-

pendent of any state reasoning and would naturally fit in a standard list library. With these

specifications and hints in place, our tool successfully verifies the functional correctness of

tmap.

3.3 First-Class Heaps

For some proofs it is useful to directly refer to and manipulate the heap states at different

points in the program. In our system’s surface language we expose heaps as first-class values

of abstract type Heap, and our standard library contains several primitives to manipulate such

values: a function Heap.get which returns the current implicit heap, a primitive h.eval(e)

which evaluates expression e in the context of heap h, and the function Heap.unchanged(s,

h0, h1) which evaluates to true iff there exists no object o in the set s: Set[AnyHeapRef]

such that heaps h0 and h1 interpret o differently (in the shallow sense).

For instance, we might want to re-establish an inductive heap predicate after having modified

a node-based data structure:

case class Node(var next: Option[Node]) extends AnyHeapRef

def sll(nodes: List[Node]): Boolean = {

reads(nodes.content.asRefs)

nodes match {

case Cons(node1, rest @ Cons(node2, _)) ⇒
node1.next == Some(node2) && sll(rest)

case _ ⇒ true

}

}

35

Chapter 3. Verifying Mutable Data in Scala

In the above example we have a heap type of Nodes with pointers to next nodes and an

inductive heap predicate, sll, witnessing that a given sequence of nodes forms a singly-linked

list. Note that nodes: List[Node] itself is a purely functional data structure and only present

for specification purposes; one would typically store it as a @ghost variable.

Say we would like to prove that removing the last element of a non-empty singly-linked list

nodes maintains the sll property. This is easy to specify using our functional abstraction

nodes: assuming sll(nodes)holds in the pre-state, we would like to show that sll(nodes.init)

holds in the post-state, where .init is a method in the standard library that drops the last

element of a List[T]. When nodes consists of a single element, the property follows immedi-

ately, since sll(nodes.init) reduces to sll(Nil) which holds by definition of sll. On the

other hand, if nodes contains at least two elements, we need to modify the next field of the

second-to-last node, i.e., set nodes(nodes.size - 2).next = None(). In the latter case we

effectively want to establish the Hoare triple

{sll(nodes) ∧ F} nodes(nodes.size - 2).next = None() {sll(nodes.init)}

where F is some additional precondition ensuring that the list has at least two elements, and

that all nodes up to the last two are separate from the rest.

// A lemma proving that popping from a SLL maintains singly−linked−ness.

def sllPopLemma(h0: Heap, h1: Heap, nodes: List[Node]): Unit = {

require(

nodes.nonEmpty &&

h0.eval { sll(nodes) } &&

(nodes.size == 1 || (

Heap.unchanged(nodes.init.init.content.asRefs, h0, h1) &&

h1.eval { nodes(nodes.size - 2).next == None() }

)))

if (nodes.size > 1) sllPopLemma(h0, h1, nodes.tail)

} ensuring (_ ⇒ h1.eval { sll(nodes.init) })

Above, sllPopLemma establishes the desired property by explicitly referring to the pre-state

as h0 and the post-state as h1. Its proof proceeds by induction on nodes, and is mostly

automatic; we merely have to invoke the right induction hypothesis when nodes.size > 1.

An implementation of pop would likely resort to a stronger invariant like distinctness of all

objects in nodes, and then invoke the lemma after the modification as follows

val h0 = Heap.get // Get the pre−state

if (nodes.size > 1)

nodes(nodes.size - 2).next = None() // Unlink the last element

sllPopLemma(h0, Heap.get, nodes)

along with some hints that deduce F from the stronger invariant (not shown). In addition,

36

3.3. First-Class Heaps

for nodes to be marked @ghost, we would need to maintain nodes(nodes.size - 2) in a

separate non-@ghost variable. Our benchmark suite includes similar, but more elaborate

examples Queue and NodeCycle.

While our current system does not provide as much automation as separation logic for tree-like

data, our approach is not limited to such structures and retains full flexibility in treating heaps

as first-class values. Interestingly, this also enables us to prove hyperproperties, i.e., properties

such as determinism, which involve multiple heap states. For example, consider the following

lemma stating that a memoized function f : Int ⇒ Int evaluates to the same result in

every heap:

def lemmaHeapIsIrrelevant(h0: Heap, h1: Heap, x: Int) = { () }

ensuring (_ ⇒ h0.eval { f(x) } == h1.eval { f(x) })

In many cases such lemmas can be proven automatically by our system, as demonstrated, for

instance, by the FibCache benchmark.

37

4 Heap Encoding

In the following, we introduce our heap encoding and how it achieves framing without quantifi-

cation. Our approach builds upon the existing counterexample-complete unfolding procedure

of the Stainless verifier and exploits the additional expressive power afforded by combinatory

array logic [dMB09], an extended array theory available in Z3. This use of array combinators

for framing is, to the best of our knowledge, novel. Notably, our encoding allows for a high

degree of proof automation without giving up counterexamples.

Our tool models stateful operations by explicitly reading from and updating a locally-mutable

map that relates each object to its state. In a later transformation step such programs with

local mutations are reduced to functional ones. Each stateful function gains an explicit heap

parameter and returns a new, potentially updated heap along with its regular output. In

terms of Scala’s type system, the heap can be thought of as a map heap of type HeapMap =

Map[HeapRef, Any] where Any is the top type and HeapRef is a data type representing an

object’s identity. Conceptually, our approach employs a monadic translation [Mog91, Wad90a]

that we partially-evaluate [AHM+17], replacing stateful operations such as reads and writes by

pure operations on a map.

4.1 Encoding tmap
We first give an informal explanation of our encoding by the example of the minimally-

specified version of tmap on Tree (the version without postconditions, shown in Figure 3.2).

In Figure 4.1 we show the data types after transformation.

We treat heap types, i.e., descendants of AnyHeapRef, like Cell, differently from immutable

types such as Tree. The latter are translated into algebraic data types in the obvious way (lines

5-7). References to heap types, on the other hand, are erased to the internal ADT HeapRef

that represents locations on the heap (line 1). For instance, the field data: Cell[T] of Leaf

becomes dataref: HeapRef (line 6). Additionally, each heap class like Cell is translated to a

single-constructor ADT that encapsulates an object’s state at a given time, e.g., CellData (line 3).

39

Chapter 4. Heap Encoding

1 case class HeapRef(id: BigInt)
2

3 case class CellData[T](value: T)
4

5 sealed abstract class Tree[T]
6 case class Leaf[T](dataref: HeapRef) extends Tree[T]
7 case class Branch[T](left: Tree[T], right: Tree[T]) extends Tree[T]

Figure 4.1 – The data types of the tmap example in Figure 3.2 after our encoding.

1 def tmap[T](h0: HeapMap, t: Tree[T], f: T ⇒ T): (Unit, HeapMap) = {
2 val (rs, ms) = (repr(t), repr(t))
3 t match {
4 case Leaf(dataref) ⇒
5 assert(dataref ∈ rs, "‘data‘ must be in reads set")
6 assert(dataref ∈ ms, "‘data‘ must be in modifies set")
7 val data: CellData = {
8 assume(h0(dataref).isInstanceOf[CellData[T]])
9 h0(dataref).asInstanceOf[CellData[T]]

10 }
11 val data’: CellData = CellData(f(data.value))
12 ((), h0.updated(dataref, data’))
13

14 case Branch(left, right) ⇒
15 val (_, h1) = tmapshim(h0, rs, ms, left, f)
16 tmapshim(h1, rs, ms, right, f)
17 }
18 }
19

20 def tmapshim[T](h0: HeapMap, rd: RSet, md: RSet, t: Tree[T], f: T ⇒
T): (Unit, HeapMap) = {

21 val (rs, ms) = (repr(t), repr(t))
22 assert(rs ⊆ rd, "reads set of Tree.tmap")
23 assert(ms ⊆ md, "modifies set of Tree.tmap")
24 val res = tmap(h0, t, f)
25 val resR = tmap(rs.mapMerge(h0, dummyHeap), t, f)
26 assume(res._1 == resR._1)
27 assume(res._2 == ms.mapMerge(resR._2, res._2))
28 assume(res._2 == ms.mapMerge(res._2, h0))
29 res
30 }

Figure 4.2 – The result of encoding the minimally-specified tmap method of Figure 3.2. We use
⊆ to typeset subsetOf, ∈ for contains, and abbreviate Set[AnyHeapRef] by RSet.

40

4.1. Encoding tmap

Note that the language after encoding still supports Any and subtyping, so CellData <: Any.

In Figure 4.2 we show the encoding of tmap itself. The method is reduced to a type-parametric

function that takes its original argument f, the method receiver t and a heap parameter

h0. The imperative operations in tmap are translated to functional operations on HeapMap as

mentioned above, and the modified heap is returned along with the original return value. In

particular, if the current tree t is a leaf, then we extract its reference to a cell dataref (line 4)

and index the initial heap h0 at dataref (line 9). Note that since the heap map stores values

of type Any we have to perform a downcast (lines 8-9). This is safe, since we will only verify

well-typed Scala programs, so any such cast will be correct by construction. In a later type-

encoding phase [Voi19] Stainless translates type tests such as line 8 to conditions in the theory

of inductive data types. On line 11 we apply the function f to the old value of data and

construct a CellData value reflecting the new state of data. We then return the updated heap

on line 12. In case the tree t is a Branch we simply perform two recursive calls (lines 15-16),

albeit through the newly-introduced wrapper function tmapshim which we discuss below.

Our encoding achieves modular verification of heap contracts (reads and modifies) by in-

jecting some additional assertions and assumptions. We bind the reads and modifies sets

(rs and ms) at the top of the function (line 2). For each object that is read or modified we check

that the object is in the respective set (lines 5-6). For function calls we check that the callee’s

reads, resp. modifies, set is subsumed by the caller’s. We achieve this by invoking a wrapper

function tmapshim, that additionally takes as parameters the domains on which the passed

heap is defined for reads and modifications (rd and md). Within the wrapper we bind the

original function’s reads and modifies sets (line 21), check subsumption wrt. the domains

(lines 22-23) and call the original function tmap (line 24).

Finally, we assume the modular guarantees about tmap wrt. the pre- and post-state, i.e., its

frame conditions. Our approach is to relate the “actual” function call at heap state h0 (line 24)

to a “hypothetical” call (line 25) that operates on an alternative heap state which interprets all

objects in reads as h0 does, and assigns globally fixed dummy values for all objects outside of

reads. The core idea is that both of these calls ought to produce equivalent results modulo

the untouched parts of the heap.

In particular, lines 26-27 state that the result of tmap only depends on the reads subset of the

heap, whereas line 28 states that the heap resulting from tmap may only have changed on

objects in modifies. For the reads-related frame conditions we depend on the hypothetical

application of f to the projected heap rs.mapMerge(h0, dummyHeap), which contains the

state of h0 for all objects in rs and that of dummyHeap elsewhere. The first assumption thus

states that the result computed by f is the same no matter whether we apply it to h0 or to some

other arbitrary (but well-typed) heap that is only known to agree on the valuations of objects

in rs. The second assumption states the analogous property about the locations that might

have been modified by f. Finally, the third assumption expresses that the pre-state equals the

post-state in all locations but those in the modifies clause, i.e., the set ms.

41

Chapter 4. Heap Encoding

Variables . . . x,y,h,ρ,µ

Surface Language

Types . . . S,T := C | D | Set[T] |AnyHeapRef
Terms . . . t := x | f(t) | let x = t in t | t.f | t.f := t

Functions . . . f := def f(x : T) : S= {reads(t); modifies(t); t}

Lowered Language

Types . . . S,T := D | Set[T] |Map[T,T] |Any |HeapRef
Terms . . . t := x | f(t) | let x = t in t | t.f | t.f := t |

let var x = t in t | x := t |
t [t] | t.update(t,t) | t.mapMerge(t,t) |
t.isInstOf[T] | t.asInstOf[T] |
assume(t);t | assert(t);t

Functions . . . f := def f(x : T) : S= {t}

Figure 4.3 – Selected terms and types of the languages before and after heap encoding.

The crucial component of our encoding here is the mapMerge primitive, which can be seen as a

ternary operator of type ∀ K V. Set[K] ⇒ Map[K,V] ⇒ Map[K,V] ⇒ Map[K,V]. Specifi-

cally, mapMerge takes a set s along with two maps m1, m2 and produces a map m’ = s.mapMerge(m1,

m2) such that∀ k:K. (k ∈ s → m’[k] = m1[k]) ∧ (k 6∈ s → m’[k] = m2[k]). We will

discuss how mapMerge is translated to Z3’s extended array theory in Section 4.3.

4.2 Translation Rules

We now describe the general translation rules as applied in our system. We will consider

only a subset of the language supported, focussing on constructs of particular interest in the

translation (shown in Figure 4.3).

We distinguish the terms t and types T of the surface language from those of the language

after encoding. The surface language comprises of both (immutable) algebraic data types D
and (mutable) heap types C, along with terms for field reads t.f and updates t.f := t, which are

interpreted as either functional or imperative operations, depending on whether the receiver

is an ADT or a heap type. In the lowered language the latter are always interpreted functionally,

and the only imperative feature available are locally-mutable variables let var x = t in t and

assignments thereof, x := t. Though not discussed here, it is straightforward to convert pro-

grams with local mutation into purely functional ones [Bla17, Fil03]. Our simplified language

also omits first-class functions. In practice we require them to be pure, while effectful ones can

42

4.2. Translation Rules

be encoded using abstract classes with heap contracts (see Task in Figure 5.2 for an example).

At its heart, our translation turns imperative operations on heap types C1,C2, . . . into functional

operations on a map representing the entire heap. What should be the key and value types of

the heap map? For keys, i.e., the references in our heap model, we choose an abstract type

HeapRef isomorphic to the natural numbers, but with equality as its only operation. For

values, i.e., the state of individual objects, we pick the top type Any as the trivial solution

which subsumes the representations of all heap types. While SMT solvers do not directly

support subtyping, this is convenient in Stainless, as we can leverage its existing support for

subtyping and Any [Voi19]. Our design differs from that supported by the Boogie verifier,

whose type system provides higher-rank map types [LR10, Lei08] in which the heap map may

be typed as ∀T. Map[Ref[T], T], avoiding the need for (correct-by-construction) downcasts

and an additional type encoding phase to deal with the Any type.

Due to our choice of heap representation, the lowered language includes maps and type-

tests to express various assumptions about the heap that are correct by construction. For

maps, we use t [tk] to denote indexing and t.update(tk,tv) to denote the (functional) result

of updating a map t at key tk. To recover information from Any-typed values, we provide

t.isInstOf[T] to express type tests and t.asInstOf[T] for the corresponding downcasts. Fur-

thermore, assume(t);t and assert(t);t mark assumptions and assertions to be used during

VC generation. Combining these constructs, we can express a downcast of t to T that is

assumed correct as let x = t1 in assume(x.isInstOf[T]);t2{x 7→ x.asInstOf[T]}, which we abbre-

viate by let x = t1 as T in t2. As in the example in Section 4.1, we take HeapMap and RSet to

be shorthands for Map[HeapRef,Any] and Set[HeapRef], respectively.

We define two translation relations that take types T, resp. well-typed terms t, and produce

their lowered counterparts. The translation relation for types, T.T′, witnesses the erasure of

type T to T′; for instance, if Cell is a heap type, then Set[Cell].Set[HeapRef]. The translation

relation for terms is notated as h,ρ,µ;Γ` t.t′ and depends on a locally-mutable heap variable

h, its reads and modifies domains, ρ and µ, and the typing environment Γ. When implicitly

clear or the same in all occurrences, we omit h, ρ, µ and Γ and simply write t. t′. We assume

the existence of a typing relation Γ` t : T and also omit Γ when it is clear from the context.

The encoding proceeds by translating each definition of an ADT D, heap type C, or function f
in the surface program to a corresponding lowered definition. The data type definitions of

the encoded program are obtained by taking all of the ADT definitions D with argument types

erased by T.T′, and additionally introducing one single-constructor ADT for each heap type

C (also with its field types erased). We refer to the resulting lowered ADTs as DD and DC. For

each function definition def f(x : T) : S= {reads(tρ);modifies(tµ);t} in the original program

we introduce two functions f and fshim in the encoded program. The encoded function f takes

the pre-state as an additional argument, and returns the resulting post-state along with its

result value, yielding

def f(h0 :HeapMap, x : T′) : (S′,HeapMap) = {let ρ = t′ρ in let µ= t′µ in t′}

43

Chapter 4. Heap Encoding

where h0,ρ,µ;Γ0 ` t. t′, as well as h0,ρ,;;Γ0 ` ts. t′s for s ∈ {ρ,µ}, Γ0 = x : T, T.T′ and S.S′.
Note that the translation of the reads set t′ρ bound to ρ may refer to ρ itself – after all the

reads clause may, in fact, depend on and read objects on the heap, and we ought to check that

those objects are part of the reads set. While this may seem alarming at first, ρ is nonetheless

well-defined, since t′ρ will only refer to ρ from assertions injected during our translation. This

circularity is analogous to the self-framing of assertions in implicit dynamic frames [SJP12]. In

practice, we sidestep the issue by translating tρ twice: once without injecting assertions to

bind it to ρ, and once more with the checks.

For each function f we also define a companion fshim which encapsulates both the assumption

of frame conditions and the checks of associated heap contracts expected at each call site of f:

def fshim(h0 :HeapMap, ρdom :RSet, µdom :RSet, x : T′) : (S′,HeapMap) = {

let ρ = t′ρ in let µ= t′µ in
assert(ρ ⊆ ρdom);assert(µ⊆µdom);

let yres = f(h0,x) in
let yresR = f(ρ.mapMerge(h0,dummyHeap),x) in
assume(yres._1 = yresR._1);

assume(yres._2 =µ.mapMerge(yresR._2,yres._2));

assume(yres._2 =µ.mapMerge(yres._2,h0));

yres

}

As an optimization, we omit the parts of the encoding that relate to the post-state when the

modifies clause is empty. When the reads clause is empty as well, we avoid changing the

function’s signature altogether, so that pure functions remain pure.

The crucial rules of t. t′ are listed in Figure 4.4. Both FIELDREADI and FIELDUPDATEI deal

with field accesses of immutable data types and do not require interaction with the heap.

In general, pure constructs are left untouched and their translation rules merely map over

subexpressions. Imperative constructs, on the other hand, read or modify the locally-mutable

heap h and refer to ρ and µ to enforce the heap contracts. For instance, FIELDREADM handles

field reads from a heap type C . It translates a read t.f to an assertion that the receiver object is

in the reads set (t′ ∈ ρ), after which the object state is read from the heap (h
[
t′
]
) and downcast

to the corresponding lowered data type DC, from which the actual value is then projected

(x.f). For readability we duplicate some encoded terms such as t′ in FIELDREADM, whereas

in practice we introduce additional let-bindings to avoid exponential blowup of encoded

programs.

The rule for function calls, CALL, merely rewrites invocations of f to invocations of fshim,

passing in the current heap h and the domains on which the callee is permitted to read

and modify the heap. We always inline these shim functions, so the assertions in fshim are

44

4.3. Quantifier-Free Frame Conditions

t : D t. t′

t.f . t′.f
(FIELDREADI)

t1 : D t1. t′1 t2. t′2
t1.f := t2. t′1.f := t′2

(FIELDUPDATEI)

t : C t. t′ x is fresh

t.f .assert(t′ ∈ ρ); let x = h
[
t′
]
as DC in x.f

(FIELDREADM)

t1 : C t1. t′1 t2. t′2 x is fresh

t1.f := t2.
assert(t′1 ∈ ρ∩µ); let x = h

[
t′1

]
as DC in

h := h.update(t′1, (x.f := t′2))

(FIELDUPDATEM)

t. t′ x is fresh

f(t). let x = fshim(h,ρ,µ,t′) in h := x._2;x._1
(CALL)

Figure 4.4 – Basic rules of the term translation relation h,ρ,µ;Γ ` t. t′. We abbreviate the
relation as t . t′, since the omitted arguments are merely passed through by the above rules.
The form let x = t1 as T in t2 is syntactic sugar for downcasts (see Section 4.2).

effectively lifted to each call site of f and ensure that the reads and modifies clauses of the

callee is subsumed by the caller’s.

4.3 Quantifier-Free Frame Conditions

In the previous subsection we assumed a language construct called mapMerge that made it

straightforward to express the necessary frame conditions. The crucial question that remains

is how to lowermapMerge and its arguments to an efficiently decidable theory supported by an

SMT solver. Our solution is to target the theory of (infinite, extensional) arrays in Z3, leveraging

the fact that Stainless translates both sets and maps to such arrays. This means that reads and

modifies expressions of type Set[HeapRef] become arrays typed HeapRef⇒Boolean, while

heap maps of type Map[HeapRef,Any] are translated to HeapRef⇒Any. We can then use

the array combinator map f (a1, . . . , an) to express mapMerge efficiently. This array combinator

is part of Z3’s extended array theory [dMB09] and axiomatized as ∀i .map f (a1, . . . , an)[i] =
f (a1[i], . . . , an[i]). While the combinator can in practice only be applied to built-in functions,

this is sufficient for our purposes. Suppose 〈t〉 represents the translation of a term t in

our lowered language to a term in first-order logic. Given Stainless’ encoding of sets and

maps, one can use the if-then-else function ite of Z3, and translate s.mapMerge(m1,m2) as

mapite(〈s〉,〈m1〉,〈m2〉).

45

Chapter 4. Heap Encoding

Types . . . S,T := . . . |Heap
Terms . . . t := . . . |Heap.get | t.eval(t) |Heap.unchanged(t,t,t)

Heap.get.ρ.mapMerge(h,dummyHeap)
(HEAPGET)

th :Heap th. t′h h′ is fresh h′,U,U;Γ` te. t′e
th.eval(te). let var h′ = t′h in t′e

(HEAPEVAL)

th1 :Heap th2 :Heap ts. t′s th1. t′h1 th2. t′h2

Heap.unchanged(ts,th1,th2). t′h1 = t′s.mapMerge(t′h2,t′h1)
(HEAPUNCHANGED)

Figure 4.5 – Syntax of the surface language with first-class heaps and related term translation
rules. The symbol U denotes the universal set of all HeapRefs.

