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Abstract— Handwriting learning is a long and complex pro-
cess that takes about ten years to be fully mastered. Nearly
one-third of all children aged 4-12 experiences handwriting
difficulties and, sadly, most of them are left to fight them
on their own, due to the scarcity of tools for the detection
and remediation of such difficulties. Building on state-of-the-
art digital solutions for automated handwriting assessment
and the training of specific handwriting-related skills, in this
article we discuss requirements, rationale, and architecture of
a system for handwriting training, which relies on a social
robot as a mediator agent, offering personalized training and
suggestions. The system is envisioned to operate autonomously
and to support long-term interactions via personalization.
Preliminary validation of the system in an experiment with 31
children showed its potential not only for autonomously guiding
handwriting training sessions, but also for its inclusion in the
teachers’ practice.

I. INTRODUCTION

How many people do you know with beautiful handwrit-
ing? If the number is relatively low, don’t be surprised:
around one third of children between 4 to 12 years old
presents handwriting difficulties [1], which are not always
properly addressed and corrected. Since such difficulties
can cause tremendous and long-lasting damage to a child,
to the point of inspiring school avoidance and low self-
esteem, early detection and remediation are key for effec-
tively overcoming them [2]. A major hurdle towards this
goal is the vicious circle that handwriting difficulties create:
children with handwriting difficulties find hard to write and
obtain lesser results than their peers. Hence, they avoid
writing as much as possible, which results in lagging further
behind their peers and an even stronger desire to avoid
writing altogether [3]. For this reason, remediation activities,
which necessarily have to involve writing sooner or later, are
typically met with significant resistance.

In an attempt to overcome this resistance, a number of
approaches have been recently proposed which rely on digital
devices such as tablets [4] and robots [5]. On the one hand,
such approaches rely on the novelty effect and gamification
to counterbalance a child’s reluctance to engage in handwrit-
ing practice. Recently, the rich sensory information made
available by digital devices allows for monitoring the child’s
progress and the penalization of the exercises, at levels
previously unreachable and with inspiring results [6].
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Fig. 1. The iReCHeCk hardware setup for a handwriting training session.

However, to date, the assessment of handwriting quality
(and thus, the detection of handwriting difficulties) is still
mostly done by experts through visual inspection of short
handwritten sections, a process which is error-prone, slow
and costly [7]. Above all, however, such an assessment
method completely neglects the kinematics and dynamics
of handwriting, such as one’s speed, the smoothness of the
motion, the pressure applied on the paper via the pencil, or its
inclination. Recent works aiming at developing an automated
handwriting assessment based on the real-time information
provided by digital tablets and pencils have not only shown
remarkable potentials [3], [7], but also highlighted the impor-
tance of correctly identifying the causes for one’s difficulty
and appropriately tailor remediation activities.

In this article, we outline and preliminarly validate the ar-
chitecture of a system for handwriting training, which relies
on a digital tablet for the automated, real-time assessment
of handwriting quality and areas of improvements, and on a
social robot for the automatization of the training sessions
and the interaction with the child, as shown in Figure 1.

To test the system, we run an experiment in a school-
environment where 31 children performed a single individual
session guided by the robot. The session included games and
exercises of handwriting on an iPad. The experiment suggests
that the system seems robust and engaging enough for use
in a school setting, by children. Additionally, although it is
known that handwriting training is a long process, the real-
time handwriting assessment methods afforded us to explore
the existence of immediate effects of handwriting exercises
on handwriting quality, an impracticable analysis prior to the
development of automated, real-time handwriting assessment
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tools.
This paper is organized as follow. In Section II, related

works that motivate and sustain this research are presented.
Section III details the architecture of our proposal. In Sec-
tion IV, the experiment is described and its results are
reported in Section V. Conclusions follow.

II. RELATED WORK

The technical challenges in this proposal rely on two steps
of detecting and remediating handwriting difficulties while
the social aspects are about keep users motivated taking the
outcomes as inputs.

Attempts at developing objective methods to assess the
legibility (hence, the quality) of handwriting started with
Thorndike, in 1910 [8] and can be divided into holistic
approaches, which evaluate the quality of a handwritten
text by comparing it with reference samples [8]–[10], and
atomistic approaches, which evaluate the quality of a hand-
written text on the basis of a set of pre-defined criteria,
which are then summed up to produce an overall quality
score. As an example, the Concise Evaluation Scale for
Children’s Handwriting (BHK) test, one of the primary
references for the diagnosis of dysgraphia in Latin alphabet-
based languages [11], follows the second approach.

