
Estimation of numerical substrate properties with compartmentalized models from
Monte-Carlo simulated DW-MRI signals
Remy Gardiera,*,  Juan Luis Villarreal Haroa,   Erick J Canales-Rodrígueza,  Gabriel Girarda,b, Jonathan Rafael-Patinoa,b , Jean-Philippe Thirana,b,c

a Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
b Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
c CIBM Center for Biomedical Imaging, Switzerland
*Correspondence: Rémy Gardier, remy.gardier@epfl.ch

Synopsis
For over a decade, microstructure imaging has been a hot research topic in DW-MRI. Tissue complexity compelled researchers to
make assumptions about certain properties. The inverse problem of microstructure imaging, in particular, is ill-posed, and current
methods fix some parameters to reduce the solution space. In this abstract, we look at how intracellular and extracellular diffusion
coefficients affect the estimation of compartmentalized model parameters. We show that robust estimation of some parameters does
not extend to all parameters using Monte-Carlo simulations in impermeable substrates with multiple diffusivities, and we identified the
extracellular compartment as the most influential on estimation quality.

Introduction
Monte-Carlo diffusion simulations (MCDS) showed promising results for realistic diffusion-weighted magnetic resonance imaging
(DW-MRI) signal generation[1, 2]. In-silico experiments offer the opportunity to test and validate new models of tissue microstructure. In
this work, we use MCDS to investigate the bias of parameters estimation of compartmentalized models when fixing the diffusion
coefficient in substrates composed of a collection of spheres of gamma-distributed radii.

Methods
In this work, we used the three-compartment model VERDICT[3] designed for microstructure estimation of spherical cells. Among the
parameters of the model, we estimated the intra-cellular (fin), extra-cellular (fex) and the vascular (fv) volume fractions, the average cell
radius (R), and the intra-/extra-cellular diffusion coefficients (Di, De) with the Levenberg-Marquardt (LM) optimization algorithm [4].
Because diffusion signals in our substrates were isotropic, the main direction of the vascular compartment was not relevant. We fixed
the pseudo diffusion coefficient to 8 10⁻⁹ m2/s [5] and constrained the sum of the volume fractions to one. We fitted the model with four
different constraints on Di and De for investigating their influence on the parameters’ estimation. We fixed them in two cases, either to
the ground-truth or to widely-used fixed values (0.5 and 2 10⁻⁹ m2/s) [4, 5]. In the third and fourth cases, we estimated them with
coupled and unconstrained equality. R, fin, and fex were estimated during the optimization procedure. We simulated the DW-MRI signals
with an extended version of the publicly available MCDC simulator [1], adapted to simulate diffusion in substrates with distinct intra and
extra diffusion coefficients. Substrates were single-voxel cubes of side length 70 μm filled with spheres of radii sampled from a gamma
distribution of mean 1.5 μm and variance 0.75 μm2. We used four substrates having fin from 0.3 to 0.6 (Fig.1). Di and De were 1,2 or 3
10⁻⁹ m2/s, and 0.1, 0.5 or 1 10⁻⁹ m2/s, respectively. For all simulations, 3.5×105 particles were randomly initialized within the substrates
and diffused during 50 ms. The time step was set to 5 μs, and the step length is calculated with δsk=√6Dkδt for each compartment.
DW-MRI signals were generated with a PGSE sequence with TE= 50 ms and δ= 4.5 ms in 24 directions for three b-shells(1, 2 and 4
109s/m2). Each signal was corrupted 30 times with Rician noise for three signal-to-noise ratios (SNR) (20, 50, and 100).

Results and discussion
The quality of the estimation of fin and fex depends on De of the substrate mostly. For De = 0.1 10-9 m2/s, fex is underestimated while fin is
overestimated for all pairs (Di, De) and all methods (see Fig. 2 left column). Fig.3 shows the MAE on fin that ranges from 0.05 for
ground-truth to 0.5 for fixed method. As De increases, Fig. 2 shows an improvement in fin and fex estimates for all models. The coupled
(green) and unconstrained (red) models best estimate fin with an error from 0.01 to 0.05 and variance under 0.08. The error of the
model with ground-truth parameters remains stable, and the fixed model provides the worst estimations for most cases.

The true value of De also drives the estimates of Di and De with the coupled and unconstrained models. Fig. 4 shows that the diffusion
coefficient estimated by the coupled model (right) is close to De. When the optimization is unconstrained (left), Di and De estimates are
different but De estimates of unconstrained and coupled models are similar. Even with the unconstrained model, Di estimations follow
the trends of the true De (black triangle). Finally, the variance of De and Di estimations respectively increases and decreases with De for
both models. The estimated R is shown in Fig. 5. R estimates range from 2 to 4 μm. The ground-truth (cross) model provides a more
stable estimation across (Di, De) pairs and SNR (left). The center plot shows that the unconstrained model compensates the bad
estimation of Di by an overestimation of the cell radius (Center). Conversely, De has little influence on R.

Conclusion
Even if the substrates are designed to match the assumptions of the compartmentalized model, estimating the diffusion coefficients

remains a challenging problem. Because R and Di have opposing effects on the signal, estimating both parameters is difficult. MCDS is
a promising tool for studying the effect of tissue properties on DW-MRI signals. Future work will focus on testing new methods with
MCDS to better disentangle model parameter estimation.
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Figure 1: Examples of numerical substrates made of spheres for the MCDS (left column). Voxels are cubes of side length 70 μm with
an ICVF of 0.3(top row) and 0.6 (bottom row). The radii of the spheres are sampled from a gamma distribution with a mean radius of
1.5 μm and a variance of 0.75 μm2 (right column).

Figure 2: Scatter plots of f_in and f _ex estimations for all (D_i, D_e) μm2/ms pairs (subplot), all f_{in} (symbol) and all methods (colors)
(SNR=20). Colored and black symbols are the results and the ground truth respectively. An overestimation of f_in or an overestimation
of f_ex results in a colored symbol at the right or above the corresponding black symbols, respectively. Each symbol is located at the
mean (f_in , fex) estimated from the 30 noisy signals, and the bars are the variance of the estimations.



Figure 3: Mean absolute error (MAE) on the estimation of fin for all pairs (Di, De) μm2/ms(subplot), all fin(symbol)  and all methods
(color)(SNR= 20). Each symbol is located at the MAE on f_in estimated from the 30 noisy signals, and the bar is the corresponding
variance of the error.

Figure 4: Estimation of D_i (star) μm2/ms and D_e (triangle) μm2/ms for the Unconstrained (left) and Coupled (right) model parameters
for all f_in (SNR=20). Colored and black symbols are for the estimated and the true fin respectively. Each symbol is located at the
mean estimation from the 30 noisy signals, and the bar is the variance of the estimations.



Figure 5 : Mean and standard deviation of the spheres’ radii (R, μm) estimated by the Coupled (triangle) and the Unconstrained (star)
models for all SNR (f_in = 0.6). Scatter plots of R with D_i (center) μm2/ms and D_e (right) μm2/ms estimated by the Coupled (green)
and the Unconstrained (red) for all (D_i, D_e) μm2/ms pairs (SNR=20, f_in=0.6).