4.4 First-Class Heaps

A benefit of our encoding is that it naturally extends to explicit reasoning about alternative

heap states within the program logic. Since our heaps are merely Maps, we can consider

contexts with multiple heaps and express hyperproperties like determinism. Compare this

to verifiers based on imperative languages, where relational verification requires construc-

tions such as self-composition and product programs, limiting the applicability of existing

toolchains [BCK11, EMH19].

The syntax extensions related to first-class heaps are shown in Figure 4.5 alongside the ad-

ditional translation rules. The type translation simply erases Heap.HeapMap. All of the

new constructs are straightforward to encode in our scheme. Heap.get exposes the currently

readable heap (HEAPGET). We reduce th.eval(te) to translating te in the context of a fresh

heap variable initialized to th (HEAPEVAL). Notably, during this translation we do not inject

any further checks of reads and modifies by setting ρ and µ to the sentinel value U (denot-

ing the universal set). While the lack of checks allows for reads outside a heap’s original

domain, they are well-defined (i.e., they equal the dummyHeap on those locations). Finally,

Heap.unchanged(ts,th1,th2) translates to an equality that holds iff for all objects in ts the heaps

th1 and th2 agree. The corresponding lowering rule HEAPUNCHANGED leverages mapMerge in

a way similar to our encoding of frame conditions. Namely, we take t′s.mapMerge(t′h2,t′h1) (the

heap which interprets all objects as in t′h1, except those in t′s, which it interprets as in t′h2), and

require that it equals t′h1 itself.

46

4.5. Allocations

4.5 Allocations

The translation we have seen so far is sufficient to reduce the core of an imperative language

to a functional one with arrays and array combinators. Using these basic primitives we can

already model various high-level constructs. For instance, we might model finite arrays (as

opposed to the struct-like objects seen thus far) as functional lists of mutable Cells. Similarly,

object allocations can already be handled by adding a user-defined model of an allocator

and rewriting allocations in the surface language to invocations of the allocator. We include

corresponding verified examples, CellArraySimple and AllocatorMono, in our evaluation

(Chapter 5). Nonetheless, we would like allocation to be integrated more tightly in the future in

order to provide as much automation as possible. For this reason we now sketch an extension

of the language and encoding of the previous sections to (first-class) heaps that allow reasoning

about the set of allocated objects.

So far we have refrained from explicitly representing the allocation status of objects. Our model

of the heap was a total map from object references to immutable data types representing the

dynamic type and state of each object. Outside its reads-accessible regions the heap would

take on some unspecified values.

Instead, we now want to interpret the heap as a partial map to explicitly distinguish allocated

from free heap locations. One way to achieve this is to add a fresh, designated data type Free
that is isomorphic to unit. That is, free :Free does not possess any fields and is distinct from

all other heap classes. We can then discuss the set of allocated objects th.alloc :Set[HeapRef]

of a heap th in our surface language. Intuitively, its interpretation is the set of all objects

x :AnyHeapRef such that th.eval(x) 6= free.

Suppose we had an appropriate primitive in the lowered language m.proj¬D that projects from

a map m :Map[S,T] the set of all those keys whose corresponding value is not of dynamic

type (i.e., constructor) D. Then we could translate th.alloc as follows:

th :Heap th. t′h
th.alloc. t′h.proj¬free

(HEAPALLOC)

Recall that Heap in the surface language is desugared to HeapMap=Map[HeapRef,Any],

so t′h.proj¬free on a heap map t′h effectively projects all those heap locations that do not store

free.

Luckily, an SMT solver such as Z3, that supports both the theory of algebraic data types and

combinatory array logic, can also express th.alloc without quantifiers. Ultimately, Stainless

representsAny by an ADT containing a constructor for each data type D, including one for our

new designated data type Free. For each constructor of an (SMT-LIB) ADT and thus each data

type (of our calculus) D we get a built-in tester function is-〈D〉. In particular, is-〈Free〉(·) will

be a unary function in first-order logic indicating whether the argument value corresponds

to free :Free. The m.proj¬D primitive can then be translated as map¬
(
mapis-〈Free〉 (〈m〉)),

47

Chapter 4. Heap Encoding

yielding a decidable encoding of th.alloc.

This relatively minor extension is surprisingly versatile: not only does it allow us to model

allocations more directly, but we can also use it to express separation between heaps. A newly-

allocated object x :AnyHeapRef is one such that, prior to allocation, x 6∈Heap.get.alloc. To

translate an object allocation in the surface language we can choose any such “free” heap loca-

tion and update the heap with the new object’s initial state. To pick object x we can leverage

Inox’s choose[T]((x:T) => p(x)) primitive, which expresses an opaque, but determinstic

choice among all x:T satisfying predicate p(x).1

Separation between two heaps th1 and th2 then simply becomes a derived notion:

Heap.separate(th1,th2) := th1.alloc∩ th2.alloc=;

In Appendix A we show a minimal self-contained example of this encoding in SMT-LIB syntax,

as supported by the Z3 solver.

The additional expressiveness afforded by Heap.separate(th1,th2) is not terribly useful, though,

unless we also change our encoding of function calls. So far we would simply pass the entire

heap into a stateful function, and add appropriate frame conditions at each call site asserting

that the resulting heap had remained unchanged on all objects other than the modifies clause

et cetera. Instead, we can treat calls analogously to the frame rule of separation logic. The

idea may be summarized as follows: upon every function call, one first uses the mapMerge
primitive to decompose the input heap into two heaplets corresponding to the frame and

the function’s footprint. One would then feed only the footprint heaplet to the function, and

merge the frame with the output heaplet upon the function’s return.

With this departure from our current encoding we would seem to arrive at an interesting

alternative design point: an instantiation of separation logic that retains the full flexibility

of dynamic frames and first-class heaps. That being said, we are still investigating whether

such an encoding would in fact be preferable in terms of performance and implementation

complexity. At least one complication arises when we model function calls to only operate

on the footprint heaplet. Namely, if we were to naively choose a free location from within the

function (which operates only on the footprint heaplet), we might end up allocating an object

in a location that is already part of the frame. To ensure that the frame remains untouched by

allocations one would thus have to additionally constrain the choice of new object locations.

Analogously to our AllocatorMono implementation, one solution would be to share a mutable

“free list” across all allocating function calls and constrain its elements to be disjoint from all

allocated objects before each function call.

1The choose primitive can be roughly thought of as an uninterpreted function invocation parameterized by the
surrounding function’s arguments and an additional argument identifying the call site of choose.

48

5 Evaluation

We used our system to verify a number of benchmarks ranging in size and complexity. Among

the examples we developed are both shallowly and deeply mutable data structures, a model

of an object allocator, and a parallelization primitive for the fork-join model. In Figure 5.1

we summarize these benchmarks quantitatively in terms of total lines of code, and the time

our system takes to verify the example. In particular, we report T, the total wall time elapsed

when running an individual benchmark, which includes the time it takes the Scala compiler

to process both our standard library and the benchmark, our extraction pipeline to lower

from imperative Scala code to the functional fragment, and the time spent on generating and

checking verification conditions. The latter component is reported separately as C, and the

time thereof spent on checking heap contracts as HC. The reported numbers were obtained

on a machine with an AMD Ryzen 3700X 8-core CPU @ 3.6GHz and 32GB of RAM running

Ubuntu 20.04, and using Z3 version 4.8.12. We explicitly list an empty benchmark that entails

no verification conditions, but provides a baseline for the time spent on JVM startup, and,

more importantly, extraction through the traditional Scala compilation pipeline plus various

lowerings in Stainless before the actual generation and solving of VCs is performed.

We next discuss our experience using the tool and elaborate on some of the benchmarks listed.

5.1 Shallowly-Mutable Data Structures

We first consider “shallowly-mutable” data structures such as Cell[T] seen in Section 3.2

whose mutable data is stored directly in its fields, i.e., without any indirection. They provide

a simple baseline for our system and play an important role as building blocks for larger

data structures such as trees and arrays with fine-grained separation properties. However,

shallowly-mutable data structures are useful in their own right: For instance, we implemented

UpCounter which tracks a monotonically increasing variable and maintains an invariant rela-

tive to the counter’s initial value. We also implemented a simple array (ArraySimple) and stack

(StackSimple) which essentially act as wrappers around functional data structures in that

they only store the reference to the head of an immutable list. For instance, ArraySimple[T]

49

Chapter 5. Evaluation

Benchmark #LoC #VCs T C HC
Empty 10 0 6.3 0.0 0.0
AllocatorMono 73 80 12.8 4.1 0.8
ArraySimple 38 16 7.6 0.6 0.2
CellArraySimple 21 9 7.2 0.4 0.1
FibCache 38 32 11.1 2.8 0.3
MutList 81 148 46.2 35.4 2.2
MutListSetsOnly 45 54 30.3 22.4 1.4
NodeCycle 72 69 12.0 4.0 0.2
Queue 190 290 36.6 20.5 3.6
Stack 66 62 10.5 2.6 0.7
StackSimple (Fig. 3.1) 27 26 8.3 1.1 0.1
TaskParallel 46 38 8.3 1.1 0.2
TaskParallelBasic 58 51 8.6 1.2 0.2
TraitsReadsWrites 39 33 7.8 0.8 0.2
TreeImmutMapGeneric (Fig. 3.3) 55 33 17.1 8.3 0.2
UpCounter 48 32 8.0 0.9 0.2

Figure 5.1 – Evaluation results. For each benchmark we list the # of verification conditions
discharged, the # lines of Scala code (including annotations), the total runtime T, the time
spent checking VCs C, and the particular amount of time spent on VCs of heap contracts HC.
Timings are given in seconds.

consists of a single mutable field var list: List[T]. In our examples we show safety wrt.

bounds checks and non-emptiness when popping an element off the stack. We found that our

system easily deals with this kind of mutability, requiring no additional proof hints whatsoever,

in particular since the associated operations typically require no recursion through stateful

functions, making them straightforward to verify and invalidate with counter-examples.

5.2 Mutable Linked Lists and Queues

As an example of a more complex data structure we implemented multiple variations of a

mutable, acyclic, singly-linked list. We focussed on an append operation, which takes two

valid linked lists l1 and l2 with disjoint representations and concatenates them, leaving l1 in

a valid state. This is challenging in a system without a built-in notion of lists or trees, since

establishing the well-formedness of lists (e.g., the absence of cycles) requires knowledge of

heap separation and an inductive proof that maintains the property for intermediate nodes.

We considered several options to track a node’s representation repr. One could express repr

as a recursive function as in Section 3.2, or, instead, as a mutable @ghost field on each node.

In our benchmarks we present two variants of the latter approach: MutList encodes the

ghost field repr as List[AnyHeapRef], which has the added benefit of allowing predicates

like valid to recurse on the representation, and can be converted to a Set[AnyHeapRef] as

50

5.3. Slices, Monolithic and Cell-Based Arrays

required by our reads and modifies clauses. MutListSetsOnly instead implements repr as

Set[AnyHeapRef], whose encoded form requires no further conversion to interact with the

mapMerge primitive we use for framing.

We used a similar approach to implement Queue, which provides constant-time enqueue and

dequeue methods using references to the first and last nodes. Given a valid queue we prove

that enqueue and dequeue maintain validity and are functionally correct with respect to a

serialized representation similar to toList in Section 3.2. The example demonstrates how

safety properties can be established even in the presence of sharing and arbitrarily deep data

structures.

The NodeCycle example, which we reproduce in Appendix B, illustrates how to define the

inductive heap predicate for a cyclic list. We also establish that the prepend operation on such

a list maintains cyclicity. Both this and the aforementioned example leverage first-class heaps

to carry out the inductive proofs showing that the corresponding heap predicates continue to

hold after modifications to the data structure.

5.3 Slices, Monolithic and Cell-Based Arrays

Arrays are some of the most common data structures found in imperative code and thus a

worthwhile target for verification. When specifying algorithms involving arrays it often pays

to introduce slices, i.e., subarrays, as a means of abstraction. By extending the ArraySimple

example we arrived at ArraySlice which provides safe indexing, update and re-slicing oper-

ations wrt. an underlying array. In the absence of sharing, this solution of encapsulating all

array state in a single “monolithic” mutable heap object (the underlying array) is the natural

and practical choice.

To analyze divide-and-conquer algorithms on arrays, on the other hand, we require some

more fine-grained control, since we would like our dynamic frames to reflect the fact that

slices of an array may only access a subset of heap locations. A more complex representation

based on lists of Cell[T]s allows us to achieve such fine-grained framing of arrays and slices.

In example CellArraySimple we illustrate this approach and verify safety of accesses.

5.4 Fork-Join Parallelism

Since dynamic frames in our system are simply given by read-only expressions, users may

define their own imperative abstractions. For instance, in TaskParallel we demonstrate

how one can specify a primitive modelling fork-join parallelism. Figure 5.2 shows an excerpt

introducing the Task interface that encapsulates an asynchronous computation and declares

the set of heap objects that may be read and modified in the process. Further below we define

the parallel(t1, t2) construct [KP18] itself, imposing a number of restrictions: Firstly,

callers of parallel have to establish accessibility to both t1 and t2’s frames (lines 14-15).

51

Chapter 5. Evaluation

1 abstract class Task {
2 @ghost def readSet: Set[AnyHeapRef]
3 @ghost def writeSet: Set[AnyHeapRef] = { ??? }
4 ensuring (_ ⊆ readSet)
5

6 def run(): Unit = {
7 reads(readSet)
8 modifies(writeSet)
9 ??? : Unit

10 }
11 }
12

13 def parallel(task1: Task, task2: Task): Unit = {
14 reads(task1.readSet ++ task2.readSet)
15 modifies(task1.writeSet ++ task2.writeSet)
16 require((task1.writeSet ∩ task2.readSet == ;) &&
17 (task2.writeSet ∩ task1.readSet == ;))
18 task1.run(); task2.run()
19 // task1 and task2 complete before this function returns
20 }

Figure 5.2 – An interface for asynchronous computations and a sequential specification for
fork-join parallelism. The ??? denotes unimplemented code in abstract classes.

Secondly, we require that the write set of t1 is disjoint from t2’s read set and vice-versa (lines

16-17). This separation property justifies replacing our sequential model of parallel by a

more efficient runtime implementation executing the two tasks concurrently.

Users can define new asynchronous tasks by implementing Task. Operations such as those on

cell-based data structures discussed above are straightforward to parallelize in this way. Our in-

troductory example of Section 3.2 could be parallelized by defining a new class TMapTask[T](t:

Tree[T], f: T ⇒ T) whose run method calls tmap, and replacing the recursive calls in tmap

by parallel(TMapTask(left, f), TMapTask(right, f)).

Note that Task is also an example of how to compensate for the lack of effectful first-class

functions in our system. Namely, a function value of type S ⇒ T is assumed to neither read

nor modify the heap and thus remains untouched by our transformation. Instantiations of

Task, on the other hand, can be used to emulate effectful function values, and closures, in

particular, by defining anonymous classes implementing the Task interface.

52

Part IIType-Level Programming
in a Language with Subtyping

55

In this second part of the thesis we shift our focus from traditional program verifiers like

Stainless to more lightweight static checks facilitated by a type checker, like the one in the

Scala compiler. Compared to what we have presented so far, our approach in this part differs

in two significant ways. We integrate with an existing type system and will now leverage

dependent types, rather than contracts, to specify and propagate the desired safety properties.

In particular, we lift a functional fragment of the term-level language to improve popular

idioms for type-level computation in Scala. Unlike before, our goal is not to model the entire

language precisely, but only its pure fragment. Our approach here is to face the abundance of

weakly-typed and impure code head-on, and provide new facilities for sound approximation

of such program fragments. As we will see below, one of our main ideas is the introduction

of non-determinism into dependent types, allowing programmers to specify their programs

using a mix of precise (functional) type-level operators and non-deterministic choice from

base types.

Dependent types have been met with considerable interest from the research community

in recent years. Their primary application so far has been in proof assistants such as Agda

[Nor07], Coq [BC04] and Idris [Bra13], where they provide a sound and expressive foundation

for theorem proving. However, dependent types are still largely absent from general-purpose

programming languages, despite a long history of lightweight approaches [XP98]. In the con-

text of Haskell, much research has gone into extending the language to support computations

on types, for instance in the form of functional dependencies [Jon00], type families [KJS10]

and promoted datatypes [YWC+12]. These techniques have seen adoption by Haskell program-

mers, showing that there is a real demand for such mechanisms. Furthermore, recent research

has explored how dependent types could be added to the language for the same purpose

[Eis16, WVdAE17]. In a largely orthogonal direction, inference for dependent refinement types

is reaching significant maturity [VTVH18, VTC+17, VBJ15].

Dependently-typed languages often rely on a unified syntax to describe both terms and types.

The simplicity of this approach is unfortunately at odds with the design of most programming

languages, where types and terms are expressed using separate syntactic categories. Singleton

types provide a simple solution to this problem by allowing every term to be represented as a

type. The singleton type of a term therefore gives us the most precise specification for that

term.

We describe a concrete proposal of how to combine an industrial mixed-paradigm language,

Scala, with dependent types. We offer both a formalization of our type system and a discussion

of the challenges faced in a practical implementation. Unlike proof assistants, we do not aim to

use types as a general-purpose logic, which would favor designs ensuring totality of functions

through termination checks. Instead, our focus is on improving type safety of software by

increasing the expressive power of the type system.

We present λnd
<:{}, a dependently-typed calculus with subtyping and singleton types. The main

novelty of our calculus is a new approach to expressing type-level computation that, at first,

57

seems diametrically opposed to the purity other systems favor. A new term is added for non-

deterministic choice from a base type, similar to Floyd’s choice operator [Flo67b]. Designing

a sound system in the presence of non-determinism is challenging. Our solution provides

systematic translation of non-determinism using additional parameters that are existentially

quantified at a syntactically well-defined point. Consequently, a term in λnd
<:{} may reduce

to different values. Our system generalizes the traditional notion of singleton type: when

the lifted term t contains a non-deterministic choice, the resulting type {t } denotes the set

of values that t could possibly reduce to. As a result, our type system is capable of type

computations by manipulating types which are based on terms, but can nonetheless contain

more than a single value. In combination with subtyping, this allows us to seamlessly integrate

with impure, or imprecisely-typed programs.

Outline

We begin with a series of examples to demonstrate our extension of the Scala language and

to build an intuition for the power added by allowing non-deterministic terms in singleton

types (Chapter 6). To capture the essence of our extension we introduce λnd
<:{}, a calculus

which combines dependent types, subtyping and the generalized notion of singleton types

(Chapter 7). We then describe its denotational semantics by reduction to System FR [HVK19]

and a mechanized soundness proof in Coq (Chapter 8). Finally, we discuss details of our

prototypical implementation in the Scala compiler (Chapter 9), and evaluate our extension by

exploring the use case of a strongly-typed wrapper for Apache Spark (Chapter 10).

58

6 First-Class Type-Level Programming
for Scala

We begin by motivating why dependent types are desirable in general purpose programming,

and how one might use them to improve type safety. In our first example, we design an API that

keeps track of database tables’ schemas in the type. We demonstrate how dependently-typed

list operations can be used to compute schemas resulting from join operations at the type

level. Our second example shows how to build a safer version of the zip operation on lists that

only accepts equally-sized arguments. The examples in the following sections are written in

our dependently-typed extension of Scala described in Chapter 9.

6.1 Example: Safe Join

As a first step, we show how our system supports type-level programming in the style of term-

level programs. Consider the following definition of the list datatype, which is standard Scala

except for the new dependent keyword:

sealed trait Lst { . . . }

dependent case class Cons(head: Any, tail: Lst) extends Lst

dependent case class Nil() extends Lst

We can define list concatenation in the usual functional style of Scala, that is, using pattern

matching and recursion:

sealed trait Lst {

dependent def concat(that: Lst) <: Lst =

this match {

case Cons(x, xs) => Cons(x, concat(xs, that))

case Nil() => that

}

}

By annotating a method as dependent, the user instructs our system that the result type of

59

Chapter 6. First-Class Type-Level Programming for Scala

concat should be as precise as its implementation. Effectively, this means that the body of

concat is lifted to the type level, and will be partially evaluated at every call site to compute a

precise result type which depends on the given inputs. For recursive dependent methods such

as concat, we infer types that include calls to concat itself. The <: annotation lets us provide

an upper bound on concat’s result type, which will be used while type checking the method’s

definition. Finally, by qualifying the definition of Cons and Nil as dependent we also allow

their constructors and extractors to be lifted to the type level. Using these definitions, we can

now request the precise type whenever we manipulate lists by annotating the new val binding

with dependent:

dependent val l1 = Cons("A", Nil())

dependent val l2 = Cons("B", Nil())

dependent val l3 = l1.concat(l2)

l3.size: { 2 }

l3: { Cons("A", Cons("B", Nil())) }

Enclosing a pure term in braces ({ . . . }) denotes the singleton type of that term. In the last

two lines of this example we are therefore asking our system to prove that l3 has size 2 (given

a dependent method size) and that l3 is equivalent to Cons("A", Cons("B", Nil())).