Education and special education have proven to be a
successful application field for social robots [12], which
have therein been used for purposes as diverse as second-
language learning [13], reading practice [14], or honing of
computational thinking skills [15]. While in most of such
applications the robot acts as a tutor and/or mediator between
the child and a learning activity typically running on a tablet
[12], a few exceptions envision the robot to be the learner and
the child to be the teacher, in accordance with the learning by
teaching paradigm [16]. Among them, the CoWriter project
uses a Nao robot to help children practice handwriting [5].

In 2018/2019, a 10-years old boy diagnosed with a com-
plex Neuro-Developmental Disorder combining phonological
disorder, attention deficit/hyperactivity disorder, dyslexia,
and developmental coordination disorder with severe dys-
graphia, used CoWriter during his occupational therapy for
20 consecutive weekly sessions [6]. Results showed that his
motivation was restored, avoidance behaviors disappeared
both during sessions and at school, handwriting quality and
posture improved dramatically. Most remarkably, the boy had
had 2 years of specific support in school and professional
speech and motor remediation prior to participation in this
pilot, with no visible improvement.

While the longitudinal study highlighted the tremendous
potential of robot-enhanced solutions for handwriting train-
ing, it also revealed a number of shortcomings that need
to be addressed for a successful use of the system beyond
controlled pilot studies: (1) the CoWriter setup used with the
child was fully tele-operated, meaning that the boy’s therapy
sessions involved a robot, an occupational therapist managing
the session and another domain expert (a psychiatrist) tele-
operating the robot. Endowing the robot with autonomy is
crucial to make the system less expensive, less complex,

and thus more likely to be used at large in schools; (2)
the novelty effect of the robot quickly wore off along the
20 sessions, revealing the importance of penalization and
adaptation to sustain the child’s engagement with the activity
and keep up with his/her progress. Endowing a robot with
such capabilities becomes even more important in the case
it is expected to autonomously lead the sessions, with only
sporadic interventions from therapists/teachers.

In respect to decision-making based on user modeling
for supporting users motivation and engagement, several
works have been striking this issue from simple algorithms
modeling to more complex ones. For instance, a design
using a Behavior Tree Based approach [17] for support long-
term social robot behaviors showed to provide smooth and
intuitive transitions between the states, also implemented by
ROS libraries. This proposal, despite not validated with users
yet, suggests efficient awareness of the system about when
to take a decision according to users’ actions with a low
computational cost solution. Algorithms that take more time
to train their model and, consequently, present more com-
putational costs are also used to address this issue. Machine
learning algorithms with supervised domain adaptation (s-
DA) to afford personalized models are examples of this kind
of knowledge base for decision-making [18]. Evaluations of
such methods on the effects of personalization on a long-term
multimodal dataset showed that their outcomes outperformed
non-personalized, individualized and generic model baselines
in both individual sessions and also in the average of all
sessions. Beyond acquiring knowledge of users’ preferences
based on previous experiences, as supervised methods do, it
is also possible to generate models based on the users action
during execution time. A well-established approach is to
adapt the robot’s behavior according to the users’ short-term
inputs aiming to increase their engagement and enjoyment.
As an example, the study adapting the behavior of a robot
acting as an entertainer and telling different types of jokes
[19]. The exemplary adaptation process was done only by
using the audience’s vocal laughs and visual smiles of 24
participants. When compared to a baseline behavior (non-
personalized one), the adaptive setup showed better results
regarding user engagement and enjoyment.

In this proposal, therefore, we aim to combine the before-
hand mentioned elements of handwriting quality measure-
ment and remediation combined to personalized and adaptive
instructions from a social robot to keep young students
motivated in their handwriting practicing.

III. ARCHITECTURE AND COMPONENTS

Figures 1 and 2 summarize, respectively at the hardware
and software levels, the key elements composing the pro-
posed system for handwriting training. Figure 1 shows from
a hardware perspective the system, which includes the social
robot QTrobot (from Luxai1), an iPad with Apple Pencil,
running the Dynamilis app, an external RGB-D camera and
a computer hosting the main software modules. The iPad and

1https://luxai.com/



QTrobot are placed in front of the child, while the external
RGB-D camera is placed on the side.

Fig. 2. iReCHeck system architecture. Sensing modules are denoted in
red, planning ones in green and the action in blue. Red arrows denote
non-digital information flows (the robot providing verbal suggestions and
feedback to the child; the child interacting with Dynamilis activities via the
Apple Pencil).

