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Abstract
This thesis focuses on non-parametric covariance estimation for random surfaces, i.e. func-
tional data on a two-dimensional domain. Non-parametric covariance estimation lies at
the heart of functional data analysis, and considerations of statistical and computational
efficiency often compel the use of separability of the covariance, when working with
random surfaces. We seek to provide efficient alternatives to this ambivalent assumption.

In Chapter 2, we study a setting where the covariance structure may fail to be separable
locally – either due to noise contamination or due to the presence of a non-separable short-
range dependent signal component. That is, the covariance is an additive perturbation
of a separable component by a non-separable but banded component. We introduce
non-parametric estimators hinging on shifted partial tracing – a novel concept enjoying
strong denoising properties. We illustrate the usefulness of the proposed methodology on
a data set of mortality surfaces.

In Chapter 3, we propose a distinctive decomposition of the covariance, which allows us to
understand separability as an unconventional form of low-rankness. From this perspective,
a separable covariance has rank one. Allowing for a higher rank suggests a structured class
in which any covariance can be approximated up to an arbitrary precision. The key notion
of the partial inner product allows us to generalize the power iteration method to general
Hilbert spaces and estimate the aforementioned decomposition from data. Truncation
and retention of the leading terms automatically induces a non-parametric estimator of
the covariance, whose parsimony is dictated by the truncation level. Advantages of this
approach, allowing for estimation beyond separability, are demonstrated on the task of
classification of EEG signals.

While Chapters 2 and 3 propose several generalizations of separability in the densely
sampled regime, Chapter 4 deals with the sparse regime, where the latent surfaces are
observed only at few irregular locations. Here, a separable covariance estimator based
on local linear smoothers is proposed, which is the first non-parametric utilization of
separability in the sparse regime. The assumption of separability reduces the intrinsically
four-dimensional smoothing problem into several two-dimensional smoothers and allows
the proposed estimator to retain the classical minimax-optimal convergence rate for
two-dimensional smoothers. The proposed methodology is used for a qualitative analysis
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Abstract

of implied volatility surfaces corresponding to call options, and for prediction of the
latent surfaces based on information from the entire data set, allowing for uncertainty
quantification. Our quantitative results show that the proposed methodology outperforms
the common approach of pre-smoothing every implied volatility surface separately.

Throughout the thesis, we put emphasis on computational aspects, since those are the
main reason behind the immense popularity of separability. We show that the covariance
structures of Chapters 2 and 3 come with no (asymptotic) computational overhead
relative to assuming separability. In fact, the proposed covariance structures can be
estimated and manipulated with the same asymptotic costs as the separable model.
In particular, we develop numerical algorithms that can be used for efficient inversion,
as required e.g. for prediction. All the methods are implemented in R and available
on GitHub.

Keywords: functional data analysis, covariance operator, multi-dimensional domains,
non-parametric modelling, dense and sparse sampling, shifted partial tracing, partial
inner product.
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Résumé
Le sujet de cette thèse est l’estimation non-paramétrique de la covariance sur des surfaces
aléatoires, c’est-à-dire sur des domaines bidimentionnels. L’estimation non-paramétrique
de la covariance est au coeur de l’analyse des données fonctionnelles. Des considérations
d’efficacité statistique et computationelle obligent souvent à assumer que la covariance est
séparable sur ces surfaces aléatoires. Notre but est de présenter des alternatives efficaces
à cette hypothèse ambivalente.

Dans le chapitre 2, nous étudions un contexte où la structure de la covariance ne peut
pas être localement séparée – cela peut être due à une contamination avec du bruit
blanc aléatoire ou bien à la présence d’un signal dépendant de courte-portée qui est
non-séparable. En d’autres termes, la covariance est la somme de perturbations d’éléments
séparables par des éléments non-séparables mais banded. Nous présentons des estimateurs
non-paramétriques basés sur le traçage partiel décalé, un concept nouveau qui a des
propriétés importantes de débruitage. Nous illustrons l’utilité de la méthode proposée
sur une base de données portant sur des surfaces de mortalité.

Dans le chapitre 3, nous proposons une décomposition distinctive de la covariance, qui
nous permet d’exprimer la séparabilité comme étant une forme non-conventionnelle de
rang faible. Avec ce changement de perspective, le rang d’une covariance séparable est
égal à 1. Ainsi, en augmentant le rang, on définit une classe structurée dans laquelle toute
covariance peut-être approximée avec précision. Le produit scalaire partiel nous permet
d’étendre la méthode de la puissance itérée à des espaces de Hilbert généraux et d’estimer
la décomposition à partir des données. La troncature et la rétention des termes principaux
impliquent automatiquement un estimateur non-paramétrique de la covariance, dont la
parsimonie est donc dictée par la niveau de troncature. Nous démontrons les avantages
de cette approche en l’appliquant à la classification de signaux d’éléctroencéphalographie
(EEG).

Tandis que les chapitre 2 et 3 sont centrés sur des généralisations de la séparabilité pour
des régimes densément échantillonés, dans le chapitre 4, nous considérons des régimes
épars, où les surfaces latentes ne sont observées qu’à quelques localisations irrégulières.
Dans ce cas, nous proposons un estimateur séparable de la covariance basé sur un lisseur
linéaire local. Il s’agit de la première utilisation non-paramétrique de la séparabilité
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Résumé

dans un régime épars. L’hypothèse de séparabilité permet de réduire un problème de
lissage qui est intrinsèquement quadrimensionnel à plusieurs lisseurs bidimensionnel.
Ainsi, l’estimateur proposé garde la vitesse de convergence optimale-minimax d’un lisseur
bidimentionnel. La méthode proposée est utilisée pour l’analyse qualitative de surfaces de
volatilité implicites correspondant à des options d’achat, et pour la prédiction de surfaces
latentes sur la base d’informations provenant de l’ensemble des données, permettant ainsi
la quantification de l’incertitude. Nos résultats quantitatifs montrent que la méthodologie
proposée est plus performante que l’approche commune de pré-lissage de chaque surface
de volatilité implicite séparément.

Tout au long de la thèse, nous mettons l’accent sur les aspects computationnels, puisque
ceux-ci sont la raison principale de l’immense popularité de la séparabilité. Nous mon-
trons que les structures de covariance des chapitres 2 et 3 ne présentent aucun surcoût
(asymptotique) de calcul par rapport à l’hypothèse de séparabilité. En fait, les struc-
tures de covariance proposées peuvent être estimées et manipulées avec les mêmes coûts
asymptotiques qu’un modèle séparable. En particulier, nous développons des algorithmes
numériques qui peuvent être utilisés pour une inversion efficace, comme cela est néces-
saire par exemple pour la prédiction. Toutes les méthodes sont implémentées en R et
disponibles sur GitHub.

Mots clefs : analyse des données fonctionnelles, opérateur de covariance, domaines
multidimentionnels, modélisation non-paramétrique, échantillonnage dense et épars,
traçage partiel décalé, produit scalaire partiel.
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Introduction
This thesis studies the interlinked problems of parsimonious representation, efficient esti-
mation, and tractable manipulation of a random surface’s covariance, i.e. the covariance
of a random process on a two-dimensional domain. We operate in the framework of
Functional Data Analysis (FDA, Ramsay and Silverman, 2005; Hsing and Eubank, 2015),
which focusses on the problem of statistical inference on the law of a random process
X(u) : [0, 1]D → R given multiple realisations thereof. The process realisations are
treated as elements of a separable Hilbert space H of functions on [0, 1]D, e.g. L2([0, 1]D).
FDA covers the full gamut of statistical tasks, including regression, classification, and
testing, to name a few. In any of these problems, the covariance operator C : H → H of
the random function X(u) is elemental. This trace-class integral operator with kernel
c(u1, u2) = cov

(
X(u1), X(u2)

)
encodes the second-order characteristics of X(u), and its

associated spectral decomposition is at the core of many (or even most) FDA inferential
methods. Consequently, efficient estimation of the covariance operator C (or equiva-
lently its kernel c) is a fundamental task in FDA, on which further methodology can be
based. This is to be done on the basis of i.i.d. realisations of the random process X, say
{X1, . . . , XN}. One wishes to do so nonparametrically, since the availability of replicated
realisations should allow so. When D = 1, it is fair to say that this is entirely feasible
and well understood, under a broad range of observation regimes (see Wang et al., 2016,
for a comprehensive overview).

Though conceptually similar, things are much less straightforward in the case of random
surfaces, i.e. when D = 2, which is the focus of this thesis. We assume that we have access
to (discretized) i.i.d. realizations X1, . . . , XN of X and wish to estimate the covariance
non-parametrically and computationally feasibly, ideally via a parsimonious representation
allowing for computationally tractable further manipulations (e.g. inversion) required in
key tasks commonly involving the covariance (e.g. regression, prediction, or classification).

In the case of a two-dimensional domain, one faces additional challenging limitations to
statistical and computational efficiency when attempting to nonparametrically estimate
c : [0, 1]4 → R on the basis of N replications (see Aston et al., 2017, for a detailed
discussion). The number of grid points on which c is measured may even exceed N ,
especially in densely observed functional data scenarios. Worse still, one may not be
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Introduction

able to even store the most common non-parametric estimator, the empirical covariance,
much less to invert it. To appreciate this, assume that each of the N i.i.d. surfaces
{Xn(s, t)} are measured on a common grid of size K1×K2 over [0, 1]2. That is, the data
corresponding to a single realization Xn form a matrix Xn ∈ RK1×K2 and the empirical
covariance is represented by the tensor ĈN ∈ RK1×K2×K1×K2 , which is a discretisation
of the empirical covariance kernel. The covariance tensor ĈN requires O(NK2

1K
2
2)

operations to be estimated and O(K2
1K

2
2) memory to be stored. This becomes barely

feasible on a regular computer with K1 and K2 as small as 100. Moreover, as Aston et al.
(2017) note, the statistical constraints stemming from the need to accurately estimate
O(K2

1K
2
2 ) parameters contained in C (i.e. the discrete version of the covariance C) from

only NK1K2 measurements are often even tighter than the computational constraints.

This dimensionality challenge is often dealt with by imposing additional structure. The
most prevalent assumption is that of separability (Gneiting, 2002; Gneiting et al., 2006),
which postulates a factorization of the covariance kernel c into two kernels, corresponding
to the respective domains:

c(t, s, t′, s′) = c1(t, t′)c2(s, s′), t, s, t′, s′ ∈ [0, 1].

As a result, the four-dimensional non-parametric problem of estimating c simplifies into
the problem of estimating a pair of two-dimensional objects. In the case of data observed
on a grid, this reduces the number of parameters to be estimated from O(K2

1K
2
2 ) down

to O(K2
1 +K2

2 ). Moreover, both estimation and subsequent manipulation (for example
inversion as required in prediction) of the covariance become computationally much
simpler.

However, assuming separability often encompasses oversimplification and has undesirable
practical implications for real data (see Rougier, 2017). In summary, separable covariances
fail to capture any space-time interactions whatsoever. A number of tests for separability
of covariance operators for functional data on a two-dimensional domain have been
recently developed (Aston et al., 2017; Bagchi and Dette, 2020; Constantinou et al.,
2017), and their applications have demonstrated that separability is distinctly violated
for several data sets previously modelled as separable. Still, separability is often assumed
in practice, not because it is believed to hold, but merely due to the computational gains
it offers (see Gneiting et al., 2006; Genton, 2007; Pigoli et al., 2018). In fact, when the
grid sizes K1 and K2 are large, it may not be possible to do away with separability due
to the aforementioned computational limits.

Examples of random surfaces observed on a grid densely enough to impede the usage
of an unstructured covariance arise abundantly for example in biomedical imaging, see
Wang et al. (2016) for a review. If separability of the covariance is rejected for a data set
at hand by one of the tests cited above, an alternative simplifying assumption enjoying
similar computational advantages to separability is needed, but it is lacking in present
literature.

2



Objectives of the Thesis

Objectives of the Thesis

While many authors focus on testing separability (a list of up-to-date references was
collected by Chen et al., 2021) or assessing the departures from it (Huang and Sun, 2019;
Dette et al., 2020), little work has been done to offer non-parametric alternatives to the
separable model. The main aspiration of this thesis is to provide such alternatives. We
adopt separability as a building block and propose several ways of generalizing it. This
results in the separable-plus-banded model for the covariance studied in Chapter 2, and
the separable component decomposition introduced in Chapter 3. Both the separable-plus-
banded model and the separable component decomposition (after a suitable truncation)
lead to covariances, which can be estimated and manipulated with ease comparable to
that of a separable model. Hence they can serve as viable alternatives to separability
for a whole range of applications. The methodology and related numerical routines (in
particular those allowing inversion of the proposed covariance structures) are implemented
in an R (R Core Team, 2020) package surfcov, which is available on GitHub.

We stress out that all the standard operations with the proposed covariance structures,
i.e. their estimation, application, and (numerical) inversion, can be performed with
little computational overhead compared to the separable model. In fact, when data
are sampled on a K × K grid, all of these operations can be performed at the same
(asymptotic) cost in K as matrix-matrix multiplication between pairs of the sampled
observations. We set this cubic time complexity in K and quadratic memory complexity
in K as a firm computational limit, preventing our methods from, for example, ever
explicitly computing the empirical covariance.

The perks and flaws of separability are well-known in the case of densely observed data.
Chapters 2 and 3 focus on estimation beyond separability, retaining its advantages
and mitigating its drawbacks. The separable component decomposition of Chapter 3
exemplifies that separability should be seen not as much as a crucial modelling assumption,
but rather as a form of regularization, trading off between bias and variance as well as
between simplistic statistical interpretation and enormous computational advantages.
On the other hand, in the case of sparsely observed data, even a procedure for non-
parametric estimation of a separable covariance has not been previously established.
The objective of Chapter 4 is to devise such a procedure. We show that separability
can be leveraged to reduce complexity of covariance estimation down to that of mean
estimation in the sparse regime. Also, we argue that – due to extra costs associated
with smoothing as well as higher statistical complexity stemming from sparse and noisy
measurements – separability is an even more powerful assumption in the sparse regime,
achieving a favorable bias-variance trade-off.
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Notation and Organization

Notation and Organization

We typically use upper case letters such as A as the notation for operators on a general
Hilbert space or Hilbert space with a continuous domain such as L2([0, 1]), while lower
case letters such as a are used to denote their kernels. On the other hand, when working
specifically with a Hilbert space with a discrete domain, such as RK1×K2 , we use boldface
upper case letters, such as A, to denote both the operator and its kernel, while boldface
lower case letters are used to denote vectors, such as a ∈ RK1K2 . In the discrete case, we
utilize the Matlab notation when integrating over some dimensions, e.g. ∑i=1,...,K1 A[i, :]
results in a vector in RK2 .

We use the triple bar to denote norm of an operator, such as |||A|||2, while double bar is
used to denote norm of an element, for example of the kernel ‖a‖2. In the discrete case
‖A‖F is used to denote the Frobenius norm. While in the previous example the norms
are strongly related, this is not the case of the operator norm |||A|||∞ and the uniform (or
supremum) norm ‖a‖∞, which should not be confused.

We use the “o-times” symbol ⊗ to denote the abstract outer product, while ⊗K denotes
the Kronecker product, see Remark 1. The integers N and K are reserved to denote the
sample size and the grid size, respectively. The random variables are by default assumed
to be centered (without the loss of generality), whenever no care is taken about their
mean.

The four main chapters of this thesis are largely self-contained. Chapter 1 introducing
the background can be skipped by an experienced reader. On the other hand, reading
the thesis chronologically has indisputable advantages, most importantly Chapter 4
softly builds upon the development in Chapter 3. The concluding chapter contains many
potential directions for future research as its subsections.

Shorter proofs usually follow the respective statements. Contrarily, longer proofs of the
asymptotic results are deferred to the appendix. List of Statements, located towards the
end of the thesis, can be used for navigation, in particular to track down proofs in the
appendix easily.
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1 Background Concepts

This thesis operates in the framework of functional data analysis (FDA). As the name
suggests, FDA seeks to utilize ideas from functional analysis – such as treating functions
as points in certain spaces, while considering operators as functions on these points – in
order to generalize statistical methods for random vectors to more complex, continuous
structures, for instance random curves or random surfaces. These structures are in
practice observed only discretely, leading to vector or matrix observations. However, the
assumption of existence of a latent continuous object and the emphasis put on the object
as a whole is an emblematic feature of FDA and separates the FDA approach from that
of multivariate statistics.

In this chapter, we review some basics of operator theory, construct product Hilbert
spaces, discuss different observation and asymptotic regimes for functional data, and
introduce tools that can be used to construct proxies of operators on product Hilbert
spaces as products of mxirginals. The purpose of this chapter is to present – from
a certain point of view – the background concepts, which are important for the work
presented in the remainder of this thesis. For a more complete exposition of FDA, we
refer the reader to Hsing and Eubank (2015), Ramsay and Silverman (2005), or Ferraty
and Vieu (2006). Furthermore, Haase (2014) and Young (1988) give overview of the
elementary ideas of functional analysis that are particularly useful in FDA.

1.1 Operator Theory Basics

Let H1 and H2 be Hilbert spaces equipped with inner products 〈·, ·〉H1 and 〈·, ·〉H2 , and
corresponding norms ‖ · ‖H1 and ‖ · ‖H2 , respectively. Throughout the thesis, we work
with real Hilbert spaces with countable orthonormal bases.
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Chapter 1. Background Concepts

A linear transformation F : H1 → H2 is bounded if

|||F |||∞ := sup
‖x‖H1=1

‖Fx‖H2 <∞ .

Bounded linear transformations are called operators.

The set of operators from H1 to H2 equipped with the operator norm |||·|||∞ is a Banach
space, denoted by S∞(H1,H2). When H1 = H2, we abbreviate S∞(H1,H2) to S∞(H1),
which is the set of operators on H1.

For F ∈ S∞(H1,H2), the unique operator F ∗ ∈ S∞(H2,H1) determined by the relation

〈Fx, y〉 = 〈x, F ∗y〉, ∀x ∈ H1, y ∈ H2,

is called the adjoint of F . When F ∈ S∞(H1) and F ∗ = F , then F is called self-adjoint.

An, operator F ∈ S∞(H1,H2) is said to be compact if for any bounded sequence
{xn}n∈N ⊂ H1, the sequence {Fxn}n∈N ⊂ H2 contains a convergent subsequence. Bijec-
tive operators cannot be compact, unless H1 and H2 are finite-dimensional. However,
compact operators admit eigendecomposition or singular value decomposition (SVD). As
a result, they can be well-approximated by finite-dimensional operators, which makes
them not too dissimilar from matrices.

Let F ∈ S∞(H1) be compact and self-adjoint. Then its action on x ∈ H1 can be written
as

Fx =
∞∑
j=1

λj〈x, gj〉gj , (1.1)

where {λj}j∈N is the sequence of eigenvalues and {gj}j∈N is the sequence of eigenvectors
of F . The sequence of eigenvalues is non-increasing in absolute value, and the sequence of
eigenvectors form an orthonormal basis (ONB) of H1. When F ∈ S∞(H1,H2) is compact,
but not necessarily self-adjoint, its action on an arbitrary x ∈ H1 can be written as

Fx =
∞∑
j=1

σj〈fj , x〉ej , (1.2)

where {σj}∞j=1 is a non-negative and non-increasing sequence of singular values, and
{ej}∞j=1 and {fj}∞j=1 are orthonormal bases of H1 and H2. In this case, {ej}j∈N is the
sequence of eigenvectors of F ∗F , {fj}j∈N is the sequence of eigenvectors of FF ∗, and
{σ2

j }j∈N is the sequence of eigenvalues of both F ∗F and FF ∗.

When F ∈ S∞(H1) is compact and self-adjoint the singular value decomposition and
eigendecomposition above coincide up to potential change in signs: if for j ∈ N we have
λj < 0, we can take for example gj =: ej =: −fj . When σj = 0 for all j > R in (1.2), we
say that the rank of F is r (or that F is rank-R, in short) and write rank(F ) = R.
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1.1 Operator Theory Basics

Still, a distinctive feature of matrices is that they can be thought of both as linear
transformations between two vector spaces and elements of a (larger, product) vector
space. To have something similar for operators on Hilbert spaces, we need a further
condition on the set of singular values and the notion of product Hilbert space.

Let p ∈ [1,∞). Let F : H2 → H2 be a compact operator such that

|||F |||p :=
( ∞∑
j=1

σpj

) 1
p

<∞ .

The set of all such operators is denoted by Sp(H1,H2), and it is a Banach space
for given p ∈ [1,∞), when equipped with the Schatten-p norm |||·|||p. It holds that
Sp(H1,H2) ⊂ Sq(H1,H2) for p < q. We further abbreviate Sp(H1,H1) =: Sp(H1) and
denote S+

p (H1) the set of all positive semi-definite (PSD) operators (i.e. self-adjoint
operators with non-negative eigenvalues) that belong to Sp(H1).

We are particularly interested in the cases p = 1 and p = 2. Firstly, S1(H1,H2) is
the space of trace-class operators, and |||·|||1 is called trace norm or nuclear norm. For
F ∈ S1(H1,H2) we define its trace as

Tr(F ) :=
∑∞

j=1
〈(T ∗T )1/2ej , ej〉H1 ,

where {ej} is an orthonormal basis of H1. When F is positive semi-definite, then
Tr(F ) = |||F |||1. Secondly, S2(H1,H2) is the space of Hilbert-Schmidt operators, and it
is a complete separable Hilbert space when equipped with the Hilbert-Schmidt inner
product

〈F1, F2〉HS :=
∞∑
j=1
〈F1ej , F2ej〉H2 , ∀F1, F2 ∈ S2(H1,H2) .

Let a ∈ H1 and b ∈ H2. We define the tensor product operators (a⊗1 b) : H1 → H2 and
(a⊗2 b) : H2 → H1 by

(a⊗1 b)x = 〈a, x〉H1b , ∀x ∈ H1 ,

(a⊗2 b)y = 〈b, y〉H2a , ∀y ∈ H1 .
(1.3)

If {ej} and {fj} are orthonormal bases inH1 andH2, then {ei⊗1fj}∞i,j=1 is an orthonormal
basis of S2(H1,H2) and {ei⊗2 fj}∞i,j=1 is an orthonormal basis of S2(H2,H1) (Hsing and
Eubank, 2015, Thm. 4.4.5).

Using the tensor product operators, we can now write the eigendecomposition (1.1) as

Fx =
( ∞∑
j=1

σj(gj ⊗2 gj)
)
x
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Chapter 1. Background Concepts

and the singular value decomposition (1.2) as

Fx =
( ∞∑
j=1

σj(ej ⊗2 fj)
)
x,

so we can directly write e.g.

F =
∞∑
j=1

σj(ej ⊗2 fj) (1.4)

with the series converging in the operator norm.

The eigendecomposition and the singular value decompositions enjoy certain optimality
properties, see Hsing and Eubank (2015, Section 4.2) for details. Most importantly, they
provide the optimal low-rank approximation of an operator. For F ∈ Sp(H1,H2) with the
singular value decomposition (1.4), the optimum of the following minimization problem

min
G:rank(G)≤R

|||F −G|||p (1.5)

is attained at G = ∑R
j=1 σj(ej ⊗2 fj). The same holds more generally for a compact F ,

when the Schatten-p norm in (1.5) is replaced by the operator norm |||·|||∞.

1.2 Product Hilbert Spaces

We define the tensor product space of H1 and H2, denoted by H := H1 ⊗ H2, as the
completion of the set of finite linear combinations of abstract tensor products

{ N∑
j=1

xj ⊗ yj ; xj ∈ H1, yj ∈ H2, N ∈ N
}

(1.6)

under the inner product 〈x1 ⊗ y1, x2 ⊗ y2〉H := 〈x1, x2〉H1〈y1, y2〉H2 , for all x1, x2 ∈ H1
and y1, y2 ∈ H2 (cf. Weidmann, 2012). More precisely, set (1.6) is a vector space equipped
with the inner product 〈·, ·〉H. Thus its completion H is a Hilbert space. Again, if {ej}
and {fj} are orthonormal bases in H1 and H2, then {ei ⊗ fj}∞i,j=1 is an orthonormal
basis of H.

The Hilbert space H is isometrically isomorphic to S2(H1,H2) and also to S2(H2,H1).
The respective isomorphisms are the linear mappings Φ1 : H1 ⊗H2 → S2(H1,H2) and
Φ2 : H1 ⊗H2 → S2(H2,H1), which are defined on the abstract tensor products as

Φ1(x⊗ y) = x⊗1 y ,

Φ2(x⊗ y) = x⊗2 y , ∀x ∈ H1, y ∈ H2 .
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1.2 Product Hilbert Spaces

Now we are ready to draw the connection between matrices and Hilbert-Schmidt operators.
For F ∈ S2(H1,H2), the operator decomposition (1.4) is isometrically isomorphic to the
following “element” decomposition:

F =
∞∑
j=1

σj(ej ⊗ fj),

where the series converges in the norm of H1 ⊗H2.

Hence Hilbert-Schmidt operators can be thought of both as linear transformations between
two Hilbert spaces H1 and H2, and elements of the product Hilbert space H1 ⊗H2. In
the latter point of view, the singular value decomposition is in fact a decomposition of an
element on the product Hilbert space w.r.t. a product basis given by the singular vectors.

The previous construction of product Hilbert spaces can be generalized to Banach spaces
B1 and B2. That is, one can define B := B1 ⊗ B2 in a similar way. The only difference
is that the completion is done under the norm ‖x⊗ y‖B := ‖x‖B1‖y‖B2 , for x ∈ B1 and
y ∈ B2.

Consider now B1 := Sp(H1) and B2 := Sp(H2), and construct the abstract tensor
product space Sp(H1) ⊗ Sp(H2) as described above. Now, consider the linear map
Φ : Sp(H1)⊗ Sp(H2)→ Sp(H) defined on the abstract tensor products as

Φ(A⊗B) = A ⊗̃B , A ∈ Sp(H1), B ∈ Sp(H2) ,

where A ⊗̃B : H → H is the linear operator defined on the abstract tensor products in
H as

(A ⊗̃B)(x⊗ y) = Ax⊗By , x ∈ H2, y ∈ H2. (1.7)

The mapping Φ is an isomorphism between Sp(H1) ⊗ Sp(H2) and Sp(H). Thus we
showed that the space of Schatten-p operators on an abstract tensor product space is
isometrically isomorphic to the abstract tensor product of two Schatten-p operator spaces.
In the following, we will prefer the former point of view, and A ⊗̃B ∈ Sp(H) will denote
the unique operator satisfying (1.7) for A ∈ Sp(H1) and B ∈ Sp(H2). By the abstract
construction we also have |||A ⊗̃B|||p = |||A|||p|||B|||p.

Notice the difference between A ⊗̃B and A⊗B, the former being an operator while the
latter being an element. We have introduced the “otimes-tilde” symbol ⊗̃ following
Aston et al. (2017) to make the distinction, which is similar to the difference between
x ⊗1 y and x ⊗ y discussed above. Only this time we have the isomorphism for all
Schatten-p spaces, not just Hilbert-Schmidt operators. This is only possible because both
Sp(H1)⊗ Sp(H2) and Sp(H1 ⊗H2) include the abstract tensor product construction.

Remark 1. Many authors overuse the “otimes” symbol ⊗, either using it for the
Kronecker product in finite dimensions or dropping the subscripts from ⊗1 or ⊗2. As
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Chapter 1. Background Concepts

described above, not making the distinction between ⊗ and ⊗1 is quite natural, even
though formally justifiable via isometry only when working with Hilbert-Schmidt operators
or product Hilbert spaces.

For example, it is easy to verify from the definitions that

(x1 ⊗2 x2) ⊗̃ (y1 ⊗2 y2) = (x1 ⊗ y1)⊗2 (x2 ⊗ y2). (1.8)

Dropping the subscript from ⊗2 in the previous equation now shows that using ⊗̃
entails in practice a permutation of the dimensions. For example, for A ∈ RK1×K1 and
B ∈ RK2×K2 , A ⊗̃B ∈ RK1×K2×K1×K2 while A⊗B ∈ RK1×K1×K2×K2 . One needs to be
careful about such permutations when implementing the methodology developed in this
thesis.

The symbol ⊗ is also used in linear algebra for the Kronecker product, which we denote by
⊗K in this thesis. The following relation between the Kronecker product and the abstract
outer product holds in the case of finite dimensional spaces:

vec((A ⊗̃B)X) = (B> ⊗K A)x, (1.9)

where x = vec(X) is the vectorization of matrix X, and vec(·) is the vectorization operator,
stacking all columns of a matrix into a long vector (cf. Van Loan and Golub, 1983). In
our opinion, at least some – if not all – sub-fields of linear algebra such as the rapidly
growing literature on tensor decompositions (see Kolda and Bader, 2009, for an overview)
would greatly benefit from refraining from the Kronecker product, replacing it with the
abstract outer product instead. However, the Kronecker product is now so ubiquitous in
linear algebra (as pertinently captured in the title of Van Loan, 2000) that we also use it
in this thesis, whenever we borrow ideas from that field.

1.3 Separability

Now we are ready to define separability of an operator on a product Hilbert space.

Definition 1. Let H1 and H2 be Hilbert spaces and H := H1 ⊗ H2. An operator
F ∈ Sp(H) is called separable if F = A ⊗̃B for some A ∈ Sp(H1) and B ∈ Sp(H2). If F
is not separable, we call it entangled.

The relationship between the spectra of A and B and the spectrum of A ⊗̃B is particularly
simple.

Lemma 1. Let A ∈ Sp(H1) and B ∈ Sp(H2) be self-adjoint with eigenvalue-eigenvector
pairs {(λj , ej)} and {(ρj , fj)}. Then A ⊗̃B is self-adjoint with eigenvalue-eigenvector
pairs {(λiρj , ei ⊗ fj)}∞i,j=1. Furthermore, for p = 1, it holds Tr(A ⊗̃B) = Tr(A)Tr(B).
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1.3 Separability

Proof. Let x ∈ H1 and y ∈ H2, then

(A ⊗̃B)(x⊗ y) =
[( ∞∑

j=1
λjej ⊗ ej

)
⊗̃
( ∞∑
j=1

ρjfj ⊗ fj
)]

(x⊗ y)

=
( ∞∑
j=1

λjej ⊗ ej
)
x⊗

( ∞∑
j=1

ρjfj ⊗ fj
)
y

=
[( ∞∑

j=1
λj〈ej , x〉H1ej

)
⊗
( ∞∑
j=1

ρj〈fj , y〉H1fj

)]
.

For the choice of x = ek and y = fl for k, l ∈ N we have

(A ⊗̃B)(ek ⊗ fl) = λkek ⊗ ρlfl = λkρl(ek ⊗ fl) ,

which shows that ek ⊗ fl is an eigenvector of A ⊗̃B associated with the eigenvalue λkρl.

The additional part follows from the previous one, since by Fubini’s theorem

∞∑
i,j=1

λiρj =
( ∞∑
i=1

λi

)( ∞∑
j=1

ρj

)
.

The previous lemma can be naturally extended to singular values and singular vectors
of operators, which are not self-adjoint, only the notation gets little more complicated.
Moreover, we have the following characterization.

Corollary 1. A separable operator A ⊗̃B is self-adjoint if and only if both A and B are
self-adjoint. Provided the largest eigenvalues of A and B are positive, the equivalence holds
also when self-adjointness is replaced by positive semi-definiteness or positive definiteness.

Proof. It is trivial that A ⊗̃B must be self-adjoint for A and B both self-adjoint.

In the other direction, assume that both A and B are non-zero, otherwise A ⊗̃B is zero
(because 〈(A ⊗̃B)(u⊗ v), u⊗ v〉 = 0 for all u, v) and the conclusion is trivial. Note that
self-adjointness of A ⊗̃B gives us

〈(A ⊗̃B)(x1 ⊗ y1), x2 ⊗ y2〉 = 〈x1 ⊗ y1, (A ⊗̃B)(x2 ⊗ y2)〉
⇒ 〈Ax1, y1〉〈Bx2, y2〉 = 〈x1, Ay1〉〈x2, By2〉

for x1, x2 ∈ H1 and y1, y2 ∈ H2 arbitrary. Now choose (x2, y2) to be the left-right
eigenvector pair of B associated with a non-negative eigenvalue. We immediately see
that A must be self-adjoint, and similarly for B.

The parts about positive semi-definiteness and positive definiteness follow easily from
the previous lemma. The additional assumption on a positive eigenvalue is to prevent
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Chapter 1. Background Concepts

a change in signs. For example, for A and B negative definite, A ⊗̃B must be positive
definite by the previous lemma.

In practice, we work with finite-dimensional Hilbert spaces, e.g. H1 = H2 = RK , leading
to H = RK×K and Sp(H) = RK×K×K×K in Definition 1. In finite dimensions, all the
Schatten-p classes naturally coincide, since the number of singular values of an operator
is finite in this case. Here, the operator F ∈ RK×K×K×K is a tensor of order four, acting
on K ×K matrices, and it is separable if and only if it can be written as F = A ⊗̃B
for some matrices A,B ∈ RK×K . Entry-wise, this means F[i, j, k, l] = A[i, k]B[j, l] for
i, k = 1, . . . ,K1 and j, l = 1, . . . ,K2.

Our task will be estimation of an operator F. If it is separable, the estimation problem
becomes computationally much simpler, both from the statistical perspective (a separable
F only has 2K2 degrees of freedom while a general F has K4 degrees of freedom to be
estimated) and the computational perspective (the smaller degrees of freedom naturally
correspond to lower storage requirements). Moreover, the following two properties hold
for matrices A, B and X of appropriate sizes:

(A ⊗̃B)X = AXB,
(A ⊗̃B)−1 = A−1 ⊗̃B−1.

(1.10)

These two properties are among the core reasons for the popularity of the separability
assumption in the space-time processes literature (Gneiting et al., 2006; Genton, 2007),
because they allow to apply a separable covariance fast (O(K3) instead of O(K4)
operations) and solve an inverse problem involving the covariance fast (O(K3) instead of
O(K6) operations).

On the other hand, separability has been widely criticized for decades as an oversimplifi-
cation, mostly because it has implications hard to justify in many, if not most, applied
problems. For example, separability postulates that

Cov
(
X(t, s), X(t′, s′)

∣∣∣X(t′, s)
)

= Cov
(
X(t, s), X(t′, s′)

∣∣∣X(t, s′)
)

= 0.

In other words, separability fails to model any space-time interactions. We refer the
reader to Rougier (2017) for a thorough discussion on the questionable ramifications of
separability.

Also, consider a process X with a separable covariance observed on a grid not directly,
but under additional white noise, i.e.

Y[i, j] = X[i, j] + εi,j , i, j = 1, . . . ,K,

where εi,j ’s are zero-mean, unit-variance, and independent random variables, also inde-
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pendent of X. Then we naturally have

Cov(Y) = Cov(X) + I = A ⊗̃B + I,

where I ∈ RK×K×K×K is the identity tensor. Hence the covariance of Y cannot be
separable, unless X itself is white noise. In other words, separability can be disrupted
just by white noise errors in the data.

1.4 Random Elements and Integral Operators

The most prevalent theoretical model for functional data is a combination of the functional-
analytic perspective in which functional data are realizations of an abstract random
variable taking values in a Hilbert space, and the stochastic process perspective in which
the functional data are sample paths of a mean-square continuous stochastic process with
continuous sample paths. Occasionally, we would like to consider the observations as
pointwise evaluations of a random element X, which takes values in a Hilbert space, say
L2([0, 1]D). But in order to make this pointwise evaluation meaningful, we will consider
X to be a stochastic process, i.e.

X(u, ω) : [0, 1]D × (Ω,A,P)→ R ,

such that X(u, ω) is a random variable for any u ∈ [0, 1]D. Then X may not be
a random element of L2([0, 1]D), because that requires joint measurability. However,
by Theorem 7.4.2 of Hsing and Eubank (2015), we have joint measurability provided
X is a mean-square continuous process with continuous sample paths. We will impose
these two assumptions where needed, i.e. when we want to think of discretely observed
data as pointwise evaluations of an L2([0, 1]D)-valued random element and a continuous
stochastic process at the same time.

We will be interested in studying the second-order properties of X, that is the mean and
the covariance, hence we assume that E‖X‖2 <∞. From the random element viewpoint,
these are defined as

m = EX and C = E[(X −m)⊗ (X −m)]

where the integrals (expectations) are defined in the Bochner sense. From the random
process viewpoint, mean and covariance are defined as

m(u) = EX(u) and c(u1,u2) = E[(X(u1)−m(u1)(X(u2)−m(u2))].

Under the continuity assumptions above, the definitions of m coincide, and the covariance
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operator C is related to the covariance kernel c by

(Cf)(u1) =
∫

[0,1]D
c(u1,u2)f(u2) du2 ∀f ∈ L2([0, 1]D) .

The covariance C is a positive semi-definite, trace-class operator on L2([0, 1]D), and its
trace captures the total variance of the random element:

Tr(C) = E
[
Tr
(
(X −m)⊗2 (X −m)

)]
= E‖X −m‖2.

The covariance plays a central role in FDA (Aneiros et al., 2019). For example, uncertainty
quantification about the mean requires correct recovery of the dependency structure,
which is encoded in the covariance. Also, eigenfunctions of the covariance offer low-rank
representation of data via the Karhunen-Loève expansion. A low-rank representation is
particularly important for functional data, which are intrinsically infinite-dimensional. A
large body of work in FDA is focused on non-parametric estimation of the mean and the
covariance (see Li and Hsing, 2010, and references therein), while functional principal
component analysis (PCA) based on non-parametric covariance estimators has become
one of the most common approaches in FDA (Mueller, 2016), used for curve interpolation
(Yao et al., 2005a), functional generalized regression models (Yao et al., 2005b; Müller
and Stadtmüller, 2005), functional clustering and classification (Delaigle et al., 2012), or
vector autoregression approach to functional times series (Aue et al., 2015).

As described below, C ∈ S1(L2([0, 1]D)) can be identified with an element of L2([0, 1]2D).
In this thesis, we will be interested solely in the two-dimensional case, i.e. D = 2. We
adopt the view that the first dimension corresponds to time, always denoted by variable
t, and the second dimension corresponds to space, always denoted by variable s. This is
only for the ease of presentation: both dimensions may very well be temporal or spatial,
or there may be no space/time interpretation for one or both dimensions.

Note that all trace-class operators are Hilbert-Schmidt, and all Hilbert-Schmidt operators
(on L2(E) for E ⊂ RD compact) are in turn integral operators. This means that for
A ∈ S2(L2([0, 1]2)) there exists a kernel a ∈ L2([0, 1]4) such that

(Af)(t, t′) =
∫ 1

0

∫ 1

0
c(t, s, t′, s′)f(s, s′) ds ds′ ∀f ∈ L2([0, 1]2) .

On the other hand, A is fully characterized by its kernel a. In fact, there is an isometry
between the space of Hilbert-Schmidt operators S2(L2([0, 1]D)) and the space of kernels
L2([0, 1]2D). This has many implications. For example, A ∈ S2(L2([0, 1]2)) is positive
semi-definite if and only if a is positive semi-definite. Secondly, we have

|||A|||22 =
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

(
a(t, s, t′, s′)

)2
dtds dt′ ds′,
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1.4 Random Elements and Integral Operators

and for A,B ∈ S2(L2([0, 1]2)), the inner product can be calculated as

〈A,B〉HS =
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
a(t, s, t′, s′)b(t, s, t′, s′) dt ds dt′ ds′. (1.11)

For A ∈ S1(L2([0, 1]2)) with a kernel a, the trace can be calculated as (Gohberg and
Krein, 1978)

Tr(A) = lim
h→0+

∫ 1

0

∫ 1

0

[∫ t+h

t−h

∫ s+h

s−h

∫ t+h

t−h

∫ s+h

s−h
a(u, v, x, y) dudv dx dy

]
dt ds. (1.12)

If the kernel is continuous, the previous formula simplifies notably:

Tr(A) =
∫ 1

0

∫ 1

0
a(t, s, t, s) dt ds. (1.13)

The singular value decomposition and eigendecomposition naturally translate to kernels.
When A ∈ S2(L2([0, 1]2)) has the singular value decomposition

A =
∞∑
r=1

σr(er ⊗ fr),

the corresponding kernel a ∈ L2([0, 1]4) can be decomposed as

a(t, s, t′, s′) =
∞∑
r=1

σrer(t, s)fr(t′, s′),

where the equality is understood in the L2-sense, i.e.

lim
R→∞

∫
[0,1]4

(
a(t, s, t′, s′)−

R∑
r=1

σrer(t, s)fr(t′, s′)
)2

dtds dt′ ds′ = 0.

The eigendecomposition of the covariance operator C is particularly important due to its
connection with the principal component decomposition of the corresponding random
element X. Specifically, if

C =
∞∑
r=1

λr(gr ⊗ gr)

is the eigendecomposition of C, then X can be expanded as

X = m+
∞∑
r=1

ξrgr, (1.14)

where ξr = 〈X −m, gr〉, r = 1, . . . , R, are uncorrelated random variables with mean zero
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Chapter 1. Background Concepts

and variance λr, and the equality holds in the mean-square sense, i.e.

lim
R→∞

E
∥∥∥∥∥X −m−

R∑
r=1

ξrgr

∥∥∥∥∥
2

= 0.

Equation (1.14) is the weak version (L2 version) of the celebrated the Karhunen-Loeve
expansion (Grenander, 1981). If continuity of the covariance kernel is assumed, a strong
(uniform) version of Karhunen-Loeve expansion holds, see Hsing and Eubank (2015) for
details.

Finally, separability can also be characterized in terms of kernels: A ∈ S2(L2([0, 1]2)) is
separable if and only if

a(t, s, t′, s′) = a1(t, t′)a2(s, s′)

for some kernels a1, a2 ∈ L2([0, 1]2) and for almost all pairs (t, s), (t′, s′) ∈ [0, 1]2 (almost
all in the Lebesgue sense).

1.5 Inference on Function Spaces

The strong law of large numbers and the central limit theorem (CLT) for random elements
with values in a separable Hilbert space H1 resemble their real-valued counterparts (Hsing
and Eubank, 2015). For X1, X2, . . . ∈ H1 independent and identically distributed with
m = E‖X1‖ <∞, we have

1
N

N∑
n=1

Xn → m

almost surely, as N →∞. When in addition E‖X1‖2 <∞, then

√
N

(
1
N

N∑
n=1

Xn −m
)

converges (weakly) to a mean zero Gaussian random element with the covariance C =
E(X1 ⊗2 X1).

For a random element X in H1, the most natural estimators of its mean m and covariance
C (based on a random sample X1, . . . , XN ) are the empirical mean

X̄N := 1
N

N∑
n=1

Xn
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1.5 Inference on Function Spaces

and the empirical covariance

ĈN := 1
N

N∑
n=1

(Xn − X̄N )⊗2 (Xn − X̄N ).

From the above, we immediately see that the empirical mean is a consistent estimator of
the mean (provided E‖X‖ <∞), and asymptotically Gaussian random element of H1
(provided E‖X‖2 < ∞). The same can be said about the empirical covariance, which
is a consistent estimator of the covariance (provided E‖X‖2 <∞), and asymptotically
Gaussian random element of S2(H1) (provided E‖X‖4 <∞).

Recall that the covariance is trace-class, and the space of trace-class operators is not
a Hilbert space but a Banach space. While the strong law o large numbers can be
extended to a (separable) Banach space as it stands (Bosq, 2012), the same is not true
for the central limit theorem. We will only need the following CLT specifically for the
empirical covariance, which is also a trace-class operator.

Theorem 1 (Mas2006). Let X1, X2, . . . be a sequence of i.i.d. random elements on
a separable Hilbert space H1. Let

∞∑
j=1

(
E〈X, ej〉4

)1/4
<∞, (1.15)

where {ej}j∈N is an orthonormal basis of H1. Then
√
N(ĈN − C) converges weakly to

a mean zero Gaussian random element of S1(H1), where C is the covariance of X1.

Note that condition (1.15) implies that E‖X‖4 <∞. While the weaker condition implies
convergence in the weaker Hilbert-Schmidt topology, the stronger condition (1.15) ensures
convergence in the stronger trace-norm topology.

Finally, the continuous mapping theorem (CMT) holds both for the Hilbert-Schmidt
and trace-norm topologies, as it holds even more generally for a continuous mapping
between two metric spaces (Billingsley, 1999). In particular, if Z1, Z2, . . . converges
weakly to Z in Sp(H1 ⊗H2) and F : Sp(H1 ⊗H2)→ Sp(H1) is a continuous mapping,
then F (Z1), F (Z2), . . . converges weakly to F (Z) in Sp(H1).

The mapping F in the previous paragraph can be thought of as a marginalization operator,
because it suppresses one of the two dimensions. In Section 1.7, we will introduce some
specific marginalization operators for trace-class and Hilbert-Schmidt operator spaces.
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Chapter 1. Background Concepts

1.6 Functional Data and Discrete Observations

Functional data analysis (FDA) covers a full gamut of statistical methods applicable
to situations when the available data X1, . . . , XN can be thought of as independent
realizations of a (continuous) random function or a random surface X, instead of
a random vector or a random matrix X. Despite the sample space (typically the Hilbert
space L2([0, 1]) or L2([0, 1]2)) having a continuous domain, the realizations are, quite
naturally, never observed in the continuum. Under the commonly adopted model to
deal with functional data (see e.g. Cai and Yuan, 2010; Li and Hsing, 2010; Zhang and
Wang, 2016, and many references therein), the n-th surface is observed at Mn points
{(tn1, sn1), . . . , (tnMn , snMn)} ⊂ [0, 1]2 only approximately:

Ynm = Xn(tnm, snm) + εnm, m = 1, . . . ,Mn (1.16)

where εnm are mutually independent noise variables (also independent of the latent
surfaces X1, . . . , XN ) with mean zero and variance σ2.

Hence the observations themselves are discrete, and they have to be stored as such
in computer memory. Still, the distinctive feature of FDA as opposed to multivariate
methods is the assumption of existence of a latent continuous object, with the interest
focused on that object rather than the measurements. The object does not have to be
smooth per se, but smoothness is often leveraged in the analysis (Ramsay and Silverman,
2005). Another overarching theme of FDA is non-parametric inference, which is achievable
due to the availability of replicated observations, and preferable due to the sought-after
flexibility to model complicated data structures in infinite-dimensional spaces (Ferraty
and Vieu, 2006).

The FDA literature can be categorized according to several theoretical or methodological
features. By the typical number of measurements per single realization, functional data
are traditionally classified as sparse (Yao et al., 2005a) or dense (Hall and Hosseini-Nasab,
2006). Although there is no formal definition of these two regimes, the convention
is to consider functional data as densely sampled when the number of observations
per curve converges to infinity as some power of the sample size (Zhang and Wang,
2016). Contrarily, functional data are considered sparsely sampled when the number of
observations per curve is bounded. A rich source of sparsely sampled functional data are
longitudinal studies. Zhang and Wang (2016) provide a comprehensive overview of the
sampling regimes, categorizing them according to the achievable asymptotic properties.
The sampling regimes are indeed only asymptotic concepts, and it is hard to say in
practice which asymptotic regime to adhere to with a specific data set at hand. The
exception arises, when data are observed on a common grid, in which case the regime has
to be treated as dense from the theoretical perspective, because consistent estimation of
the underlying continuous phenomenon is possible only when the grid size increases with
increasing sample size.
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1.6 Functional Data and Discrete Observations

In the dense regime, data are in fact very often observed on a grid, i.e. compared to
(1.16), there is a temporal grid {t1, . . . , tK1} ⊂ [0, 1] and a spatial grid {s1, . . . , sK2} ⊂
[0, 1], and the resulting measurements of surfaces X1, . . . , XN take form of matrices
Y1, . . . ,YN ∈ RK1×K2 with entries given by

Y[i, j] = X(ti, sj) + εij , i = 1, . . . ,K1, j = 1, . . . ,K2,

where εij are again zero-mean, variance σ2 noise variables independent of everything.
Recall that, we always think of the first dimension as time, denoted by the variable t,
and the second dimension as space, denoted by the variable s, but this distinction is
made purely for the purposes of presentation. Mathematically, there is nothing special
about time or space as variables.

While data observed on a grid can be easily addressed as multivariate, such approach
suffers from disregarding smoothness as well as high dependencies between the grid
points. The difference between multivariate and functional analyses is exemplified in how
they approach the covariance. While invertibility issues in multivariate (and especially
high-dimensional) statistics are typically caused by a low number of samples (Ravikumar
et al., 2011), and the inverse of the covariance is assumed to exist on the population
level, functional covariances are compact (even trace-class) and hence non-invertible.

Functional data observed on a grid (not necessarily two-dimensional) commonly arise in
many fields such as

• genetics, genomics and analytical chemistry (Sørensen et al., 2013),

• growth studies (Ramsay and Silverman, 2005),

• plant science (Tessmer et al., 2013),

• biomechanics (Miller et al., 2008; Crane et al., 2011),

• chemometrics (Delaigle et al., 2012),

• electricity consumption studies (Ferraty and Vieu, 2006),

• weather and climate studies (Gneiting et al., 2006),

• linguistics (Pigoli et al., 2018),

• finance (Chen et al., 2020a),

• demography (Chen and Müller, 2012; Chen et al., 2017a),

• monitoring and tracking (Chen et al., 2017b), or

• traffic flow analysis (Chiou et al., 2014).
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Another rich source of functional data observed on a grid (possibly after pre-processing
steps) is biomedical imaging. Examples include

• electrocardiography (Cuevas et al., 2004),

• electroencephalograpy (Hasenstab et al., 2017),

• diffusion tensor imaging (Pomann et al., 2016),

• magnetic resonance imaging (Stoehr et al., 2020),

• positron emission tomography (Jiang et al., 2009), or

• magnetoencephalography (Bijma et al., 2005; Lynch and Chen, 2018).

Wang et al. (2016) use some of these large and rich data sets as examples of the “next-
generation” functional data and suggest that novel methodologies emphasizing their
computational aspects have to be developed to perform statistical analyses on these data
sets, which is exactly the position taken by this thesis.

Another categorization of the FDA literature is based on the stage at which smoothing
of the discretely observed data is deployed. The estimation paradigm can be classified
either as the smooth-then-estimate approach (curves are smoothed individually before
estimating the common mean and covariance) or the estimate-then-smooth approach (the
common mean and covariance are estimated from the discrete measurements directly,
and they may be later used for interpolation of the observations, see Descary, 2017,
and references therein). The smooth-then-estimate approach, popularized by Ramsay
and Silverman (2005, 2007) is suitable for densely observed data, particularly when
observations are not gridded. The estimate-then-smooth approach is, on the other hand,
necessary when working with sparsely observed data. When working on a grid, smoothing
is sometimes deployed prior to estimation to overcome noise (Chen and Müller, 2012).
On the other hand, gridded data can often be considered noiseless (especially when
produced by complex pre-processing steps, e.g. Pigoli et al., 2018), or the noise can be
kept and directly modelled instead of being suppressed (Descary and Panaretos, 2019).
In these cases, we view the estimate-then-smooth approach as the more natural one, and
we focus on it.

Apart from when, the question arises about how to smooth. While a whole range of
smoothing techniques based on splines was utilized in FDA (see Zhang and Wang, 2016,
and references therein), it is safe to say that local polynomial regression smoothers (in
particular local linear smoothers) are conceptually simpler and better understood (Li
and Hsing, 2010; Wang et al., 2016; Rubín and Panaretos, 2020). Also, when data are
observed densely (e.g. on a grid) and the estimate-then-smooth approach is taken, the
smoothing step may reduce to a simple form of interpolation.
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Now, let us consider how to store functional data in computer memory. One approach
is to express the observed data with respect to a basis, and then store only vectors or
matrices of the corresponding basis coefficients (Ramsay and Silverman, 2005, Section
6.6). This is the most prevalent approach in practice (cf. the extensive literature review by
Sørensen et al., 2013), and it corresponds to the smooth-then-estimate paradigm. When
adapting the estimate-then-smooth paradigm, gridded observations can be naturally
stored as vectors, or matrices, while non-gridded data, such as the sparse data stemming
from (1.16), can be stored as lists of triplets, of the form (t, s, Y ). However, these lists
are not suitable for computing purposes. For example, the most efficient implementations
of local linear smoothers utilize the fast Fourier transform (FFT) algorithm (Silverman,
1982), which in turn requires an equispaced grid. Thus even when data are not observed
on a grid, they are often gridded for computational reasons.

For random surfaces, sampling schemes may differ in the two dimensions. Data sampled
either densely on a two-dimensional grid (Pigoli et al., 2018; Lynch and Chen, 2018; Chen
et al., 2017a; Bijma et al., 2005) or sparsely in both dimensions (e.g. implied volatilities in
finance, see Chapter 4) are commonly encountered. However, there are also longitudinal
studies in which a functional measurement is taken at each visit, leading to data that are
sparse in the temporal dimension and dense in the spatial dimension (Park and Staicu,
2015). But again, these are commonly gridded (in both dimensions) for computational
purposes (Greven et al., 2011; Kidziński and Hastie, 2018).

This thesis focuses on functional observations on a two-dimensional domain and adopts
the estimate-then-smooth paradigm. In the dense regime, we develop our methodology
mathematically on fully observed random elements of a Hilbert space H, which covers
both the continuous case (i.e. H = L2([0, 1]2)) and the discrete case of matrices (i.e.
H = RK1×K2). While we focus on the continuous case, sometimes assuming smoothness
for simplicity, the assumption of smoothness can be dropped in the methodology, and the
measure can be changed from the Lebesgue measure on [0, 1]2 to the counting measure on
{1, . . . ,K1}×{1, . . . ,K2}, replacing integration by summation in the formulas. In theory,
we first treat both the continuous and discrete samples as fully observed, before relating
measurements on a grid and the resulting discrete estimators with their continuous latent
counterparts under some smoothness assumptions using a simple form of interpolation.
Whenever discussing computational issues, we assume the data are observed on a grid,
coming in as matrices, i.e. X1, . . . ,XN ∈ RK1×K2 . On the other hand, smoothing
is imperative in Chapter 4, where we work with the sparse sampling regime. The
methodology is developed with sparse measurements, and local linear smoothing is
performed in continuum, in theory. In practice (and implementation), however, we
assume again that the data are observed on a grid, coming in as matrices of finite size
with many entries not available.
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1.7 Marginalization Operators

The goal of this thesis is to handle the covariance estimation task for random surfaces in
a computationally efficient way. Two-dimensional data generally lead to four-dimensional
covariances. However, four-dimensional objects (such as, for example, the empirical
covariance of surface-valued random elements) are beyond the computational limits we set
for ourselves. While we can work with such objects implicitly in theory, we have to avoid
even constructing them in calculations. For this purpose, we need some marginalization
tools, which would allow us to explicitly work with smaller, marginalized objects.

In this section, we introduce two such marginalization tools: the partial trace and the
partial inner product. Both of these are well-known in the field of quantum information
theory (Schumacher and Westmoreland, 2010; Wilde, 2013), where univariate distributions
are characterized by positive semi-definite matrices, multi-variate distributions are
characterized by positive semi-definite tensors, and the partial trace or the partial inner
product are commonly used to find the marginal distributions of these random vectors.
However, distributions in quantum information theory are discrete, and generalizing the
partial trace and the partial inner product to the case of continuous domains requires
some work. In the field of functional data analysis, this has been done first by Aston
et al. (2017) and Bagchi and Dette (2020), respectively.

1.7.1 Partial Tracing

In accordance with Aston et al. (2017), we define the partial trace as follows.

Definition 2. The partial tracing operators w.r.t. the first and the second argument
are the unique operators Tr1 : S1(H1 ⊗H2)→ S1(H1) and Tr2 : S1(H1 ⊗H2)→ S1(H2)
satisfying for all A ∈ S1(H1) and B ∈ S1(H2)

Tr1(A ⊗̃B) = Tr(B)A ,
Tr2(A ⊗̃B) = Tr(A)B .

Basic properties of partial tracing are summarized in the following proposition.

Proposition 1. (a) Tr1 and Tr2 are well-defined bounded linear operators.

(b) Let F ∈ S+
1 (H1 ⊗H2), then Tr1F ∈ S+

1 (H1) and Tr1F ∈ S+
1 (H2).

(c) Let H = H1 ⊗̃H2 be a product Hilbert space and F ∈ S1(H1⊗H2). If F is separable,
then

Tr(F )F = Tr1(F ) ⊗̃Tr2(F ) . (1.17)

Moreover, if F is positive semi-definite, then also the reverse implication holds.
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Proof. We refer to Aston et al. (2017) or our more general development in Chapter 2 for
the proof of part (a).

For part (b), note that S+
1 (H) is a closed subset of S1(H) for a Hilbert space H. Thus

the previous definition could be restricted only to positive semi-definite operators, and
we can repeat the proof of part (a).

The first implication in part (c) follows easily from the definition and the additional part
of Lemma 1. In the other direction, positive semi-definiteness is assumed only to avoid
degenerate cases of vanishing traces. If Tr(F ) 6= 0, we can set

A := Tr2(F )√
Tr(F )

and B := Tr1(F )√
Tr(F )

,

which leads to F = A ⊗̃B, i.e. F being separable. If Tr(F ) = 0, then due to positive
semi-definiteness it must be F ≡ 0, and the statement is trivial.

Equation (1.17) is paramount to estimation. We will derive similar relationships also
for operators other than partial traces, and we call equations such as (1.17) estimating
equations.

Here we provide an intuition behind partial tracing. Let F ∈ S1(H1⊗H2). As a compact
operator, F can be expressed with respect to a basis {ei ⊗ fj} as

F =
∑
i,j,k,l

σijkl(ei ⊗ fj)⊗2 (ek ⊗ fl) (1.18)

where {ei} and {fj} are ONBs in H1 and H2, respectively. By linearity of the partial
trace we have

Tr1(F ) =
∑
i,j,k,l

σijklTr1
(

(ei ⊗ fj)⊗2 (ek ⊗ fl)
)

Now, due to (1.8), it holds that

Tr1(F ) =
∑
i,j,k,l

σijklTr(fj ⊗2 fl)ei ⊗2 ek =
∑
i,k

(∑
j

σijil

)
ei ⊗2 ek

where the last inequality follows from the fact that

Tr(fj ⊗2 fl) =
∞∑
k=1
〈(fj ⊗2 fl)fk, fk〉 =

∞∑
k=1
〈fj , fk〉〈fl, fk〉 = 1[j=l].

The previous expression justifies the name for partial tracing.

Another illustration of the name comes from the integral representation for continuous
kernels. Compare the following proposition to the integral trace formula (1.13).
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Proposition 2. Let F ∈ S+
1 (L2([0, 1]2)) have a continuous kernel k = k(t, s, t′, s′). Then

Tr1(F ) resp. Tr2(F ) have continuous kernels

k1(t, t′) =
∫ 1

0
k(t, s, t′, s) ds resp. k2(s, s′) =

∫ 1

0
k(t, s, t, s′) dt .

1.7.2 Partial Inner Product

The partial inner product is an alternative to partial tracing. Unlike partial tracing,
which is defined for trace-class operators only, the partial inner product naturally operates
on the space of Hilbert-Schmidt operators. In this section, we revisit the development of
Bagchi and Dette (2020), while a more general development will be one of the objectives
in Chapter 3.

Definition 3. Let H = H1 ⊗H2. The partial inner product w.r.t. the first argument is
the unique operator T1 : S2(H)× S2(H1)→ S2(H1) given by

T1(A ⊗̃B,W2) = 〈B,W2〉S2(H2)A , A ∈ S2(H1), B,W2 ∈ S2(H2) .

Similarly the partial inner product w.r.t. the second argument is the unique operator
T2 : S2(H)× S2(H2)→ S2(H2) given by

T2(A ⊗̃B,W1) = 〈A,W1〉S2(H2)B , A,W1 ∈ S2(H1), B ∈ S2(H2) .

The following proposition is analogous to Proposition 1.

Proposition 3. (a) T1 and T2 are well-defined bounded bi-linear operators.

(b) Let F ∈ S+
2 (H1⊗H2), W1 ∈ S+

2 (H1) and W2 ∈ S+
2 (H2), then T1(F,W2) ∈ S+

2 (H2)
and T2(F,W1) ∈ S+

2 (H2).

(c) Let F ∈ S2(H1 ⊗H2) =: H̃, W1 ∈ S2(H1) and W2 ∈ S2(H2). If F is separable, we
have

〈F,W1 ⊗̃W2〉H̃ F = T1(F,W2) ⊗̃T2(F,W1) . (1.19)

Moreover, if F is positive semi-definite and W1 and W2 are positive definite, the
reverse implication holds as well.

Proof. For the proof of part (a), including the uniqueness claim, we refer to Bagchi and
Dette (2020) or our development in Chapter 3.

Part (b) follows again from the closedness of positive semi-definite operators.

For the final part, let F = A ⊗̃B for some A ∈ S2(H1) and B ∈ S2(H2). Note that by
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the construction of the product space S2(H1 ⊗H2) we have

〈A ⊗̃B,W1 ⊗̃W2〉H̃ = 〈A,W1〉S2(H1)〈B,W2〉S2(H2) .

The first part of (c) thus follows from the definition of partial inner product and linearity
of outer product.

For the other direction, note that W1 ⊗̃W2 must by positive definite by Corollary 1, and
hence 〈F,W1 ⊗̃W2〉 > 0 as long as F is non-zero. Thus we can define

A := T2(F,W1)√
〈F,W1 ⊗̃W2〉

and B := T2(F,W1)√
〈F,W1 ⊗̃W2〉

to have F = A ⊗̃B.

In the case of F ≡ 0, the statement is trivial.

Similarly to the previous section, the name for partial inner product is exemplified in the
case of integral operators.

Proposition 4. Let F ∈ S+
2 (L2([0, 1]2)) have a continuous kernel k = k(t, s, t′, s′),

W1 ∈ S2(L2([0, 1])) have kernel w1 = w1(t, t′) and W2 ∈ S2(L2([0, 1])) have kernel
w2 = w2(s, s′). Then T1(F,W2) has kernel

k1(t, t′) =
∫ 1

0

∫ 1

0
k(t, s, t′, s′)w2(s, s′) dsds′

and similarly T2(F,W1) has kernel

k2(s, s′) =
∫ 1

0

∫ 1

0
k(t, s, t′, s′)w1(t, t′) dtdt′ .

In Chapter 3, we will see that the assumptions of continuity and positive semi-definiteness
are not needed when working with a slightly more general definition of the partial inner
product, since the equalities are understood in the L2-sense anyway.