In Scala we often deal with impure or imprecisely-typed code, however. To integrate with

such terms, we provide the choose[T] construct. Operationally, we interpret choose[T] as

a non-deterministic choice from T, which can be modelled faithfully on the type level as an

existentially quantified inhabitant of T in a singleton type. Thus, we equate { choose[T] } to

T, and when typing an impure term such as Cons(readString(), Nil()) we can assign the

type { Cons(choose[String], Nil()) }. Returning to the previous example, this means

that even in the presence of impurity, we can perform useful type-level computation and

checking:

dependent val l2 = Cons(readString(), Nil())

dependent val l3 = l1.concat(l2)

l3: { Cons("A", Cons(choose[String], Nil())) }

In a style similar to concat, we can define remove on Lst:

sealed trait Lst {

dependent def remove(e: String) <: Lst =

this match {

case Cons(head, tail) =>

if (e == head) tail

else Cons(head, tail.remove(e))

case _ => throw new Error("element not found")

}

}

60

6.2. Example: Safe Zip

Removing "B" yields the expected result, while trying to remove "C" from l3 leads to a compi-

lation error, since the given program will provably fail at runtime.

l3.remove("B"): { Cons("A", Nil()) }

l3.remove("C") // Error: element not found

The lists we defined so far can be used to implement a type-safe interface for database tables.

dependent case class Table(schema: Lst, data: spark.DataFrame) {

dependent def join(right: Table, col: String) <: Table = {

val s1 = this.schema.remove(col)

val s2 = right.schema.remove(col)

val newSchema = Cons(col, s1.concat(s2))

val newData = this.data.join(right.data, col)

new Table(newSchema, newData)

}

}

In this example, we wrap a weakly-typed implementation of Spark’s DataFrame in the

dependent class Table. The first argument of this class represents the schema of the table as a

precisely-typed list. The second argument is the underlying DataFrame. In the implementa-

tion of join, we execute the join operation on the underlying tables (newData) and compute

the resulting schema corresponding to that join (newSchema). By annotating the join method

as dependent, the resulting schema is reflected in the type:

dependent val schema1 = Cons("age", Cons("name", Nil()))

dependent val schema2 = Cons("name", Cons("unit", Nil()))

dependent val table1 = Table(schema1, . . .)

dependent val table2 = Table(schema2, . . .)

dependent val joined = table1.join(table2, "name")

joined: { Table(Cons("name", Cons("age", Cons("unit", Nil()))),

choose[DataFrame]) }

Reflecting table schemas in types increases type safety over the existing weakly-typed interface.

For instance, it becomes possible to raise compile-time errors when a user tries to use non-

existent columns. This is an improvement over the underlying Spark implementation that

would instead fail at runtime.

6.2 Example: Safe Zip

Our first example demonstrated how dependent methods allow inference of precise types.

Conversely, we can also use singleton types to constrain method parameters further. In

this example, our goal is to write a safer wrapper for functions like zip that should only

be applicable to lists of the same length. To accomplish this, we can constrain the second

61

Chapter 6. First-Class Type-Level Programming for Scala

parameter of zip as follows:

def safeZip(xs: Lst, ys: { sizedLike(xs) }) = unsafeZip(xs, ys)

Here we would like { sizedLike(xs) } to be inhabited by all lists of equal length as xs,

regardless of their elements’ values. How can this be achieved, given that sizedLike(xs) is

a term? By exploiting the non-deterministic interpretation of choose[T], we can provide a

succinct definition for sizedLike:

dependent def sizedLike(xs: Lst) <: Lst =

xs match {

case Nil() => Nil()

case Cons(x, ys) => Cons(choose[Any], sizedLike(ys))

}

Consider, for instance, the meaning of { sizedLike(xs) } for xs = Cons(1, Cons(2,

Nil())). After reduction, we obtain { Cons(choose[Any], Cons(choose[Any], Nil()))

}, which is a type that represents all lists of size 2. Thus safeZip requires every caller to prove

that xs and ys are of the same length, which ensures that the underlying implementation in

unsafeZip will never fail or truncate elements from one of the lists.

Unlike concat and remove that can be used both on the term and the type level, sizedLike is

intended to be used as a type function, but not at runtime.

6.3 Discussion: From Choices to Existentials

Note that { sizedLike(xs) } cannot be readily expressed using existential types and single-

tons alone. The given list xs might be of an arbitrary size, so the number of existentials needed

for all the occurrences of choose[Any] is abstract at this point. More specifically, depending

on the size of xs, { sizedLike(xs) } corresponds to one of the following existential types:

{nil} ∃x1 :Top.{cons x1 nil} ∃x1 :Top.∃x2 :Top.{cons x1 (cons x2 nil)} . . .

An important contribution of our type system is that it allows users to express such existential

quantifications conditional on the program unfolding. Our calculus (described in Chapter 7)

achieves this by encoding all non-deterministic choices using a single existential per-type

annotation. In particular, we represent { sizedLike(xs) } by

∃z :Trail. {sizedLike’ z xs}

where (sizedLike’ z xs) is defined by

xs match nil; x, y ⇒ cons (unpack z.1) (sizedLike’ z.2.3 y)

62

6.3. Discussion: From Choices to Existentials

Conceptually, z :Trail corresponds to a map of input values passed to a deterministic version

of the program, i.e., sizedLike’. Programs resulting from our encoding are pure and deter-

ministic, so we can perform equational reasoning and apply well-understood techniques for

designing sound type systems. At the same time, our encoding is adequate with respect to

non-determinism (which, in turn, can approximate other language features). In our example,

(unpack z.1) extracts the value at index .1 from the input z. Note that using the argument

of the recursive call, z.2.3, we ensure that each invocation of choose[T] in the original pro-

gram is translated with a different index (Section 7.2). This is necessary for sizedLike’ to

faithfully model the original (non-deterministic) sizedLike, in the sense that each invocation

of choose[T] can be mapped to a different value. For instance, when xs is a concrete list of

two elements, we end up with a type encoded as

∃z :Trail. {cons (unpack z.1) (cons (unpack z.2.3.1) nil)}

which, given our interpretation of the Trail type, selections like z.1, and the unpack operation,

is equivalent to all the lists of two elements.

During type checking, we explicitly eliminate the references to unpack and replace them by

fresh existentials:

∃x1 :Top.∃x2 :Top.{cons x1 (cons x2 nil)}

That is, we “untangle” individual existentials that had previously been tied up together (Sec-

tion 7.4). As part of our overall soundness proof (Chapter 8) we show that untangling produces

equivalent types, which allows us to match different occurrences of types containing non-

deterministic choices when they denote the same sets of values.

Our type system rules are designed to support type checking with such existentials and sub-

typing. We find that it achieves an appealing combination of expressive power and simplicity:

the developers can denote types using functions that generate sets of values, instead of ma-

nipulating syntactic representations of types. Studying the essence of such a type system

in combination with recursive functions (as we do in the following chapter) is particularly

interesting: Not only do recursive functions enable inductive proofs in the usual way where

return types form induction hypotheses, but lifting fixpoints to the type level also allows us

to encode recursive types. Finally, we note that even if our current set of type-checking rules

does not cover as many type equivalences as we may wish to have, our soundness approach

based on reducibility semantics and System FR [HVK19] allows us to modularly introduce and

prove additional rules in the future.

63

7 A Calculus for
Type-Level Computation

We present a calculus and a type system that capture the core mechanisms required for type-

level computation in a dependently-typed language with subtyping. While an implementation

on top of Scala must operate in the presence of a much more general subtyping relation,

our formalism does not cover all the features of Scala’s type system. In the following section,

we introduce a functional language with primitives for operating on Lisp-like lists, which

gives similar power as the closed type hierarchies that our Scala-implementation can reason

about. An extension to other algebraic data types should be straightforward. Our calculus also

supports non-deterministic choice from base types and Top. This choice operator allows us,

on the one hand, to model imprecisely-typed functions and, on the other hand, to emulate

type-level computation.

7.1 Syntax and Semantics

The terms and types of our calculus, λnd
<:{}, are defined in Figure 7.1. We consider terms and

types equivalent up to alpha-renaming. As usual, variables are named x, y or z. We denote

the set of free variables of a term t by fv(t). Our language contains first-class functions and

constructors for lists, along with pattern matching, and a fixpoint combinator. Programs in

our language always terminate because our fixpoint combinator is bounded to a maximum

recursion depth and returns a default value otherwise. In fixn(x :T ⇒ t1, t2), n corresponds to

the maximum recursion depth, t1 is the body of fix and t2 is the default value. We expect that

our approach extends to more general solutions, for example, requiring proofs of termination

as in most dependently-typed languages [Nor07, BC04], or controlling reduction on the type

level using iso-types [YBO16].

The small-step operational semantics given in Figure 7.2 is mostly standard, save for two

aspects. First, term evaluation does not get stuck on variables (we include them among the

values v) and behaves non-deterministically on the term choose[B], which evaluates to an

arbitrary value of type B (i.e., base types or Top). Unlike many other dependently-typed

65

Chapter 7. A Calculus for Type-Level Computation

Terms and Types of λnd
<:{}:

p, t := x | λx :T . t | t t | nil | cons t t | t match t ; x, y ⇒ t |
fixn(x :T ⇒ t , t) | choose[B]

S,T ,U ,V := B | {t }T |Πx :T .T

B := Top | List

Values:

v , vTop := x | λx :T . t | vList

vList := nil | cons v vList

Figure 7.1 – The terms and types for λnd
<:{}.

Evaluation contexts:

E := [] | E t | v E | cons E t | cons v E | E match t ; x, y ⇒ t

Term evaluation:

t →β t ′

E [t] →β E [t ′]
(BCTX)

(λx : A. t) v →β t [x 7→ v]
(BAPP)

(nil match t1; x, y ⇒ t2) →β t1
(BMATCHNIL)

((cons v1 vList
2) match t1; x, y ⇒ t2) →β t2[x 7→ v1][y 7→ vList

2]
(BMATCHCONS)

n = n′+1

fixn(x : A ⇒ t1, t2) →β t1[x 7→ fixn′(x : A ⇒ t1, t2)]
(BFIXREC)

n = 0

fixn(x : A ⇒ t1, t2) →β t2
(BFIXDEFAULT)

fv(v) =;
choose[Top] →β v

(BCHOOSETOP)
fv(vList) =;

choose[List] →β vList
(BCHOOSELIST)

Figure 7.2 – The term evaluation rules and evaluation contexts.

systems, this allows us to express more than just purely-functional programs, as choose[B]

conservatively models a term lacking referential transparency. Second, choose[B] allows us to

model the situation in which parts of our program may be pure, but are typed in a less precise

66

7.2. Lowering to a Deterministic Language

manner.

Besides the dependent products usually found in dependently-typed languages, we also in-

clude singleton types [Hay91], denoted {t }U , which are inhabited only by terms observationally

equivalent to t . The underlying type U provides an upper bound for the singleton type and is

used to guide type inference. For instance, nil can be typed precisely as {nil}List. The identity

function on Top can be typed as:

{λx :Top. x}Πx:Top.{x}Top

For better legibility we often write singletons without their underlying types: {λx :Top. x}.

When used in a type annotation, choose[B] existentially quantifies over an arbitrary value in B .

As a result, the base type List is equivalent to {choose[List]} which in turn allows us to express

the type of non-empty lists as follows:

{cons (choose[Top]) (choose[List])}

During type checking, our system rewrites choose[B] to explicit existential quantifications,

that are not available in the surface syntax. Internally, we end up with the following type for

the above example:

∃x1 :Top.∃x2 :List. {cons x1 x2}

Semantically, this type corresponds to the infinite union over all elements x1:Top, x2:List of

{cons x1 x2}. As a first step towards representing the impure choose[B] construct, we translate

programs in λnd
<:{}to a deterministic language, as described below.

7.2 Lowering to a Deterministic Language

In this section, we detail how we eliminate the non-deterministic choose[B] construct. The

essence of our translation is to collect all the choices that a non-deterministic execution might

need and turn them into an input argument of a deterministic version of the program. Our

translation is therefore analogous to a translation from a non-deterministic Turing machine

to a deterministic machine that acts as the corresponding verifier [Sip13, Theorem 7.20 on p.

294].

The encoding is performed before type checking, and as a consequence choose[B] is absent

from subsequent typing rules. Depending on the context where choose[B] occurs, it takes on

different meanings. In the context of terms, choose[B] refers to a specific value in B , picked

non-deterministically during program execution. When invoked from inside a singleton

type, such as in {choose[B]}, our translation will give it the meaning of all values in B . This

result arises due to existential quantification over choices, which the translation introduces

independently for each type annotation in the program.

67

Chapter 7. A Calculus for Type-Level Computation

Terms and Types of λdet
<:{}:

p, t := x | λx :T . t | t t | nil | cons t t | t match t ; x, y ⇒ t |
fixn(x :T ⇒ t , t) | t .1 | t .2 | t .3

S,T ,U ,V := B | {t }T |Πx :T .T |
Cons T1 T2 | t Match T ; x, y ⇒ T | ∃x :T .T | Trail

Values:

v , vTop := x | λx :T . t | vList | v .1 | v .2 | v .3

Figure 7.3 – The terms and types in λdet
<:{}. Constructs not present in λnd

<:{} are marked in gray .

We define a lowering from λnd
<:{}, the surface language, to λdet

<:{}, which we then use in subsequent

type checking. In Figure 7.3 we give the terms and types of λdet
<:{} with the differences to λnd

<:{}

highlighted in gray. First, note the absence of choose[B], which is eliminated by the lower-

ing. We include types for list constructors (Cons T1 T2) and matches. The type for matches,

t Match T2; x, y ⇒ T3, represents either T2 or the substituted form of T3, depending on the

value of t . These types are used later, during type inference, and guide subtyping. The other

additions, i.e., existential types, the base type Trail, and selections on trails, t .n, are discussed

below in the lowering step.

Encoding choose[T]

Lowering produces a deterministic program that, thanks to an extra parameter, captures all of

the potential behaviors of the original (non-deterministic) program. We express the lowered

program as a function of trails. Intuitively, a trail τ contains all the information necessary to

recover the non-deterministic choices made in a concrete execution of the original program.

Given a program t in λnd
<:{}, the lowering yields t f = λzα : Trail.〈〈t〉〉zα in λdet

<:{}, which encodes

the behavior of t as a pure function. That is, for any given (potentially non-deterministic)

reduction resulting in v , there exists a trail τ such that (t f τ) →∗
β
〈〈v〉〉1.

In Figure 7.4 we describe the transformation of terms, 〈〈t〉〉p , and the transformation of types,

〈〈T 〉〉. At its core, 〈〈t〉〉p replaces each invocation of choose[B] by an application of a function

unpackB to a trail. Given the original program, one of its non-deterministic executions can

be characterized by a mapping from every invocation of choose[B] to the resulting value in B .

With respect to our evaluation relation →β, such a mapping can be obtained by recording the

sequence of non-deterministic choices in BCHOOSETOP and BCHOOSELIST. The initial trail

1We omit the trail argument in 〈〈v〉〉, as it is irrelevant when translating values, which can only contain choose[B]
underneath lambdas.

68

7.2. Lowering to a Deterministic Language

〈〈T 〉〉 : Type → Type

〈〈B〉〉 := B

〈〈{t }T 〉〉 := ∃z :Trail. {〈〈t〉〉z }〈〈T 〉〉 where z is fresh

〈〈Πx :S.T 〉〉 := Πz :Trail.Πx :〈〈S〉〉.〈〈T 〉〉 where z is fresh

〈〈Cons T1 T2〉〉 := Cons 〈〈T1〉〉 〈〈T2〉〉
〈〈t Match T2; x, y ⇒ T3〉〉 := ∃z :Trail.〈〈t〉〉z Match 〈〈T2〉〉; x, y ⇒〈〈T3〉〉

where z is fresh

〈〈t〉〉p : Term → Term → Term

〈〈choose[B]〉〉p := unpackB p

〈〈λx :T . t〉〉p := λz :Trail.λx :〈〈T 〉〉.〈〈t〉〉z where z is fresh

〈〈t1 t2〉〉p := t ′1 p.3 t ′2 where t ′1 = 〈〈t1〉〉p.1 and t ′2 = 〈〈t2〉〉p.2

〈〈x〉〉p := x

〈〈nil〉〉p := nil

〈〈cons t1 t2〉〉p := cons 〈〈t1〉〉p.1 〈〈t2〉〉p.2

〈〈t1 match t2; x, y ⇒ t3〉〉p := 〈〈t1〉〉p.1 match 〈〈t2〉〉p.2; x, y ⇒〈〈t3〉〉p.3

〈〈fixn(x :T ⇒ t1, t2)〉〉p := fixn(x :〈〈T 〉〉⇒ 〈〈t1〉〉p.1, 〈〈t2〉〉p.2)

Figure 7.4 – The rules for lowering programs in λnd
<:{} to λdet

<:{}, yielding a deterministic program
without the non-deterministic choose[B] construct.

zα used to evaluate the lowered program corresponds to a complete mapping for some non-

deterministic execution. Throughout the lowered program we build up selections on the initial

trail using t .n, which correspond to subtrails. Calls to unpackB then use the given subtrail to

return a value. In our translation we take care never to apply unpackB to the same trail twice:

Doing so would incorrectly constrain the outcome of the corresponding invocations to be

coupled together.

In the translation of abstractions, we create a fresh trail parameter z, which is then used to

translate the function’s body. This is essential, as it ensures that in each function invocation we

allow for different non-deterministic choices. Note that it does not seem feasible to enumerate

all the possible invocations of choose[B] statically: For one, the outcome of a choose[B] might

influence the control flow of the original program, and, in general, the length of the execution

may be unbounded. To translate an application, we select on the current trail and pass it as

the additional argument. Extending the selection is crucial to ensure that recursive calls can

be distinguished in their non-deterministic choices. Consequently, we also adapt types that

occur in the annotations of abstractions and fixpoints using 〈〈T 〉〉. In particular, Π-types are

rewritten to account for the newly-introduced Trail parameter.

69

Chapter 7. A Calculus for Type-Level Computation

Note that in 〈〈T 〉〉 we do not propagate and extend an existing trail as we do with p in 〈〈t〉〉p .

When translating a singleton type {t }U we instead wrap the resulting type in a fresh existential

type ∃z : Trail. , which is used in the translation of t . This is what gives choose[B] its dual

meaning at the type level: Rather than referring to one particular choice, it encompasses all of

them.

Our lowering is related to monadic encodings in the style of Wadler [Wad90a]. The resulting

encoding is simpler than a typical State monad because we only care about the distinctness of

trails, rather than encoding the evaluation order and threading the resulting state from one

subterm to another.

Trails, More Carefully

We will now give a more concrete definition of what properties a trail, and the operations

that act upon it, must satisfy. We organize the sequence of values of a trail τ as a ternary tree.

Leaves of this tree contain a value, and a tag that encodes the type of the value. Consider

t ..p as notation for (. . . (t .n1) . . .).nk , i.e., applying a series of selections p = .n1nk where

n1, . . . ,nk ∈ {1,2,3} to t . Given a trail τ and selections p, τ..p represents the subtree of τ when

selecting the ni -th child at the i -th level of τ. For trees τ,τ′ and a selection p, (update τ p τ′)
replaces the subtree selected by p in τ by τ′, so that (update τ p τ′)..p = τ′. The unpackB : (Πx :

Trail.B) function returns the value at the root of the given tree, if the type-tag of the value there

encodes B , and nil otherwise.

7.3 The Type System

We introduce our type system for λdet
<:{}which consists of several inter-dependent relations:

• type inference and checking (⇑ and ⇓ in Figure 7.5),

• subtyping (<: in Figure 7.6), and

• type normalization (→N in Figure 7.7).

To improve legibility of the rules, we omit well-formedness conditions, and presume that

types are well-formed in the given context. For singleton types, in particular, we maintain the

assumption that for any {t }U we encounter, t inhabits U . Similarly, for every list match type

(t Match T2; x, y ⇒ T3) we assume that t inhabits List.

7.3.1 Type Inference and Underlying Types

Figure 7.5 presents rules that infer the most precise type for a given term t . In particular, type

inference will yield a singleton type {t }U , if t is well-typed. For each construct we attach an

70

7.3. The Type System

Γ(x) = T

Γ` x ⇑ {x}T
(TVAR)

Γ, x : S ` t ⇑ T

Γ`λx :S. t ⇑ {λx :S. t }Πx:S.T
(TABS)

Γ` t1 ⇑V dV e =Πx :S.T Γ` t2 ⇓ S

Γ` t1 t2 ⇑ T [x 7→ t2]
(TAPP)

Γ, x : T ` t1 ⇓ T Γ` t2 ⇓ T

Γ` fixn(x :T ⇒ t1, t2) ⇑ {fixn(x :T ⇒ t1, t2)}T
(TFIX)

Γ` nil ⇑ {nil}List
(TNIL)

Γ` t1 ⇑ T1 Γ` t2 ⇑ T2 Γ` T2 <: List

Γ` cons t1 t2 ⇑ {cons t1 t2}ConsT1 T2

(TCONS)

Γ` t1 ⇓ List Γ` t2 ⇑ T2 Γ, x : Top, y : List ` t3 ⇑ T3

Γ` t1 match t2; x, y → t3 ⇑ {t1 match t2; x, y → t3}t1 MatchT2; x,y ⇒T3

(TMATCH)

Γ` t ⇓ Trail

Γ` t .k ⇑ {t .k}Trail
(TDOT) Γ` t ⇑ T ′ Γ` T ′ <: T

Γ` t ⇓ T
(TCHECK)

d{t }U e :=
{
Πx :S. {t x}T if U =Πx :S.T for some types S,T

dUe otherwise

dT e := T if there exist no t and U such that T = {t }U

Figure 7.5 – The inference and checking rules.

upper bound as the singleton’s underlying type U . In TABS, for instance, we “tag” the singleton

type inferred for a function with the corresponding Π-type, and in TCONS we attach a special

type Cons T1 T2 only present during type checking. The underlying type is used to guide

checks in TAPP and various subtyping rules.

In TAPP, in particular, we expose and match against the underlying function type of t1 using

the auxiliary d·e function. Our goal here is to check that applying t1 to t2 is safe, as usual, while

also maintaining a precise version of the underlying type. Assuming we inferred V = {t1}Πx:S.T

for t1, dV e will yield aΠ-type equivalent to t1 for all x in S, i.e.,Πx :S. {t1 x}T . We then substitute

the argument term in the result type, yielding {t1 t2}T [x 7→t2]. In TAPP, TCONS and TFIX we also

refer to a type-checking relation (t ⇓ T) which is defined as a shorthand (see TCHECK) for

inferring the type of t and checking against the expected type T using the subtyping relation.