From a software perspective, the system is designed to be
modular, allows for an easy adaptation to different config-
urations (e.g. with or without a human expert controlling
the robot, with a rich or minimal external sensors set).
Concretely, the modules are designed as ROS Noetic nodes
and packages, written in Python 32. The modules can be
categorized in: (A) sensing modules, each of which interfaces
to a specific type of perception device(s) and is responsible
for the extraction of high-level information from it. As an
example, the Dynamilis listener module is responsible for ob-
taining handwriting-related information from the Dynamilis
app, while the Posture analysis module process posture-
related information from the RGB-D camera; (B) planning
modules, where the information provided by the different
sensing modules is merged and used to decide what to
do/suggest next; (C) action module, which interface to the
device(s) responsible for direct interaction with the child
(currently, QTrobot), sending commands for execution and
also providing information about users’ action, such as when
a user appears by face detection provided off-the-shelf via
the Nuitrack3.

A. Dynamilis app and the Handwriting Evaluation (HWE)

The Dynamilis app4, running on the iPad and requiring
the use of an Apple Pencil, includes an activity for run-time
automated handwriting assessment and a number of games
for handwriting training, targeting different sub-skills related
to handwriting (e.g., modulation of the pressure applied on
the tablet via the pencil, or speed control while following

2All modules are freely available at https://github.com/irecheck/irecheck
3https://nuitrack.com/
4https://dynamilis.com/en/

a trajectory). More precisely, the Handwriting Evaluation
(HWE) activity is a two-steps activity, first asking the child
to draw a cat and then to copy a short text shown at
the top of the screen. The reason for the two steps is to
mitigate the negative attitude towards writing and decouple
handwriting difficulties from reading difficulties. Each eval-
uation produces a handwriting quality score (expressed in
the [0,100] range) along the dimensions of static, speed, tilt
and pressure, plus a global score, following the methodology
outlined in [20].

B. Posture analysis

At this point of our implementation, the posture analysis
node is an ongoing effort targeting an autonomous posture-
analysis algorithm specifically for handwriting activities. We
envision the future functionality of this node by receiving
RGB-D data from the external camera firstly processed by
the ROS wrapper for Openpose5. Then, the posture analysis
module will receive the location of the body joints of the
child’s from the Openpose, and it could compute certain
postural parameters related to handwriting, e.g., the trunk
inclination angle. Lastly, posture-related information will be
made available for the iReCHeCk manager.

C. Dynamilis listener

The Dynamilis listener module provides information re-
garding the handwriting assessment and training activities
performed in the Dynamilis app. Concretely, it relies on
Firebase6 APIs to connect to the Firebase database of the
Dynamilis app and retrieve information of relevance every
time the database is updated. Such information include, for
the handwriting evaluation, the global score, the scores along
the four sub-dimensions, as well as the values of the low-
level features composing them. For the games, collected
information include the type of game played by the child, the
difficulty level and the score obtained in it, also expressed in
the [0, 100] range. In both cases, the information is available
for our system seconds after the completion of the activity.

D. iReCHeCk manager

The iReCHeCk manager module, as the name suggests,
is the information manager of the system, responsible for
organizing the information about the child’s status and
performance provided by the various sensing modules in a
homogeneous structure allowing for easy querying, analysis
and export. At the same time, this module is responsible for
keeping track of the phase the session is in and manage
transitions from one to the other. Concretely, this is is
implemented as a Finite State Machine (FSM), for which
we rely on the smach ROS library7, where states correspond
to phases or sub-phases of the session and transitions are
triggered by events detected from the sensing modules, or
imposed by a human, as explained in Section III-F.

5https://github.com/ravijo/ros_openpose
6https://firebase.google.com/
7http://wiki.ros.org/smach/Tutorials
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E. Decision Maker and User-Modeling

The decision maker module is responsible for the man-
agement of the session whenever the system is expected
to run autonomously. The module relies on the run-time
information made available by the iReCHeCk manager to
suggest activities for the child. Currently, its mechanism
relies on a hybrid system that combines simple conditional
constructs to identify the handwriting dimension to train (via
the related Dynamilis game) and short-term memory of the
last three user’s scores in order to break plateaus in the user’s
engagement.

The user modeling that drives the decision-taking process
is implemented as another FSM, as represented in Figure 3,
where we have the following states: Single Win, when the
user wins after a previous non-winning play; Single Loss,
when the user loses after a previous non-losing play; Wining
Streak, when the user wins after a previous winning play;
and Losing Streak, when the user loses after a previous losing
play.