1.7.3 Examples with Matrix-variate Normal Distribution

The development of the partial traces and the partial inner products up to now is valid
for matrix-variate data as well, since the only place where we assumed smoothness up
to this point were the integral representations of the marginalization operators given
in Propositions 2 and 4. But these integral representations can be easily rewritten for
discrete objects by the change of measure, replacing integrals with sums. It will become
apparent later that such discrete approximations are sound.
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In this section, we consider a multivariate separable model known as the matrix-variate
normal distribution (Gupta and Nagar, 2018), which we use to demonstrate the actions
of the marginalization operators. In the following, vec(·) : RK1×K2 → RK1K2 is the
vectorization operator, transforming a matrix into a vector by stacking the columns of
the matrix under each other.

Definition 4. A random matrix X ∈ RK1×K2 is said to have the matrix variate normal
distribution with mean matrix M ∈ RK1×K2 and covariance Σ ⊗̃Ψ, where Σ ∈ RK1×K1

and Ψ ∈ RK2×K2 are positive semi-definite, if

vec(X) ∼ NK1K2

(
vec(M),Σ ⊗̃Ψ

)
.

We shall use the notation X ∼ NK1,K2(M,Σ ⊗̃Ψ)

In the previous definition, Σ can be thought of as the row-specific covariance matrix,
while Ψ can be thought of as the column-specific covariance matrix. The following
theorem is imperative for numerical simulations (Gupta and Nagar, 2018, Theorem
2.3.10).

Theorem 2. Let X ∼ NK1,K2(M,Σ ⊗̃Ψ), A ∈ RK1×n1 be of rank n1 ≤ K1, and
B ∈ RK2×n2 be of rank n2 ≤ K2. Then A>XB ∼ Nn1,n2

(
A>MB,A>ΣA ⊗̃B>ΨB

)
.

From now on, let K1 = K2 =: K. Consider a single observation from the following
distribution

X ∼ NK,K(0,Σ ⊗̃ IK) . (1.20)

This is the most important model in multivariate statistics: the columns of X are i.i.d.
following NK(0,Σ). In this classical setup, the number of rows is not constrained to be
the number of columns, but here we impose this assumption for the sake of presentation.

We know from the multivariate statistics that the empirical estimate – and also the
maximum likelihood estimator (MLE) – of Σ in this model is

Σ̂ = 1
K

XX> .

The covariance C of X in this model is exactly C = Σ ⊗̃ IK , and the empirical (matrix-
variate) estimate of C (based on a single observation only, but we still use the common
notation) is

ĈN = X⊗X ∈ RK×K×K×K .

The partial tracing estimate of Σ would thus be

Σ̃ = 1
α
Tr1(ĈN ) ,
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1.7 Marginalization Operators

where α is a constant. Normally, α =
√
Tr(ĈN ). Since in the more general setup

it is possible to estimate the two constituents of the separable covariance only up to
a scaling factor, it is natural to assume that Tr(Σ) = Tr(Ψ), which leads to this choice
α =

√
Tr(ĈN ). Since in this case we know that Ψ = IK , estimation of the scale is

possible. Thus we choose α to be a constant such that

Tr(ĈN ) != Tr
(
Σ̃ ⊗̃ IK

)
= Tr(Σ̃) Tr(IK) = dTr(Σ̃) = d

1
α
Tr(ĈN ) .

Thus α = K.

And since (using the Matlab notation) we have

Tr1(Ĉ) =
K∑
k=1

ĈN [:, k, :, k] =
K∑
k=1

X[:, k]⊗X[:, k] =
K∑
k=1

X[:, k]X[:, k]> = XX>,

we obtain Σ̃ ≡ Σ̂, i.e. the partially traced estimate corresponds to the natural multivariate
estimate in this case.

The special structure of the covariance in model (1.20) can be visualized, if we matricize
the covariance, which corresponds to the covariance matrix of the vectorized random
element. Specifically, vec(X) ∈ Rd2 is distributed as a Gaussian random vector with
mean zero and the Kronecker product covariance IK ⊗K Σ, cf. Remark 1 (note the flip
of the two covariance factors between the outer product and the Kronecker product).
The block structure of IK ⊗K Σ is shown in Figure 1.1 (left). The blocks around the
diagonal are all the same, while the remaining entries are zero. Partial tracing takes this
into account and estimates the unknown Σ by taking an average of the diagonal blocks
of the empirical version of the covariance.

In the case of independent rows sampled from NK(0,Ψ), i.e.

X ∼ NK,K(0, IK ⊗Ψ) , (1.21)

the empirical (and also the maximum likelihood) multi-variate estimate of Ψ is

Ψ̂ = 1
K

X>X .

This again corresponds to the partially traced estimate of Ψ in a similar manner.
Vectorization of distribution (1.21) is a multivariate Gaussian distribution with mean
zero and covariance Ψ⊗K IK , whose stripe structure is depicted in Figure 1.1 (right). In
this case, all diagonal entries of a single block are the same, and partial tracing again
exploits this, averaging the corresponding elements of the empirical covariance.

In the general case
X ∼ NK,K(0,Σ⊗Ψ)
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Chapter 1. Background Concepts

Figure 1.1: Left: Block structure of IK ⊗K Ψ. Right: Stripe structure of Σ⊗K IK .
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a natural question arises: do the estimates Σ̂ = 1
KXX> and Ψ̂ = 1

KX>X still work
here? We know that the partially traced estimates are

Σ̃ = 1√
Tr(ĈN )

Tr1(ĈN ) and Ψ̃ = 1√
Tr(ĈN )

Tr2(ĈN ).

It will be shown later in Chapter 2 that they are consistent, and it still holds that
Tr1(ĈN ) = XX> and Tr2(ĈN ) = X>X. The scaling constants 1/K are not appropriate
in general, but they work e.g. when X is standardized so both the rows and the columns
have unit variances, which is a common practice in many applications. The partially
traced estimates, however, do not correspond to the maximum likelihood estimates in
the general case.

In a general matrix variate Gaussian model with full-rank covariance matrices Σ and
Ψ, the maximum likelihood estimates do not have a closed form solutions and they are
found by the following alternating minimization algorithm (Dutilleul, 1999):

INPUT: Data X1, . . . ,XN , an initial guess for Ψ.

REPEAT

Σ := 1
K1N

N∑
n=1

(Xn − X̄N )Ψ−1(Xn − X̄N )>

Ψ := 1
K2N

N∑
n=1

(Xn − X̄N )>Σ−1(Xn − X̄N )
(1.22)

UNTIL convergence
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1.7 Marginalization Operators

The relative magnitudes of Σ and Ψ can change throughout the iterations, possibly even
diverge, which can cause numerical instability. It is advisable to incorporate some sort of
scaling, e.g. to ensure that Tr(Σ) = Tr(Ψ) throughout the iterations.

To finish this chapter, let us compare the partial trace and the partial inner product
against the maximum likelihood algorithm above. Partial tracing estimates the covariance
matrices as scaled averages of some of the entries of the empirical covariance matrix, as
depicted in Figure 1.1. It will become clear later that equations (1.22) can be rewritten,
up to the scaling constants, using the partial inner products as

Σ ≈ T1(ĈN ,Ψ−1) and Ψ ≈ T2(ĈN ,Σ−1).

Secondly, we will see that, without the inverses in the previous equation, the algorithm
solves the following optimization problem:

arg min
Σ,Ψ

∣∣∣∣∣∣∣∣∣ĈN −Σ⊗Ψ
∣∣∣∣∣∣∣∣∣
F
. (1.23)

The solution to (1.23) has been studied by Van Loan and Pitsianis (1993), and was
suggested as a separable estimator of the covariance by Genton (2007). And finally, it
holds that

Tr1(ĈN ) = T1(ĈN , IK) and Tr2(ĈN ) = T2(ĈN , IK),

hence the partial inner product can be thought of as a generalization of partial tracing
when working on finite-dimensional domains (with matrices or tensor). On a general
Hilbert space, the identity need not be a Hilbert-Schmidt operator and hence the previous
equation need not make sense. Altogether, we can say that partial tracing can be thought
of as both the first step in either the maximum likelihood algorithm for the matrix-variate
normal distribution, and the first step in the algorithm for computing the solution
to 1.23, i.e. finding the nearest Kronecker product (NKP) approximation to the empirical
covariance matrix1. However, the maximum likelihood algorithm cannot be applied on
a general Hilbert space, due to the inverses used. And as for the algorithm to solve (1.23),
which is based on the partial inner product, initialization by partial tracing is not very
natural for the same reason.

Remark 2. (Notation.) The subscripts for partial traces and partial inner products
correspond to the dimension that is being kept. For example, Tr1(C) ∈ S1(H1) corresponds
to a temporal covariance. The opposite convention was adopted by Aston et al. (2017)
and Bagchi and Dette (2020), who use the subscript to designate which dimension is being
integrated out (e.g. Tr1(C) ∈ S1(H2)). Both of these different conventions in notation
have their pros and cons. We use the subscript to denote the dimension that is being

1In statistics literature, the Kronecker product, which is nearest to the empirical covariance matrix, is
often called the best separable approximation, a term coined by Genton (2007). However, this latter term
can be misleading, and we will only use it in this thesis when the true (unknown) covariance is being
approximated, instead of the empirical covariance in (1.23)
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Chapter 1. Background Concepts

kept, since we view the partial tracing and the partial inner product as marginalization
operators.
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2 Separable-plus-Banded Model

In this chapter, we postulate the following model for the covariance C of a random
element X ∈ L2([0, 1]2):

C = A1 ⊗̃A2 +B, (2.1)

where A1, A2 ∈ S+
1 (L2[0, 1]) and B ∈ S+

1 (L2([0, 1]2)) is banded by δ ∈ [0, 1) in the sense

of its kernel vanishing far away from the diagonal, as explained below. On the level of
kernels, this implies the decomposition

c(t, s, t′, s′) = a1(t, t′)a2(t, t′) + b(t, s, t′, s′) (2.2)

for almost all t, s, t, s′ ∈ [0, 1], where b(t, s, t′, s′) = 0 almost everywhere on

{
(t, s, t′, s′) ∈ [0, 1]4

∣∣∣max(|t− t′|, |s− s′|) ≥ δ
}
.

In the case of measurements on the grid {(ti, sj), i, j = 1, . . . ,K}, equations (2.1) and

(2.2) become

C[i, j, i′, j′] = A1[i, i′] ⊗̃A2[j, j′] + B[i, j, i′, j′], i, i′, j, j′ = 1, . . . ,K,

where A1 and A2 are square matrices of sizes K ×K, and B ∈ RK×K×K×K is a tensor
satisfying B[i, j, i′, j′] = 0 if max(|i − i′|, |j − j′|) ≥ d, where d = dδKe ∈ {1, . . . ,K} is
the discrete version of the bandwidth δ. Note that by choosing d = 1, the errors-in-
measurement model (1.16) with a separable covariance is contained in the separable-
plus-banded model as a sub-model. In fact, the separable-plus-banded model allows the
underlying process X to be corrupted by errors that propagate in space and time. That
is when we observe Y = X +W , where X and W are uncorrelated processes, and W has
a banded covariance. Of course, W may not be just an error process, but possibly an
object of its own value.

31



Chapter 2. Separable-plus-Banded Model

Combining the separable and the banded components into a single model results in a non-
parametric family, which is much richer than the separable class. In particular, the model
represents a strict generalisation of separability, reducing to a separable model when
δ = 0. Intuitively, it postulates that while the global (long-range) characteristics of the
process are expected to be separable, there may also be local (short-range) non-separable
characteristics of the process. For some practical problems, separability might possibly
fail due to some interactions between time and space, which however do not propagate
globally. These may be due to (weakly dependent) noise contamination, which can lead
to local violations of separability, perturbing the covariance near its diagonal. It could
also, however, be due to the presence of signal components that are non-separable and
yet weakly dependent.

Heuristically, if we were able to deconvolve the terms a and b, then the term a would
be easily estimable on the basis of dense observations, exploiting separability. We
demonstrate that it actually is possible to access a non-parametric estimator of a –
without needing to manipulate or even store the empirical covariance – by means of
a novel device, which we call shifted partial tracing. This linear operation mimics the
partial trace (Aston et al., 2017), but it is suitably modified to allow us to separate the
terms a and b in (2.2). Exploiting this device, we produce a linear estimator of a (linear
up to scaling, to be precise) that can be computed efficiently, with no computational
overhead relative to assuming separability. It is shown to be consistent, with explicit
convergence rates, when the processes are observed discretely on a grid, possibly corrupted
with measurement error.

The bandwidth δ > 0 is assumed constant and non-decreasing in the sample size N
or the grid size K. Consequently, even though b is banded, it has the same order of
entries as c itself, when observed on a grid. Hence if b is also an estimand of interest, and
statistical and computational efficiency is sought, an additional structural assumption on
b is needed to prevent it from being much more complicated to handle than a. We focus
on stationarity as a specific assumption, which seems broadly applicable, is interesting
from the computational perspective, and yields a form of parsimony complementary
to separability. Under this additional assumption, we show in detail that both a and
b of model (2.2) can be estimated efficiently, and the estimator can be both applied
and inverted (numerically), while the computational costs of these operations do not
exceed their respective costs in the separable regime. Specifically, we show that all of
these operations, i.e. estimation, application, and inversion of the covariance, can be
performed at the same cost as matrix-matrix multiplication between pairs of the sampled
observations.

Our methodology is also capable of estimating a separable model under the presence
of heteroscedastic noise. When observed on a grid, this leads to a separable covariance
superposed with a diagonal structure, which has again the same order of degrees of freedom
as the separable part. a heteroscedastic noise may very well arise from a discretization
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of a random process, which is weakly dependent and potentially even smooth at a finer
resolution. In their seminal book, Ramsay and Silverman (2005) state:

“The functional variation that we choose to ignore is itself probably smooth
at a finer scale of resolution.”

In other words, with increasing grid size K, a diagonal structure corresponding to noise
may become a banded structure corresponding to another signal. One can thus view our
methodology as being able to estimate a separable model observed under heteroscedastic
and/or weakly dependent noise. If the number of degrees of freedom belonging to the
noise does not exceed the degrees of freedom of the separable part, we can utilize the noise
structure e.g. for the purposes of prediction with no computational overhead compared
to the separable model.

Regardless of whether one views b as an estimand of interest or as a nuisance, the key
point of this chapter is that the methodology we advocate, and label shifted partial
tracing, can be used to estimate the separable part of model (2.2), provided data are
densely observed.

Before developing the apparatus for estimation of model (2.1), let us show that the model
is identifiable up to scaling in A1 and A2, unless A1 and A2 are themselves banded.

Lemma 2. Let A1, A2, Ã1, Ã2 ∈ S1(L2([0, 1]2)) be operators with continuous kernels
a1(t, t′), a2(s, s′), ã1(t, t′) and ã2(s, s′), respectively. Let B, B̂ ∈ S1(L2([0, 1]2)) be opera-
tors with continuous kernel b(t, s, t′, s′) and b̃(t, s, t′, s′) banded by δ ∈ [0, 1) and δ̃ ∈ [0, 1),
respectively. Let there be t1, t2 ∈ [0, 1] and s1, s2 ∈ [0, 1] such that |t1 − t2| > max(δ, δ̃)
and |s1 − s2| > max(δ, δ̃), and a1(t1, t2) 6= 0 and a2(s1, s2) 6= 0. Then

a1(t, t′)a2(s, s′) + b(t, s, t′, s′) = ã1(t, t′)ã2(s, s′) + b̃(t, s, t′, s′) , ∀t, s, t′, s′ ∈ [0, 1]

if and only if

a1(t, t′)a2(s, s′) = ã1(t, t′)ã2(s, s′) & b(t, s, t′, s′) = b̃(t, s, t′, s′) , ∀t, s, t′, s′ ∈ [0, 1]

Proof. Only the left-to-right implication is interesting. To this end, the assumptions give
us

a1(t, t′)a2(s1, s2) = ã1(t, t′)ã2(s1, s2) , ∀t, t′ ∈ [0, 1] ,
a1(t1, t2)a2(s, s′) = ã1(t1, t2)ã2(s, s′) , ∀s, s′ ∈ [0, 1] ,
a1(t1, t2)a2(s1, s2) = ã1(t1, t2)ã2(s1, s2) .

Multiplying the first two equations and dividing the result by the third one gives the
equality between the separable parts. The equality between the banded parts follows
naturally.
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Chapter 2. Separable-plus-Banded Model

The previous proof suggests an estimation strategy, which would be, however, quite
wasteful. Hence we take a slightly different route in the following section.

2.1 Shifted Partial Tracing

Here we develop methodology capable of estimating model (2.1). For the sake of
presentation, we first work under additional assumptions (positive semi-definiteness and
continuity of the kernel) in this section, before providing more general (but less intuitive)
development in the following sub-section. We start by defining the shifted trace.

Definition 5. Let F ∈ S+
1 (L2([0, 1])) have a continuous kernel k = k(t, s). Let δ ∈ [0, 1).

We define the δ-shifted trace of F as

Trδ(F ) :=
∫ 1−δ

0
k(t, t+ δ) dt .

In the special case of δ = 0 the definition corresponds to the standard (non-shifted) trace
of a trace-class operator with a continuous kernel, cf. (1.13). The definition of the shifted
trace is naturally extended to higher dimensions. Next, we define the shifted partial
trace.

Definition 6. Let δ ∈ [0, 1). Let F ∈ S+
1 (L2([0, 1]2)) have a continuous kernel k =

k(t, s, t′, s′). We define the δ−shifted partial traces of F , denoted Trδ1 (F ) and Trδ2 (F ),
as the integral operators with kernels given respectively by

k1(t, t′) :=
∫ 1−δ

0
k(t, s, t′, s+ δ)ds & k2(s, s′) :=

∫ 1−δ

0
k(t, s, t+ δ, s′) dt . (2.3)

Again, for δ = 0, δ-shifted partial tracing corresponds to partial tracing as defined by
Aston et al. (2017). Also, notice that shifted partial tracing is linear. While partial tracing
of Aston et al. (2017) can be used to estimate a separable model, we will later see that
introducing a shift like in the previous definitions will allow us to work around short-range
dependencies in the data, estimating the separable part of the separable-plus-banded
model.

At this point, it is not immediately clear that the integral defining shifted (partial) traces
are finite. While this could be shown directly here using trace-classness, positive semi-
definiteness and continuity, we opt to skip these proofs for the sake of brevity. Correctness
of Definitions 5 and 6 will ultimately follow from the more general development in
Section 2.1.1.

Remark 3. The definition of shifted partial tracing above is not symmetric, meaning
that the result of the shifted partial trace is not necessarily self-adjoint. We could define
a symmetrized shifted partial trace instead, but this is (due to linearity of shifted partial
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tracing and symmetry of the kernel k) equivalent to symmetrizing the result. The latter
is used in practice for its computational convenience, while the former is hypothetically
done in theory, but we avoid it without loss of generality to ease the presentation (see
Section 2.3.4).

The shifted partial trace has the following properties, which resemble those of the standard
(non-shifted) partial trace.

Proposition 5. Let A1, A2 ∈ S+
1 (L2([0, 1])) have continuous kernels and F = A1 ⊗̃A2.

Then

(a) Trδ1 (F ) = Trδ (A2)A1,

(b) Trδ (F ) = Trδ (A1)Trδ (A2), and

(c) Trδ (F )F = Trδ1 (F ) ⊗̃Trδ2 (F ).

Proof. First note that all the shifted (partial) traces are well defined. The claims follow
from the definitions and separability of F . The kernel of Trδ1 (F ) is given by

k1(t, t′) =
∫ 1−δ

0
a1(t, t′)a2(s, s+ δ)ds = a1(t, t′)

∫ 1−δ

0
a2(s, s+ δ) ds = a1(t, t′)Trδ (A2) ,

which shows part (a). For the second part, using Fubini’s theorem, we have

Trδ (F ) =
∫ 1

0

∫ 1

0
a1(t, t+ δ)a2(s, s+ δ) dt ds

=
∫ 1

0
a1(t, t+ δ)dt

∫ 1

0
a2(s, s+ δ) ds = Trδ (A1) Trδ (A2) .

Part (c) follows naturally by combining part (a) with part (b).

The following lemma illustrates the importance of shifted partial tracing for estimation
of model (2.1).

Lemma 3. Let B ∈ S+
1 (L2([0, 1])2) be banded by δ? and have a continuous kernel b.

Then for any δ > δ? we have Trδ1(B) = Trδ2(B) = 0.

Proof. The kernel of Trδ1(B) is b1(t, t′) =
∫ 1−δ

0 b(t, s, t′, s+ δ) ds = 0 due to bandedness
of B, because b(t, s, t, s′) = 0 for |s− s′| > δ?. Similarly for Trδ2(B).

Hence, shifted partial tracing allows us to work around the banded part of the model.
Or, more precisely, banded operators belong to the kernel of shifted partial tracing,
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Chapter 2. Separable-plus-Banded Model

while separable operators do not. Due to linearity, shifted partial tracing enables us to
deconvolve the two parts of model (2.1) as will be shown in Section 2.2.

In the following section, we will see that the statements of Proposition 5 and Lemma 3
hold even without the assumption of continuity and positive semi-definiteness.

2.1.1 General Definition

To ease the exposition, we assumed continuity and positive semi-definiteness in the
definition of shifted (partial) tracing given above. But in order to prove the asymptotic
results of Section 2.4, it is necessary to generalize the notions of shifted (partial) tracing
to general trace-class operators on L2([0, 1]2), i.e. to covariances of random elements on
L2([0, 1]2), which are not necessarily continuous or have continuous sample paths, and
to differences of such operators, which are typically not positive semi-definite. If the
reader is not interested in the proofs of asymptotic properties, which are provided in the
appendix, this section can be skipped upon noting that, for discretely observed data,
the shifted (partial) trace corresponds to the standard discretization of the continuous
definition above, c.f. Definition 10 below.

In this section, we provide alternative definitions of the shifted (partial) traces, which
require neither continuity nor positive semi-definiteness. These will be denoted by “T”,
replacing “Tr”, to make the distinction. It will be shown subsequently that, under
continuity, they coincide with Definitions 5 and 6. Note that Remark 3 is still applicable
here.

In Definitions 5 and 6, we introduced shifts to integrate along off-diagonals, in hope to
avoid the banded part of our process. In the following definition, we rather shift the
whole kernel, and then integrate along the diagonal of the shifted kernel. Intuitively, the
two approaches are equivalent, but some work is required to show this formally.

Definition 7. We define the shifting operator Sδ : S1(L2([0, 1]))→ S1(L2([0, 1])) by its
action on kernels. For F ∈ S1(L2([0, 1])) with a kernel k = k(t, s), Sδ(F ) have kernel

kδ(t, s) =

k(t, s+ δ), s < 1− δ,
0, otherwise.

(2.4)

It is straightforward to check that Sδ is a well-defined linear operator on S1(L2([0, 1])).
To check boundedness, let F = ∑

j σjgj ⊗ hj be the SVD of F . Then we have kδ(t, s) =∑
j σjgj(t)hδj(s), where the equality is understood in the L2-sense, and hδj(s) = hj(s+ δ)
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for s ≤ 1− δ, and hδj(s) = 0 otherwise. Then

∣∣∣∣∣∣∣∣∣Sδ(F )
∣∣∣∣∣∣∣∣∣

1
=

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∞∑
j=1

σjSδ(gj ⊗ hj)

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
1

≤
∞∑
j=1

σj
∣∣∣∣∣∣∣∣∣gj ⊗ hδj ∣∣∣∣∣∣∣∣∣1

=
∞∑
j=1

σj‖gj‖‖hδj‖ ≤
∞∑
j=1

σj = |||F |||1

where we used the triangle inequality (the first inequality) and the fact that ‖hδj‖ ≤ ‖hj‖
(the second inequality). The calculation above shows that

∣∣∣∣∣∣∣∣∣Sδ∣∣∣∣∣∣∣∣∣
∞
≤ 1.

Definition 8. (a) For F ∈ S1(L2([0, 1])), we define Tδ(F ) = Tr(SδF ).

(b) For F ∈ S1(L2([0, 1]2)) we define Tδ(F ) = Tr
[
(Sδ ⊗ Sδ)F

]
.

Tδ is well defined bounded linear functional on S1(L2([0, 1])) or S1(L2([0, 1]2)), since

|Tδ(F )| = |Tr(SδF )| ≤
∣∣∣∣∣∣∣∣∣SδF ∣∣∣∣∣∣∣∣∣

1
≤
∣∣∣∣∣∣∣∣∣Sδ∣∣∣∣∣∣∣∣∣

∞
|||F |||1 ≤ |||F |||1,

where the second inequality is of Hölder-type for Schatten-p spaces.
Definition 9. For F ∈ S1(L2([0, 1]2)) separable, i.e. of the form F = A ⊗̃B, we define
Tδ1(F ) = Tδ(B)A.

For other than separable operators, Tδ1 is defined by linear extension. Such a construction
is viable due to the following proposition.

The proofs of the following two propositions borrow ideas from Aston et al. (2017).
Proposition 6. Let δ ≥ 0, then Tδ1 : S1(L2([0, 1]2)) → S1(L2([0, 1])) is well defined,
linear, and bounded. Moreover, for F ∈ S1(L2([0, 1]2)) we have

Tr(GTδ1(F )) = Tr([Sδ ⊗̃G]F ), ∀G ∈ S1(L2([0, 1])). (2.5)

Proof. Let F = ∑R
r=1Ar ⊗̃Br. Then for any G ∈ S1(L2([0, 1])) we have

Tr(G Tδ1(F )) =
R∑
r=1

Tr(SδBr)Tr(GAr) =
R∑
r=1

Tr
(
GAr) ⊗̃ (SδBr)

]

=
R∑
r=1

Tr
[
(G ⊗̃Sδ)(Ar ⊗̃Br)

]
= Tr

[
(G ⊗̃Sδ)F

] (2.6)

By Lemma 1.6 of the supplementary material of Aston et al. (2017), the space

X :=
{ R∑
r=1

Ar ⊗̃Br
∣∣∣∣ Ar, Br ∈ S1(L2([0, 1])), r ∈ N

}
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is dense in S1(L2([0, 1]2)). Using the following characterization of the trace norm,

|||F |||1 = sup
|||G|||∞=1

|Tr(GF )|,

we obtain from (2.6) that∣∣∣∣∣∣∣∣∣T δ1 (F )
∣∣∣∣∣∣∣∣∣

1
= sup
|||G|||∞=1

|Tr(GT δ1 (F ))| = sup
|||G|||∞=1

∣∣∣Tr[(G ⊗̃Sδ)F ]∣∣∣
≤ sup
|||U |||∞=1

|Tr(UF )| = |||F |||1,
(2.7)

since
∣∣∣∣∣∣∣∣∣Sδ∣∣∣∣∣∣∣∣∣

∞
≤ 1.

Hence T1 can be extended continuously to S1(L2([0, 1]2)). Equation (2.5) now follows
from (2.6) also by continuity, and we have∣∣∣∣∣∣∣∣∣Trδ1(F )

∣∣∣∣∣∣∣∣∣
1

= sup
|||G|||∞=1

∣∣∣Tr[(G ⊗̃Sδ)F ]∣∣∣. (2.8)

for any F .

The following proposition states that the functional specified in Definition 8 and the
operator specified in Definition 9 correspond under the continuity assumption to the
shifted trace and the shifted partial trace, respectively.

Proposition 7. Let A ∈ S+
1 (L2([0, 1])) and F ∈ S+

1 (L2([0, 1]2)) have continuous kernels
a = a(t, s) and k = k(t, s, t′, s′). Then Tδ(A) = Trδ(A) and Tδ1(F ) = Trδ1(F ).

Proof. We begin by showing the assertion for the shifted trace. We define the continuous
version of the shifting operator Sδ, denoted as Sδτ . It is defined by Definition 7 with Sδ
replaced by Sδτ and kδ replaced by

kδτ (t, s) =


k(t, s+ δ), s < 1− δ − τ,
(s+ δ + τ)k(t, 1− δ − τ) + (s+ δ − τ)k(t, 1− δ + τ), |s− (1− δ)| ≤ τ,
0, otherwise.

Then by continuity, Tr(SδτF ) τ→0+−→ Tδ(F ) and at the same time Tr(SδτF ) τ→0+−→ Trδ(F ),
implying the equality of the limits.

We now proceed to the shifted partial trace. By Lemma 1.7 of the supplementary material
of Aston et al. (2017), for any ε > 0 there exists a finite rank operator FR = ∑R

r=1Ar ⊗̃Br
with kernel kR such that |||F − FR|||1 < ε and ‖k − kR‖∞ < ε.
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2.1 Shifted Partial Tracing

Fixing ε > 0, we have from the triangle inequality that∣∣∣∣∣∣∣∣∣Tδ1(F )− Trδ1(F )
∣∣∣∣∣∣∣∣∣

2
≤
∣∣∣∣∣∣∣∣∣Tδ1(F )− Tδ1(FR)

∣∣∣∣∣∣∣∣∣
2

+
∣∣∣∣∣∣∣∣∣Tδ1(FR)− Trδ1(FR)

∣∣∣∣∣∣∣∣∣
2

+
∣∣∣∣∣∣∣∣∣Trδ1(FR)− Trδ1(F )

∣∣∣∣∣∣∣∣∣
2

The middle term is zero, which follows from linearity of the operators and the first half
of this proof.

The first term can be bounded by∣∣∣∣∣∣∣∣∣Tδ1(F − FR)
∣∣∣∣∣∣∣∣∣

1
≤ |||F − FR|||1 < ε,

and for the final term we have

∣∣∣∣∣∣∣∣∣Trδ1(FR − F )
∣∣∣∣∣∣∣∣∣

2
=
(∫ 1

0

∫ 1

0

(∫ 1

0

[
kR(t, s, t′, s+ δ)− k(t, s, t′, s+ δ)

]
ds

)2
dtdt′

)1/2

≤ ‖k − kR‖∞

Altogether, we have that
∣∣∣∣∣∣∣∣∣Tδ1(F )− Trδ1(F )

∣∣∣∣∣∣∣∣∣
2
< 2ε. Since ε was arbitrarily small, the

proof is complete.

The development of shifted partial tracing with respect to the second argument can
be done similarly. Also, Proposition 5 holds with the general definitions of the shifted
(partial) traces and without the assumptions of positive semi-definiteness and continuity
placed on A1 and A2, and their kernels, respectively. This can be simply checked using
the definitions. It thus remains to generalize the proof of Lemma 3 to the case where
continuity is not assumed.

Proof of Lemma 3. We will use two simple auxiliary results, a certain decomposition of
B that will be only introduced in the next chapter, and the limiting argument of Gohberg
and Krein (1978), c.f. equation (1.12). Firstly, it holds for any operators A and B that

(A ⊗̃B) = (A ⊗̃ Id)(Id ⊗̃B), (2.9)

which can be verified on the rank one elements:

(A ⊗̃ Id)(Id ⊗̃B)(x⊗ y) = (A ⊗̃ Id)(x⊗By) = a x⊗By = (A ⊗̃B)(x⊗ y).

Secondly, we have formula (2.8).

Hence it suffices to show that Tr
[
(G ⊗̃Sδ)B

]
= 0 for any G with unit operator norm.

Let B = ∑∞
r=1 σrŨr ⊗̃Vr be the separable component decomposition of B, see Chapter 3.

Let Ur := σrŨr, so B = ∑∞
r=1 Ur ⊗̃Vr. We know by Lemma 6 that for B banded, all Vr,

r = 1, 2, . . . are banded as well, with the same bandwidth. Using (2.9) and cyclicity of
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Chapter 2. Separable-plus-Banded Model

trace, we have
Tr
[
(G ⊗̃Sδ)B

]
= Tr

[
(Id ⊗̃Sδ)B(G ⊗̃ Id)

]
.

Using (2.9) again, we obtain

B(G ⊗̃ Id) =
∞∑
r=1

(GUr) ⊗̃Vr,

which is still banded in the spatial dimensions (corresponding to V ’s). Therefore,
(Id ⊗̃Sδ)B(G ⊗̃ Id) has a kernel, which is 0 along the diagonal. Since that kernel clearly
gives rise to a trace-class operator, the limiting argument (1.12) can be used, showing
that the trace is zero.

We have just shown that the conclusions of Section 2.1 remain valid even without the
assumption of continuity. In practice, however, data is observed discretely, and shifted
partial tracing needs to be performed on a tensor.

Definition 10. Let M ∈ RK1×K2×K1×K2. For d ≤ min(K1,K2), we define

Trd1(M)[i, k] =
K2−d∑
j=1

M[i, j, k, j + d] , i, k = 1, . . . ,K1 ,

Trd2(M)[j, l] =
K1−d∑
i=1

M[i, j, i+ d, l] , j, l = 1, . . . ,K2 ,

Trd(M) =
K1−d∑
i=1

K2−d∑
j=1

M[i, j, i+ d, j + d] .

(2.10)

The previous definition is in a natural agreement with Definition 6, as stated in the
following lemma.

Lemma 4. Let M ∈ RK×K×K×K . Let F ∈ S2(L2([0, 1]2)) be the pointwise continuation
of M, i.e. the kernel k of F is given by

k(t, s, t′, s′) =
K1∑
i=1

K2∑
j=1

K1∑
k=1

K2∑
l=1

M[i, j, k, l]1[(t,s)∈IKi,j ]
1[(t′,s′)∈IK

k,l
] ,

where Ii,j =
[
i−1
K1
, i
K1

)
×
[
j−1
K2
, j
K2

)
. Then

(a) For δ ∈ [0, 1) such that d := δK2 ∈ N0, we have
∣∣∣∣∣∣∣∣∣Trδ1(F )

∣∣∣∣∣∣∣∣∣
2

= K−1
1 K−1

2

∥∥∥Trd1(M)
∥∥∥
F
.

(b) For δ ∈ [0, 1) such that d := δK1 ∈ N0, we have
∣∣∣∣∣∣∣∣∣Trδ2(F )

∣∣∣∣∣∣∣∣∣
2

= K−1
1 K−1

2

∥∥∥Trd2(M)
∥∥∥
F
.

(c) For K1 = K2 =: K and δ ∈ [0, 1) such that d := δK ∈ N0, we have Trδ(F ) =
K−1

1 K−1
2 Trd(M).
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2.1 Shifted Partial Tracing

Proof. We only show the first part, since the other two parts are similar.

Let gi,j(t, s) =
√
K1K21[(t,s)∈IKi,j ]

. Since

k(t, s, t′, s′) = K−1
1 K−1

2

K1∑
i=1

K2∑
j=1

K1∑
k=1

K2∑
l=1

M[i, j, k, l]gi,j(t, s)gk,l(t′, s′) ,

we can express F as

F = K−1
1 K−1

2

K1∑
i=1

K2∑
j=1

K1∑
k=1

K2∑
l=1

M[i, j, k, l]gi,j ⊗ gk,l .

It now follows from linearity of shifted partial tracing that

Trδ1(F ) = K−1
1 K−1

2

K1∑
i=1

K2∑
j=1

K1∑
k=1

K2∑
l=1

M[i, j, k, l]Trδ1(gi,j ⊗ gk,l) . (2.11)

Since IKi,j is a cartesian product of two intervals, we can write IKi,j = IKi × IKj . Then
gi,j = g

(1)
i ⊗ g

(2)
j with g(1)

i (t) =
√
K11[t∈IKi ] and g

(2)
j (s) =

√
K11[s∈IKj ]. Furthermore,

gi,jgk,l = g
(1)
i ⊗ g

(2)
i ⊗ g

(1)
k ⊗ g

(2)
l = (g(1)

i ⊗ g
(1)
k ) ⊗̃ (g(2)

j ⊗ g
(2)
l )

and hence by Definition 9 we have Trδ1(gi,j ⊗ gk,l) = Trδ(g(2)
j ⊗ g

(2)
l )g(1)

i ⊗ g
(1)
k . Note that

due to the limiting argument (1.12), Trδ(g(1)
j ⊗ g

(1)
l ) = 1[j=l+δK1], hence from (2.11) we

have

Trδ1(F ) = K−1
1 K−1

2

K1∑
i=1

K1∑
k=1

(1−δ)K2∑
j=1

M[i, j, k, j + δK]

 g(2)
i ⊗ g

(2)
k . (2.12)

Thus it is
∣∣∣∣∣∣∣∣∣Trδ1(F )

∣∣∣∣∣∣∣∣∣
2

= K−1
1 K−1

2

[∑K1
i=1

∑K1
k=1

(∑(1−δ)K2
j=1 M[i, j, k, l]

)2
]1/2

, while in the

discrete case we have
∥∥∥Trd1(M)

∥∥∥
F

=
[∑K1

i=1
∑K1
k=1

(∑(1−δ)K2
j=1 M[i, j, k, l]

)2
]1/2

from Defi-
nition 10.

Note that we have actually proven something more general. We can write from (2.12)
that the kernel of Trδ1(F ) is

k1(t, t′) =
K1∑
i=1

K1∑
k=1

 1
K2

(1−δ)K2∑
j=1

M[i, j, k, j + δK]

1t∈Ii ⊗ 1t′∈Ik ,
where the term inside the parentheses is almost the (i, k)-th element of discrete partial
tracing, but instead of summing in the discrete case we have to average in the continuous
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Chapter 2. Separable-plus-Banded Model

case (which corresponds to the difference between the Lebesque measure on piecewise
constant function on [0, 1] with at most K jumps and the counting measure on the set
{1, . . . ,K}).

Shifted partial tracing could still have been defined in slightly greater generality. However,
the definition requires the notion of a “shift” and hence it requires an explicit set to act on.
We could instead of L2([0, 1]2) take L2(Ω) with (Ω,A, µ) a measure space with Ω a linearly
ordered metric space and µ a finite measure. The choice of Ω = {1, . . . ,K1}×{1, . . . ,K2}
and µ being the counting measure would then lead to Definition 10. We have not gone
down this path since this formalism would not be particularly useful in practice anyway.
Note, however, that Definitions 6 and 10 are compatible in this way, with the difference
between them stemming from the change of measure, as depicted in Lemma 4.

2.2 Estimation

We assume here availability of N independent (and w.l.o.g. zero-mean) surfaces, say
X1, . . . , XN , with covariance satisfying the separable-plus-banded model (2.1), where
δ is such that Trδ(A1) and Trδ(A2) are non-zero. For now, let the surfaces be fully
observed; discrete observations are considered in Sections 2.3 and 2.4. Firstly, we focus
on estimation of the separable part of model (2.1) by shifted partial tracing.

The following example explains how shifted partial tracing works around the banded
part of the process to enable a direct estimation of the separable part of the covariance.

Example 1. Assume we have a single continuous observation X ∈ L2([0, 1]2) with
a separable covariance C = C1 ⊗ C2, which has a continuous kernel c(t, s, t′, s′) =
c1(t, t′)c2(s, s′). Assume for simplicity that Tr(C1) = Tr(C2) = 1. Partial tracing
(without shifting, i.e. δ = 0) can be used to estimate C1 and C2 in the following way.

The observation X is cut along the temporal axis to form a spatial sample {Xt(s)}t∈[0,1],
i.e. any given time point t is providing us with a single curve Xt(s), s ∈ [0, 1]. This
spatial sample is used to estimate the spatial covariance C2 in a standard way, i.e. outer
products Xt ⊗Xt are formed and averaged together as

Ĉ2 =
∫ 1

0
Xt ⊗Xt dt or equivalently ĉ2(s, s′) =

∫ 1

0
Xt(s)Xt(s′) dt .

This is a moment estimator in a sense, since E(Xt⊗Xt) ∝ C2 for any t ∈ [0, 1]. Similarly
for the temporal domain: a temporal sample {Xs(t)}s∈[0,1] is formed by cutting X along
the spatial domain, and the temporal covariance is then estimated as

Ĉ1 =
∫ 1

0
Xs ⊗Xsds or equivalently ĉ1(t, t′) =

∫ 1

0
Xs(t)Xs(t′) dt .

This process is captured in Figure 2.1. When multiple surfaces are observed, the described
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2.2 Estimation

Figure 2.1: Estimation of a separable model via partial tracing based on a single observation.
The observation is cut along the temporal domain to obtain a temporal sample (in green), from
which the temporal part of the separable covariance is empirically estimated. Similarly for the
spatial part (in red).
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procedure is repeated for all of them, and the results are averaged together for the resulting
estimator.

When the covariance is instead separable-plus-banded, i.e. C = A1⊗A2 +B with B banded
by δ, it is no longer true that E(Xt⊗Xt) ∝ A2, but it is still true that E(Xt⊗Xt+δ) ∝ A2
for all t ∈ [0, 1 − δ]. Hence instead of taking outer products of Xt with itself, we can
form outer products Xt⊗Xt+δ and average over these products for t ∈ [0, 1− δ] to obtain
a scaled estimator of A2, see Figure 2.2. In other words, one estimates the temporal
factor in the separable part of the model by cutting the observations along the temporal
axis and introducing a spatial shift when taking outer products. A1 can be estimated in
a similar way (cutting the observations along the spatial axis and introducing a temporal
shift), and the only remaining question is how to determine the scaling constants.

Using Lemma 3 together with Proposition 5 (c), we obtain the following estimating
equation for model (2.1):

Trδ(C)A1 ⊗̃A2 = Trδ1(C) ⊗̃Trδ2(C). (2.13)
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Chapter 2. Separable-plus-Banded Model

Figure 2.2: Estimation of the separable-plus-banded model via shifted partial tracing based on
a single observation. The observation is cut along the temporal domain to obtain a temporal
sample (in green), from which the temporal part of the separable covariance is empirically
estimated by introducing a shift in space. Similarly for the spatial part (in red).
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Equation (2.13) suggests the following estimators for the separable part of the model:

Â1 = Trδ1(ĈN ) & Â2 = Trδ2(ĈN )
Trδ(ĈN )

, (2.14)

where ĈN = 1
N

∑N
n=1(Xn − X̄N ) ⊗ (Xn − X̄N ) is the empirical estimator of C. Of

course, we need to assume Trδ(ĈN ) 6= 0. Once the separable part of the model has been
estimated, we can define

B̂ = ĈN − Â1 ⊗̃ Â2 . (2.15)

Optionally, we can set the kernel of B̂ to zero outsize of the band of size δ. Note that none
of the estimators defined above is guaranteed to be symmetric or positive semi-definite.
However, this is just a technicality, which can be dealt with easily, see Section 2.3.4.

Consider the separable-plus-banded model C = A1 ⊗̃A2 + B with B banded by d, i.e.
B[i, j, k, l] = 0 whenever min(|i− k|, |j − l|) ≥ d. We denote by d the discrete version of
the bandwidth δ; the relation for an equidistant grid of size K ×K is d = dδKe+ 1. It
is straightforward to translate Proposition 5 and Lemma 3 to the discrete case to obtain
the following estimating equation

Trd(C)A1 ⊗̃A2 = Trd1(C) ⊗̃Trd2(C) ,
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2.2 Estimation

suggesting again the plugin estimators

Â1 = Trd1(ĈN ) and Â2 = Trd2(ĈN )/Trd(ĈN ) . (2.16)

It may be useful to revisit Example 1 and Figure 2.1 (which is plotted discretely anyway)
for intuitive depiction of these definitions.

Remark 4. While the proposed estimators are based on the empirical covariance, the
empirical covariance is only considered implicitly. It is never even calculated, let alone
stored. Computation of the empirical covariance is outside of the computational limits
we set for ourselves. We seek a methodology which would be as efficient as matrix-matrix
multiplication between pairs of the sampled observations.

2.2.1 Stationarity

As previously noted, model (2.1) is interesting from two perspectives, depending on
whether the banded part b is only seen as a nuisance or whether it is also of interest (e.g.
when the inverse of a+ b needs to be applied for the purpose of prediction):

• If b is indeed an estimand of interest, then one needs to make further structural
assumptions on b, for reasons of computational and statistical efficiency. This is
because the bandwidth δ > 0 is assumed constant and non-decreasing in N or K –
consequently, even though b is banded, it has the same order of entries as c itself,
when observed on a grid. In our development, we show how one can also estimate
b under the additional assumption that it is stationary (Hall et al., 1994; Cai et al.,
2013). We focus on stationarity as a specific assumption which seems broadly
applicable and yields a form of parsimony complementary to separability. Under
this additional assumption, we show in detail that both a and b of model (2.2)
can be estimated efficiently, and the estimator can be both applied and inverted
(numerically), while the computational costs of these operations do not exceed
their respective costs in the separable regime. Specifically, we show that all of
these operations, i.e. estimation, application, and inversion of the covariance, can
be performed at the same cost as matrix-matrix multiplication of two sampled
observations.

• Contrarily, if the banded part b is only viewed as a nuisance, no additional assump-
tion to bandedness needs to be made to allow for the estimation of the separable
part a. This is the case when the data are believed to be separable up to a weakly
dependent contamination, which carries no information of any value for an analyst,
i.e. only long-term dependencies are of interest. In this case again, estimation,
application and inversion of the covariance (including noise) can be performed at
the asymptotic cost of matrix-multiplying two sampled observations.

• A special case in the previous considerations is when the discrete bandwidth is
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Chapter 2. Separable-plus-Banded Model

equal to one, i.e. a separable covariance model is observed under additional white
noise. In that case, the covariance of the observations is separable-plus-diagonal.
This situation corresponds to the widely used errors-in-measurements model (1.16).
If we allow for heteroscedasticity of noise, the diagonal has the same number of
(discrete) degrees of freedom as the separable model.

Hence we see that shifted partial tracing can be used to estimate a separable model
under noisy regimes, which can be either heteroscedastic (separable-plus-diagonal) or
weakly dependent (separable-plus-stationary), and we will show that in both of these
cases, no additional computational costs have to be paid compare to when separability is
assumed. Contrarily, when both weakly separable and heteroscedastic noise is present,
shifted partial tracing can still be used to estimate the separable part of the model at
the same cost, but when an estimator of the error structure is also needed (e.g. for the
purposes of prediction), additional computational costs are present due to the fact that
the noise is more complicated than the signal, in this particular case.

If at this point we add the stationarity of B into our assumptions (i.e. let the kernel
b be translation invariant: b(t, s, t′, s′) = ς(|t − t′|, |s − s′|), t, t′, s, s′ ∈ [0, 1], where
ς ∈ L2([0, 1]2) is the symbol of B) we take the following estimator of B instead of (2.15):

B̂ = Ta(ĈN − Â1 ⊗̃ Â2), (2.17)

where Ta(·) is the “Toeplitz averaging” operator, i.e. the projection onto the stationary
operators, defined as follows.

Definition 11. For F ∈ S1(L2([0, 1]2)) self-adjoint and {ej}j∈Z the complete orthonormal
basis of trigonometric functions in L2([0, 1]), let

F =
∑

i,j,k,l∈Z
γijkl(ei ⊗ ej)⊗ (ek ⊗ el). (2.18)

Then we define
Ta(F ) =

∑
i,j∈Z

γijij(ei ⊗ ej)⊗ (ei ⊗ ej). (2.19)

Let us comment on the previous definition. If {ej}j∈Z is the trigonometric basis on
L2([0, 1]), then {ei ⊗ ej}i,j∈Z is the trigonometric basis on L2([0, 1])2, so every compact
operator F can be expressed with respect to this basis as in (2.18). For F trace class, the
Fourier coefficients {γijkl} are absolutely summable, leading to Ta(F ) in (2.19) being also
trace-class. Secondly, a stationary operator has the trigonometric basis as its eigenbasis,
as shown below. Thirdly, Ta(·) as defined in (2.19) is clearly an orthogonal projection.
Altogether, Ta(·) is the orthogonal projection onto the space of stationary operators in
S1(L2([0, 1]2)), which is itself a Banach space.

Now we show that a self-adjoint stationary integral operator on L2([0, 1]) has the Fourier
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basis as its eigenbasis. We work with L2([0, 1]) for simplicity, the argument translates
easily to higher dimensions.

Let F be a stationary integral operator on L2([0, 1]) with kernel k = k(u1, u2), i.e.
k(u1, u2) = h(u1 − u2), t, s ∈ [0, 1], for a symmetric function h : [−1, 1]→ R. We expand
h into its Fourier series as h(x) = ∑

j∈Z φje
−2πijx. Thus we have

k(u1, u2) =
∑
j∈Z

φje
−2πiju1e2πiju2 .

To see that the previous expansion is in fact an eigen-decomposition, note that for
l = 0, 1, . . ., we have∫ 1

0
k(t, s)e−2πilu2 ds =

∑
j∈Z

φje
−2πiju1

∫ 1

0
e−2πi(l−j)u2 ds = θle

−2πilu1 ,

and similarly for −l ∈ N due to self-adjointness.

The previous justifies the definition of the Toeplitz averaging operator in the continuous
case. In the discrete case, Toeplitz averaging is defined as follows.

Definition 12. For F ∈ RK1×K2×K1×K2, we define

S[h, l] = 1
K2

K−h∑
i=1

K−l∑
j=1

F[i, j, i+ h− 1, j + l − 1] (2.20)

for h = 1, . . . ,K1 and l = 1, . . . ,K2, and Ta(F) ∈ RK1×K2×K1×K2 is the tensor having
S as its symbol, i.e. Ta(F)[i, j, k, l] = S[1 + |i − k|, 1 + |j − l|] for i, k = 1, . . . ,K1 and
j, l = 1, . . . ,K2.

Unlike in continuum, the discrete Fourier basis is not necessarily the eigenbasis of
a stationary operator, hence the need for an alternative definition, which does not
bear immediate resemblance with Definition 11. Formula (2.20) directly utilizes the
stationarity assumption by averaging over the elements that ought to be the same (under
the stationarity assumption), hence the name “Toeplitz averaging”. The relation to
the discrete Fourier basis, which is important for efficient manipulation, is discussed in
Section 2.3.2.

2.2.2 Choice of Bandwidth

It remains to provide means to choose the band size δ, in order to make the methodology
applicable in practice. Recall that δ has to be large enough to eliminate B from the
model (2.1), but small enough so Trδ(A1 ⊗̃A2) does not vanish. We develop a strategy,
which picks δ among some candidate values. In practice, data is observed discretely, so
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a finite set of candidate bandwidths is easy to choose. At the same time, a whole range of
values for δ is asymptotically indistinguishable (we will formally observe this in Section
2.4). Hence the number of candidate values should increase with the grid size only up to
a certain reasonable value.

In this section, we make the estimator of Section 2.2 depend explicitly on δ as

Ĉ(δ) = Â1(δ) ⊗̃ Â2(δ) + B̂(δ).

Even though the separable part of the model A1 ⊗̃A2 does not depend on δ, the estimator
of the separable part Â1(δ) ⊗̃ Â2(δ) does, since shifted partial tracing with some fixed δ is
used to obtain the estimator. Note that if we actually knew C, we would use it in formulas
(2.14) and (2.17) instead of the empirical estimator ĈN to obtain a separable-plus-banded
proxy of C, denoted here as

C(δ) = A1(δ) ⊗̃A2(δ) +B(δ).

Under the separable-plus-banded model, it is C(δ) = C for any δ large enough to eliminate
B by δ-shifted partial tracing. However, among all such bandwidths, the smaller ones
will lead to better empirical performance.

Let ∆ := {δ1, . . . , δm} be the search grid of candidate values. If we knew C, the bandwidth
value leading to the best performance of our estimation methodology would be given by

δ? := arg min
δ∈∆

|||C(δ)− C|||22. (2.21)

Here, δ? is a set. In particular, under model (2.1), δ? contain all such bandwidths δ ∈ ∆
that B is banded by δ. We identify δ? with the minimum of this set. This arbitrary
choice reflects the fact that δ is a nuisance parameter, not an estimand of interest. And
as suggested by Theorem 3, there is a range of valid values, which are asymptotically
indistinguishable.

Since we do not know C we cannot evaluate the objective in (2.21). Instead, we propose
to approximate the objective by one that is fully calculable:

δ̂ := arg min
δ∈∆

∣∣∣∣∣∣∣∣∣Ĉ(δ)
∣∣∣∣∣∣∣∣∣2

2
− 2
N

N∑
n=1
〈Xn, Ĉ−n(δ)Xn〉, (2.22)

where Ĉ−n(δ) is our estimator constructed without the n-th observation Xn. It can be
shown that (2.22) is root-n consistent for (2.21) up to a constant (see Proposition 15),
which provides a justification for the adaptive choice of bandwidth. We cannot speak of
consistency here, since a whole range of values for δ is asymptotically undistinguishable,
provided the separable-plus-banded model holds. However, we will see that (even if the
separable-plus-banded model is not valid) the adaptively chosen bandwidth δ̂ leads to
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a separable-plus-banded proxy of C, denoted Ĉ(δ̂), which is asymptotically optimal in
the sense of (2.21).

The procedure above corresponds to a leave-one-out cross-validation (CV), which is
computationally prohibitive. In practice, we use 10-fold CV, where we split the data into
10 folds, and every fold gets held-out as a whole, instead of holding out only a single
observation as in (2.22).

Finally, let us discuss whether it is reasonable to have a fixed set of candidate values ∆.
Should we not allow the number of candidate bandwidth values increase with increasing
grid size K? The answer is negative simply because there is a whole range of equally
good candidate values (large enough to eliminate the banded part) among which to
pick. This range does not depend on K, we only need K large enough such that at least
one candidate discrete bandwidth falls inside this range. At the same time, ∆ needs to
contain this suitable candidate. However, this is always satisfied for a finite grid size K
and a finite cardinality of ∆. For example, when when Trδ(C) 6= 0 for all δ ∈ (0, 1) and
the true bandwidth δ? is smaller than 0.5, then for an equidistant grid of size K ≥ 2 it is
enough to choose ∆ = {1/3, 2/3}. Of course, in practice, δ? is unknown, usually much
smaller, and we would like to approximate it more closely, so we choose a larger set of
candidate values ∆. However, it is clear that the cardinality of ∆ should not depend on
the grid size K.

2.2.3 Goodness-of-fit Testing

In this section, we develop a testing procedure to check validity of the separable-plus-
banded model, generalizing the bootstrap separability test of Aston et al. (2017).

We begin by reviewing the seminal test of Aston et al. (2017). For a covariance C ∈ S2(H)
with H = H1 ⊗H2, a separable proxy is given by

C1 ⊗̃C2 = Tr1(C) ⊗̃Tr2(C)
Tr(C) ,

where Tr1 and Tr2 are partial traces, i.e. shifted partial traces with the zero shifts.
Plugging in the empirical covariance estimator, we obtain

Ĉ1 ⊗̃ Ĉ2 = Tr1(ĈN ) ⊗̃Tr2(ĈN )
Tr(ĈN )

a separable estimator of the covariance. Testing for separability is now based on the
following operator

DN = ĈN − Ĉ1 ⊗̃ Ĉ2. (2.23)

Under the hypothesis of separability, the norm ofDN (a distance to separability) converges
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to zero as N →∞.

While a test can be based directly on the asymptotic distribution of DN (given as
a special case of Theorem 3 later), such a test would require full calculation of the
empirical covariance, and even worse calculation of the asymptotic variance, which is
an eight-dimensional structure. Hence Aston et al. (2017) propose to test separability
only on a subspace of S2(H) and use bootstrap to avoid calculation of the asymptotic
variance. Namely, let U = span{u1, . . . , um} ⊂ H, then U ⊗ U determines a subspace of
S2(H) via isometry. Let TU⊗U denote the orthogonal projection to the subspace U ⊗ U .
Then we have

|||TU⊗UDN |||22 =
m∑
r=1
〈ur, DNur〉2. (2.24)

The most natural choice of U is given by the eigenfunctions of the separable estimator.
There are two reasons for this. Firstly, since we constrain the subspace on which
separability will be tested, it makes sense to focus on the subspace on which further
analysis (e.g. PCA) will likely be performed. Secondly, using the separable eigenfunctions
allows for a fast calculation of the test statistic. Let Ĉ1 = ∑

λ̂j êj⊗êj and Ĉ2 = ∑
γ̂j f̂j⊗f̂j

be the eigendecompositions and let U = span{êi ⊗ f̂j ; i = 1, . . . , I, j = 1, . . . , J}. Then
we have

|||TU⊗UDN |||22 =
I∑
i=1

J∑
j=1
〈êi ⊗ f̂j , DN êi ⊗ f̂j〉2 =

I∑
i=1

J∑
j=1

(
1
N

N∑
n=1
〈Xn, êi ⊗ f̂j〉2 − λ̂j γ̂j

)2

.

As for the bootstrap, Aston et al. (2017) propose to approximate the distribution of
|||TU⊗UDN |||22 by

|||TU⊗U (DN −D?
N )|||22, (2.25)

where D?
N is the distance-to-separability operator calculated based on a bootstrap sample

{X?
1 , . . . , X

?
N} drawn from the set {X1, . . . , XN} with replacement. The reason for

using bootstrap statistic (2.25) instead of simply |||TU⊗U (D?
N )|||22 is that the latter would

approximate the distribution of |||TU⊗UDN |||22 under the true C, i.e. not necessarily under
the null, which is that the C is separable.

It is natural to modify the separability test described above by changing the definition of
the distance-to-separability (2.23). From now on, let

DN = ĈN − Â1 ⊗̃ Â2 − B̂, (2.26)

where Â1, Â2 and B̂ are the estimators proposed in (2.14) and (2.17). The test statistic
is still taken as (2.24), where U is still given by the eigenfunctions of the separable part
Â1 ⊗̃ Â2. We still approximate the distribution of (2.26) by the bootstrap statistic

|||TU⊗U (DN −D?
N )|||22, (2.27)
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where D?
N is calculated like DN in (2.26) from a bootstrapped sample. Drawing for

example 103 bootstrap samples, the bootstrapped p-value is given by

1
103 + 1

103∑
m=1

1[∣∣∣∣∣∣TU⊗U (DN−D?N,m)
∣∣∣∣∣∣2

2
>|||TU⊗UDN |||22

],
where DN,m is calculated like in (2.26) from the m-th bootstrapped sample. The statistic
can be evaluated efficiently using the linear structure:

|||TU⊗UDN |||22 =
I∑
i=1

J∑
j=1

(
1
N

N∑
n=1
〈Xn, êi ⊗ f̂j〉2 − λ̂j γ̂j − 〈êi ⊗ f̂j , B̂ êi ⊗ f̂j〉

)2

,

where B̂êi ⊗ f̂j is calculated using the fast Fourier transform. To implement this test, we
modified the codes available in the covsep package (Tavakoli, 2016).

The procedure outlined above allows for goodness-of-fit testing of the separable-plus-
banded model using the ideas of Aston et al. (2017). It can be vaguely though of as
testing whether a separable model holds outside of a band.

2.3 Computational Considerations

Assume availability of discrete observations, i.e. that N independent realizations of
X ∈ RK×K were sampled (let K1 = K2 =: K for now, for simplicity) and denoted as
X1, . . . ,XN . Firstly, a general covariance tensor C has O(K4) degrees of freedom, while
it only has O(K2) degrees of freedom under the separability assumption. In comparison,
the observed degrees of freedom are only NK2. Secondly, it takes O(NK4) operations
to calculate the empirical estimate of the covariance tensor, i.e. ĈN = 1

N

∑N
n=1 X⊗X,

while this will be shown to reduce to O(NK3) under separability. We assume throughout
the thesis that multiplication of two K ×K matrices requires O(K3) operations, and we
set the cubic order in K as the limit of computational tractability for ourselves, which
for example prevents us from ever explicitly calculating the empirical covariance ĈN .
Also, the degrees of freedom correspond to storage requirements, thus although a general
covariance tensor becomes difficult to manipulate on a standard computer for K as low as
100 (at that point the empirical covariance takes roughly 6 GB of memory), the situation
under separability is much more favorable.

Recall that separability leads to an increased estimation accuracy, lower storage re-
quirements, and faster computations. We view our separable-plus-banded model as
a generalization of separability, and the aim of this section is to show that this gener-
alization does not come at the cost of loosing the favorable properties of the separable
model described above. In fact, we show in the remainder of this section that model (2.1)
can be estimated and manipulated under the same computational costs as the separable
model.
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2.3.1 Estimation Complexity

Recall that if we assume that B is stationary, we take B̂ = Ta(ĈN − Â1 ⊗̃ Â2), where is
the Toeplitz averaging operator. Now we establish the estimation complexity. Firstly, we
focus on the shifted partial tracing. Due to linearity, Trd1(ĈN ) = 1

N

∑
nTrd1(Xn ⊗Xn),

and as can be seen from formula (2.10), only K3 entries of the total of K4 entries of
Xn ⊗ Xn are needed to evaluate the shifted partial trace. Moreover, evaluating the
shifted partial trace amounts to averaging over one dimension of the 3D array, which
does not have to ever be stored, hence the time and memory complexities to estimate the
separable part of the model, i.e. to evaluate (2.16), are O(NK3) and O(K2), respectively.

To evaluate B̂ = 1
N

∑
nTa(Xn ⊗Xn) − Ta(Â1 ⊗̃ Â2), one can utilize the fast Fourier

transform (FFT). Every term Ta(Xn⊗Xn) can be evaluated directly on the level of data,
without the necessity to form the empirical estimator, in O(K2 log(K)) using the FFT.
This is because even in the discrete case, there is relation between stationary operators
and the Fourier transform. It is a well known fact in the time series literature that
the periodogram is both the real part of the discrete Fourier transform (DFT) of the
autocovariance function, i.e. of the first row of the (Toeplitz) covariance matrix, and
the squared DFT of the data (Brockwell et al., 1991). This is a consequence of the
Wiener-Khinchin theorem, and it allows one to compute the autocovariance function fast
using the FFT. It is straightforward to show that the previous generalizes to the case of
2D data, which is done next for completeness.

Note that in the case of a 1D time series, the 2D covariance operator is captured by the
1D autocovariance. In the case of a 2D datum X ∈ RK1×K2 , the 4D covariance estimator
ĈN ∈ RK1×K2×K1×K2 will be captured by the 2D symbol Γ̂N ∈ RK1×K2 . The latter is
defined as

Γ̂N [h1, h2] = 1
K1K2

K1∑
k1=1

K2∑
k2=1

X[k1, k2]X∗[k1 + h1, k2 + h2].