71

Chapter 7. A Calculus for Type-Level Computation

Γ` T <: T
(SUBREFL)

Γ` T <: Top
(SUBTOP)

Γ` T1 <: T2

Γ` {t }T1 <: T2
(SUBSING)

Γ, x : S ` T <: U

Γ`∃x :S.T <: U
(SUBEXISTSLEFT)

{t }U = solvex (T1,S,T2) Γ` {t }U <: S Γ` T1 <: T2[x 7→ t]

Γ` T1 <: ∃x :S.T2
(SUBEXISTSRIGHT)

Γ` Cons S T <: List
(SUBCONS1)

Γ` S1 <: S2 Γ` T1 <: T2

Γ` Cons S1 T1 <: Cons S2 T2
(SUBCONS2)

Γ` S2 <: T Γ, x : Top, y : List ` S3 <: T

Γ` t1 MatchS2; x, y ⇒ S3 <: T
(SUBMATCH)

Γ` S2 <: S1 Γ, x : S2 ` T1 <: T2

Γ`Πx :S1.T1 <:Πx :S2.T2
(SUBPI)

Γ` T1 →N T ′
1 Γ` T2 →N T ′

2 Γ`U (T ′
1) <: U (T ′

2)

Γ` T1 <: T2
(SUBNORM)

Figure 7.6 – The subtyping rules.

7.3.2 Subtyping and Type Normalization

The subtyping relation is given in Figure 7.6. Rules for reflexivity (SUBREFL), Π-types (SUBPI),

Top and the List base type (SUBTOP, SUBCONS1) are standard. The Cons type introduced

during inference can be subtyped covariantly (SUBCONS2); the type (x Match T2; x, y ⇒ T3)

assigned to matches behaves like a union of T2 and T3, while allowing T3 to retain variables

bound in the pattern (SUBMATCH). Using SUBSING we can approximate a singleton type {t }T1

occuring on the left-hand side by its upper bound T1.

Our system allows for computation on types to take place during subtyping. Subtyping rule

SUBNORM bundles two kinds of normalizing behavior: We first reduce both sides T1 and T2

using type normalization. We then attempt to replace any newly-exposed occurrences of

unpackB by fresh existentials of type B via the untangle function U (·).

The rules for type normalization are detailed in Figure 7.7. We merely distribute over Π-types,

existentials, and Cons-types (NPI, NEXISTS1, NEXISTS2, NCONS). Since S is assumed to be

inhabited in existential types ∃x :S.T , we eliminate such quantifications whenever the result

type T does not contain x free (NEXISTS1).

Singleton types {t }U may be normalized using NSING, in which we first reduce t using beta-

delta reduction (Figure 7.8). Beta-delta reduction is defined as a context-aware extension

72

7.3. The Type System

T ∈ {Top,List}

Γ` T →N T
(NBASE)

Γ` t →∗
βδ

t ′ Γ` t ′ ⇑ {t ′′}V

Γ` {t }U →N {t ′′}V
(NSING)

Γ` S →N S′ Γ, x :S′ ` T →N T ′

Γ`Πx :S.T →N Πx :S′.T ′ (NPI)

Γ` S →N S′ Γ, x : S′ ` T →N T ′ x 6∈ fv(T)

Γ`∃x :S.T →N T ′ (NEXISTS1)

Γ` S →N S′ Γ, x : S′ ` T →N T ′ x ∈ fv(T)

Γ`∃x :S.T →N ∃x :S′.T ′ (NEXISTS2)

Γ` T1 →N T ′
1 Γ` T2 →N T ′

2

Γ` Cons T1 T2 →N Cons T ′
1 T ′

2

(NCONS)

Γ` t →∗
βδ

nil Γ` T2 →N T ′
2

Γ` t MatchT2; x, y ⇒ T3 →N T ′
2

(NMATCH1)

Γ` t →∗
βδ

cons t1 t2 Γ, x :{t1}Top, y :{t2}List ` T3 →N T ′
3

Γ` t MatchT2; x, y ⇒ T3 →N T ′
3

(NMATCH2)

Γ` t →∗
βδ

t ′ if neither of the above rules apply

Γ` t MatchT2; x, y ⇒ T3 →N t ′ MatchT2; x, y ⇒ T3
(NMATCH3)

Figure 7.7 – The type normalization rules.

of beta reduction (seen previously in Figure 7.2) with a new rule BDDELTA, which allows

the elimination of variables whose precise definition is known from the context (a similar

evaluation relation is found in [Cou03]). Delta reduction steps may lead the underlying

type U to go out-of-sync with the newly computed term t ′. For instance, given the context

Γ = x : {nil}List and the type {x}Top, if we were to normalize using the beta-delta reduction

x →∗
βδ

nil alone, we would arrive at {nil}Top. We can improve upon this — and in fact might

rely on it in later subtyping queries — by redoing type inference on t ′, yielding a singleton

type with a better bound (in our example, {nil}List).

Γ` t →βδ t ′

Γ` E [t] →βδ E [t ′]
(BDCTX)

Γ(x) = {t }U

Γ` x →βδ t
(BDDELTA)

t →β t ′

Γ` t →βδ t ′
(BDBETA)

Figure 7.8 – The rules of beta-delta reduction.

73

Chapter 7. A Calculus for Type-Level Computation

The rules for match allow reduction of (t Match T2; x, y ⇒ T3) depending on the beta-delta

reduction of t . That is, we normalize to T2 when t = nil (NMATCH1), and to T3 when t is a cons

(NMATCH2). In the latter case, we add precisely-typed bindings that allow for x and y to be

δ-reduced during the normalization of T3. If t does not fit either case, we instead normalize to

a type that incorporates the reduced t .

7.3.3 Subtyping Existential Types

Existentials only enter the program when lowering type annotations in λnd
<:{} to λdet

<:{}, and in

SUBNORM via U (·). When encountered on the left-hand side, existential types are eliminated

by adding x :S to the context (SUBEXISTSLEFT). When an existential occurs on the right-hand

side, we try to guess a valid instantiation t for x (SUBEXISTSRIGHT). The subroutine that

guesses t is modelled abstractly by solvex (T1,S,T2), which is expected to return a singleton

{t }U . We make no assumptions on the implementation of solvex , but verify that the outcome

is a valid solution by checking that it conforms to S and makes the instantiated right-hand

side a super-type of the left-hand side. In Section 7.5 we discuss one possible concrete

implementation of solvex .

7.4 Untangling Trails

In Section 7.2 we explained how to translate the non-deterministic choose[B] construct into

an application of unpackB to a trail. Therefore, during type checking, we often face subtyping

queries involving applications of unpackB on the right-hand side. For instance, when checking

the program

(λx :{cons choose[Top] choose[List]}. x) (cons nil nil)

we will encounter the following subtyping query:

{cons nil nil} <: ∃z :Trail. {cons (unpackTop z.1) (unpackList z.2)}

Though the right-hand side is an existential type, this query cannot be solved by SUBEXIST-

SRIGHT directly, unless the solve subroutine possesses some deep knowledge about unpackB .

That is, a priori it is not evident that there exists a trail z such that both (unpackTop z.1) and

(unpackList z.2) reduce to nil.

Using the properties on trails and unpackB introduced in Section 7.2 we can prove that the

type on the right-hand side is, in fact, equivalent to an explicitly quantified version, i.e.,

∃z :Trail. {cons (unpackTop z.1) (unpackList z.2)} = ∃x1 :Top.∃x2 :List. {cons x1 x2}

To see why the inclusion from left to right holds, consider any trail τ with values vTop
1 and vList

2

stored at indices .1 and .2. We can thus instantiate x1 and x2 to vTop
1 and vList

2 , to obtain the

same term on both sides. From right to left we can construct a tree containing the values of x1

74

7.4. Untangling Trails

U : Type → Type “Untangle all Trail existentials”

U (∃x :Trail.T) :=Wx (ps,U (T)) where ps = trailsOfx (U (T))

U (∃x :S.T) :=∃x :U (S).U (T) if S 6= Trail

U (Πx :S.T) :=Πx :U (S).U (T)

U ({t }U) := {t }U (U) U (Cons T1 T2) := Cons U (T1) U (T2)

U (B) := B U (t Match T2; x, y ⇒ T3) := t Match U (T2); x, y ⇒U (T3)

Wx : Id → 2Term → Type → Type “Untangle one Trail existential”

Wx ({},T) := T

Wx ({p}]ps,T) :=
{

Wx (ps,∃y :B .T ′) if p 6∈ trailsOfx (T ′)
Wx (ps,∃y :Trail.T ′′) otherwise

wher e T ′ is T with all occurrences of (unpackB x..p) replaced by y ,

T ′′ is T with all occurrences of x..p replaced by y , and y is fresh.

trailsOfx (T) ⊆ Term “Collect all trails rooted in x”

trailsOfx (T) is a set of maximal selections p where x..p appears in T

Figure 7.9 – The untangle function U and additional auxiliary functions.

and x2 at indices .1 and .2. This same reasoning can be applied to all functions of Trail that

we encounter after our lowering to λdet
<:{}. Furthermore, it generalizes to an arbitrary number of

selections on z, as long as the selections are not prefixes of one another, which is ensured by

our lowering step.

To exploit this property, we define the untangle function U (·), which transforms the left-

hand side of the equality above to the right-hand side. We use U (·) during normalization in

SUBNORM. In our example, this leads to a simpler subtyping query:

{cons nil nil} <: ∃x1 :Top.∃x2 :List. {cons x1 x2}

At this point we can apply SUBEXISTSRIGHT twice, which could find valid assignments for

both x1 and x2 (i.e., nil) using straightforward unification.

The definition of U (T) is given in Figure 7.9. Given the conditions on trails mentioned above,

we prove untangling always yields equivalent types (see Chapter 8).

75

Chapter 7. A Calculus for Type-Level Computation

7.5 From Rules to Algorithms

The type system we presented above comes close to being algorithmic. All of the rules for

type inference and most of the rules for subtyping and type normalization are already syntax-

directed. To derive the normalization of an existential type one has to choose between NEX-

ISTS1 and NEXISTS2, but only one of them will ever succeed due to the condition on x being

free in T ′. It is therefore straightforward to formulate these cases as a single, effective rule.

In the remainder, we note two more substantial adjustments that are needed for an effective

formulation of our type system.

The first adjustment is to only apply SUBNORM (type normalization) at the very beginning

of subtyping queries (for example, in TCHECK), and before any subderivation that adds a

binder to the context (for example, in the second premise of SUBPI). Applying SUBNORM must

remain optional, however, since forcing normalization can lead to subderivations that grow

ad infinitum, for instance by normalizing under matches and re-entering type inference in

NSING. Beyond making SUBNORM optional, in practice it is useful to allow for a fast path in

subtyping. Given a subtyping query T1 <: T2, one can first try to prove a stronger subtyping

relation, where the left-hand side T1 is approximated by dT1e. We found that this greatly

reduces the need for complex subtyping derivations, e.g., when checking against the List base

type in TCONS and TMATCH.

The second adjustment lies in SUBEXISTSRIGHT, where we require a procedure for solvex . In

principle, solvex (T1,S,T2) could do arbitrarily deep reasoning about the involved types, but our

experience shows that a unification-like procedure is sufficient for the use cases presented here.

We experimented with a particularly simple variant: solvex performs a separate subtyping

query which constrains x in a greedy manner using a modified version of SUBREFL. In this

modified rule, the computation of (syntactic) type equality looks for any appearances of x. If x

appears on either side of the comparison, the corresponding term on the other side is picked

as a greedy solution of solvex . This naive syntactic approach can result in an instantiation

that is not well-formed in the original context Γ, in which case we simply fail. One could,

of course, try to incrementally improve this approach by trying to rewrite t to an equivalent

term well-formed in Γ. It would be interesting to explore a more general constraint-solving

approach.

To more easily experiment with the algorithmic rules we implemented a standalone type

checker for λnd
<:{}.

2 Its implementation provides an extended surface syntax for the calculus

and integrates the heuristics outlined above. We have used it to debug typing derivations and

establish a suite of basic use cases such as heterogeneous lists and manipulations thereof. By

further adjusting the heuristic for solvex in SUBEXISTSRIGHT we managed to check encod-

ings of various existing typing features such as recursive types and genericity. A number of

such benchmarks can be found in the examples/sdep/ subfolder of our implementation’s

repository.

2Our type checker for λnd
<:{} is available at https://github.com/epfl-lara/StainlessFit/tree/scaladep-2.

76

https://github.com/epfl-lara/StainlessFit/tree/scaladep-2

8 Soundness by Reduction to System FR

In this chapter we discuss how soundness of λdet
<:{} follows by reduction to another dependently-

typed calculus. Our formalization uses the language of System FR [HVK19], a calculus that was

recently presented as a foundation for the Stainless program verifier [LAR21] and possesses a

denotational semantics. We build upon the existing mechanized soundness proof of System FR

in Coq.1 Below we describe the embedding 〈·〉 of λdet
<:{} terms and types into System FR (see

Figure 8.1) and state the main result.

8.1 Embedding Terms

Functions and applications are represented trivially using System FR’s lambda abstractions

and applications, which behave identically to ours. Lists are encoded in the typical way as a

sum of unit for nil and a pair of a head and a tail for cons.

Our embedding of fix ensures trivial termination, following the bounded recursion behavior

of λnd
<:{}. While we believe that the addition of general recursion to λnd

<:{}would not present a

problem (as discussed before in Section 7.1), System FR is normalizing, and thus prevents us

from lifting this restriction in our current formalization.

8.2 Embedding Types

Π-types along with existential types are represented trivially. The type of lists is expressed

in the usual way through a recursive type. A singleton type {t }T is encoded using the type

{{ v : T | v ≡ t }} of System FR, which represents all values in T that are observationally

equivalent to t . Observational equivalence is supported as a type in the current formalization

of System FR, even though this type was not supported in the paper [HVK19]. The (Cons T1 T2)

type of λdet
<:{} is translated by existentially quantifying over any combination of values in T1 and

T2. For the type of matches, (t Match T2; x, y ⇒ T3), we take the union of each of T2’s and T3’s

1The proof development is available at https://github.com/epfl-lara/SystemFR.

77

https://github.com/epfl-lara/SystemFR

Chapter 8. Soundness by Reduction to System FR

Translation of terms to System FR:

〈x〉 := x

〈λx :T . t〉 := λx.〈t〉
〈t1 t2〉 := 〈t1〉 〈t2〉
〈nil〉 := left (Unit+ (Top,〈List〉))(())

〈cons t1 t2〉 := right (Unit+ (Top,〈List〉))((〈t1〉,〈t2〉))

〈t1 match t2; x, y ⇒ t3〉 := either_match(〈t1〉, z ⇒〈t2〉, z ⇒〈t3〉[x 7→π1 z][y 7→π2 z])

〈fixn(x : X ⇒ t1, t2)〉 := fix(x ⇒λy :Nat. match(y , 〈t2〉, y ′ ⇒〈t1〉[x 7→ x y ′])) n

Translation of types to System FR:

〈Top〉 := Top

〈List〉 := ∀n. Rec(n)(X ⇒ Unit+ (Top, X))

〈{t }T 〉 := {{ v : 〈T 〉 | v ≡ 〈t〉 }}

〈Πx :S.T 〉 := Πx :〈S〉.〈T 〉
〈Cons T1 T2〉 := ∃ x1 :〈T1〉. ∃ x2 :〈T2〉. {〈cons x1 x2〉}List

〈t Match T2; x, y ⇒ T3〉 := {{ v : 〈T2〉 | t ≡ left () }} ∪
∃ y1 :Top. ∃ y2 :〈List〉.

{{ v : 〈T3〉[x1 7→ y1][x2 7→ y2] | t ≡ right (y1, y2) }}

〈∃x :S.T 〉 := ∃x :〈S〉.〈T 〉

Figure 8.1 – The embedding of λdet
<:{} terms and types into System FR.

interpretation, conditional on whether the scrutinee t reduces to nil or a cons.

Given that System FR assigns a reducibility semantics to its types, our embedding also affords

us with denotations for all the types of λdet
<:{}. That is, given the set of reducible values [[T]]v

of type T in System FR, the meaning of a type T ′ in λdet
<:{} is given by [[〈T ′〉]]v . For instance,

[[〈List〉]]v = {cons v1 (. . . (cons vn nil) . . .) | n ≥ 0,∀i . vi ∈ [[Top]]v }. Existential types [[∃x :S.T]]v

are the union of all [[T [x 7→ s]]]v for all s ∈ [[S]]v .

8.3 Formalized Soundness Statement

Using the above embedding, we have proved that all of the rules for type inference, subtyping

and type normalization presented in Section 7.3 are admissible with respect to the reducibility

semantics of types. We built our mechanization on top of System FR’s existing Coq formaliza-

tion. The respective lemmas are proven under the additional assumptions given to us via the

well-formedness rules mentioned in Section 7.3. Namely, the following are assumed to hold:

78

8.3. Formalized Soundness Statement

• In rules for type inference, subtyping, and type normalization, we require well-

formedness in the current context and inhabitedness for singleton and list match types.

• During delta-beta reduction, we require terms to be normalizing in the current context.

• Trails and their operations are kept abstract and specified using axioms in file Trail.v.

The entirety of our definitions and proofs consists of ~7k lines of Coq in addition to the

previous development of System FR soundness, which consisted of ~20k lines.

We can thus state soundness for λdet
<:{} programs in terms of the reducibility judgment Γ� t :T of

System FR. The latter holds when, for all substitutions γ, such that for all (x,S) ∈ Γ we have

γ(x) ∈ [[γ(S)]]v , then γ(t) ∈ [[γ(T)]]v . Let 〈Γ〉 be the context with all λdet
<:{} types embedded into

System FR types.

Theorem 1 (Soundness) Given a context Γ and a λdet
<:{} term t, if type inference yields a type T ,

then t is reducible at that type. That is, if Γ` t ⇑ T holds, then 〈Γ〉� 〈t〉 :〈T 〉.

Note that the traditional notion of type safety for t follows, i.e., well-typedness of t implies

the existence of value v such that t →∗
β

v , since 〈t〉 is normalizing exactly when t is. Similarly,

using the correspondence of λdet
<:{} programs to non-deterministic λnd

<:{} programs after lowering

(see Section 7.2), we get type safety for λnd
<:{}.

79

9 A Prototypical Implementation in
Dotty

In this section we give an overview of how we extended Scala with dependent types. This

development was an experiment to explore the feasibility of retrofitting dependent types into

an existing language and its compiler. We implemented our prototype as an extension of Dotty,

the reference compiler for future versions of the Scala language. Our presentation focuses on

facets of the implementation that are not reflected in the formalism presented in Chapter 7.

On a syntactic level, our Scala extension consists of three additions:

• the singleton types syntax { t },

• the dependent modifier for methods, values and classes,

• the choose[T] construct.

The newly-introduced singleton type syntax enables a subset of Scala expressions to be used in

types. This subset approximately corresponds to the core functional subset of Scala, plus the

choose[T] construct, as illustrated in λnd
<:{}. Within this subset, the main differences between

our formalism and implementation lie in the handling of pattern matching.

9.1 Pattern Matching

Pattern matching in Scala supports a wide range of matching techniques [EOW07]. For exam-

ple, extractor patterns rely on user-defined methods to extract values from objects. As a result,

these custom extractors can contain arbitrary side effects. Our implementation limits the kind

of patterns available in types to the two simplest forms: decomposition of case classes and the

type-tests/type-casts patterns.

During type normalization, our system evaluates pattern matching expressions according

to Scala’s runtime semantics, that is, patterns are checked top-to-bottom, and type-tests are

evaluated using runtime type information available after type erasure.

81

Chapter 9. A Prototypical Implementation in Dotty

For example, consider the following pattern matching expression:

s match { case _: T1 => v1 case _: T2 => v2 }

When used in a type, this expression reduces to v1 if the scrutinee’s type is a subtype of

T1. In order to reduce to v2, type normalization must make sure T1 and the scrutinee’s

type are disjoint, namely that the dynamic type of s cannot possibly be smaller than T1.

Disjointness proofs are built using static knowledge about the class hierarchy and make use of

the guarantees implied by the sealed and final qualifiers, which are Scala’s way of declaring

closed-type hierarchies.

9.2 Two Modes of Type Inference

In order to retain backwards-compatibility, our system supports two modes of type inference:

the precise inference mode which infers singleton types, and the default inference mode that

corresponds to Scala’s current type-inference algorithm. Concretely, users opt into our new

inference mode using the dependent qualifier on methods, values, and classes.

When inferring the result type of a dependent method, our system lifts the method’s body into

a type. This lifting will be precise for the subset of expressions that is representable in types,

and approximative for the rest. When we encounter an unsupported construct, we compute

its type using the default mode, yielding a type T which we then integrate in the lifted body as

choose[T].

For example, given the following definition:

dependent def getName(personalized: Boolean) =

if (personalized) readString() else "Joe"

our system infers the following result type:

{ if (personalized) choose[String] else "Joe" }

Scala requires recursive methods to have an explicit result type, and this restriction also applies

to dependent methods. However, in the case of a dependent method, an explicit result type

is only used as an upper bound for the actual precise result type and will only be used to

type-check the method’s body. At other call sites, the (precise) inferred result type is used.

Bounds of dependent methods are written using a special syntax (<: T), which emphasizes

the difference from normal result types (: T).

82

9.3. Approximating Side Effects

9.3 Approximating Side Effects

State

Scala’s type system permits uncontrolled side effects in programs. Given the absence of an

effect system, result types of methods do not convey any information about the potential use

of side effects in the method body. The situation is analogous for dependent methods. Thanks

to choose[T] we can still formulate precise result types when terms depend on the result

of side-effectful operations. Since we uniformly approximate all side effects, we avoid the

situation where a type refers to a value that may be modified during the program execution.

For instance, if z is a mutable integer variable, we will never introduce z in a singleton type,

but we can still assign a better type than Lst to an expression like Cons(z, Nil()), that is,

{ Cons(choose[Int], Nil()) }.