Single win

Single 
loss

Positive 
streak

Negative 
streak

Start

Fig. 3. Finite State Machine of our proposal for User-Modeling.

This modeling allows a short-term memory, in which by
counting the times the participant is failing or succeeding at
scoring in the last plays, the system triggers the type of the
next game in order to avoid boredom for multiple failures or
success. In this setup, what defines whether the player won
or lost a play is if the score in the game is above (win) or
below (loss) a predefined threshold.

The choice of the activity (game) is based on the corre-
sponding lowest score in the last HWE. After 3 consecutive
losses, it proposed a corresponding activity associated to
the highest score in the last handwriting, which the child
is expected to win. Similarly, after 3 consecutive wins, the
robot suggested to play another activity, associated with the
second lowest score in the HWE. The loss counter is not
reset after changing the activity. So, if the user loses after a
game change caused by a negative streak, it does not wait
for 2 more failures to switch but does it immediately. On
the other hand, the wining counter is reset after all game
changes caused by a positive streak.

The awareness of such scenarios is important since small
variations in recommendation systems might be as simple as
effective in fighting boredom, as addressed in [21]. Further-
more, boredom has been shown to correlate negatively with

learning in some learning activities, which often precedes
disengaged behaviors such as off-task behavior [22].

For the future, we envision this module to allow different
methods to base its decisions, for example, incorporating and
building upon experts’ knowledge in our decision system
(Supervised Learning), and to implement personalization and
adaptation over time (Reinforcement Learning algorithms)
striving to balance maximizing the amount of time devoted
to handwriting training and promoting a good posture, with
the child’s enjoyment of the interaction and wrapping up the
session before fatigue and/or boredom can negatively affect
it, as other than adapting the level of challenge in the games,
decision-making systems were shown to be capable of further
personalize and enhance robot-children interactions [23].

F. Interaction Phases

Combining the presented resources of hardware and soft-
ware, the iReCHeCk ’s structure consists, on a high-level
view, of four phases: (1) Greeting, (2) Handwriting Evalua-
tion (HWE), (3) Training, and (4) Goodbye.

1) The greeting phase: is triggered by the Nuitrack face
detection algorithm and it is where the social robot welcomes
the child. Expansions in this proposal to afford long-term
memory in future works will allow the robot to bring
up events and achievements of past sessions or to engage
him/her in a short conversation, reinforcing personalization
in the interactions.

2) The Handwriting Evaluation phase: is the part of the
session where the robot invites the child to perform the
Dynamilis handwriting assessment. The outcomes are used
to guide the child in the games/exercises of the next training
phase.

3) The Training: is a phase where the robot guides the
child in the handwriting training through the games afforded
by the Dynamilis app. The games - which serve as exercises
- are chosen by the Decision-Maker node, based on the
child’s HWE outcomes and previous scores, as detailed in
Subsection III-E.

4) The goodbye phase: is the last step of the interaction,
where the robot wraps up the session, emphasizing on the
achievements.

While the greeting and the goodbye phases are - intuitively
- pinned in at the beginning and at the end of the session,
the HWE and training phases can be used and combined in
between them, as many times as one wants. Subsection IV-C
shows an example of the combination of these phases, in a
real use case.

IV. EXPERIMENT

The analysis of the experiment is divided in two parts,
as this preliminary test has a twofold goal: (1) assess the
perception of the students about their experience with the
system, and (2) assess the immediate impact of handwriting
training activities on handwriting quality.

We consider the instantaneous analysis relevant for two
reasons. First, prior to real-time assessments, it was impos-
sible to be made since the handwriting quality assessment



was performed by experts’ observation, which implies inter-
ruptions or later assessment. Then, if there is a momentary
peak of improvement in some of the mentioned handwriting
dimensions, the robot could use this temporary variation in
the interaction, e.g. to boost the child’s self-esteem. Thus,
we designed a series of handwriting evaluations alternated
with personalized handwriting training.

A. Participants

A total of 31 children (11 girls and 20 boys aged M =
8.52 years old, SD = 0.57) from two classes of grade three
participated in the study8. The children come from diverse
socioeconomic backgrounds and are all English speakers and
writers. Only one had previously used the Dynamilis app.
Two participants abandoned the experiment midway thus
leaving us with the data of 29 participants for the analysis.
Twelve sessions experienced network delays and in 8 of them
we asked the children to restart the app. Children said that
this request did not interfere in their interaction. In 4 cases
we had to start the interaction manually instead of waiting the
face recognition input. Nonetheless, participants also claimed
it didn’t interfere in their experience.