The DFT of X, denoted as Z, is defined by

X[k1, k2] = 1√
K1K2

K1∑
a=1

K2∑
b=1

Z[a, b]e−iωk1ae−iθk2b,

where ω = 2π/K1 and θ = 2π/K2. Thus plugging the DFT of X into the formula for Γ̂N ,
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we obtain

Γ[h1, h2] = 1
(K1K2)2

K1∑
k1=1

K2∑
k2=1

K1∑
a=1

K2∑
b=1

K1∑
t=1

K2∑
s=1

Z[a, b]Z∗[t, s]·

· e−iωk1ae−iθk2beiω(k1+h1)teiθ(k2+h2)s

= 1
(K1K2)2

K1∑
a=1

K2∑
b=1

K1∑
t=1

K2∑
s=1

Z[a, b]Z∗[t, s]·

· eiωh1teiθh2s
[ K1∑
k1=1

e−iωk1(a−t)
]

︸ ︷︷ ︸
=K11[a=t]

[ K2∑
k2=1

e−iθk2(b−s)
]

︸ ︷︷ ︸
=K21[b=s]

= 1
K1K2

K1∑
a=1

K2∑
b=1

Z[a, b]Z∗[a, b]eiωh1aeiθh2b = W[h1, h2],

where W is the inverse DFT applied to the DFT of X squared element-wise. Symbolically
W = ifft

(
|fft(X)|2

)
, where | · |2 is applied element-wise. This shows that Ta(X⊗X) can

be calculated fast using the FFT.

Finally, the term Ta(Â1 ⊗̃ Â2) can be evaluated directly in O(K3) operations, again
without explicitly forming the outer product. For example, Ta(A1 ⊗̃A2)[1, 1, 1, 1] is the
average of the diagonal elements of A1 ⊗̃A2, which can be calculated as a product of the
average diagonal element of A2 and average diagonal element of A2. Also Ta(A1 ⊗̃A2) ∈
RK1×K2×K1×K2 can be stored in the “autocovariance form” as an element of RK1×K2 .
Altogether, the memory complexity and the number of operations needed for computing
the estimator (2.17) in the case of K1 = K2 = K is O(K2) and O(NK2 logK + K3),
respectively. Hence estimation of the banded part is equally demanding as the estimation
of the separable part.

Altogether, we showed that a separable-plus-banded model can be estimated efficiently.
It remains to show that Ĉ := Â1 ⊗̃ Â2 + B̂ can be applied efficiently, and that an inverse
problem ĈX = Y can be solved efficiently. The application of Ĉ is easy to analyse
due to the superposition structure: one simply applies the separable part using the first
formula in (1.10), the banded part using the FFT, which is demonstrated in the following
section, and sums the two, leading to the desired complexities. On the other hand, the
inverse problem is non-trivial, since it is not possible to express the inverse of a sum of
two operators in terms of inverses of the two summands. This problem is dealt with in
Section 2.3.3.
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2.3.2 Fast Application and Norm Calculation

To achieve fast application of the separable-plus-banded covariance, we can apply the
separable and banded parts separately, and sum the results. The separable part can be
applied fast using formula (1.10). For the banded part, we need to show that a matrix-
vector product involving a Toeplitz matrix can be calculated efficiently. For this, we
utilize circulant matrices (c.f. Davis, 2013). Recall that a matrix Q ∈ Rm×n is circulant
if Q = (qij) = (qj−i+1 mod n), where q ∈ Rn is the symbol of the matrix, i.e. q> is the
first row of Q. Every circulant matrix is obviously a Toeplitz matrix. Contrarily, every
Toeplitz matrix can be embedded into a larger circulant matrix (note that this embedding
is not unique). For example, a symmetric Toeplitz matrix T ∈ Rn×n with symbol t ∈ Rn

can be embedded into a symmetric circulant matrix Q ∈ R(2n−1)×(2n−1) with symbol
q = (t1, . . . , tn, tn, . . . , t2). In the case of n = 3, we have

Q =


t1 t2 t3 t3 t2
t2 t1 t2 t3 t3
t3 t2 t1 t2 t3
t3 t3 t2 t1 t2
t2 t3 t3 t2 t1

 =
(

T ·
· ·

)
.

This embedding is useful due to the well known fact that circulant matrices are diagonal-
izable by the DFT, hence Q = E∗ diag(λ)E, where E is matrix with the discrete Fourier
basis in its columns, i.e. E[j, k] = 1√

n
e2πijk/n. Hence the eigenvalues of Q can be calcu-

lated as the FFT of the symbol q, namely λ = fft(q). This implies that a matrix-vector
product involving a circulant matrix can be calculated in O(n logn) as

Qv = E∗ diag(λ)Ev = ifft
(
λ�Ev

)
= ifft

(
fft(q)� fft(v)

)
, (2.28)

where ifft(·) is the inverse FFT and � denotes the Hadamard (element-wise) product.
Thus using the circulant embedding, the product of a Toeplitz matrix T ∈ Rn×n with
a vector v ∈ Rn can also be calculated in O(n logn):

Q
(

v
0

)
=
(

T ·
· ·

)(
v
0

)
=
(

Tv
·

)
. (2.29)

The previous machinery can be naturally extended to higher dimensions, using two-level
Toeplitz (resp. circulant) matrices, i.e. Toeplitz (resp. circulant) block matrices with
Toeplitz (resp. circulant) blocks. For example, the tensor-matrix product B̂X can be
written as B̂matvec(X), where B̂mat is the matricization of B̂, which is a two-level Toeplitz
matrix. This product can be calculated by embedding B̂mat into a two-level circulant
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matrix Qmat and using analogs of (2.28) and (2.29). Notably, equation (2.28) becomes

QmatX = i2Dfft
(

2Dfft(Γ)� 2Dfft(X)
)
,

where 2Dfft is the 2D DFT, i2Dfft is its inverse counterpart, and Γ ∈ R(2K1−1)×(2K2−1)

is the symbol of Q, which is the tensorization of Qmat. Note that the K1 ×K2 top-left
sub-matrix of Γ is the symbol of B̂.

Altogether, we have shown that a stationary B or its estimate can be applied within
our computational limits. Next, we show the same for norm calculations involving the
separable-plus-banded model.

The bandwidth selection strategy discussed in Section 2.2.2 requires calculations of norms
of separable-plus-stationary covariances. More generally, norms of the following form
needs to be calculated:

|||A1 ⊗̃A2 + B−C1 ⊗̃C2 −D|||2. (2.30)

Assuming we work on a K × K grid, we have A1,A2,C1,C2 ∈ RK×K and B,D ∈
RK×K×K×K (being stationary) in the previous formula. A naive calculation of the norm
then requires O(K4) flops. In this section, we show that the special structure can be
used to reduce the complexity to O(K3).

One only needs to realize that both a separable covariance and a stationary covariance
of size K ×K ×K ×K can be re-arranged into a matrix of size K2 ×K2 with K ×K
blocks such that every block is a rank-one matrix. For example, the diagonal entries of
A1 ⊗̃A2 + B−C1 ⊗̃C2 −D are also entries of

diag(A1) diag(A2)> + B[1, 1, 1, 1]11> − diag(C1) diag(C2)> −D[1, 1, 1, 1]11>, (2.31)

where 1 ∈ RK is the vector of ones. The matrix (2.31) is of size K ×K and also rank-3.
The squared Frobenius norm of this rank-3 matrix can be calculated using Gram-Schmidt
orthogonalization in only O(K) flops. Summing together the total of K2 of these blocks,
we can calculate the square of (2.30) in O(K3) flops. Therefore the norm calculation is
within our computational constraints.

2.3.3 Inverse Problem

In this section, we develop a fast solver to a linear system coming from a discretization
of model (2.1), i.e.

(A1 ⊗̃A2 + B)X = Y, (2.32)

where B ∈ RK×K×K×K is stationary.
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Equation (2.32) can be rewritten in a matrix-vector form as

(A + B)x = y, (2.33)

where A = A2 ⊗K A1 (cf. Remark 1), x = vec(X), y = vec(Y), and B ∈ RK2×K2 is
a two-level Toeplitz matrix (i.e. a Toeplitz block matrix with Toeplitz blocks, see Chan
and Jin, 2007).

The naive solution to system (2.33) would require O(K6) operations, while if B ≡ 0,
i.e. if the system were separable, the solution could be found in O(K3) operations. Since
the estimation of model (2.1) takes O(NK3), we are looking for a solver for (2.33) with
a complexity close to O(K3). We will develop an alternating direction implicit (ADI, cf.
Young, 2014) solver with the per-iteration cost of O(K3) and rapid convergence.

The system (2.33) can be transformed into either of the following two systems:

(A + ρI)x = y−Bx + ρx,
(B + ρI)x = y−Ax + ρx,

(2.34)

where I ∈ RK2×K2 is the identity matrix and ρ ≥ 0 is arbitrary. The idea of the
ADI method is to start from an initial solution x(0), and form a sequence {x(k)}k;2k∈N
by alternately solving the linearized systems stemming from (2.34) until convergence,
specifically:

(A + ρI)x(k+1/2) = y−Bx(k) + ρx(k),

(B + ρI)x(k+1) = y−Ax(k+1/2) + ρx(k+1/2).
(2.35)

The acceleration parameter ρ (also called the shift) is allowed to vary between iterations.
The optimal choice of ρ based on the spectral properties of A and B, guaranteeing
a fixed number of iterations, can be made in some model examples (e.g. when A and
B commute). Interestingly, numerical studies suggest that the ADI method exhibits
excellent performance on a large class of linear systems of the type (2.33) with the
model choice of ρ, as long as matrices A and B are real with real spectra (Young, 2014).
Hence we also choose ρ as suggested by the model examples and, in order to boost the
convergence speed, we gradually decrease its value from the starting one

ρ(0) =
√

max(αmaxαmin, βmaxβmin) + ε

as
ρ(k+1) = min

(
ρ(k),

‖xk+1 − xk‖2
‖xk‖2

)
, k ∈ N,

where α and β are the vectors of eigenvalues of A and B, respectively, and ε is a small
positive constant (by default the desired precision). Recall that A and B are positive
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semi-definite (we ensure this after estimation, as described in Section 2.3.4).

Now it remains to show how to efficiently solve the linear sub-problems (2.35).

Separable Equation (A + ρI)x = y

Even though A = A2⊗K A1, the matrix A + ρI does not generally posses the Kronecker
structure. Nonetheless, the system can be rewritten in the matrix form as

A1XA2 + ρX = Y , (2.36)

which is the well-known discrete Stein’s equation. Even though there exist specialized
solvers for this particular equation (see Simoncini, 2016, for an overview), they are not
suitable here due to the fact that ρ is usually very small. Instead of using these specialized
solvers, we show that, in our case of A1 and A2 being positive semi-definite, equation
(2.36) has in fact an analytic solution computable in O(K3) operations.

We compute the eigendecompositions A1 = U diag(φ)U> and A2 = V diag(ψ)V>.
Then, using the knowledge of the spectra of Kronecker products (c.f. Lemma lem:ct and
Remark 1), system (2.36) can be vectorized as

(U⊗K V) diag
[
vec(φψ>)

]
(U⊗K V)>x + ρx = y ,

where φψ> is a matrix corresponding to the vector of eigenvalues of A, which is
subsequently rearranged into a large diagonal matrix by the diag[·] operator. Secondly,
utilizing the fact that U⊗K V is an orthonormal basis, we can write

(U⊗K V) diag
[
vec(H)

]
(U⊗K V)>x = y ,

where we denote H := φψ> + ρ1, with 1 being a matrix with all entries equal to 1.
Finally, one can express the solution as

x = (U⊗K V) diag
[
vec(H)

]−1
(U⊗K V)>y .

Using property (1.9), this can be matricized back to

X = V(G�U>YV)U> ,

where G is the element-wise inverse of H and � denotes the Hadamard (element-wise)
product. Hence we found a solution, which is computable in O(K3) operations.
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Stationary Equation (B + ρI)x = y

B is a two-level Toeplitz matrix, and this structure is preserved when a diagonal matrix is
added to B, hence we only need to devise a solver for Bx = y, where B is positive definite.
Even though specialized solvers for this structured linear system exist, provably providing
a solution in O(K2 log2(K)), they are not easily accessible, and they are focused on
cases when B is not symmetric. The latter is likely the case because a Preconditioned
Conjugate Gradient (PCG) method is the method of choice, when positive definiteness is
granted.

We do not describe the conjugate gradient (CG) method here, as it is a classical
optimization method. Notably, Shewchuk (1994) provides both rigorous proofs and
informal geometrical arguments for the fact that CG converges faster if the eigenvalues
of B are clustered, which can be ensured by preconditioning. One CG step takes
O(K2 log(K)) operations, and this complexity is retained if a suitable preconditioning
is used. Moreover, under mild assumptions and with a convenient preconditioner, the
convergence rate of the PCG is super-linear, which means only a constant number of
iterations is needed to attain a prescribed accuracy (Chan and Jin, 2007). Even though we
cannot guarantee these mild assumptions, the second choice of preconditioning described
in Chapter 5 of (Chan and Jin, 2007) was shown to ensure the fixed number of iterations
for problems structurally very similar to ours. Hence we use this preconditioning, and
provide empirical evidence in Section 2.5.1 that the resulting algorithm performs well.

Summary

In this section, we devised a doubly-iterative algorithm to solve inverse problems in
the context of the separable-plus-stationary model. The outer iterative scheme re-
quires solution of two linear systems, one solvable in O(K3) iterations, the other in
O(ηpcgK2 log(K)), where ηpcg is the number of the iterations of the inner scheme. In
Section 2.5.1, we demonstrate empirically that ηpcg does not increase with increasing K,
and hence the overall complexity of the algorithm is O(ηadiK3), where ηadi is the number
of outer iterations. As demonstrated again in Section 2.5.1, ηadi also does not depend
on K, leading to an overall complexity O(K3). Hence we have a tractable inversion
algorithm for the separable-plus-stationary model.

Note that stationarity of B is used at two instances: in the top right-hand side of (2.35),
B needs to be applied fast, and (B + ρI)x = y needs to be solved fast. Both of these are
easy if for example B is diagonal (instead of stationary), i.e. we also have an efficient
inversion algorithm when a separable covariance is observed under heteroscedastic noise.
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2.3.4 Ensuring Symmetry and Positive Semi-definiteness

Among other things, the assumption of separability induces extra symmetry. Every
covariance C is symmetric in the sense that c(t, s, t′, s′) = c(t′, s′, t, s) for any t, s, t′, s′ ∈
[0, 1]. If c(t, s, t′, s′) = c1(t, t′)c2(s, s′), it is easy to see that it must be

c(t, s, t′, s′) = c(t′, s, t, s′) = c(t, s′, t′, s) = c(t′, s′, t, s), t, s, t′, s′ ∈ [0, 1].

When we wish to ensure that results of shifted partial tracing are symmetric, we have
several options:

(a) symmetrizing the results of shifted partial tracing, for example setting

Â1 = 1
2
[
Trδ1(ĈN ) + (Trδ1(ĈN ))∗

]
,

(b) inducing the extra symmetry of the covariance, for example Â1 = Trδ1(C̃N ) with
c̃N (t, s, t′, s′) = 1

2 [ĉN (t, s, t′, s′) + ĉN (t, s′, t′, s)],

(c) defining shifted partial tracing in a symmetric manner by replacing (2.4) with

kδ(t, s) =


1
2

[
k(t, s+ δ) + k(t+ δ, s)

]
, s < 1− δ,

0, otherwise,

and developing shifted partial tracing from there, which would ultimately lead to
the first formula in (2.3) replaced by

k1(t, t′) =
∫ 1−δ

0

1
2
[
k(t, s, t′, s+ δ) + k(t, s+ δ, t′, s)

]
ds

These options are equivalent due to the symmetry of ĈN and the fact that adjoining
commutes with any linear operator, hence also with shifted partial tracing.

Developing our theory as suggested by option (c) above is straightforward, merely
lengthening all the calculations. In practice, option (a) is preferable for computational
reasons.

Shifted partial tracing (even the symmetrized one) applied to a positive semi-definite
(PSD) operator does not necessarily lead to a PSD operator. In the case of the original
operator C being separable, it is easy to see that either Trδ1C � 0 or −Trδ1C � 0, so
a potential sign flip is enough to ensure PSD. However, ĈN is usually not separable even
when the original covariance C is. Nonetheless, ĈN is still a natural estimator of C
and, from our experience, the potential sign flip usually solves the problem. If need be,
the eigendecomposition can be calculated and negative eigenvalues set to zero. In the
discrete case, this requires O(K3) operations and thus it is computationally feasible.
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Chapter 2. Separable-plus-Banded Model

Let us now focus on Toeplitz averaging. Since the argument in (2.17) is symmetric,
and since the symmetry is obviously preserved, we only have to discuss positive semi-
definiteness. Unfortunately, the argument ĈN − Â1 ⊗̃ Â2 is not necessarily PSD and thus
B̂ may also not be. However, using Bochner’s theorem the same way as in Hall and
Patil (1994), the positive semi-definite projection of B̂ can be found. In the discrete
case, the matricization of B̂ can be embedded into a two-level circulant matrix with
symbol Γ (as in Section 2.3.2). Subsequently, the DFT is applied to Γ to obtain the
eigenvalues, negative eigenvalues are set to zero, and and the result is transformed back
via the inverse DFT, giving the positive part of B̂. This procedure requires O(K2 logK)
operations when the FFT is used.

2.4 Asymptotic Properties

In this section, we establish asymptotic properties of the proposed estimators both in
the case of fully observed and discretely observed data. We do this for a fixed value of
the bandwidth parameter before generalizing our results to the case of adaptively chosen
bandwidth, as described in Section 2.2.2. The proofs are postponed to the appendix, apart
from the asymptotic distribution in the fully observed case, whose proof is straightforward
and can be inspected without the general development of shifted partial tracing from
Section 2.1.1.

2.4.1 Fully Observed Data

We begin by investigating the asymptotic distribution of our estimators in the fully
observed case. There are three features we exploit to this end: linearity of shifted partial
tracing, the central limit theorem in the space of trace-class operators (Theorem 1), and
the continuous mapping theorem (CMT).

Theorem 3. Let X1, . . . , XN ∼ X be a (w.l.o.g. centered) random sample with covariance
(2.1), where B is stationary and δ?-banded. Let δ ≥ δ? such that Trδ(C) 6= 0. Let

∞∑
j=1

(
E〈X, ej〉4

)1/4
<∞ (2.37)

for some orthonormal basis {ej}∞j=1 in L2([0, 1]2). Then
√
N(Â1 −A1),

√
N(Â2 −A2),

√
N(B̂ −B)

converge to mean zero Gaussian random elements (of the proper trace-normed Banach
spaces, as N →∞).
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2.4 Asymptotic Properties

The moment assumption (2.37) ensures that
√
N(ĈN−C) d−→ Z, where Z is a mean-zero

Gaussian random element in S1(L2([0, 1]2)), i.e. the convergence is in the trace-norm
topology (Mas, 2006). Also, it can be seen from the proof of the theorem that the
the asymptotic distribution of Â1 and Â2 remains valid even without the stationarity
assumption placed on B̂.

To prove Theorem 3, we need the following auxiliary result.

Lemma 5. (a) Let Z ∈ S1(L2([0, 1]2)) be a Gaussian random element. Then Trδ1(Z)
and Trδ2(Z) are Gaussian random elements of S1(L2([0, 1]2)).

(b) Let Z ∈ S1(L2([0, 1]2)) be a Gaussian random element. Then Ta(Z) is a Gaussian
random elements of S1(L2([0, 1]2)).

(c) Let Z ∈ S1(L2([0, 1])) be a Gaussian random element and F ∈ S1(L2([0, 1])). Then
Z ⊗̃F and F ⊗̃Z are Gaussian random elements in S1(L2([0, 1]2)).

Proof. Firstly, note that a random element Z ∈ S1(L2([0, 1]2)) is Gaussian if, for any
G ∈ S∞(L2([0, 1]2)), Tr(GZ) is Gaussian (Bosq, 2012).

Secondly, for an operator F : B1 → B2, its adjoint F ∗ : B∗2 → B∗1 is defined so for any
G ∈ B∗2 we have F ∗G = GF .

(a) This follows immediately from the above and formula (2.5).

(b) For Ta : S1(L2([0, 1]2)) → S1(L2([0, 1]2)), the adjoint Ta∗ : S∞(L2([0, 1]2)) →
S∞(L2([0, 1]2)) satisfies Ta∗(G) = GTa for any G ∈ S∞(L2([0, 1]2)). Hence
Tr(GTa(Z)) = Tr(Ta∗(G)Z), where Ta∗(G) ∈ S∞(L2([0, 1]2)).

(c) This is Proposition 1.2 in the supplement of Aston et al. (2017). A proof can be
found there.

Proof of Theorem 3. We begin with the asymptotic Gaussianity of Â1. We have from
linearity

√
N(Â1 −A1) =

√
N
(
Trδ1(ĈN )− Trδ1(C)

)
= Trδ1

(√
N(ĈN − C)

)
d−→ Trδ1(Z),

where the convergence follows from the CMT in the Banach space. Trδ1(Z) is Gaussian
by Lemma 5. Its mean being zero follows from linearity of Trδ1.
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The asymptotic Gaussianity of Â2 follows in a similar way, but this time the CMT has
to be applied using a non-linear function. We have

√
N

(
Â2 −

Trδ2(C)
Trδ(C)

)
=
√
N

(
Trδ2(ĈN )
Trδ(ĈN )

± Trδ2(C)
Trδ(ĈN )

− Trδ2(C)
Trδ(C)

)

=
√
N

Trδ(ĈN )

(
Trδ2

(
ĈN − C

)
+ Trδ(C)Trδ2(C)− Trδ(ĈN )Trδ2(C)

Trδ(C)

)

= 1
Trδ(ĈN )

Trδ2[√N(ĈN − C)
]
−

Trδ
[√
N(ĈN − C)

]
Trδ2(C)

Trδ(C)


d−→ 1

Trδ(C)

(
Trδ2(Z)− Trδ(Z)Trδ2(C)

Trδ(C)

)
,

where we used again the CMT. Since Trδ2(Z) is Gaussian again by Lemma 5 and Trδ(Z)
is Gaussian from the definition, the whole limit is Gaussian. The mean is zero from
linearity.

Finally, we turn our attention to B̂:
√
N(B̂ −B) =

√
N
(
Ta(ĈN − Â1 ⊗̃ Â2)− Ta(C −A1 ⊗̃A2)

)
= Ta

(√
N(ĈN − C)−

√
N(Â1 ⊗̃ Â2 −A1 ⊗̃A2)

)
.

(2.38)

Recall that in our model it holds A1 ⊗̃A2 = Trδ1(C) ⊗̃Trδ2(C)
Trδ(C) . Hence we have

√
N(Â1 ⊗̃ Â2 −A1 ⊗̃A2) =

√
N

Trδ1(ĈN ) ⊗̃Trδ2(ĈN )
Trδ(ĈN )

− Trδ1(C) ⊗̃Trδ2(C)
Trδ(C)

± Trδ1(ĈN ) ⊗̃Trδ2(C)
Trδ(ĈN )

± Trδ1(C) ⊗̃Trδ2(C)
Trδ(ĈN )


=

√
N

Trδ(ĈN )

(
Trδ1(ĈN ) ⊗̃Trδ2

[
ĈN − C

]
+ Trδ1

[
ĈN − C

]
⊗̃Trδ2(C)

− Trδ
[
ĈN − C

](
A1 ⊗̃A2

))
.

Plugging this back to (2.38) and using the CMT again, we obtain

√
N(B̂ −B) d−→ Ta

(
Z − Trδ1(C) ⊗̃Trδ2(Z)

Trδ(C)
− Trδ1(Z) ⊗̃Trδ2(C)

Trδ(C)
+ Trδ(Z)

Trδ(C)

(
A1 ⊗̃A2

))
.

The right-hand side before Toeplitz averaging is Gaussian again due to the reasons above.
And by the previous lemma it remains Gaussian after Toeplitz averaging.
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2.4.2 Discretely Observed Data

Next, we consider the case of discretely measured random fields, potentially subject to
additive measurement error contamination. Let [0, 1]2 = ⋃K

i=1
⋃K
j=1 I

K
i,j , where IKi,j is

a Cartesian product of two sub-intervals of [0, 1] and IKi,j ∩ IKi′,j′ = ∅ for (i, j) 6= (i′, j′).
Assume again that K1 = K2 =: K and that |IKi,j | = K−2 for all i, j = 1, . . . ,K.

The observations are assumed to be of the form

X̃K
n [i, j] = XK

n [i, j] + EK
n [i, j] , i = 1, . . . ,K , s = 1, . . . ,K , (2.39)

where the matrices X1, . . . ,XN ∈ RK×K are discretely measured versions of the latent
surfaces X1, . . . , XN ∈ L2([0, 1]2), and EK

n are measurement errors.

We will consider two types of sampling schemes relating the latent surfaces X1, . . . , XN ∈
L2([0, 1]2) to the discrete data X1, . . . ,XN ∈ RK×K :

(S1) Xn, n = 1, . . . , N , are observed pointwise on a grid, i.e. there exist tK1 , . . . , tKK ∈ [0, 1]
and sK1 , . . . , sKK2

∈ [0, 1] such that (tKi , sKj ) ∈ IKi,j

XK
n [i, j] = Xn(tKi , sKj ) , i = 1, . . . ,K , j = 1, . . . ,K .

Note that to make such point evaluations of X meaningful, we have to assume that
realizations of X are continuous (cf. Hsing and Eubank, 2015).

(S2) The average value of Xn on the pixel IKi,j is observed for every pixel, i.e.

XK
n [i, j] = 1

|IKi,j |

∫
IKi,j

Xn(t, s) dt ds , i = 1, . . . ,K , j = 1, . . . ,K .

As for the measurement error arrays
(
EK
n [i, j]

)K
i,j=1

, these are assumed to be i.i.d. (with
respect to the index n) and uncorrelated with Xn, satisfying the following 4-th order
moment conditions:

E
(
EK
n [i, j]

)
= 0 ,

E
(
EK
n [i, j]EK

n [k, l]
)

= σ21[i=k,j=l] ,

E
(
EK
n [i, j]EK

n [k, l]XK
n [i′, j′]EK

n [k′, l′]
)

= E
(
EK
n [i, j]EK

n [k, l]
)
E
(
XK
n [i′, j′]EK

n [k′, l′]
)
.

for i, j, k, l, i′, j′, k′, l′ = 1, . . . ,K and n = 1, . . . , N . Note that under the sampling scheme
(S1), equation (2.39) corresponds to the commonly adopted errors-in-measurements model
(Yao et al., 2005a; Zhang and Wang, 2016, and references therein).
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We denote by XK the piecewise constant continuation of XK , i.e.

XK(t, s) =
K∑
i=1

K∑
j=1

XK [i, j]1[(t,s)∈IKi,j ]
.

One can readily verify that pointwise sampling scheme (S1) corresponds to pointwise
evaluations of the covariance, i.e. Var(XK) = CK , where CK has kernel

cK(t, s, t′, s′) =
K∑

i,j,k,l=1
c(ti, sj , tk, sl)1[(t,s)∈IKi,j ]

1[(t′,s′)∈IK
k,l

] ,

while pixel-wise sampling (scheme S2) corresponds in turn to pixelization of the covariance.
Namely, if we denote gKi,j(t, s) = K1[(t,s)∈IKi,j ]

then we have Var(XK) = CK with

XK =
K∑
i=1

K∑
j=1
〈X, gKi,j〉gKi,j , CK =

K∑
i,j,k,l=1

〈C, gKi,j ⊗ gKk,l〉gKi,j ⊗ gKk,l (2.40)

In the same spirit, CK is the piecewise constant continuation of CK = E(XK ⊗XK).

If we constrain ourselves to the noiseless multivariate setting and consider the discrete
version of the covariance to be the ground truth, it is straightforward to obtain the
multivariate version of Theorem 3, regardless of the sampling scheme.

Corollary 2. Let X1, . . . ,XN be i.i.d. copies of X ∈ RK×K , which has mean zero
(w.l.o.g.) and covariance C = A1 ⊗̃A2 + B with B banded by d? < K. Assume
that E‖X‖4F < ∞ and that there exists d ≥ d? such that Trd(C) 6= 0. Let ĈN =
1
N

∑N
n=1 Xn ⊗Xn, Â1 = Trd1(ĈN ), Â2 = Trd2(ĈN )/Trd(ĈN ) and B̂ = ĈN − Â1 ⊗̃ Â2.

Then √
N(Â1 −A1),

√
N(Â2 −A2),

√
N(B̂−B)

converge to mean zero Gaussian random elements.

When both N and K diverge, Theorem 3 does not apply, but we can still obtain
convergence rates. To this aim, we first ought to clarify how bandedness of B, BK and
BK are related. It can be seen that if B is banded by δ, then BK is banded by dK = dδKe,
while BK is banded by δK = dK/K, which decreases monotonically down to δ for
K →∞. In the following theorem, ÂK1 and ÂK2 denote piecewise constant continuations
of ÂK

1 = TrdK1 (ĈK
N ) and ÂK

2 = TrdK2 (ĈK
N )/TrdK (ĈK

N ), where ĈK
N = 1

N

∑N
n=1 X̃n ⊗ X̃n is

the empirical covariance based on the observed (noisy) data (2.39).

Theorem 4. Let X1, . . . , XN be i.i.d. copies of X ∈ L2[0, 1]2, which has (w.l.o.g. mean
zero and) covariance given by (2.1), where the the separable part A := A1 ⊗̃A2 has kernel
a(t, s, t′, s′), which is Lipschitz continuous on [0, 1]4 with Lipshitz constant L > 0. Let
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E‖X‖4 <∞ and δ ∈ [0, 1) be such that B from (2.1) is banded by δ and Trδ(A) 6= 0. Let
the samples come from (2.39) via measurement scheme (S1) or (S2) with Var(EK

n [i, j]) ≤
σ2 = O(

√
K). Then we have∣∣∣∣∣∣∣∣∣ÂK1 ⊗̃ ÂK2 −A1 ⊗̃A2

∣∣∣∣∣∣∣∣∣2
2

= OP (N−1) + 2K−2L2, (2.41)

where the OP (N−1) term is uniform in K, for all K ≥ K0 for a certain K0 ∈ N.
Furthermore, if ÂK1 = ∑

j∈N λ̂
K
j ê

K
j ⊗ êKj , ÂK2 = ∑

j∈N ρ̂
K
j f̂

K
j ⊗ f̂Kj , A2 = ∑

j∈N λjej ⊗ ej,
and A2 = ∑

j∈N ρjfj ⊗ fj are eigendecompositions, then |λ̂Ki ρ̂Kj − λiρj |2 follows the rate
given in (2.41), and if the eigensubspace associated with ej is one-dimensional, then also
‖êKj − sign(〈êKj , ej〉)ej‖22 follows the rate given in (2.41).

While the proof is postponed to the appendix, we make several comments here.

1. There is a concentration in K due to shifted partial tracing (recall Figure 2.1),
hence the variance of the errors is allowed to grow with K as stated in the theorem.

2. The estimators ÂK1 and ÂK2 are only defined if TrdK (ĈK
N ) 6= 0. Since ĈK

N → CK

for N →∞ entry-wise apart from the diagonal, we have TrdK (ĈK
N )→ TrdK (CK),

so we require TrdK (CK) 6= 0. Due to continuity of the kernel c and the fact
that dK → δ for K → ∞, the assumption Trδ(A) 6= 0 implies TrdK (CK) 6= 0
for a sufficiently large K. This is the only reason why we require K larger than
a certain K0 in order for the OP (N−1) term to be uniform in K.

3. The Lipschitz continuity assumption allows us to bound the bias while the fourth-
order moment condition on data allows us to bound the variance. The bulk of the
proof has to do with controlling the variance, and doing so uniformly in the grid
size.

4. The Lipschitz continuity assumption can be weakened. For example, continuity
almost everywhere is sufficient for the bias to convergence to zero, though without
an explicit rate in K.

5. Since the roles of A1 and A2 are symmetric, one naturally obtains the rates for f̂Kj
as well.

The rate in (2.41) is valid also in the uniform norm, but uniform rates for the eigenfunc-
tions are a bit trickier to obtain. Standard perturbation bounds cannot be used anymore,
and it does not seem possible to separate the effect of the grid size from the effect of the
sample size, when dealing with uniform rates for the eigenfunctions. But if we assume
e.g. that K �

√
N , the corresponding rate holds for the eigenfunctions as well.

Similar rates of convergence hold also in the uniform norm, but the noise variance is
allowed to grow with the grid size only at a slower rate.
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Proposition 8. Under the assumptions of Theorem 4, but with σ2 = 4√K, it holds

sup
t,s,t′,s′∈[0,1]

|âK1 (t, t′)âK2 (s, s′)− a1(t, t′)a2(s, s′)| = OP (N−1/2) + 2K−1L,

where the OP (N−1) term is uniform in K, for all K ≥ K0 for a certain K0 ∈ N. This
rate is also valid for the eigenvalues. And if, furthermore, K �

√
N , we obtain the

corresponding rate for the eigenfunctions as well:

‖êKj − sign(〈êKj , ej〉)ej‖∞ = OP (N−1/2) & ‖f̂Kj − sign(〈f̂Kj , fj〉)fj‖∞ = OP (N−1/2).

In case the banded part of the process is also of interest, the same rates can be achieved
in the noiseless setting (σ2 = 0) under the smoothness assumptions on the banded part
of the covariance.

Without the assumption of stationarity on B, i.e. without Toeplitz averaging, one has:∣∣∣∣∣∣∣∣∣B̂K −B
∣∣∣∣∣∣∣∣∣

2
≤
∣∣∣∣∣∣∣∣∣B̂K −BK

∣∣∣∣∣∣∣∣∣
2

+
∣∣∣∣∣∣∣∣∣BK −B

∣∣∣∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣∣∣∣ĈKN − ÂK1 ⊗̃ ÂK2 − (CK −AK1 ⊗̃AK2 )

∣∣∣∣∣∣∣∣∣
2

+
∣∣∣∣∣∣∣∣∣BK −B

∣∣∣∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣∣∣∣ĈKN − CK ∣∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∣ÂK1 ⊗̃ ÂK2 −AK1 ⊗̃AK2 ∣∣∣∣∣∣∣∣∣2 +
∣∣∣∣∣∣∣∣∣BK −B

∣∣∣∣∣∣∣∣∣
2

where the separable term can be treated as before and
∣∣∣∣∣∣∣∣∣ĈKN − CK ∣∣∣∣∣∣∣∣∣2 can be bounded

similarly. With the assumption of stationarity, i.e. with Toeplitz averaging, nothing
essential changes in the noiseless case.

The noisy case (σ2 > 0) is trickier however, because we cannot estimate the diagonal of
B. In such a case, one would need to smooth the estimated symbol of B as Yao et al.
(2005a). We omit the details here. However, we note that full covariance smoothing is
obviously not computationally tractable, hence any smoothing should either be applied
at the level of data (pre-smoothing) or at the level of the estimated 2D parts of the
covariance (post-smoothing). Nonetheless, as exemplified by the previous theorem, the
mere presence of white noise errors does not call for smoothing when the target of
inference is the separable component, or when an estimator of the covariance including
noise is sought, e.g. for the purposes of prediction.
Remark 5. In the noiseless case, the convergence rates in Theorem 4 are immediately
applicable to the special case of a separable model and standard (non-shifted) partial
tracing, as used by Aston et al. (2017). In the noisy case, however, shifted partial tracing
(with an arbitrarily small shift) is needed to remove the noise. The denoising properties
of shifted partial tracing are quite remarkable, as demonstrated by the fact that the noise
level is allowed to grow with the sample size in Theorem 4. Due to continuity, a small
shift should have a small impact on the quality of the estimator. Hence it might be
recommended to always use shifted partial tracing with the minimal possible shift instead
of the standard (non-shifted) partial trace.
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2.4.3 Adaptive Bandwidth

In the previous sections, we have studied asymptotic properties of the estimators obtained
by the proposed methodology with a known value of the bandwidth parameter (i.e. the
shift used when partially tracing). Here, we provide versions of these results when the
bandwidth parameter is unknown and selected adaptively via the procedure described in
Section 2.2.2. We begin by providing rates of convergence in the fully observed scenario.

Theorem 5. Let X1, . . . , XN ∼ X be a (w.l.o.g. centered) random sample with covariance
given by (2.1), where B is stationary and δ?-banded. Let the moment condition (2.37)
hold for some orthonormal basis {ej}∞j=1 in L2[0, 1]2, and let δ̂ be chosen as in (2.22)
from the set ∆ of finite size in which there exists δ ≥ δ? such that Trδ(C) 6= 0. Then∣∣∣∣∣∣∣∣∣Â1(δ̂) ⊗̃ Â2(δ̂)−A1 ⊗̃A2

∣∣∣∣∣∣∣∣∣2
2

= OP (N−1) and
∣∣∣∣∣∣∣∣∣B̂(δ̂)−B

∣∣∣∣∣∣∣∣∣2
2

= OP (N−1).

The adaptively chosen bandwidth itself is not consistent. This is because there is nothing
to be consistent for: under the separable-plus-banded model, there is a whole range of
valid bandwidths, which are asymptotically indistinguishable. Still, all those bandwidths
lead asymptotically to the same estimator, and hence the previous theorem provides
consistency of Ĉ(δ̂) for C(δ?) even if δ̂ itself is not consistent for δ?. This reflects that δ
is merely a nuisance parameter.

However, if asymptotic distribution is needed, selection among equally well-suited band-
widths is necessary. The latter can be achieved by a slight modification of the bandwidth
selection scheme. For τ ≥ 0, we define

Ξτ (δ) := |||C(δ)− C|||22 + τδ,

Ξ̂τ (δ) :=
∣∣∣∣∣∣∣∣∣Ĉ(δ)

∣∣∣∣∣∣∣∣∣2
2
− 2
N

N∑
n=1
〈Xn, Ĉ−n(δ)Xn〉+ τδ,

and
δ̃ := arg min

δ∈∆
Ξ̂τ (δ). (2.42)

A new parameter τ has been introduced into the objective to discriminate between
equally good choices of δ. The proposition below shows that under the modified scheme,
Ĉ(δ̃) is asymptotically Gaussian, when τ > 0 is small enough.

Proposition 9. Let X1, . . . , XN ∼ X be a (w.l.o.g. centered) random sample with
covariance given by (2.1), where B is stationary and δ?-banded. Let the moment condition
(2.37) hold for some orthonormal basis {ej}∞j=1 in L2([0, 1]2). Let ∆ = {δ1, . . . , δm} be
such that Trδ(C) 6= 0 for any δ ∈ ∆ of which at least one is larger that δ?. Finally, let δ̃
be chosen as in (2.42) with τ < minδ∈∆,δ<δ? |Ξ(δ)− Ξ(δ?)|. Then

√
N(Â1(δ̃) ⊗̃ Â2(δ̃)−

A1 ⊗̃A2) and
√
N(B̃(δ̂)−B) converge to mean zero Gaussian random elements.
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Chapter 2. Separable-plus-Banded Model

On one hand, τ is a new nuisance parameter that needs to be chosen instead of δ. On
the other hand, it is easier to choose it (it just needs to be small enough). Moreover, the
previous theorem shows that choosing τ = 0 provides the correct rates of convergence.

Finally, we discuss what happens to the discrete rates in Theorem 4 when the bandwidth
is chosen adaptively. While Theorem (4) establishes that the proposed estimation
methodology is robust against noise, this is not the case for the bandwidth selection
procedure of Section 2.2.2. Here, we will change the bandwidth selection procedure to
one that is robust against noise. We should, however, note that this new bandwidth
selection procedure should rarely be used in practice. This goes back to whether we see
a banded part of the model as a nuisance or as a rough signal to be estimated. With
a fixed grid size K, choosing the discrete bandwidth d = 1 suggests either presence
of noise, or presence of a banded part B with bandwidth smaller than the reciprocal
of the grid size 1/K. There is no way to distinguish between the two options, and a
practitioner would hardly care about the difference. Still, the distinction has to be made
for the purpose of theory, when the grid size K is allowed to diverge. The development
below can be taken simply as a complementary evidence that we truly obtain the correct
estimators of the separable part, even under discrete noisy measurements and when the
bandwidth is unknown.

For K ∈ N, F,G ∈ RK×K×K×K , and FK , GK ∈ S2(L2[0, 1]2) the piece-wise constant
continuations of F and G, respectively, we define ‖FK‖? via∣∣∣∣∣∣∣∣∣FK ∣∣∣∣∣∣∣∣∣2

?
=
∣∣∣∣∣∣∣∣∣FK ∣∣∣∣∣∣∣∣∣2

2
− 1
K2 ‖ diag(F)‖22.

We also define 〈·, ·〉? as

〈FK , GK〉? = 〈FK , GK〉 − 1
K2 〈diag(F), diag(G)〉.

Finally, recall that X̃K
n are the discrete noisy samples (or rather piece-wise constant

continuations thereof), and define

ΞK(δ) :=
∣∣∣∣∣∣∣∣∣CK(δ)− CK

∣∣∣∣∣∣∣∣∣2
?

& Ξ̂K(δ) :=
∣∣∣∣∣∣∣∣∣ĈK(δ)

∣∣∣∣∣∣∣∣∣2
?
− 2
N

N∑
n=1
〈X̃K

n , Ĉ
K
−n(δ)X̃K

n 〉?,

and
δ̂ := arg min

δ∈∆
Ξ̂K(δ) & δ? := arg min

δ∈∆
ΞK(δ). (2.43)

With these definitions, we are trying to bypass the effect of noise on the bandwidth
selection procedure, to obtain an adaptive version of Theorem 4. Since ‖ · ‖? is clearly a
semi-norm and 〈·, ·〉? is the corresponding semi-inner-product (Conway, 2019), we will be
able to combine the continuous-domain result in Theorem 5 with the discrete-domain
result in Theorem 4 to obtain the following result.
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2.5 Empirical Demonstration

Theorem 6. Let X1, . . . , XN be i.i.d. copies of X ∈ L2([0, 1]2), which has (w.l.o.g. mean
zero and) covariance given by (2.1), where the the separable part A := A1 ⊗̃A2 has kernel
a(t, s, t′, s′), which is Lipschitz continuous on [0, 1]4 with a Lipshitz constant L > 0. Let
E‖X‖4 < ∞ and δ? ∈ [0, 1) be such that B from (2.1) is banded by δ?. Let ∆ be such
that Trδ(A) 6= 0 for all δ ∈ ∆ of which at least one is larger than δ?, and let δ̂ be chosen
from ∆ as in (2.43). Let the samples come from (2.39) via measurement scheme (S1) or
(S2) with Var(EK

n [i, j]) ≤ σ2 <∞. Then we have∣∣∣∣∣∣∣∣∣ÂK1 (δ̂) ⊗̃ ÂK2 (δ̂)−A1 ⊗̃A2
∣∣∣∣∣∣∣∣∣2

2
= OP (N−1) + 2K−2L2, (2.44)

where the OP (N−1) term is uniform in K, for all K ≥ K0 for a certain K0 ∈ N.

Rates for the eigenvalues and eigenfunctions hold as well and can be obtained just as in
Theorem 4.

2.5 Empirical Demonstration

In this section, we demonstrate how our methodology can be used to estimate a covariance
from surface data observed on a grid, and how it compares to the empirical covariance
estimator and the separable model, estimated via partial tracing (Aston et al., 2017)
or as the nearest Kronecker product (Van Loan and Pitsianis, 1993). We begin with
simulated data in Section 2.5.1, where we focus on weakly dependent contamination of
separability, and then move on to a real data set in Section 2.5.2, where we find evidence
for heteroscedastic white noise contamination.

2.5.1 Simulation Study

The data are generated as follows. Firstly, we create norm-one covariances A1,A2 ∈
RK×K and draw Y1, . . . ,YN independently from the matrix-variate Gaussian distribution
with mean zero and covariance A = A1 ⊗̃A2, using Theorem 2. Secondly, we draw
enough N (0, 1) entries (independent of everything), arrange them on a grid, and perform
space-time averaging using a filter Q =

(
qk,l
)
∈ Rd×d for d ∈ {1, 3, . . . , 19} to obtain

a sample Wn for every n = 1, . . . , N . This sample is drawn from a distribution with
mean zero and covariance B ∈ RK×K×K×K , which is by construction stationary, banded
by d, and its entries can be explicitly calculated. We set the sample size N = 300 and the
grid size K = 100, so the discrete bandwidth d corresponds to the continuous bandwidth
δ in percentages. Finally, we form our data set X1, . . . ,XN ∈ RK×K as

Xn = Yn +
√
τWn, n = 1, . . . , N, (2.45)

where τ ∈ [0, 1]. Thus X1, . . . ,XN ∈ RK×K are drawn from a zero-mean distribution
with a separable-plus-banded covariance C = A1 ⊗̃A2 + τB. Since A1, A2 and B are
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Chapter 2. Separable-plus-Banded Model

standardized to have the Frobenius norm equal to one, the parameter τ can be understood
as signal-to-noise ratio.

Note that our methodology based on shifted partial tracing first estimates the separable
part of the model, and subsequently estimates B using the estimates for the separable
part. Therefore the parameter τ of (2.45) controls the difficulty of the estimation problem
in a continuous way: a small τ corresponds to a nearly separable model, which is easier
to estimate than a highly non-separable model stemming from a larger τ . The second
parameter governing the difficulty of the estimation problem is the bandwidth d. However,
the effect of d is discontinuous: a small d does not correspond to a nearly separable
model, only d = 0 leads to an exactly separable model. The third difficulty-governing
parameter is naturally the sample size N .

The following methods were used to estimate C:

SPT-d – shifted partial tracing, i.e. the proposed methodology of Section 2.2,
provided with the true bandwidth d;

SPT-CV – shifted partial tracing with δ chosen via cross-validation;

PT – partial tracing, an approach incorrectly assuming separability;

NKP – the nearest Kronecker product, i.e. the solution to (1.23);

ECE – the standard empirical covariance estimator.

The plots also show the bias of a separable estimator, calculated as the difference between
the true covariance C and the best separable approximation of C, i.e. the solution to
(1.23) with ĈN replaced by C. For several different settings, we calculate the relative
estimation error ‖C − Ĉ‖F /‖C‖F , where Ĉ is an estimator computed by one of the
above-listed methods.

The separable factors A1 and A2 are chosen both as either the covariance of the Wiener
process or as rank-7 covariances with linearly decaying eigenvalues and shifted Legendre
polynomials as the eigenvectors, see Figure 2.3. As will be explained later, the Wiener
case is simpler to handle than the Legendre case, because the Wiener covariance decays
slower away from the diagonal. For the banded part of the covariance, we choose
the filter Q =

(
qk,l
)
as either qk,l = (−1)|k−l|, leading to B with its symbol depicted

in Figure 2.4 (left), or qk,l = 9
16

(
1− |k|

p+1

) (
1− |l|

p+1

)
, i.e. the outer product of two

Epanechnikov kernels, leading to B with its symbol depicted in Figure 2.4 (right). Again,
the Epanechnikov case will turn out to be easier compared to the other choice of the
filter (called the signed case).

Figure 2.5 depicts how the estimation error evolves when one of the three difficulty-
governing parameters (bandwidth d, signal-to-noise ration τ , and sample size N) varies,
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2.5 Empirical Demonstration

Figure 2.3: The two choices for the separable constituents of the separable-plus-banded model:
the Legendre covariance (left) and the Wiener covariance (right).
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Figure 2.4: The two choices for symbol of the banded part of the separable-plus-banded model:
the signed case (left) and the Epanechnikov case (right).
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while the remaining two parameters are held fixed at any given plot (at d = 9, τ = 3
or N = 300) in the Legendre-signed case, which is the most interesting one of the four
cases. There are several remarks to be made about the results in Figures 2.5:

1. Shifted partial tracing outperforms both the separable model (estimated either by
partial tracing or as the nearest Kronecker product) and the empirical covariance.

2. Bandwidth selection works well, leading to the same or even better performance
than with known δ (see the tail end of the left and middle plots in Figure 2.5).
This is because the banded part B decays away from the diagonal, and sometimes
choosing a smaller bandwidth than the true one can lead to a better bias-variance
trade-off.

3. When the truth is separable (i.e. d = 0) or nearly separable (i.e. τ large1), partial
tracing leads to the best results. In these cases, the bandwidth selection strategy

1This is because B is itself separable by construction, so when τ is large – making A1 ⊗̃ A2 negligible
– the separable model can lead to a good performance.
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Chapter 2. Separable-plus-Banded Model

Figure 2.5: Estimation errors for several competing methods with changing bandwidth d (left),
signal to noise ratio τ (middle), and sample size N (right) in the Legendre-signed scenario. The
vertical dotted lines show where every parameter is fixed for the remaining two plots (e.g. for the
left plot, it is τ = 3 and N = 300).
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correctly chooses a very small bandwidth, and hence the performance of SPT-CV
matches the one of PT.

4. Note the extreme rise at the beginning of the error curves belonging to the empirical
or the separable estimators in Figure 2.5 (left). While d = 0 corresponds to a
separable model, d = 1 is already quite non-separable. Even though the amount
of non-separability (c.f. the bias curve) is rather low, it is enough to substantially
deteriorate performance of the separable estimators or the empirical covariance,
while performance of the proposed methodology does not suffer too much.

5. The previous point is manifested again for large sample sizes N (see Figure 2.5,
right). While the amount of non-separability of C is still low and one would
expect the performance of the separable estimators to be quite good, this is not the
case. Altogether, we can say that presence of noise strikingly obstructs separable
estimation.

Results for the remaining three scenarios (Legendre-Epanechnikov, Wiener-signed, and
Wiener-Epanechnikov cases) are shown in Figure 2.6. All the scenarios exhibit qual-
itatively similar behavior (described above), and the quantitative differences can be
attributed to different shapes of the underlying covariances. Still, there are couple of
observations worth noting:

1. Firstly, note that the Wiener case seems to be slightly easier than the Legendre
case, despite the fact the former covariance is non-differentiable while the latter is
analytic. Higher-order smoothness of the covariances does not play a role – this
should be expected since our theoretical development does not make any such
assumptions. On the other hand, difficulty of the problem is governed by how fast
A1 and A2 decay away from the diagonal. This is reflected in the theory by the
assumption of non-zero shifted traces Trd(A1) and Trd(A2). While the shifted traces
being non-zero suffices for asymptotic purposes, the finite-sample performance of
our methodology is poor if the shifted traces past the true bandwidth are very small.
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2.5 Empirical Demonstration

Figure 2.6: Analogous to Figure 2.5, i.e. relative estimation errors with varying bandwidth
d (left column), signal-to-noise ratio τ (middle column), or sample size N (right column).
The top row corresponds to the Legendre-Epanechnikov scenario, the middle row depicts the
Brownian-signed scenario, and the bottom row captures the Brownian-Epanechnikov case. The
black dotted vertical lines show where the active parameter is fixed for the remaining two plots
(i.e. d = 9, τ = 3, and N = 300), i.e. all the plots are roughly the same at the black dotted
vertical cuts.
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This is quite natural: if B covers almost all the mass of the separable component,
the latter cannot be estimated reliably. This happens more easily in the Legendre
case, because the Legendre covariances are more concentrated around the diagonal
compared to the Wiener covariance.

2. Secondly, the signed choice for the banded part seems to make the problem harder
than the Epanechnikov choice. While this cannot be visualized very well, one can
imagine that the shape of B mimics the shape of the separable part better with
the Epanechnikov choice. One can also observe this by looking at the bias curves,
notice that the bias is generally smaller in the Epanechnikov case compared to the
signed case. Hence in the Epanechnikov case, the covariance can be approximated
with the assumption of separability much better, making the problem easier.
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3. Finally, choosing a smaller bandwidth than the true one can sometimes be beneficial.
This happens mainly when a relatively large true bandwidth leads to only a mild
amount of non-separability, as happens in the right part of the top-left plot in
Figure 2.6. Focusing specifically at d = 15 in the top-left plot in Figure 2.6, we see
an instance where performance of the proposed methodology with adaptively chosen
bandwidth outperforms both the separable model and the separable-plus-banded
model with the true (oracle) choice of the bandwidth. This is because, as suggested
by Figure 2.4 (right), the effective bandwidth is in this case smaller than the true
bandwidth (because the symbol of B decays fast away from the diagonal), while
not completely ignoring the banded part is still beneficial.

In the remainder of this section, we examine the functional nature of our problem, behavior
of the ADI algorithm of Section 2.3.3 designed to solve inverse problems involving the
covariance, and the number of iterations needed by the algorithm to converge. We
simulate data as described before in the Legendre-Epanechnikov case, but now we vary
the grid size K ∈ {10(2j + 1); j = 1, . . . , 10}, fix δ at 10 % (i.e. d = K/10), and we keep
τ = 3 and N = 300 for all the grid sizes.

Let Ĉ = Â1 ⊗̃ Â2 + B̂ denote the estimator obtained by shifted partial tracing. Â1, Â2
and B̂ are subsequently projected onto positive semi-definite matrices (as described in
Section 2.3.4). Also, a ridge regularization of size 10−5 is added to Ĉ. Note that this is not
necessary, because B̂ is positive definite, and thus the problem is well defined even without
any ridge regularization. However, the performance of ADI method heavily depends on
the condition number of the system matrix, and adding the ridge regularization ensures
that the condition number stays roughly the same, regardless of K. Then, a random
X ∈ RK×K is generated, and we set Y = ĈX. Subsequently, the ADI algorithm is called
on the inverse problem ĈX = Y with Ĉ and Y given.

The desired relative accuracy for the ADI scheme is set to 10−6. We do not report the
relative reconstruction errors of X, because these varied between 10−7 and 10−11 for
every single run, leaving no doubt that the ADI scheme always converged to the desired
precision. Instead, we report estimation errors and number of iterations needed by the
ADI scheme in Figure 2.7.

As suggested by our theoretical results, the relative estimation error does not depend
on the grid size (see Figure 2.7, left). Additionally, both the number of outer iterations
(ADI) and the number of inner iterations (PCG) does not seem to increase with the grid
size (see Figure 2.7, right). This suggests super-linear convergence of the algorithm.
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2.5 Empirical Demonstration

Figure 2.7: Left: Estimation errors for several competing methods relative to Oracle (i.e. higher
curve corresponds to better performance) depending on the grid size K with the bandwidth fixed
at d = K/10. Right: Number of iterations needed by the outer iteration scheme (ADI) and the
inner iteration scheme (PCG) of the inversion algorithm of Section 2.3.3.
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2.5.2 Data Analysis: Mortality Rates

In this section, we analyse a data set X ∈ RN×K1×K2 , where X[n, k1, k2] denotes the
mortality rate for the n-th country, on the k1-th calendar year and for subjects of age
k2. We consider the same set of 32 countries as Chen and Müller (2012) and Chen
et al. (2017a), with k1 ranging in the 50 year span 1964 – 2014, and we too focus on the
mortality rates of older individuals aged between 60 ≤ k2 < 100. Hence X ∈ R32×50×40.
For a single country, we thus have a mortality rate surface of two arguments: the calendar
year and the age of subjects in the population. This surface is observed discretely since
both the calendar year and age are integers. Figure 2.8 shows a visualization of the
raw data for two sample countries. The underlying continuous surfaces for different
countries are assumed to be i.i.d. functional observations. The data were obtained from
the Human Mortality Database (Wilmoth et al., 2007, www.mortality.org, downloaded
on 12/4/2019).

An in-depth analysis of mortality surfaces was conducted by Chen and Müller (2012).
Mortality surfaces were also considered by Chen et al. (2017a), who – presumably mo-
tivated by the work of Aston et al. (2017) and aiming for computational efficiency –
calculated the “marginal kernels” Tr1(ĈN ) and Tr2(ĈN ), found the leading eigenfunc-
tions of these marginal kernels, say {φ̂i}Ii=1 and {ψ̂j}Jj=1, and used the tensor product
approximation

ĈN ≈
I∑
i=1

J∑
j=1

γ̂ij(φ̂i ⊗ ψ̂j)⊗ (φ̂i ⊗ ψ̂j) , (2.46)

where γ̂ij = 〈ĈN , (φ̂i ⊗ ψ̂j)⊗ (φ̂i ⊗ ψ̂j)〉, which we note can be calculated fast. Indeed,
we highlight that using the marginal eigenfunctions as building blocks for a low-rank
approximation of the empirical covariance can be meaningful even if the covariance C is
not separable (Lynch and Chen, 2018).
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Figure 2.8: Raw mortality rate surfaces for the Czech Republic and Switzerland.
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(b) Switzerland

1963 1973 1983 1993 2003 2013

0.
0

0.
2

0.
4

0.
6

0.
8

60

70

80

90

year

m
or

ta
lit

y 
ra

te

age

100

Compared to Chen and Müller (2012) or Chen et al. (2017a), we consider the mortality
data with a slightly larger span of calendar years (the maximal span in which no data
are missing). Our aim here is not to provide a novel analysis of the mortality dataset,
but merely to illustrate the usefulness of shifted partial tracing.

Firstly, when investigating the sample curves in Figure 2.8, it seems that the discrete
observations of the mortality rate surfaces are observed with additional noise, which
is likely heteroscedastic with variance increasing with the age of the subjects. This is
presumably due to the fact that the size of the population of subjects of a given age
decreases fast with increasing age. To verify whether the (most likely heteroscedastic)
noise is white, we utilize the CV procedure. We do not assume stationarity, but we set
the the estimator of the banded part (2.15) to zero outside of the current bandwidth
in every step. The CV objective (2.22) is maximized at d̂ = 1. We plot the objective
curve in Figure 2.9, providing a strong evidence for the presence of noise. Since d̂ = 1,
we are in the separable-plus-noise regime, which is computationally feasible. Figure 2.9
also shows a heatmap of the estimated variance (or rather its logarithm, for visualisation
purposes) of the noise depending on the location. The heatmap is in alignment with the
conjecture that the noise variance is increasing with age.

Secondly, we compare the spectra of the marginal kernels Tr1(ĈN ) and Tr2(ĈN ) to their
shifted counterparts Tr11(ĈN ) and Tr12(ĈN ). When partial tracing is used to obtain the
marginal kernels, one has to keep 16 and 4 eigenfunctions, respectively, to capture 90 %
of the variance in both dimensions. When shifted partial tracing is used instead, one
instead needs to retain only 4 and 2 eigenfunctions, respectively, to capture 90 % of the
variance in both dimensions. Hence shifted partial tracing offers a more parsimonious
representation.

Thirdly, the empirical bootstrap test of Aston et al. (2017) with 4 and 2 marginal
eigenfunctions (which seems to be the most reasonable choice, also used by Lynch and
Chen, 2018) leads to a borderline p-value of 0.06. In comparison, the p-value for testing
the separable-plus-banded model via the test described in Section 2.2.3 is over 0.4,
suggesting that the separable-plus-banded model cannot be rejected for this data set.
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2.5 Empirical Demonstration

Figure 2.9: Cross-validation objective for the mortality data (left) and log-heatmap of the
heteroscedastic white noise variance (right).

d

C
V

 o
bj

ec
tiv

e 
va

lu
e

0 1 2 3 4 5

45
46

47
48

49
50

51

60

70

80

90

100

1964 1973 1983 1993 2003 2013
year

ag
e

−4

−3

−2

Finally, keeping only 2 eigenfunctions in both dimensions (explaining 83 % and 96 % of
the variance, respectively) leads to a plausible interpretation, when shifted partial tracing
is used. The eigenfunctions are plotted in Figure 2.10. The first eigenfunctions in both
dimensions capture the overall trend: φ̂1 captures the decreasing variance in calendar
years (the first dimension) and ψ̂1 the increasing variance in age (the second dimension).
The second eigenfunction in the first dimension φ̂2 distinguishes between countries having
either a “U-shape” (the Czech Republic, for example) or reversed “U-shape” in calendar
years (Switzerland, for example). This “U-shape” is more prominent in older ages, but it
is too subtle to be visible by eye in the raw data plotted in Figure 2.8. Finally, the second
eigenfunction in the second dimension ψ̂2 contrasts the old age (around 85) and oldest-old
age (post 90) mortalities. However, this is only the case if shifted partial tracing is used.
The eigenfunction ψ̂2 obtained from Tr2(ĈN ) does not have this interpretation; it is in
fact not interpretable. Interestingly, the same qualitative conclusions as those drawn
here by using shifted partial tracing were drawn by Chen and Müller (2012) based on
a different, computationally much more demanding methodology (see Park and Staicu,
2015, for a discussion).

Figure 2.10: First two eigenfunctions of the marginal kernels obtained by partial tracing (PT)
and shifted partial tracing (SPT).
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3 Separable Component
Decomposition

In this chapter, we introduce and study a Hilbert-Schmidt operator decomposition allow-
ing for a parsimonious representation, efficient estimation, and tractable manipulation of
a random surface’s covariance. Truncating this decomposition can be viewed as a natural
generalization of separability. Since the decomposition itself applies to any covariance,
the level of generality offered by the truncated decomposition is vast.

Let us view a covariance C as a Hilbert-Schmidt operator, i.e. we work in the Hilbert-
Schmidt topology instead of the trace-class topology of the previous chapter. But more
importantly, we utilize some of the isomorphisms between Hilbert-Schmidt operator
spaces and product Hilbert Spaces discussed in Section 1.2. The following four spaces are
isometrically isomorphic, and thus the covariance C of a random element X ∈ H1 ⊗H2
can be regarded as an element of any of these, each of which leads to different perspectives
on potential decompositions:

H1 ⊗H2 ⊗H1 ⊗H2 ' S2(H1 ⊗H2) ' S2(H2 ⊗H2,H1 ⊗H1) ' S2(H1)⊗ S2(H2).

If we consider C ∈ S2(H1 ⊗H2), we can write its eigendecomposition as

C =
∞∑
j=1

λjgj ⊗ gj , (3.1)

where λ1 ≥ λ2 ≥ . . . are the eigenvalues and {gj} ⊂ H1⊗H2 are the eigenvectors, forming
an ONB of H1 ⊗H2. On the other hand, if we consider C ∈ S2(H2 ⊗H2,H1 ⊗H1), we
can write its singular value decomposition (SVD) as

C =
∞∑
j=1

σjej ⊗2 fj , (3.2)

where σ1 ≥ σ2 ≥ . . . ≥ 0 are the singular values, and {ej} ⊂ H1⊗H1 and {fj} ⊂ H2⊗H2
are the (left and right) singular vectors, forming ONBs of H1 ⊗ H1 and H2 ⊗ H2,
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Chapter 3. Separable Component Decomposition

respectively. Note that C is not self-adjoint in this case; {ej} are the eigenvectors of CC>,
{fj} are the eigenvectors of C>C, and {σ2

j } are eigenvalues of both CC> and C>C. We
deliberately write C instead of C whenever the covariance is understood as something
else than a self-adjoint element of S2(H1 ⊗H2).