Exceptions

Similarly to how we model other side effects, exceptions are approximated in types. Our

type-inference algorithm uses a new error type, Error(e), which we infer when raising an

exception with throw e. Exception handlers are typed imprecisely using the default mode of

type-inference. Exceptions thrown in statement positions are not reflected in singleton types,

since the type of {e1; e2} is simply { e2 }. However, exceptions thrown in tail positions

(such as in remove from Chapter 6) can lead to types normalizing to Error(e). In these cases,

our type system can prove that the program execution will encounter exceptional behavior,

and reports a compilation error. This approach is conservative in that it might reject programs

that recover from exceptions. Also note that this is a sanity check, rather than a guarantee

of no exceptions occurring at runtime. That is, depending on which rules are used during

subtyping, it is possible to succeed without entering type normalization, resulting in such

errors going undetected. Despite these shortcomings, our treatment of exceptions results in a

practical way to raise compile-time errors. It would be interesting to explore the addition of

an effect system to our Scala extension and formalization.

9.4 Virtual Dispatch

Our extension does not model virtual dispatch explicitly in singleton types. Instead, the

result type of a method call t.m(. . .) is always the result type of m in t’s static type. Conse-

quently, dependent methods effectively become final, given that only a provably-equivalent

implementation could be used to override it.

Special care must be taken when an imprecisely-typed method is overridden with a dependent

one. In this situation, the result type of a method invocation can lose precision depending

on type of the receiver. Calls to the equals methods are a common example of this: equals

is defined at the top of Scala’s type hierarchy as referential equality and can be overridden

83

Chapter 9. A Prototypical Implementation in Dotty

arbitrarily. Given a class Foo with a dependent overrides of equals, calls to Foo.equals(Any)

and Any.equals(Foo) are not equivalent; the former precisely reflects the equality defined in

Foo whereas the latter merely returns a Boolean.

9.5 Termination

We distinguish two important aspects of termination.

The first question is whether type-checked programs are guaranteed to terminate. For sim-

plicity, our work side-steps this question, requiring bounds for recursion. A more general

solution would be to compute or infer such bounds using measure functions, as done in Sys-

tem FR [HVK19]. Another approach would be to extend our translation of non-determinism

to permit non-termination, but we believe this question is largely orthogonal to the choice

of mechanism for type-level computation. Our work targets general-purpose programming

language whose type safety is defined with regards to its runtime semantics and that may

include non-terminating interactive computations.

The second question is termination of our type checker. Non-termination of type checking

implies that the type checker can give three possible answers, “type correct”, “type incorrect”

or “do not know” (or timeout). Treating “do not know” as “type incorrect” makes the non-

termination unproblematic from a soundness perspective. A similar argument is made for

other dependently-typed languages with unbounded recursion, such as Dependent Haskell

[Eis16] or Cayenne [Aug98]. In practice, our system deals with infinite loops using a fuel

mechanism. Every evaluation step consumes a unit of fuel, and an error is reported when the

compiler runs out of fuel. The default fuel limit can be increased via a compiler flag to enable

arbitrarily long compilation times.

84

10 Use Case

In this chapter, we extend the motivating example presented in Chapter 6 by building a

type-safe interface for Spark datasets. We use dependent types to implement a simple domain-

specific type checker for the SQL-like expressions used in Spark. We then compare the com-

pilation time of our dependently-typed interface against an equivalent encoding based on

implicits.

10.1 A Type-Safe Database Interface

The type-safe interface presented in this section illustrates the expressive power of our system

and is implemented purely as a library. For brevity, our presentation only covers a small part of

Spark’s dataset interface, but the approach can be scaled to cover that interface in its entirety.

The type safety of database queries is a canonical example and has been studied in many

different settings [LM99, KGV+19, MBB06, Chl10].

The example built in Chapter 6 uses lists of column names to represent schemas. A straight-

forward improvement is to also track the type of columns as part of the schema. Instead of

using column names directly, we introduce the following Column class with a phantom type

parameter T for the column type, and a field name for the column name:

dependent case class Column[T](name: String) { . . . }

Table schemas become lists of Column-s and thereby gain precision. The definition of join

given in Chapter 6 can be adapted to this new schema encoding to prevent joining two tables

that have columns with matching names but different types.

A large proportion of the weakly-typed Spark interface is dedicated to building expressions

on table columns. Such expressions can currently be built from strings, in a subset of SQL, or

using a Scala DSL which is essentially untyped.

The lack of type safety for column expressions can be particularly dangerous when mixing

85

Chapter 10. Use Case

columns of different types. The pitfall is caused by Spark’s inconsistency: depending on

types of columns and operations involved, programs will either crash at runtime, or, more

dangerously, data will be silently converted from one type to another.

By keeping track of column types it becomes possible to enforce the well-typedness of column

expressions. As an example, consider the following Spark program:

table.filter(table.col("a") + table.col("b") === table.col("c"))

We would like our interface to enforce the following safety properties:

• Columns a, b and c are part of the schema of table.

• Addition is well-defined on columns a and b.

• The result of adding columns a and b can be compared with column c.

• The overall column expression yields a Boolean, which conforms to filter’s argument

type.

Automatic conversions during equality checks can be prevented by restricting column equality

to expressions of the same type T:

dependent case class Column[T](k: String) {

def ===(that: Column[T]): Column[Boolean] =

Column(s"(${this.k} === ${that.k})")

}

Addition in Spark is defined between numeric types and characters. The result type of an

addition depends on the operand types. For numeric types, Spark will pick the larger of

the operand types according to the following ordering: Double > Long > Int > Byte. The

situation is quite surprising with characters as any addition involving a Char will result in a

Double.

Dependent types can be used to precisely model these conversions. We define a type function

to compute the result type of additions:

def addRes(a: Any, b: Any) =

(a, b) match {

case (_: Char, _: Char | Byte | Int | Long | Double) =>

choose[Double]

case (_: Byte, _: Byte | Int | Long | Double) => b

case (_: Int, _: Int | Long | Double) => b

case (_: Long, _: Long | Double) => b

case (_: Double, _: Double) =>

86

10.1. A Type-Safe Database Interface

choose[Double]

case (_: Byte | Int | Long | Double, _) =>

addRes(b, a)

case _ => throw new Error("incompatible types in addition")

}

type AddRes[A, B] = { addRes(choose[A], choose[B]) }

Also note the use of recursion in the second-to-last case, to avoid duplicating symmetric

cases. The AddRes type can be used to define a Column addition that accurately models Spark’s

runtime:

dependent case class Column[T] private (k: String) {

dependent def +[U](that: Column[U]) <: Column[_] =

Column[AddRes[T, U]](s"(${this.k} + ${that.k})")

}

Allowing programmers to construct Column-s from string literals would defeat the purpose of a

type-safe interface. Instead, programmers should extract columns from a Table’s schema. For

that purpose, we implement the col method on Table and annotate the Column constructor

as private.

dependent case class Table(schema: Lst, data: spark.DataFrame) {

dependent def col(name: String) <: Column[_] = {

dependent def find(key: String, list: Lst) <: Any =

list match {

case Cons(head: Column[_], tail) =>

if (head.k == key) head else find(key, tail)

case _ => throw new Error("column not found in schema")

}

find(name, schema)

}

dependent def filter(predicate: Column[Boolean]) <: Table =

new Table(this.schema, this.data.filter(predicate.k))

}

The col method is implemented using a nested dependent method to find the column corre-

sponding to the given name. Thanks to the dependent annotation, the type-checker is able to

statically evaluate calls to col. Assuming the table’s schema contains a column a of type Int

and columns b and c of type Long, the compiler will be able to infer types as follows:

val p = table.col("a") + table.col("b") === table.col("c")

//Inf’d { Column[Int]("a") } { Column[Long]("b") } { Column[Long]("c") }

87

Chapter 10. Use Case

1/16

1/8

1/4

1/2

1
2
4
8

16
32
64

128
256

0 100 200 300 400

C
o

m
p

il
at

io
n

ti
m

e
(s

ec
o

n
d

s)

List size

implicit concat
dependent concat

1/16

1/8

1/4

1/2

1
2
4
8

16
32
64

128
256

0 100 200 300 400

Number of columns

implicit join
dependent join

Figure 10.1 – Comparing the compilation times of two implementations of list concatenation
(left) and join (right) on a logarithmic scale.

Given our definitions of column addition and equality, the expression p is typed as

Column[Boolean]. All the safety properties stated above are therefore enforced by the

dependently-typed interface presented in this section.

10.2 Comparison to an Existing Technique

Programmers have managed to find clever encodings that circumvent the lack of first-class

support for type-level programming in many languages. These encodings can be very cumber-

some, as they often entail poor error reporting and a negative impact on compilation times

[McB02], [KLS04]. In Scala, implicits are the primary mechanism by which programmers

implement type-level programming [OBL+18].

Frameless [Fra21] is a Scala library that implements a type-safe interface for Spark by making

heavy use of implicits. Most type-level computations in this library are performed on the

heterogeneous lists provided by Shapeless [Sab21].

We compared the dependently-typed Spark interface presented in this section against the

implicit-based implementation of Frameless. To do so, we isolated the implicit-based im-

plementation of the join operation on table schemas, and compared its compilation time

against the dependently-typed version presented in this section. To evaluate the scalability

of both approaches we generated test cases with varying schema sizes and compiled each

test case in isolation. A similar comparison is done for list concatenation, which constitutes a

building block of join.

Figure 10.1 shows that, in both benchmarks, the dependently-typed implementation compiles

faster than the version with implicits, and compilation time scales better with the size of the

input. In the join benchmark, we see that the implicit-based implementation exceeds 30

seconds of compilation time around the 200 columns mark, and continues to grow quadrat-

88

10.2. Comparison to an Existing Technique

ically. This can be explained by the nature of implicit resolution, which might backtrack

during its search. The compilation time of the dependently-typed implementation grows

close to linearly and stays below one second until the 350 columns mark. We were able to

observe similar trends in the concatenation benchmark. These measurements were obtained

by averaging 120 compilations using a warmed-up compiler instance running on Oracle JVM

1.8.0 and Linux with an Intel i7-7700K processor.

89

11 Related Work

In the following chapter we summarize and compare to related work ranging from contract-

based verification to type-level programming techniques. We begin by putting our contribu-

tions in context to earlier work on the Stainless verifier and Scala’s type system. Subsequently,

we survey dependent types, including prior attempts to integrate with non-functional features

such as object-orientation and effectful operations. From there we continue to the other

end of the spectrum of static safety, and touch upon a few program verifiers whose design

influenced or overlaps with Stainless. Finally, we look at some alternative solutions to reason

about shared mutable data.

11.1 Leon and Stainless

The Stainless verifier has its roots in an earlier system called Leon which introduced the

underlying semi-decision procedure for a first-order language with recursive functions, alge-

braic data types and unbounded integers [SDK10, SKK11]. Later work by Blanc et al. added

support for imperative constructs such as loops and local mutable state [BKKS13], and a

sound treatment of modular arithmetic [BK15] leveraging the dedicated bit-vector theories

found in modern SMT solvers. Voirol et al. extended this fragment to encompass parametric

types and higher-order functions [VKK15] while maintaining completeness and soundness of

counterexamples. Subsequent work by Voirol [Voi19] evolved Leon into two separate compo-

nents: Inox, the core solver for polymorphic ADTs and higher-order functions, and Stainless,

which progressively lowers object-oriented, imperative and type system features of Scala to

the functional language of Inox. More recently, Hamza et al. [HVK19] proposed System FR as a

formal foundation for Inox and Stainless’ verification condition generator. A soundness proof

extending to lowering phases (including the ones presented here) remains future work.

In this thesis we specifically focussed on the way Stainless encodes and reasons about heaps.

Support for mutable data beyond local variables was initially implemented by Blanc and

described in his thesis [Bla17], which presents an imperative fragment permitting unshared

mutable data on the heap. His approach expands upon the earlier imperative phase, and

91

Chapter 11. Related Work

introduces a largely-automated effect analysis to ensure that all references to mutable data

are unique. Our heap encoding presented in Chapter 4 shares some central ideas (effectful

procedures are reduced to functions that transform immutable representations of state) and

infrastructure (such as the elimination of locally-mutable variables). Functional encodings

of destructive updates can easily lead to an exponential blowup in the size of verification

conditions [FS01], which Blanc’s technique avoids by introducing conditionals in lowered

imperative programs. This pushes the underlying complexity into the SMT solver and provides

a chance to explore branches lazily or prune them entirely. We initially investigated a relaxation

of Blanc’s fragment to allow some aliasing, but ultimately opted for a fully-general solution

with dynamic frames as the specification mechanism. As with Blanc’s solution, our encoded

programs grow only linearly in size. We also leave the complexity of search to the SMT solver,

in particular through Z3’s generalized theory of arrays [dMB09].

The general design philosophy behind Stainless is one of verification by reduction to functional

programs. This approach maintains counterexamples and allows us to provide a combination

of guarantees usually found separately in proof assistants, program verifiers and bounded

model checkers. Proofs are sound, but the progressive unfolding of functions also provides

completeness wrt. counterexamples, and the executable nature of our specification language

ensures that counterexamples correspond to failing executions of the program. Our extensions

maintain the same principles by providing a precise encoding of the heap and avoiding the

introduction of any quantifiers (which would adversely affect the ability of SMT solvers to

generate models).

11.2 Static Safety through Metaprogramming in Scala

Scala possesses a number of type-level and metaprogramming mechanisms that can be used to

gain additional static safety. We already discussed some idiomatic patterns for type functions

in Section 2.2. Implicit resolution [OBL+18], which typically drives type-level computation

in Scala 2, was introduced in early versions of the language and initially conceived as an

improved mechanism for dependency injection and automatic conversion between types.

Their versatility subsequently made implicits the standard mechanism to encode type classes

in Scala [OMO10, WB89], and eventually led to their use in emulating type functions. The latter

typically requires the collaboration of multiple of Scala’s typing features, such as F-bounded

polymorphism [CCH+89], type members [AR17] and higher-kinded types [MPO08b, MPO08a,

OMP16].

Starting from Scala 3, match types [BBKO22] offer a more direct and ergonomic way to encode

certain type functions. Match types and the approach we present in this thesis were developed

concurrently and have much in common. Firstly, the primary intended use case of match

types is essentially the same as ours, and the associated reduction rules are analogous to those

governing evaluation of pattern matches in our prototype (see Section 9.1). Match types can

be thought of as a special case of our extension, though the representation differs (in our

92

11.3. Dependent Types for General-Purpose Programming

prototype we model pattern matches explicitly in their lowered form of if-expressions and type

tests). Furthermore, match types stand firmly in the realm of types, but benefit from particular

inference rules that allow some term-level pattern matches to be typed precisely, i.e., at the

corresponding match type. On the other hand, our approach lifts a larger selection of (pure)

language constructs onto the type level, and blurs the distinction between types and terms.

It should also be noted that, by now, match types benefit from a mature implementation

in Dotty, and have become available to a broad audience with the release of Scala 3. That

being said, additional evaluation by Blanvillain [Bla21] showed that checking match types in

their current form, while more performant than implicit resolution, still exhibits super-linear

growth in compile times for the benchmark in Section 10.2. We conjecture that this is due

to match type checking being embedded in Dotty’s subtype checks, whereas our prototype

performs normalization separately and frugally.

Macros and inlining provide yet another mechanism to compute types. Scala has long pro-

vided advanced metaprogramming facilities in the form of macros [Bur13], and, more recently,

multi-stage programming [SBO21]. So-called white-box macros are expanded during type

checking, which allows programmers to effectively run their own computations at compile-

time. For instance, a white-box macro can be used to dynamically produce a witness term

possessing a type member that represents the result of the computation, which will then be

propagated by the type checker outside the macro. Scala 3 features a new system that makes

typed metaprogramming seamless and safe using a technique similar to binding time analysis.

When combined with the new inline keyword (which forces inlining during type checking,

analogously to white-box macros), it would also enable type-level computation.

11.3 Dependent Types for General-Purpose Programming

Haskell. As of today, Haskell is perhaps closest to becoming dependently-typed among the

general-purpose programming languages used in industry. Haskell’s type families [KJS10]

provide a direct way to express type-level computations. Other language extensions such as

functional dependencies [Jon00] and promoted datatypes [YWC+12] are also moving Haskell

towards dependent types. Nevertheless, programming in Haskell remains significantly dif-

ferent from using full-spectrum dependently-typed languages. Above all, it imposes a strict

separation between terms and types. As a result, writing dependently-typed programs in

Haskell may involve code duplication between types and terms. These redundancies can be

somewhat avoided using the singletons package [EW12], which uses metaprogramming to au-

tomatically generate types from datatypes and function definitions (not unlike the application

of metaprogramming in Scala described above).

In the context of Haskell, Eisenberg’s work on Dependent Haskell [Eis16] is closest to ours, in

that it adds first-class support for dependent types to an established language, in a backwards-

compatible way. Dependent Haskell also supports general recursion without termination

checks. While we share similar goals, our work is differentiated by the contrasting paradigms

93

Chapter 11. Related Work

of Scala and Haskell. Like many object-oriented languages, Scala is primarily built around

subtyping and does not restrict the use of side effects. Furthermore, Eisenberg’s system

provides control over the relevance of values and type parameters. In contrast, our system

does not support any erasure annotations and simply follows Scala’s canonical erasure strategy:

types are systematically erased to JVM types, and terms are left untouched. Weirich established

a fully mechanized type safety proof for the core of Dependent Haskell using the Coq proof

assistant [WVdAE17].

Cayenne is a Haskell-like language with dependent types introduced by Augustsson [Aug98].

Like Dependent Haskell, it resembles our system in its treatment of termination, and differs by

being a purely functional programming language. Cayenne’s treatment of erasure is similar to

Scala’s: types are systematically erased. Augustsson proves that Cayenne’s erasure is semantics-

preserving, but does not provide any other metatheoretical results.

Type-Level Computation for Object-Oriented Languages. Adding dependent types to object-

oriented languages is a remarkably under-explored area of research. A notable exception is

the recent work of Kazerounian et al. on adding dependent types to Ruby [KGV+19]. Their

goals are very much aligned with ours: using type-level programming to increase safety in a

general-purpose programming language. Given the dynamic nature of Ruby, it is unsurprising

that their solution greatly differs from ours. In their work, type checking happens entirely at

runtime and has to be performed at every function invocation to account for possible changes

in function definitions. Safety is obtained by inserting dynamic checks, similarly to gradual

typing.

The work of Campos and Vasconcelos on DOL (Dependent Object-oriented Language) [CV18]

shares similar goals but is limited to inequality constraints on integer parameters (in the style

of [XP98]).

Dependent Types and Subtyping. Dependently-typed lambda calculi with subtyping were

described at least as far back as 1988 by Cardelli [Car88]. The latter type system is much more

expressive than ours and allows bounded quantification over both types and terms using the

notion of a Type type and power types. Unlike our system, which is designed with the concrete

evaluation of types in mind, Cardelli does not provide semantics for their system and leaves

the equivalence relation among types unspecified.

In [Asp94] Aspinall introduces λ≤, a dependently-typed system with subtyping and singleton

types that resembles ours in its type language. Their equivalence relation on types is more

powerful and is not syntax-directed, unlike our type evaluation relation. Furthermore, sin-

gleton types in this work are indexed by the type through which equality is “viewed”, thereby

enabling a form of polymorphism beyond ours. Aspinall’s system also has primitive types and

allows for atomic subtyping among them, but no congruence rules, hence partially-widened

forms like {cons choose[Top] nil} cannot be represented.

System λP≤ [AC96] combines subtyping and dependent types in the Edinburgh Logical Frame-

94

11.3. Dependent Types for General-Purpose Programming

work. In this work, Aspinall et al. propose a type-checking algorithm for λP≤ which they

show to be complete and terminating. Their system uses a kinding relation to ensure well-

formedness of type applications. A kind system is not required in λnd
<:{}as we emulate type

applications inside singleton types.

In [SH00], Stone and Harper describe a dependently-typed calculus with singleton kinds and

subkinding. Their type-and-kind system is similar to Aspinall’s λ≤ term-and-type system, but

operates one level up the hierarchy.

More recently, Courant [Cou03] developed a variant of Aspinall’s λ≤ with a type-inference

algorithm that is proven sound and complete. The main takeaway from Courant’s work is the

inclusion of a coercion rule in delta reduction. These coercions are used to “tag” variables

with their declared type, which prevents these types from being lost during substitution. Our

formalism resembles Courant’s system, it shares the SUBSING subtyping rule (SUB/SINGL in

Courant’s work), and βδ-reduction.

Pure Type Systems [Bar91] provide a unified presentation of systems of dependently-typed

λ-calculus by using a single syntactic category for both terms and types. In [Zwa99], Zwanen-

burg defines an extension of pure type systems that include both subtyping and bounded

quantification. A central design decision of their system is that subtyping rules do not depend

on typing rules. The absence of circularity simplifies both the theory and the metatheory,

at the cost of having to define subtyping on pseudoterms rather than only well-typed terms.

Another limitation of Zwanenburg’s theory is that it cannot be extended with a Top-type.

Pure Subtype Systems [Hut10] is another framework with unified syntax; it differs from tradi-

tional approaches in that it uses a single relation, subtyping, that subsumes typing, subtyping,

and type evaluation as found in our system. Their system allows for partially-widened types

similar to ours and also enables the computation with different levels of precision. For in-

stance, it provides rules for Int + 5 to be approximated as Int. The paper presents a partial

investigation of the metatheory, but the proof of soundness remains incomplete. Nevertheless,

Hutchins reports that they have not been able to construct a counter-example, even with the

addition of fixpoints.

In [YO17], Yang and Oliveira propose a dependently-typed generalization of System F≤ with

unified syntax and a single relation that subsumes typing and subtyping. In their system,

type computations are driven by cast operators: each reduction or expansion step requires an

annotation to explicitly instruct the type checker to take a step. Explicit casts make it possible

to allow general recursion without compromising decidability of type checking. It would be

interesting to study variants of λnd
<:{}based on explicit casts instead of our finitized fix.