B. Protocol

The sessions took place during the school time of the chil-
dren and the setup was configured in an unused classroom, as
shown in Figure 1. One at a time, participants were called
out of their classrooms and briefed about the experiment
by the researchers. The goal of this talk was to explain
what participants should expect from their interaction with
the robot; that they could ask questions or resign from the
experiment at any time; and, finally, to explain the Dynamilis
app functionalities and allow the participant to familiarize
with it. The average time spent for this part was 10 minutes.
After this first moment, the interaction with the robot started
as described in Section IV-C. The average time for this part
was 30 minutes. At the end of the session, the children were
asked whether their had any doubt or question about what
they just did and invited to answer a number of questions.
This part lasted in average 5 minutes.

We asked 4 questions, the first 2 related to their feedback
on their experience interacting with the system and the
last 2 about their self-statement regarding enjoyment in
participating in the activity. The questions for the participants
were:

1) Did you understand everything the robot said?
2) What would you change in the experience you just

had?
3) Would you like to participate again in this activity?
4) Did you enjoy participating in this activity with the

robot?

Results are presented in Section V-A.

8This study has received ethical approval from the Human Research
Ethics Committee of EPFL under protocol HREC 057-2021

C. Interaction Setup

The interaction between the robot and the participant was
designed combining the phases presented in Section III-F in
the following sequence:

1) The greeting phase
2) A previous handwriting evaluation (HWE1)
3) The first training phase
4) An intermediate handwriting evaluation (HWE2)
5) The second training phase
6) A last handwriting evaluation (HWE3)
7) The goodbye phase at the end

The minimum time for the training phases was set to 5
minutes. This means that after 5 minutes of training, instead
of suggesting the next game, the robot guided the student
to the next phase, which in this case was always a HWE.
The robot’s social skills were programmed to be displayed
through small movements in its arms and head, variation
in the robot’s facial display according to the sentence. For
example, during the greeting phase it welcomed the child
with a spoken utterance, a “Hello” gesture and a smiling
face, and displayed a similar behavior in the goodbye phase.
The robot was also reacting to the children’s performance in
the game by saying variations of ”Well played”, expressing a
happy face and rising its arms when they succeeded, and by
saying “Not a good result but I know you can do better than
this”, displaying a slightly sad face and lowering its arms
when they failed. All the utterances of the robot included 3
possible variations on the same meaning, among which the
robot randomly chooses in real-time, to prevent boredom as
a result of repeating the exactly same line every time.

V. RESULTS

A. Users Perception

Previous work have shown that questionnaires - such as
Godspeed - often suffer from a ceiling effect caused by the
novelty effect, especially when the users are children [15].
Thus, we decided for simple and straightforward questions
to the kids in an interview mode, after their participation in
the proposed activity.

For the first question, regarding their comprehension of
the robot’s instructions, 4 subjects (13,7%) have answered
”no” for this questions. One of them said it was because of
the noise (the very end of his session overlapped with one
of the school’s break), 2 of them said they have difficulties
with the idiom (even though they have the regular classes in
english) and 1 did not say why. All the others have answered
”yes”.

For the second question, about what they would change, 2
subjects (7%) said they would make changes in the robot
(one said about the robot’s speech - one of the children
that claimed to not fully understand - and the other about
increasing the robot movements), 4 subjects (13,7%) said
they would skip the HWE, and only 1 subject suggested to
make the games easier. All the other participants answered
that they would not do changes in the proposed activity.



In the third question, regarding their desire to participate
again, 5 subjects (17%) said that they were not sure whether
they would do it again, 3 subjects (10%) gave affirmative
answers with more words than just ”yes” (First ”I would
love to” and the other 2 (7%) answered ”for sure”). 2 (7%)
said that they would perform again if they don’t need to
perform the HWEs. All the others said only ”yes”.

Finally, for the last question, regarding participants enjoy-
ment, 2 subjects (7%) answered ”no”, one of them was the
one who claimed to have issues with the idiom, 1 subject
(3%) said he/she was ”Not sure”, 4 subjects (13,7%) gave
affirmative answers with more words than just ”yes” (”I
enjoyed 20 out of 10”, ”I enjoyed 100 out of 10”, ”very
much”, ”was super cool”). All the other participant said
”yes”.