If we consider C ∈ S2(H1)⊗ S2(H2), the decomposition (3.2) can be re-expressed as

C =
∞∑
r=1

σrAr ⊗Br, (3.3)

where σ1 ≥ σ2 ≥ . . . ≥ 0 are the same as before, and {Aj} ⊂ S2(H1) and {Bj} ⊂ S2(H2)
are isomorphic to {ej} and {fj}, respectively. Finally, the expression (3.3) can be written
down for (the self-adjoint version of) C ∈ S2(H1 ⊗H2) using the symbol defined in (1.7)
as

C =
∞∑
r=1

σrAr ⊗̃Br. (3.4)

We will refer to (3.4) as the separable component decomposition (SCD) of C. On the
level of kernels, the SCD corresponds to the following decomposition:

c(t, s, t′, s′) =
∞∑
r=1

σrar(t, t′)br(s, s′).

We will also refer to the σr’s as the separable component scores. One can verify using (1.8)
that the eigendecomposition (3.1) and the SCD (3.4) are two different decompositions
of the same element C ∈ S2(H1 ⊗ H2). If all but R ∈ N separable component scores
in (3.4) are zero, we say that the degree-of-separability (DoS) of C is R and write
DoS(C) = R. In this case, we also say in short that C is R-separable. If C does
not necessarily have a finite degree-of-separability, but we truncate the series at level
R yielding CR := ∑R

j=1 σjAj ⊗̃Bj for some R ∈ N, we call CR the best R-separable
approximation of C, because

CR = arg min
G

|||C −G|||22 s.t. DoS(G) ≤ R. (3.5)

It may be tempting to find an analogy between the degree-of-separability and the rank
of an operator, which is defined as the number of non-zero eigenvalues in (3.1). But, as
should be clear from Lemma 1, there is no simple relationship between these two. In
particular, C can be of infinite rank even if it is 1-separable. However, C has degree-of-
separability R = 1 if and only if C is separable according to Definition 1. In that case,
we simply call C separable instead of 1-separable.

Remark 6. The separable component decomposition generalizes separability on an
arbitrary domain in a conceptually similar way to how the nearest Kronecker product
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3.1 Power Iteration Method

(Van Loan and Pitsianis, 1993) generalizes to the sum of Kronecker products (e.g., the
PhD thesis of N. Pitsianis, 1997, Cornell University) or the Kronecker product singular
value decomposition (Van Loan, 2000, Section 6) or the Kronecker sum decomposition
(Tsiligkaridis and Hero, 2013) on the domain of matrices. When working with general
Hilbert spaces, however, the Kronecker product and the associated matricizations and
vectorizations of multi-dimensional objects (such as the covariance) do not apply and must
be circumvented. Moreover, the general framework offers more simplicity and versatility,
as will be seen later.

3.1 Power Iteration Method

With the aim of constructing the separable component decomposition at the level of
generality presented in the previous section, we first review calculation of eigenvalues
and eigenvectors of matrices. Generally, the eigendecomposition of a symmetric matrix
M ∈ Rm×m can only by approximated numerically, and one of the basic methods for
calculation of the leading eigenvector is the power iteration method described by the
following recurrence relation:

v(k+1) = Mv(k)

‖Mv(k)‖2
, k = 0, 1, . . . ,

where v(0) is an initial guess. Provided M is diagonalizable, the leading eigenvalue is
unique, and v(0) is not orthogonal to the leading eigenvector, the sequence {v(k)}∞k=1
converges to the leading eigenvector linearly with rate given by the spacing between the
eigenvalues (cf. Van Loan and Golub, 1983). Once the leading eigenvector v1 is found,
the leading eigenvalue is obtained as λ1 := v>1 Mv1, and the subsequent eigenvector is
found via power iteration applied to the deflated matrix M− λ1v1v>1 . The procedure
resumes similarly until the desired number of leading eigenvalue-eigenvector pairs are
found.

Assume now that M ∈ Rm×n and we are interested in finding its singular value decompo-
sition (SVD). Since the right singular vectors of M are eigenvectors of M>M, they can
be found via the power iteration method applied to M>M. Similarly the left singular
vectors can be found by decomposing MM>. In practice, neither of the matrix products
is formed, and the power iteration is carried out instead by alternating between the two
following sequences for k = 1, 2, . . .:

u(k+1) = Mv(k)

‖Mv(k)‖2
, v(k+1) = M>u(k+1)

‖M>u(k+1)‖2
,

which is equivalent to alternation between the two power iteration schemes on M>M
and MM>, respectively.
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One can also view the power iteration method as an alternating least squares (ALS)
algorithm. Due to the Eckart-Young-Minsky theorem, the leading principal subspace of
M is the solution to the following least squares problem:

arg min
u∈Rm,v∈Rn

‖M− uv>‖2F .

The ALS algorithm fixes v and solves for u, which is immediately chosen as Mv, and
then fixes u and sets v = M>u. The two steps are iterated until convergence. It is clear
that this corresponds to the power iteration method, once standardization is incorporated.

The reason not to explicitly form the matrix products M>M and MM> is the following.
If m� n (or vice versa), one of the matrix products will be much larger than M itself.
For the same reason (Jolliffe, 1986), the eigenvectors of the sample covariance matrix
ĈN = 1

N X̃>X̃, where X ∈ RN×p is the data matrix with the N observed vectors of size
p in its rows and X̃ is its column-centered version, are calculated via the SVD of X̃
instead of the eigendecomposition of ĈN . Namely, in the case of the empirical covariance,
the power iteration can be performed at the level of the data. This is particularly
useful in high-dimensional statistics, where p � N , or when the observations live on
multi-dimensional domains, as is the case in the following example.

Example 2. Let X1,X2, . . . ,XN ∈ RK×K be independent realizations of a random
matrix-valued variable X ∈ RK×K with a zero mean. We want to estimate the modes
of variation of X, i.e. to calculate the eigensurfaces of ĈN = 1

N

∑N
n=1 Xn ⊗ Xn. If

ĈN ∈ RK×K×K×K was explicitly formed, a single step of the power iteration method
would take O(K4) operations. On the other hand, note that if V(k)

1 is the k-th step
approximation of the leading eigensurface V1, then we have

ĈNV(k)
1 = 1

N

N∑
n=1
〈Xn,V(k)

1 〉Xn, (3.6)

which can be calculated instead in O(NK2) operations. The difference is considerable
already if K ≈ N . Moreover, the same is true for the memory requirements.

Notice the slight ambiguity in the previous example, especially in the left-hand side of
equation (3.6). Since ĈN is a tensor of order 4, it is not immediately clear how it should
be applied to a matrix V(k)

1 , and whether this leads to the right-hand side of (3.6). One
could vectorize the observations (i.e. define xn := vec(Xn) ∈ RK2 , n = 1, . . . , N) and
work with the vectors instead. Then ĈN would be matricized into mat(ĈN ) ∈ RK2×K2 ,
V(k)

1 would be replaced by a vector v(k)
1 , and equation (3.6) would turn into

mat(ĈN )v(k)
1 = 1

N

N∑
n=1

xnx>n v(k)
1 .

The right-hand side of the previous formula becomes the right-hand side of (3.6) after
matricization.
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3.2 Partial Inner Product

In the following section, we develop an operator, which will allow us to generalize the
power iteration method to both continuous and multi-dimensional domains, without
the need to ever vectorize or matricize the objects at hand. This development is more
general, compared to the one in Section 1.7.2.

3.2 Partial Inner Product

Recall the tensor product operators defined in equation (1.3). The symbols ⊗1 and ⊗2
themselves can be understood as mappings:

⊗1 : [H1 ×H2]×H1 → H2,

⊗2 : [H1 ×H2]×H2 → H1.

We develop the partial inner products T1 and T2 by extending the definition of the tensor
product operators ⊗1 and ⊗2 from the Cartesian product space H1 ×H2 in the previous
equations to the richer outer product space H1⊗H2. This is straightforward in principle,
because the finite linear combinations of the elements of H1 ×H2 are by definition dense
in H1 ⊗H2.

Definition 13. Let H = H1⊗H2. The partial inner products are the two unique bi-linear
operators T1 : H×H1 → H2 and T2 : H×H2 → H1 defined by

T1(x⊗ y, e) = (x⊗1 y)e, x, e ∈ H1, y ∈ H2,

T2(x⊗ y, f) = (x⊗2 y)f, x ∈ H1, y, f ∈ H2.

The definition includes the claim of uniqueness of the partial inner products, which needs
to be discussed. Consider a fixed element G from the set (1.6), which is dense in H1⊗H2,
i.e. let G = ∑m

j=1 xj ⊗ yj . Then, for e ∈ H1 and f ∈ H2, we have

〈e, T2(G, f)〉H1 =
〈
e,

m∑
j=1
〈yj , f〉H2xj

〉
H1

=
m∑
j=1
〈xj , e〉H1〈yj , f〉H2 =

m∑
j=1
〈xj ⊗ yj , e⊗ f〉H = 〈G, e⊗ f〉H.

Choosing T2(G, f) for e in the previous equation, we obtain from the Cauchy-Schwarz
inequality that

‖T2(G, f)‖2H1 = 〈T2(G, f), T2(G, f)〉H1 = 〈G,T2(G, f)⊗f〉H ≤ ‖G‖H‖T2(G, f)‖H1‖f‖H2 .

(3.7)
Hence ‖T2(G, f)‖H1 ≤ ‖G‖H‖f‖H2 . Therefore, T2(·, f) can be continuously extended
from the set (1.6) to the whole space H, and the uniqueness holds true.
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Chapter 3. Separable Component Decomposition

Example 3. Let H1 = Rm, H2 = Rn, u ∈ Rm, and v, y ∈ Rn. Let us denote G =
u⊗ v = uv> ∈ Rm×n = Rm ⊗ Rn. By definition, we have

T2(G, y) = 〈v, y〉u = v>yu = Gy.

Since matrix-vector multiplication is a bi-linear operator, it follows from the uniqueness
proven above that the partial inner product is nothing else (with this particular choice of
spaces) than matrix-vector multiplication. Thus T2(G, y) = Gy holds for any G ∈ Rm×n.
Similarly, for x ∈ H1, we have T1(G, x) = G>x.

We now show that the partial inner product has an explicit integral representation on
any L2 space.

Proposition 10. Let H1 = L2(E1, E1, µ1), H2 = L2(E2, E2, µ2), and g ∈ H1 ⊗ H2,
v ∈ H2. If we denote u = T2(g, v), then

u(t) =
∫
E2
g(t, s)v(s) dµ2(s). (3.8)

Proof. Since g is an L2 kernel, there is a Hilbert-Schmidt operator G : H2 → H1 with the
singular value decompositionG = ∑

σjej⊗2fj and kernel given by g(t, s) = ∑
σjej(t)fj(s)

(note that the sum only converges in the L2 sense, not uniformly). By isometry, from
the SVD we have g = ∑

σjej ⊗ fj , so

u = T2(g, v) =
∞∑
j=1

σjT2(ej ⊗ fj , v) =
∞∑
j=1

σj〈fj , v〉ej =
∞∑
j=1

σjej

∫
E2
fj(s)v(s) dµ2(s)

and hence by Fubini’s theorem:

u(t) =
∞∑
j=1

σjej(t)
∫
E2
fj(s)v(s) dµ2(s) =

∫
E2

 ∞∑
j=1

σjej(t)fj(s)

 v(s) dµ2(s)

from which the claim follows.

Note that the proposition covers Example 3 for a suitable choice of the Hilbert spaces.
From the computational perspective, the four-dimensional discrete case is the most
important one. Hence we state it as the following corollary.

Corollary 3. Let K1,K2 ∈ N, H1 = RK1×K1, H2 = RK2×K2. Let G ∈ H1 ⊗H2 =: H
and V ∈ H2. If we denote U = T2(G,V), we have

U[i, j] =
K2∑
k=1

K2∑
l=1

G[i, j, k, l]V[k, l], ∀i, j = 1, . . . ,K1. (3.9)
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3.2 Partial Inner Product

Remark 7. Definition 13 is more general than the respective definitions provided by
Bagchi and Dette (2020) and Dette et al. (2020). Still, the partial inner product can be
defined to work with arbitrary dimensions. For J ⊂ {1, . . . , d}, let

H = H1 ⊗ . . .⊗Hd =
d⊗
j=1
Hj , HJ :=

⊗
j∈J
Hj , H−J :=

⊗
j /∈J
Hj .

We can define TJ : H×HJ → H−J to be the unique bi-linear operator such that

TJ(X ⊗ Y,A) = 〈X,A〉HJY, ∀A,X ∈ HJ ,∀Y ∈ H−J .

Note that H1⊗H2 is isomorphic to H2⊗H1 with the isomorphism given by Φ(x⊗y) = y⊗x,
∀x ∈ H1, y ∈ H2, and the same holds for products of multiple spaces. Hence we can always
permute dimensions as we wish. Thus we can w.l.o.g. assume that J = {1, . . . , d′} for
some d′ < d. Proving uniqueness is now the same as it was in the case of Definition 13,
and Proposition 10 can be generalized to multiple dimensions as well.

We can now go back to Example 2 and see that the tensor-matrix product in equation
(3.6) can be written as T{3,4}(ĈN ,V(k)

1 ). However, this level of generality will not be
needed. We will stick to Definition 13, and write the tensor-matrix product in (3.6) as
T2(ĈN ,V(k)

1 ) with a proper choice of the Hilbert spaces for Definition 13.

The following lemma explores some basic properties of the partial inner product.

Lemma 6. Let C ∈ S2(H1 ⊗H2), W1 ∈ S2(H1) and W2 ∈ S2(H2). Then the following
claims hold.

(a) If C is separable, i.e. C = A ⊗̃B, then T2(C,W2) = 〈B,W2〉A and T1(C,W1) =
〈A,W1〉B.

(b) If C,W1 and W2 are positive semi-definite (resp. self-adjoint), then T2(C,W2) and
T1(C,W1) are also positive semi-definite (resp. self-adjoint).

(c) If H1 = L2(E1, E1, µ1) and H2 = L2(E2, E2, µ2) and the kernels of C, W1 and W2
are non-negative (resp. stationary, resp. banded), then the kernels of T2(C,W2)
and T1(C,W1) are also non-negative (resp. stationary, resp. banded).

Proof. The first claim follows directly from the definition of the partial inner product.

In the remaining two claims, we want to show that if both C and the respective weighting
W1 orW2 have a certain property, then the partial inner product will retain that property.

In the case of self-adjointness or stationarity, the claim follows immediately from the
definition because the set of all Hilbert-Schmidt operators having one of these properties
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is a closed linear subspace of a space of Hilbert-Schmidt operators, and hence it is itself
a Hilbert space. Thus we can constrain ourselves to only work on such a subspace and
the claim follows directly from validity of Definition 13.

As for positive semi-definitness, consider the eigendecompositions C = ∑
λjgj ⊗ gj and

W2 = ∑
αjhj ⊗ hj . Then we have

T2(C,W2) =
∞∑
j=1

∞∑
i=1

λjαiT2(gj ⊗ gj , hi ⊗ hi) =
∞∑
j=1

∞∑
i=1

λjαiT2(gj , hi)⊗ T2(gj , hi),

where the last equality can be verified on rank-1 elements gj . Thus T2(C,W2) is a weighted
sum of quadratic forms with weights given by the non-negative eigenvalues of C and W2.
As such, T2(C,W2) must be positive semi-definite.

Finally, both bandedness and non-negativity of the kernel can by seen immediately from
the integral representation given by Proposition 10.

Part 1 of Lemma 6 exemplifies why operators T1 and T2 are called partial inner products.
One can also see this directly from Definition 13. If the covariance is not exactly separable,
the partial inner product is at the basis of the algorithm for finding a separable proxy to
the covariance. The necessity to choose (correctly scaled) weights W1 and W2 is bypassed
via an iterative procedure, which can be understood as a generalization of the power
iteration method.

3.2.1 Generalized Power Iteration

Proposition 11. For C ∈ H1 ⊗H2, let C = ∑∞
j=1 σjAj ⊗Bj be a decomposition such

that |σ1| > |σ2| ≥ |σ3| ≥ . . . and {Aj} is an ONB in H1 and {Bj} is an ONB in H2. Let
V (0) ∈ H2 be such that ‖V (0)‖ = 1 and 〈B1, V

(0)〉 > 0. Then the sequences {U (k)} and
{V (k)} formed via the recurrence relation

U (k+1) = T2(C, V (k))
‖T2(C, V (k))‖

, V (k+1) = T1(C,U (k+1))
‖T1(C,U (k+1))‖

converge to A1 and B1, respectively. The convergence speed is linear with the rate given
by the spacing between σ1 and σ2.

Proof. Let C1 := ∑∞
j=1 σ

2
jAj⊗Aj and C2 := ∑∞

j=1 σ
2
jBj⊗Bj . We will abuse the notation

slightly and denote for any k ∈ N

Ck1 :=
∞∑
j=1

σ2k
j Aj ⊗Aj & Ck2 :=

∞∑
j=1

σ2k
j Bj ⊗Bj .
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Note that if C was an operator, it would hold that C1 = CC∗ and C2 = C∗C, while Ck1 and
Ck2 would denote the powers as usual. However, we aim for a more general statement,
forcing us to view C as an element of a product space rather than an operator, so the
“powers” serve just as a notational convenience in this proof. Also, the proportionality
sign is used here to avoid the necessity of writing down the scaling constants for unit
norm elements.

From the recurrence relation, and the definition of the partial inner product, we have

V (1) ∝ T1
(
C, T2(C, V (0))

)
= T1

 ∞∑
j=1

σjAj ⊗Bj ,
∞∑
i=1

σi〈Bi, V (0)〉Ai


=
∞∑
i=1

∞∑
j=1

σiσj〈Bi, V (0)〉T1(Aj ⊗Bj , Ai).

Since T1(Aj ⊗Bj , Ai) = 〈Aj , Ai〉Bj = 1[i=j]Bj , we have

V (1) ∝
∞∑
j=1

σ2
j 〈Bi, V (0)〉Bj = T2(C2, V

(0)).

By the same token we have V (2) ∝ T2(C2, V
(1)), from which we obtain similarly

V (2) ∝ T2

 ∞∑
j=1

σ2
jBj ⊗Bj ,

∞∑
i=1

σ2
i 〈Bi, V (0)〉Bi

 =
∞∑
i=1

∞∑
j=1

σ2
i σ

2
j 〈Bi, V (0)〉T2(Bj ⊗Bj , Bi)

=
∞∑
i=1

∞∑
j=1

σ2
i σ

2
j 〈Bi, V (0)〉〈Bj , Bi〉Bj =

∞∑
j=1

σ4
j 〈Bj , V (0)〉Bj = T2

 ∞∑
j=1

σ4
jBj ⊗Bj , V (0)


= T2(C2

2 , V
(0)).

By induction, we have V (k) ∝ T2(Ck2 , V (0)) for k = 1, 2, . . ..

Now we express the starting point V (0) in terms of the ONB {Bj}. Let V (0) = ∑∞
j=1 βjBj ,

where we have βj = 〈Bj , V (0)〉. Then we can express

V (k) ∝ T2(C2
2 , V

(k)) = T2

 ∞∑
j=1

σ2k
j Bj ⊗Bj ,

∞∑
i=1

βiBi


=
∞∑
i=1

∞∑
j=1

σ2k
j βi〈Bi, Bj〉Bj =

∞∑
j=1

σ2k
j βjBj .

Hence we have an explicit formula for the k-th step:

V (k) = B1 +R(k)

‖B1 +R(k)‖
,
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Chapter 3. Separable Component Decomposition

where R(k) = ∑∞
j=2

(
σj
σ1

)2k βj
β1
Bj .

It remains to show that ‖R(k)‖ → 0 for k →∞. Due to the decreasing ordering of the
scores {σj}, we have

‖R(k)‖2 =
∞∑
j=2

(
σj
σ1

)4k β2
j

β2
1
≤
(
σ2
σ1

)4k−2 ∞∑
j=2

(
σj
σ1

)2 β2
j

β2
1

=
(
σ2
σ1

)4k−2 1
σ2

1β
2
1

∞∑
j=1

σ2
jβj ≤

(
σ2
σ1

)4k−2 1
σ2

1β
2
1
‖C‖,

where in the last inequality we used that |βj | ≤ 1. Since σ1 > σj for j ≥ 2, we see that
the remainder R(k) goes to zero.

The proof of the statement concerning the sequence {U (k)} follows the same steps.

The assumption 〈B1, V
(0)〉 > 0 in the previous proposition can be weakened to only

〈B1, V
(0)〉 6= 0. In that case, the sequences do not necessarily converge, but all limit

points span the appropriate spaces. The proof is similar, except that some care has to
be taken at the level of the signs. The sign ambiguity is caused by the fact that the
separable components are (even in the case of non-zero spacing between the scores {σj})
unique only up to the sign.

Example 4. In the previous proposition, let H1 = S2(H′1) and H2 = S2(H′2) for
some Hilbert spaces H′1,H′2. Then C is the covariance operator of a random element
X ∈ H′1 ⊗H′2, and the previous proposition shows that the separable proxy to C, i.e. a
solution to

arg min
A∈H′1⊗H

′
1,B∈H

′
2⊗H

′
2

‖C −A ⊗̃B‖22, (3.10)

can be found via the power iteration method, consisting of a series of partial inner
products.

Let us take in the previous proposition H1 = H′1⊗H′2 and H2 = H′1⊗H′2 for some Hilbert
spaces H′1,H′2. Then C is still (isometric to) the covariance operator of a random element
X ∈ H′1 ⊗H′2, only this time viewed as an element of a different, probably more natural
space. Hence the SVD in Proposition 11 is in fact the eigendecomposition here. The
previous proposition shows that the leading eigenvalue-eigenvector pair, i.e. the solution
to

arg min
e1∈H′1⊗H

′
2

‖C − ej ⊗ ej‖22

can be found via the power iteration method, consisting of a series of partial inner
products.
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3.2 Partial Inner Product

Table 3.1 Power iteration method for finding the leading separable components on a general
Hilbert space.

Input C ∈ S2(H1 ⊗H2), initial guesses A1, . . . , AR ∈ H1 ⊗H1

for r=1,. . . ,R

C̃ := C −
r−1∑
j=1

σjAj ⊗̃Bj

repeat
Br := T1(C̃, Ar)
Br := Br/‖Br‖
Ar := T2(C̃, Br)
σr := ‖Ar‖
Ar := Ar/σr

until convergence

end for

Output σ1, . . . , σR, A1, . . . , AR, B1, . . . BR

As shown above, the power iteration method can be performed in an arbitrary Hilbert
space, and it can be used to find the best separable approximation of a covariance
operator. In this chapter, we expand our attention beyond separability (3.10), to the
solution of (3.5) with R ∈ N, i.e. searching for the best R-separable approximation. This
optimisation problem can be solved via Algorithm 3.1, which contains subsequent search
for R separable components, deflating the covariance matrix for every previously found
component, and standardizing the components to have norm one.

Remark 8. 1. In the case of H1 = Rm and H2 = Rn, a similar problem was studied
by Van Loan and Pitsianis (1993), who showed that the solution to the optimization
problem

arg min
A∈Rm×m,B∈Rn×n

‖C−A ⊗̃B‖2F (3.11)

can be found as the leading singular subspace of a suitable permutation of mat(C),
i.e. the matricization of C (see Van Loan and Golub, 1983). When this leading
singular subspace is found via power iteration, a single step is given by the partial
inner product and the algorithm provided as Framework 2 by Van Loan and Pitsianis
(1993) corresponds to Algorithm 3.1 for R = 1. Indeed, it is straightforward to
verify that the element-wise formulas provided by Van Loan and Pitsianis (1993)
correspond to (3.9) in the case of H1 = Rm and H2 = Rn.

2. A notable portion of the paper of Van Loan and Pitsianis (1993) was devoted to
proving that if C ∈ S2(H1 ⊗H2) has a certain property (one of those discussed in
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Chapter 3. Separable Component Decomposition

Lemma 6), then the leading eigenvectors A1 and B1 retain that property (Van Loan
and Pitsianis, 1993, only discuss this in the discrete case). Owing to the generality
of our partial inner product definition, this can be argued quite simply on the
algorithmic basis. By Proposition 11, the power iteration method converges to
A1 and B1 regardless of the starting point (as long as the starting point is not
orthogonal to the solution). Consider the starting point satisfying the property
in question. Then by Lemma 6, the algorithm will never leave the closed subset
defined by the property in question (note that e.g. positive semi-definitness does not
characterize a closed subspace, but it still designates a closed subset), and hence
the limit of the power iteration method will also have this property.

3. Bagchi and Dette (2020) claim it is hard to find the minimum of (3.10) in a general
Hilbert space, and hence they settle on a procedure which can be translated as stopping
the power iteration method after just a single iteration. However, the true minimizer
of (3.10) is, in fact, obtainable via power iteration, and we focus on this minimizer.

3.3 Estimation

Let X1, . . . , XN be i.i.d. elements in H1 ⊗H2, and R ∈ N be given (the choice of R will
be discussed later). We propose the following estimator for the covariance operator:

ĈR,N = arg min
G

∣∣∣∣∣∣∣∣∣ĈN −G∣∣∣∣∣∣∣∣∣22 s.t. DoS(G) ≤ R, (3.12)

where ĈN = N−1∑N
n=1(Xn − X̄)⊗ (Xn − X̄) is the empirical covariance. The estimator

ĈR,N is the best R-separable approximation to the empirical covariance ĈN . This leads
to an estimator of the form

ĈR,N =
R∑
r=1

σ̂rÂr ⊗̃ B̂r, (3.13)

where σ̂1, . . . , σ̂R, Â1, . . . , Âr, B̂R, . . . B̂R are the output of Algorithm 3.1 applied to the
empirical covariance estimator ĈN as the input.

Now, assume the data are observed as matrices, i.e. X1, . . . ,XN ∈ RK1×K2 . Then the
covariance C and the estimator ĈR,N of (3.13) are also discrete, namely C, ĈR,N ∈
RK1×K2×K1×K2 . Recall that we use boldface to emphasize discrete objects, and assume for
simplicity K1 = K2 =: K. In the theoretical development of Section 3.5, we differentiate
between multivariate data and functional data observed on a dense grid (of size K ×K),
the latter being our primary interest. But for now, the distinction is immaterial: we only
assume we are in the discrete case to exemplify the computational benefits of the partial
inner product.
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3.3 Estimation

Table 3.2: Time and memory complexities of computing the empirical covariance estimator and
a separable estimator when N surfaces are observed discretely on a K ×K grid.

Method Memory complexity Time complexity
Estimation Application Inversion

empirical O(K4) O(NK4) O(K4) O(K6)
separable O(K2) O(NK3) O(K3) O(K3)

The key observation here is that the partial inner product operations required in Al-
gorithm 3.1 can be carried out directly on the level of the data, without the need to
explicitly form or store the empirical covariance estimator ĈN . In the discrete case, for
example, it is straightforward to verify from Corollary 3 that

T1(ĈN ,A) = 1
N

N∑
n=1

T1(Xn ⊗Xn,A) = 1
N

N∑
n=1

X>nAXn,

T2(ĈN ,B) = 1
N

N∑
n=1

T2(Xn ⊗Xn,B) = 1
N

N∑
n=1

XnBX>n .
(3.14)

The immense popularity of the separability assumption stems from the computational
savings it entails. These are captured in Table 3.2. Notice the reduced estimation
complexity of the separable model. Since the convergence rate of the power iteration
method is linear, and a single iteration can be evaluated efficiently on the level of data
due to (3.14), our approach can also be used to estimate the R-separable model with
the same efficiency (times R, of course). Moreover, we will show in Section 3.4 that it
is possible to apply and (numerically) invert an R-separable covariance (3.13) with the
same computational costs as for a separable model. Hence the complexities reported in
Table 3.2 for a separable model are also valid for an R-separable approximation.

Remark 9. To the best of our knowledge, the only approach to efficient estimation of
a separable model, which reduces the estimation complexity to that reported in Table 3.2,
is partial tracing of Aston et al. (2017). Partial tracing achieves this complexity by
considering only some of the available raw covariances (i.e. some of the the cross-products
of two sampled entries on the same surface). In contrast, our approach uses all the
available raw covariances composing the empirical estimator. The computational savings
are achieved by reducing the number of necessary operations via the formulas in (3.14).
Moreover, our estimation procedure facilitates the search for an approximation (either
R-separable or entirely separable), while the partial tracing estimator lacks any optimality
properties, and assumes separability as a model. This can be said also for other approaches
built upon partial tracing, such as the weakly separable model (Lynch and Chen, 2018).
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Chapter 3. Separable Component Decomposition

Table 3.3 Constructing the R-separable estimator from discrete measurements.
Input X1, . . . ,XN ∈ RK1×K2 , initial guesses A1, . . . ,AR ∈ RK1×K2

for r=1,. . . ,R

repeat
Br = 1

N

∑N
n=1(Xn − X̄)>Ar(Xn − X̄)−∑r−1

j=1 σj〈Ar,Aj〉Aj

Br = Br/‖Br‖
Ar = 1

N

∑N
n=1(Xn − X̄)>Br(Xn − X̄)−∑r−1

j=1 σj〈Br,Bj〉Bj

σr = ‖Ar‖
Ar = Ar/σr

until convergence

end for

Output σ1, . . . , σR, A1, . . . ,AR, B1, . . .BR

Comparing equations (3.14) to (3.6), one can notice that computing a single separable
component of C is slightly more expensive than computing a single eigenvalue-eigenvector
pair, by a factor of the grid size K. This modest computational overheard is paid in hope
that the (approximate) degree-of-separability of C is smaller than the (approximate)
rank of C, leading to statistical savings, and potentially also computational savings,
depending on the grid size. The following example provides an illustration.

Example 5. Consider the Irish Wind data set of Haslett and Raftery (1989). The data
set was modeled with a separable covariance structure at first, before Gneiting (2002) and
Gneiting et al. (2006) argued that separability has hardly justifiable practical consequences
for this data set. Later, separability was formally rejected by a statistical test in (Bagchi
and Dette, 2020). A non-separable parametric covariance model was developed specifically
for the Irish Wind by Gneiting (2002). We consider the fitted parametric covariance
model as the ground truth C (see Section 3.6.1 for a full specification). We plot the
eigenvalues of C (evaluated on a 50 × 50 grid in [0, 20]2 domain) and the separable
component scores of C (evaluated on the same grid) in Figure 3.1. While C is clearly
not low-rank (Figure 3.1, left), it is approximately of very low degree-of-separability
(Figure 3.1, right). We will return to this particular covariance in Section 3.6.1 and show
that choices R = 2 or R = 3 lead to very good approximations of C.

3.3.1 Degree-of-Separability Selection

Given R ∈ N, we have demonstrated how to construct and invert an R-separable proxy of
the covariance, based on i.i.d. observations. It now remains to discuss how to choose the
degree-of-separability R. Recall that we do not assume that the covariance in question
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3.3 Estimation

Figure 3.1: Eigenvalues (left) and separable component scores (right) of the covariance from
Example 5.
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is R-separable per se, so there is no “correct" choice of R. In this context, R can be
seen as governing the effective number of parameters being estimated from the data (the
“degrees of freedom"), serving in effect as a regularization parameter. So, one can seek
a positive integer R that minimizes the mean squared error

E
∣∣∣∣∣∣∣∣∣ĈR,N −C

∣∣∣∣∣∣∣∣∣2
2
. (3.15)

The underlying bias-variance trade-off is precisely the reason why small values of R can
lead to an improved mean squared error compared to the empirical covariance estimator.
Intuitively, with increasing R, the estimator ĈR,N has increasing number of degrees of
freedom, and more observations are needed to estimate it reliably. This will be also
reflected in our theory (Section 3.5).

To determine an empirical surrogate of (3.15) and devise a cross-validation (CV) strategy
similar to the one in the previous chapter. Note first that

E
∣∣∣∣∣∣∣∣∣ĈR,N −C

∣∣∣∣∣∣∣∣∣2
2

= E
∣∣∣∣∣∣∣∣∣ĈR,N

∣∣∣∣∣∣∣∣∣2
2
− 2E〈ĈR,N ,C〉+ |||C|||22.

Of the three terms on the right-hand side of the previous equation, the final term does
not depend on R and hence it does not affect the minimization. The first term can be
unbiasedly estimated by

∣∣∣∣∣∣∣∣∣ĈR,N

∣∣∣∣∣∣∣∣∣2
2
, and it remains to estimate the middle term. Denote

by Ĉ(j)
R,N−1 the R-separable estimator constructed excluding the j-th datum Xj . Due to

independence between samples, we have

E〈Xj , Ĉ(j)
R,N−1Xj〉 = E〈Ĉ(j)

R,N−1,Xj ⊗Xj〉 = 〈EĈ(j)
R,N−1,EXj ⊗Xj〉 = E〈ĈR,N , C〉,

and hence the quantity N−1∑N
j=1〈Xj , Ĉ(j)

R,N−1Xj〉 is an unbiased estimator of the ex-
pected inner product between the truth and the estimator: E〈ĈR,N ,C〉. In summary,
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Chapter 3. Separable Component Decomposition

a CV strategy is to choose R as

arg min
R

∣∣∣∣∣∣∣∣∣ĈR,N

∣∣∣∣∣∣∣∣∣2
2
− 2
N

N∑
j=1
〈Xj , Ĉ(j)

R,N−1Xj〉

 . (3.16)

This procedure corresponds to leave-one-out CV, which is computationally prohibitive.
In practice, we perform a 10-fold CV (see e.g. Murphy, 2012).

The choice (3.16) is inspired by analogy to the classical cross-validated bandwidth selection
scheme in kernel density estimation (Wand and Jones, 1994). The typical CV scheme for
PCA (e.g. Jolliffe, 1986) is based on finding a low-dimensional plane fitting the data cloud
well, the low-dimensional plane being tied to the principal components. Such a scheme is
not applicable here, because it degenerates: the first separable component alone might
very well span the whole ambient space, thus projecting a datum on a subspace generated
by a varying number of leading separable components will not be informative.

The CV scheme requires fitting the covariance repeatedly for different values of R. We fit
the covariance for a maximal value of the degree-of-separability we are interested in or can
hope to estimate reliably with our number of observations. The theoretical development of
the following section can provide some guidance for this. Then, we can fit the covariance
for this degree-of-separability only, and use a subset of the obtained decomposition
for any smaller degree-of-separability. This still has to be done multiple times when
cross-validating. Hence for very large data sets, a visual inspection is recommended:
fitting the covariance once using a maximal relevant value of the degree-of-separability,
one can then visualize the scores in the form of a scree plot (see Figure 3.3), and choose
the degree based on this plot. We provide an example of this approach in Section 3.6.1,
while a very detailed discussion on scree plots is given by Jolliffe (1986). We note that the
interpretation of the j-th singular value σj as the additional variance, which is explained
by considering the j-th separable term as opposed to only first j − 1 terms, is still valid
here. Hence, rule-of-thumb choices based on scree plots, such as requiring that the total
variance explained by the chosen R components must be at least 95%, can be used as
well.

3.4 Inversion

In this section, we are interested in solving a linear system

ĈR,NX = Y, (3.17)

where ĈR,N ∈ RK×K×K×K is our R-separable estimator of equation (3.13). This linear
system needs to be solved for the purposes of prediction or kriging, among other tasks.
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3.4 Inversion

The linear system (3.17) can be naively solved in O(K6) operations, which is required
for a general C. However, if we had R = 1, i.e. ĈR,N was separable, the system would be
solveable in just O(K3) operations. These huge computational savings are one of the main
reasons for the immense popularity of the separability assumption. In the case of R > 1,
we will not be able to find an explicit solution, but the iterative algorithm we develop
here will be substantially faster than the O(K6) operations needed for a general C.

The crucial observation here is that ĈR,N can be applied in O(K3) operations:

ĈR,NX =
R∑
r=1

σ̂rÂrXB̂r. (3.18)

To this end, it can be verified that (A ⊗̃B)X = AXB for B self-adjoint either directly
from the definitions, or from the connection with the Kronecker product (cf. Remark 1).
So, we can rewrite the linear system (3.17) as

σ̂1Â1XB̂1 + . . .+ σ̂RÂRXB̂R = Y.

A system of this form is called a linear matrix equation and it has been extensively studied
in the field of numerical linear algebra (see Palitta and Simoncini, 2020, and the numerous
references therein). Even though there exist provably convergent specialized solvers
(e.g. Xie et al., 2009), the simple preconditioned conjugate gradient (PCG) algorithm
(Shewchuk, 1994) is the method of choice when ĈR,N is symmetric and positive semi-
definite, which is exactly our case. The conjugate gradient (CG) method works by
iteratively applying the left hand side of the equation to a gradually updated vector
of residuals. In theory, there can be up to O(K2) iterations needed, which would lead
to O(K5) complexity. In practice, the algorithm is stopped much earlier; how early
depends on the properties of the spectrum of the left hand side, which can be improved
via preconditioning. We refer the reader to Shewchuk (1994) for the definitive exposition
of CG.

The usage of a preconditioner P = VV> can be thought of as applying the standard
conjugate gradient to the system C̃X̃ = Ỹ with C̃ = V−1ĈR,N (V−1)>, X̃ = V>X and
Ỹ = V−1Y. In our case, P = σ̂1Â1 ⊗̃ B̂1 is a natural preconditioner, whose square-root
V can be both obtained and applied easily due to Lemma 1.

This preconditioner is chosen because σ̂1Â1 ⊗̃ B̂1 is the leading term in ĈR,N . The more
dominant the term is in ĈR,N , the flatter the spectrum of V−1ĈR,N (V−1)> is, and the
fewer iterations are needed. This is a manifestation of a certain statistical-computational
trade-off. The R-separable model can be, in theory, used to fit any covariance C, when
R is taken large enough. However, the more dominant the leading (separable) term is,
the better computational properties we have, see Section 3.6.4.
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It remains to address the existence of a solution to the linear system (3.17). Note that we
cannot guarantee that ĈR,N is positive semi-definite. Lemma 6 says that Â1 and B̂1 are
positive semi-definite, and they will typically be positive definite for N sufficiently large
(when ĈN is positive definite). But ĈN − Â1 ⊗̃ B̂1 is necessarily indefinite, and hence we
cannot say anything about the remaining terms. However, ĈR,N is a consistent estimator
of the true C for sufficiently large values of R (see Section 3.5 for a discussion on the
rate of convergence of this estimator depending on R). So, for a large enough sample size
and appropriate values of R, ĈR,N cannot be far away from positive semi-definiteness.
To eliminate practical anomalies, we will positivize the estimator. Doing this is also
computationally feasible, as discussed below.

Due to (3.18), the power iteration method can be used to find the leading eigenvalue λmax
of ĈR,N in O(K3) operations. We can then find the smallest eigenvalue λmin of ĈR,N

by applying the power iteration method to λmaxI− ĈR,N , where I ∈ RK1×K2×K1×K2 is
the identity. Note that this is only a simple proof of concept, in practice we recommend
to used a specialized solver to find the minimum eigenvalue, e.g. the one of Wu and
Stathopoulos (2014). Subsequently, if λmin < 0, we can perturb ĈR,N to obtain its
positive semi-definite version:

Ĉ+
R,N = ĈR,N + (ε− λmin)I, (3.19)

where ε ≥ 0 is a potential further regularization.

The positivized estimator Ĉ+
R,N is (R + 1)-separable, so it can still be approached in the

same spirit, with one exception. If the inverse problem is ill-conditioned and regularization
is used, the preconditioner discussed above is no longer effective, since A1 or B1 may
not be invertible. In this case, we use the preconditioner P = σ̂1Â1 ⊗̃ B̂1 + (ε− λmin)I,
whose eigenvectors are still given by Lemma 1 and eigenvalues are simply inflated by
ε− λmin. This is preconditioning via the discrete Stein’s equation, see Section 2.3.3.

The effectiveness of the proposed inversion algorithm is demonstrated in Section 3.6.1.
We stress here that the potential need to regularize an estimator of a low degree-of-
separability arises in a very different way from the necessity to regularize a (more typical)
low-rank estimator. When the truncated eigendecomposition is used as an estimator, the
spectrum is by construction singular and regularization is thus necessary for the purposes
of prediction. Contrarily, when an estimator of low degree-of-separability is used, the
spectrum of the estimator mimics that of C more closely. If C itself is well-conditioned,
there may be no need to regularize, regardless of what degree-of-separability R is used as
a cut-off. However, in the case of functional data observed on a dense grid, regularization
may be necessary due to the spectral decay of C itself.
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3.4 Inversion

3.4.1 Prediction

As an important application, we use the R-separable estimator ĈR,N = ∑R
r=1 σ̂rÂr ⊗̃ B̂r

to predict the missing values of a datum X ∈ RK1×K2 . In the case of a random vector,
say vec(X), such that

vec(X) =
(
vec(X)1, vec(X)2

)>
∼
(

0,
(

Σ11 Σ12
Σ12 Σ22

))
,

where vec(X)1 is missing and vec(X)2 is observed, the best linear unbiased predictor
(BLUP) of vec(X)1 given vec(X)2 is given by

v̂ec(X)1 = Σ12Σ−1
22 vec(X)2. (3.20)

The goal here is to show that this BLUP is calculable within the set computational limits,
which prevents us from naively vectorizing X, as above, and using the matricization of
ĈR,N in place of Σ.

Assume initially that an element X is observed up to whole columns indexed by the set
I and whole rows indexed by the set J . We can assume w.l.o.g. that I = {1, . . . ,m1}
and J = {1, . . . ,m2} (otherwise we can permute the rows and columns to make it so).
Denote the observed submatrix of X as Xobs. If the covariance of X is R-separable, so is
the covariance of Xobs, specifically

Cov(Xobs) =
R∑
r=1

σrAr,22 ⊗̃Br,22,

where Ar,22 (resp. Br,22) are the bottom-right sub-matrices of Ar (resp. Br) of appropri-
ate dimensions. Hence the inversion algorithm discussed above can be used to efficiently
calculate Σ−1

22 vec(X)2 in equation (3.20). It remains to apply the cross-covariance Σ12
to this element. It is tedious (though possible) to write down this application explicitly
using the structure of ĈR,N . Fortunately, it is not necessary, because z = Σ12y can be
calculated as (

z
?

)
=
(

Σ11 Σ12
Σ12 Σ22

)(
0
y

)
, (3.21)

so we can apply the entire ĈR,N to Σ−1
22 vec(X)2 enlarged to the appropriate dimensions

by the suitable adjunction of zeros.

If an arbitrary pattern Ω in X is missing (i.e. Ω is a bivariate index set), we make use
of the previous trick also when calculating Σ−1

22 vec(X)2. The PCG algorithm discussed
above only requires a fast application of Σ22. This can be achieved by applying the entire
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estimator ĈR,N to X̃, where

X̃[i, j] =

X[i, j] for (i, j) ∈ Ω,
0 for (i, j) /∈ Ω.

The same trick can be used to apply the cross-covariance to the solution of the inverse

problem. Hence the BLUP can be calculated efficiently for an arbitrary missing pattern
in X.

3.5 Asymptotic Properties

3.5.1 Complete Observations

In this section we establish the consistency of our estimator and derive its rate of
convergence. We separately consider three cases: the case of fully observed data, the case
of data observed discretely on a grid, and the case of irregular observations including
measurement errors. All proofs are postponed to the appendix.

In the fully observed case, we consider our sample to consist of i.i.d. observations
X1, . . . , XN ∼ X, where X is a random element on H = H1 ⊗ H2. Recall that our
estimator ĈR,N given in (3.13) is the best R-separable approximation of the sample
covariance matrix ĈN . Under the assumption of finite fourth moment, we get the
following rate of convergence for our estimator.

Theorem 7. Let X1, . . . , XN ∼ X be a collection of i.i.d. random elements of H = H1⊗
H2 with E(‖X‖4) <∞. Denote the SCD of the covariance of X by C = ∑∞

i=1 σiAi ⊗̃Bi,
with σ1 > · · · > σR > σR+1 ≥ · · · ≥ 0. Define

αi = min{σ2
i−1 − σ2

i , σ
2
i − σ2

i+1}

for i = 1, . . . , R, and let aR = |||C|||2
∑R
i=1(σi/αi). Then,

∣∣∣∣∣∣∣∣∣ĈR,N − C∣∣∣∣∣∣∣∣∣2 ≤
√√√√ ∞∑
i=R+1

σ2
i +OP

(
aR√
N

)
.

The first term
√∑∞

i=R+1 σ
2
i can be viewed as the bias of our estimator, which appears

because we estimate an R-separable approximation of a general C. Since C is a Hilbert-
Schmidt operator, this term converges to 0 as R increases. If C is actually R-separable
then this term equals zero. The second term signifies the estimation error of the R-
separable approximation and can be thought of as the variance. As is the case in PCA,
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3.5 Asymptotic Properties

the variance depends on the spectral gap αi of the covariance operator (Hsing and Eubank,
2015). Note, however, that this is not the usual spectral gap, but rather the spectral
gap for the sequence of squared separable component scores (σ2

i )i≥1. This is due to the
fact that we are estimating the leading separable components of the covariance operator,
rather than its principal components (Hsing and Eubank, 2015, Section 5.2).

The derived rate clearly shows the bias-variance trade-off. While the bias term is
a decreasing function of R, generally the variance term (governed by aR) is an increasing
function of R. This emphasizes the need to choose an appropriate R in practice. The
actual trade-off depends on the decay of the separable component scores. In particular,
if the scores decay slowly, then we can estimate a relatively large number of components
in the SCD, but the estimation error will be high. On the other hand, when we have
a fast decay in the scores, we can estimate a rather small number of components, but
with much better precision. In practice, we expect only a few scores to be significant
and C to have a relatively low degree-of-separability. The theorem shows that in such
situations, our estimator enjoys a convergence rate of OP(N−1/2), which is the same as
that of the empirical estimator.

Theorem 7 shows that the convergence rate of the estimator depends on the decay of
the separable component scores, and it also gives us convergence rates when we allow
R = RN to increase as a function of N . For that we need to assume some structure on
the decay of the separable component scores. For instance, assume that the separable
component scores of C are convex, in the sense that the linearly interpolated scree plot
x 7→ σx is convex, where σx = (dxe − x)σbxc + (x− bxc)σdxe whenever x is not an integer
(Jirak, 2016). Then it also holds that x 7→ σ2

x is convex. Now, following Jirak (2016), we
get that for j > k,

kσk ≥ jσj and σk − σj ≥ (1− k/j)σk.

Also, because of the convexity of x 7→ σ2
x, it follows that σ2

i−1 − σ2
i ≥ σ2

i − σ2
i+1 for every

i, showing
αi = min{σ2

i−1 − σ2
i , σ

2
i − σ2

i+1} = σ2
i − σ2

i+1.

So,
σi
αi

= σi
σ2
i − σ2

i+1
= σi

(σi − σi+1) (σi + σi+1) ≥
1

2σ1

σi
(σi − σi+1) .

Now, for 0 < x < 1, (1− x)−1 > 1 + x. Since σi > σi+1 for i = 1, . . . , R, this shows that

R∑
i=1

σi
σi − σi+1

=
R∑
i=1

1
1− σi+1

σi

>
R∑
i=1

(
1 + σi+1

σi

)
> R.
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Chapter 3. Separable Component Decomposition

So, aR & R. Again, since x 7→ σ2
x is convex, σ2

i − σ2
i+1 ≥ σ2

i /(i+ 1). Using this we get

aR ∝
R∑
i=1

σi
σ2
i − σ2

i+1
≤

R∑
i=1

σ2
i

σi(σ2
i − σ2

i+1) ≤
R∑
i=1

i+ 1
σi
≤ 1
RσR

R∑
i=1

i(i+ 1)

= 1
σR

(R+ 1)(R+ 2)
3 � R2

σR
,

where we have used iσi ≥ RσR on the fourth step. It follows that, aR = O(R2/σR). Also,
following Jirak (2016, Eq. (7.25)), we have ∑i>R σ

2
i ≤ (R+ 1)σ2

R. Thus, from Theorem 7,

∣∣∣∣∣∣∣∣∣ĈR,N − C∣∣∣∣∣∣∣∣∣2 = O(
√
RσR) +OP

(
R2

σR
√
N

)
.

On the other hand, RσR ≤ σ1 implies that
√
RσR ≤ σ1/

√
R. This finally shows that

∣∣∣∣∣∣∣∣∣ĈR,N − C∣∣∣∣∣∣∣∣∣2 = O
(

1√
R

)
+OP

(
R2

σR
√
N

)
.

So, for consistency, we need R = RN → ∞ as N → ∞ while σ−1
RN
R2
N = O(

√
N). The

optimal rate of R is obtained by solving σ−4
RN
R3
N � N . Clearly, the rate of decay of the

separable component scores plays an important role in determining the admissible and
optimal rates of R. For instance, if the scores have an exponential decay, i.e., σR ∼ R−τ
with τ > 1, we need RN = O(N1/(2τ+4)) for consistency. The optimal rate is achieved by
taking RN � N1/(4τ+3), which gives∣∣∣∣∣∣∣∣∣ĈR,N − C∣∣∣∣∣∣∣∣∣2 = OP

(
N−

2τ−1
4τ+3

)
.

The derived rates show a trade-off between the number of estimated components and the
error. While the optimal rate for RN is a decreasing function of τ , the rate of convergence
of the error is an increasing function. In particular, if the scores decay slowly (i.e., τ is
close to 1), then we can estimate a relatively large number of components in the SCD,
but this will likely not lead to a lower estimation error (since the scores which are cut off
are still substantial). On the other hand, when we have a fast decay in the scores (i.e., τ
is large), we can estimate a rather small number of components in the SCD, but with
much better precision.

Similar rates can be derived assuming polynomial decay of the scores, i.e. when σR ∼
Rτρ−R with 0 < ρ < 1, τ ∈ R. In this case, consistency is achieved when R2−τ

N ρRN =
O(
√
N), while to obtain the optimal rate, one needs to solve R3−4τ

N ρ4RN � N . Thus, in the
case of polynomial decay of the scores (which is considerably slower than the exponential
decay), we cannot expect to reliably estimate more than logN many components in the
SCD.

Remark 10. The rates that we have derived are genuinely nonparametric, in the sense
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3.5 Asymptotic Properties

that we have not assumed any structure whatsoever on the true covariance. We have
only assumed that X has finite fourth moment, which is standard in the literature for
covariance estimation. We can further relax that condition if we assume that C is actually
R-separable. From the proof of the theorem, it is easy to see that if we assume DoS(C) ≤ R,
then our estimator is consistent under the very mild condition of E(‖X‖2) <∞.

3.5.2 Discrete Observations on a Grid

In practice, the data are observed and manipulated discretely, and we now develop
asymptotic theory in that context. Specifically, assume that X = {X(t, s) : t ∈ T , s ∈ S}
is a random field taking values in H = L2(T × S), where T and S are compact sets. To
simplify notation, we assume w.l.o.g. that T = S = [0, 1].

We observe the data at K1K2 regular grid points or pixels. Let {TK1
1 , . . . , TK1

K1
} and

{SK2
1 , . . . , SK2

K2
} denote regular partitions of [0, 1] of lengths 1/K1 and 1/K2, respectively.

We denote by IKi,j = TK1
i × SK2

j the (i, j)-th pixel for i = 1, . . . ,K1, j = 1, . . . ,K2.
The pixels are non-overlapping (i.e., IKi,j ∩ IKi′,j′ = ∅ for (i, j) 6= (i′, j′)) and have the
same volume |IKi,j | = 1/(K1K2). For each surface Xn, n = 1, . . . , N , we make one
measurement at each of the pixels. Note that we can represent the measurements for the
n-th surface by a matrix XK

n ∈ RK1×K2 , where XK
n [i, j] is the measurement at IKi,j for

i = 1, . . . ,K1, j = 1, . . . ,K2.

We consider again two different sampling schemes, which relate the latent surfaces
X1, . . . , XN to the discrete observations XK

1 , . . . ,XK
N .

(S1) Pointwise evaluation within each pixel, i.e.,

XK
n [i, j] = Xn(tK1

i , sK2
j ), i = 1, . . . ,K1, j = 1, . . . ,K2,

where (tK1
i , sK2

j ) ∈ IKi,j are spatio-temporal locations. Note that the square integra-
bility of X is not sufficient for such pointwise evaluations to be meaningful, so we
will assume that X has continuous sample paths in this case.

(S2) Averaged measurements over each pixel, i.e.,

XK
n [i, j] = 1

|IKi,j |

∫∫
IKi,j

Xn(t, s)dtds, i = 1, . . . ,K1, j = 1, . . . ,K2.

In both scenarios, we denote by XK
n the pixelated version of Xn,

XK
n (t, s) =

K1∑
i=1

K2∑
j=1

XK
n [i, j]1{(t, s) ∈ IKi,j}, n = 1, . . . , N.
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Chapter 3. Separable Component Decomposition

The corresponding pixelated version of X is denoted by XK . Under our assumptions,
XK is zero-mean with covariance CK = E(XK ⊗ XK). It can be easily verified that
under the pointwise measurement scheme (S1), CK is the integral operator with kernel

cK(t, s, t′, s′) =
K1∑
i=1

K2∑
j=1

K1∑
k=1

K2∑
l=1

c(tK1
i , sK2

j , tK1
k , sK2

l )1{(t, s) ∈ IKi,j , (t′, s′) ∈ IKk,l}.

For the averaged measurement scheme (S2), we can represent XK as

XK =
K1∑
i=1

K2∑
j=1

〈
X, gKi,j

〉
gKi,j ,

where gKi,j(t, s) = |IKi,j |−1/21{(t, s) ∈ IKi,j}, from which it immediately follows that

CK =
K1∑
i=1

K2∑
j=1

K1∑
k=1

K2∑
l=1

〈
C, gKi,j ⊗ gKk,l

〉
gKi,j ⊗ gKk,l.

In the discrete observation scenario, our estimator is the bestR-separable approximation of
ĈKN , the empirical covariance ofXK

1 , . . . , X
K
N . Note that ĈKN is the pixel-wise continuation

of ĈK
N , the empirical covariance of XK

1 , . . . ,XK
N . To derive the rate of convergence in

this scenario, we need some continuity assumption relating the random field X and
its pixelated version XK . The following theorem gives the rate of convergence of the
estimator when the true covariance is Lipschitz continuous.

Theorem 8. Let X1, . . . , XN ∼ X be a collection of random surfaces on [0, 1]2, where
the covariance of X has SCD C = ∑∞

i=1 σiAi ⊗̃Bi, with σ1 > · · · > σR > σR+1 ≥ · · · ≥ 0.
Further assume that the kernel c(t, s, t′, s′) of C is L-Lipschitz continuous on [0, 1]4.
Suppose that one of the following holds.

1. X has almost surely continuous sample paths and XK
1 , . . . ,XK

N are obtained from
X1, . . . , XN under the measurement scheme (S1).

2. XK
1 , . . . ,XK

N are obtained from X1, . . . , XN under the measurement scheme (S2).

If E(‖X‖42) <∞, then

∣∣∣∣∣∣∣∣∣ĈKR,N − C∣∣∣∣∣∣∣∣∣2 =

√√√√ ∞∑
i=R+1

σ2
i +OP

(
aR√
N

)

+
(
16aR +

√
2
)
L

√
1
K2

1
+ 1
K2

2
+ 8
√

2L2

|||C|||2

(
1
K2

1
+ 1
K2

2

)
aR,

where the OP term is uniform in K1,K2 and aR = |||C|||2
∑R
i=1(σi/αi) is as in Theorem 7.
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3.5 Asymptotic Properties

The theorem shows that in the case of discretely observed data, we get the same
rate of convergence as in the fully observed case, plus additional terms reflecting the
estimation error of R components at finite resolution. We assumed Lipschitz continuity to
quantifiably control those error terms and derive rates of convergence, but the condition is
not necessary if we merely seek consistency, which can be established assuming continuity
alone.

3.5.3 Unbalanced Design

The method that we have described so far is suitable for surfaces observed on the same
regular grid. However, it is possible to have irregular and uneven observations. Next, we
describe a way to adapt our proposed method to this setup. Suppose that for the n-th
random surface Xn = (Xn(t, s) : t ∈ T, s ∈ S), we make Kn measurements at bivariate
locations (t1, s1), . . . , (tKn , sKn). To fix ideas, we consider the point-wise evaluation with
additive noise model

Yni = Xn(tni, sni) + Eni, i = 1, . . . ,Kn, n = 1, . . . , N, (3.22)

where Eni’s are i.i.d. with mean zero and variance σ2, independent of Xn. To tackle this
situation, we take the classical approach, where we first smooth the observations and
then apply our method on the smoothed surfaces (e.g., Ramsay and Silverman, 2005,
2007). To be precise, based on the measurements for the n-th surface, first we construct
its smoothed or functional version

X̃n = S(Yn1, . . . , YnKn), n = 1, . . . , N, (3.23)

where S is a smoothing operator that takes as input the discrete measurements and
outputs a function. Then, we apply our methodology to the surfaces X̃1, . . . , X̃N , i.e.,
use the estimator

C̃R,N = arg min
G

∣∣∣∣∣∣∣∣∣C̃N −G∣∣∣∣∣∣∣∣∣22 s.t. DoS(G) ≤ R,

where C̃N is the empirical covariance based on X̃1, . . . , X̃N . The rate of convergence of
this estimator depends crucially on the smoother, as shown in the following theorem.

Theorem 9. Let X1, . . . , XN ∼ X be a collection of i.i.d. random elements of H =
H1 ⊗ H2 with E(‖X‖4) < ∞, and the covariance of X has separable expansion C =∑∞
i=1 σiAi ⊗̃Bi, with σ1 > · · · > σR > σR+1 ≥ · · · ≥ 0. Suppose that the surfaces are

observed discretely as (3.22) and let X̃n denote the smoothed surface from (3.23). Let
ĈN and C̃N be the empirical covariance operators based on X1, . . . , XN and X̃1, . . . , X̃N ,
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Chapter 3. Separable Component Decomposition

respectively, and suppose that
∣∣∣∣∣∣∣∣∣ĈN − C̃N ∣∣∣∣∣∣∣∣∣2 = OP(bN ). Then,

∣∣∣∣∣∣∣∣∣C̃R,N − C∣∣∣∣∣∣∣∣∣2 ≤
 ∞∑
i=R+1

σ2
i

1/2

+OP (aRbN ) ,

where aR = |||C|||2
∑R
i=1(σi/αi) is as in Theorem 7.

The theorem shows that the rate of convergence of the estimator in this case remains
similar to the case of fully observed surfaces except N−1/2 is replaced by bN , the rate of
convergence of

∣∣∣∣∣∣∣∣∣ĈN − C̃N ∣∣∣∣∣∣∣∣∣2. Note that bN depends on the interplay between (i) the
denseness of the measurements (via K1, . . . ,KN ), (ii) the degree of noise (via the noise
variance σ2), (iii) the smoother used, and (iv) the smoothness of the underlying surfaces
X1, . . . , XN , and in certain scenarios is equal to the optimal rate of N−1/2 (e.g., Hall
and Hosseini-Nasab, 2006, Theorem 3).

In practice, one does not construct the whole functions X̃1, . . . , X̃N , but rather evaluate
them at a fixed number of points. It is possible to develop the asymptotic properties of
our estimator in this setup similar to Theorem 8. But we avoid doing that for the sake
of brevity.

3.6 Simulation Study

In this section, we examine the finite-sample behavior of the R-separable estimator.
Section 3.6.1 discusses in detail the parametric covariance used in Example 5, displaying
the bias-variance trade-off controlled by the choice of R both in the case of estimation
and in the case of prediction, which can be calculated fast using the inversion algorithm
of Section 3.4. Section 3.6.2 focusses on a non-parametric covariance, constructed in
a way such that it is substantially non-separable, leading to more significant reductions
in estimation and prediction errors already for smaller sample sizes. Section 3.6.3 aims to
demonstrate the practical consequences of our theory, in particular of Theorem 8. This
is achieved by introducing a non-parametric covariance allowing for a perfect control of
the separable component scores. Finally, Section 3.6.4 probes in detail performance of
the proposed inversion algorithm. It shows that the number of iterations of the inversion
algorithm does not increase with increasing grid size, when adequate regularization is
used. It also demonstrates the effectiveness of the chosen preconditioning, showing that
the number of iterations is smaller when the leading term in the separable component
decomposition is more dominant, i.e. when the covariance is closer to being separable.
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3.6 Simulation Study

3.6.1 Parametric Covariance

We first explore the behavior of the proposed methodology in the parametric covariance
setting of Example 5. The kernel is given by

c(t, s, t′, s′) = σ2

(a2|t− t′|2α + 1)τ exp
(

b2|s− s′|2γ

(a2|t− t′|2α + 1)βγ

)
.

This covariance was introduced by Gneiting (2002). Among the various parameters, a,
resp. b, control the temporal, resp. spatial, domain scaling, and β ∈ [0, 1] controls the
departure from separability with β = 0 corresponding to a separable model. We fix
β = 0.7, which seems to be as a rather high degree of non-separability given the range of
β, but one should note that non-separability is rather small for this model regardless of
the choice of β (Genton, 2007). The remaining parameters are set α = γ = σ2 = τ = 1,
and the scaling parameters are set as a = b = 20 on the [0, 1] interval, which corresponds
to considering the domain as [0, 20] interval with a = b = 1. We stretch the domain this
way in order to strengthen the non-separability of the model. Even though the covariance
is stationary, this fact is completely ignored. None of the methods presented in this
paper make use of stationarity, and the reported results are not affected by it.

We discretize this kernel as before to obtain the ground truth C ∈ RK×K×K×K , whose
eigenvalues and separable component scores are plotted in Figure 3.1. Note that C is
not R-separable for any R, but it is well-aproximated by R-separable cut-offs for small
values of R already.

We fix K = 50 and generate N observations X1, . . . ,XN ∈ RK×K as independent zero-
mean matrix-variate Gaussians with covariance C. Then we fit the estimator ĈR,N using
the data and calculate the relative Frobenius error defined as

‖ĈR,N −C‖F
/
‖C‖F . (3.24)

This is done for different values of R and N , and the reported results are averages over
one hundred independent simulation runs.