Dependent-object types [AR17] model the core of Scala’s type system and include type mem-

bers and path-dependent types, which are not represented in our formalism. Even though

they introduce a form of dependency, path-dependent types were not designed for type-level

computation, rendering their original goals largely orthogonal to ours.

95

Chapter 11. Related Work

11.4 Proof Assistants and Verification-Oriented Languages

A great variety of proof assistants has been developed to aid in the construction of machine-

checkable proofs. Tools such as Coq [BC04], Isabelle [NPW02] and HOL4 [SN08] have attracted

sizeable communities and are increasingly being adopted to construct verified software. They

typically provide a combination of an expressive logic and machinery such as tactics to auto-

mate proofs. Several popular proof assistants are based on dependent type theories inspired

by Martin-Löf’s constructive type theory [MLS84]. While Coq [BC04] and Agda [Nor07] allow

the extraction of executable programs, they arguably prioritize ease of proofs and are not

geared towards programming in the large. Idris [Bra13] and Lean [dMKA+15] are two systems

with similar foundations, but an explicit goal of becoming general-purpose programming

languages in their own right and integrating with real-world systems. Nonetheless, neither of

them can draw on an existing ecosystem like Scala’s, and both primarily target the functional

paradigm.

Researchers have also proposed a number of verification-oriented languages that straddle

the continuum between proof assistants and general-purpose programming. F* [SHK+16]

is an ML-like language that has been used to verify a realistic implementation of the TLS

protocol stack [BBDL+17]. It combines dependent types and computation types to capture

the possible effects of different program fragments, but uses a weakest precondition calculus

rather than dependent type theory as its foundation. Like Stainless, most tools in this category

primarily rely on contracts to specify programs. ACL2 [KM96] is an industry-strength verifier

for a subset of Common Lisp. Since Lisp is untyped, ACL2 uses inductive predicates to describe

recursive data structures, yielding an approach similar to what we described in Section 2.3.2.

Spec# [BLS04] is a mature verifier for a subset of C#, and pioneered many aspects of verification

for object-oriented languages. Dafny [Lei10] provides its own object-oriented surface language

with additional facilities for specification (such as predicates and ghost variables), and is in

many ways a continuation of the work on Spec#.

Similarly to how Stainless relies on translating programs to Inox, a functional, polymorphically-

typed core language, other verifiers target reusable intermediate representations for verification.

Both Spec# and Dafny rely on Boogie [Lei08], an intermediate representation for verification

of imperative programs, which ultimately also acts as a verification condition generator for

SMT solvers. Unlike Inox, which constitutes an ML-like kernel, Dafny is styled after Dijkstra’s

guarded command language [Dij75], and takes a significantly different approach by generating

VCs from the program’s control-flow graph [BL05] and encouraging the use of quantifiers

to axiomatizing user-defined theories. Why3 [FP13] also targets an imperative, first-order

language, but dispatches solving to a range of automated and interactive theorem provers. Inox

is somewhat narrower in scope, since it has only been designed as a backend for Stainless, but

provides support for higher-order functions and completeness wrt. counterexample finding

[Voi19].

96

11.5. Verification of Heap-Manipulating Programs

11.5 Verification of Heap-Manipulating Programs

Verifying stateful code poses problems both from a specification and an automation stand-

point. To compensate for the additional complexity of destructive assignment various new

formalisms were developed over the years, most notably Hoare calculus [Hoa69] and weakest-

precondition inference [Dij76]. Boogie [Lei08] and F* [SHK+16], for instance, effectively

compute weakest preconditions and then use SMT solvers to check for entailment by the

function’s precondition.

In Stainless we eliminate state early on (both local and on the heap), and instead translate to

a functional language whose meaning can be expressed directly in a fragment of first-order

logic. Compared to other approaches the translation approach maintains relative proximity

between our input language, e.g., a function with contracts, and the generated VC, i.e, an

encoding of the function’s result value and a check whether the function’s precondition entails

its postcondition. This correspondence between programs and SMT queries allows us to

extract counterexamples from models and aids debugging.1

Neither of these approaches directly addresses the complications arising from heaps with

shared references to mutable data, however. One option is to restrict programs to an effec-

tively linear fragment (as in Stainless prior to our contributions in Part I [Bla17]) or statically

track all possible aliases, as in Why3 [FP13]. Unfortunately this results in a rather restrictive

programming style, so researchers have proposed various alternative disciplines to enable

reasoning in the presence of sharing. We touch upon two such approaches, separation logic

and dynamic frames.

Separation Logic [ORY01, Rey02] and its variants, permission logics, build upon Hoare cal-

culus [Hoa69] by distinguishing disjoint regions of the heap through explicit separating con-

junctions. Combined with assumptions about objects’ dynamic types this yields a powerful

reasoning principle to prove that object references of interest are distinct, and that shared

mutable data assumes shapes such as lists or trees.

Our heap encoding replaces the frame rule of separation logic by frame conditions asserting

equality of heaps on objects in the frame. As mentioned in Section 4.5, one might recast our

encoding in a way closer to separation logic by explicitly referring to the allocation status of

locations on the heap, and explicitly separating the heap into a footprint and a frame heaplet.

Many verifiers have been built upon the foundation of separation logic. VeriFast [JSP+11]

is notable for its mature support of C and Java programs. It also possesses an extensive

annotation language to describe inductive heap predicates and lemmas, though that language

is first-order and separate from the program surface language. In Stainless programs, lemmas

and contracts are all expressed in Scala. Specifications, in particular, may leverage the full

flexibility of higher-order functions, while VeriFast relies on more ad-hoc constructs such

1That being said, the unfolding procedure in Inox requires an arbitrarily large number of queries in general, and
emits many auxiliary blocking literals, so readability quickly deteriorates in all but simple examples.

97

Chapter 11. Related Work

as predicate families. F* [SHK+16] enjoys similar flexibility. Thanks to its dependent type

system F* can express a framing mechanism analogous to separation logic in library code. By

arranging objects in a tree structure called a hyper heap one can derive separation between

objects in distinct subtrees.

Viper [MSS16] is an intermediate representation much like Boogie [Lei08], but based upon

a permission logic that provides fine-grained control over individual fields, and, through

so-called fractional permissions [Boy03], can recover unique ownership after temporarily

sharing an object. Our approach could be adapted to grant or deny access rights more finely

by modelling the heap as a map from references and field names to field state, rather than from

references to object states. Fractional permissions, on the other hand, are already expressible

through explicit reads and modifies sets in our approach.

It is worth noting that Stainless ultimately acts as a verification condition generator, whereas

most separation logic verifiers rely on symbolic execution [BCO05]. Viper [MSS16] is a notable

exception in that it can also emit a verification condition to be verified through Boogie.

Infer [CD11] is another particularly notable example of a verifier based on separation logic,

in part because it has been deployed at an impressive scale across Facebook to detect null

pointer accesses and resource leaks. The compositional inference principle behind Infer is

bi-abduction [CDOY11], a shape analysis that uses a fragment of separation logic as its abstract

domain and modularly infers both the frame and footprint of functions.

Shape Analysis deserves additional mention in this context. Static analyses of this kind are

based on abstract interpretation of the object graph, and were originally devised to automati-

cally optimize data layouts and elide garbage collections of Lisp-like structures [JM79, JM82].

Over the years shape analysis proved useful in many domains such as alias analysis [LH88],

automatic parallelization [HN90] and program verification. The particular application rel-

evant here is that it can be used to infer the kinds of inductive heap predicates we saw in

Section 3.3. For instance, by inspecting the code in the pop procedure of our example a shape

analysis might infer the singly-linked list structure described by sll. A notably general frame-

work for the inference of such “shape invariants” supporting destructive updates is based on

three-valued logic [SRW02] and was implemented in TVLA [LAS00].

Decidable Logics for Heap Reasoning. While shape analysis is based on abstract interpretation,

analogous problems have been recast into logics that allow explicit reasoning about object

graphs. For instance, PALE [MS01] deals with programs annotated with pointer logic asser-

tions and graph types that essentially capture the shapes of data structures. PALE generates

verification conditions in a decidable fragment of monadic second-order logic, as supported

by the MONA solver [KM01]. The TREX logic [WMK11] later provided an efficient decision pro-

cedure for tree-like structures. Eventually this led to the development of decision procedures

that specifically target decidable fragments of separation logic and allow their combination

with other SMT theories, e.g., GRASS [PWZ13], GRASShopper [PWZ14b] and GRIT [PWZ14a].

It would be interesting to explore how integration with such solvers could provide automation

98

11.5. Verification of Heap-Manipulating Programs

around inductive heap predicates in Stainless.

Dynamic Frames. Both Dafny [Lei10] and our heap encoding are heavily inspired by dynamic

frames [Kas06]. Unlike separation logic, which syntactically tracks access to objects and

fields, dynamic frames merely define the accessible portion of the heap as a set that may

be constrained by other program expressions. This provides flexibility, e.g., to define the

representation of a data structure by means of recursive functions or mutable ghost fields, as

shown in our examples. It also allows us to refer to heap-dependent expressions in assertions,

which is problematic for standard separation logic verifiers.

On the flip side, keeping track of a function’s and data structure’s footprint explicitly can be

tedious and reduces opportunities for automation. Implicit dynamic frames [SJP12] address

this issue by automatically deriving the set of accessible objects from contracts, including the

special acc(o) predicate which denotes whether o is accessible. Our system currently requires

users to explicitly define reads and modifies sets, but it seems desirable to infer these in an

analogous way.

Another aspect present in many related systems (including [SJP12]) is a stricter notion of

encapsulation. In order to ensure modular reasoning these systems separate the use of ex-

ternal and internal axioms. That is, when calling a method from outside a class, only axioms

corresponding to the frame condition and the post-condition are available, whereas during

verification of the class itself the implementations of its methods are revealed. By default

Stainless does not respect any modular discipline and will unfold method calls successively,

making it difficult to hide information and control verification overhead for large type hi-

erarchies. In the future we would like to extend Stainless with more explicit control for the

folding and unfolding of function definitions. This would allows us to leverage encapsulation

to automatically treat as pure those classes that only maintain state internally (such as the

FibCache example).

99

12 Conclusion

In this thesis we explored and developed two aspects of formal verification in modern general-

purpose programming languages. The first part was dedicated to automated checking of

contracts in languages with both functional and imperative features. We showed how a verifier

for the functional fragment can be extended to reason about heaps, including shared mutable

data, and still leverage its functional features for the purpose of specifications. Our translation

represents heaps as maps from locations to object state, and transforms stateful procedures

into functions that take a heap (map) and produce the modified heap. Our main contribution

was a novel encoding of heap maps and frame conditions in first-order logic. We leverage the

generalized array theory of Z3 to cast frame conditions as applications of the map combinator

on arrays. This retains decidability of verification conditions, and allows the verifier to produce

counterexamples.

We found our heap encoding to be comparatively simple to implement, while retaining the

flexibility to reason about heaps as first-class values, and leaving the complexity of search to

the SMT solver. Applying our technique to Stainless, in particular, allowed us to build a verifier

that can deal with the full generality of heap-manipulating Scala programs.

The second part investigated type-level programming as a lightweight form of specification

and checking. Our starting point was to improve the ergonomics and performance of popular

type-level programming use cases in the Scala ecosystem, where mechanisms like implicit

resolution are used to propagate more precise type information and increase safety of user

libraries such as database wrappers (which are traditionally weakly-typed). In an effort to find

a more principled solution for type-level programming we then posed the question of what

dependent types might look like for a language like Scala, which notably combines functional,

imperative and object-oriented features.

We developed our extension as a prototype on top of Dotty, the Scala 3 compiler, which allowed

us to explore questions of representation, integration with type inference and general main-

tainability. Our prototype served to validate several benchmarks in our extended language,

suggesting a more concise and performant type-level programming experience is possible.

101

Chapter 12. Conclusion

To capture some of the particular challenges with integrating full-spectrum dependent types

into a language like Scala we proposed λnd
<:{} as a formal foundation. We provided a soundness

proof by reduction to a functional calculus, System FR, and found that experimenting with a

dedicated implementation of λnd
<:{}’s type checker allowed us to study interesting use cases in

isolation and even recover some traditional type system features.

In both parts of this thesis our goal was to preserve precise reasoning for a functional core

language, and reduce other language features to functional ones. We found this approach

attractive for both its generality and conceptual simplicity. Above all, it allowed us to reuse

mature formal foundations (System FR) and decision procedures (combinatory array logic).

Future Work

Precise Reasoning for an Expressive Type System. One avenue of future work would be

to combine both parts of this thesis in a single system by using Stainless as part of a type

checker. The typing rules for λdet
<:{} we presented are primarily designed to result in predictable

checking and a simple implementation. Instead, one could use Stainless’ existing infrastruc-

ture to automatically discharge certain subtyping obligations arising in λdet
<:{} by generating

semantically-equivalent verification conditions in Inox.

We have some experience with this approach from earlier work on integrating refinement

types into the Scala type checker [SK16]. That system, LiquidHaskell [VSJ+14] and Sys-

tem FR [HVK19] all have explicit “semantic” typing rules that allow the type checker to invoke

a solver like Inox or Z3.

The relation with refinement types, in particular, runs deep: our generalized singleton types

can be seen as a complement to refinement types, much like generators and predicates are

two faces of the same coin. It would be interesting to explore a system where generators, {t }U ,

are explicitly paired with their corresponding predicates, {x : U | p(x)} such that

∀t v . t →∗
β v ⇐⇒ p(v) →∗

β true .

The resulting type system would allow switching between the two views, which might be

helpful to prove complex properties or drive test case generation.

Decision Procedures for Heap Reasoning. When extending Stainless our strategy to report

counterexamples was to avoid quantifiers. This is by no means the only possibility, as wit-

nessed by the success of other approaches (e.g., verifiers based on symbolic execution) that

use quantifiers effectively. Yet we believe that targeting decision procedures in the long term

results in a more predictable verification experience than direct encodings via general quanti-

fiers. Our experiments suggest that the approach holds promise, even though the performance

of map combinators indicates that they nonetheless require non-trivial reasoning in the Z3

solver.

102

An integration of insights from verifiers and proof frameworks based on separation logic is

a promising direction to potentially improve usability of our approach. SMT-LIB notations

and competitions for separation logic [SPR+19] are likely to be a useful resource for this task,

even if these benchmarks typically do not focus on reasoning about as detailed functional cor-

rectness properties as our examples. Another direction for improving automation is inductive

reasoning, both for separation logic predicates themselves [TLKC19] and for pure recursive

functions [RK15].

Our work made the initial case for an approach that is semantically simple and promises to

be predictable. We hope that it will motivate both the SMT solver builders and verification

tool builders to collaborate to improve the performance, the predictability, and the ability to

report counterexamples for verification, with array theories being among the most promising

future directions [DHK16, dMB09, SBDL01, BMS06].

Combining Static Alias Tracking and Dynamic Frames. It would be interesting to investigate

a combination of our general heap encoding and Stainless’ existing imperative phase, which

has the benefit of producing simpler functional programs. Our heap encoding breaks the

fundamental assumption of the existing imperative phase, i.e., references may now be aliased.

One could address this issue in various ways. Languages like Rust have had great success in

popularizing ideas from linear type systems. The idea would be to adopt a typing discipline

that treats mutable types as unique by default and requires explicitly annotating any sharable

references. Stainless’ existing imperative phase would only transform operations on unique

references.

It would also be interesting to explore an approach based on encapsulation [TSKJB17]. One

would allow aliasing of fields that are annotated as implementation-internal (e.g., private),

and prevent aliased references from leaking through the public interface of the class. In

Section 3.3 we noted how first-class heaps let us prove determinism of a cache, justifying that

the cached function’s result is the same no matter the cache state. Now, if we were to achieve

encapsulation of the cache field (preventing it from leaking elsewhere in the program), we

could go one step further and treat the entire component as referentially transparent, avoiding

the overhead of even modelling it on the heap of client code.

A related approach for alias control has been successfully deployed in the Pony language

for concurrent programming. Pony differentiates between isolated and normal reference

capabilities [CDBM15] (among several others). The crucial idea is that while refs may alias,

they cannot escape the actor owning the object, which in our setting would correspond to

some abstraction boundary (a class or module).

Applying Stainless to Systems Programming. Another opportunity would be to use the

expressiveness added in Part I of this thesis to expand Stainless to new applications in systems

programming. Stainless already has support for compiling a limited fragment to C [Ant17],

103

Chapter 12. Conclusion

which could now be expanded.

Furthermore, Rust constitutes an attractive target for verification, because, like Scala, it fea-

tures memory-safety by default as well as high-level language abstractions such as ADTs,

higher-order functions and type classes. Perhaps most importantly it also includes typing

features that ensure heap separation in many situations, meaning Rust programmers are

already familiar with the mindset required to provide reads and modifies sets. We undertook

some experiments to build an alternative frontend for Stainless that consumes typed Rust

programs [SBRY21]. This work was expanded upon in the context of a master thesis [Bol21]

and now supports some promising examples such as verifying correctness of in-place insertion

into a red-black tree. It would be interesting to extend this work to make use of our new heap

encoding and integrate more information from Rust’s type system.

Parting Words

Like many before us, we posed the question of how programming languages ought to evolve to

make verification an integral part of modern software development. In this thesis we proposed

solutions for two particular aspects: how to reason about heap-manipulating programs with-

out imposing a particular aliasing discipline, and how to gradually introduce specifications

through an expressive type system. Richer type systems, in particular, appear to be one of the

most promising approaches to lower the barrier to entry and make verification not only ex-

pressive but also ergonomic. We hope that automated program verifiers and general-purpose

language design will continue to converge, and that in the not so far future verification will

become a part of software development much like testing and interface design are nowadays.

104

A An SMT-LIB Encoding of Heaps

Below we show a minimalistic encoding of heaps in SMT-LIB which explicitly distinguishes

free from allocated locations. Both indices and state of allocated objects are simply mod-

elled as integers. The example also illustrates how to project the set of allocated objects from

a heap and how to express separation between two heaps. Note that the encoding relies on

both the theory of algebraic data types and the generalized theory of arrays supported by Z3.

(set-option :produce-models true)

; A simple ADT representing object state on the heap.

(declare-datatype State ((free) (allocated (data Int))))

; Object references are integers. Objects are sets of integers. Heaps map objects to state.

(define-sort Object () Int)

(define-sort Objects () (Set Object))

(define-sort Heap () (Array Object State))

; The empty set of objects.

(define-fun empty-alloc-set () Objects ((as const Objects) false))

; The heap without any objects allocated.

(define-fun empty-heap () Heap ((as const Heap) free))

; The set of allocated objects in a given heap.

(define-fun alloc ((heap Heap)) Objects

((_ map (is-allocated (State) Bool)) heap))

; Whether two heaps are orthogonal (i.e. separate).

(define-fun orthogonal ((h1 Heap) (h2 Heap)) Bool

(= (intersection (alloc h1) (alloc h2)) empty-alloc-set))

105

Appendix A. An SMT-LIB Encoding of Heaps

; Two heaplets containing two distinct objects.

(declare-fun h1 () Heap)

(declare-fun h2 () Heap)

(declare-fun o1 () Object)

(declare-fun o2 () Object)

(assert (is-allocated (select h1 o1)))

(assert (is-allocated (select h2 o2)))

(assert (not (= o1 o2)))

; We bind the alloc sets of each heap so they will show up in the model below.

(declare-fun alloc-set1 () Objects)

(declare-fun alloc-set2 () Objects)

(assert (= alloc-set1 (alloc h1)))

(assert (= alloc-set2 (alloc h2)))

; Are h1 and h2 necessarily separate?

(assert (not (orthogonal h1 h2)))

(check-sat)

; => No!

; sat

(get-model)

; => They might have a third object in common, for instance:

; (model

; (define−fun o1 () Int 0)

; (define−fun o2 () Int 1)

; (define−fun alloc−set1 () (Set Int)

; (lambda ((x!1 Int)) (or (= x!1 0) (= x!1 4))))

; (define−fun alloc−set2 () (Set Int)

; (lambda ((x!1 Int)) (or (= x!1 1) (= x!1 4))))

; (define−fun h1 () (Array Int State)

; (store (store ((as const (Array Int State)) free)

; 0 (allocated 2))

; 4 (allocated 6)))

; (define−fun h2 () (Array Int State)

; (store (store ((as const (Array Int State)) free)

; 1 (allocated 3))

; 4 (allocated 5)))

;)

106

B Verifying an Inductive Heap Property

The code listing below contains the NodeCycle example of Chapter 5. In it we define a sim-

plified Node data structure that only contains a next pointer to another node, along with

an inductive heap predicate cyclic that holds if and only if the given list of nodes forms a

cyclic, singly-linked list. The prepend function underneath implements insertion of a new

node at the beginning of an existing cyclic list consisting of nodes. We prove its correctness

by establishing that after prepend has been called node :: nodes again forms a cyclic list.