The decisions of the system based on our simple user-
modeling seemed to cover most of the scenarios. Only 2
(7%) participants felt on the worst case scenario of losing
2 times in a row, winning once and losing 2 times again.
This is an undesired case because it keeps the student
stuck in a situation they apparently can’t handle, potentially
leading them to frustration or boredom. This outcome may
be supported by the fact that one of the students that felt in
this case was one of the students that claimed to have not
enjoyed the activity.

Moreover, two teachers from the two grades also experi-
enced the activity with the system and gave us their feedback.
In their opinion, the setup has a lot of potential to be used as
consolidated tool for education, especially as a side activity
in one of their rotating activity room, a special type of room
with many educational booths where students are changing
booths from time to time.

B. Study case of the Decision-Maker

Figure 4 shows particular cases faced by the decision-
maker system. The vertical dashes at activities 0, 7 and
15, represent the global scores the subject achieved in the
HWE performed throughout the sessions while the colored
lines are the progression of two subjects in the activities the
system suggested according to the mechanism explained in
Section III-E. Please, note that they had the same amount
of activities but they could have different since the training
sessions were time driven.

The red line represents the performance of a subject where
the decision-making system faced issues trying to retake the
user to a winning streak due to the users sequence of scores.
In this case, the user got two failures in a row - it means
performing a score equals or below 60 - (activities 1 and
2), and then succeeded once (activity 3), which resets the
losing streak counter and prevented the system of changing
the suggestion to another game, allowing the subject failing
in the same game (activities 4 to 6) until a new HWE (activity
7) came where the student got the same suggestion. Then,
after failing for 3 times (activities 8 to 10), the suggestion
changed to a game in which the subject supposed to be good
at (higher scores in the corresponding dimensions of HWE).
After succeeded once (activity 11), the subject failed again 3
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Fig. 4. The variation of Dynamilis activities in terms of scores and types for
two children (colored by red and blue respectively) during the experiment.
The shape of the markers represent different types of activity.

consecutive times (activities 12 to 14) but, instead of having a
different suggestion, the time for the second training section
went up and the system requested the subject to perform the
final HWE (activity 15).

On the other hand, the blue line illustrates a case of success
where, after the subject failed 3 times in the first suggested
game (activities 1-3), the system suggested a game where
the participant was supposedly better. The participant played
the game ”copter” instead of the suggested one that was
”chemist” (activity 4). This misunderstanding shows the case
in which participants may not understand the robot’s instruc-
tions and follow to different ways than the expected one,
which was out of the scope of this experiment. After being
corrected by the researchers, the subject chose the correct
suggested game, the subject got 2 successes (activities 5 and
6) until being interrupted by another HWE request (activity
7) where, again, the outcomes pointed out a necessity of
increasing the pressure dimension of handwriting, which is
addressed by playing the submarine. After succeeding once
(activities 8), the subject failed 3 times (activity 9 to 11), and
after getting a new suggestion, got higher scores (activities
12 to 14) until finish the second training session.

C. Immediate Variation Analysis

The graph on Figure 5 represents the average scores of all
the participants, along the dimensions used by Dynamilis to
evaluate the handwriting quality, at the three HWE points in
the activity.

By applying the two-sided Wilcoxon T test we observed
no statistically significant difference between the averages
of the scores from one HWE to the next, except for the tilt
that showed a significant improvement between the first and
the second HWE. Together with the fact that the children
did not perform any handwriting-related activities before the
first HWE phase, the increment in the tilt score might suggest
that the proficiency of the handwriting skills in terms of pen
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Fig. 5. Handwriting Evaluation (HWE) scores among three assessments.

tilt is volatile and the children need some time to recover to
their normal proficiency.

These findings are valid for two main reasons. First, it con-
firms that one may not assume immediate improvement since
even with temporary variations tend to stabilize afterward,
reinforcing the fact that handwriting enhancement should
target long-term practices. And second, small significant
variations are possible, as shown by the tilt variation, and
we can profit from it with the robot disclaiming them to the
kids in envisioning sporadic boosts to their self-esteem.

VI. CONCLUSIONS

In this paper, we presented the motivations and imple-
mentation of a system for handwriting training which uses
a social robot as motivator agent. The proposed system
architecture, discussed both in its hardware and software
components, has been tested in a school environment. Albeit
preliminary, the reported experiment proved that the pro-
posed architecture enables the autonomous management of
handwriting training sessions, mediated by a social robot. As
a result, the system can be used to parallelize activities, as
it allows autonomous training for students, enabling teachers
to focus on other students.
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