Parametrizing drifting snow sublimation in the saltation layer

Armin Sigmund¹, Varun Sharma^{1,2}, Daniela Brito Melo¹, Francesco Comola¹, Jérôme Dujardin^{1,2}, Franziska Gerber^{1,2}, Hendrik Huwald^{1,2}, and Michael Lehning^{1,2}

> ¹Laboratory of Cryosperic Sciences, EPFL, Switzerland ²SLF, Davos, Switzerland

Goals

- Propose and validate a parametrization for sublimation of saltating snow particles using Large-eddy simulations (LES) as reference
 - Evaluate the performance of the Thorpe-Mason (TM) formula and an alternative
 - Assess the importance of accurate near-surface humidity and temperature profiles

Thorpe-Mason formula and alternative

- LES domain: 38 x 19 x 18 m³
- Reproduce conditions (u, q, T) measured at S17, Antarctica
- Steady state profiles (400-s average)
- Lagrangian particles:

- Sublimation:
$$\frac{\mathrm{d}m_p}{\mathrm{d}t} = \pi D d_p \left(\rho_{w,\infty} - \rho_{w,p} \right) \mathrm{Sh}$$

- Heat balance:
$$c_i m_p \frac{\mathrm{d} T_p}{\mathrm{d} t} = L_s \frac{\mathrm{d} m_p}{\mathrm{d} t} + \pi k d_p \left(T_{a,\infty} - T_p \right) \mathrm{Nu}$$

TM: $0 = \Delta \mathrm{storage}$ Latent heat Sensible heat

(Details on method: Sigmund et al., 2021)

z (m)

Case	<i>u</i> _{3m} (m s ⁻¹)	RH _{1m} (%)	$T_{1m} - T_0$ (K)	S _{TM} (%)
Α	12	98.7	-0.7	25
В	16	99.9	-0.2	6

Thorpe-Mason formula and alternative

- LES domain: 38 x 19 x 18 m³
- Reproduce conditions (u, q, T) measured at S17, Antarctica
- Steady state profiles (400-s average)
- Lagrangian particles:

- Sublimation:
$$\frac{\mathrm{d}m_p}{\mathrm{d}t} = \pi D d_p \left(\rho_{w,\infty} - \rho_{w,p} \right) \mathrm{Sh}$$

- Heat balance:
$$c_i m_p \frac{\mathrm{d} T_p}{\mathrm{d} t} = \underline{L_s} \frac{\mathrm{d} m_p}{\mathrm{d} t} + \pi k d_p \left(T_{a,\infty} - T_p \right) \, \mathrm{Nu}$$
 ? = \text{\Delta storage} \text{Latent heat} \text{ Sensible heat}

(Details on method: Sigmund et al., 2021)

- Alternative to TM:
 - Estimate empirically $\frac{dT_p}{dt} = f(T_a T_0, d_p, z, u_*)$

based on LES output averaged per d_p class and height

Case	<i>u</i> _{3m} (m s ⁻¹)	RH _{1m} (%)	$T_{1m} - T_0$ (K)	S _{TM} (%)
Α	12	98.7	-0.7	25
В	16	99.9	-0.2	6

1D model for humidity and temperature

CRYOS

Cryospheric Sciences

- Particle concentration
 - Assume known profile (from LES)
- T and q boundary conditions (0 m, 9 m)
 - Dirichlet type
- Fluxes at surface
 - Monin-Obukhov (MOST) bulk method
- *T* and *q* initial conditions:
 - $-z \ge 2.25$ m: From LES
 - -z < 2.25 m: MOST profiles
- Simulate until steady state, so far with TM formula
 - a) $z \ge 2.25$ m: Prognostically z < 2.25 m: MOST profiles
 - b) All z: Prognostically

1D model for humidity and temperature

CRYOS

Cryospheric Sciences

- Particle concentration
 - Assume known profile (from LES)
- *T* and *q* boundary conditions (0 m, 9 m)
 - Dirichlet type
- Fluxes at surface
 - Monin-Obukhov (MOST) bulk method
- *T* and *q* initial conditions:
 - $-z \ge 2.25$ m: From LES
 - -z < 2.25 m: MOST profiles
- Simulate until steady state, so far with TM formula
 - a) $z \ge 2.25$ m: Prognostically z < 2.25 m: MOST profiles
 - b) All z: Prognostically

Conclusions

A parametrization of sublimation in the saltation layer should ...

... account for an (empirical) expression for $\frac{dT_p}{dt}$ (to be derived from LES)

... solve prognostically for T and q at a few levels

Thank you!

References:

- Sharma, V., Comola, F., and Lehning, M., *On the suitability of the Thorpe-Mason model for Calculating Sublimation of Saltating Snow*, The Cryosphere, 12, 3499–3509, 2018.
- Sigmund, A., Dujardin, J., Comola, F., Sharma, V., Huwald, H., Melo, D.B., Hirasawa, N., Nishimura, K., Lehning, M., *Evidence of Strong Flux Underestimation by Bulk Parametrizations During Drifting and Blowing Snow,* Boundary-Layer Meteorol, 2021.
- Thorpe, A.D. and Mason, B.J., *The evaporation of ice spheres and ice crystals*, British Journal of Applied Physics 17, 541–548, 1966.