Note that in a real implementation nodes would merely be used as a specification variable

and could thus be marked @ghost. To access the first and last nodes at runtime (to update the

next pointers in prepend), one would separately maintain references to these two particular

nodes.

import stainless.lang._

import stainless.annotation._

import stainless.collection._

import stainless.proof._

import ListOps.noDuplicate

object NodeCycleExample {

/* Auxiliary definitions and lemmas */

object ListLemmas {

def lastByIndex[T](xs: List[T]): Unit = {

require(xs.nonEmpty)

xs.tail match {

case Nil() => ()

case xs0 => lastByIndex(xs0)

}

} ensuring (_ => xs(xs.size - 1) == xs.last)

107

Appendix B. Verifying an Inductive Heap Property

def initByIndex[T](xs: List[T], i: BigInt): Unit = {

require(xs.nonEmpty && 0 <= i && i < xs.size - 1)

if (i > 0) initByIndex(xs.tail, i - 1)

} ensuring (_ => xs(i) == xs.init(i))

def applyContent[T](xs: List[T], i: BigInt): Unit = {

require(0 <= i && i < xs.size)

xs match {

case Cons(_, xs0) => if (i > 0) applyContent[T](xs0, i - 1)

}

} ensuring (_ => xs.content.contains(xs.apply(i)))

def noDuplicateLast[T](xs: List[T]): Unit = {

require(xs.nonEmpty && noDuplicate(xs))

if (xs.size > 1) noDuplicateLast(xs.tail)

()

} ensuring (_ => !xs.init.content.contains(xs.last))

}

/* Node data structure and cyclicity property */

case class Node(var next: Option[Node]) extends AnyHeapRef

def cyclic(nodes: List[Node], i: BigInt = 0): Boolean = {

reads(nodes.content.asRefs)

require(0 <= i && i < nodes.size)

ListLemmas.applyContent(nodes, i)

if (i == nodes.size - 1)

nodes(i).next == Some(nodes(0))

else

nodes(i).next == Some(nodes(i + 1)) && cyclic(nodes, i + 1)

}

/* Lemma: Prepending maintains cyclicity */

def cyclicPrependLemma(h0: Heap, h1: Heap, nodes: List[Node],

node: Node, i: BigInt = 0): Unit = {

require(

0 <= i && i < nodes.size &&

h0.eval { cyclic(nodes, i) } &&

Heap.unchanged(nodes.init.content.asRefs, h0, h1) &&

h1.eval { nodes.last.next == Some(node) }

108

)

if (i == nodes.size - 1) {

ListLemmas.lastByIndex(nodes) // nodes(nodes.size − 1) == nodes.last

} else {

ListLemmas.initByIndex(nodes, i) // nodes(i) == nodes.init(i)

ListLemmas.applyContent(nodes.init, i) // nodes.init.content

// .contains(nodes.init(i))

assert(h1.eval { nodes(i).next == Some(nodes(i + 1)) })

cyclicPrependLemma(h0, h1, nodes, node, i + 1)

}

} ensuring (_ => h1.eval { cyclic(node :: nodes, i + 1) })

def prepend(nodes: List[Node], node: Node): List[Node] = {

reads(nodes.content.asRefs ++ Set(node))

modifies(nodes.content.asRefs ++ Set(node))

require(nodes.nonEmpty && cyclic(nodes) && noDuplicate(nodes) &&

!nodes.content.contains(node))

val h0 = Heap.get

node.next = Some(nodes.head)

nodes.last.next = Some(node)

val h1 = Heap.get

ListLemmas.noDuplicateLast(nodes) // Heap.unchanged(

// nodes.init.content.asRefs, h0, h1)

cyclicPrependLemma(h0, h1, nodes, node)

node :: nodes

} ensuring (newNodes => newNodes == node :: nodes &&

cyclic(newNodes) && noDuplicate(newNodes))

}

109

Bibliography

[AC96] David Aspinall and Adriana Compagnoni. Subtyping dependent types. In Pro-

ceedings 11th Annual IEEE Symposium on Logic in Computer Science. IEEE, 1996.

[AHM+17] Danel Ahman, Cătălin Hriţcu, Kenji Maillard, Guido Martínez, Gordon Plotkin,

Jonathan Protzenko, Aseem Rastogi, and Nikhil Swamy. Dijkstra monads for free.

In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Program-

ming Languages, pages 515–529, 2017.

[AL91] Martín Abadi and Leslie Lamport. The existence of refinement mappings. Theor.

Comput. Sci., 82(2):253–284, 1991.

[Ant17] Marco Antognini. Extending safe C support in Leon. Master’s thesis, EPFL,

Lausanne, 2017.

[AR17] Nada Amin and Tiark Rompf. Type soundness proofs with definitional inter-

preters. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of

Programming Languages, POPL’17. ACM, 2017.

[Asp94] David Aspinall. Subtyping with singleton types. In International Workshop on

Computer Science Logic. Springer, 1994.

[Aug98] Lennart Augustsson. Cayenne — a language with dependent types. In Proceedings

of the Third ACM SIGPLAN International Conference on Functional Programming,

ICFP’98. ACM, 1998.

[Bar91] Henk Barendregt. Introduction to generalized type systems. Journal of functional

programming, 1(2), 1991.

[BBDL+17] Karthikeyan Bhargavan, Barry Bond, Antoine Delignat-Lavaud, Cédric Fournet,

Chris Hawblitzel, Catalin Hritcu, Samin Ishtiaq, Markulf Kohlweiss, Rustan Leino,

Jay Lorch, Kenji Maillard, Jianyang Pang, Bryan Parno, Jonathan Protzenko, Tahina

Ramananandro, Ashay Rane, Aseem Rastogi, Nikhil Swamy, Laure Thompson,

Peng Wang, Santiago Zanella-Béguelin, and Jean-Karim Zinzindohoué. Everest:

Towards a verified, drop-in replacement of HTTPS. In 2nd Summit on Advances

in Programming Languages, May 2017.

111

Bibliography

[BBKO22] Olivier Blanvillain, Jonathan Brachthäuser, Maxime Kjaer, and Martin Odersky.

Type-level programming with match types. In Symposium on Principles of Pro-

gramming Languages (POPL, to appear), 2022.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Devel-

opment – Coq’Art: The Calculus of Inductive Constructions. Springer, 2004.

[BCD+05] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rus-

tan M. Leino. Boogie: A modular reusable verifier for object-oriented programs. In

Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever,

editors, Formal Methods for Components and Objects, 4th International Sympo-

sium, FMCO 2005, Amsterdam, The Netherlands, November 1-4, 2005, Revised Lec-

tures, volume 4111 of Lecture Notes in Computer Science, pages 364–387. Springer,

2005.

[BCK11] Gilles Barthe, Juan Manuel Crespo, and César Kunz. Relational verification using

product programs. In International Symposium on Formal Methods, pages 200–

214. Springer, 2011.

[BCLR04] Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K Rajamani. SLAM and

Static Driver Verifier: Technology transfer of formal methods inside Microsoft.

In International Conference on Integrated Formal Methods, pages 1–20. Springer,

2004.

[BCO05] Josh Berdine, Cristiano Calcagno, and Peter W O’Hearn. Symbolic execution with

separation logic. In Asian Symposium on Programming Languages and Systems,

pages 52–68. Springer, 2005.

[BJA+21] James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully, Bernhard Kragl,

Seth Markle, Kyle Sauri, Drew Schleit, Grant Slatton, Serdar Tasiran, et al. Using

lightweight formal methods to validate a key-value storage node in amazon s3. In

Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles

(SOSP), pages 836–850, 2021.

[BK15] Régis Blanc and Viktor Kuncak. Sound Reasoning about Integral Data Types with

a Reusable SMT Solver Interface. In Proceedings of the 6th ACM SIGPLAN Sympo-

sium on Scala, SCALA 2015, page 35–40, New York, NY, USA, 2015. Association for

Computing Machinery.

[BKKS13] Régis Blanc, Viktor Kuncak, Etienne Kneuss, and Philippe Suter. An Overview of

the Leon Verification System: Verification by Translation to Recursive Functions.

In Proceedings of the 4th Workshop on Scala, SCALA ’13, New York, NY, USA, 2013.

Association for Computing Machinery.

[BL05] Mike Barnett and K Rustan M Leino. Weakest-precondition of unstructured pro-

grams. In Proceedings of the 6th ACM SIGPLAN-SIGSOFT workshop on Program

analysis for software tools and engineering, pages 82–87, 2005.

112

Bibliography

[Bla17] Régis William Blanc. Verification by Reduction to Functional Programs. PhD

thesis, EPFL, Lausanne, 2017.

[Bla21] Olivier Blanvillain. Private communication, 2021.

[BLS04] Mike Barnett, K Rustan M Leino, and Wolfram Schulte. The Spec# programming

system: An overview. In International Workshop on Construction and Analysis of

Safe, Secure, and Interoperable Smart Devices, pages 49–69. Springer, 2004.

[BMS06] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s Decidable About

Arrays? In E. Allen Emerson and Kedar S. Namjoshi, editors, Verification, Model

Checking, and Abstract Interpretation, Lecture Notes in Computer Science, pages

427–442, Berlin, Heidelberg, 2006. Springer.

[Bol21] Yann Bolliger. Formal Verification of Rust with Stainless. Master’s thesis, EPFL,

Lausanne, 2021.

[Boy03] John Boyland. Checking interference with fractional permissions. In International

Static Analysis Symposium, pages 55–72. Springer, 2003.

[Bra13] Edwin Brady. Idris, a general-purpose dependently typed programming language:

Design and implementation. Journal of Functional Programming, 23(05), 2013.

[Bur13] Eugene Burmako. Scala Macros: Let Our Powers Combine! On How Rich Syntax

and Static Types Work with Metaprogramming. In Proceedings of the 4th Work-

shop on Scala, SCALA ’13, New York, NY, USA, 2013. Association for Computing

Machinery.

[Can18] Jorge Vicente Cantero. Speeding Up Compilation Time with scalac-profiling.

https://www.scala-lang.org/blog/2018/06/04/scalac-profiling.html, 2018.

[Car88] Luca Cardelli. Structural subtyping and the notion of power type. In Proceedings

of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL’88. ACM, 1988.

[CCH+89] Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John C Mitchell.

F-bounded polymorphism for object-oriented programming. In Proceedings of

the fourth international conference on functional programming languages and

computer architecture, pages 273–280, 1989.

[CD11] Cristiano Calcagno and Dino Distefano. Infer: An automatic program verifier

for memory safety of C programs. In NASA Formal Methods Symposium, pages

459–465. Springer, 2011.

[CDBM15] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy McNeil.

Deny capabilities for safe, fast actors. In Proceedings of the 5th International

Workshop on Programming Based on Actors, Agents, and Decentralized Control,

pages 1–12, 2015.

113

https://www.scala-lang.org/blog/2018/06/04/scalac-profiling.html

Bibliography

[CDOY11] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. Com-

positional shape analysis by means of bi-abduction. J. ACM, 58(6):26:1–26:66,

2011.

[Chl10] Adam Chlipala. Ur: Statically-typed metaprogramming with type-level record

computation. In PLDI’10: Proceedings of the ACM SIGPLAN 2010 Conference on

Programming Language Design and Implementation, June 2010.

[Chu36] Alonzo Church. An unsolvable problem of elementary number theory. American

Journal of Mathematics, 58(2):345–363, 1936.

[Cou03] Judicaël Courant. Strong normalization with singleton types. Electronic Notes in

Theoretical Computer Science, 70(1), 2003.

[CP16] Silvia Crafa and Luca Padovani. On the chemistry of typestate-oriented actors.

CoRR, abs/1607.02927, 2016.

[CV18] Joana Campos and Vasco T Vasconcelos. Dependent types for class-based mu-

table objects. In 32nd European Conference on Object-Oriented Programming

(ECOOP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[DFLO19] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn.

Scaling static analyses at Facebook. Commun. ACM, 62(8):62–70, 2019.

[DHK16] Przemyslaw Daca, Thomas A. Henzinger, and Andrey Kupriyanov. Array folds

logic. In Swarat Chaudhuri and Azadeh Farzan, editors, Computer Aided Verifica-

tion - 28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23,

2016, Proceedings, Part II, volume 9780 of Lecture Notes in Computer Science,

pages 230–248. Springer, 2016.

[Die17] Henning Dieterichs. TypeScript Issue #14833: TypeScripts Type System is Turing

Complete. https://github.com/Microsoft/TypeScript/issues/14833, 2017.

[Dij75] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation

of programs. Communications of the ACM, 18(8):453–457, 1975.

[Dij76] Edsger W. Dijkstra. A discipline of programming. Prentice-Hall, 1976.

[dMB08a] Leonardo Mendonça de Moura and Nikolaj Bjørner. Model-based theory combi-

nation. Electron. Notes Theor. Comput. Sci., 198(2):37–49, 2008.

[dMB08b] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver.

In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the

Construction and Analysis of Systems, 14th International Conference, TACAS 2008,

Held as Part of the Joint European Conferences on Theory and Practice of Software,

ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume

4963 of Lecture Notes in Computer Science, pages 337–340. Springer, 2008.

114

https://github.com/Microsoft/TypeScript/issues/14833

Bibliography

[dMB09] Leonardo Mendonça de Moura and Nikolaj Bjørner. Generalized, efficient array

decision procedures. In Proceedings of 9th International Conference on Formal

Methods in Computer-Aided Design, FMCAD 2009, 15-18 November 2009, Austin,

Texas, USA, pages 45–52. IEEE, 2009.

[dMKA+15] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob

von Raumer. The Lean Theorem Prover (System Description). In International

Conference on Automated Deduction, pages 378–388. Springer, 2015.

[DPJ08] Dino Distefano and Matthew J Parkinson J. jStar: Towards practical verification

for Java. ACM Sigplan Notices, 43(10):213–226, 2008.

[Eis16] Richard A Eisenberg. Dependent types in Haskell: Theory and practice. PhD thesis,

University of Pennsylvania, 2016.

[EMH19] Marco Eilers, Peter Müller, and Samuel Hitz. Modular product programs. ACM

Transactions on Programming Languages and Systems (TOPLAS), 42(1):1–37,

2019.

[EOW07] Burak Emir, Martin Odersky, and John Williams. Matching objects with patterns.

In Proceedings of the 21st European Conference on Object-Oriented Programming,

ECOOP’07, Berlin, Heidelberg, 2007. Springer-Verlag.

[EW12] Richard A Eisenberg and Stephanie Weirich. Dependently typed programming

with singletons. In Haskell Symposium 2012, volume 47. ACM New York, NY, USA,

2012.

[Fil03] Jean-Christophe Filliâtre. Verification of non-functional programs using inter-

pretations in type theory. Journal of Functional Programming, 13(4):709–745,

2003.

[Flo67a] Robert W Floyd. Assigning meanings to programs. In Proceedings of Symposium

in Applied Mathematics, volume 19, pages 19–32. American Mathematical Society,

1967.

[Flo67b] Robert W. Floyd. Nondeterministic algorithms. J. ACM, 14(4), October 1967.

[FP13] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 – where programs meet

provers. In European Symposium on Programming (ESOP), pages 125–128.

Springer, 2013.

[Fra21] Frameless Contributors. Frameless. https://github.com/typelevel/frameless,

2016–2021.

[FS01] Cormac Flanagan and James B Saxe. Avoiding exponential explosion: Generat-

ing compact verification conditions. In Proceedings of the 28th ACM SIGPLAN-

SIGACT symposium on Principles of Programming Languages (POPL), pages 193–

205, 2001.

115

https://github.com/typelevel/frameless

Bibliography

[Göd31] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und

verwandter Systeme I. Monatshefte für Mathematik und Physik, 38(1):173–198,

1931.

[HA28] David Hilbert and Wilhelm Ackermann. Grundzüge der theoretischen Logik,

volume XXVII of. Die Grundlehren der Mathematischen Wissenschaften, 1928.

[Hay91] Susumu Hayashi. Singleton, union and intersection types for program extrac-

tion. In International Symposium on Theoretical Aspects of Computer Software,

TACS’91. Springer, 1991.

[HHK+15] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,

Michael L. Roberts, Srinath T. V. Setty, and Brian Zill. IronFleet: Proving Prac-

tical Distributed Systems Correct. In Ethan L. Miller and Steven Hand, editors,

Proceedings of the 25th Symposium on Operating Systems Principles, SOSP 2015,

Monterey, CA, USA, October 4-7, 2015, pages 1–17. ACM, 2015.

[HMWC15] Duc Hoang, Yannick Moy, Angela Wallenburg, and Roderick Chapman. SPARK

2014 and GNATprove. International Journal on Software Tools for Technology

Transfer, 17(6):695–707, 2015.

[HN90] Laurie J. Hendren and Alexandru Nicolau. Parallelizing programs with recursive

data structures. IEEE Trans. Parallel Distributed Syst., 1(1):35–47, 1990.

[Hoa69] Charles Antony Richard Hoare. An axiomatic basis for computer programming.

Communications of the ACM, 12(10):576–580, 1969.

[Hut10] DeLesley S. Hutchins. Pure subtype systems. In Proceedings of the 37th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL’10. ACM, 2010.

[HVK98] Kohei Honda, Vasco T Vasconcelos, and Makoto Kubo. Language primitives and

type discipline for structured communication-based programming. In European

Symposium on Programming (ESOP), pages 122–138. Springer, 1998.

[HVK19] Jad Hamza, Nicolas Voirol, and Viktor Kunčak. System FR: Formalized Founda-

tions for the Stainless Verifier. Proc. ACM Program. Lang., 3(OOPSLA), October

2019.

[JKJ+18] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal,

and Derek Dreyer. Iris from the ground up: A modular foundation for higher-order

concurrent separation logic. J. Funct. Program., 28:e20, 2018.

[JM79] Neil D Jones and Steven S Muchnick. Flow analysis and optimization of LISP-

like structures. In Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on

Principles of programming languages (POPL), pages 244–256, 1979.

116

Bibliography

[JM82] Neil D Jones and Steven S Muchnick. A flexible approach to interprocedural data

flow analysis and programs with recursive data structures. In Proceedings of the

9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL), pages 66–74, 1982.

[Jon00] Mark P. Jones. Type classes with functional dependencies. In Proceedings of the

9th European Symposium on Programming Languages and Systems, ESOP ’00,

London, UK, UK, 2000. Springer-Verlag.

[JS13] Daniel Jost and Alexander J Summers. An automatic encoding from VeriFast

predicates into implicit dynamic frames. In Working Conference on Verified

Software: Theories, Tools, and Experiments, pages 202–221. Springer, 2013.

[JSP+11] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx,

and Frank Piessens. VeriFast: A powerful, sound, predictable, fast verifier for C

and Java. In NASA Formal Methods Symposium, pages 41–55. Springer, 2011.

[Kas06] Ioannis T. Kassios. Dynamic frames: Support for framing, dependencies and

sharing without restrictions. In Jayadev Misra, Tobias Nipkow, and Emil Sekerin-

ski, editors, FM 2006: Formal Methods, 14th International Symposium on Formal

Methods, Hamilton, Canada, August 21-27, 2006, Proceedings, volume 4085 of

Lecture Notes in Computer Science, pages 268–283. Springer, 2006.

[KEH+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,

Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael

Norrish, et al. seL4: Formal verification of an OS kernel. In Proceedings of the

ACM SIGOPS 22nd Symposium on Operating Systems Principles, pages 207–220,

2009.

[KGV+19] Milod Kazerounian, Sankha Narayan Guria, Niki Vazou, Jeffrey S Foster, and

David Van Horn. Type-level computations for Ruby libraries. In Proceedings

of the 40th ACM SIGPLAN Conference on Programming Language Design and

Implementation, 2019.

[KH21] Viktor Kuncak and Jad Hamza. Stainless verification system tutorial. In 13th Work-

ing Conference on Verified Software: Theories, Tools, and Experiments (VSTTE),

2021.

[KJS10] Oleg Kiselyov, Simon Peyton Jones, and Chung-chieh Shan. Fun with type func-

tions. In Reflections on the Work of CAR Hoare. Springer, 2010.

[KLS04] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed heterogeneous

collections. In Proceedings of the 2004 ACM SIGPLAN workshop on Haskell. ACM,

2004.

117

Bibliography

[KM96] Matt Kaufmann and J Strother Moore. ACL2: An industrial strength version

of Nqthm. In Proceedings of 11th Annual Conference on Computer Assurance.

(COMPASS), pages 23–34. IEEE, 1996.

[KM01] Nils Klarlund and Anders Møller. MONA version 1.4: User manual. BRICS,

Department of Computer Science, University of Aarhus Denmark, 2001.

[KMNO14] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. CakeML:

A verified implementation of ML. In Principles of Programming Languages (POPL),

pages 179–191. ACM Press, January 2014.

[KMV19] Filip Křikava, Heather Miller, and Jan Vitek. Scala implicits are everywhere: a

large-scale study of the use of Scala implicits in the wild. Proceedings of the ACM

on Programming Languages, 3(OOPSLA):1–28, 2019.

[KP18] Viktor Kuncak and Aleksandar Prokopec. Parallel programming (Lecture 1.4:

Running computations in parallel). EPFL Courseware, February 2018. https:

//courseware.epfl.ch/courses/course-v1:EPFL+parprog1+2018_T1/about and

https://www.youtube.com/watch?v=DbVt8C0-Oe0.

[LAR21] EPFL IC LARA. Stainless: Formal verification for Scala. https://stainless.epfl.ch/,

2021.

[LAS00] Tal Lev-Ami and Mooly Sagiv. TVLA: A system for implementing static analyses.

In International Static Analysis Symposium (SAS), pages 280–301. Springer, 2000.

[Lei08] K. Rustan M. Leino. This is Boogie 2. Manuscript KRML, 178(131):9, 2008.

[Lei10] K. Rustan M. Leino. Dafny: An automatic program verifier for functional correct-

ness. In Edmund M. Clarke and Andrei Voronkov, editors, Logic for Programming,

Artificial Intelligence, and Reasoning - 16th International Conference, LPAR-16,

Dakar, Senegal, April 25-May 1, 2010, Revised Selected Papers, volume 6355 of

Lecture Notes in Computer Science, pages 348–370. Springer, 2010.

[Ler09] Xavier Leroy. Formal verification of a realistic compiler. Communications of the

ACM, 52(7):107–115, 2009.

[LGvH+79] David C Luckham, Steven M German, Friedrich W von Henke, Richard A Karp,

PW Milne, Derek C Oppen, Wolfgang Polak, and William L Scherlis. Stanford

Pascal Verifier user manual, 1979.

[LH88] James R. Larus and Paul N. Hilfinger. Detecting conflicts between structure

accesses. In Richard L. Wexelblat, editor, Proceedings of the ACM SIGPLAN’88

Conference on Programming Language Design and Implementation (PLDI), At-

lanta, Georgia, USA, June 22-24, 1988, pages 21–34. ACM, 1988.

[LM99] Daan Leijen and Erik Meijer. Domain specific embedded compilers. In Proceed-

ings of the Second Conference on Domain-Specific Languages. ACM, 1999.