Figure 3.2 shows how the relative error evolves as a function of N for a few fixed values
of R. According to Theorem 7, the relative error converges as N →∞ to√√√√ ∞∑

r=R+1
σ2
r

/√√√√ ∞∑
r=1

σ2
r , (3.25)

which can be seen as the bias. This is the minimal achievable error by means of an
R-separable approximation, even if we knew C, and it is depicted by a dashed horizontal
line (an asymptote) in Figure 3.2 for every considered R. As expected, for R = 1 the
relative error converges fast to its asymptote (i.e. the variance converges to zero), which is
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Chapter 3. Separable Component Decomposition

Figure 3.2: Error for different values of the degree-of-separability R and for the empirical
covariance ĈN decreases with different speed and approaches different asymptotes. Dashed
horizontal lines show the asymptotes for error curves of corresponding color. Grey vertical
lines depict the sample sizes for which average scree plots are shown in Figure 3.3. When the
degree-of-separability R is automatically chosen via the CV scheme from Section 3.3.1, the
resulting error curve forms a lower envelope of the error curves with fixed degrees-of-separability.
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higher than the asymptotes for higher values of R (higher values of R introduce a smaller
bias). However, the speed of convergence to these lower asymptotes is substantially slower
(variance goes to zero more slowly). Hence a higher choice of R does not necessarily
lead to a smaller error. For example, for N = 256, the choice R = 2 is optimal (being
only slightly better than a separable model with R = 1), while choosing R = 3 is in fact
worse than choosing the separable model. The only unbiased estimator we consider is
the empirical estimator ĈN , which is substantially worse than any of the R-separable
estimators. Even though ĈN is the only estimator among those considered, whose error
will eventually converge to 0 for N → ∞, Figure 3.2 shows that N would have to be
extremely large for the empirical estimator to beat the R-separable estimators with
reasonably chosen degree-of-separability R.

In practice, we naturally do not know C, and hence cannot choose R to optimally balance
bias and variance as a visual inspection of Figure 3.2 might allow one to. Instead, we
need to use the cross-validation strategy described in Section 3.3.1. Figure 3.2 also shows
the relative errors achieved with a cross-validated choice of R. Cross-validation appears
to work rather well, with the cross-validated error curve forming almost a lower envelope
of the curves for R = 1, 2, 3, i.e. leading to an error that is always near optimal.

For very large problems, where CV may become prohibitive, one may prefer to visu-
ally inspect the estimated separable component scores and decide a suitable degree-of-
separability by hand based on a scree plot. Hence we show in Figure 3.3 such scree
plots for 3 different values of N (those depicted by grey vertical lines in Figure 3.2; we
encourage the reader to compare the two plots). For N = 256, we would likely pick R = 1

106



3.6 Simulation Study

Figure 3.3: Scree plots for 3 different values of N averaged over the 10 independent simulation
runs.

(a) N = 256 (b) N = 2048 (c) N = 16384
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Table 3.4: Relative prediction error in the parametric covariance setup for the R-separable
estimators (R = 1, 2, 3) and the empirical covariance. Minima for a fixed N (given column) are
depicted in bold.

N 128 256 512 1024 2048 4096 8192 16384 32768
R = 1 0.356 0.354 0.354 0.353 0.349 0.354 0.350 0.352 0.353
R = 2 0.363 0.349 0.345 0.342 0.337 0.341 0.338 0.340 0.340
R = 3 0.422 0.352 0.346 0.341 0.335 0.338 0.335 0.336 0.335
EMP 1.012 0.970 0.866 0.674 0.473 0.396 0.361 0.348 0.342

or R = 2 based on Figure 3.3 (a), these two choices leading to roughly the same errors.
For N = 2048, one would likely choose R = 2, leading to the optimal error. Finally, in
the case of Figure 3.3 (c), one would likely choose R = 3 based on the visual inspection
and comparing the sample size N to the grid size K, leading to the optimal error.

When the task is prediction rather than estimation, we can also benefit from including
terms beyond separability. With the parametric ground-truth considered here, the gains
are rather small, hence we show different prediction errors in form of a table, see Table 3.4.
The prediction errors are calculated from additional test samples, after the training
sample (constructed as above) was used to estimate the covariance. The final row and
the final column of every observation in the test sample (of size 100) are predicted using
the fitted covariance and the remainder of the given observation, i.e. we perform one-step
ahead prediction both in space and time at the same time. We use a small amount of
ridge regularization for all the competing methods in this chapter.

While there are only small differences between the relative prediction errors, there are
notable differences in runtime. In particular, prediction with the empirical covariance
estimator is computationally demanding, cf. Table 3.2. To demonstrate this in practice,
Figure 3.4 shows the runtime of a single prediction task, run on a personal laptop with
Windows 10 (64-bit) operating system, Intel Core i7-7700HQ (2.8 GHz) processor, 16 GB
RAM, and R version 3.6.3 (R Core Team, 2020). The memory complexity of constructing
the empirical covariance restricts us to modest grid size (up to K = 140, we ran out of
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Figure 3.4: Runtimes of calculating a single prediction error (i.e. performing a single prediction
task after the covariance has been already estimated) with a separable covariance (R = 1), R-
separable covariance with R = 2 and R = 3, and an unstructured (here the empirical) covariance.
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memory at K = 170). Moreover, the runtimes explode for the empirical covariance. At
the edge of feasibility (K = 140), our inversion algorithm with R = 3 runs about 1200
times faster compared to the empirical covariance, while it runs only 29 times slower
compared to the separable model. It will be shown empirically in Section 3.6.4 that the
number of iterations of our inversion algorithm does not depend on the grid size and
hence the theoretical complexity of prediction is the same for the separable model as for
the R-separable model. Nonetheless, the cost in practice is slightly higher due to the
iterative nature and some overhead calculations (e.g. the preconditioning).

3.6.2 Weakly Separable Covariance

Here we consider a non-parametric ground-truth, constructed as follows. Let {φ1, . . . , φ50}
denote the first fifty functions of the trigonometric basis, and let J1 = {1, 4, . . . , 49},
J2 = {2, 5, . . . , 50} and J3 = {3, 6, . . . , 48} be three index sets. Covariances A1, A2
and A3 are constructed to have norm one, power decay of the eigenvalues, and the
trigonometric system as their eigenbasis. However, the leading eigenfunctions in Ar are
those trigonometric functions φl with indices in Jr, r = 1, . . . , 3. B1, B2 and B3 are
chosen in the same way, and the resulting covariance is chosen as

C =
3∑
r=1

σrAr ⊗̃Br

with σ1 = 8, σ2 = 4 and σ3 = 2. Note that these are not the separable component scores,
since Ar’s (as well as Br’s) are not orthogonal, and the same is true for Br’s. In other
words, the previous equation is not a separable component decomposition. Still, the
covariance is 3-separable, i.e. it is a superposition of three separable terms. Moreover,
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3.6 Simulation Study

Figure 3.5: Relative estimation (left) and prediction (right) errors depending on sample size
N depending on sample size N . Considered estimators are the separable estimator (R = 1),
R-separable estimators with R = 2 and R = 3, R-separable estimator with cross-validated R, the
weakly separable estimator, and the empirical covariance estimator. Straight horizontal lines
(asymptotes) show the bias of R-separable estimators for R = 1, 2, 3.
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all the separable terms have the same eigenfunctions, which are outer products of the
trigonometric functions. Hence the covariance is by construction weakly separable (Lynch
and Chen, 2018).

We compare different estimators just as in the previous section, with the addition of the
weakly separable estimator of Lynch and Chen (2018). Since the codes for the weakly
separable estimator are only available in Matlab, we use our own R implementation. A
weakly separable estimator is obtained in two steps. The product eigenbasis is estimated
from the data via partial tracing of Aston et al. (2017), and the eigenvalues are estimated
in the subsequent step. Lynch and Chen (2018) propose to enforce low-rankness by only
retaining a part of the basis, such that at least 95% of variance is explained in both
dimensions. We follow this suggestion.

Figure 3.5 shows the relative estimation and prediction errors achieved by different
estimators. The results are qualitatively similar to those in the previous section. Re-
ductions in prediction errors achieved by considering an R-separable model with R > 1
are more profound here, while the runtimes are virtually the same to those reported in
Figure 3.4. Compared to the previous section, the ground-truth covariance here is by
construction weakly separable, and hence we also compare our methodology against the
weakly separable model of Lynch and Chen (2018). As displayed in Figures 3.5, the
weakly separable model does better than the separable model or the empirical estimator,
but is outperformed eventually by the proposed R-separable model with a suitably chosen
R > 1, e.g. by cross-validation.
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Chapter 3. Separable Component Decomposition

3.6.3 Superposition of Independent Separable Processes

In this section, we consider randomly generated 4-separable covariances, i.e.

C =
4∑
r=1

σrAr ⊗̃Br. (3.26)

Our goal is to show how the constant aR of Theorem 7, which is related to the decay of
the separable component scores, affects the convergence speed, i.e. the “variance” part of
the error. To this end, we generate a random orthonormal basis, and split this basis into
four sets of vectors, say D1, . . . ,D4. To generate Ar for r = 1, . . . , 4, we use the vectors
from Dr as the eigenvectors, while the non-zero eigenvalues are set as |Dr|, . . . , 1. Hence
Ar is singular with random eigenvectors and the eigenvalues, which are non-zero, are
linearly decaying. The procedure is the same for B1, . . . ,B4. Note that the exact form
of the covariances A and B is quite arbitrary and is not affecting the results heavily.
However, it is not easy to come up with a generation procedure for C, which allows for
a perfect control of its separable component scores. One basically needs A1, . . . ,A4 to
be positive semi-definite and orthogonal at the same time. And the only way to achieve
this is to have A1, . . . ,A4 low-rank with orthogonal eigenspaces. If this was not the
case, equation (3.26) would not define a separable component decomposition, and σr’s
(which we are going to choose) would not be the separable component scores. We choose
σr = αR−r, r = 1, . . . , R, for different values of α. Hence we have different polynomial
decays for the scores. Higher α’s correspond to faster decays and consequently to a higher
value of aR from Theorem 7. Thus we expect a slower convergence for higher values of α.

Figure 3.6 shows bias-free relative estimation errors for R̂ = 2 and R̂ = 3 (i.e. for
a wrongly chosen degree-of-separability, since the truth is R = 4). The sample size N is
varied and the grid size is fixed again as K = 50. To be able to visually compare the
speed of convergence, we removed the bias (3.25) from the relative estimation errors. For
example, for R̂ = 3, the bias is proportional to σ4 (note that C is standardized to have
norm equal to one). However, σ4 varies for different α’s, so we opt to remove σ4 from
the error corresponding to all the α’s, in order for the curves in Figure 3.6 to depict only
the variance converging to zero. As expected, the convergence is faster for smaller α’s
corresponding to a slower decay of the separable component scores.

One can also notice certain transitions in Figure 3.6. For R̂ = 2 and α = 6, the drop
in error between sample sizes N = 128 and N = 256 clearly stands out in the figure.
This is because when α = 6, the scores decay so rapidly that the sample size N = 128 is
not enough for the second separable component to be estimated reliably. The situation
is similar to Figure 3.2, but since here the bias is subtracted from the error, choosing
a higher R̂ than we can afford to estimate is even more striking. A similar behavior can
be observed for multiple curves in Figure 3.6 (right), when R̂ = 3. For example, one can
observe an “elbow” at N = 512 for the relatively slow decay of α = 3. This “elbow” is
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3.6 Simulation Study

Figure 3.6: Relative estimation error curves for R̂ = 2 (left) and R̂ = 3 (right) when the true
degree-of-separability is R = 4. The reported errors are bias-free; bias was subtracted to make
apparent the different speed of convergence of the variance to zero.
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present because for smaller sample sizes, a smaller value of R̂ would have been better.
From N = 512 onwards, all 3 separable components are estimated reliably and the
variance decays rather slowly and smoothly. This “elbow” exists for α = 4, 5 as well, but
manifests “later" in terms of N . Finally, for α = 6, one can actually observe 3 different
modes of convergence in Figure 3.6 (b): before N = 256, the degree-of-separability is
overestimated by 2; between N = 256 and N = 4096, it is overestimated by 1; and it
seems that for a larger N , the curve would finally enter the slowly converging mode.

3.6.4 Random Covariance

In this section, we are interested in the numerical performance of the inversion algorithm
of Section 3.4. To emulate more realistic inversion problems, we first simulate data with
the ground truth C specified below, then find an R-separable estimate ĈR,N , construct
its positivized version Ĉ+

R,N , calculate Y = Ĉ+
R,NX for a randomly generated X ∈ RK×K ,

and then use the inversion algorithm to recover X from the knowledge of Ĉ+
R,N and Y.

The number of observations and the degree-of-separability are fixed now as N = 500 and
R = 5 (both true and used for estimation), while the grid size K varies.

The ground truth covariance is given as as

C =
R∑
r=1

σrAr ⊗̃Br.

Since we do not require a special control of the separable component scores, we have
complete freedom in the choice of Ar’s, Br’s and σr’s. We set A1 and B1 both as the
covariance of Brownian motion, standardized to have Hilbert-Schmidt norm equal to
one. Since we keep all the σ’s equal to one, ordering of the covariance is immaterial.
For a fixed r = 2, . . . , R, we generate Ar as follows (the procedure for Br is again the
same). We have a pre-specified list of functions, including polynomials of low order,
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Chapter 3. Separable Component Decomposition

trigonometric functions, and a B-spline basis. We choose a random number of these
functions (evaluated on a grid), complement them with random vectors to span the whole
space, and orthogonalize this collection to obtain an eigenbasis. The eigenvalues are
chosen of to have a power decay with a randomly selected base. This procedure leads
to a visually smooth covariances, which cannot be orthogonal to each other, but their
collinearity varies quite randomly. As a consequence, we have R-separable covariance
with some random decay of the separable component scores.

Figure 3.7 (left) shows how the number of iterations required by the PCG inversion
algorithm evolves as the grid size K increases for different values of the regularizer ε
used to positivize the estimator, see (3.19), leading to three fixed condition numbers
κ = 10, 102, 103. The results are again averages over one hundred independent Monte
Carlo runs. For a fixed condition number κ, we always find ε such that the condition
number of C+

R,N is exactly κ. We want to control the condition number of the left-hand
side matrix because it generally captures the difficulty of the inversion problem (Van Loan
and Golub, 1983). In the case of PCG, the number of iterations is expected to grow
roughly as the square-root of the condition number. As seen in Figure 3.7 (left), the
number of iterations needed for convergence depends on the condition number in the
expected manner, while the grid size K does not affect the required number of iterations.
This fact allows us to claim that the computational complexity of the inversion algorithm
is O(K3), i.e. the same as for the separable model.

Remark 11. We ran the PCG algorithm with a relatively stringent tolerance 10−10 (i.e.
stopping the algorithm only when two subsequent iterates are closer than 10−10 in the
Frobenius norm). The maximum recovery error across all simulation runs and all setups
of the parameters was 3 · 10−10. Hence there is no doubt that the inversion algorithm
performs as intended.

Finally, we explore the claim that a nearly separable model leads to milder computational
costs than a highly non-separable model. We take ĈR,N estimated with N = 500 as above
with different values of R = 3, 5, 7, and we change its scores σ̂r, r = 1, . . . , R. Firstly, we
fix σ̃1 ∈ {0.15, 0.25, . . . , 0.95} ∩ {σ;σ ≥ 1/R}. Then, we generate σ̃r for r = 2, . . . , R as
a random variable uniformly distributed on the intervalmax

0, 1−
r−1∑
j=1

σ̃j − (R− r)σ̃1

 ,min

σ̃1, 1−
r−1∑
j=1

σ̃j

 .
This leads to a collection of scores which are smaller than or equal to σ̃1 and they sum
up (together with σ̃1) to one. Lastly, we set

C̃ε
R,N =

R∑
r=1

σ̃rÂr ⊗̃ B̂r + εI.
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3.7 Data Analysis: Classification of EEG Signals

Figure 3.7: Left: Number of iterations required by the PCG algorithm does not increase with
increasing grid size K when the condition number κ is held fixed, κ ∈ {10, 102, 103}. Right:
The smaller the leading score σ1 is (relatively to other scores), the higher number of iterations is
required by the PCG algorithm. Different regularization constants ε are distinguished by different
colors, while different degrees-of-separability are distinguished by different symbols. Smaller
degrees-of-separability prevent σ1 from being too small, leading to naturally shorter curves, but
otherwise the degree-of-separability is not affecting the results very much.
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This time, we do not look for ε in a way such that the condition number of C̃ε
R,N is fixed,

because we want to explore how the size of σ̃1 affects the number of iterations. However,
a part of this effect is how σ̃1 affects the condition number, so we just standardize with
several different (but fixed) values of ε. Finally, we generate a random X ∈ RK×K ,
calculate Y = C̃ε

R,NX, and use the inversion algorithm to recover X from the knowledge
of C̃ε

R,N and Y. Remark 11 applies here as well.

The results are plotted in Figure 3.7 (right). As expected, the better regularized problems
with a larger ε generally require a smaller number of iterations. But more importantly,
the number of iterations increases with decreasing σ̃1. This effect is milder for large
ε, but more severe for smaller regularization constants. This means that unless C is
well-posed (i.e. with a relatively large smallest eigenvalue λmin), we have to pay extra
costs for very substantial departures from separability (i.e. when the largest score σ1 is
not much larger than the other scores).

3.7 Data Analysis: Classification of EEG Signals

Electroencephalography (EEG) is dominantly utilized for screening and diagnosis of
various mental disorders, such as epilepsy or autism. It is an effective monitoring
procedure for studying various brain activities. Since the responsive capacity of the brain
is severely affected by alcoholism, EEG can also be used for detection and diagnosis of
alcoholism. EEG signals are acquired using numerous electrodes placed on the scalp, and
each electrode produces a time series of measurements, sampled over a specific interval.
Since the time series produced by EEG electrodes are known to be non-stationary, it is
natural to consider a block of measurements as a random surface, with time being one
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dimension and space (electrode placement) being the second dimension. We consider
detection of alcoholism as a classification problem based on random surfaces, which
are event-related EEG signals. We work with a data set of 77 alcoholic and 45 control
subjects, which is freely available from University of California, Irvine machine learning
database1. Each subject was repeatedly exposed to either a single stimulus (Condition 1)
or two matching stimuli (Condition 2) or two non-matching stimuli (Condition 3). There
was a total of 120 of these 1-second-long trials sampled at 256 Hz, but many were
discarded right after the acquisition due to artifacts such as blinking. We discarded
one of the control-group subjects, since this was a clear outlier with only 19 successful
trials. After that, we have calculated averages of 10 (the maximum possible number
for the remaining subjects) random available trials per condition, resulting in a data
set X1, . . . , X121 ∈ R256×64 of N = 121 subjects, K1 = 256 time points and K2 = 64
spatial locations for each of the three conditions. Also, the class membership variables
Y1, . . . , Y121 ∈ {0, 1} (control or alcoholic) for all the subjects are available.

Classification of subjects into their respective classes (control versus alcoholic) using the
EEG data set described above has been conducted many times before – a search through
Google Scholar reveals dozens of papers published this year only. These attempts differ
in many aspects, e.g. in how the data are sub-sampled, pre-processed or filtered, or which
features are selected, and which type of classifier is used. For example, Prabhakar and
Rajaguru (2020) compare over 50 different classification approaches with their accuracy
varying between 80 % and 99 %. However, our goal is not to build a competitive classifier.
It is merely to demonstrate how covariance estimation beyond separability can improve
classification accuracy. For this purpose, we consider the functional linear discriminant
analysis (fLDA) classifier (Baíllo et al., 2011). To the best of our knowledge, fLDA
classifier has not been used before with the EEG data set.

Specifically, we utilize the centroid classifier of Delaigle et al. (2012), see also Kraus
and Stefanucci (2019) for an elegant exposition. Assuming that the control group has
a Gaussian distribution with mean m0 and covariance C while the alcoholic group has
a Gaussian distribution with mean m1 and covariance C, the optimal classifier (i.e. a
predictor of Y given the EEG measurements X) based on a one-dimensional projection
is given by

Ŷ := 1[〈X−m0,v〉>〈X−m1,v〉], (3.27)

where v is a solution to the linear problem involving the covariance, namely

Cv = m1 −m0, (3.28)

provided this solution exists. If the solution does not exist, neither does the optimal
centroid classifier. Regardless, however, m0, m1 and C are unknown in practice and have
to be estimated from the data. The estimator of C is typically regularized by adding

1https://archive.ics.uci.edu/ml/datasets/eeg+database, downloaded on 14 May 2021.
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Table 3.5: Out-of-sample cross-validated classification accuracy (i.e. the ratio between correctly
classified subjects and all subjects) for the fLDA classifier with the separable (R = 1) or R-
separable (R = 2) estimator of the covariance, and for three different data sets given by different
conditions.

Degree-of-separability Condition 1 Condition 2 Condition 3
R=1 78 % 79 % 77 %
R=2 90 % 84 % 91 %

a ridge (Baíllo et al., 2011; Kraus and Stefanucci, 2019) so the inverse problem can be
solved and an estimator of v, denoted v̂, is obtained. Then, one obtains the classifier by
plugging in v̂ as well as m̂0 and m̂1 into (3.27).

While m0 and m1 can be easily estimated as the empirical means of the respective classes,
estimation of the covariance poses an issue here. Even though the empirical covariance
ĈN ∈ R256×64×256×64 can be evaluated in principle, we cannot expect it to be a good
estimator, given the evidence in the previous section. Moreover, and more importantly,
the inverse problem (3.28) is not computationally feasible with C estimated empirically.

Instead, one may use the separable estimator or the proposed R-separable estimator
for C. In this particular case, the cross-validation strategy of section 3.3.1 suggests the
choice R = 2 for all three data sets. Then, the inverse algorithm of Section 3.4 can be
used to solve (3.28) efficiently, and the classifier is obtained easily.

Table 3.5 demonstrates the gains acquired by estimation beyond separability. To compare
the resulting two classifiers (one for the separable estimator and other for the 2-separable
estimator of the covariance), we split the data set for every condition into folds Fk,
k = 1, . . . , 24 of size 5. Let Yk,j , k = 1, . . . , 24, j = 1, . . . , 5, denote the class membership
of the j-th observation in k-th fold, and Ŷ (−k)

k,j (R, ε) denote the predicted class membership
of Yk,j obtained by the fLDA classifier trained solely on folds Fk′ , k′ 6= k, using the
R-separable estimator of the covariance and εI as the ridge regularizer. Out-of-sample
cross-validated classification accuracy for a given classifier is then calculated as

ACC(R, ε) =
24∑
k=1

5∑
j=1

∣∣∣Ŷ (−k)
k,j (R, ε)− Yk,j

∣∣∣/121.

The maximum accuracies over a grid of ridge constants ε are reported in Table 3.5.
For every condition, the proposed R-separable estimator with R = 2 (which is the
degree-of-separability suggested by cross-validation) clearly outperforms the separable
alternative of R = 1.
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4 Separability under Sparse
Measurements

In this chapter, we discuss how to estimate a separable covariance when the surfaces
are observed only on a small number of locations, which vary across the surfaces and
are burdened with measurement errors. Examples of sparsely observed random surfaces
include longitudinal studies (where only a part of a functional profile is measured at each
visit, e.g. Lopez et al., 2020), geolocalized data (Yarger et al., 2020; Zhang and Li, 2020;
Wang et al., 2020), or financial data (Fengler, 2009; Kearney et al., 2018). To the best of
our knowledge, a procedure for non-parametric estimation of a separable covariance has
not yet been established in the literature for the sparse sampling regime.

We have already seen in the previous chapters (in the dense sampling regime) that the
assumption of separability reduces the computational burden of working on a multi-
dimensional domain. At the same time, separability often amounts to oversimplification.
However, while wrongfully assuming it introduces a bias, separability may still lead to
improved estimation due to the bias-variance trade-off. This was observed in Chapter 3.

Sparse data are generally associated with higher computational complexity (extra costs
associated with smoothing) as well as higher statistical complexity (variance is inflated
due to sparse measurements burdened by noise). Hence the variance stemming from
sparse measurements and noise contamination is often of a larger magnitude, sanctioning
separability as a means to achieve a better bias-variance trade-off. Moreover, the faster
computation and lower storage requirements, which separability entails, are pronounced
in the sparse regime.

The goal of this chapter is to leverage the separability assumption to reduce complexity
of covariance estimation down to that of mean estimation when working under the sparse
regime. The method of choice for sparsely observed functional data on one-dimensional
domains is the PACE approach (Yao et al., 2005a), which is based on kernel regression
smoothers. A naive generalization of PACE to a two-dimensional domain would entail
a computationally infeasible local linear smoothing step the in four-dimensional space.
Instead, we demonstrate how to make careful use of separability to collapse the four-
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dimensional smoother into several two-dimensional surface smoothers. Consequently, the
estimation of the mean, covariance, and noise level all become of similar computational
complexity.

We illustrate the benefits of our approach on a qualitative analysis of implied volatility
surfaces corresponding to call options. Here, one surface corresponds to a fixed asset (e.g.
a stock), for which the right to buy it for an agreed-upon strike price (first dimension) at
a future time to expiration (second dimension) is traded. The value of implied volatility
at given strike and time to expiration is derived directly from observed market data (the
option prices), by the well-known and commonly used Black-Scholes formula (Black and
Scholes, 1973; Merton, 1973). The implied volatilities are preferred over the option prices,
since they are dimensionless quantities, allow for a direct comparison of different assets,
and are well familiar to practitioners. Since the options are traded only for a finite number
of strikes and times to expiration, which vary across different surfaces, the observed
data consist of a sparse ensemble. The interpolation of such an ensemble is a typical
objective in financial mathematics as the latent implied volatility surfaces are of interest
for other tasks such as prediction (forecasting) of option prices (Hull, 2006). The common
practice is to interpolate or smooth the measurements for every surface independently.
For example, Cont and Da Fonseca (2002) utilized pre-smoothing by local polynomial
regression, evaluating an individual smoother for every single surface. This approach
may, however, pose issues when the available sparse measurements for a given surface are
concentrated only on a subset of the domain, which is often the case. Once the predicted
surfaces are fed into a subsequent predictive models, the naively extrapolated parts of
the surface are given the same weight as the more reliable interpolated parts, which can
naturally hinder the resulting prediction quality. Instead, we advocate for the idea of
“borrowing strength” for the purpose of predicting the latent surfaces via best linear
unbiased prediction using the information from the entire data set, which also allows
for uncertainty quantification (Yao et al., 2005a). Under separability, we only need to
use two-dimensional surface smoothing, which is the case of the pre-smoothing approach
as well. At the same time, the proposed methodology outperforms the pre-smoothing
approach in terms of prediction error.

4.1 Model and Observation Scheme

We assume the existence of i.i.d. latent surfaces Xn ∈ L2([0, 1]2), n = 1, . . . , N , which
are mean-square continuous with continuous sample paths. We denote the mean function
as µ = µ(t, s), where

µ(t, s) = EX1(t, s), t, s ∈ [0, 1],

and the covariance kernel as c = c(t, s, t′, s′), where

c(t, s, t′, s′) = E
[(
X1(t, s)− µ(t, s)

)(
X1(t′, s′)− µ(t′, s′)

)]
, t, s, t′, s′ ∈ [0, 1].
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4.2 Motivation

Recall that we think of the first dimension as being temporal, denoted by variable t, and
the second dimension as being spatial, denoted by variable s, though this convention is
only made for the purposes of presentation.

The crucial assumption in this chapter is that of separability of the covariance:

(A1) The covariance kernel of the random surfaces X1, . . . , XN satisfies

c(t, s, t′, s′) = a(t, t′)b(s, s′), t, s, t′, s′ ∈ [0, 1], (4.1)

for some purely temporal covariance a = a(t, t′) and some purely spatial covariance
b = b(s, s′).

The process X ∈ L2([0, 1]2) is separable if it is, for example, an outer product of two
independent univariate processes (a purely temporal one and a purely spatial one). In
that case, apart from the covariance, the mean function also separates into a product of
a purely temporal and a purely spatial functions. However, a process can have a separable
covariance even when it is not itself separable (Rougier, 2017), for example the mean
function may not be separable. We do not assume separability of the latent process itself,
we only assume separability of its covariance in the sense of (4.1).

We work under the sparse sampling regime, where every surface is observed only at a finite
number of irregularly distributed locations, and those measurements are corrupted by
independent additive errors. For the n-th latent surface Xn, the number of measurements
Mn as well as the locations of the measurements {(tnm, snm) | m = 1, . . . ,Mn} ⊂ [0, 1]2
are considered random, and the observations are given by the errors-in-measurements
model (Yao et al., 2005a; Li and Hsing, 2010; Zhang and Wang, 2016):

Ynm = Xn(tnm, snm) + εnm, m = 1, . . . ,Mn, n = 1, . . . , N, (4.2)

where εnm are i.i.d. with E εnm = 0 and Var(εnm) = σ2 > 0 being the noise level.

4.2 Motivation

In this section, we assume for simplicity that the mean is zero, and provide a heuristic
description of how one might estimate the separable covariance (4.1). Note that we have

Cov(Ynm, Ynm′) = a(tnm, tnm′)b(snm, snm′) + σ21[m=m′]

for n = 1, . . . , N and m,m′ = 1, . . . ,Mn.

Consider the raw covariances Gnmm′ := YnmYnm′ . Ignoring the assumption of separability,
one could attempt to lift the PACE approach (Yao et al., 2005a) up to higher dimensions.
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Chapter 4. Separability under Sparse Measurements

This amounts to plotting the raw covariances as a scatter plot with a four-dimensional
domain, discarding the diagonal covariances burdened by noise, and using a surface
smoother to obtain an estimator of the covariance. Specifically, this amounts to setting
ĉ = γ̂0 with γ̂0 = γ̂0(t, s, t′, s′) given for every fixed (t, s′, t′, s′) ∈ [0, 1]4 as

arg min
γ0,γ1,γ2,γ3,γ4

N∑
n=1

Mn∑
m=1

Mn∑
m′=1
K
(
t− tnm
h1

)
K
(
s− snm
h2

)
K
(
t′ − tnm′

h3

)
K
(
s′ − snm′

h4

)
·

·
[
Gnmm′ − γ0 − γ1(t− tnm)− γ2(s− snm)

− γ3(t′ − tnm′)− γ4(s′ − snm)
]2
,

(4.3)

where K(·) is a smoothing kernel function and h1, h2, h3, h4 > 0 are bandwidths. We refer
to this procedure as 4D smoothing. However, there are two issues with 4D smoothing.
Firstly, the curse of dimensionality results in an estimator of poor quality, unless surfaces
are observed relatively densely and many replications are available. And secondly,
especially when the latter is true, the computational costs of smoothing in a higher
dimension can be excessive. We make the assumption of separability mainly to cope with
these two issues, which is often the case in the literature already when working with
fully observed data (Gneiting et al., 2006; Genton, 2007; Pigoli et al., 2018). We do not
see separability as a critical modeling assumption, but rather as a regularization, which
possibly introduces a bias. Separability reduces both the statistical and the computational
complexity of the covariance estimation task. This is always important when working
with random surfaces, whatever their mode of observation, but becomes particularly
crucial when working with sparsely observed surfaces.

In the following, we provide a heuristic on how separability can be used to our advantage
in the sparse observation regime. Assuming zero mean for now, we have

EGnmm′ = EYnmYnm′ = a(tnm, tnm′)b(snm, snm′) + σ21[m=m′].

Imagine for a moment that the spatial kernel b = b(s, s′) is known, and consider the set
of values  YnmYnm′

b(snm, snm′)

∣∣∣∣∣∣ m,m′ = 1, . . . ,Mn,m 6= m′, n = 1, . . . , N

 . (4.4)

The expectation of every point in this set is a(tnm, tnm′), so we can chart these points in
a scatter plot as (

tnm, tnm′ ,
YnmYnm′

b(snm, snm′)

)
,

and use a two-dimensional surface smoother to obtain an estimator of a = a(t, t′).
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4.3 Estimation of the Model Components

Correspondingly, if one knew the temporal kernel a = a(t, t′) instead, the set of values
(4.4) (with a in the denominator instead of b) could be arranged against snm and snm′ to
obtain an estimator of b = b(s, s′). When neither the temporal kernel a nor the spatial
kernel b is known, one can start with a fixed b and iterate between updates of a and b,
smoothing a scatterplot once per every single update.

However, there are two issues with such an approach. Firstly, for small denominators,
the corresponding points on the scatterplot are not reliable, and using them as they
are can have a severe negative impact on estimation quality. Secondly, unless very
few observations per surface are available, the procedure above can still be extremely
demanding to compute, see Section 4.8.

To cope with these issues, we will use weights for the surface smoother and utilize
gridding, i.e. split the domain into disjoint intervals and work on a grid. While, gridding
can significantly reduce computations already on a univariate domain (Yao et al., 2005a),
the gains are much bigger in higher dimensions. In the following section, we introduce
our methodology in full from the theoretical perspective, while computational aspects
are deferred to Section 4.5.

4.3 Estimation of the Model Components

We use local linear regression surface smoothers (Fan and Gijbels, 1996) to formalise the
heuristic described in the previous section and estimate the components of the model
from Section 4.1, i.e. the mean µ = µ(t, s), the temporal kernel a = a(t, t′), the spatial
kernel b = b(s, s′), and the noise level σ2.

By applying a surface smoother to the set {(xk, yk, zk) | k = 1, . . . ,M} ⊂ R3 with given
weights {wk | k = 1, . . . ,M}, we understand calculating γ̂0 = γ̂0(x, y) as the minimizer
of the weighted sum of squares

(γ̂0, γ̂1, γ̂2) = arg min
γ0,γ1,γ2

M∑
k=1
K
(
x− xk
h1

)
K
(
y − yk
h2

)
wk

[
zk−γ0−γ1(x−xk)−γ2(y− yk)

]2

(4.5)
for every fixed (x, y) ∈ [0, 1]2, where K(·) is a smoothing kernel function and h1, h2 > 0
are bandwidths. Throughout this chapter, we use the Epanechnikov kernel, utilize
cross-validation to select the bandwidths, and mention weights only when they are not
all equal.

First, we estimate the mean by applying the surface smoother to the set

{(tnm, snm, Ynm) | m = 1, . . . ,Mn, n = 1, . . . , N}. (4.6)

Denote the resulting estimator by µ̂ = µ̂(t, s).
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Chapter 4. Separability under Sparse Measurements

Next, consider the raw covariances Gnmm′ =
[
Ynm− µ̂(tnm, snm)

][
Ynm′ − µ̂(tnm′ , snm′)

]
.

We begin by applying the surface smoother to the set

{(tnm, tnm, Gnmm′) | m,m′ = 1, . . . ,Mn, m 6= m′, n = 1 . . . , N}

to obtain a preliminary estimator of a = a(t, t′), denoted by â0 = â0(t, t′). Then we use
this preliminary estimator to calculate a proxy of b = b(s, s′). Namely, we apply the
surface smoother to the set

(
snm, snm′ ,

Gnmm′

â0(tnm, tnm′)

) ∣∣∣∣∣∣ m,m′ = 1, . . . ,Mn, m 6= m′, n = 1 . . . , N

 (4.7)

using weights {â2
0(tnm, tnm′)} to obtain b̂0 = b̂0(s, s′). If the denominator in the set above

is ever zero, we remove the corresponding point from the set. Note that since the weights
are equal exactly to the denominators squared, it makes sense even formally that such
a point is never considered for the surface smoother. As the next step, we refine our
estimator of a by applying the surface smoother to the set

(
tnm, tnm′ ,

Gnmm′

b̂0(snm, snm′)

) ∣∣∣∣∣∣ m,m′ = 1, . . . ,Mn, m 6= m′, n = 1 . . . , N

 (4.8)

using weights {b̂20(snm, snm′)} from which we obtain â = â(t, t′). Finally, we refine the
estimator of b by applying the surface smoother to set (4.7) with â0 replaced by â and
the weights adopted accordingly, resulting in the estimator b̂ = b̂(s, s′).

Finally, once both the mean and the separable covariance have been estimated, it remains
to estimate the noise level σ2, which is of interest e.g. for the purposes of prediction. We
begin by applying the surface smoother to the set

{(tnm, snm, Gnmm) | m = 1, . . . ,Mn, n = 1 . . . , N}

to obtain V̂ = V̂ (t, s). Note that since EGnmm ≈ a(tnm, tnm)b(snm, snm) + σ2, we can
estimate σ2 by

σ̂2 = 4
∫ 3/4

1/4

∫ 3/4

1/4

[
V̂ (t, s)− â(t, t)b̂(s, s)

]
dt ds,

where (similarly to Yao et al., 2005a) we integrate only along the middle part of the
domain to mitigate boundary issues.

The workflow of the estimation scheme described above is visualised in Figure 4.1.
The main novelty of our approach lies in the part where the separable covariance is
estimated. Separability allows us to reduce dimensionality of the problem. Hence
only two-dimensional smoothing is required, while a straightforward multi-dimensional
generalization of e.g. the PACE approach (Yao et al., 2005a) not utilizing separability
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4.3 Estimation of the Model Components

Figure 4.1: Workflow of the proposed estimation procedure. We estimate firstly the mean
from the data {Ynm}, then the separable covariance (in several steps) from the raw covariances
{Gnmm′}, and finally the noise level. A surface smoother over a 2D domain is utilized in every
step (once per a single thin arrow).

lmeanl separable covariance estimation noise level

estimation estimation

Ynm Gnmm′
Gnmm′

â0

Gnmm′

b̂0

Gnmm′

â

Gnmm

−â · b̂
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µ̂ â0 b̂0 â b̂ σ̂2

would require four-dimensional smoothing to estimate the covariance.

The estimation of the separable terms can be viewed as an iterative procedure, where
either a or b is kept fixed while the other term is being updated. The initial proxy â0 is
also obtained in this way, starting from b̂0 ≡ 1. A natural question is whether one should
iterate this process until convergence, or simply stop after a single step, and use e.g. â0
as the estimator of a. The approach we advocate for uses exactly two steps (for both
a and b). The reason is the following. As will be shown in Section 4.7, the asymptotic
distribution of b̂ does not depend on â0, and the same is true for â. This fact follows
from separability. However, one can anticipate the finite sample performance of â to be
better than that of â0, which is verified in our simulation study. One can think of the
first step as estimating the optimal weights consistently, and the second step as using
those consistently estimated weights to produce the estimators, which are expected to
outperform the one-step proxies.

4.3.1 Alternative Number of Steps

While we propose to estimate the separable covariance as summarized in Figure 4.1,
one can easily envision a multi-step procedure, instead of the proposed two-step variant.
Due to the kernel smoothing step, we are unable to show convergence of a fully iterated
procedure. On one hand, this is not a big issue, because low number of steps is usually
sufficient, as shown in Section 4.8. On the other hand, especially when the covariance c
satisfies ∫

[0,1]4
c(t, s, t′, s′)dtdsdt′ds′ ≈ 0,

more than two steps can sometimes lead to a better performance. In this section, we
introduce a cross-validation (CV) scheme to choose the number of steps in a data-driven
way.
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Chapter 4. Separability under Sparse Measurements

Assume we are working on a grid of size d× d, and let the n-th surface Xn be observed
at Ωn ⊂ {1, . . . , d} × {1, . . . , d}. Then, the observations are stored as matrices Xn,
n = 1, . . . , N , where X[i, j] is available if and only if (i, j) ∈ Ωn. Let l denote the number
of steps and Ĉ(l) the estimator obtained using l steps. Let L denote the maximum
candidate value for l, in practice one can choose e.g. L = 5. For a candidate estimator
Ĉ(l), its “goodness of fit” can be measured by E‖Ĉ(l) − C‖22. Of course, we cannot
evaluate this objective since we do not know C. Our strategy will be to find a proxy,
which can be evaluated based on the available data, and then choose the number of
iterations l that minimizes such a proxy.

Firstly, since
E‖Ĉ(l) −C‖22 = E‖Ĉ(l)‖22 − 2E〈Ĉ(l),C〉+ E‖C‖22,

where the last term does not depend on k, we only need to estimate the expected inner
product in the previous equation. Let Ĉ(l)

−n denote the estimator obtained without the
n-th surface. Then we have

E〈Ĉ(l),C〉 ≈ E〈Ĉ(l)
−n,C〉 = 〈EĈ(l)

−n,EXn⊗Xn〉 = E〈Ĉ(l)
−n,Xn⊗Xn〉 = E〈Ĉ(l)

−n,Xn⊗Xn〉?,
(4.9)

where the middle equation is due to independence between the samples, 〈·, ·〉? is the
sparse version of the inner product given by

〈Ĉ(l)
−n,Xn ⊗Xn〉? =

= ‖Ĉ(l)
−n‖22∑

(i,j),(i′,j′)∈Ωn(Ĉ(l)
−n[i, j, i′, j′])2

∑
(i,j),(i′,j′)∈Ωn

(i,j) 6=(i′,j′)

Ĉ(l)
−n[i, j, i′, j′]Xn[i, j]Xn[i′, j′]

and the last expectation in (4.9) corresponds to averaging over the sampling patter as
well. Note that 〈·, ·〉? is defined such that it is equal to 〈·, ·〉 in the case of a fully observed
and noiseless surface Xn. Now, the expected inner product in (4.9) can be naturally
estimated using the available sample as the following weighted average:∑

(i,j),(i′,j′)∈Ωn(Ĉ(l)
−n[i, j, i′, j′])2∑N

n=1
∑

(i,j),(i′,j′)∈Ωn(Ĉ(l)
−n[i, j, i′, j′])2

N∑
n=1
〈Ĉ(l)
−n,Xn ⊗Xn〉? =

= ‖Ĉ(l)
−n‖22∑N

n=1
∑

(i,j),(i′,j′)∈Ωn(Ĉ(l)
−n[i, j, i′, j′])2

∑
(i,j),(i′,j′)∈Ωn

(i,j)6=(i′,j′)

Ĉ(l)
−n[i, j, i′, j′]Xn[i, j]Xn[i′, j′].

Finally, we have a fully calculable objective, which can be minimized over different values
of l to suggest the optimal number of steps. The procedure above corresponds to the
leave-one-out CV scheme. In practice, we use 10-fold CV instead. We show in Section
4.8 that the strategy presented here leads to a reasonable choice of the the number of
steps l.
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4.4 Weighting Scheme

4.4 Weighting Scheme

One of the distinctive features of our methodology is the use of this explicit weighing
scheme, where the weights for each of the two covariance kernels depend on the other
covariance kernel. Here we explain the specific (quadratic) form of weight.

Firstly, we discuss how the weighting scheme using a fixed part of the separable covari-
ance can be understood as an alternative to local weighting via the smoothing kernel.
Assume we observe zero-mean surfaces sparsely, and one of these surfaces, say X1, is
observed at four locations only, as depicted in Figure 4.2. First, let us describe the
4D smoothing estimator at a fixed location (t, s, t′, s′), when the bandwidths are also
fixed. X1 contributes to ĉ(t, s, t′, s′) only if there is a pair of two locations, where X1 is
observed, such that one of the locations is close to (t, s), and the other is close to (t′, s′).
In this case, closeness in time, resp. space, is measured by ht, resp. hs, which control the
bandwidth of the smoothing kernel. In Figure 4.2 (left), only a single pair of locations
contributes to estimation at (t, s, t′, s′).

Now, let us contrast this to a single step in the proposed estimating procedure. Assume
that b = b(s, s′) is fixed in the current step, and we are estimating a = a(t, t′). In this
step, the spatial dimensions are not explicitly considered, we are performing smoothing
only in the temporal dimensions. Hence the product of any two locations, where X1
is observed, contributes to â, as long as the locations are close to (t, s) and (t′, s′) in
the temporal domain. In the situation displayed in Figure 4.2 (right), this leads to four
contributing raw covariance pairs. In other words, when estimating the temporal part of
the covariance at (t, s, t′, s′), we can consider even raw covariances, which are spatially far
from (t, s, t′, s′). This is meaningful due to separability. The adopted weighting scheme
then ensures that raw covariances arising from points which are spatially distant are
appropriately weighted.

To sum up, 4D smoothing can be understood as averaging over information about
c(t, s, t′, s′) captured in raw covariances, whose locations are close to (t, s, t′, s′). Under
separability, however, the proposed methodology borrows information in a different
manner, always allowing for more freedom in one dimension or the other, depending on
which dimension is currently held fixed.

Secondly, we provide a heuristic justification for the quadratic choice of weights in the
smoothers for the estimation of the covariance kernels a(·, ·) and b(·, ·), such as (4.7)
or (4.8). The quadratic weights can be motivated by the connection to weighted least
squares. We recall that weighted least squares are used for linear regression models
where the model errors are not necessarily i.i.d. Their covariance matrix is assumed to
be a diagonal matrix known up to a multiplicative constant:

y = Xβ + ε, E[ε|X] = 0, Var(ε|X) = σ2
ε diag(v), σ2

ε > 0, (4.10)
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Chapter 4. Separability under Sparse Measurements

Figure 4.2: A single random surface is observed at four locations (depicted by “x”), and these
observations contribute differently to estimation of the covariance at a fixed location (t, s, t′, s′) in
the case of 4D smoothing (left) and one step of the proposed approach leading to the estimator
of a(t, t′) (right). The gray areas depict active neighborhoods and the dashed lines depict the
contributing raw covariances (products of the values at the connected locations).
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where y = (y1, . . . , yI)> is the response, X = (x>1 , . . . ,x>I )> is the model matrix, and
diag(v) denotes the diagonal matrix with the known vector v = (v1, . . . , vI)> on its
diagonal. The regression coefficients β in the model (4.10) are estimated by the weighted
least squares:

β̂ = arg min
β

I∑
i=1

wi (yi − xiβ)2 , where wi = 1
vi
, i = 1, . . . , I. (4.11)

Consider the surface smoother of
(
snm, snm′ ,

Gnmm′

α(tnm, tnm′)

) ∣∣∣∣∣∣ m,m′ = 1, . . . ,Mn, m 6= m′, n = 1 . . . , N


where α(t, t′), t, t′ ∈ [0, 1], is a fixed deterministic kernel. The kernel smoothing technique
we deploy is based on fitting a linear regression locally. In view of model (4.10) we want
to assess the variance of the response Gnmm′/α(tnm, tnm′) to improve the estimation
procedure:

Var
(

Gnmm′

α(tnm, tnm′)

)
= 1
α2(tnm, tnm′)

Var (Gnmm′) . (4.12)

The variance of Gnmm′ is unknown and therefore cannot be used to improve the estimation.
Still, we observe in equation (4.12) that the variance is multiplied by the reciprocal of
α2(tnm, tnm′). Therefore, we would define the weights for the weighted least squares
(4.11) as wi = α2(tnm, tnm′), to utilize the knowledge we actually have.
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4.4 Weighting Scheme

Finally, we provide a more precise justification, showing that the quadratic choice of
weights corresponds to the optimal choice, when data are observed densely. With fully
observed surfaces, the separable model can be estimated via the generalized power
iteration method, where a single step is given by the partial inner product between
the empirical covariance and the previous step, as in Chapter 3. For example, when
b = b(s, s′) is fixed, one step of the power iteration method is due to Proposition 10 given
by

â(t, t′) =
∫ 1

0

∫ 1

0
b(s, s′)ĉN (t, s, t′, s′) dsds′

/∫ 1

0

∫ 1

0
b2(s, s′) dsds′, (4.13)

where ĉN is the empirical covariance estimator. In this section, we demonstrate that,
with fully observed data and with no smoothing conducted, the estimation methodology
of Section 4.3 corresponds to the power iteration step (4.13).

Firstly, assume that b is fixed, and we are using the surface smoother on the set of points
(4.8) to obtain â. Assume that the n-th surface is observed twice at the temporal location
t, i.e. at two locations (t, s1) and (t, s2), and once more in a general location (t′, s′). Let
us denote the raw covariance corresponding to the n-th surface and locations (t, s) and
(t′, s′) explicitly by Gn(t, s, t′, s′). Then, two values are available for the location (t, t′) in
set (4.8):

Gn(t, s1, t
′, s′)

b(s1, s′)
& Gn(t, s2, t

′, s′)
b(s2, s′)

.

The corresponding weights are b2(s1, s
′) and b2(s2, s

′), respectively. If the bandwidth
is small enough, and no other observations are available for this location, â(t, t′) is
calculated as a weighted average:[

b2(s1, s
′)Gn(t, s1, t

′, s′)
b(s1, s′)

+ b2(s2, s
′)Gn(t, s2, t

′, s′)
b(s2, s′)

]/[
b2(s1, s

′) + b2(s2, s
′)
]

Also, for the purposes of the surface smoother, using the two points separately with their
separate quadratic weights is equivalent to using the weighted average with the weight
b2(s1, s

′) + b2(s2, s
′).

When the temporal slice t of the n-th surface is observed fully, the weighted averaging
can be done continuously:

â(t, t′) =
∫ 1

0
b(s, s′)Gn(t, s, t′, s′)ds

/∫ 1

0
b2(s, s′) ds.

When the temporal slice t′ of the n-th surface is also observed fully, the weighted average
becomes

â(t, t′) =
∫ 1

0

∫ 1

0
b(s, s′)Gn(t, s, t′, s′) ds ds′

/∫ 1

0

∫ 1

0
b2(s, s′) ds ds′.
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Chapter 4. Separability under Sparse Measurements

When this is true for all N surfaces, the result is averaged over all the independent
realizations, and we arrive directly to (4.13), since ĉN (t, s, t′, s′) = 1

N

∑N
n=1Gn(t, s, t′, s′).

Altogether, our estimation procedure can be thought of (due to the specific weighting
scheme used) as a sparse version of the partial inner product introduced in Chapter 3.
This link has important computational implications, which are discussed in the following
section.

4.5 Implementation Details

In our implementation, we assume that data arrive as sparse matrices (i.e. matrices with
a substantial number of missing entries). A single step of our estimation procedure for
the separable model can be understood as the sparsified version of the partial inner
product. The partial inner product is in turn a marginalization operator. In the case of
sparse data, marginalization process corresponds to preparation of the raw covariances
for the 2D smoothing step, i.e. charting the raw covariances either in time or in space and
weighting them as in formulas (4.8) and (4.7). Similarly to formulas (3.14) in the previous
chapter, the marginalization step can be performed effectively on the level of data. More
importantly, the scatter points can be pooled together during the marginalization process,
resulting in substantial computational savings during the subsequent smoothing step.

Assume we observe matrices Y1, . . . ,YN ∈ RK1×K2 with only some of their entries known,
i.e. most of the entries are missing. The marginal covariance kernels a = a(t, t′) and b =
b(s, s′) are replaced by matrices A ∈ RK1×K1 and B ∈ RK2×K2 , respectively. We assume
again for simplicity that the mean µ = µ(t, s) is zero. The raw covariances, stemming
from a single latent surface, then form a tensor Gn = Yn ⊗Yn ∈ RK1×K2×K1×K2 with
entries Gn[i, j, i′, j′] = Yn[i, j]Yn[i′, j′] of which many are missing again.

Again, assume that B is fixed, and we are using the surface smoother on the discrete
equivalent to set (4.8), i.e.{(

i, i′,
Gn[i, j, i′, j′]

B[j, j′]

) ∣∣∣∣∣ Yn observed at (i, j) and (i′, j′), (i, j) 6= (i′, j′), n = 1, . . . , N
}

(4.14)
to obtain Â. Like in the previous section, assume Yn was observed at locations at [i, j1],
[i, j2] and [i′, j′], where no two locations are the same. As explained in the previous
section, it is equivalent for the surface smoother to replace the corresponding two values
from (4.14), i.e.

Gn[i, j1, i′, j′]
B[j1, j′]

& Gn[i, j2, i′, j′]
B[j2, j′]
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with weights (B[j1, j′])2 and (B[j2, j′])2, by a single value(
B[j1, j′]Gn[i, j1, i′, j′] + B[j2, j′]Gn[i, j2, i′, j′]

)/(
B2[j1, j′] + B2[j2, j′]

)
(4.15)

with the aggregated weight (B[j1, j′])2 + (B[j2, j′])2.

Let yn,i (resp. yn,i′) denote the i-th (resp. i′-th) column of Yn. Let qi denote the
identifier of whether the entries of yn,i were observed (and similarly qi′), i.e.

qi[l] =

1, l ∈ {j1, j2}
0, otherwise

& qi′ [l] =

1, l = j′

0, otherwise.

Then, value (4.15) can be calculated as y>n,iByn,i/q>i B2qi′ with the aggregated weight
given by q>i B2qi′ , where B2 is the entry-wise square of B. Naturally, this can be
generalized to the case when arbitrary number of entries in the i-th and i′-th columns
of Yn are observed. But more importantly, it can be also generalized to account for
different pairs of columns of Yn at the same time.

Let Qn be formed by vectors qi, i.e. Qn[i, j] = 1[Y[i,j] is observed]. Then the contribution
of the n-th surface Yn into set (4.14) can be calculated at once as

Y>n B̃Yn/Q>B̃2Q (4.16)

where B̃ is B with the diagonal values replaces by zeros and B̃2 is the entry-wise square
of B̃. The diagonal values of B are replaced by zeros as described in order to discard
products of the type (Y[i, j])2, which are burdened by noise.

The situation is analogous in the other step, when A is fixed and B is calculated.
The whole procedure of estimating the separable covariance based on gridded sparse
measurements is outlined in Algorithm 4.2.

Separability offers reductions in both time and memory complexities already when data
are observed fully. Now, we argue that computational gains of separability are even
greater, when data are observed sparsely and kernel smoothing is used.

Kernel smoothers are known to be computationally demanding. To directly evaluate
a kernel smoother in d1 locations using d2 observations takesO(d1d2) operations. Table 4.3
shows these quadratic complexities in our situation, explained below. Assume that N
surfaces were observed on a grid of size K ×K relatively densely (i.e. a fixed percentage
of the grid was observed – this is not unrealistic since one often chooses the grid size in
such a way), and an unbounded kernel was used. The quadratic complexity of kernel
smoother translates into estimating a general covariance by a surface smoother in O(NK8)
operations, because all O(NK4) raw covariances have to be accessed at every single
one of O(K4) grid points. When we consider N fixed, the resulting complexity in K,
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i.e. O(K8), is huge. Under separability, not using the marginalization procedure, the
complexity is O(K6), because O(K4) raw covariances have to be accessed at O(K2) grid
points. With marginalization, i.e. using formula (4.16), the time complexity drops down
to O(K4), because the number of raw covariances that has to be accessed at every grid
point decreases to O(K2).

Table 4.2 Algorithm for estimation of the separable model from sparsely observed (w.l.o.g.
zero-mean) surfaces.

Input Y1, . . . ,YN ∈ (R ∪ {�})K1×K2 , where � represents a missing value

Qn := 1[Yn 6=�] ∈ {0, 1}K1×K2 , for n = 1, . . . , N

replace all � entries in Y1, . . . ,YN by zeros

A :=
(
1
)K1×K1

i,j=1

repeat

for n = 1, . . . , N
B̃ := B with diagonal entries replaced by zeros
B̃2 := entry-wise square of B̃
Wn := QnB̃2Q>n
Zn := YnB̃Y>n entry-wise divided by Wn

end for
A := surface smoother of {Z1, . . . ,ZN} with {W1, . . . ,WN} as the smoothing

weights
for n = 1, . . . , N

Ã := A with diagonal entries replaced by zeros
Ã2 := entry-wise square of Ã
Wn := Q>n Ã2Qn

Zn := Y>n ÃYn entry-wise divided by Wn

end for
B := surface smoother of {Z1, . . . ,ZN} with {W1, . . . ,WN} as the smoothing

weights

until convergence (or only twice)

Output A,B
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Table 4.3: Complexities for covariance estimation of a random surface observed on a K ×K
grid.

Complexity Separability Separability w/o 4D smoothing
Marginalization

Time O(K4) O(K6) O(K8)
Memory O(K2) O(K4) O(K4)

In practice, the quadratic complexity of plain and simple kernel smoothers becomes
intractable and there exist many computational approaches to reduce the burden. Most
notably, the fast Fourier transform can be used on equispaced domains to reduce quadratic
complexity to log-linear (Silverman, 1982), effectively cutting down the powers of K in
the first row of Table 4.3. Many other accelerating approaches exist, see e.g. Raykar
et al. (2010) or Langrené and Warin (2019), and references therein. However, software
availability utilizing these computationally efficient approaches is rather limited, and this
is particularly true for multi-dimensional problems.

We do not provide our own implementation of kernel smoothing. For the proposed
approach, we implement Algorithm 1, which uses a “surface smoother”. To this end, we
utilize local linear smoothers provided in the fdapace package (Yao et al., 2005a; Chen
et al., 2020b). We also utilize internal functions from fdapace to perform cross-validation
for the choice of bandwidths.

For 4D smoothing, which we consider only for comparison, we use the np package
(Hayfield and Racine, 2008), which is to the best of our knowledge the only R (R Core
Team, 2020) package able to perform local linear polynomial regression surface smoothing
in more than two dimensions. The 4D smoothing estimator requires smoothing in
four dimensions. Even though the np package implements cross-validation to choose
the bandwidths, we found the computational burden to be huge and the performance
rather poor in our simulation study. Hence, whenever we use 4D smoothing, we fix the
unknown bandwidths as chosen by cross-validation for the proposed separable model.
While this intuitively leads to smaller than optimal bandwidths, we found out in our
simulation study that bandwidths are governed mainly by smoothness of the underlying
covariance rather than the number of points per surface available. Since the smoothness
of a four-dimensional covariance and its separable proxy is similar, optimal bandwidths
chosen for the proposed (separable) approach seem to be reasonable for 4D smoothing as
well, and this was verified in our experiments. Regardless, we can hardly afford other
strategy for choosing the four bandwidths for 4D smoothing. Even the sophisticated
combination of cross-validation and optimization provided in the np package leads huge
runtimes in our setups, see Section 4.8.
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4.6 Prediction

Another objective of our methodology is the recovery of the latent surfaces based on the
sparse and noisy observations thereon. The prediction method we are going to present
in this section follows the principle of borrowing strength across the entire data set, an
expression framed by Yao et al. (2005a). Specifically, consider the training data set
{Ynm : m = 1, . . . ,Mn, n = 1, . . . , N} composed of the observations made on random
surfaces X1, . . . , XN via (4.2), and a new random surface X? observed under the same
sampling protocol:

Y ?
m = X?(t?m, s?m) + ε?m, m = 1, . . . ,M?. (4.17)

We assume that X? comes from the same population as X1, . . . , XN . In fact, it may be
set (together with its sparse measurements) to one of the training surfaces X1, . . . , XN if
the task is to predict one of those.

Our prediction method is calibrated on all the observations, and this information is used
for the prediction of X?. This contrasts to the pre-smoothing step often used in the
functional data literature (Ramsay and Silverman, 2005, 2007), typically in the dense
regime, where the prediction (usually some kind of a smoother) of X? is based only on
{Y ?

m : m = 1, . . . ,M?}.

Let X? be a random surface with the mean µ(t, s), t, s ∈ [0, 1], and the covariance kernel
a(t, t′)b(s, s′), t, t′, s, s′ ∈ [0, 1], observed through sparse measurements (4.17). Then the
best linear unbiased predictor of the latent surface X? given the sparsely observed data
Y? = (Y ?

1 , . . . , Y
?
M?), denoted as Π(X?|Y?), is given by (c.f. Henderson, 1975):

Π(X?(t, s)|Y?) = µ(t, s) + Cov(X?(t, s),Y?) [Var(Y?)]−1 (Y? − EY?), t, s ∈ [0, 1],
(4.18)

where

Cov(X?(t, s),Y?) =
(
a(t, t?m)b(s, s?m)

)M?

m=1
∈ RM

?
, t, s ∈ [0, 1], (4.19)

Var(Y?) =
(
a(t?m, t?m′)b(s?m, s?m′) + σ21[m=m′]

)M?

m,m′=1
∈ RM

?×M?
, (4.20)

EY? =
(
µ(t?m, s?m)

)M?

m=1
∈ RM

?
.

Formula (4.18) contains the unknown mean surface µ(·, ·), covariance kernels a(·, ·) and
b(·, ·) as well as the measurement error variance σ2. In reality, we estimate these quantities
from the training data set, say sparsely observed measurements on X1, . . . , XN , and
plug-in the estimates µ̂, â, b̂, and σ̂2 into (4.18). We shall denote such predictor as
Π̂(X?|Y?). We show in the following section (Theorem 11) that the predictor Π̂(X?|Y?)
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4.6 Prediction

converges to its theoretical counterpart Π(X?|Y?) as the number of training samples N
grows to infinity.

In the rest of this section, we turn our attention to the construction of confidence bands
under a Gaussian assumption.

(A2) The random surface X? is a Gaussian random element in L2([0, 1]2) and the
measurement error ensemble {ε?m}M

?

m=1 is a Gaussian random vector.

First note that under the assumption (A2), the best linear unbiased predictor (4.18)
actually corresponds to the conditional expectation E[X?(t, s)|Y?]. Furthermore, the
conditional covariance structure is given for t, t′, s, s′ ∈ [0, 1] by

Cov
(
X?(t, s), X?(t′, s′)|Y?

)
= a(t, t′)b(s, s′)− Cov(X?(t, s),Y?) [Var(Y?)]−1 [Cov(X?(t′, s′),Y?)

]>
. (4.21)

Moreover, we denote Ĉov (X?(t, s), X?(t′, s′)|Y?) the empirical counterpart to (4.21),
where the unknown quantities a, b and σ2 are replaced by their estimators.

For (t, s) ∈ [0, 1]2 and α ∈ (0, 1), the (1− α)-confidence interval for X?(t, s) is given by

Π̂(X?(t, s)|Y?)± u1−α/2

√
Ĉov (X?(t, s), X?(t, s)|Y?) (4.22)

where u1−α/2 is the (1 − α/2)-quantile of the standard Gaussian law. The point-wise
confidence band is then constructed by connecting the intervals (4.22) for all (t, s) ∈ [0, 1]2.

The construction of the simultaneous confidence band is more involved, and we shall use
the technique proposed by Degras (2011). Define the conditional correlation kernel

Ĉorr
(
X∗(t, s), X∗(t′, s′)|Y∗

)
= Ĉov (X∗(t, s), X∗(t′, s′)|Y∗)√

V̂ar (X∗(t, s)|Y∗) V̂ar (X∗(t′, s′)|Y∗)
(4.23)

if the division on the right-hand side makes sense and zero otherwise, and where we
define V̂ar (X∗(t, s)|Y∗) = Ĉov (X∗(t, s), X∗(t, s)|Y∗).