118

https://courseware.epfl.ch/courses/course-v1:EPFL+parprog1+2018_T1/about
https://courseware.epfl.ch/courses/course-v1:EPFL+parprog1+2018_T1/about
https://www.youtube.com/watch?v=DbVt8C0-Oe0
https://stainless.epfl.ch/

Bibliography

[LMS09] K Rustan M Leino, Peter Müller, and Jan Smans. Verification of concurrent

programs with Chalice. In Foundations of Security Analysis and Design V, pages

195–222. Springer, 2009.

[LR10] K Rustan M Leino and Philipp Rümmer. A polymorphic intermediate verification

language: Design and logical encoding. In International Conference on Tools and

Algorithms for the Construction and Analysis of Systems, pages 312–327. Springer,

2010.

[LS09] Dirk Leinenbach and Thomas Santen. Verifying the Microsoft Hyper-V hypervi-

sor with VCC. In International Symposium on Formal Methods, pages 806–809.

Springer, 2009.

[MBB06] Erik Meijer, Brian Beckman, and Gavin Bierman. LINQ: reconciling object, rela-

tions and XML in the .NET framework. In Proceedings of the 2006 ACM SIGMOD

international conference on Management of data. ACM, 2006.

[McB02] Conor McBride. Faking it: Simulating dependent types in Haskell. Journal of

functional programming, 12(4-5), 2002.

[Mey97] Bertrand Meyer. Object-oriented software construction, volume 2. Prentice Hall

Englewood Cliffs, 1997.

[MLS84] Per Martin-Löf and Giovanni Sambin. Intuitionistic type theory, volume 9. Bib-

liopolis Naples, 1984.

[Mog91] Eugenio Moggi. Notions of computation and monads. Information and compu-

tation, 93(1):55–92, 1991.

[MPO08a] Adriaan Moors, Frank Piessens, and Martin Odersky. Generics of a higher kind.

volume 43, page 423–438, New York, NY, USA, Oct 2008. Association for Comput-

ing Machinery.

[MPO08b] Adriaan Moors, Frank Piessens, and Martin Odersky. Safe type-level abstraction

in Scala. In Proceedings of the International Workshop on Foundations of Object-

Oriented Languages (FOOL), pages 1–13, 2008.

[MS01] Anders Møller and Michael I Schwartzbach. The Pointer Assertion Logic Engine.

In Proceedings of the ACM SIGPLAN 2001 conference on Programming language

design and implementation (PLDI), pages 221–231, 2001.

[MSS16] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Automatic verifi-

cation of iterated separating conjunctions using symbolic execution. In Swarat

Chaudhuri and Azadeh Farzan, editors, Computer Aided Verification, pages 405–

425. Springer International Publishing, 2016.

[Nor07] Ulf Norell. Towards a practical programming language based on dependent type

theory. PhD thesis, Chalmers University of Technology, 2007.

119

Bibliography

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof

Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[NRZ+15] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and

Michael Deardeuff. How Amazon web services uses formal methods. Communi-

cations of the ACM, 58(4):66–73, 2015.

[OBL+18] Martin Odersky, Olivier Blanvillain, Fengyun Liu, Aggelos Biboudis, Heather

Miller, and Sandro Stucki. Simplicitly: Foundations and applications of implicit

function types. In Proceedings of the 45th ACM SIGPLAN Symposium on Principles

of Programming Languages, POPL’18. ACM, 2018.

[OMO10] Bruno CdS Oliveira, Adriaan Moors, and Martin Odersky. Type classes as objects

and implicits. In Proceedings of the ACM international conference on Object

oriented programming systems languages and applications (OOPSLA), pages 341–

360, 2010.

[OMP16] Martin Odersky, Guillaume Martres, and Dmitry Petrashko. Implementing higher-

kinded types in Dotty. In Proceedings of the 2016 7th ACM SIGPLAN Symposium

on Scala, pages 51–60, 2016.

[ORY01] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about

programs that alter data structures. In Laurent Fribourg, editor, Computer Science

Logic, 15th International Workshop, CSL 2001. 10th Annual Conference of the

EACSL, Paris, France, September 10-13, 2001, Proceedings, volume 2142 of Lecture

Notes in Computer Science, pages 1–19. Springer, 2001.

[OSV19] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala, Fourth

Edition (A comprehensive step-by-step guide). Artima, 2019.

[PS12] Matthew J. Parkinson and Alexander J. Summers. The relationship between

separation logic and implicit dynamic frames. Log. Methods Comput. Sci., 8(3),

2012.

[PWZ13] Ruzica Piskac, Thomas Wies, and Damien Zufferey. Automating separation logic

using SMT. In International Conference on Computer Aided Verification (CAV),

pages 773–789. Springer, 2013.

[PWZ14a] Ruzica Piskac, Thomas Wies, and Damien Zufferey. Automating separation logic

with trees and data. In International Conference on Computer Aided Verification

(CAV), pages 711–728. Springer, 2014.

[PWZ14b] Ruzica Piskac, Thomas Wies, and Damien Zufferey. GRASShopper: Complete

heap verification with mixed specifications. In International Conference on Tools

and Algorithms for the Construction and Analysis of Systems (TACAS), pages 124–

139. Springer, 2014.

120

Bibliography

[RA16] Tiark Rompf and Nada Amin. Type soundness for dependent object types (DOT).

In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-

Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages

624–641, 2016.

[Rey02] John C Reynolds. Separation logic: A logic for shared mutable data structures. In

Proceedings 17th Annual IEEE Symposium on Logic in Computer Science, pages

55–74. IEEE, 2002.

[Ric53] Henry Gordon Rice. Classes of recursively enumerable sets and their decision

problems. Transactions of the American Mathematical Society, 74(2):358–366,

1953.

[RK15] Andrew Reynolds and Viktor Kuncak. Induction for SMT solvers. In Verification,

Model Checking, and Abstract Interpretation (VMCAI), 2015.

[Sab21] Miles Sabin. Shapeless. https://github.com/milessabin/shapeless, 2011–2021.

[SBDL01] A. Stump, C.W. Barrett, D.L. Dill, and J. Levitt. A decision procedure for an

extensional theory of arrays. In Proceedings 16th Annual IEEE Symposium on

Logic in Computer Science, pages 29–37, Boston, MA, USA, 2001. IEEE Comput.

Soc.

[SBHK20] Georg Stefan Schmid, Olivier Blanvillain, Jad Hamza, and Viktor Kuncak. Coming

to Terms with Your Choices: An Existential Take on Dependent Types. CoRR,

abs/2011.07653, 2020.

[SBO21] Nicolas Stucki, Jonathan Immanuel Brachthäuser, and Martin Odersky. Multi-

stage programming with generative and analytical macros. In Proceedings of

the 20th ACM SIGPLAN International Conference on Generative Programming:

Concepts and Experiences, GPCE 2021, page 110–122, New York, NY, USA, 2021.

Association for Computing Machinery.

[SBRY21] Georg Stefan Schmid, Yann Bolliger, Romain Ruetschi, and Ivan Yurov. rust-

stainless. https://github.com/epfl-lara/rust-stainless, 2020–2021.

[SDK10] Philippe Suter, Mirco Dotta, and Viktor Kuncak. Decision procedures for alge-

braic data types with abstractions. In Symposium on Principles of Programming

Languages (POPL), page 199–210, 2010.

[SH00] Christopher A Stone and Robert Harper. Deciding type equivalence in a lan-

guage with singleton kinds. In Proceedings of the 27th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, 2000.

[SHK+16] Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-

Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub,

Markulf Kohlweiss, Jean-Karim Zinzindohoué, and Santiago Zanella-Béguelin.

121

https://github.com/milessabin/shapeless
https://github.com/epfl-lara/rust-stainless

Bibliography

Dependent types and multi-monadic effects in F*. In 43rd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL), pages 256–270.

ACM, January 2016.

[Sip13] Michael Sipser. Introduction to the Theory of Computation (3rd ed.). Cengage

Learning, 2013. ISBN-13: 978-1-133-18779-0.

[SJP12] Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames. ACM Trans.

Program. Lang. Syst., 34(1):2:1–2:58, 2012.

[SK16] Georg Stefan Schmid and Viktor Kuncak. SMT-based Checking of Predicate-

qualified Types for Scala. In Proceedings of the 2016 7th ACM SIGPLAN Symposium

on Scala (SCALA), pages 31–40, 2016.

[SKK11] Philippe Suter, Ali Sinan Köksal, and Viktor Kuncak. Satisfiability modulo recur-

sive programs. In International Static Analysis Symposium (SAS), pages 298–315.

Springer, 2011.

[SN08] Konrad Slind and Michael Norrish. A brief overview of HOL4. In Otmane Ait

Mohamed, César Muñoz, and Sofiène Tahar, editors, Theorem Proving in Higher

Order Logics, pages 28–32, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[SPR+19] Mihaela Sighireanu, Juan Antonio Navarro Pérez, Andrey Rybalchenko, Nikos

Gorogiannis, Radu Iosif, Andrew Reynolds, Cristina Serban, Jens Katelaan,

Christoph Matheja, Thomas Noll, Florian Zuleger, Wei-Ngan Chin, Quang Loc Le,

Quang-Trung Ta, Ton-Chanh Le, Thanh-Toan Nguyen, Siau-Cheng Khoo, Michal

Cyprian, Adam Rogalewicz, Tomás Vojnar, Constantin Enea, Ondrej Lengál,

Chong Gao, and Zhilin Wu. SL-COMP: competition of solvers for separation

logic. In Dirk Beyer, Marieke Huisman, Fabrice Kordon, and Bernhard Steffen,

editors, Tools and Algorithms for the Construction and Analysis of Systems - 25

Years of TACAS: TOOLympics, Held as Part of ETAPS 2019, Prague, Czech Republic,

April 6-11, 2019, Proceedings, Part III, volume 11429 of Lecture Notes in Computer

Science, pages 116–132. Springer, 2019.

[SRW02] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis

via 3-valued logic. ACM Transactions on Programming Languages and Systems

(TOPLAS), 24(3):217–298, 2002.

[SY86] Robert E. Strom and Shaula Yemini. Typestate: A programming language concept

for enhancing software reliability. IEEE Transactions on Software Engineering,

SE-12(1):157–171, 1986.

[SY16] Alceste Scalas and Nobuko Yoshida. Lightweight Session Programming in Scala.

In Shriram Krishnamurthi and Benjamin S. Lerner, editors, 30th European Con-

ference on Object-Oriented Programming (ECOOP 2016), volume 56 of Leibniz

International Proceedings in Informatics (LIPIcs), pages 21:1–21:28, Dagstuhl,

Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

122

Bibliography

[Tho21] Frank Thomas. refined: Simple refinement types for Scala. https://github.com/

fthomas/refined, 2015–2021.

[TLKC19] Quang-Trung Ta, Ton Chanh Le, Siau-Cheng Khoo, and Wei-Ngan Chin. Au-

tomated mutual induction proof in separation logic. Formal Aspects Comput.,

31(2):207–230, 2019.

[Tor17] Eric Torreborre. Achieving 3.2x Faster Scala Compile Time. https://engineering.

zalando.com/posts/2017/04/achieving-3.2x-faster-scala-compile-time.html,

2017.

[TSKJB17] Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, and Lars Birkedal. A Logi-

cal Relation for Monadic Encapsulation of State: Proving Contextual Equivalences

in the Presence of RunST. Proc. ACM Program. Lang., 2(POPL), dec 2017.

[Tur37] Alan Mathison Turing. On Computable Numbers, with an Application to the

Entscheidungsproblem. Proceedings of the London Mathematical Society, s2-

42(1):230–265, 1937.

[UdM19] Sebastian Ullrich and Leonardo de Moura. Counting immutable beans: Reference

counting optimized for purely functional programming. In 31st Symposium on

Implementation and Application of Functional Languages, 2019.

[VBJ15] Niki Vazou, Alexander Bakst, and Ranjit Jhala. Bounded refinement types. In

Proceedings of the 20th ACM SIGPLAN International Conference on Functional

Programming, ICFP 2015, Vancouver, BC, Canada, September 1-3, 2015. ACM,

2015.

[VKK15] Nicolas Voirol, Etienne Kneuss, and Viktor Kuncak. Counter-example complete

verification for higher-order functions. In Proceedings of the 6th ACM SIGPLAN

Symposium on Scala, SCALA 2015, page 18–29, New York, NY, USA, 2015. Associa-

tion for Computing Machinery.

[Voi19] Nicolas Charles Yves Voirol. Verified Functional Programming. PhD thesis, EPFL,

Lausanne, 2019.

[VRJ13] Niki Vazou, Patrick M Rondon, and Ranjit Jhala. Abstract refinement types. In

European Symposium on Programming, pages 209–228. Springer, 2013.

[VSJ+14] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-

Jones. Refinement types for haskell. SIGPLAN Not., 49(9):269–282, aug 2014.

[VTC+17] Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G Scott, Ryan R New-

ton, Philip Wadler, and Ranjit Jhala. Refinement reflection: complete verification

with smt. Proceedings of the ACM on Programming Languages, 2(POPL), 2017.

[VTVH18] Niki Vazou, Éric Tanter, and David Van Horn. Gradual liquid type inference.

Proceedings of the ACM on Programming Languages, 2(OOPSLA), 2018.

123

https://github.com/fthomas/refined
https://github.com/fthomas/refined
https://engineering.zalando.com/posts/2017/04/achieving-3.2x-faster-scala-compile-time.html
https://engineering.zalando.com/posts/2017/04/achieving-3.2x-faster-scala-compile-time.html

Bibliography

[Wad90a] Philip Wadler. Comprehending monads. In Proceedings of the 1990 ACM Confer-

ence on LISP and Functional Programming, pages 61–78, 1990.

[Wad90b] Philip Wadler. Linear types can change the world! In Programming concepts and

methods, volume 3, page 5. Citeseer, 1990.

[WB89] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In Proceed-

ings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’89, page 60–76, New York, NY, USA, 1989. Association for Com-

puting Machinery.

[WMK11] Thomas Wies, Marco Muñiz, and Viktor Kuncak. An efficient decision procedure

for imperative tree data structures. In International Conference on Automated

Deduction (CAV), pages 476–491. Springer, 2011.

[WVdAE17] Stephanie Weirich, Antoine Voizard, Pedro Henrique Azevedo de Amorim, and

Richard A Eisenberg. A specification for dependent types in Haskell. In Pro-

ceedings of the ACM on Programming Languages, volume 1 of ICFP’17. ACM,

2017.

[XP98] Hongwei Xi and Frank Pfenning. Eliminating array bound checking through

dependent types. In Proceedings of ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI’98, Montreal, June 1998.

[YBO16] Yanpeng Yang, Xuan Bi, and Bruno CDS Oliveira. Unified syntax with iso-types.

In Asian Symposium on Programming Languages and Systems. Springer, 2016.

[YO17] Yanpeng Yang and Bruno CDS Oliveira. Unifying typing and subtyping. Proceed-

ings of the ACM on Programming Languages, 1(OOPSLA), 2017.

[YWC+12] Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones, Dimitrios

Vytiniotis, and José Pedro Magalhães. Giving Haskell a promotion. In Proceedings

of the 8th ACM SIGPLAN Workshop on Types in Language Design and Implemen-

tation, TLDI’12. ACM, 2012.

[Zwa99] Jan Zwanenburg. Pure type systems with subtyping. In International Conference

on Typed Lambda Calculi and Applications. Springer, 1999.

[ZXW+16] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust,

Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.

Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. Apache

Spark: A unified engine for big data processing. Commun. ACM, 59(11), 2016.

124

EPFL-IC-LARA, BC355, St. 14
1015 Lausanne, Switzerland

Georg Stefan Schmid

research interests

I believe programming languages should be versatile tools that allow programmers to perform
common tasks concisely and safely. Most of my PhD work was dedicated to taking the Scala
ecosystem one step in this direction through type-level programming and automated verification.
More generally, I am excited by problems at the intersection of formal methods and systems
programming, and compilers seem to be a never-ending source of such problems!

work experience

Feb – Jun 2021 Tech Infrastructure Research Intern at DeepMind

I contributed to the design, implementation and evaluation of PartIR, an automated partitioner for
ML models. PartIR leverages data and model parallelism to enable the training of large-scale models
on accelerators such as Google’s TPUs. I explored new techniques to harness the vast search space,
significantly simplified baselines, and generalized PartIR to apply to a larger class of models.

May – Aug 2019 Software Engineering Intern at Google Munich

I worked on V8, the JavaScript engine embedded in Google Chrome. Among other things, I extended
its JavaScript load elimination phase to exploit the constancy of fields at runtime, speeding up the
DeltaBlue benchmark by almost 5%. I also implemented a completely new load elimination phase for
the lower-level IR. Finally, I contributed to the design and implementation of Torque, a DSL for
builtins, adding generic structs and improving array support through the addition of Go-style slices.

Jun – Aug 2015 Software Engineering Intern at Google Mountain View

I designed and implemented a distributed system that samples activity in YouTube’s video
transcoding infrastructure and generates representative workloads on the fly. My system helped
improve the accuracy of regression testing and is now part of the transcoding team’s release process.

education

Sep 2016 – École polytechnique fédérale de Lausanne (EPFL)

PhD thesis in Computer Science: “Scaling Language Features for Program Verification”
Advisor: Prof. Viktor Kunčak

Sep 2014 – Jul 2016 École polytechnique fédérale de Lausanne

Master’s degree program in Computer Science, GPA: 5.75/6.00
Master thesis on “SMT-Based Checking of Predicate-Qualified Types in Scala” supervised by
Prof. Viktor Kunčak

Oct 2010 – Jul 2014 Vienna University of Technology (VUT)

Bachelor’s degree in Computer Science (Software and Information Engineering) with distinction
(“mit ausgezeichnetem Erfolg”)

126

publications

Under submission Memory-efficient array redistribution through portable
collective communication

Norman A. Rink, Adam Paszke, Dimitrios Vytiniotis and Georg Stefan Schmid
On arXiv: https://arxiv.org/abs/2112.01075

Jan 2022 Generalized Arrays for Stainless Frames

Georg Stefan Schmid and Viktor Kunčak, to appear at VMCAI 2022: 23rd International Conference
on Verification, Model Checking, and Abstract Interpretation

Dec 2021 Automap:
Towards Ergonomic Automated Parallelism for ML Models

Michael Schaarschmidt, Dominik Grewe, Dimitrios Vytiniotis, Adam Paszke, Georg Stefan Schmid,
Tamara Norman, James Molloy, Jonathan Godwin, Norman A. Rink, Vinod Nair and Dan Belov
On arXiv: https://arxiv.org/abs/2112.02958

Nov 2020 Coming to Terms with Your Choices:
An Existential Take on Dependent Types

Georg Stefan Schmid, Olivier Blanvillain, Jad Hamza and Viktor Kunčak
On arXiv: https://arxiv.org/abs/2011.07653

Oct 2016 SMT-Based Checking of Predicate-Qualified Types for Scala

Georg Stefan Schmid and Viktor Kunčak, at Scala’16: 7th ACM SIGPLAN Symposium on Scala

honors

International Olympiad in Informatics (IOI)

I participated in the IOI as part of the Austrian team for three consecutive years:

2008 in Cairo, Egypt – came in second in national qualifications

2007 in Zagreb, Croatia – came in third in national qualifications

2006 in Mérida, Mexico – came in fourth in national qualifications

Merit-based scholarships at Vienna University of Technology

Throughout my studies at VUT I received merit-based scholarships. These are typically awarded to
less than 20 students in each year’s class (out of approximately 800 students starting every year).

Research scholarship at École polytechnique fédérale de Lausanne

During my Master’s studies I worked as a research assistant in Prof. George Candea’s Dependable
Systems Lab. In addition to granting me early experiences in research, EPFL provided me a monthly
stipend.

127

	Acknowledgements
	Abstract
	Contents
	List of Figures
	Introduction
	State of the Art
	Thesis
	Contributions

	Background: Two Approaches to Static Safety in Scala
	The Scala Programming Language
	Type-Level Programming
	The Scala 2 Idiom: Implicitly-Resolved Traits as Type-Level Functions
	Progress in Scala 3: Match Types

	Contract-Based Verification
	Verifying Scala using Stainless
	Example: Encoding Types as Predicates

	Dealing with State

	I Decidable and Expressive Reasoning about Heaps in Stainless
	Verifying Mutable Data in Scala
	First Example: Stack
	Extended Example: Map on a Tree
	First-Class Heaps

	Heap Encoding
	Encoding tmap
	Translation Rules
	Quantifier-Free Frame Conditions
	First-Class Heaps
	Allocations

	Evaluation
	Shallowly-Mutable Data Structures
	Mutable Linked Lists and Queues
	Slices, Monolithic and Cell-Based Arrays
	Fork-Join Parallelism

	II Type-Level Programming in a Language with Subtyping
	First-Class Type-Level Programming for Scala
	Example: Safe Join
	Example: Safe Zip
	Discussion: From Choices to Existentials

	A Calculus for Type-Level Computation
	Syntax and Semantics
	Lowering to a Deterministic Language
	The Type System
	Type Inference and Underlying Types
	Subtyping and Type Normalization
	Subtyping Existential Types

	Untangling Trails
	From Rules to Algorithms

	Soundness by Reduction to System FR
	Embedding Terms
	Embedding Types
	Formalized Soundness Statement

	A Prototypical Implementation in Dotty
	Pattern Matching
	Two Modes of Type Inference
	Approximating Side Effects
	Virtual Dispatch
	Termination

	Use Case
	A Type-Safe Database Interface
	Comparison to an Existing Technique

	Related Work
	Leon and Stainless
	Static Safety through Metaprogramming in Scala
	Dependent Types for General-Purpose Programming
	Proof Assistants and Verification-Oriented Languages
	Verification of Heap-Manipulating Programs

	Conclusion

	An SMT-LIB Encoding of Heaps
	Verifying an Inductive Heap Property
	Bibliography
	Curriculum Vitae