Then, construct the simultaneous confidence band by connecting the intervals

Π̂(X?(t, s)|Y?)± û1−α

√
Ĉov (X?(t, s), X?(t, s)|Y?), (4.24)

where û1−α is the (1− α)-quantile of the law of

Ŵ = sup
t,s∈[0,1]2

∣∣∣Ẑ(t, s)
∣∣∣ (4.25)
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with Ẑ being a Gaussian element with Cov(Ẑ(t, s), Ẑ(t′, s′)) = Ĉorr (X?(t, s), X?(t′, s′)|Y?)
for t, t′, s, s′ ∈ [0, 1]. Therefore, by the definition, P(sup(t,s)∈[0,1]2 |Ẑ(t, s)| ≤ û1−α) = 1−α.
Numerical calculation of this quantile is explained by Degras (2011), who also concludes
that û1−α < u1−α/2. Therefore the point-wise confidence band is always enveloped by
the simultaneous confidence band, as expected.

The asymptotic coverage of the point-wise band (4.22) and the simultaneous band (4.24)
is verified in Theorem 11 in the following section.

4.7 Asymptotic Properties

In this section, we establish consistency and convergence rates of the estimators µ̂ = µ̂(t, s),
â = â(t, t′), and b̂ = b̂(s, s′), as well as the measurement error variance σ2.

The following assumptions refine the sparse observation scheme introduced in Section 4.1.

(B1) The counts of measurements per surface Mn are independent identically distributed
random variables with the law Mn ∼ M > 0 such that P(M > 1) > 0 and
M≤Mmax where Mmax ∈ N is a constant.

(B2) The measurement locations (tnm, snm), m = 1, . . . ,Mn, n = 1, . . . , N , are indepen-
dent identically distributed random variables generated from the density f(t,s)(·, ·)
on [0, 1]2. The density f(t,s)(·, ·) is assumed to be twice continuously differentiable
and positive on [0, 1]2.

(B3) The counts (Mn), the locations (tnm, snm), and the latent surfaces (Xn) are inde-
pendent.

The following two assumptions are required for consistent estimation of the mean surface.

(B4) The mean surface µ(·, ·) is twice continuously differentiable on [0, 1]2.

(B5) There exists ρ > 2 such that the random surface X1 and the measurement error
ε11 satisfy

sup
(t,s)∈[0,1]2

E [|X1(t, s)|ρ] <∞, E [|ε11|ρ] <∞.

(B6) The bandwidths hµ,1, hµ,2 for the mean estimator satisfy (logN)/(Nhµ,1hµ,2) = o(1)
and furthermore we assume that they decay with the same rate: hµ,1 � h and
hµ,2 � h as N →∞. The statement xn � x′n as n→∞ for two sequences {xn} and
{x′n} is understood as limn→∞ xn/x

′
n ∈ (0,∞), i.e. xn and x′n differ asymptotically

up to a multiplicative constant
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The common decay rate assumption, which is included in (B6), is not really required for
our asymptotic theory; it is imposed to simplify the statements on the convergence rates.
The same argument applies to the other bandwidths below. Because all smoothing in
our methodology is restricted to two dimensions, the bandwidths are indeed expected
to decay with the same rate, and we may assume that they differ asymptotically up to
a multiplicative constant.

In order to estimate the covariance kernels a(·, ·) and b(·, ·) we need the following
assumptions:

(B7) The covariance kernels a(·, ·) and b(·, ·) are twice continuously differentiable on
[0, 1]2.

(B8) There exists ρ′ > 2 such that the random surface X1 and the measurement error
ε11 satisfy

sup
(t,t′,s,s′)∈[0,1]4

E
[
|X1(t, s)X1(t′, s′)|ρ′

]
<∞, E

[
|ε11|2ρ

′]
<∞.

(B9) The bandwidths ha and hb used for smoothing the covariance kernel a(·, ·) and
b(·, ·) satisfy (logN)/(Nh2

a) = o(1) and (logN)/(Nh2
b) = o(1) as N →∞ and, for

simplicity of the convergence rates statements, we assume ha � h and hb � h as
N →∞ where h is from assumption (B6).

(B10) The true value of the covariance kernel b(·, ·), of the separable model (4.1) satisfies

Θ def=
∫ 1

0

∫ 1

0
b(s, s′)fs(s)fs(s′) ds ds′ 6= 0 (4.26)

where fs(s) =
∫ 1

0 f(t,s)(t, s) dt is the marginal density of the random location s11.

While the other assumptions are standard in the smoothing literature, assumption (B10)
might be surprising, especially considering it is not symmetric between a(·, ·) and b(·, ·).
The reason behind this asymmetry is that our estimation methodology starts by smoothing
the raw covariances Gnmm′ against (tnm, tnm′) in order to produce the preliminary
estimator â0(·, ·). The condition (4.26) ensures that the estimator â0(·, ·) converges to
a nonzero quantity, see the constant Θ in Theorem 10. By contrast, this issue is not
present in the follow-up steps. Due to positive semi-definitness of b(·, ·), the constant Θ
can only be zero if all eigenfunctions of b(·, ·) are orthogonal to fs. This cannot happen
e.g. unless B is exactly low-rank, and with all the eigenfunctions changing signs. From
the practical perspective, the condition is merely a technicality.

The estimation of the noise level σ2 furthermore requires the following assumption.
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(B11) The bandwidths hV,1, hV,2 for the smoother V̂ (·, ·) satisfy (logN)/(NhV,1hV,2) =
o(1) and, for simplicity of the convergence rates statements, we assume hV,1 � h
and hV,2 � h as N →∞ where h is from assumption (B6).

The mean surface asymptotic theory is presented as the following proposition. Note that
the separability assumption (A1) is not required here.

Proposition 12. Under assumptions (B1) – (B6):

sup
(t,s)∈[0,1]2

|µ̂(t, s)− µ(t, s)| = OP

√ logN
Nh2 + h2

 as N →∞.

Our main asymptotic result, the consistency and the convergence rates for the separable
model components (4.1), is presented in the following theorem.

Theorem 10. Under assumptions (A1), (B1) – (B10):

sup
(t,t′)∈[0,1]2

∣∣â(t, t′)−Θa(t, t′)
∣∣ = OP

√ logN
Nh2 + h2

 , (4.27)

sup
(s,s′)∈[0,1]2

∣∣∣∣b̂(s, s′)− 1
Θb(s, s′)

∣∣∣∣ = OP

√ logN
Nh2 + h2

 , (4.28)

as N →∞, where Θ is defined in (4.26).

The separable decomposition (4.1) is not identifiable, because a constant can multiply one
component while dividing the other, i.e. a(t, t′)b(s, s′) = [λa(t, t′)] [(1/λ)b(s, s′)] , t, t′, s, s′ ∈
[0, 1], for any λ ∈ (0,∞). Therefore we can only aim to recover the covariance kernels
a(·, ·) and b(·, ·) up to a multiplicative constant and its reciprocal, respectively. The
number Θ in statements (4.27) and (4.28) plays the role of such a constant and de-
pends on the initialization of the algorithm, in our case on the fact that the first
estimator â0 smooths the raw covariances Gnmm′ without any weighting. Still, the
product â(t, t′)b̂(s, s′), t, t′, s, s′ ∈ [0, 1], estimates consistently the covariance structure
c(t, s, t′, s′) = a(t, t′)b(s, s′), t, t′, s, s′ ∈ [0, 1], which is summarised in the following corol-
lary.

Corollary 4. Under assumptions (A1), (B1) – (B10):

sup
(t,s,t′,s′)∈[0,1]4

∣∣∣â(t, t′)b̂(s, s′)− a(t, t′)b(s, s′)
∣∣∣ = OP

√ logN
Nh2 + h2


as N →∞.

Finally, the asymptotic behaviour of the noise level σ2 is given as the following proposition.
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Proposition 13. Under assumptions (A1), (B1) – (B11):

σ̂2 = σ2 +OP

√ logN
Nh2 + h2

 as N →∞.

This completes the asymptotic theory for our estimsators, and we now turn to prediction.
The following theorem shows that the predictor Π̂(Xnew|Ynew) defined in Section 4.6
converges – as the sample size grows to infinity – to its oracle counterpart (4.18), which
assumes the knowledge of the true distribution of the data. Moreover, the theorem also
proves the asymptotic coverage of the point-wise and simultaneous confidence bands
(4.22) and (4.24).

Theorem 11. Under assumptions (A1), (B1) – (B11):

sup
(t,s)∈[0,1]2

∣∣∣Π̂(Xnew(t, s)|Ynew)−Π(Xnew(t, s)|Ynew)
∣∣∣ = oP (1) , as N →∞,

(4.29)
conditionally on Ynew.

Assuming further (A2) and fixing α ∈ (0, 1):

∀(t, s) ∈ [0, 1]2 lim
N→∞

P
(∣∣∣Π̂(Xnew(t, s)|Ynew)−Xnew(t, s)

∣∣∣ ≤ u1−α
√
v̂
∣∣∣Ynew) = 1− α,

lim
N→∞

P
(

sup
(t,s)∈[0,1]2

v̂−1/2
∣∣∣Π̂(Xnew(t, s)|Ynew)−Xnew(t, s)

∣∣∣ ≤ ẑ1−α

∣∣∣∣∣Ynew
)

= 1− α,

where v̂ = V̂ar (Xnew(t, s)|Ynew).

The rates established in this section manifest the statistical consequences of separability.
Corollary 4 shows that the complete covariance structure is estimated with the rate
OP(

√
(logN)/(Nh2) + h2), which is the known optimal minimax convergence rate (Fan

and Gijbels, 1996) for two dimensional non-parametric regression. By steps similar to
our proofs (postponed to the appendix), it could be shown that the empirical covariance
smoother yields the convergence rate OP(

√
(logN)/(Nh4)+h2). The empirical covariance

smoother’s convergence rate is thus slower than the one found in Corollary 4, achieved
via the separable model.

4.8 Simulation Study

We explore the finite sample performance of the proposed methodology by means
of a moderate simulation study (total runtime of about one thousand CPU hours).
Computational efficiency (relatively small runtimes) is achieved by working on a 20× 20
grid, like described in Section 4.5. Every surface X1, . . . ,X100 is first sampled fully on
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this grid as a zero-mean matrix-variate Gaussian with covariance C (to be specified),
superposed with noise (zero-mean i.i.d. Gaussian entries with variance σ2), and then
sub-sampled in a way that only a fraction of the entries, selected at random, is retained.
The covariance C is always standardized to have trace one, and σ2 is chosen such that
the gridded white noise process is also trace one.

Methods compared. We compare the proposed separable estimator ĉ = â · b̂ against the
non-separable empirical estimator obtained by local linear smoothing in four dimensions
(4D smoothing), and also against the nearest Kronecker product (NKP Van Loan and
Pitsianis, 1993) approximation to ĈN obtained from the fully observed and noise-free
surfaces. We also compare the proposed estimator against its one-step version (ĉ = â0 · b̂0,
cf. Figure 4.1).

Covariance choices. We consider four specific choices for the covariance.

(a) The Fourier scenario, where a = a(t, t′) and b = b(s, s′) are chosen to be the same,
such that they have the trigonometric basis as their eigenfunctions and power decay
of their eigenvalues, resulting in a rather wiggly univariate covariance displayed
in Figure 4.3 (left). The covariance is then set as c(t, s, t′, s′) = a(t, t′) b(s, s′),
resulting in a separable covariance.

(b) The Brownian scenario, where a = a(t, t′) and b = b(s, s′) are both chosen as the
covariance of the Wiener process, i.e. a(t, t′) = min(t, t′) and b(s, s′) = min(s, s′),
resulting in a rather flat covariance displayed in Figure 4.3 (center). The covariance
is then set as c(t, s, t′, s′) = a(t, t′) b(s, s′), i.e. it is separable again.

(c) The Gneiting scenario, where the covariance has the following parametric form:

c(t, s, t′, s′) = σ2

(a2|t− t′|2α + 1)τ exp
(

b2|s− s′|2γ

(a2|t− t′|2α + 1)βγ

)
, (4.30)

where a = b = τ = α = γ = σ2 = 1 and β = 0.7. This covariance is non-separable
(Gneiting, 2002), but it is rather flat.

(d) The Fourier-Legendre scenario, where we choose a1 = a1(t, t′) and b1 = b1(s, s′)
as the Fourier univariate covariances specified above. Furthermore, a2 = a2(t, t′)
and b2 = b2(s, s′) are both chosen as rank-4 covariances with shifted Legendre
basis as their eigenfunctions, resulting in rather wiggly univariate covariances (see
Figure 4.3, right). The covariance is then chosen as c(t, s, t′, s′) = a1(t, t′) b1(s, s′) +
a2(t, t′) b2(s, s′), resulting in a non-separable covariance.

To understand the simulation results, it is only important to point out the following.
Firstly, while the Fourier setup (a) and the Brownian setup (b) are separable, the Gneiting
setup (c) and the Fourier-Legendre setup (d) are non-separable. Secondly, while the
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Figure 4.3: Covariances used as building blocks in the simulation study.
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Brownian setup (b) and Gneiting setup (c) lead to rather flat covariances, the Fourier
setup (a) and the Fourier-Legendre setup (d) lead to quite wiggly (though infinitely
smooth) covariances.

Sparsity. In all simulation setups, we consider different percentages of the entries
observed p ∈ {2, 5, 10, 20, 40, 70}. Since the grid size is 20× 20, this means for example
that for p = 2 we have 2/100 · 202 = 8 observations per surface. For all the setups and
percentages, we report the relative estimation errors ‖Ĉ −C‖2/‖C‖2, where Ĉ is an
estimator obtained by one of the four methods above (4D smoothing, one-step, proposed,
or NKP). The results are shown in Figure 4.4. Every reported error was calculated as an
average of 100 Monte Carlo runs.

Error components. The reported estimation errors can be thought of having four
components:

(i) asymptotic bias, which is zero if the true covariance is separable, i.e. in cases (a)
and (b);

(ii) error due to finite number of samples (N = 100);

(iii) error due to sparse observations (i.e. not observing the full surfaces); and

(iv) noise contribution. NKP errors are always free of the latter two, providing a baseline.

The effect of not observing the full surfaces is displayed for different values of p. Finally,
the noise contamination prevents smoothing approaches to reach the performance of
NKP even for p large. Although our methodology explicitly handles noise, the finite
sample performance is better with noise-free data, which only NKP has access to.
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Figure 4.4: Relative estimation errors depending on percentages of the surfaces observed p for
4 ground truth covariance choices (a)-(d) and 4 methods compared. NKP provides a baseline,
having access to full surfaces and hence not depending on p. For 4D smoothing, only results for
small p are reported.
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(c) Gneiting – non-separable, flat (d) Fourier-Legendre – non-separable, wiggly
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Results. There are several comments to be made about the results in Figure 4.4:

1. In the setups where the covariance is flat, i.e. (b) and (c), the one-step and the
proposed approaches work the same, and 4D smoothing also works relatively well.
These two setups are simple in a sense, because information can be borrowed
quite efficiently via smoothing, regardless of whether the truth is separable or not.
Still, the proposed approach utilizing separability does not perform worse than 4D
smoothing even in the non-separable case (c), having the advantage of being much
faster to obtain. For p = 10 the proposed estimator takes only a couple of seconds
while 4D smoothing takes about 40 minutes even at this relatively small size of
data.

2. When the true covariance is wiggly, the proposed methodology clearly outperforms
4D smoothing, both for the separable truth (a) and the non-separable truth (d).
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The reason is that smoothing procedures are not very efficient in this case, and
borrowing strength via separability is imperative.

3. The reason why error curves for 4D smoothing are only calculated up to p = 10
is the computational cost of smoothing in higher dimensions. In fact, performing
4D smoothing when p = 10 took more time than calculation of all the remaining
results combined. This even takes into account the fact that cross-validation is not
performed for 4D smoothing, cf. Section 4.5. Should we opt for cross-validation in
the four-dimensional days, the total runtime of this simulation study would increase
from the current one thousand CPU hours to over one thousand CPU days.

Now, we show runtimes for the Fourier scenario from our simulation study in Figure 4.5
(left). The runtimes look similarly for any of the remaining scenarios (not reported).
To demonstrate effectiveness of the marginalization procedure described in detail in
Section 4.5, we also show runtimes for the non-pooled procedure, considering all raw
covariances in sets (4.8) or (4.7) as separate points for the purposes of smoothing. It
leads to the same results as the proposed approach but, as more and more points per
surface are observed, the number of scatter points supplied to the smoothing procedure
increases rapidly, which increases the runtimes. But more importantly, at the edge
of computational feasibility for the 4D smoothing approach (i.e. with the percentage
p = 10) the proposed separable estimator is calculated about 200 times faster than the
4D smoothing estimator.

Next, it was observed above that the proposed approach outperforms the one-step version
of our estimator â0 · b̂0, cf. Figure 4.1. While the proposed approach can be seen as a two-
step version, a natural question arises whether a multi-step version of the estimator could
not be much better. Figure 4.5 compares the estimation errors achieved by the proposed
approach and by a three-step approach in all four scenarios considered in Section 4.8.
The third step offers a significant improvement in only one of the scenarios, and even
then the improvement is relatively small compared to the improvements achieved by
using the proposed two-step methodology as opposed to 4D smoothing. Figure 4.5 (right)
also shows the errors achieved by the cross-validated choice of the number of steps as
described in Section 4.3.1. The considered candidate values for the number of steps were
l = 1, . . . , 5. While the CV scheme clearly performs well, occasionally outperforming
both the two-step and three-step approaches (this is only for small percentages of entries
observed and due to the associated variability across different Monte Carlo runs). Still,
the improvements are very small, only supporting the straightforward approach of fixing
the number of iterations at l = 2.

Finally, Table 4.4 shows relative estimation errors of the 4D smoothing approach in all
four scenarios used in Section 4.8, but only with the smallest considered percentage
p = 2. The cross-validated choice of bandwidths is compared against the choice of
bandwidth suggested by the separable model (which is used in Section 4.8). It is clear
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Table 4.4: Relative estimation errors of 4D smoothing with cross-validated bandwidths and
bandwidths suggested by the separable model for the four scenarios considered in Section 4.8
with p = 2 percentages of the surfaces observed.

(a) Fourier (b) Brownian (c) Gneiting (d) Fourier-Legendre
cross-validation 1.07 1.06 1.04 1.39
separable choice 0.04 0.26 1.34 1.1

that cross-validation fails here, because even in the simplest Brownian scenario, cross-
validated relative error is larger that one. The reason for that is likely the following.
Cross-validation for 4D smoothing, as implemented in the np package, does not evaluate
its objective function on a grid. In order to reduce the computational burden, the
cross-validation objective is optimized is a step-wise manner, until a stopping criterion is
met. The stopping criterion is set as a tolerance (defaults to 10−8), and the iterative
optimization is stopped once both the change in objective value and change in the
bandwidths is smaller than the tolerance for two consecutive iterations. While this saves
computation time compared to creating a grid over potential bandwidth values and
evaluating the objective function in all the grid points, the optimization can get stuck in
a local minimum. This is the reason why the cross-validated errors in Table 4.4 are so
high. The sampling pattern is very sparse with p = 2, and there likely are many local
minima. However, the cross-validation still requires fitting the covariance for different
values of the bandwidths. We tried to obtain results for larger values of p as well, however
we ran out of time (with a single task) at 70 hours with p = 5 even with the tolerance
decreased to 10−2. Hence, we have no other choice but to use the bandwidths suggested
by the separable model also for 4D smoothing.

Figure 4.5: Left: Runtimes for Fourier simulations. Right: The proposed approach (two-step)
compared to the proposed approach with included third step and with cross-validated number of
steps (CV) for all the four scenarios considered in Section 4.8.
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4.9 Data Analysis: Implied Volatility Surfaces

A European call option is a contract granting its holder the right, but not the obligation,
to buy an underlying asset (for example a stock) for an agreed-upon strike price at
a defined expiration time. Finding a model and deriving a pricing formula for the fair
price of a European call option was a milestone problem in quantitative finance and
stochastic calculus. Black and Scholes (1973) and Merton (1973) solved this problem
and under the so-called Black-Scholes-Merton model they shown that the fair price of
the European call option on a non-divident paying asset is given by the Black-Scholes
formula (Hull, 2006):

CBSt (m, τ, σS) = StFN(0,1)(d1)− κe−rtFN(0,1)(d2), (4.31)

d1 = − logm+ τ(r + σ2
S/2)

σS
√
t

, d2 = − logm+ τ(r − σ2
S/2)

σS
√
t

,

where m = κ/St is the moneyness defined as the ratio of the strike κ and the current
underlying asset price St at the current time t, τ = T − t denotes the time to expiration,
σS is the volatility parameter in the Black-Scholes-Merton model, r is the risk-free interest
rate, and FN(0,1)(·) denotes the cumulative distribution function of the standard normal
distribution. The only unknown quantity among the inputs in (4.31) is the volatility σS .

Besides calculating the fair price of an option given the (estimated/realised) volatility,
the Black-Scholes formula (4.31) can be used in reverse: having observed the market
price of the option, denoted as C∗t (m, τ), find the value of σIVt (m, τ) that solves the
equation

CBSt (m, τ, σIVt (m, τ)) = C∗t (m, τ).

It can be shown that such value σIVt (m, τ) > 0, called the implied volatility, exists
uniquely for each triplet of m > 0, τ > 0, and C∗t (m, τ) > 0. Now, if the market
indeed followed the Black-Scholes-Merton model and the investors were rational, the
implied volatility σIVt (m, τ) for various m and τ would be constant. However, this is
not true for real market data pointing to the shortcomings of the Black-Scholes-Merton
model. Despite these shortcomings, the Black-Scholes formula (4.31) is widely used
for transforming the observed option prices into an ensemble of implied volatilities in
a bijective manner. The advantage of considering the implied volatilities as opposed
to the market prices of the options is that the implied volatility surfaces tend to be
smoother and comparable across assets. Thus we can take advantage of the functional
data analysis framework.

In contrast to the European options, an American call option grants the right to buy the
underlying asset anytime until the expiration time T . The pricing of American options
on possibly dividend paying stocks is more complicated because the pricing involves
the optimal stopping problem. In general, no closed form solution exists and numerical
algorithms are required (Cox et al., 1979). Likewise, the observed market option prices
can be transformed into implied volatilities.
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Figure 4.6: Two sample snapshots of the considered log implied volatility surfaces corresponding
to the call options on the stocks of Dell Technologies Inc on 01/19/2006 (a) and Qualcomm Inc
on 02/07/2018 (b), and the mean surface of the implied volatility gained from pooling all the
data together (c).

(a) Dell on 01/19/2006 (b) QCOM on 02/07/2018 (c) mean surface
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In this section we consider the options data offered by DeltaNeutral1. This free data set
contains the end-of-day prices as well as the calculated implied volatilities for options
on U.S. Equities markets. The data covers the period from January 2003 until April
2019 but limits each month to contain the daily options data on only one symbol (a
stock or an index). The currently included symbol changes every month and the options
on some of the symbols are American while some are European. For each month we
pick randomly only one trading day with the data on the currently available symbol and
discard the other trading days. Therefore the sample we analyze contains 196 snapshots
with option prices and implied volatilities. We discard the non-liquid options and consider
the contracts with the log-moneyness logm = log(K/St) ∈ [−0.5, 0.5] and the time to
expiration τ = T − t ∈ [14, 365] (in days). Moreover, we take the logarithm of the implied
volatilities to transform them from the domain (0,∞) onto the real line. To reduce
computational costs we round the log-moneyness and the time to expiration to fall on
a common 50× 50 grid, cf. Section 4.5.

Figure 4.6 shows two observations in our samples. The snapshot of Qualcomm Inc
(QCOM) features a cummulation of observation at the short expiration. Here, it happens
five times that two raw observations fall in the same pixel on the common 50 × 50
grid. In these few cases we calculate the average of the two observations in each pair.
Due to smoothness, the option prices (and hence the implied volatilities) attain very
similar values and thus this rounding and averaging does not change the conclusions of
our analysis. We have observed this fact by fitting the model on finer grids while the
estimates remained similar.

1Available at https://www.historicaloptiondata.com/content/free-data, retrieved on 2020-07-15.
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Figure 4.7: Top-left: The estimated covariance kernel â = â(t, t′) corresponding to the time to
expiration variable. Top-right: The three leading eigenfunctions of the spectral decomposition
of the covariance kernel â = â(t, t′). Bottom-left and botton-right: The same as above but
for the estimated covariance kernel b̂ = b̂(s, s′) corresponding to the log-moneyness variable.

t

t'

value

0.25

0.30

0.35

0.40

0.45

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

t (time to expiration)
0 50 100 150 200 250 300 350

96 % 3 % 0.5 %

s

s'

value

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

s (log−moneyness)
0.6 0.8 1.0 1.2 1.4

86 % 10 % 2 %

The estimated mean surface is displayed on the right-hand side of Figure 4.6. The mean
surface captures the typical feature of the implied volatility surfaces: the volatility smile
(Hull, 2006). The implied volatility is typically greater for the options with moneyness
away from 1, while this aspect is more significant for shorter times to expiration.

Figure 4.7 displays the estimates of the separable covariance components by our method-
ology presented in Section 4.3. The moneyness component demonstrates the highest
marginal variability at the center of the covariance surface, meaning that the log implied
volatility oscillates the most for the options with the log-moneyness around 0 (i.e. mon-
eyness 1). The marginal variance is lower as the log-moneyness departs from 0. The
eigendecomposition plot of the moneyness covariance kernel shows that the most of vari-
ability is explained by a nearly constant function with a small bump at the log-moneyness
0. The second leading eigenfunction adjusts the peak at the log-moneyness around 0 to
a greater extent than the first eigenfunction. The covariance kernel corresponding to
the time to expiration variable is smoother and demonstrates slightly higher marginal
variability at shorter expiration. This phenomenon is well known for implied volatility
(Hull, 2006). The eigendecomposition of this covariance kernel indicates that the log
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Figure 4.8: Two views on prediction based on the call options written on the stock of Dell
Technologies Inc on 01/19/2006. The circles depict the available sparse observations, the ribbons
depict the predicted latent surface by the method of Section 4.6, where the covariance structure
was assumed separable, and finally the transparent gray surfaces depict the 95 % simultaneous
confidence band for the latent log implied volatility surface.
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implied volatility variation is mostly driven by the constant function while the second
leading eigenfunction adjusts the slope of the surface for varying time to expiration.

Figure 4.8 demonstrates our prediction techniques presented in Section 4.6 together with
the 95 % simultaneous confidence band. We recall that the confidence band aims to
capture the latent smooth random surface itself, while our raw observations are modelled
by adding an error term. Therefore, the raw data are not guaranteed to be covered in
the confidence band.

4.9.1 Quantitative Comparison

The prediction method outline in Section 4.6 requires as an input the pairwise covariances
regardless whether they have been estimated by the separable estimator â(t, t′)b̂(s, s′) or
the 4D smoother ĉ(t, s, t′, s′). As the benchmark for our comparison, we choose the locally
linear kernel smoother (Fan and Gijbels, 1996) applied individually for each surface as
such smoothers constitute a usual pre-processing step. We will refer to this predictor
as pre-smoothing. In this section, we demonstrate that the predictive performance is
comparable for both covariance estimator strategies (the separable and the 4D smoother),
and that both of these approaches are superior to pre-smoothing. Moreover, the separable
smoother is substantially faster than the 4D smoother.

We compare the prediction error by performing a 10-fold cross-validation, where the
covariance structure is fitted always on varying 90 % of the surfaces, with the remaining
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10 % used for out-of-sample prediction. In the set that is held out for prediction, we select
some of the sparse observations and predict them based on the remaining observations
on that surface. We use the following hold-out patterns:

(a) Leave one chain out. Since the options are quotes always for a range of strikes,
they constitute features known as option chains (cf. Figure 4.6) where multiple
option prices (or equivalently implied volatilities) are available for a fixed time to
expiration. For those surfaces that include at least two such chains, we remove
gradually each chain and predict it based on the other chains. Therefore the number
of prediction tasks performed on a single surface is equal to the number of chains
observed per that surface.

(b) Predict in-the-money. Predict implied volatilities for below-average moneyness (i.e.
moneyness m ≤ 1) based on the out-of-the-money observations (moneyness m > 1).

(c) Predict out-of-the-money. Predict implied volatilities for above-average moneyness
(i.e. moneyness m ≥ 1) based on the in-the-money observations (moneyness m < 1).

(d) Predict short maturities. Predict the implied volatility for options with the time
to maturity τ < 183 [days] based on the implied volatility of the options with the
time to maturity τ ≥ 183 [days].

(e) Predict long maturities. Predict the implied volatility for options with the time
to maturity τ > 183 [days] based on the implied volatility of the options with the
time to maturity τ ≤ 183 [days].

All the prediction strategies are performed only for those surfaces where both the discarded
part and the kept part are non-empty. We measure the prediction error on surface with
the index n (in the test partition within the K-fold cross-validation) by the following
root mean square error criterion, relative to the pre-smoothing benchmark:

RMSEmethod(n) =

√√√√√√
∑
m∈Mdiscarded

n

(
(Π̂method(X(tnm, snm)|Ykept

n ))− Ynm
)2

∑
m∈Mdiscarded

n

(
(Π̂pre-smooth(X(tnm, snm)|Ykept

n ))− Ynm
)2 (4.32)

where Ynm,m = 1, . . . ,Mn are the implied volatility observations on the n-th surface,
Mdiscarded
n ⊂ {1, . . . ,Mn} denotes the set of observations’ indices discarded for the n-

th surface, Ykept
n are the vectorized implied volatility observations that were kept to

be conditioned on. The predictor Πpre-smooth denotes the pre-smoothing based on the
observations Ykept

n ). The predictors Πmethod for method being either the separable
smoother or the 4D smoother constitute the proposed predictors in this article with
the covariance structure estimated by either of the two smoothers. These predictors
are always trained only on the training partition (90 % of the surfaces) within the
10-fold cross-validation scheme. Note that this out-of-sample comparison is adversarial
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Figure 4.9: Boxplots of root mean square errors relative to the pre-smoothing benchmark (4.32)
for the prediction method of Section 4.6 with the covariance estimated by 4D smoothing or
the proposed separable approach, and different hold-out patterns: (a) leave one chain out; (b)
predict in-the-money; (c) predict out-of-the-money; (d) predict short maturities; and (e) predict
long-maturities. Numbers inside the boxes provide numerical values of the median. For a given
method, RMSE value 3 means that the given method is 3-times worse than the benchmark, while
RMSE value 1/3 corresponds to a 3-fold improvement.
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to the proposed approach, because when predicting a fixed surface, the measurements
on that surface (and another 10% of measurements total) are not used for the mean
and covariance estimation. In practice, we naturally utilize all available information.
However, for the hold-out comparison study here, that would require frequent re-fitting
of the covariance, which would not be computationally feasible, in particular for the 4D
smoothing approach.

Figure 4.9 presents the results under the five hold-out patterns in form of boxplots created
from the relative errors (4.32). We see that the prediction errors based on estimated
covariances, be it the separable smoother or the 4D smoother, are typically smaller than
the pre-smothing benchmark with the only exception of the 4D smoother in the hold-out
pattern (b). The predictive performances of the separable and the 4D smoother are
comparable, but they differ a lot in terms of runtime. It typically takes 30 seconds to
calculate the separable smoother (including a cross-validation based selection of the
smoothing bandwidths), while the 4D smoother takes around 3 hours. The latter runtime
is moreover without considering any automatic selection of the bandwidths, because
such would be computationally infeasible. Hence we use the bandwidths selected by the
separable model, cf. Sections 4.5 and 4.8. The calculations are performed on a quite
coarse grid of size 20× 20. The calculations on a dense grid, such as 50× 50 used in the
qualitative analysis, c.f. Section 4.9, are not feasible for the 4D smoother.
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Therefore, we conclude that the separable smoother approach enjoys a better predictive
performance than the pre-smoothing benchmark and – while having having similar
predictive performance as the predictor based on 4D smoothing – is computationally
much faster than the said competitor. In fact, it requires two-dimensional smoothers
only, just as the pre-smoothing benchmark.
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In practice, covariances are often non-separable (Aston et al., 2017; Bagchi and Dette,
2020; Constantinou et al., 2017) and assuming separability thus introduces a bias. The
immense popularity of the separability assumption stems mainly from the computational
advantages it entails. This thesis proposes several alternatives to separability, which enjoy
the same computational advantages. Firstly, the separable-plus-diagonal model can be
used to estimate a separable covariance from noisy observations without smoothing, which
is useful especially when the noise is heteroscedastic and smoothing may not perform
well. Secondly, the separable-plus-banded model may be useful when short-scale noise or
additional weakly dependent signal is present. Finally, an R-separable covariance can be
used to fit any covariance as long as the number of samples is high enough. While both
the separable-plus-banded model and the notion of R-separability suggest ways in which
estimation beyond separability can be conducted, they do so in a different spirit. The
separable-plus-banded model is expected to hold if separability is violated only locally,
i.e. via a short-range entanglement. R-separability, on the other hand, is expected to be
useful whenever there are numerous separable effects overlaid in the data, e.g. when a
process is a mixture of several processes with separable individual covariances.

The marginalization operators developed to estimate the proposed covariance structures,
namely shifted partial tracing and the partial inner product, are interesting even beyond
the scope of this thesis. Firstly, following Aston et al. (2017), partial tracing has become
the method of choice for calculation of the marginal kernels. These marginal kernels are
either used to form a separable proxy for the covariance or as building blocks for different
models. For example, the partially traced marginal kernels are cornerstones of the weakly
separable model of Lynch and Chen (2018). However, given the theoretical development
and the practical evidence in this thesis, it seems that shifted partial tracing should be
generally preferred due to its denoising properties. Secondly, understanding separability
as an unconventional form of low-rankness, which can be exploited in a power iteration
scheme consisting of a sequence of partial inner products, has many implications. One
of these implications is the development of the methodology to estimate a separable
covariance from sparse and noisy measurements. Even though the development of
Chapter 4 is largely self-contained, it is needless to say that the estimation procedure
is inspired by the generalized power iteration method of Chapter 3. In fact, one can
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understand a single step in the estimation procedure as a sparsified version of the partial
inner product. Related and additional implications are discussed below.

While the computational emphasis of this thesis may seem excessive at first glance,
computational issues are the main reason for considering separability in the first place.
The merit of this computational emphasis quickly becomes apparent once one analyzes
a large enough ensemble of random surfaces. For example, a single-electrode EEG datum
sampled at 256 Hz can be transformed to a random surface via a short-time Fourier
transform. This is an alternative way to how random surfaces can naturally arise when
working with EEG data, and it is useful mostly when working with resting-state data, as
opposed to the event-related potentials of Chapter 3. The standard is to keep frequencies
lower than 60, leading to random surfaces with the spatial resolution K2 = 60. When
the temporal length of the signal is T ∈ N seconds, one runs out of memory with an
unstructured covariance already when T > 1, while resting-state EEG signals are typically
sampled over the course of several minutes. In general, brain imaging applications are
abundant with densely sampled random surfaces, which can be very large compared to
the one studied in Chapter 3. While the memory requirements are the main concern in
the case of densely sampled data, runtime may cause the same concerns in the case of
sparsely observed data, as demonstrated in the analysis of the implied volatility surfaces
in Chapter 4.

From a high-level perspective, this thesis is mostly methodological, showing that there
are many appealing alternatives to the standard and quite ubiquitous assumption of
separability, which enjoy similar favorable computational properties. Abstracting from
separability, this thesis suggests to model covariances using a superposition structure,
where the superposed terms offer complementary forms of parsimony. There likely exist
other forms of parsimony (which can be exploited in a similar manner) as well as other
operators than shifted partial tracing, which have other than banded operators in their
kernel, and thus can be used to deconvolve the terms in the superposition and allow for
their isolated estimation. Before conducting search for such other models or covariance
structures, however, it would be meaningful to verify usefulness of the already explored
generalizations in more applied contexts.

Conceivable applications apart, we discuss several potential directions of future work and
our final thoughts on them below. Many of these directions seem to be promising, and
we may explore them in the future, while others seem to be blind alleys at the moment,
but they still arise as very natural continuations of the presented work.
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Matrix Completion

Descary and Panaretos (2019) proposed to model the covariance of a one-dimensional
process as a superposition of two parts, a low-rank part and a banded part, with the
following motivation in mind. The low-rank part of the covariance should capture the
smooth, global behavior of the process, while the banded part should capture rough, local
variations. The empirical covariance matrix was considered, its band of a certain size
was deleted, and matrix completion techniques were utilized to reconstruct the low-rank
part of the covariance, estimating the banded part in a subsequent step.

The basic idea of our model is similar to that of Descary and Panaretos (2019), allowing
for a short-term structure atop some base structure. Thus one could say that our
work generalizes that of Descary and Panaretos (2019) to higher dimensions, utilizing
separability to achieve computational efficiency. In fact, one could marginalize via partial
tracing (without shifting), and then use the matrix completion approach of Descary
and Panaretos (2019) to estimate our separable-plus-banded model. However, matrix
completion requires much stronger assumptions (namely analyticity and low-rankness –
in the usual sense – of the separable part). Instead, we advocated for methodology that
requires much weaker assumptions and can be implemented by means of careful use of
linear operations. Still, the matrix completion approach of Descary and Panaretos (2019)
can be useful in more general model structures, when combined with the methodology
from this thesis.

Firstly, separability corresponds to a Kronecker product structure in finite-dimensional
spaces, where the longing for non-separability is sometimes facilitated via a Kronecker
sum model instead of the Kronecker product model (Park et al., 2017; Greenewald et al.,
2019). A functional version of the Kronecker sum structure of the covariance could be
C = C1 ⊗̃U + V ⊗̃C2, with U and V being banded. Consider adding this structure into
the separable-plus-banded model as

C = A1 ⊗̃A2 +B + C1 ⊗̃U + V ⊗̃C2

in order to obtain a more general model, including both Kronecker product (i.e. separa-
bility) and Kronecker sum as special cases in finite dimensions. Assuming that U and V
as well as B are banded by δ, we have

Trδ1(C) = Trδ(A2)A1 + Trδ(C2)V.

Now, one can deconvolve A1 and V by the matrix completion approach of Descary
and Panaretos (2019). Similarly, A2 and U can be estimated by shifted partial tracing
w.r.t. the second argument, followed by matrix completion using the previously obtained
estimators of A1, A2, U and V . Secondly, C1 and C2 can be estimated by (non-shifted)
partial tracing followed by matrix completion. Finally, B can be estimated as the
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remainder. Thus shifted partial tracing can be potentially combined with the matrix
completion methodology of Descary and Panaretos (2019) to facilitate estimation of
a model, which generalizes separability even further.

Secondly, following the development of Chapter 3, (R-)separability can be understood as
an alternative form of low-rankness. Hence an R-separable-plus-banded model could be
potentially tackled by matrix completion too. This goal seems to be entirely reachable
on the theoretical level. However, there is an important computational question: would
it be possible for a specific matrix completion algorithm to work directly on the level
of data? In other words, would it be possible to avoid again the construction of the
empirical estimator in order to be computationally as efficient as when working with
a separable model?

We believe these generalizations could be particularly interesting with a suitable data set
at hand.

Weak Separability and Weak Bandedness

The separable-plus-banded model of Chapter 2 can be generalized in two ways, which
are both relatively straightforward and potentially interesting. The first is to replace
separability with weak separability of Lynch and Chen (2018). The second is to weaken
our bandedness assumption and utilize the matrix completion approach of Descary and
Panaretos (2019).

It follows from Lemma 1 that a separable covariance A1 ⊗̃A2 has eigendecomposition

A1 ⊗̃A2 =
∞∑
j=1

∞∑
k=1

λjρk(ej ⊗ fk)⊗2 (ej ⊗ fk),

where A1 = ∑
λjej ⊗2 ej and A2 = ∑

ρjfj ⊗2 fj are eigendecompositions of the marginal
operators. Thus we see that separability is characterized by two conditions: all eigen-
functions have a product structure (i.e. they are themselves separable), and the array
of eigenvalues Γ = (γjk)∞j,k=1, where γjk = αjβk, must be rank-1. The weakly separable
model of Lynch and Chen (2018) assumes the product structure of the eigenfunctions,
but allows for the array of eigenvalues to have a rank higher than one. Such a model
can be estimated by utilizing a marginalization operator (Lynch and Chen, 2018, opt
for partial tracing) on the empirical covariance to estimate the eigenfunctions, and then
estimating the eigenvalues in the second step as γjk = 〈ĈN , ej ⊗ fk〉 for j, k = 1, 2, . . ..

By utilizing shifted partial tracing as the marginalization operator, one can afford
to estimate the weakly-separable-plus-banded model C = A + B, where A is weakly
separable and B is banded. Such a model can be again estimated and manipulated with
ease comparable to that of a separable model. Notably, numerical inversion of such
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a covariance can be achieved by the ADI scheme of Section 2.3.3 coupled together with
the PCG scheme of Section 3.4. Specifically, when inverting the weakly-separable-plus-
banded model, the separable equation, i.e. the first equation in (2.35), is now only weakly
separable and no longer has a closed form solution. However, one can utilize the PCG
scheme of Section 3.4 to find a solution iteratively. The overall inversion algorithm will
thus consist of the outer ADI scheme and two embedded PCG schemes. Even though
this may seem complicated, implementation of such an algorithm is trivial based on the
development in this thesis. And again, one can also use shifted partial tracing to estimate
a weakly separable model observed under the heteroscedastic white noise.

Moreover, the bandedness assumption can also be weakened. Our assumption of banded-
ness of B is manifested on the level of its kernel as follows. We assume that b(t, s, t′, s′) = 0
whenever |t − t′| > δ or |s − s′| > δ, which is a strong form of bandedness, assuming
two locations are separated either in space or in time in order for the banded kernel to
vanish. In particular, bandedness needs to hold marginally both in space and time. A
weaker form of the assumption can be obtained by replacing the logical conjunction for
the intersection:

b(t, s, t′, s′) = 0 if |t− t′| > δ and |s− s′| > δ.

With this weaker assumption, two locations have to be separated both in space and in time
in order for the banded part to vanish. In particular, bandedness may not hold marginally
in neither dimension. On the other hand, (non-marginal) weak dependence in time only
suffices for this weak bandedness to hold. Such a model could be particularly interesting
for applications where time is the important component, and could be useful even when
there is no linear ordering in the spatial dimension, e.g. in portfolio optimization where
time series of prices of different assets on a market are observed (Chen et al., 2020a).

Obviously, shifted partial tracing is not sufficient for bypassing the banded part of such
a separable-plus-weakly-banded model. However, under the assumptions of analyticity
and low-rankness on the separable constituents A1 and A2, one can marginalize the
covariance using shifted partial tracing, and subsequently perform matrix completion
in both the marginalized dimensions to deconvolve the separable constituents from
the weakly banded kernel, which must be banded (in the strong and only sense) after
marginalization.

Sparsely Observed Surface-valued Time Series

The analysis of implied volatility surfaces in Chapter 4 provides some insights into the
statistical dependencies of such sparsely observed data, and our quantitative comparison
demonstrates the prediction performance of our prediction method over the pre-smoothing
benchmark. We have formed our data set collecting options across various symbols and
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timestamps with the reasoning that the volatility across these come also from one
population, which is debatable. This study should be seen rather as a proof-of-concept
on how to “borrow strength” across the data set made available by DeltaNeutral, and
how this approach can be used to decrease the prediction error.

We believe that our methodology can provide even better results when considering
a more homogeneous population such as the time series of the implied volatility surfaces
related to a single fixed symbol/asset. In this case, pre-smoothing is usually required
(Cont and Da Fonseca, 2002; Kearney et al., 2018) for forecasting of such time series.
Our methodology could avoid the pre-smoothing step in this case by predicting the
surfaces while borrowing the information across the entire data set. Furthermore,
our methodology could be easily tailored to predicting principal components scores
by conditional expectation (similarly to Yao et al., 2005a), which could be used for
forecasting by a vector autoregression.

Combining separable covariances and time series of sparsely observed surfaces hints at
other directions of future work. For example, Rubín and Panaretos (2020) showed how
to estimate the spectral density operator non-parametrically from sparsely observed
functional time series. Estimating a separable spectral density operator for sparsely
observed surface-valued time series seems to be within reach and is likely to provide
predictions that benefit from the information across time, and thus reducing the prediction
error even more.

Statistical Tests

Lately, multiple tests of separability were developed in the FDA context, two notable
instances being the tests of Aston et al. (2017) and Bagchi and Dette (2020). Aston et al.
(2017) work in the trace-norm topology and utilize partial tracing to construct a separable
proxy of the covariance, while Bagchi and Dette (2020) operate in the Hilbert-Schmidt
topology and implicitly use the partial inner product.

The Hilbert-Schmidt topology facilitates more straightforward analysis. The asymptotic
distribution of the test statistic leads to an asymptotic test, while a bootstrap test is
also proposed. The asymptotic test is reportedly more powerful, while the bootstrap test
is reportedly much faster. The latter is true because bootstrap avoids calculation of the
asymptotic variance, which is very costly. But still, the bootstrap test of Bagchi and
Dette (2020) is significantly slower than the bootstrap test of Aston et al. (2017), which
appears to be (based on the simulation results reported by Bagchi and Dette, 2020) the
major advantage of the latter. The computational efficiency of the bootstrap test of Aston
et al. (2017) is achieved by dual means: 1) bootstrap is used again to avoid the expensive
calculation of the asymptotic variance, 2) projection of the test statistic onto the leading
principal components (both in space and time) is considered. On the other hand, the
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principal component projection, which allows for cheaper computation, can be criticized
from a conceptual perspective: the tests of Aston et al. (2017) do not test separability in
full, they only test it on a subspace, whose size has to be chosen by the user. Moreover,
this subspace is a proxy to the principal subspace only if the hypothesis of separability
holds. Also, if the first few eigenfunctions happen to be separable, the test by design
tends to conclude that separability holds. While this issue is rather philosophical, the
test of Bagchi and Dette (2020) could be preferable simply as a tuning-free alternative,
but – in our personal experience – the test of Aston et al. (2017) is both faster and more
powerful, likely due to the projection-based regularization.

The test statistic of Bagchi and Dette (2020) happens to be the Hilbert-Schmidt norm of
the difference between the empirical covariance and the separable proxy of the covariance
obtained by a single step of the generalized power iteration method. Chapter 3 of this
thesis offers two ways in which the test of Bagchi and Dette (2020) could be improved.
Firstly, one could replace the one-step proxy of Bagchi and Dette (2020) by the fully
iterated proxy of Chapter 3. This would complicate the theory of Bagchi and Dette
(2020), which would basically have to be replaced by some version of principal component
asymptotics, while the performance of the resulting test would likely remain similar
(judging based on the fact that the performance of the test of Bagchi and Dette, 2020, is
reported to be very similar regardless of the starting point). On the other hand, the test
statistic described above is the sum of all the separable component scores barring the first
one, which corresponds to separability. This sum is zero if and only if the covariance is
separable, but also if and only if the second score is zero. Replacing the test statistic by the
estimated magnitude of the second score would introduce an alternative regularization to
the problem, which could potentially improve the performance. Moreover, this proposed
test could be easily extended to test R-separability.

Finally, Chapter 4 of this thesis develops sparsified version of the partial inner product.
In the case of the bootstrap test of Bagchi and Dette (2020), the partial inner product
operation is essentially all one needs to perform the test. Hence we should be immediately
able to test separability also for sparsely observed random surfaces. On the other hand,
finding the asymptotic variance of the statistic (which is not needed to perform the
test, but rather to show its validity) based on sparsely observed data would require
a substantial work.

Domains of Higher Dimensions

A very natural question is whether our methodology can be generalized to more than
two-dimensional domains, for example when there is one temporal and two (or more)
spatial dimensions. This question has to be addressed separately based on whether
separability should be manifested between the spatial dimensions. Differences also appear
between different methodologies proposed in this thesis.
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Firstly, suppose that we seek no separation between the spatial dimensions. In that
case, the separable component decomposition, for example, can be utilized directly after
vectorization of the spatial domain. Note that this is possible due to the fact that our
methodology has a peculiar relationship with continuity. We assume all data are coming
in as matrices, but we think about some latent continuous surfaces from which the
discrete measurements are sampled. Yet, apart from the sparse observations in Chapter 4,
continuity is not needed for our methodology. The methodology can be in fact used
as a multivariate methodology and the presented theory is valid as well. Only once we
wish to relate the inherently discrete estimators with the latent objects on continuous
domains, the functional aspect comes into play. And even at this point, the assumption of
continuity can be largely avoided, depending on the sampling scheme relating the discrete
measurements and the latent objects. Given how heavily the methodology developed in
this thesis is inspired by the FDA viewpoint, avoiding continuity may seem like a useless
mathematical exercise at first glance. However, there are occasional benefits of avoiding
the continuity assumption. For example, when we have one temporal and two spatial
dimensions, it is easy to linearly order the spatial dimensions, use the methodology in
this thesis exactly as it stands, and transform back the results. This is possible for the
separable component decomposition or the separable-plus-diagonal model, but not for
the separable-plus-banded model in general, because bandedness is effectively lost after
linearization of the domain. On the other hand, the methodology of Chapter 4, designed
to handle a sparsely observed separable model, should be straightforward to generalize
without the need to transform the spatial domain.

Secondly, assume that separability should hold between all the dimensions, i.e. for example
the separable-plus-banded model would look like

C = A1 ⊗̃A2 ⊗̃A3 +B

c(t, s, x, t′, s′, x′) = a1(t, t′)a2(s, s′)a3(x, x′) + b(t, s, x, t′, s′, x′).

In this case, problems can arise wherever there is an iterative scheme. For example,
the generalized power iteration method may not be guaranteed to converge or it may
converge but not to the global minimizer of (3.12), because it is a well-known fact in
the literature on tensor decompositions (see Kolda and Bader, 2009, for a review) that
alternating minimization schemes are not globally convergent. This may not pose an issue
per se, we have no reason to believe that the resulting estimator of the generalized power
iteration method in more than two dimensions would be poor for practical purposes.
However, such an estimator, which would neither have an explicit representation nor
would it satisfy some optimality conditions, might prove hard to be analyzed from the
theoretical perspective. Also, it is hard to anticipate what would be the behavior of the
iterative inversion algorithms proposed in Sections 2.3.3 and 3.4. On the other hand,
there should be again no issues with the separable-plus-banded model of Chapter 2 and
the sparsely observed separable model of Chapter 4.
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Links between the Proposed Methods

There are obvious links between the three main methodological developments of this
thesis: estimation of a separable-plus-banded model, an R-separable covariance, and
a sparsely observed separable model.

Firstly, the impact of noise in the estimation procedure for an R-separable covariance is
described in Section 3.5.3. Could we incorporate some form of shifting in the generalized
power iteration method to suppress noise in the same way shifted partial tracing does,
when working with a separable-plus banded model? Could we more generally estimate
an R-separable-plus-banded model? The answer is, sadly, negative. While we could
discard the diagonal (or around-diagonal) raw covariances in every iteration (like we do
in Chapter 4), this would lead to loss of orthogonality between the separable components.
Also, the resulting algorithm would no longer have an optimization formulation, so it
would not be provably convergent.

Secondly, could we iterate the estimation procedure in Chapter 4 until convergence,
then somehow deflate the raw covariances, and iterate again to effectively have a way
of estimating an R-separable covariance from sparsely observed data? The answer is,
again, negative for similar reasons. With every smoothing step, such an algorithm jumps
away from the Krylov space, and hence iterating until convergence may not work. In
Chapter 4, we do not have to iterate at all due to separability being assumed as a model.
Since iteration is in principle not needed, we have consistent estimators after a single
iteration. In practice, it makes sense to iterate twice: to estimate the weights consistently
in the first step, and then use the consistent weights in the second step. The theory of
Chapter 4 works for any fixed number of iterations, but is doesn’t suggest that opting
for more iterations is better, since everything is hidden in the constants (in the big O
notation). We can say that when we fix the number of steps, say at l ∈ N, and let the
number of samples grow to infinity, the l-th iteration of the sparse scheme converges
to the l-th iteration of the generalized power iteration method of Chapter 3. But for
reasons described above, it is impossible to show uniformity across the iterations. The
underlying reason is that in Chapter 4 we have to assume a model (separability), while in
Chapter 3 we do not. The estimators in Chapter 3 are M-estimators, while the estimators
in Chapter 4 are moment estimators, which are simpler and work due to separability
being explicitly assumed.

It would be very interesting to see if the methodology in this thesis could be recast into
a reproducing kernel Hilbert space setup, using another form of smoothing (with a fixed
basis). There, optimization formulation could possibly be found even in the sparse case
(cf. Cai and Yuan, 2010; Wong and Zhang, 2019; Wang et al., 2020), and one could
potentially obtain a truly sparsified version of the methodology developed in Chapter 3.
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Partial Tracing vs. Partial Inner Product

Assume we have densely observed random surfaces on a grid and want to estimate
a separable proxy for the covariance. Should we adhere to (shifted) partial tracing or
to the generalized power iteration, i.e. the partial inner product? Partial tracing has
the advantage of being (almost) linear while the generalized power iteration has certain
optimality properties, which is why some authors (e.g. Genton, 2007) speak of the best
separable approximation. Actually, it would seem that the best separable approximation
should outperform the partial tracing proxy just because of its name. However, the
separable approximation obtained via generalized power iteration is best with respect to
the empirical covariance, not the true covariance.

In our experience with simulations (not all simulation we conducted are reported in this
thesis), the partial tracing proxy is superior when the true covariance is close to being
separable (in terms of very small separable component scores), and there is no noise
in the data. When there is noise, shifted partial tracing is superior as long as the true
covariance is close to being separable and smooth enough (relatively to the grid size). On
the other hand, if there is noise and the covariance is rough and noise level mediocre, the
best separable approximation tends to outperform a (shifted) partial tracing proxy. But
in practice, when the ground truth is unknown, it is hard to make a suggestion about
which estimator to use.

Could we answer the question of partial tracing vs. the partial inner product at least
theoretically? Working on a grid, (shifted) partial tracing can be regarded as a special
case of the partial inner product (see Section 1.7.3), and even in the continuum (i.e. in
theory) it can be regarded as its limiting case, cf. (1.12). As shown in Chapter 4, the
rates of convergence are always the same under separability, regardless of the starting
point. Hence our analysis focusing on rates of convergence cannot really answer this
question. While we have made some attempts to answer these questions based on the
fourth order dependence structure (not included in this thesis), we were not successful.

Pseudo-MLE Approach

At the end of Chapter 1, we introduced the MLE algorithm for matrix-variate Gaussian
distribution and hinted its conjunction with the generalized power iteration on a finite-
dimensional domain. Basically, one obtains the MLE algorithm by taking R = 1 and
replacing the second arguments (the weights) in the partial inner products by their
(operator) inverses in Algorithm 3.1 (Section 3.2.1). In infinite-dimensional spaces, such
inverses are naturally not Hilbert-Schmidt operators. However, we could generalize the
partial inner product to require a trace-class operator in the first argument and only
a bounded operator in the second argument.
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For an arbitrary Hilbert space H and a conjugate pair of indices p and q, we can define
Schwartz’ duality product 〈〈·, ·〉〉 as the linear functional on Sp(H)× Sq(H) satisfying

〈〈A,B〉〉 =
∞∑
j=1
〈Aej , Bej〉H , A ∈ Sp(H1), B ∈ Sq(H1) ,

where {ej}∞j=1 is an orthonormal basis in H1. See Unser and Tafti (2014) for details.
Schwartz’ duality product is a generalization of the inner product. Interestingly, the
development of Section 3.2 can be repeated with inner products replaced by Schwartz’
duality products, resulting for H = H1 ⊗H2 in the partial duality products

S1 : Sp(H)× Sq(H2)→ Sp(H1) & S2 : Sp(H)× Sq(H1)→ Sp(H2)

Both partial tracing (p = 1 and q =∞) and the partial inner product (p = q = 2) are
special cases of this partial duality product. The MLE algorithm would also be a special
case of generalized power iteration with the partial inner product replaced by the partial
duality product (with p = 1 and q =∞), if inverses of trace-class operator were bounded.
That is naturally not the case, but one can envision a pseudo-MLE algorithm with
regularized inverses used instead, to ensure boundedness.

The two common approaches to regularization of the inverse problem in FDA are
the ridge regularization and spectral cut-off. In both cases, the hinted pseudo-MLE
algorithm can be implemented easily as a modification of Algorithm 3.1, the spectral
cut-off regularization in particular corresponds to using the Moore-Penrose pseudoinverse
instead of the standard inverse. While we observed some encouraging simulation results
with adaptive ridge regularization (not reported in this thesis), the conceptually simpler
approach involving the pseudoinverse usually breaks down convergence of the generalized
power iteration method.

Mixed Sampling of Random Surfaces

The methodology of Chapter 4 is aimed at the sparse sampling regime, as reflected by the
theory presented in Section 2.4. It is true that, in practice, it can be hard to distinguish
whether data are observed sparsely or which of the other asymptotic regimes could be
more appropriate. Furthermore, some surfaces can be sampled rather densely, while
others sparsely, which we call a mixed regime. While a mixed regime does not prevent
one from using the methodology of Chapter 4 per se, a natural question arises whether
the fact that a single observation on a very sparsely observed surface contains more
information compared to a single observation on a more densely observed surface should
be taken into account.

Based on this motivation, Li and Hsing (2010) were the first to consider a unifying
approach to sparse, dense, or mixed (one-dimensional) functional data sets. Their
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estimators are based on kernel smoothing with an additional weight factor corresponding
to the number of points being smoothed at each functional datum. While the weighting
adopted by Yao et al. (2005a), which is also the one we use, puts equal weight per
observation (per a single point), the weighting scheme of Li and Hsing (2010) puts equal
weight per subject, i.e. down-weighting observations on densely observed curves. The
resulting convergence rates of Li and Hsing (2010) exhibit different asymptotic behavior
depending on the sparse vs. dense distinction. Surprisingly, however, the SUBJ weighting
scheme of Li and Hsing (2010) is in practice outperformed by the OBS weighting scheme
of Yao et al. (2005a), regardless of the sampling regime (Zhang and Wang, 2016, 2018).

Another line of work aiming at a unified theory for different asymptotic sampling schemes
is due to Zhang and Wang (2016), who assume that the number of measurements
per subject (a curve) is fixed, but arbitrary. They use again kernel smoothers, but
this time with a general per-subject weights. Under some technical conditions on the
numbers of measurements per subjects, they obtain asymptotic rates of convergence
depending on these numbers as well as the per-subject weights, which are free to be
specified. In fact, under the sparse sampling scheme of Yao et al. (2005a), taking equal
weights per observation (OBS weighting scheme) reduces the results of Zhang and Wang
(2016) to match those of Yao et al. (2005a), while taking equal weights per subject
(SUBJ weighting scheme) reduces their results to those of Li and Hsing (2010). On the
other hand, considering the general results of Zhang and Wang (2016), a valid strategy
(regardless of the measurement design) is to specify the weights per subject such that
the asymptotic rates of convergence are optimized, which has been suggested in case of
the L2-rates in the follow-up paper of Zhang and Wang (2018).

A full adaptation of the theory of Zhang and Wang (2016) to our multi-dimensional case
under separability would be hard to achieve. However, it might be worthwhile to see
whether our methodology could be improved using similar ideas. For that, we need to
find the asymptotic rates under a general sampling scheme, and optimize them to obtain
the per-surface weights. The additional difficulty compared to Zhang and Wang (2016)
lies in the fact that we already have an exogenous per-observation weighting scheme
present in our methodology (and also in multi-dimensionality and multi-step nature of
the estimation scheme).

Assume we know b = b(s, s′) and we are estimating only a = a(t, t′). Consider the 2D
smoother (4.5), with explicit per-surface weights vn and per-measurement-within-surface
weights bnmm′ = b(snm, snm′):

(γ̂0, γ̂1, γ̂2) = arg min
γ0,γ1,γ2

N∑
n=1

vn
∑
m 6=m′

bnmm′K

(
t− tnm
h

)
K

(
t′ − tnm′

h

)
·

·
[

sign(bnmm′)Gnmm′ − γ0 − γ1(t− tnm)− γ2(t′ − tnm′)
]2
,

(4.33)

162



Mixed Sampling of Random Surfaces

leading to â = γ̂0. Carefully inspecting the proofs of Theorem 5.1 and Lemma 5 of Zhang
and Wang (2016), one can see that the specific form of the asymptotic rates comes from
the application of Bernstein’s inequality in Lemma 5. Generalizing the proof strategy to
the smoother above, the rate is given by

(
E[V 2

n ] log(n)/h4
)1/2

, where

Vn = vn
∑
m6=m′

|bnmm′ |K
(
t− tnm
h

)
K

(
t′ − tnm′

h

)
U+
nmm′ ,

where Unmm′ = sign(bnmm′)[X(tnm, snm) − µ(tnm, snm)][X(tnm′ , snm′) − µ(tnm′ , snm′)]
and the superscript denotes the positive part. Following similar steps to those in Zhang
and Wang (2016), we can bound the second moment as

E[V 2
n ] ≤ R

[
v2
nh

2βn,2 + v2
nh

3βn,3 + v2
nh

4βn,4

]
,

where

βn,2 =
∑
m 6=m′

|bnmm′ |2,

βn,3 = 2
∑

(m1,m2,m)∈Ω3

|bnm1m||bnm2m|,

Ω3 =
{

(m1,m2,m3) ∈ {1, . . . ,Mn}3|mi 6= mj ∀i, j = 1, 2, 3, 4, i 6= j
}
,

βn,4 =
∑

(m1,m2,m′1,m
′
2)∈Ω4

|bnm1m′1
||bnm2m′2

|,

Ω4 =
{

(m1,m2,m3,m4) ∈ {1, . . . ,Mn}4|mi 6= mj ∀i, j = 1, 2, 3, 4, i 6= j
}
,

(4.34)

and R is a universal constant.

Hence the asymptotically optimal per-surface weights are given by

arg min
v1,...,vN

N∑
n=1

v2
n

(
βn,2
h2 + βn,3

h
+ βn,4

)
subject to

N∑
n=1

vnβn,1 = 1,

where βn,1 = ∑
m 6=m′ |bnmm′ |. Using the method of Lagrange multipliers, the optimal

weights are found to be

vn =
βn,1

[
h−2βn,2 + h−1βn,3 + βn,4

]−1

∑N
n=1 β

2
n,1

[
h−2βn,2 + h−1βn,3 + βn,4

]−1 . (4.35)

This asymptotically optimal per-surface weighting scheme can be incorporated into every
step of the estimation methodology proposed in Section 4.3.

In our experience, however, using these weights does not lead to an improvement. As
comprehensive and elegant as the unified theory of Zhang and Wang (2016) is, the

163



Mixed Sampling of Random Surfaces

practical gains from adopting the asymptotically optimal weights are very small already
in the one-dimensional case (Zhang and Wang, 2018). In fact, Zhang and Wang (2016)
state: “A general guideline is to adopt the OBS scheme unless one believes that the data
are ultra-dense or if the distribution of Mn suggests a heavy upper tail.” Zhang and
Wang (2018) still recommend to use the weights, as there is no associated computational
overhead.

However, in our two-dimensional case under separability, the situation is more complicated.
Firstly, there is a computational overhead associated with calculating the weights, namely
when calculating βn,3 and βn,4 in (4.34). Even though, when working on a grid, these
can be calculated on marginalized data (see Section 4.5) and a trick involving a rank-one
tensor can be used to calculate βn,4 with the same cost as βn,3, there are still non-
negligible associated computational costs. Secondly, the weighting scheme above depends
on an unknown parameter (b = b(s, s′) in the step, where a = a(t, t′) is estimated). In
practice, one naturally uses the estimator available in the given step, but this significantly
complicates fully generalizing the unified theory of Zhang and Wang (2016) to our case.
And, more importantly, the finite sample performance can suffer from the additional
variability introduced in the estimation scheme, unless the sample size is very large. In
our experience, using the per-surface weighting scheme often leads to inferior performance,
so we have to conclude in the same way as Zhang and Wang (2016), and recommend to
use the OBS scheme of Yao et al. (2005a), i.e. the scheme used in Chapter 4. However,
we obtained promising preliminary results with weighting schemes created as a biased
version of the optimal weights, e.g. using √vn as the weights. Since the denominator in
(4.35) is inessential due to standardization intrinsic to every kernel smoother, using √vn
corresponds to a biased (flattened) version of the optimal weights. It would be interested
in general (both for one- and multi-dimensional functional data), whether biased versions
of the optimal weights lead to significant improvement over the commonly used OBS
scheme.
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Appendix A:
Proofs of the Asymptotic Results

Separable-plus-Banded Model

Proof of Theorem 4

The proof will be done separately for the two sampling schemes. Moreover, the following
auxiliary result will be needed.

Lemma 7. Let Z1, . . . , ZK be i.i.d. random variables with finite second moments. Then

E
( K∑
k=1

Zk

)2
≤ K

K∑
k=1

EZ2
k .

Proof. The claim follows from the Cauchy-Schwarz inequality followed by the arithmetic-
geometric mean inequality:

E
( K∑
k=1

Zk

)2
=

K∑
k=1

K∑
l=1

EZkZl ≤
K∑
k=1

K∑
l=1

√
EZ2

k

√
EZ2

l

≤
K∑
k=1

K∑
l=1

EZ2
k + EZ2

l

2 = K
K∑
k=1

EZ2
k .

Proof of Theorem 4, pointwise sampling scheme S1. We begin with the bias-variance de-
composition (i.e. the parallelogram law):∣∣∣∣∣∣∣∣∣ÂK1 ⊗̃ ÂK2 −A1 ⊗̃A2

∣∣∣∣∣∣∣∣∣2
2

= 2
∣∣∣∣∣∣∣∣∣ÂK1 ⊗̃ ÂK2 −AK1 ⊗̃AK2 ∣∣∣∣∣∣∣∣∣22 + 2

∣∣∣∣∣∣∣∣∣AK1 ⊗̃AK2 −A1 ⊗̃A2
∣∣∣∣∣∣∣∣∣2

2
.

For the bias term, we first distribute the norm calculation over the grid:∣∣∣∣∣∣∣∣∣AK1 ⊗̃AK2 −A1 ⊗̃A2
∣∣∣∣∣∣∣∣∣2

2
=

=
K∑

i,j,k,l=1

∫
IKi,j×I

K
k,l

[
aK1 (t, t′)aK2 (s, s′)− a1(t, t′)a2(s, s′)

]2
dtdsdt′ ds′.
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Proof of Theorem 4

Since aK1 (t, s)aK2 (s, s′) = a1(ti, tk)a2(tj , sl) on IKi,j×IKk,l, it follows from Lipschitz continuity
that

|aK1 (t, t′)aK2 (s, s′)− a1(t, t′)a2(s, s′)| ≤ L sup
(t,s,t′,s′)∈IKi,j×I

K
k,l

‖(t, s, t′, s′)− (ti, sj , tk, sl)‖2

≤ 41/2K−1L ,

which implies the bound for the bias term. It remains to show that the variance term is
OP (N−1) uniformly in K.

Since Trδ(A) > 0 and δK = dδKe/K ↘ δ, due to continuity of kernel a there exist
K0 ∈ N such that TrδK (A) > 0 for any K ≥ K0. Assume from now on that K ≥ K0.

Using that AK1 ⊗̃AK2 = TrδK1 (CK) ⊗̃TrδK2 (CK)
TrδK (CK) in our model, it follows from the triangle

inequality that

∣∣∣∣∣∣∣∣∣ÂK1 ⊗̃ ÂK2 −AK1 ⊗̃AK2 ∣∣∣∣∣∣∣∣∣2 =
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣Tr

δK
1 (ĈKN ) ⊗̃TrδK2 (ĈKN )

TrδK (ĈKN )
− TrδK1 (CK) ⊗̃TrδK2 (CK)

TrδK (CK)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤

∣∣∣∣∣∣∣∣∣TrδK1 (ĈKN )
∣∣∣∣∣∣∣∣∣

2∣∣∣TrδK (ĈKN )
∣∣∣
∣∣∣∣∣∣∣∣∣TrδK2 (ĈKN − CK)

∣∣∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣∣∣TrδK2 (CK)
∣∣∣∣∣∣∣∣∣

2∣∣∣TrδK (ĈKN )
∣∣∣
∣∣∣∣∣∣∣∣∣TrδK1 (ĈKN − CK)

∣∣∣∣∣∣∣∣∣
2

(A.36)

+

∣∣∣∣∣∣∣∣∣AK1 ⊗̃AK2 ∣∣∣∣∣∣∣∣∣2∣∣∣TrδK (ĈKN )
∣∣∣
∣∣∣TrδK (ĈKN − CK)

∣∣∣ .

Now we treat different terms separately. The numerators will be shown to be OP (1),
as well as 1/

∣∣∣TrδK (ĈKN )
∣∣∣, while the remaining terms will be shown to be OP (N−1/2);

all these rates being uniform in K. To simplify the notation, we denote k̃ := k + δKK,
K̃ := (1− δK)K, and dK := δKK.

Firstly, we show that
∣∣∣∣∣∣∣∣∣TrδK1 (ĈKN − CK)

∣∣∣∣∣∣∣∣∣
2

= OP (N−1/2) uniformly in K. To that end,
since CK = E(X⊗X) and using Lemma 4, we have

E
∣∣∣∣∣∣∣∣∣TrδK1 (ĈKN − CK)

∣∣∣∣∣∣∣∣∣2
2

=

= K−4E
∥∥∥TrdK1 (ĈK

N −CK)
∥∥∥2

F
= K−4

K∑
i=1

K∑
j=1

E
∣∣∣TrdK1 (ĈK

N −CK)[i, j]
∣∣∣2

= K−4
K∑
i=1

K∑
j=1

E

∣∣∣∣∣∣ 1
N

N∑
n=1

K̃∑
k=1

(
X̃K
n [i, k]X̃K

n [j, k̃]− EXK
n [i, k]XK

n [i, k̃]
)∣∣∣∣∣∣

2

.
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If we denote

ZKn,i,j :=
K̃∑
k=1

(
X̃K
n [i, k]X̃K

n [j, k̃]− EXK
n [i, k]XK

n [i, k̃]
)

=
K̃∑
k=1

(
XK
n [i, k]XK

n [j, k̃]− EXK
n [i, k]XK

n [i, k̃]

+ EK
n [i, k]XK

n [j, k̃] + XK
n [i, k]EK

n [j, k̃] + EK
n [i, k]EK

n [j, k̃]
)
,

we see that, for any i, j = 1, . . . ,K,
{
ZKn,i,j

}N
n=1

is a set of mean zero and i.i.d. random
variables and thus

E
∣∣∣∣∣∣∣∣∣TrδK1 (ĈKN − CK)

∣∣∣∣∣∣∣∣∣2
2
≤ 1
N
K−4

K∑
i=1

K∑
j=1

E
∣∣∣ZK·,i,j∣∣∣2

which can be bounded, using the parallelogram law, by

4
N
K−4

K∑
i=1

K∑
j=1

E

∣∣∣∣∣∣
K̃∑
k=1

XK [i, k]XK [j, k̃]− EXK [i, k]XK [i, k̃]

∣∣∣∣∣∣
2

+ E

∣∣∣∣∣∣
K̃∑
k=1

EK [i, k]XK [j, k̃]

∣∣∣∣∣∣
2

+ E

∣∣∣∣∣∣
K̃∑
k=1

XK [i, k]EK [j, k̃]

∣∣∣∣∣∣
2

+ E

∣∣∣∣∣∣
K̃∑
k=1

EK [i, k]EK [j, k̃]

∣∣∣∣∣∣
2 .

(A.37)

The four terms in the parentheses will be treated separately.

For the first term, it follows from Lemma 7 that

E

∣∣∣∣∣∣
K̃∑
k=1

XK [i, k]XK [j, k̃]− EXK [i, k]XK [i, k̃]

∣∣∣∣∣∣
2

≤ K̃
K̃∑
k=1

Var
(

XK [i, k]XK [j, k̃]
)
≤ S1K̃

2 ,

where

Var
(
XK [i, k]XK [j, k̃]

)
= Var

(
X(tKi , sKk )X(tj , sk̃

)
≤ sup

t,s,t′,s′∈[0,1]
Var

(
X(t, s)X(t′, s′)

)
=: S1 <∞.

Note that S1 is finite, since X has finite fourth moment and continuous sample paths.
Also, S1 is uniform in K.
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For the second term, we have (denoting l̃ = l + δkK)

E

∣∣∣∣∣∣
K̃∑
k=1

EK [i, k]XK [j, k̃]

∣∣∣∣∣∣
2

=
K̃∑
k=1

K̃∑
l=1

E
(

EK [i, k]XK [j, k̃]EK [i, l]XK [j, l̃]
)

=
K̃∑
k=1

K̃∑
l=1

E
(

EK [i, k]EK [i, l]
)
E
(

XK [j, k̃]XK [j, l̃]
)
.

Since E
(
EK [i, k]EK [i, l]

)
= σ21[k=l], one of the sums vanishes, while E

∣∣∣XK [j, k̃]
∣∣∣2 is

bounded uniformly in K by S2 := supt,s∈[0,1] E
∣∣∣X(t, s)

∣∣∣2 ≤ ∞. Hence the second term is
bounded by K̃S2σ

2. The third term is dealt with similarly.

For the fourth and final term, we have

E

∣∣∣∣∣∣
K̃∑
k=1

EK [i, k]EK [j, k̃]

∣∣∣∣∣∣
2

=
K̃∑
k=1

K̃∑
l=1

E
(

EK [i, k]EK [j, k̃]EK [i, l]EK [j, l̃]
)

=
K̃∑
k=1

K̃∑
l=1

σ41[k=l] = K̃σ4 .

Upon collecting the bounds for the four terms and importing them back to bound (A.37),
we obtain

E
∣∣∣∣∣∣∣∣∣TrδK1 (ĈKN − CK)

∣∣∣∣∣∣∣∣∣2
2
≤ 4
N

[
S1 + S2K

−1σ2 +K−1σ4
]
. (A.38)

This shows that if σ2 = O(
√
K),

∣∣∣∣∣∣∣∣∣TrδK1 (ĈKN − CK)
∣∣∣∣∣∣∣∣∣

2
= OP (N−1/2) uniformly in K.

The term
∣∣∣∣∣∣∣∣∣TrδK2 (ĈKN − CK)

∣∣∣∣∣∣∣∣∣
2
from bound (A.36) can be treated similarly. Now we

focus on the final stand-alone term
∣∣∣TrδK (ĈKN − CK)

∣∣∣:
E
∣∣∣Trδ(ĈKN − CK)

∣∣∣2 = K−4E
∣∣∣Trδ(ĈK

N −CK)
∣∣∣2

= K−4E

∣∣∣∣∣∣ 1
N

N∑
n=1

K̃∑
i=1

K̃∑
j=1

(
X̃K
n [i, j]X̃K

n [̃i, j̃]− EXK
n [i, j]XK

n [̃i, j̃]
)∣∣∣∣∣∣

2

= 1
N
K−4E

∣∣∣∣∣∣
K̃∑
i=1

K̃∑
j=1

(
X̃K [i, j]X̃K [̃i, j̃]− EXK [i, j]XK [̃i, j̃]

)∣∣∣∣∣∣
2
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From the parallelogram law we have

E
∣∣∣Trδ(ĈKN − CK)

∣∣∣2 ≤ 4
N
K−4

E

∣∣∣∣∣∣
K̃∑
i=1

K̃∑
j=1

(
XK [i, j]XK [̃i, j̃]− EXK [i, j]XK [̃i, j̃]

)∣∣∣∣∣∣
2

+ E

∣∣∣∣∣∣
K̃∑
i=1

K̃∑
j=1

EK [i, j]XK [̃i, j̃]

∣∣∣∣∣∣
2

+ E

∣∣∣∣∣∣
K̃∑
i=1

K̃∑
j=1

XK [i, j]EK [̃i, j̃]

∣∣∣∣∣∣
2

+ E

∣∣∣∣∣∣
K̃∑
i=1

K̃∑
j=1

EK [i, j]EK [̃i, j̃]

∣∣∣∣∣∣
2 .

Using Lemma 7 to take the sums out of the expectation, the first term in the parentheses
is again bounded by K4S1. For the second term,

E

∣∣∣∣∣∣
K̃∑
i=1

K̃∑
j=1

EK [i, j]XK [̃i, j̃]

∣∣∣∣∣∣
2

=
K̃∑

i,j,k,l=1
E
(

EK [i, j]XK [̃i, j̃]EK [k, l]XK [k̃, l̃]
)

=
K̃∑
i=1

K̃∑
j=1

E
∣∣∣XK [̃i, j̃]

∣∣∣2 ≤ K2σ2S2 .

The third term can be treated similarly, while for the fourth and final term we have

E

∣∣∣∣∣∣
K̃∑
i=1

K̃∑
j=1

EK [i, j]EK [̃i, j̃]

∣∣∣∣∣∣
2

=
K̃∑

i,j,k,l=1
E
(

EK [i, j]EK [̃i, j̃]EK [k, l]EK [k̃, l̃]
)

=
K̃∑
i=1

K̃∑
j=1

E
∣∣∣EK [i, j]

∣∣∣2 E ∣∣∣EK [̃i, j̃]
∣∣∣2 ≤ K2σ4 .

Hence we obtain

E
∣∣∣Trδ(ĈKN − CK)

∣∣∣2 ≤ 4
N

[
S1 + S2K

−2σ2 +K−2σ4
]
. (A.39)

Note the different powers of K in (A.38) and (A.39). This reflects that the concentration
of measurement error is weaker when averaging is performed over both time and space
(when shifted tracing is used) in comparison to averaging only over either time or space
(when shifted partial tracing is used).
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Proof of Theorem 4

Now let us focus on the numerators in (A.36), for example:∣∣∣∣∣∣∣∣∣TrδK1 (ĈKN )
∣∣∣∣∣∣∣∣∣

2
≤
∣∣∣∣∣∣∣∣∣TrδK1 (CK)

∣∣∣∣∣∣∣∣∣
2

+
∣∣∣∣∣∣∣∣∣TrδK1 (ĈKN − CK)

∣∣∣∣∣∣∣∣∣
2
,

where the second term is OP (N−1/2) uniformly in K, while the first term is clearly
bounded by supt,s,t′,s′∈[0,1] c(t, s, t′, s′) <∞, hence

∣∣∣∣∣∣∣∣∣TrδK1 (ĈKN )
∣∣∣∣∣∣∣∣∣

2
is OP (1) uniformly in

K. Similarly for the other two numerator terms.

Finally, we consider the denominators in (A.36). The reverse triangle inequality implies∣∣∣TrδK (ĈKN )
∣∣∣ ≥ ∣∣∣TrδK (CK)

∣∣∣− ∣∣∣TrδK (ĈKN − CK)
∣∣∣ ,

where the second term is again OP (N−1/2) uniformly in K as shown above, and the first
term is bounded away from 0 uniformly in K (for large enough K) due to continuity
of the kernel a of the separable part A and the assumption TrδK (A) > 0, because
TrδK (A) = TrδK (C). Hence 1/

∣∣∣TrδK (ĈKN )
∣∣∣ is OP (1) uniformly in K.

The proof of the rates for the separable estimator is complete upon collecting the rates
for the different terms in (A.36).

The rate for the eigenvalues follows from the perturbation bounds (Bosq, 2012, Lemma
4.2):

|λ̂Ki ρ̂Kj − λiρj |2 ≤
∣∣∣∣∣∣∣∣∣ÂK1 ⊗̃ ÂK2 −A1 ⊗̃A2

∣∣∣∣∣∣∣∣∣2
2
.

To show the rates for the eigenvectors, we will use again the perturbation bounds (Bosq,
2012, Lemma 4.3):

‖êKj − sign(〈êKj , ej〉ej)‖2 ≤ α‖ÂK1 −A1‖2,

where α is a constant depending on spacing between the eigenvalues. We cannot use this
result directly, since we do not have consistency of ÂK1 (this is because of the scaling
issues: A1 ⊗̃A2 = (αA1) ⊗̃ (A2)/α for any α). Hence similar bounds always have to be
used in the product space. However, this poses no issues due to Lemma 1. We have

‖êKj − sign(〈êKj , ej〉ej)‖2 = ‖fj‖2‖êKj − sign(〈êKj , ej〉ej)‖2
= ‖êKj ⊗ fj − sign(〈êKj , ej〉)ej ⊗ fj‖2
≤ ‖êKj ⊗ f̂Kj − sign(〈êKj , ej〉) sign(〈f̂Kj , fj〉)ej ⊗ fj‖2.

The previous inequality follows from the Cauchy-Schwarz inequality and the fact that
the left-hand side of the inequality equal to 2− 2 sign(〈êKj , ej〉)〈êKj , ej〉ej〉〈fj , fj〉 while
the right-hand side is equal to 2− 2 sign(〈êKj , ej〉) sign(〈f̂Kj , fj〉)〈êKj , ej〉ej〉〈f̂Kj , fj〉. Al-
together, the rate for ÂK1 ⊗̃ ÂK2 translates to the eigenvectors of ÂK1 , and similarly for
the eigenvectors of ÂK2 .
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Proof of Theorem 4

The proof of the theorem in the case of pixel-wise sampling scheme (S2) is in many
regards similar, but some arguments are slightly more subtle.

Proof of Theorem 4, pixel-wise sampling scheme S2. We begin again the by the bias-
variance decomposition and bound the bias term in the same manner. For the variance
term, we use the triangle inequality treat all the terms in (A.36) separately. The
fractions are also treated the same way as before and the conclusion of the proof will
follow similarly, once it is established that

∣∣∣∣∣∣∣∣∣TrδK1 (ĈKN − CK)
∣∣∣∣∣∣∣∣∣

2
,
∣∣∣∣∣∣∣∣∣TrδK2 (ĈKN − CK)

∣∣∣∣∣∣∣∣∣
2

and
∣∣∣TrδK (ĈKN − CK)

∣∣∣ are all OP (N−1/2) uniformly in K. Establishing these rates for
the pointwise sampling scheme (S1) was the bulk of the previous proof, and now we will
establish the same for the pixel-wise sampling scheme (S2).

We begin with
∣∣∣∣∣∣∣∣∣TrδK1 (ĈKN − CK)

∣∣∣∣∣∣∣∣∣
2
. Exactly as in the previous proof, we obtain the

bound (A.37) here as well:

E
∣∣∣∣∣∣∣∣∣TrδK1 (ĈKN − CK)

∣∣∣∣∣∣∣∣∣2
2
≤ 4
N

K−4
K∑
i=1

K∑
j=1

E

∣∣∣∣∣∣
K̃∑
k=1

XK [i, k]XK [j, k̃]

∣∣∣∣∣∣
2

+K−4
K∑
i=1

K∑
j=1

E

∣∣∣∣∣∣
K̃∑
k=1

EK [i, k]XK [j, k̃]

∣∣∣∣∣∣
2

+K−4
K∑
i=1

K∑
j=1

E

∣∣∣∣∣∣
K̃∑
k=1

XK [i, k]EK [j, k̃]

∣∣∣∣∣∣
2

+K−4
K∑
i=1

K∑
j=1

E

∣∣∣∣∣∣
K̃∑
k=1

EK [i, k]EK [j, k̃]

∣∣∣∣∣∣
2

=: 4
N

(I) + (II) + (III) + (IV )

,
and again we treat the four terms in the parentheses (labeled by Roman numbers)
separately.

For the first term, we drop the inner expectation only increasing the term and obtaining

(I) = K−4
K∑
i=1

K∑
j=1

E

∣∣∣∣∣∣
K̃∑
k=1

XK [i, k]XK [j, k̃]

∣∣∣∣∣∣
2

= K−4
K∑
i=1

K∑
j=1

K̃∑
k=1

K̃∑
l=1

E
(

XK [i, k]XK [j, k̃]XK [i, l]XK [j, l̃]
)

=
K∑
i=1

K∑
j=1

K̃∑
k=1

K̃∑
l=1

E〈X, gKi,k〉〈X, gKj,̃k〉〈X, g
K
i,l〉〈X, gKj,̃l〉 ,
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Proof of Theorem 4

where we used that XK [i, j] = K〈X, gKi,j〉 for the function gi,j defined in (2.40). If we
now denote Γ = EX ⊗X ⊗X ⊗X, it follows from the outer product algebra (or can be
verified explicitly using integral representations) that (recall that we denote k̃ = k+ δKK

and l̃ = l + δKK)

E〈X, gKi,k〉〈X, gKj,̃k〉〈X, g
K
i,l〉〈X, gKj,̃l〉 = E〈X ⊗X ⊗X ⊗X, gKi,k ⊗ gKj,̃k ⊗ g

K
i,l ⊗ gKj,̃l〉

= 〈Γ, gKi,k ⊗ gKj,̃k ⊗ g
K
i,l ⊗ gKj,̃l〉

= 〈Γ(gKi,k ⊗ gKj,̃l), g
K

j,̃k
⊗ gKi,l〉 .

Due to positive semi-definiteness of Γ, the last expression is bounded by

1
2

[
〈Γ(gKi,k ⊗ gKj,̃l), g

K
i,k ⊗ gKj,̃l〉+ 〈Γ(gK

j,̃k
⊗ gKi,l, gKj,̃k ⊗ g

K
i,l〉
]

which gives us the bound

(I) ≤ 1
2

K∑
i=1

K∑
j=1

(1−δK)K∑
k=1

(1−δK)K∑
l=1

[
〈Γ(gKi,k ⊗ gKj,̃l), g

K
i,k ⊗ gKj,̃l〉+ 〈Γ(gK

j,̃k
⊗ gKi,l, gKj,̃k ⊗ g

K
i,l〉
]
.

Since Γ is positive semi-definite, we can add terms into the bound to symmetrize it:

(I) ≤
K∑
i=1

K∑
j=1

K∑
k=1

K∑
l=1
〈Γ(gKi,k ⊗ gKj,l), gKi,k ⊗ gKj,l〉 .

Finally, note that 〈gki,j , gk,l〉 = 1[i=k,j=l] for i, j, k, l = 1, . . . ,K, hence {gKi,j}Ki,j=1 can be
completed to an orthonormal basis of L2([0, 1]2) denoted as {gKi,j}∞i,j=1. We can add some
more extra terms due to positive semi-definiteness of Γ to obtain

(I) ≤
∞∑
i=1

∞∑
j=1

∞∑
k=1

∞∑
l=1
〈Γ(gKi,k ⊗ gKj,l), gKi,k ⊗ gKj,l〉 = |||Γ|||1 .

Note that even though the orthonormal basis used changes with every K, the final
equality holds for any orthonormal basis (Hsing and Eubank, 2015, p. 114), and hence
we obtain uniformity in K.

The strategy is similar for the remaining terms (II), (III) and (IV ). For the second one:

(II) = K−4
K∑
i=1

K∑
j=1

E

∣∣∣∣∣∣
K̃∑
k=1

EK [i, k]XK [j, k̃]

∣∣∣∣∣∣
2

= K−4
K∑
i=1

K∑
j=1

K̃∑
k=1

E
∣∣∣EK [i, k]

∣∣∣2E∣∣∣XK [j, k̃]
∣∣∣2

= K−3σ2
K∑
j=1

K̃∑
k=1

E|XK [j, k̃]|2 = K−1σ2
K∑
j=1

K̃∑
k=1

E〈X, gK
j,̃k
〉2

= K−1σ2
K∑
j=1

K̃∑
k=1
〈C(gK

j,̃k
), gK

j,̃k
〉2 ≤ K−1σ2|||C|||1 .
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The third term can be treated exactly like the second one, and for the final term we have

(IV ) = K−4
K∑
i=1

K∑
j=1

E

∣∣∣∣∣∣
K̃∑
k=1

EK [i, k]EK [j, k̃]

∣∣∣∣∣∣
2

= K−4
K∑
i=1

K∑
j=1

K̃∑
k=1

K̃∑
l=1

E
(

EK [i, k]EK [j, k̃]EK [i, l]EK [j, l̃]
)

= K−4
K∑
i=1

K∑
j=1

K̃∑
k=1

E
∣∣∣EK [i, k]

∣∣∣2E∣∣∣EK [j, k̃]
∣∣∣2 ≤ K−1σ4 ,

Piecing things together, we have

E
∣∣∣∣∣∣∣∣∣TrδK1 (ĈKN − CK)

∣∣∣∣∣∣∣∣∣2
2
≤ 4
N

[
|||Γ|||1 + 2K−1σ2|||C|||1 +K−1σ4

]
.

Thus we have shown that
∣∣∣∣∣∣∣∣∣TrδK1 (ĈKN − CK)

∣∣∣∣∣∣∣∣∣
2

= OP (N−1/2) uniformly in K, since σ2 =

O(
√
K). It can be shown in an analogous way that

∣∣∣∣∣∣∣∣∣TrδK2 (ĈKN − CK)
∣∣∣∣∣∣∣∣∣

2
= OP (N−1/2)

uniformly in K, and it remains to show the same for
∣∣∣TrδK (ĈKN − CK)

∣∣∣.
Similarly to before we obtain the following bound:

E
∣∣∣TrδK (ĈKN − CK)

∣∣∣2 ≤ 4
N

K−4E

∣∣∣∣∣∣
K̃∑
i=1

K̃∑
j=1

XK [i, j]XK [̃i, j̃]

∣∣∣∣∣∣
2

+K−4E

∣∣∣∣∣∣
K̃∑
i=1

K̃∑
j=1

EK [i, j]XK [̃i, j̃]

∣∣∣∣∣∣
2

+K−4E

∣∣∣∣∣∣
K̃∑
i=1

K̃∑
j=1

XK [i, j]EK [̃i, j̃]

∣∣∣∣∣∣
2

+K−4E

∣∣∣∣∣∣
K̃∑
i=1

K̃∑
j=1

EK [i, j]EK [̃i, j̃]

∣∣∣∣∣∣
2

=: 4
N

(I) + (II) + (III) + (IV )

 ,
in which we will treat again the four terms separately.
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For the first term:

(I) = K−4
K̃∑

i,j,k,l=1
E
(

XK [i, j]XK [̃i, j̃]XK [k, l]XK [k̃, l̃]
)

=
K̃∑

i,j,k,l=1
E
(
〈X, gKi,j〉〈X, gKĩ,̃j〉〈X, g

K
k,l〉〈X, gKk̃,̃l〉

)

=
K̃∑

i,j,k,l=1
E〈X ⊗X ⊗X ⊗X, gKi,j ⊗ gKĩ,̃j ⊗ g

K
k,l ⊗ gKk̃,̃l〉

=
K̃∑

i,j,k,l=1
〈Γ(gKi,j ⊗ gKk,l), gKĩ,̃j ⊗ g

K

k̃,̃l
〉 ≤ |||Γ|||1 .

For the second term,

(II) = K−4
K̃∑

i,j,k,l=1
E
(

XK [i, j]EK [̃i, j̃]XK [k, l]EK [k̃, l̃]
)

= K−4
K̃∑

i,j,k,l=1
E
(

XK [i, j]XK [k, l]
)
E
(

EK [̃i, j̃]EK [k̃, l̃]
)

and since E
(
EK [̃i, j̃]EK [k̃, l̃]

)
= σ21[i=k,j=l], we have

(II) = σ2K−4
K̃∑

i,j=1
E
∣∣∣∣XK [i, j]

∣∣∣∣2 = σ2K−2
K̃∑

i,j=1
E〈X, gKi,j〉2 ≤ σ2K−2|||C|||1 .

The third term is bounded similarly, and for the final term:

(IV ) = K−4
K̃∑

i,j,k,l=1
E
(

EK [i, j]EK [̃i, j̃]EK [k, l]EK [k̃, l̃]
)

= K−4
K̃∑
i=1

K̃∑
j=1

E
∣∣∣EK [i, j]

∣∣∣2E∣∣∣EK [̃i, j̃]
∣∣∣2 ≤ K−2σ4

In summary, we have obtained the following bound:

E
∣∣∣TrδK (ĈKN − CK)

∣∣∣2 = 4
N

[
|||Γ|||1 + 2K−2σ2|||C|||1 +K−2σ4

]
.

The proof for the eigenvalues and eigenvectors remains the same as with sampling
scheme (S1).
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Proof of Proposition 8

The proof is similar to the one of Theorem 4. To save space, we will use the notation
‖ · ‖∞ for the uniform norm, i.e. ‖C‖∞ := supt,s,t′,s′ |c(t, s, t′, s′)|. This is not to be
confused with the operator norm of C denoted as |||C|||∞.

We begin with the triangle inequality separating the bias and the variance:

‖ÂK −A‖∞ ≤ ‖ÂK −AK‖∞ + ‖AK −A‖∞,

and we bound the bias first.

Under (S1), we have

‖AK −A‖∞ = Ksup
i,j,k,l=1

sup
(t,s,t′,s′)∈IKi,j×I

K
k,l

∣∣∣aK1 (ti, tk)aK2 (sj , sl)− a1(t, t′)a2(s, s′)
∣∣∣

≤ Ksup
i,j,k,l=1

2LK−1 = 2LK−1,

where we used the Lipschitz property of A. On the other hand, under (S2), we have

‖AK −A‖∞ =

= sup
i,j,k,l=1,...,K

(t,s,t′,s′)∈IKi,j×I
K
k,l

K

∣∣∣∣∣ 1
|IKi,j |

1
|IKk,l|

∫
IKi,j×I

K
k,l

[
a1(u, v)a2(x, y)− a1(t, s)a2(t′, s′)

]
dudv dx dy

∣∣∣∣∣
≤ Ksup

i,j,k,l=1
sup

(t,s,t′,s′)∈IKi,j×I
K
k,l

K4
∫
IKi,j×I

K
k,l

∣∣∣a1(u, v)a2(x, y)− a1(t, t′)a2(s, s′)
∣∣∣ dudv dx dy

≤ Ksup
i,j,k,l=1

sup
(t,s,t′,s′)∈IKi,j×I

K
k,l

K4
∫
IKi,j×I

K
k,l

2LK−1 ≤ 2LK−1.

Similarly to (A.36) in the proof of Theorem 4, we obtain

‖ÂK −AK‖∞ ≤

∥∥∥TrδK1 (ĈKN )
∥∥∥
∞∣∣∣TrδK (ĈKN )
∣∣∣
∥∥∥TrδK2 (ĈKN − CK)

∥∥∥
∞

+

∥∥∥TrδK2 (CK)
∥∥∥
∞∣∣∣TrδK (ĈKN )
∣∣∣
∥∥∥TrδK1 (ĈKN − CK)

∥∥∥
∞

+

∥∥∥AK1 ⊗̃AK2 ∥∥∥∞∣∣∣TrδK (ĈKN )
∣∣∣
∣∣∣TrδK (ĈKN − CK)

∣∣∣ ,
and we will again show that the numerators and denominators areOP (1), while the remain-
ing terms are OP (N−1/2). In fact, the term that has to be treated is

∥∥∥TrδK1 (ĈKN − CK)
∥∥∥
∞
.
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Proof of Proposition 8

Once we show that this term is OP (N−1/2), exactly the same arguments like in the proof
of Theorem 4 can be used to conclude.

We calculate

E
∥∥∥TrδK1 (ĈKN − CK)

∥∥∥2

∞
=

= K−2E
∥∥∥TrdK1 (ĈK

N −CK)
∥∥∥2

∞
= K−2 Ksup

i,j=1
E
∣∣∣TrdK1 (ĈK

N −CK)[i, j]
∣∣∣2

= K−2 Ksup
i,j=1

E

∣∣∣∣∣∣ 1
N

N∑
n=1

K̃∑
k=1

(
X̃K
n [i, k]X̃K

n [j, k̃]− EXK
n [i, k]XK

n [i, k̃]
)

︸ ︷︷ ︸
=:Zn,ij

∣∣∣∣∣∣
2

.

Again, for a fixed i, j, Zn,ij is a set of mean-zero i.i.d. random variables and hence

E
∣∣∣∣∣∣∣∣∣TrδK1 (ĈKN − CK)

∣∣∣∣∣∣∣∣∣2
∞

= N−1K−2 Ksup
i,j=1

E |Zn,ij |2 ,

so it suffices to show that K−2E |Zn,ij |2 is uniformly bounded.

Under (S1), we proceed similarly as in (A.37):

K−2E |Zn,ij |2 ≤ K−2

E

∣∣∣∣∣∣
K̃∑
k=1

XK [i, k]XK [j, k̃]− EXK [i, k]XK [i, k̃]

∣∣∣∣∣∣
2

+ E

∣∣∣∣∣∣
K̃∑
k=1

EK [i, k]XK [j, k̃]

∣∣∣∣∣∣
2

+ E

∣∣∣∣∣∣
K̃∑
k=1

XK [i, k]EK [j, k̃]

∣∣∣∣∣∣
2

+ E

∣∣∣∣∣∣
K̃∑
k=1

EK [i, k]EK [j, k̃]

∣∣∣∣∣∣
2.

The first term in the parentheses is bounded again by S1K
2, the second term is bounded

by KS2σ
2, and the third term by Kσ4. Collecting the bounds together, we obtain under

(S1) that
E
∣∣∣∣∣∣∣∣∣TrδK1 (ĈKN − CK)

∣∣∣∣∣∣∣∣∣2
∞
≤ 4
N

[
S1 + S2K

−1σ2 +K−1σ4
]
,

from which the claim of follows.

Under (S2), the proof is an equivalent modification to the proof of Theorem 4.
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Proof of Theorem 5

Here, we provide the rates of convergence for the adaptive bandwidth choice of Sec-
tion 2.2.2. For that, we first need to study the behavior of the empirical objective function
in (2.22).

Let us denote the empirical objective as

Ξ̂(δ) =
∣∣∣∣∣∣∣∣∣Ĉ(δ)

∣∣∣∣∣∣∣∣∣2
2
− 2
N

N∑
n=1
〈Xn, Ĉ−n(δ)Xn〉

and the theoretical objective as

Ξ(δ) = |||C(δ)− C|||22.

Recall that Ĉ(δ) = Â(δ) + B̂(δ) is our separable-plus-banded estimator, while C(δ) is its
limit version with infinite number of samples, i.e. C(δ) = A(δ) +B(δ) with

A(δ) = Trδ1(C) ⊗̃Trδ2(C)
Trδ(C)

, B(δ) = Ta
(
C −A(δ)

)
.

The following linearization of our estimators will often allow us to develop suitable
bounds:

Â(δ1)−A(δ2) = Trδ1
1 (ĈN )

Trδ1(ĈN )
⊗̃
[
Trδ1

2 (ĈN )− Trδ2
2 (C)

]
+
[
Trδ1

1 (ĈN )− Trδ2
1 (C)

]
⊗̃ Trδ2

2 (C)
Trδ1(ĈN )

+ Trδ2
1 (C) ⊗̃Trδ2

2 (C)
Trδ2(C)Trδ1(ĈN )

[
Trδ2(C)− Trδ1(ĈN )

]
.

(A.40)

Proposition 14. Let δ be such that Trδ(C) 6= 0 and let assumption (A1) hold, then∣∣∣∣∣∣∣∣∣Ĉ(δ)− C(δ)
∣∣∣∣∣∣∣∣∣2

2
= OP (N−1).

Proof. Firstly, note that∣∣∣∣∣∣∣∣∣Ĉ(δ)− C(δ)
∣∣∣∣∣∣∣∣∣

2
≤
∣∣∣∣∣∣∣∣∣Â(δ)−A(δ)

∣∣∣∣∣∣∣∣∣
2

+
∣∣∣∣∣∣∣∣∣Ta(Â(δ)−A(δ)

)∣∣∣∣∣∣∣∣∣
2

+
∣∣∣∣∣∣∣∣∣ĈN − C∣∣∣∣∣∣∣∣∣2.

Note that
∣∣∣∣∣∣∣∣∣Ta(Â(δ)−A(δ)

)∣∣∣∣∣∣∣∣∣
2
≤
∣∣∣∣∣∣∣∣∣Â(δ)−A(δ)

∣∣∣∣∣∣∣∣∣
2
due to Toeplitz averaging being a

linear projection. Hence we only need to bound the difference between the separable
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parts, for which we use the linearization formula (A.40):∣∣∣∣∣∣∣∣∣Â(δ)−A(δ)
∣∣∣∣∣∣∣∣∣

2
≤
∣∣∣∣∣∣∣∣∣Â(δ)−A(δ)

∣∣∣∣∣∣∣∣∣
1

≤

∣∣∣∣∣∣∣∣∣Trδ1(ĈN )
∣∣∣∣∣∣∣∣∣

1
|Trδ(ĈN )|

∣∣∣∣∣∣∣∣∣Trδ2(ĈN − C)
∣∣∣∣∣∣∣∣∣

1
+
∣∣∣∣∣∣∣∣∣Trδ1(ĈN − C)

∣∣∣∣∣∣∣∣∣
1

∣∣∣∣∣∣∣∣∣Trδ2(C)
∣∣∣∣∣∣∣∣∣

1
|Trδ(ĈN )|

+

∣∣∣∣∣∣∣∣∣Trδ1(C)
∣∣∣∣∣∣∣∣∣

1

∣∣∣∣∣∣∣∣∣Trδ2(C)
∣∣∣∣∣∣∣∣∣

1
|Trδ(C)Trδ(ĈN )|

∣∣∣Trδ(ĈN − C)
∣∣∣ .

(A.41)

From (2.7), we have ∣∣∣∣∣∣∣∣∣Trδ2(ĈN − C)
∣∣∣∣∣∣∣∣∣

1
≤
∣∣∣∣∣∣∣∣∣ĈN − C∣∣∣∣∣∣∣∣∣1 = OP (N−1/2)

since the CLT for ĈN holds (Mas, 2006), and similarly for
∣∣∣∣∣∣∣∣∣Trδ1(ĈN − C)

∣∣∣∣∣∣∣∣∣
1
and

∣∣∣Trδ(ĈN−
C)
∣∣∣. The statement then follows upon noticing that the numerators on the right hand

side of (A.41) are obviously bounded while the denominators are bounded away from
zero for N large enough.

Proposition 15. Let δ be such that Trδ(C) 6= 0 and let assumption (A1) hold, then
Ξ̂(δ) = Ξ(δ)− |||C|||22 +OP (N−1/2).

Proof. Instead of the empirical objective, we will first work with a slightly modified,
biased version of it:

Ξ̃(δ) =
∣∣∣∣∣∣∣∣∣Ĉ(δ)

∣∣∣∣∣∣∣∣∣2
2
− 2
N

N∑
n=1
〈Xn, Ĉ(δ)Xn〉

By adding and subtracting
∣∣∣∣∣∣∣∣∣Ĉ(δ)− C

∣∣∣∣∣∣∣∣∣2
2

=
∣∣∣∣∣∣∣∣∣Ĉ(δ)

∣∣∣∣∣∣∣∣∣2
2
− 2〈Ĉ(δ), C〉 − |||C|||22, we obtain

∣∣∣Ξ̃(δ) + |||C|||22 − Ξ(δ)
∣∣∣ =

=

∣∣∣∣∣∣ 2
N

N∑
n=1
〈Ĉ(δ), Xn ⊗Xn〉 − 2〈Ĉ(δ), C〉+

∣∣∣∣∣∣∣∣∣Ĉ(δ)− C
∣∣∣∣∣∣∣∣∣2

2
− |||C(δ)− C|||22

∣∣∣∣∣∣,
and from the triangle inequality we now have

∣∣∣Ξ̃(δ) + ‖C‖2 − Ξ(δ)
∣∣∣ ≤ ∣∣∣∣∣ 2

N

N∑
n=1
〈Ĉ(δ), Xn ⊗Xn〉 − 2〈Ĉ(δ), C〉

∣∣∣∣∣
+
∣∣∣∣∣∣∣∣∣∣∣∣∣Ĉ(δ)− C

∣∣∣∣∣∣∣∣∣2
2
− |||C(δ)− C|||22

∣∣∣∣ =: (I) + (II).
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The first term can be bounded by Cauchy-Schwarz inequality

(I) = 2
∣∣∣〈Ĉ(δ), ĈN − C〉

∣∣∣ ≤ 2
∣∣∣∣∣∣∣∣∣Ĉ(δ)

∣∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣∣ĈN − C∣∣∣∣∣∣∣∣∣2 = OP (N−1/2),

whereas the second term can be bounded similarly after using the mean value theorem:

(II) = 2〈Γ− C, Ĉ(δ)− C(δ)〉 ≤ 2|||Γ− C|||2
∣∣∣∣∣∣∣∣∣Ĉ(δ)− C(δ)

∣∣∣∣∣∣∣∣∣,
where Γ is between Ĉ(δ) and C(δ). Hence the term (II) is also OP (N−1/2) according to
the previous proposition.

Now it remains to show that the bias introduced by working with Ξ̃(δ) instead of Ξ̂(δ) is
asymptotically negligible. For that, it suffices to show that∣∣∣∣∣ 1

N

N∑
n=1
〈Ĉ(δ), Xn ⊗Xn〉 −

1
N

N∑
n=1
〈Ĉ−n(δ), Xn ⊗Xn〉

∣∣∣∣∣ = OP (N−1). (A.42)

The previous expression can be bounded as∣∣∣∣∣ 1
N

N∑
n=1
〈Ĉ(δ)− Ĉ−n(δ), Xn ⊗Xn〉

∣∣∣∣∣ ≤ 1
N

N∑
n=1

∣∣∣〈Ĉ(δ)− Ĉ−n(δ), Xn ⊗Xn〉
∣∣∣

≤ 1
N

N∑
n=1

∣∣∣∣∣∣∣∣∣Ĉ(δ)− Ĉ−n(δ)
∣∣∣∣∣∣∣∣∣

2
‖Xn‖22.

Using the linearization argument (A.40) again like in the proof of the previous proposition,
we obtain ∣∣∣∣∣∣∣∣∣Ĉ(δ)− Ĉ−n(δ)

∣∣∣∣∣∣∣∣∣
2
≤
[
const+OP (N−1/2)

]∣∣∣∣∣∣∣∣∣ĈN − Ĉ−n∣∣∣∣∣∣∣∣∣1
where Ĉ−n is the empirical covariance estimator without the n-th observation. Since

ĈN − Ĉ−n = 1
N
Xn ⊗Xn + 1

N(N − 1)
∑
j 6=n

Xj ⊗Xj

for any n = 1, . . . , N , we have from the triangle inequality that∣∣∣∣∣∣∣∣∣ĈN − Ĉ−n∣∣∣∣∣∣∣∣∣1 ≤ 1
N
‖Xn‖22 + 1

N(N − 1)
∑
j 6=n
‖Xj‖22.

Overall, we have that the left-hand size of (A.42) is bounded by
[
const+OP (N−1/2)

]
1
NDN ,

where

DN = 1
N

N∑
n=1
‖Xn‖42 + 1

N(N − 1)

N∑
n=1

∑
j 6=N
‖Xn‖22‖Xj‖22

which is oP (1) from the law of large numbers. Hence we get (A.42) and the proof is
complete.
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According to the previous proposition, the empirical objective is consistent for the
theoretical objective up to a constant. And the constant, though unknown, does not
affect the bandwidth choice. This leads to the rates of convergence of our estimators
with adaptively chosen bandwidth as stated in Theorem 5.

Proof of Theorem 5. We have from the triangle inequality∣∣∣∣∣∣∣∣∣Â(δ̂)−A
∣∣∣∣∣∣∣∣∣

2
≤
∣∣∣∣∣∣∣∣∣Â(δ̂)−A(δ̂)

∣∣∣∣∣∣∣∣∣
2

+
∣∣∣∣∣∣∣∣∣A(δ̂)−A

∣∣∣∣∣∣∣∣∣
2
.

Due to our assumptions the separable-plus-banded model holds with a certain δ? and
there exists at least one δ ∈ ∆ such that the separable-plus-banded model holds with δ.
On the other hand, for any δ < δ? the separable-plus-banded model does not hold and
hence Ξ(δ) > Ξ(δ?). Therefore, due to Proposition 15, there exists N0 such that for all
N ≥ N0 we have δ̂ ≥ δ?. Thus

∣∣∣∣∣∣∣∣∣A(δ̂)−A
∣∣∣∣∣∣∣∣∣

2
= 0 for all N ≥ N0.

Secondly, we observe from the proof of Proposition 14 that
∣∣∣∣∣∣∣∣∣Â(δ)−A(δ)

∣∣∣∣∣∣∣∣∣
2

= Op(N−1/2)
for any δ ∈ ∆ such that δ ≥ δ?, hence also for δ̂, and the proof is complete.

The assertion for the banded part follows easily using the previous part of the proof and
triangle inequalities:∣∣∣∣∣∣∣∣∣B̂(δ̂)−B

∣∣∣∣∣∣∣∣∣
2
≤
∣∣∣∣∣∣∣∣∣B̂(δ̂)−B(δ̂)

∣∣∣∣∣∣∣∣∣
2

+
∣∣∣∣∣∣∣∣∣B(δ̂)−B

∣∣∣∣∣∣∣∣∣
2
,

where∣∣∣∣∣∣∣∣∣B̂(δ̂)−B(δ̂)
∣∣∣∣∣∣∣∣∣

2
=
∣∣∣∣∣∣∣∣∣Ta(ĈN − Â(δ̂)− C +A(δ̂)

)∣∣∣∣∣∣∣∣∣
2
≤
∣∣∣∣∣∣∣∣∣ĈN − Â(δ̂)− C +A(δ̂)

∣∣∣∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣∣∣∣ĈN − C∣∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∣Â(δ̂)−A(δ̂)
∣∣∣∣∣∣∣∣∣

2
= OP (N−1/2),

and similarly ∣∣∣∣∣∣∣∣∣B(δ̂)−B
∣∣∣∣∣∣∣∣∣

2
≤
∣∣∣∣∣∣∣∣∣ĈN − C∣∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∣A(δ̂)−A
∣∣∣∣∣∣∣∣∣

2
= OP (N−1/2).

In case that the separable-plus-banded model does not hold, i.e. C does not posses the
separable-plus-banded structure for any δ, there still exists δ0 ∈ ∆ such that

Ξ(δ0) = min
δ∈∆

Ξ(δ),

and the same argument as the one in the previous proof yields that Ĉ(δ̂) is root-n
consistent for C(δ0). In this instance, C(δ0) 6= C, but C(δ0) is the best separable-plus-
banded proxy to C, which can be obtained by the proposed estimation methodology
based on shifted partial tracing.
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Proof of Proposition 9

We begin with the asymptotic distribution for Â(δ̃), modifying the proof of Theorem 3.

Let us denote by δ?m the smallest of such bandwidths in ∆ which is larger than δ?. By
Theorem 3, we know that

√
N
(
Â(δ?m)−A

)
is asymptotically Gaussian and mean-zero.

Since √
N
(
Â(δ̃)−A

)
=
√
N
(
Â(δ̃)− Â(δ?m)

)
+
√
N
(
Ã(δ?m)−A

)
,

we only need to show that
√
N
(
Â(δ̂)− Â(δ?m)

)
converges to zero in probability.

Let us denote ∆̃ := {δ ∈ ∆; δ < δ?m}. Since the separable-plus-banded model holds, and
δ?m is the smallest bandwidth in ∆ such that B is banded by this bandwidth, it must be
|||C(δ)− C|||2 > 0 for all δ ∈ ∆̃.

Now, fix any ε > 0, and observe that

P
(∣∣∣√N(Â(δ̃)− Â(δ?m)

)∣∣∣ > ε
)
≤ P

(
δ̃ 6= δ?m

)
= P

(
arg min
δ∈∆

Ξ̂τ (δ) 6= arg min
δ∈∆

Ξτ (δ)
)
.

(A.43)
Let α > 0 be arbitrary. For any j such that δj 6= δ?m there exists Nj ∈ N such that for all
N ≥ Nj we have ∣∣∣Ξ̂τ (δj) + |||C|||22 − Ξτ (δj)

∣∣∣ < α.

Taking N0 := maxNj and α := τ we obtain that the probability in (A.43) is equal to
zero for any N ≥ N0 and the proof is thus complete.

The proof for B̂(δ̃) is an equivalent modification of the proof of Theorem 3.

Proof of Theorem 6

We begin by proving several claims. All of the four claims below hold uniformly in K for
any δ such that Trδ(A) 6= 0, and are proven sequentially.

Claim 1:
∣∣∣∣∣∣∣∣∣ĈKN − CK ∣∣∣∣∣∣∣∣∣2? = OP (N−1)

Similarly to the proof of Theorem 4, we calculate

E
∣∣∣∣∣∣∣∣∣ĈKN − CK ∣∣∣∣∣∣∣∣∣2

?
= 1
K4

∑
(i,j) 6=(k,l)

E
∣∣∣∣ 1
N

N∑
n=1

(
X̃K
n [i, j]X̃K

n [k, l]− EXK
n [i, j]XK

n [k, l]︸ ︷︷ ︸
=:Zn,ijkl

)∣∣∣∣2.
For a fixed i, j, k, l, Zn,ijkl are zero-mean (this is the reason why we need to remove
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the diagonal from the norm) i.i.d. random variables and thus

E
∣∣∣∣∣∣∣∣∣ĈKN − CK ∣∣∣∣∣∣∣∣∣2

?
= 1
N

1
K4

∑
(i,j)6=(k,l)

E |Zn,ijkl|2 ,

which is from the parallelogram law equal to

4
N

1
K4

∑
(i,j)6=(k,l)

E
∣∣∣XK [i, j]XK [k, l]− EXK [i, j]XK [k, l]

∣∣∣2

+ E
∣∣∣EK [i, j]XK [k, l]

∣∣∣2 + E
∣∣∣XK [i, j]EK [k, l]

∣∣∣2 + E
∣∣∣EK [i, j]EK [k, l]

∣∣∣2
 .

The first term in the parentheses is bounded by S1, the second and third are
bounded by σ2S2, and the final term is bounded by σ4, which yields the claim.

Claim 2:
∣∣∣∣∣∣∣∣∣ÂK(δ)−AK(δ)

∣∣∣∣∣∣∣∣∣2
2

= OP (N−1)

Here we use the linearization argument (A.40) and proceed exactly like in Theorem
4.

Claim 3:
∣∣∣∣∣∣∣∣∣ĈK(δ)− CK(δ)

∣∣∣∣∣∣∣∣∣2
?

= OP (N−1)

We have∣∣∣∣∣∣∣∣∣ĈK(δ)− CK(δ)
∣∣∣∣∣∣∣∣∣
?
≤

≥
∣∣∣∣∣∣∣∣∣ÂK(δ)−AK(δ)

∣∣∣∣∣∣∣∣∣
?

+
∣∣∣∣∣∣∣∣∣Ta (ĈKN − ÂK(δ)− CK +AK(δ)

)∣∣∣∣∣∣∣∣∣
?

≤
∣∣∣∣∣∣∣∣∣ÂK(δ)−AK(δ)

∣∣∣∣∣∣∣∣∣
?

+
∣∣∣∣∣∣∣∣∣ĈKN − ÂK(δ)− CK +AK(δ)

∣∣∣∣∣∣∣∣∣
?

≤ 2
∣∣∣∣∣∣∣∣∣ÂK(δ)−AK(δ)

∣∣∣∣∣∣∣∣∣
?

+
∣∣∣∣∣∣∣∣∣ĈKN − CK ∣∣∣∣∣∣∣∣∣

?
,

where we utilized the triangle inequality in the first and last inequality, while the
second inequality follows from Ta(·) being a linear projection. Now, the second
term is bounded by Claim 2, while the first term is bounded by Claim 1 and the
fact that ∣∣∣∣∣∣∣∣∣ÂK(δ)−AK(δ)

∣∣∣∣∣∣∣∣∣
?
≤
∣∣∣∣∣∣∣∣∣ÂK(δ)−AK(δ)

∣∣∣∣∣∣∣∣∣
2
.

Claim 4: Ξ̂K(δ) = ΞK(δ)−
∣∣∣∣∣∣∣∣∣CK ∣∣∣∣∣∣∣∣∣2

?
+OP (N−1/2)

We first work with a biased version of the empirical objective Ξ̂K , i.e.

Ξ̃K(δ) =
∣∣∣∣∣∣∣∣∣ĈK(δ)

∣∣∣∣∣∣∣∣∣2
?
− 2
N

N∑
n=1
〈XK

n , Ĉ
K(δ)XK

n 〉?,

and show Claim 4 with Ξ̂K replaced by Ξ̃K . For this, we bound similarly to the
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Proof of Theorem 6

proof of Proposition 15:∣∣∣∣Ξ̃K(δ) +
∣∣∣∣∣∣∣∣∣CK ∣∣∣∣∣∣∣∣∣2

?
− ΞK(δ)

∣∣∣∣ ≤ 2
∣∣∣〈ĈK(δ), ĈKN − C〉?

∣∣∣
+
∣∣∣∣∣∣∣∣∣∣∣∣ĈK(δ)− CK

∣∣∣∣∣∣∣∣∣
?
−
∣∣∣∣∣∣∣∣∣CK(δ)− CK

∣∣∣∣∣∣∣∣∣
?

∣∣∣
The Cauchy-Schwarz inequality still holds for the semi-inner-product (Conway,
2019), which allows us to bound the first term using Claim 1. For the second term,
note that the mean value theorem can still be used, since the Fréchet derivative
is a linear operation and the semi-norm is consistent with the semi-inner-product.
Hence using the mean value theorem, and the Cauchy-Schwarz inequality, we have∣∣∣∣∣∣∣∣∣∣∣∣ĈK(δ)− CK

∣∣∣∣∣∣∣∣∣
?
−
∣∣∣∣∣∣∣∣∣ĈK(δ)− CK

∣∣∣∣∣∣∣∣∣
?

∣∣∣ = 2〈Γ− CK , ĈK(δ)− CK(δ)〉?

≤ 2
∣∣∣∣∣∣∣∣∣Γ− CK ∣∣∣∣∣∣∣∣∣

?

∣∣∣∣∣∣∣∣∣ĈK(δ)− CK(δ)
∣∣∣∣∣∣∣∣∣
?
.

Hence the bound follows from Claim 3.

It remains to show that the introduced bias is asymptotically negligible, i.e. to
bound |Ξ̂K(δ)− Ξ̃K(δ)|. For this, we use triangle and Cauchy-Schwarz inequality:∣∣∣∣∣ 1

N

N∑
n=1
〈Ĉ(δ)− Ĉ−n(δ), X̃n ⊗ X̃n〉?

∣∣∣∣∣ ≤ 1
N

N∑
n=1

∣∣∣〈Ĉ(δ)− Ĉ−n(δ), X̃n ⊗ X̃n〉?
∣∣∣

≤ 1
N

N∑
n=1

∣∣∣∣∣∣∣∣∣Ĉ(δ)− Ĉ−n(δ)
∣∣∣∣∣∣∣∣∣
?
‖X̃n ⊗ X̃n‖?.

Now, since |||·|||? ≤ |||·|||2, the remainder of the proof is exactly the same as the end
of the proof of Proposition 15.

Now we can prove the Theorem itself. Using the parallelogram law, we have∣∣∣∣∣∣∣∣∣ÂK(δ̂)−A
∣∣∣∣∣∣∣∣∣2

2
≤ 4

[∣∣∣∣∣∣∣∣∣ÂK(δ̂)−AK(δ̂)
∣∣∣∣∣∣∣∣∣2

2
+
∣∣∣∣∣∣∣∣∣AK(δ̂)−AK

∣∣∣∣∣∣∣∣∣2
2

+
∣∣∣∣∣∣∣∣∣AK −A∣∣∣∣∣∣∣∣∣2

2

]
.

The first term in the brackets is bounded by Claim 2, while the last term in the brackets
correspond to the bias and can be treated the same as in the proof of Theorem 4. It
remains to show that the middle term in the brackets is equal to zero for all sufficiently
large N . But this the same way as the first paragraph of the proof of Theorem 5.
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Separable Component Decomposition

Proof of Theorem 7

Before proving the asymptotic theorems, we need perturbation bounds for the separable
component decomposition. From (3.4), C ∈ S2(H1 ⊗H2) has the separable component
decomposition (SCD)

C =
∞∑
i=1

σiAi ⊗̃Bi,

where {Ai}i≥1 (resp. {Bi}i≥1) is an orthonormal basis (ONB) of S2(H1) (resp. S2(H2)),
and |σ1| ≥ |σ2| ≥ · · · ≥ 0. We use the notation C to indicate the element of S2(H2 ⊗
H2,H1 ⊗ H1) that is isomorphic to C (see (3.2)–(3.4)). The following lemma gives
perturbation bounds for the components of the SCD.

Lemma 8 (Perturbation Bounds for SCD).
Let C = ∑∞

i=1 σiAi ⊗̃Bi and C̃ = ∑∞
i=1 σ̃iÃi ⊗̃ B̃i be SCDs of C and C̃. Also suppose

that σ1 > σ2 > · · · ≥ 0, and
〈
Ai, Ãi

〉
S2(H1)

,
〈
Bi, B̃i

〉
S2(H2)

≥ 0 for every i = 1, 2, . . .
(adjust the sign of σ̃i as required). Then,

(a) supi≥1

∣∣∣σi − σ̃i∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣C − C̃∣∣∣∣∣∣∣∣∣2.
(b) For every i ≥ 1,

∣∣∣∣∣∣∣∣∣Ai − Ãi∣∣∣∣∣∣∣∣∣S2(H1)
≤ 2
√

2
αi

∣∣∣∣∣∣∣∣∣C − C̃∣∣∣∣∣∣∣∣∣
2

(
|||C|||2 +

∣∣∣∣∣∣∣∣∣C̃∣∣∣∣∣∣∣∣∣
2

)
,

∣∣∣∣∣∣∣∣∣Bi − B̃i∣∣∣∣∣∣∣∣∣S2(H2)
≤ 2
√

2
αi

∣∣∣∣∣∣∣∣∣C − C̃∣∣∣∣∣∣∣∣∣
2

(
|||C|||2 +

∣∣∣∣∣∣∣∣∣C̃∣∣∣∣∣∣∣∣∣
2

)
,

where αi = min{σ2
i−1 − σ2

i , σ
2
i − σ2

i+1}. Here, |||·|||2 denotes the Hilbert-Schmidt
norm.

Proof. Note that σi (resp. σ̃i) is the i-th singular value of the operator C (resp. C̃).
Following (Bosq, 2012, Lemma 4.2), we get that supi≥1

∣∣∣σi − σ̃i∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣C − C̃∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣C − C̃∣∣∣∣∣∣∣∣∣2.
Part (a) now follows by noting that

∣∣∣∣∣∣∣∣∣C − C̃∣∣∣∣∣∣∣∣∣
2

=
∣∣∣∣∣∣∣∣∣C − C̃∣∣∣∣∣∣∣∣∣

2
, because of the isometry

between S2(H1 ⊗H2) and S2(H2 ⊗H2,H1 ⊗H1).

For part (b), recall that Ai (resp. Ãi) is isomorphic to ei (resp. ẽi), the i-th right singular
element of C (resp. of C̃) (see (3.2)–(3.4)). Now, ei (resp. ẽi) is the i-th eigen-element of
CC> (resp. C̃C̃>) with corresponding eigenvalue λi = σ2

i (resp. λ̃i = σ̃2
i ). Here, C> (resp.

C̃>) denotes the adjoint of C (resp. C̃). Also, 〈ei, ẽi〉H1⊗H1 = 〈Ai, Ãi〉S2(H1) ≥ 0. Now,
using a perturbation bound on the eigen-elements of operators (Bosq, 2012, Lemma 4.3),
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we get

‖ei − ẽi‖H1⊗H1 ≤
2
√

2
αi

∣∣∣∣∣∣∣∣∣CC> − C̃C̃>∣∣∣∣∣∣∣∣∣ ≤ 2
√

2
αi

∣∣∣∣∣∣∣∣∣CC> − C̃C̃>∣∣∣∣∣∣∣∣∣
2
,

where αi = min{σ2
i−1 − σ2

i , σ
2
i − σ2

i+1}. Now,

∣∣∣∣∣∣∣∣∣CC> − C̃C̃>∣∣∣∣∣∣∣∣∣
2

=
∣∣∣∣∣∣∣∣∣∣∣∣C(C − C̃)> +

(
C − C̃

)
C̃>
∣∣∣∣∣∣∣∣∣∣∣∣

2
≤
∣∣∣∣∣∣∣∣∣C − C̃∣∣∣∣∣∣∣∣∣

2

(
|||C|||2 +

∣∣∣∣∣∣∣∣∣C̃∣∣∣∣∣∣∣∣∣
2

)

=
∣∣∣∣∣∣∣∣∣C − C̃∣∣∣∣∣∣∣∣∣

2

(
|||C|||2 +

∣∣∣∣∣∣∣∣∣C̃∣∣∣∣∣∣∣∣∣
2

)
,

where we have used: (i) the triangle inequality for the Hilbert-Schmidt norm, (ii) the
fact that the Hilbert-Schmidt norm of an operator and its adjoint are the same, and
(iii) the isometry between S2(H1 ⊗ H2) and S2(H2 ⊗ H2,H1 ⊗ H1). By noting that∣∣∣∣∣∣∣∣∣Ai − Ãi∣∣∣∣∣∣∣∣∣S2(H1)

= ‖ei − ẽi‖H1⊗H1 , the upper bound on
∣∣∣∣∣∣∣∣∣Ai − Ãi∣∣∣∣∣∣∣∣∣S2(H1)

follows. The

bound on
∣∣∣∣∣∣∣∣∣Bi − B̃i∣∣∣∣∣∣∣∣∣S2(H2)

can be proved similarly.

The following lemma gives us perturbation bound for the best R-separable approximation
of Hilbert-Schmidt operators.

Lemma 9 (Perturbation Bound for Best R-separable Approximation). Let C and
C̃ be two Hilbert-Schmidt operators on H1 ⊗ H2, with SCD C = ∑∞

r=1 σrAr ⊗̃Br and
C̃ = ∑∞

r=1 σ̃rÃr ⊗̃ B̃r, respectively. Let CR and C̃R be the best R-separable approximations
of C and C̃, respectively. Then,

∣∣∣∣∣∣∣∣∣CR − C̃R∣∣∣∣∣∣∣∣∣2 ≤
{

4
√

2
(
|||C|||2 +

∣∣∣∣∣∣∣∣∣C̃∣∣∣∣∣∣∣∣∣
2

) R∑
r=1

σr
αr

+ 1
}∣∣∣∣∣∣∣∣∣C − C̃∣∣∣∣∣∣∣∣∣

2
,

where αr = min{σ2
r−1 − σ2

r , σ
2
r − σ2

r+1}.

Proof. Note that CR and C̃R have SCD CR = ∑R
i=1 σiAi ⊗̃Bi and C̃R = ∑R

i=1 σ̃iÃi ⊗̃ B̃i,
respectively. W.l.o.g. we assume that

〈
Ai, Ãi

〉
S2(H1)

,
〈
Bi, B̃i

〉
S2(H2)

≥ 0 for every i =

1, . . . , R (if not, one can change the sign of Ãi or B̃i, and adjust the sign of σ̃i as required).
Thus,

∣∣∣∣∣∣∣∣∣CR − C̃R∣∣∣∣∣∣∣∣∣2 =
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
R∑
i=1

σiAi ⊗̃Bi −
R∑
i=1

σ̃iÃi ⊗̃ B̃i

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

=
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
R∑
i=1

σi

(
Ai ⊗̃Bi − Ãi ⊗̃ B̃i

)
+

R∑
i=1

(
σi − σ̃i)Ãi ⊗̃ B̃i

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
R∑
i=1

σi

(
Ai ⊗̃Bi − Ãi ⊗̃ B̃i

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

+
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
R∑
i=1

(
σi − σ̃i)Ãi ⊗̃ B̃i

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2
. (A.44)
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Now,
∣∣∣∣∣∣∣∣∣∑R

i=1

(
σi − σ̃i

)
Ãi ⊗̃ B̃i

∣∣∣∣∣∣∣∣∣2
2

= ∑R
i=1

(
σi − σ̃i

)2
≤
∑∞
i=1

(
σi − σ̃i

)2
which, by von

Neumann’s trace inequality, is bounded by
∣∣∣∣∣∣∣∣∣C − C̃∣∣∣∣∣∣∣∣∣2

2
(Hsing and Eubank, 2015, Theo-

rem 4.5.3). On the other hand,∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
R∑
i=1

σi

(
Ai ⊗̃Bi − Ãi ⊗̃ B̃i

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2
≤

R∑
i=1

σi
∣∣∣∣∣∣∣∣∣Ai ⊗̃Bi − Ãi ⊗̃ B̃i∣∣∣∣∣∣∣∣∣2

=
R∑
i=1

σi

∣∣∣∣∣∣∣∣∣∣∣∣Ai ⊗̃(Bi − B̃i)+
(
Ai − Ãi

)
⊗̃ B̃i

∣∣∣∣∣∣∣∣∣∣∣∣
2

≤
R∑
i=1

σi

(∣∣∣∣∣∣∣∣∣Ai − Ãi∣∣∣∣∣∣∣∣∣S2(H1)
+
∣∣∣∣∣∣∣∣∣Bi − B̃i∣∣∣∣∣∣∣∣∣S2(H2)

)

≤ 4
√

2
∣∣∣∣∣∣∣∣∣C − C̃∣∣∣∣∣∣∣∣∣

2

(
|||C|||2 +

∣∣∣∣∣∣∣∣∣C̃∣∣∣∣∣∣∣∣∣
2

)
R∑
i=1

σi
αi

where the last inequality follows by part (b) of Lemma 8. The lemma is proved upon
using these inequalities in conjunction with (A.44).

Now, we can use the perturbation bounds to prove the asymptotic theorems. We begin
with the fully observed case.

Proof of Theorem 7. To bound the error of the estimator, we use the following bias-
variance-type decomposition∣∣∣∣∣∣∣∣∣ĈR,N − C∣∣∣∣∣∣∣∣∣2 ≤ ∣∣∣∣∣∣∣∣∣ĈR,N − CR∣∣∣∣∣∣∣∣∣2 + |||CR − C|||2, (A.45)

where CR is the best R-separable approximation of C. If C has SCD C = ∑∞
i=1 σiAi ⊗̃Bi,

then CR has SCD CR = ∑R
i=1 σiAi ⊗̃Bi, and

|||C − CR|||22 =
∞∑

i=R+1
σ2
i . (A.46)

For the first part, we use the perturbation bound from Lemma 9, to get

∣∣∣∣∣∣∣∣∣ĈR,N − CR∣∣∣∣∣∣∣∣∣2 ≤
{

4
√

2
(∣∣∣∣∣∣∣∣∣ĈN ∣∣∣∣∣∣∣∣∣2 + |||C|||2

) R∑
r=1

σr
αr

+ 1
}∣∣∣∣∣∣∣∣∣ĈN − C∣∣∣∣∣∣∣∣∣2, (A.47)

where αr = min{σ2
r−1 − σ2

r , σ
2
r − σ2

r+1}.

Since E(‖X‖4) is finite,
∣∣∣∣∣∣∣∣∣ĈN − C∣∣∣∣∣∣∣∣∣2 = OP(N−1/2) and

∣∣∣∣∣∣∣∣∣ĈN ∣∣∣∣∣∣∣∣∣2 = |||C|||2 + OP(1). Using
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these in (A.47), we get that

∣∣∣∣∣∣∣∣∣ĈR,N − CR∣∣∣∣∣∣∣∣∣2 = OP

(
aR√
N

)
, (A.48)

where aR = |||C|||2
∑R
i=1(σi/αi). The theorem follows by combining (A.46) and (A.48) in

(A.45).

Proof of Theorem 8

Next, we prove Theorem 8. Before doing that, we introduce a notational convention:
when the operator A has a kernel that is piecewise constant on the rectangles {IKi,j} (i.e.
a “pixelated kernel"), we will write ‖A‖F for the Frobenius norm of the corresponding
tensor of pixel coefficients. This is proportional to the Hilbert-Schmidt norm |||A|||2 of A.
We summarise this in the lemma below, whose straightforward proof we omit, since it is
similar to Lemma 4.

Lemma 10. Let A be an operator with a pixelated kernel

a(t, s, t′, s′) =
K1∑
i=1

K2∑
j=1

K1∑
k=1

K2∑
l=1

A[i, j, k, l] 1{(t, s) ∈ IKi,j , (t′, s′) ∈ IKk,l},

where A = (A[i, j, k, l])i,j,k,l ∈ RK1×K2×K1×K2 is the tensorized version of A. Then,

|||A|||2 = 1
K1K2

‖A‖F,

where ‖A‖F =
√∑K1

i=1
∑K2
j=1

∑K1
k=1

∑K2
l=1 A2[i, j, k, l] is the Frobenius norm of A.

Proof of Theorem 8. We decompose the error of our estimator as∣∣∣∣∣∣∣∣∣ĈKR,N − C∣∣∣∣∣∣∣∣∣2 ≤ ∣∣∣∣∣∣∣∣∣ĈKR,N − CR∣∣∣∣∣∣∣∣∣2 + |||CR − C|||2. (A.49)

The second term |||CR − C|||2 equals
√∑∞

r=R+1 σ
2
r , see (A.46). For the first term, we

observe that ĈKR,N and CR are the best R-separable approximations of ĈKN and C,
respectively. So, using Lemma 9, we get

∣∣∣∣∣∣∣∣∣ĈKR,N − CR∣∣∣∣∣∣∣∣∣2 ≤
{

4
√

2
(
|||C|||2 +

∣∣∣∣∣∣∣∣∣ĈKN ∣∣∣∣∣∣∣∣∣2
) R∑
r=1

σr
αr

+ 1
}∣∣∣∣∣∣∣∣∣ĈKN − C∣∣∣∣∣∣∣∣∣2, (A.50)

with αr = min{σ2
r−1 − σ2

r , σ
2
r − σ2

r+1}. Next, we derive bounds on
∣∣∣∣∣∣∣∣∣ĈKN − C∣∣∣∣∣∣∣∣∣2. We use
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the general bound ∣∣∣∣∣∣∣∣∣ĈKN − C∣∣∣∣∣∣∣∣∣2 ≤ ∣∣∣∣∣∣∣∣∣ĈKN − CK ∣∣∣∣∣∣∣∣∣2 +
∣∣∣∣∣∣∣∣∣CK − C∣∣∣∣∣∣∣∣∣

2
. (A.51)

We will now bound these two terms, separately under (S1) and (S2).

Under (S1), recall that CK is the integral operator with kernel

cK(t, s, t′, s′) =
K1∑
i=1

K2∑
j=1

K1∑
k=1

K2∑
l=1

c(tK1
i , sK2

j , tK1
k , sK2

l )1{(t, s) ∈ IKi,j , (t′, s′) ∈ IKk,l}.

Using this, we get that∣∣∣∣∣∣∣∣∣CK − C∣∣∣∣∣∣∣∣∣2
2

=
∫∫∫∫ {

cK(t, s, t′, s′)− c(t, s, t′, s′)
}2
dtdsdt′ds′

is equal to

K1∑
i=1

K2∑
j=1

K1∑
k=1

K2∑
l=1

∫∫∫∫
IKi,j×I

K
k,l

{
c(tK1

i , sK2
j , tK1

k , sK2
l )− c(t, s, t′, s′)

}2
dtdsdt′ds′. (A.52)

Because of the Lipschitz condition, for (t, s) ∈ IKi,j , (t′, s′) ∈ IKk,l,[
c(tK1

i , sK2
j , tK1

k , sK2
l )− c(t, s, t′, s′)

]2
≤

≤ L2{(t− tK1
i )2 + (s− sK2

j )2 + (t′ − tK1
k )2 + (s′ − sK2

l )2}

≤ L2
(

1
K2

1
+ 1
K2

2
+ 1
K2

1
+ 1
K2

2

)
= 2L2

(
1
K2

1
+ 1
K2

2

)
.

Plugging this into (A.52) yields

∣∣∣∣∣∣∣∣∣CK − C∣∣∣∣∣∣∣∣∣2
2
≤ 2L2

(
1
K2

1
+ 1
K2

2

)
. (A.53)

For the first part in (A.51), we observe that ĈKN is the sample covariance ofXK
1 , . . . , X

K
N ∼

XK , which are i.i.d. with E(XK) = 0 and Var(XK) = CK . Also, ĈKN and CK are
pixelated operators with discrete versions ĈK

N and CK , respectively, where ĈK
N =

N−1∑N
n=1(XK

n −XK
N )⊗ (XK

n −XK
N ) is the sample variance based on XK

1 , . . . ,XK
N and

CK [i, j, k, l] = Cov{XK
n [i, j],XK

N [k, l]} is the discrete version of CK . So, by Lemma 10,
∣∣∣∣∣∣∣∣∣ĈKN − CK ∣∣∣∣∣∣∣∣∣2 = 1

K1K2

∥∥∥ĈK
N −CK

∥∥∥
F
. (A.54)
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For the Frobenius norm, we can write

∥∥∥ĈK
N −CK

∥∥∥
F

=
∥∥∥∥∥ 1
N

N∑
n=1

XK
n ⊗XK

n −XK
N ⊗XK

N − CK
∥∥∥∥∥

F

≤
∥∥∥∥∥ 1
N

N∑
n=1

XK
n ⊗XK

n − CK
∥∥∥∥∥

F
+
∥∥∥XK

N ⊗XK
N

∥∥∥
F
. (A.55)

Now,
∥∥∥XK

N ⊗XK
N

∥∥∥
F

=
∥∥∥XK

N

∥∥∥2

F
=
∥∥∥N−1∑N

n=1 XK
n

∥∥∥2

F
, where XK

n are i.i.d., zero-mean
elements. So,

E
∥∥∥XK

N ⊗XK
N

∥∥∥
F

= E
∥∥∥∥∥ 1
N

N∑
n=1

XK
n

∥∥∥∥∥
2

F
= 1
N

E
∥∥∥XK

∥∥∥2

F
.

Again,
∥∥∥XK

∥∥∥2

F
= ∑K1

i=1
∑K2
j=1{XK [i, j]}2, so

E
∥∥∥XK

∥∥∥2

F
=

K1∑
i=1

K2∑
j=1

E
(
XK [i, j]

)2
=

K1∑
i=1

K2∑
j=1

Var
(
XK [i, j]

)
.

Under our measurement scheme, XK [i, j] = X(tK1
i , sK2

j ), so

Var
(
XK [i, j]

)
= c(tK1

i , sK2
j , tK1

i , sK2
j ) ≤ sup

(t,s)∈[0,1]2
c(t, s, t, s) =: S1,

where S1 is finite since we assume that X has continuous sample paths. This shows that

E
∥∥∥XK

N ⊗XK
N

∥∥∥
F
≤ K1K2S1

N
. (A.56)

Next, we define ZK
n = XK

n ⊗XK
n −CK . Then, ZK

1 , . . . ,ZK
N are i.i.d., mean centered,

which gives

E
∥∥∥∥∥ 1
N

N∑
n=1

XK
n ⊗XK

n −CK

∥∥∥∥∥
2

F
= E

∥∥∥∥∥ 1
N

N∑
n=1

ZKn

∥∥∥∥∥
2

F
= 1
N

E
∥∥∥ZK1 ∥∥∥2

F
.

Now,

E
∥∥∥ZK1 ∥∥∥2

F
=

K1∑
i=1

K2∑
j=1

K1∑
k=1

K2∑
l=1

E
(
XK

1 [i, j]XK
1 [k, l]−CK [i, j, k, l]

)2

=
K1∑
i=1

K2∑
j=1

K1∑
k=1

K2∑
l=1

Var
(
XK

1 [i, j]XK
1 [k, l]

)

=
K1∑
i=1

K2∑
j=1

K1∑
k=1

K2∑
l=1

Var
(
X(tK1

i , sK2
j )X(tK1

k sK2
l )

)
≤ K2

1K
2
2 sup

(t,s,t′,s′)∈[0,1]4
Var

(
X(t, s)X(t′, s′)

)
︸ ︷︷ ︸

=:S2

,
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where S2 is finite since we assume that X has continuous sample paths and finite fourth
moment. Thus,

E
∥∥∥∥∥ 1
N

N∑
n=1

XK
n ⊗XK

n −CK

∥∥∥∥∥
2

F
≤ K2

1K
2
2S2

N
,

which implies that

E
∥∥∥∥∥ 1
N

N∑
n=1

XK
n ⊗XK

n −CK

∥∥∥∥∥
F
≤

√√√√√E
∥∥∥∥∥ 1
N

N∑
n=1

XK
n ⊗XK

n −CK

∥∥∥∥∥
2

F
≤ K1K2

√
S2√

N
. (A.57)

Combining (A.55), (A.56) and (A.57), we obtain

E
∥∥∥ĈK

N −CK
∥∥∥

F
≤ K1K2

√
S2√

N
+ K1K2S1

N
.

Finally, (A.54) yields

E
∣∣∣∣∣∣∣∣∣ĈKN − CK ∣∣∣∣∣∣∣∣∣2 ≤

√
S2√
N

+ S1
N

= O(N−1/2),

uniformly in K1,K2, which shows∣∣∣∣∣∣∣∣∣ĈKN − CK ∣∣∣∣∣∣∣∣∣2 = OP(N−1/2), (A.58)

and the OP term is uniform in K1,K2. Using (A.53) and (A.58) in (A.51), we have

∣∣∣∣∣∣∣∣∣ĈKN − C∣∣∣∣∣∣∣∣∣2 = OP(N−1/2) + L

√
2
K2

1
+ 2
K2

2
, (A.59)

where the OP term is uniform in K1,K2.

Next, we consider the measurement scheme (S2). Observe that, under this scheme, CK
is the integral operator with kernel

cK(t, s, t′, s′) = Cov
{
XK(t, s), XK(t′, s′)

}
=

K1∑
i=1

K2∑
j=1

K1∑
k=1

K2∑
l=1

c̃K(i, j, k, l)1{(t, s) ∈ IKi,j , (t′, s′) ∈ IKk,l}, (A.60)

where
c̃K(i, j, k, l) = 1

|IKi,j | |IKk,l|

∫∫
IKi,j×I

K
k,l

c(u, v, u′, v′)dudvdu′dv′.
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Now, as in (A.52), we get∣∣∣∣∣∣∣∣∣CK − C∣∣∣∣∣∣∣∣∣2
2

=
∫∫∫∫ {

cK(t, s, t′, s′)− c(t, s, t′, s′)
}2
dtdsdt′ds′

=
K1∑
i=1

K2∑
j=1

K1∑
k=1

K2∑
l=1

∫∫
IKi,j×I

K
k,l

{
c̃(i, j, k, l)− c(t, s, t′, s′)

}2
dtdsdt′ds′. (A.61)

Using (A.60) and the Lipschitz condition on c, given (t, s) ∈ IKi,j , (t′, s′) ∈ IKk,l, one has∣∣∣c̃(i, j, k, l)− c(t, s, t′, s′)∣∣∣ =

=
∣∣∣∣∣ 1
|IKi,j | |IKk,l|

∫∫∫∫
IKi,j×I

K
k,l

{
c(u, v, u′, v′)− c(t, s, t′, s′)

}
dudvdu′dv′

∣∣∣∣∣
≤ 1
|IKi,j | |IKk,l|

∫∫∫∫
IKi,j×I

K
k,l

∣∣∣c(u, v, u′, v′)− c(t, s, t′, s′)∣∣∣dudvdu′dv′
≤ 1
|IKi,j | |IKk,l|

∫∫∫∫
IKi,j×I

K
k,l

L

√
1
K2

1
+ 1
K2

2
+ 1
K2

1
+ 1
K2

2
dudvdu′dv′

= L

√
2
K2

1
+ 2
K2

2
.

Using this in (A.61) yields

∣∣∣∣∣∣∣∣∣CK − C∣∣∣∣∣∣∣∣∣2
2
≤ 2L2

(
1
K2

1
+ 1
K2

2

)
. (A.62)

For
∣∣∣∣∣∣∣∣∣ĈNK − CK ∣∣∣∣∣∣∣∣∣2, we proceed similarly as under the measurement scheme (S1). We

need to get bounds on E
∥∥∥XK

∥∥∥2

F
= ∑K1

i=1
∑K2
j=1 Var

(
XK [i, j]

)
and

E
∥∥∥ZK1 ∥∥∥2

F
=

K1∑
i=1

K2∑
j=1

K1∑
k=1

K2∑
l=1

Var
(
XK

1 [i, j]XK
1 [k, l]

)
.

Recall that under measurement scheme (S2),

XK [i, j] = 1
|IKi,j |

∫
IKi,j

X(t, s) dt ds =
√
K1K2〈X, gKi,j〉,

where gKi,j(t, s) =
√
K1K2 1{(t, s) ∈ IKi,j}. So,

Var
(
XK [i, j]

)
= K1K2 Var

(
〈X, gKi,j〉

)
= K1K2〈CgKi,j , gKi,j〉.

Observe that
(
gKi,j

)
i=1,...,K1,j=1,...,K2

are orthonormal in L2([0, 1]2) (i.e., 〈gKi,j , gKk,l〉 =
1{(i, j) = (k, l)}). Thus, we can extend them to form a basis of L2([0, 1]2) like in the
proof of Theorem 4. We again denote this extended basis by (gKi,j)∞i,j=1. Since C is
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positive semi-definite, 〈CgKi,j , gKi,j〉 ≥ 0 for every i, j ≥ 1. Thus,

K1∑
i=1

K2∑
j=1

Var
(
XK [i, j]

)
= K1K2

K1∑
i=1

K2∑
j=1
〈CgKi,j , gKi,j〉

≤ K1K2

∞∑
i=1

∞∑
j=1
〈CgKi,j , gKi,j〉

= K1K2|||C|||1. (A.63)

Again, X[i, j]X[k, l] = K1K2〈X ⊗X, gKi,j ⊗ gKk,l〉. This shows that

Var
(
XK

1 [i, j]XK
1 [k, l]

)
= K2

1K
2
2 〈Γ(gKi,j ⊗ gKk,l), gKi,j ⊗ gKk,l〉,

where Γ = E(X ⊗X ⊗X ⊗X)− C ⊗ C is the covariance operator of X ⊗X. Note that
the assumption E(‖X‖42) <∞ ensures the existence of Γ, and further assures that Γ is
a trace-class operator. Since the (gKi,j) are orthornormal in L2([0, 1]2), the

(
gKi,j⊗gKk,l

)
i,j,k,l

are orthonormal in L2([0, 1]4). So, we can extend them to a basis (gKi,j ⊗ gKk,l)∞i,j,k,l=1 of
L2([0, 1]4). Since Γ is positive semi-definite

K1∑
i=1

K2∑
j=1

K1∑
k=1

K2∑
l=1

Var
(
XK

1 [i, j]XK
1 [k, l]

)
= K2

1K
2
2

K1∑
i=1

K2∑
j=1

K1∑
k=1

K2∑
l=1
〈Γ(gKi,j ⊗ gKk,l), gKi,j ⊗ gKk,l〉

≤ K2
1K

2
2

∞∑
i=1

∞∑
j=1

∞∑
k=1

∞∑
l=1
〈Γ(gKi,j ⊗ gKk,l), gKi,j ⊗ gKk,l〉

= K2
1K

2
2 |||Γ|||1. (A.64)

Using (A.63) and (A.64), and proceeding as in the case of (S1), we get

E
∣∣∣∣∣∣∣∣∣ĈKN − CK ∣∣∣∣∣∣∣∣∣2 ≤

√
|||Γ|||1√
N

+ |||C|||1
N

,

that is, ∣∣∣∣∣∣∣∣∣ĈKN − CK ∣∣∣∣∣∣∣∣∣2 = OP(N−1/2), (A.65)

where the OP term is uniform in K1,K2. Finally, using (A.62) and (A.65) in (A.51), we
get ∣∣∣∣∣∣∣∣∣ĈKN − C∣∣∣∣∣∣∣∣∣2 = OP(N−1/2) + L

√
2
K2

1
+ 2
K2

2
, (A.66)

where the OP term is uniform in K1,K2. Observe that we obtain the same rate under
both (S1) and (S2). Also observe that, under both the schemes,

∣∣∣∣∣∣∣∣∣ĈKN ∣∣∣∣∣∣∣∣∣2 = |||C|||2 +OP(N−1/2) + L

√
2
K2

1
+ 2
K2

2
.
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Using these in (A.50), we get

∣∣∣∣∣∣∣∣∣ĈKR,N − CR∣∣∣∣∣∣∣∣∣2 ≤
{

4
√

2
(
|||C|||2 + |||C|||2 +OP(N−1/2) + L

√
2
K2

1
+ 2
K2

2

)
R∑
r=1

σr
αr

+ 1
}

×
{
OP(N−1/2) + L

√
2
K2

1
+ 2
K2

2

}

= OP

(
aR√
N

)
+
(
16aR +

√
2
)
L

√
1
K2

1
+ 1
K2

2
+ 8
√

2L2

|||C|||2

(
1
K2

1
+ 1
K2

2

)
aR,

where the OP term is uniform in K1,K2.

Proof of Theorem 9

Finally, we consider the case where the surfaces are observed at irregular (and possibly
different number of) locations.

We start by using the inequality∣∣∣∣∣∣∣∣∣C̃R,N − C∣∣∣∣∣∣∣∣∣2 ≤ ∣∣∣∣∣∣∣∣∣C̃R,N − CR∣∣∣∣∣∣∣∣∣2 + |||CR − C|||2. (A.67)

For the second part on the right-hand side, using (A.46), we get that

|||CR − C|||2 =
( R∑
r=1

σ2
r

)1/2
.

For the first part, we use Lemma 9 to get

∣∣∣∣∣∣∣∣∣C̃R,N − CR∣∣∣∣∣∣∣∣∣2 ≤
{

4
√

2
(
|||C|||2 +

∣∣∣∣∣∣∣∣∣C̃N ∣∣∣∣∣∣∣∣∣2)
R∑
r=1

σr
αr

+ 1
}∣∣∣∣∣∣∣∣∣C̃N − C∣∣∣∣∣∣∣∣∣2. (A.68)

Now, ∣∣∣∣∣∣∣∣∣C̃N − C∣∣∣∣∣∣∣∣∣2 ≤ ∣∣∣∣∣∣∣∣∣C̃N − ĈN ∣∣∣∣∣∣∣∣∣2 +
∣∣∣∣∣∣∣∣∣ĈN − C∣∣∣∣∣∣∣∣∣2.

The first part on the right is OP(bN ) by the assumption of the theorem, while the second
part is OP(N−1/2) since E(‖X‖4) < ∞. Hence, we get

∣∣∣∣∣∣∣∣∣C̃N − C∣∣∣∣∣∣∣∣∣2 ≤ OP(bN ), which
also shows ∣∣∣∣∣∣∣∣∣C̃N ∣∣∣∣∣∣∣∣∣2 ≤ |||C|||2 +

∣∣∣∣∣∣∣∣∣C̃N − C∣∣∣∣∣∣∣∣∣2 ≤ |||C|||2 +OP(bN ).

Using these in (A.68), we get
∣∣∣∣∣∣∣∣∣C̃R,N − CR∣∣∣∣∣∣∣∣∣2 = OP(aRbN ) where aR = |||C|||2

∑R
r=1 σr/αr.

The result now follows by substituting this in (A.67).
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Explicit Formula for Local Polynomial Regression

Separability under Sparse Measurements

Explicit Formula for Local Polynomial Regression

Our estimators introduced in Section 4.3 are based on local polynomial regression
techniques and are defined as minimizers of (weighted) least squares problems (4.5). It
turns out that the minimizers for these point-wise optimization problems admit a unique
solution given by an explicit formula. In this section we recall this formula for a general
local linear polynomial regression with possibly exogenous weights which will be later
used in the proofs of the asymptotic behaviour of our estimators.

The local linear surface smoother of the generic set {(xk, yk, zk) | k = 1, . . . ,M} ⊂ R3

given weights {wk | k = 1, . . . ,M} is defined as the solution of the least squares problem
(4.5). It turns out that this minimizer to this optimization problem admits a unique
solution:

γ̂0(x,y) = Ψ1(x, y) [Ψ2(x, y)]−1 , (x, y) ∈ [0, 1]2, (A.69)

where for each (x, y) ∈ [0, 1]2 and p, q ∈ N0 we define

Φ1(x, y) = S20(x, y)S02(x, y)− [S11(x, y)]2 ,
Φ2(x, y) = S10(x, y)S02(x, y)− S01(x, y)S11(x, y),
Φ3(x, y) = S01(x, y)S20(x, y)− S10(x, y)S11(x, y),
Ψ1(x, y) = Φ1(x, y)Q00(x, y)− Φ2(x, y)Q10(x, y)− Φ3(x, y)Q01(x, y),
Ψ2(x, y) = Φ1(x, y)S00(x, y)− Φ2(x, y)S10(x, y)− Φ3(x, y)S01(x, y),

and

Spq(x, y) = 1
M

M∑
k=1

(
x− xk
h1

)p (y − yk
h2

)q 1
h1h2

K
(
x− xk
h1

)
K
(
y − yk
h2

)
wm (A.70)

for 0 ≤ p+ q ≤ 2, and

Qpq(x, y) = 1
M

M∑
k=1

(
x− xk
h1

)p (y − yk
h2

)q 1
h1h2

K
(
x− xk
h1

)
K
(
y − yk
h2

)
wkzk (A.71)

for 0 ≤ p + q ≤ 1. In the above, h1 > 0 and h2 > 0 are smoothing bandwidths in the
first and the second dimension respectively.

The formula (A.69) is derived by differentiating the weighted least squares (4.5) and
finding the solution to the normal equations. It is based on the standard steps used in the
local regression literature, see e.g. Fan and Gijbels (1996)[§3.1] or Rubín and Panaretos
(2020)[§B.2].
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Kernel Averages of m-dependent Data

Thanks the explicit formula (A.69) we may reduce the asymptotic behaviour assessment
to the investigation of the terms (A.70) and (A.71). In this section we review the
general asymptotic framework for the asymptotics of these kernel averages and hence
the framework for the asymptotics of (A.69). We shall use the general theory developed
by Hansen (2008) who derived a toolbox for strong mixing time series data where the
regressors attain values in possibly unbounded sets. Here we recall this result and write
down a simplified version sufficient for our data.

Theorem 12 (Hansen, 2008). Let {(Uk, Vk, Zk)}k∈Z ∈ R3 be a strictly stationary sequence
of random vectors and consider the averages of the form

Ξk(u, v) = 1
kh1h2

k∑
i=1

(
u− Ui
h1

)p (v − Vi
h2

)q
K
(
u− Ui
h1

)
K
(
v − Vi
h2

)
Zi (A.72)

where p, q ∈ N0.

(C1) K(·) is the Epanechnikov kernel, i.e. K(u) = (3/4)(1− u2)1[|u|<1].

(C2) (Uk, Vk) attain values in the set [0, 1]2.

(C3) {(Uk, Vk, Zk)} is an m-dependent sequence, i.e. for each k ∈ Z, the random vectors
(. . . , Uk, Vk, Zk) and (Uk+m, Vk+m, Zk+m, Uk+m+1, Vk+m+1, Zk+m+1, . . . ) are inde-
pendent.

(C4) There exists s > 2 such that (u, v) 7→ E[|Z1|s|U1 = u, V1 = v] is bounded.

(C5) The probability density function of (U1, V1) is twice continuously differentiable.

(C6) The smoothing bandwidth satisfies (log k)/(kh1h2) = o(1) as k →∞.

Then the kernel averages (A.72) satisfy

sup
(u,v)∈[0,1]2

|Ξk(u, v)− EΞk(u, v)| = OP

(√
log k
kh1h2

)
, as k →∞. (A.73)

Theorem 12 is essentially a special case of Hansen (2008, Thm 2), where the considered
sequence is defined on a bounded domain and is m-dependent. We also assume that
the two dimensional smoothing kernel (A.72) is the product of two one dimensional
Epanechnikov kernels. Note that the function (u, v) 7→ upvqK(u)K(v) satisfies Hansen’s
conditions on the smoothing kernel.

The only generalisation where Theorem 12 deviates from Hansen (2008, Thm 2) is that we
allow the smoothing bandwidth (h1, h2) to attain different values in different directions.
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Kernel Averages of m-dependent Data

The proof of such generalisation, while having the smoothing kernel as a product of
one-dimensional kernels, follows the lines of the proof Hansen (2008, Thm 2) where hd,
with d = 2, is replaced by h1h2.

The following corollary goes one step further and incorporates the convergence of EΞk(u, v)
into the statement (A.73).

Corollary 5. Under assumption of Theorem 12 consider the function

M(u, v) = cpcqE [Z1|U1 = u, V1 = v] fU1,V1(u, v), x, y ∈ [0, 1], (A.74)

where fU1,V1(·, ·) denotes the probability density function of (U1, V1) and cr =
∫
xrK(x) dx

for r ∈ N0. Moreover:

(D1) Assume that the function M(·, ·) is twice continuously differentiable on [0, 1]2.

Then the kernel averages (A.72) satisfy

sup
(u,v)∈[0,1]2

|Ξk(u, v)−M(u, v)| = OP

(√
log k
kh1h2

+ h2
1 + h2

2

)
, as k →∞. (A.75)

Proof. We start by decomposing the supremum (A.75) into a stochastic and a determin-
istic part

sup
(u,v)∈[0,1]2

|Ξk(u, v)−M(u, v)| ≤ sup
(u,v)∈[0,1]2

|Ξk(u, v)− EΞk(u, v)|

+ sup
(u,v)∈[0,1]2

|EΞk(u, v)−M(u, v)| .
(A.76)

The first term on the right-hand side of (A.76) is of order OP(
√

(logn)/(nh1h2)) by
Theorem 12. The expectation in the second term on the right-hand side of (A.76) is
developed as

EΞk(u, v) = E
[(
u− U1
h1

)p (v − V1
h2

)q 1
h1h2

K
(
u− U1
h1

)
K
(
v − V1
h2

)
E [Z11|U1, V1]

]
= E

[(
u− U1
h1

)p (v − V1
h2

)q 1
h1h2

K
(
u− U1
h1

)
K
(
v − V1
h2

)
M(U1, V1)

]
=
∫∫ (

u− x
h1

)p (v − y
h2

)q 1
h1h2

K
(
u− x
h1

)
K
(
v − y
h2

)
M(x, y)fU1,V1(x, y)dxdy

=
∫∫

(x̃)p (ỹ)q K (x̃)K (ỹ)M(u+ h1x̃, v + h2ỹ)fU1,V1(u+ h1x̃, v + h2ỹ)dx̃dỹ.

(A.77)

Applying the Taylor expansion of order 2 in the right-hand side of (A.77) and using
assumptions (C5) and (D1), the second term on the right-hand side of (A.76) is of order
O(h2

1 + h2
2).
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Proof of Proposition 12

Tailoring the generic smoother (4.5) to the mean surface estimator (4.6), we arrive at
the customized versions of (A.70) and (A.71):

Sµpq(t, s) = 1∑N
n=1Mn

N∑
n=1

Mn∑
m=1

(
t− tnm
hµ,1

)p(
s− snm
hµ,2

)q
· (A.78)

· 1
hµ,1hµ,2

K
(
t− tnm
hµ,1

)
K
(
s− snm
hµ,2

)
, 0 ≤ p+ q ≤ 2. (A.79)

Qµpq(t, s) = 1∑N
n=1Mn

N∑
n=1

Mn∑
m=1

(
t− tnm
hµ,1

)p(
s− snm
hµ,2

)q
· (A.80)

· 1
hµ,1hµ,2

K
(
t− tnm
hµ,1

)
K
(
s− snm
hµ,2

)
Ynm, 0 ≤ p+ q ≤ 1. (A.81)

We assess the asymptotic behaviour of (A.78) and (A.80) in the following lemmas.

Lemma 11. Under assumptions (B1) – (B6),

sup
(t,s)∈[0,1]2

∣∣∣Qµpq(t, s)−M[Qµpq ](t, s)
∣∣∣ = OP

(√
logN
Nh1h2

+ h2
µ,1 + h2

µ,2

)
, as N →∞,

(A.82)
for each 0 ≤ p+ q ≤ 1 and where

M[Qµ00](t, s) = µ(t, s)f(t,s)(t, s), M[Qµ10](t, s) = M[Qµ01](t, s) = 0, t, s ∈ [0, 1].
(A.83)

Proof. Define the sequence of random vectors {(Uk, Vk, Zk)}∞k=1 by putting {tnm}, {snm}
and {Ynm} in order such that

{U1, U2, . . .} = {t11, t12, . . . , t1m1 , t21, . . . , t2m2 , t31, . . .},
{V1, V2, . . .} = {s11, s12, . . . , s1m1 , s21, . . . , s2m2 , s31, . . .},
{Z1, Z2, . . .} = {Y11, Y12, . . . , Y1m1 , Y21, . . . , Y2m2 , Y31, . . .}. (A.84)

The sequence{(Uk, Vk, Zk)}∞k=1 satisfies the assumption of Theorem 12 and Corollary 5,
namely strict stationarity is by assumptions (B1) – (B3), is Mmax-dependent by assump-
tion (B1), and the conditions (C4), (C5), (C6), (D1) are satisfied by assumptions (B5),
(B2), (B6), (B5) respectively. Therefore the sequence of kernel averages

Ξµpq,k(t, s) = 1
khµ,1hµ,2

n∑
i=1

(
t− Ui
h1

)p (s− Vi
h2

)q
K
(
t− Ui
h1

)
K
(
s− Vi
h2

)
Zi
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satisfies

sup
(t,s)∈[0,1]2

∣∣∣Ξµpq,k(t, s)−M[Qµpq ](t, s)
∣∣∣ = OP

(√
log k
kh1h2

+ h2
µ,1 + h2

µ,2

)
, as k →∞,

and the formulae (A.83) follow from the definition of {(Uk, Vk, Zk)}∞k=1 and definition
(A.74). Since the sequence {Qµpq(t, s)}∞N=1 is a subsequence of {Ξµpq,k(t, s)}∞k=1 and
k = k(N) � N as N →∞, the convergence rate (A.82) holds as well.

Lemma 12. Under assumptions (B1) – (B3),

sup
(t,s)∈[0,1]2

∣∣∣Sµpq(t, s)−M[Sµpq ](t, s)
∣∣∣ = OP

(√
logN
Nh1h2

+ h2
µ,1 + h2

µ,2

)
, as N →∞,

(A.85)
for each 0 ≤ p+ q ≤ 1 and where

M[Sµ00](t, s) = µ(t, s)f(t,s)(t, s), M[Sµ11](t, s) = M[Sµ10](t, s) = M[Sµ01](t, s) = 0,

(A.86)

M[Sµ20](t, s) = M[Sµ02](t, s) = c2f(t,s)(t, s), c2 =
∫
x2K(x) dx. t, s ∈ [0, 1].

(A.87)

Proof. The proof of this lemma follows essentially the same lines as the proof of Lemma 11.
In the definition of the sequence {(Uk, Vk, Zk)}∞k=1 we put Zk = 1, for all k ∈ N, on the
line (A.84). The formulae (A.86) and (A.87) are verified analogously by the definition
(A.74).

Proof of Proposition 12. We are now ready to combine the above and prove Proposi-
tion 12. Following the explicit formulae for local linear smoothers presented above, we
have for

Φµ
1 (t, s) = Sµ20(t, s)Sµ02(t, s)− [Sµ11(t, s)]2 ,

Φµ
2 (t, s) = Sµ10(t, s)Sµ02(t, s)− Sµ01(t, s)Sµ11(t, s),

Φµ
3 (t, s) = Sµ01(t, s)Sµ20(t, s)− Sµ10(t, s)Sµ11(t, s),

Ψµ
1 (t, s) = Φ1(t, s)Qµ00(t, s)− Φ2(t, s)Qµ10(t, s)− Φ3(t, s)Qµ01(t, s),

Ψµ
2 (t, s) = Φ1(t, s)Sµ00(t, s)− Φ2(t, s)Sµ10(t, s)− Φ3(t, s)Sµ01(t, s),
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their asymptotic behaviour

Φµ
1 (t, s) =

(
c2f(t,s)(t, s)

)2
+OP (rµN ) ,

Φµ
2 (t, s) = OP (rµN ) ,

Φµ
3 (t, s) = OP (rµN ) ,

Ψµ
1 (t, s) = (c2)2

(
f(t,s)(t, s)

)3
µ(t, s) +OP (rµN ) ,

Ψµ
2 (t, s) = (c2)2

(
f(t,s)(t, s)

)3
+OP (rµN ) ,

uniformly in (t, s) ∈ [0, 1]2, as N →∞, where rµN =
√

(logN)/(Nhµ,1hµ,2) + h2
µ,1 + h2

µ,2.
Hence

µ̂(t, s) = Ψµ
1 (t, s)/ [Ψµ

2 (t, s)]−1 = µ(t, s) +OP (rµN ) , as N →∞,

by the uniform version of Slutsky’s theorem and by the fact that f(t,s)(·, ·) 6= 0 on [0, 1]2
by (B2). Thanks to assumption (B6), the convergence rate simplifies to the common rate
h and

µ̂(t, s) = µ(t, s) +OP

√ logN
Nh2 + h2

 , as N →∞.

Proof of Theorem 10 and Corollary 4

Lemma 13. Assume the conditions (A1), (B1) – (B9) and fix a deterministic twice
continuously differentiable kernel β(s, s′), s, s′ ∈ [0, 1] such that

∫∫
[β(s, s′)]2dsds′ > 0.

Then the smoother α̂(t, t′), t, t′ ∈ [0, 1], obtained by smoothing the set
(
tnm, tnm′ ,

Gnmm′

β(snm, snm′)

) ∣∣∣∣∣∣ m,m′ = 1, . . . ,Mn, m 6= m′, n = 1 . . . , N

 (A.88)

using weights {β2(snm, snm′)} admits the following asymptotics

α̂(t, t′) = a(t, t′)
∫∫
β(s, s′)b(s, s′)fs(s)fs(s′)dsds′∫∫

[β(s, s′)]2 fs(s)fs(s′)dsds′
+OP

√ logN
Nh2 + h2

 (A.89)

uniformly in (t, t′) ∈ [0, 1]2 as N → ∞. We recall that a(t, t′), t, t′ ∈ [0, 1], and
b(s, s′), s, s′ ∈ [0, 1], on the right-hand side of (A.89) are the true separable covari-
ance structure components (4.1).

Proof. We start the proof by the analysis of a simplified case. Suppose that we know the
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Proof of Theorem 10 and Corollary 4

mean surface µ(·, ·) and define the raw covariances accordingly

G̃nmm′ = (Ynm − µ(tnm, snm))(Ynm′ − µ(tnm′ , snm′)). (A.90)

Construct the smoother of the set (A.88) where we replace Gnmm′ by G̃nmm′ . Such
smoother, denoted as α̃(·, ·), is given by the formula

α̃(t, t′) = Ψα̃
1 (t, t′)/

[
Ψα̃

2 (t, t′)
]−1

, (A.91)

Ψα̃
1 (t, t′) = Φ1(t, t′)Qα̃00(t, t′)− Φ2(t, t′)Qα̃10(t, t′)− Φ3(t, t′)Qα̃01(t, t′),

Ψα̃
2 (t, t′) = Φ1(t, t′)Sα̃00(t, t′)− Φ2(t, t′)Sα̃10(t, t′)− Φ3(t, t′)Sα̃01(t, t′),

Φα̃
1 (t, t′) = Sα̃20(t, t′)Sα̃02(t, t′)−

[
Sα̃11(t, t′)

]2
,

Φα̃
2 (t, t′) = Sα̃10(t, t′)Sα̃02(t, t′)− Sα̃01(t, t′)Sα̃11(t, t′),

Φα̃
3 (t, t′) = Sα̃01(t, t′)Sα̃20(t, t′)− Sα̃10(t, t′)Sα̃11(t, t′),

Sα̃pq(t, t′) = 1∑N
n=1Mn(Mn − 1)

N∑
n=1

Mn∑
m,m′=1
m6=m′

(
t− tnm
ha

)p ( t′ − tnm′
ha

)q
·

· 1
h2
a

K
(
t− tnm
ha

)
K
(
t′ − tnm′

ha

)
[β(snm, snm′)]2 , 0 ≤ p+ q ≤ 2,

(A.92)

Qα̃pq(t, t′) = 1∑N
n=1Mn(Mn − 1)

N∑
n=1

Mn∑
m,m′=1
m6=m′

(
t− tnm
ha

)p ( t′ − tnm′
ha

)q
·

· 1
h2
a

K
(
t− tnm
ha

)
K
(
t′ − tnm′

ha

)
β(snm, snm′)G̃nmm′ , 0 ≤ p+ q ≤ 1.

(A.93)

The asymptotic behaviour ofQα̃pq and Sα̃pq(t, t′) is assessed similarly as the surface smoother
in Lemmas 11 and 12. We proceed again with defining the [Mmax]2-dependent sequences
{(Uk, Vk, Zk)}∞k=1 by putting the pairs (tnm, tnm′), m,m′ = 1, . . . ,Mn, m 6= m′, n =
1, . . . , N into the sequence {(Uk, Vk)}∞k=1 such that we set Uk = tnm and Vk = tnm′ while
starting from the data from the first surface (n = 1), then proceeding with n = 2 etc.

For the asymptotics of Qα̃pq, define

ZQk = β(snm, snm′)G̃nmm′ (A.94)

where snm, snm′ , G̃nmm′ correspond to that sparse observation which was assigned to
(Uk, Vk). We use Theorem 12 and Corollary 5 thanks to assumptions (B7) – (B9).
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Moreover, we verify

E
[
ZQk

∣∣∣Uk = t, Vk = t′
]

=

= E
[
β(snm, snm′) (Xn(t, snm) + εnm) (Xn(t, snm′) + εnm′))

∣∣Uk = t, Vk = t′
]

= E
[
β(snm, snm′)a(t, t′)b(snm, snm′)

]
= a(t, t′)

∫∫
β(s, s′)b(s, s′)fs(s)fs(s′)dsds′,

where fs(s) =
∫
f(t,s)(t, s) dt is the marginal density of the random position s11. Likewise,

denote ft(t) =
∫
f(t,s)(t, s) ds is the marginal density of the random position t11. Then

Qα̃00(t, t′) = a(t, t′)ft(t)ft(t′)
∫∫

β(s, s′)b(s, s′)fs(s)fs(s′)dsds′ +OP

(√
logN
Nh2

a

+ h2
a

)
,

uniformly in (t, t′) ∈ [0, 1]2 as N →∞ and where cr =
∫
xrK(x) dx, r ∈ N.

Similarly to the analysis above we assess the asymptotics of Sα̃pq. Instead of the definition
in (A.94) we set here ZSk = [β(snm, snm′)]2 and calculate

E
[
ZSk

∣∣∣Uk = t, Vk = t′
]

=
∫∫

[β(s, s′)]2fs(s)fs(s′)dsds′.

Hence

Sα̃pq(t, t′) = cpcqft(t)ft(t′)
∫∫

[β(s, s′)]2fs(s)fs(s′)dsds′ +OP

(√
logN
Nh2

a

+ h2
a

)

uniformly in (t, t′) ∈ [0, 1]2 as N → ∞. By the assumptions on the kernel β(·, ·),
the uniform Slutsky theorem, the formula (A.91), and the fact that ha � h as in
assumption (B9):

α̃(t, t′) = a(t, t′)
∫∫
β(s, s′)b(s, s′)fs(s)fs(s′)dsds′∫∫

[β(s, s′)]2 fs(s)fs(s′)dsds′
+OP

√ logN
Nh2 + h2


uniformly in (t, t′) ∈ [0, 1]2 as N →∞.

It remains to comment on the difference α̃(t, t′) and α̂(t, t′), i.e. when the empirical mean
µ̂(·, ·) is supplied into the raw covariances Gnmm′ . Since

Gnmm′ = G̃nmm′

+ (µ(tnm, snm)− µ̂(tnm, snm)) (Ynm′ − µ̂(tnm′ , snm′))
+ (µ(tnm′ , snm′)− µ̂(tnm′ , snm′)) (Ynm − µ̂(tnm, snm))
+ (µ(tnm, snm)− µ̂(tnm, snm)) (µ(tnm′ , snm′)− µ̂(tnm′ , snm′))
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we conclude by Proposition 12 that

Gnmm′ = G̃nmm′ +OP

√ logN
Nh2 + h2

 (A.95)

uniformly across all n,m,m′ as N →∞. Therefore the claim (A.89) follows.

Corollary 6. Assume the conditions (A1), (B1) – (B9) and consider a random kernel
β̂(·, ·) such that

β̂(s, s′) = β(s, s′) +OP

√ logN
Nh2 + h2

 (A.96)

uniformly in (s, s′) ∈ [0, 1]2 as N →∞, where β(s, s′), s, s′ ∈ [0, 1] is a deterministic twice
continuously differentiable kernel such that

∫∫
[β(s, s′)]2dsds′ > 0. Then the smoother

α̂(t, t′), t, t′ ∈ [0, 1], obtained by smoothing the set
(
tnm, tnm′ ,

Gnmm′

β̂(snm, snm′)

) ∣∣∣∣∣∣ m,m′ = 1, . . . ,Mn, m 6= m′, n = 1 . . . , N


using weights {β̂2(snm, snm′)} admits the same asymptotics as in the previous lemma:

α̂(t, t′) = a(t, t′)
∫∫
β(s, s′)b(s, s′)fs(s)fs(s′)dsds′∫∫

[β(s, s′)]2 fs(s)fs(s′)dsds′
+OP

√ logN
Nh2 + h2


uniformly in (t, t′) ∈ [0, 1]2 as N →∞.

Proof. The proof of this corollary follows the same lines as the proof of Lemma 13. We
define

Sα̂pq(t, t′) = 1∑N
n=1Mn(Mn − 1)

N∑
n=1

Mn∑
m,m′=1
m6=m′

(
t− tnm
ha

)p ( t′ − tnm′
ha

)q
·

· 1
h2
a

K
(
t− tnm
ha

)
K
(
t′ − tnm′

ha

) [
β̂(snm, snm′)

]2
, 0 ≤ p+ q ≤ 2,

Qα̂pq(t, t′) = 1∑N
n=1Mn(Mn − 1)

N∑
n=1

Mn∑
m,m′=1
m6=m′

(
t− tnm
ha

)p ( t′ − tnm′
ha

)q
·

· 1
h2
a

K
(
t− tnm
ha

)
K
(
t′ − tnm′

ha

)
β̂(snm, snm′)G̃nmm′ , 0 ≤ p+ q ≤ 1,

as analogues of (A.92) and (A.93). Thanks to assumption (A.96), the difference in
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asymptotically negligible

Sα̂pq(t, t′) = Sα̃pq(t, t′) +OP

√ logN
Nh2 + h2

 ,
Qα̂pq(t, t′) = Qα̃pq(t, t′) +OP

√ logN
Nh2 + h2

 ,
uniformly in (t, t′) ∈ [0, 1]2 as N →∞. The rest of the proof follows from the proof of
Lemma 13.

We are now ready to prove our main result.

Proof of Theorem 10. The proof is now quite a simple application of Lemma 13 and
Corollary 6. First note that even though these results are formulated for the estimation
of the covariance kernel a(·, ·), they can be likewise applied for the estimation of b(·, ·)
due to their symmetry in the separable model (4.1).

The estimator â0(·, ·) is realised by smoothing the raw covariances Gnmm′ without any
weights, thus corresponding to the initial guess β(s, s′) ≡ 1, s, s′ ∈ [0, 1]. Therefore its
asymptotic behaviour is by Lemma 13:

â0(t, t′) = Θa(t, t′) +OP

√ logN
Nh2 + h2


uniformly in (t, t′) ∈ [0, 1]2 as N →∞ where Θ is defined in (4.26).

Now, applying Corollary 6 three times and by assumption (B10) we obtain

b̂0(s, s′) = 1
Θb(s, s′) +OP

√ logN
Nh2 + h2

 ,
â(t, t′) = Θa(t, t′) +OP

√ logN
Nh2 + h2

 ,
â(s, s′) = 1

Θb(s, s′) +OP

√ logN
Nh2 + h2

 ,
uniformly in (t, t′) ∈ [0, 1]2 or (s, s′) ∈ [0, 1]2, as N →∞.

Proof of Corollary 4. This corollary follows directly by applying Theorem 10 onto the
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right hand side of:∣∣∣â(t, t′)b̂(s, s′)− a(t, t′)b(s, s′)
∣∣∣ ≤ ∣∣â(t, t′)−Θâ(t, t′)

∣∣ ∣∣∣b̂(s, s′)∣∣∣
+
∣∣a(t, t′)

∣∣Θ ∣∣∣∣b̂(s, s′)− 1
Θb(s, s′)

∣∣∣∣ .
Proof of Proposition 13

The noise level estimator asymptotic behaviour is treated analogously to previous esti-
mators of the mean surface µ(·, ·) and the covariance kernels a(·, ·) and b(·, ·).

The estimator V̂ (t, s) is formed by smoothing the raw covariances Gnmm agains (tnm, snm).
form = 1, . . . ,Mn, n = 1, . . . , N . Therefore we form the sequence of vectors {(Uk, Vk, Zk)}∞k=1
by putting {tnm}, {snm} and {G̃nmm} (defined in (A.90)) in order such that

{U1, U2, . . .} = {t11, t12, . . . , t1m1 , t21, . . . , t2m2 , t31, . . .},
{V1, V2, . . .} = {s11, s12, . . . , s1m1 , s21, . . . , s2m2 , s31, . . .},
{Z1, Z2, . . .} = {G̃111, G̃122, . . . , G̃1m1m1 , G̃211, . . . , G̃2m2m2 , G̃311, . . .}.

By following the steps of the proof of Lemma 11 or Lemma 13. Verifying E [Z1|U1 = t, V1 = s] =
a(t, t)b(s, s)+σ2 for t, s ∈ [0, 1], the asymptotic equivalence (A.95), and assumption (B11)
implies

V̂ (t, s) = a(t, t)b(s, s) + σ2 +OP

√ logN
Nh2 + h2


uniformly in (t, s) ∈ [0, 1]2 as N →∞.

This fact, together with Corollary 4 reduced to (t, s, t′, s′) = (t, s, t, s) implies the
statement of Proposition 13.

Proof of Theorem 11

By Proposition 12 and Theorem 10, the model components µ, a, b, σ2 are estimated
consistently. Moreover, consider all the following statements conditionally on Ynew.
Consequently,

V̂ar(Ynew) def=
(
â(tnewm , tnewm′ )b̂(snewm , snewm′ ) + σ̂21[m=m′]

)Mnew

m,m′=1
P→ Var(Ynew),

as N →∞, in the matrix space RMnew×Mnew . Due to continuity of the matrix inversion
and the fact that Var(Ynew) is positive definite,[

V̂ar(Ynew)
]−1 P→ [Var(Ynew)]−1 as N →∞.

204



Proof of Theorem 11

Moreover

Ĉov(Xnew(t, s),Ynew) def=
(
â(t, tnewm )b̂(s, snewm )

)Mnew

m=1
= Cov(Xnew(t, s),Ynew) + oP (1) ,

as N → ∞, in the supremum norm over (t, s) ∈ [0, 1]2. Therefore, together with the
consistency of µ̂ in the supremum norm, we conclude the statement (4.29).

Assuming (A2), we conclude by the similar steps as above that

sup
(t,s,t′,s′)∈[0,1]4

∣∣∣Ĉov
(
Xnew(t, s), Xnew(t′, s′)|Ynew

)
− Cov

(
Xnew(t, s), Xnew(t′, s′)|Ynew

)∣∣∣ = oP (1) ,

(A.97)
as N →∞.

Fixing (t, s) ∈ [0, 1]2 we have the conditional distribution given Ynew

Π(Xnew(t, s)|Ynew)−Xnew(t, s)
Var (Xnew(t, s)|Ynew) ∼ N (0, 1)

where the denominator is positive for all t, s ∈ [0, 1]. Therefore

P
(
|Π(Xnew(t, s)|Ynew)−Xnew(t, s)| ≤ u1−α

√
Var (Xnew(t, s)|Ynew)

∣∣∣∣Ynew) = 1− α.

Now, since

Π̂(Xnew(t, s)|Ynew)−Xnew(t, s)√
V̂ar (Xnew(t, s)|Ynew)

d→ N(0, 1), as N →∞.

where d denotes the convergence in distribution and therefore

P
(∣∣∣Π̂(Xnew(t, s)|Ynew)−Xnew(t, s)

∣∣∣ ≤ u1−α

√
V̂ar (Xnew(t, s)|Ynew)

∣∣∣∣Ynew)→ 1− α.

It remains to justify the asymptotic coverage of the simultaneous confidence band. By
the constriction of the simultaneous confidence bands à la Degras (2011), reviewed in
Section 4.6, we have

P
(

sup
(t,s)∈[0,1]2

|Π(Xnew(t, s)|Ynew)−Xnew(t, s)| ≤ z1−α

√
Var (Xnew(t, s)|Ynew)

∣∣∣∣∣Ynew
)

equal to 1−α. where the quantile z1−α is calculated from the law ofW = sup(t,s)∈[0,1]2 |Z(t, s)|
where the true (non-estimated) correlations are used:

Cov(Z(t, s), Z(t′, s′)) = Corr
(
Xnew(t, s), Xnew(t′, s′)|Ynew

)
with t, t′, s, s′ ∈ [0, 1]. Recall that we denote the empirical analogue of this law as Ŵ
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already defined in (4.25).

In other words

sup
(t,s)∈[0,1]2

∣∣∣∣∣Π(Xnew(t, s)|Ynew)−Xnew(t, s)√
Var (Xnew(t, s)|Ynew)

∣∣∣∣∣ ∼W, conditionally onYnew,

and therefore

sup
(t,s)∈[0,1]2

∣∣∣∣∣∣Π̂(Xnew(t, s)|Ynew)−Xnew(t, s)√
V̂ar (Xnew(t, s)|Ynew)

∣∣∣∣∣∣ d→W, as N →∞, conditionally onYnew.

Now, if cn(·, ·, ·, ·)→ c(·, ·, ·, ·) uniformly (cf. (A.97)), then N(0, cn) d→ N(0, c). Therefore
Ŵ

d→W and thus ẑ1−α → z1−α where ẑ1−α and z1−α are the quantiles calculated from
the law of Ŵ and W respectively. We conclude the proof by observing

P

 sup
(t,s)∈[0,1]2

∣∣∣Π̂(Xnew(t, s)|Ynew)−Xnew(t, s)
∣∣∣√

V̂ar (Xnew(t, s)|Ynew)
≤ ẑ1−α

∣∣∣∣∣∣Ynew


= P

 sup
(t,s)∈[0,1]2

∣∣∣Π̂(Xnew(t, s)|Ynew)−Xnew(t, s)
∣∣∣√

V̂ar (Xnew(t, s)|Ynew)

z1−α
ẑ1−α

≤ z1−α

∣∣∣∣∣∣Ynew
→ 1− α

as N →∞.
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Appendix B: surfcov package
From the software development point of view, the methodologies of Chapter 2 and
Chapter 3 are completely self-contained, requiring only standard linear algebra libraries
implementing the matrix-matrix multiplication and singular value decomposition. There-
fore, these methodologies are made available in the form of a stand-alone R package
surfcov, available on GitHub2.

Contrarily, the methodology of Chapter 4 is not included in the surfcov package, because
it requires some external functions. Most notably, we use the local linear smoothers and
cross-validation for the smoothers’ bandwidth selection as implemented in the fdapace
package (Chen et al., 2020b).

The surfcov package was, however, developed only after most of the simulation studies
and data analyses in this thesis had been finished. Hence for the purposes of reproducing
the simulation studies and data analyses in this thesis, it does not have to be used.
Instead, use another GitHub repository3 for reproducibility. This repository contains all
the codes and instructions on how to reproduce the results reported in the thesis.

The purpose of the surfcov package is to distribute the main methodological advance-
ments of this thesis: computationally efficient covariance estimation for random surfaces
beyond separability. This thesis offers two such generalizations of separability:

• the separable-plus-banded model

c(t, s, t′, s′) = a1(t, t′)a2(s, s′) + b(t, s, t′, s′),

where b(t, s, t′, s′) = 0 for max(|t− t′|, |s− s′|) > δ for some δ ∈ [0, 1), and

• the truncated separable component decomposition (i.e. the R-separable covariance)

c(t, s, t′, s′) =
R∑
r=1

σrar(t, t′)br(s, s′),

2https://github.com/TMasak/surfcov
3https://github.com/TMasak/cerss
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Appendix B: Code and Data

where R ∈ N.

In order to achieve the same level computational efficiency as offered by separability in the
separable-plus-banded model, the banded part needs to be either diagonal (corresponding
to δ = 0) or stationary. Altogether, we can speak of three covariance decompositions:

I. the separable-plus-stationary model,

II. the separable-plus-diagonal model, and

III. the R-separable covariance.

These three generalizations of separability can be estimated, applied, and inverted with
computational costs similar to separability. The same can be said about simulating data
from such covariances. However, the main goal of the surfcov package is to provide
handles that can be used to check whether these generalization can be of interest, when
having a specific data set at hand.

The package itself can be installed by loading the devtools package in R and running
the following command: install_github("TMasak/surfcov").

Assume now that the surfcov package is installed (and loaded) and that we have a data
array X of dimensions N x K1 x K2, where N stands for the sample size, and K1 and K2
stand for the grid sizes in the respective domains. The natural way to see, whether one
of the three generalizations of separability above can be useful to fit the covariance of
this data set, is to run the respective cross-validation algorithms:

I. spb(X)

II. spb(X,stationary=F)

III. scd(X)

All of these return a list containing the estimates (the mean and the respective covariance
components), the cross-validation objective values, and the cross-validated choice of the
parameter (the discrete bandwidth d in the case of the separable-plus-banded model and
the degree-of-separability R for the separable component decomposition). The commands
above use the default grid values for these parameters. To see how to change these,
please consult the respective function’s documentations, e.g. by ?scd. The default is
the fit-based cross-validation described in Section 2.2.2 and Section 3.3.1, respectively.
To see how different values of the parameter affect the prediction performance, use
e.g. spb(X,predict=T), which performs a cross-validated out-of-sample comparison of
the prediction performance for different values of the bandwidth.
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Note that in the case o the stationary=F in the separable-plus-banded model, only the
cases d=0, d=1 and d=2 can be handled computationally efficiently4. Still, it is possible
to spend additional computational resources to search past d=2.

Example 6. Let X contain the mortality surfaces analyzed in Section 2.5.2. In the case
of this data set, spb(X) returns d=0, suggesting that allowing for a stationary banded part
does not improve the fit. Running spb(X,stationary=F) instead returns d=1, suggesting
the presence of (heteroscedastic, since stationarity was not useful before) white noise.

Finally, validity of the separable-plus-banded model can also be checked by running the
bootstrap test described in Section 2.2.3. For example, running

test_spb(X,d=1,stationary=F)

tests the validity of the separable-plus-diagonal model.

To summarize, the surfcov package can be used in the way described above to check
suitability of the generalizations of separability described in this thesis for a data set at
hand. For the other features of the package, including the efficient inversion algorithm,
see the GitHub page of the surfcov package5.

4The case of d=2 is not yet implemented efficiently in the surfcov package, but it can be done due to
the tridiagonal matrix algorithm (Thomas, 1949)

5https://github.com/TMasak/surfcov
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