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Abstract 

Bioleaching is the solubilization of metals sulfides, as pyrite (FeS2), mediated 

by a consortium of microorganisms capable to oxidize iron/sulfur. These 

microorganisms are mainly species of acidophilic bacteria and archaea that are 

embedded in a biofilm formed of extracellular polymeric substances (EPS). In EPS, 

intra/interspecies communication can take place, phenomena of great importance to 

understand bioleaching. One method used to communicate is by quorum sensing 

(QS), a gene regulation responding to population density, through diffusible signals 

factors (DSFf). Studies have already shown that these signals molecules can inhibit 

the growth of bioleaching bacteria, such as Leptospirillum ferriphilumT, but their impact 

on other acidophilic bioleaching bacteria needs to be determined. Automatic images 

analysis could lead to improve the comprehension of the mineral colonization in 

acidophilic bacteria in temporal dynamics and under presence of DSFf. The aim of this 

study is to develop an open-source automatic biofilm analysis methodology to quantify 

colonies population. Open-source software Python and Fiji are used to analyze the 

effect of DSFf on Acidithiobacillus ferriphilusT, Acidithiobacillus ferriduransT, 

Acidithiobacillus ferrooxidansT and Leptospirillum ferrooxidansT. We have obtained a 

new robust automatic methodology that has been validated by analyzing the data used 

by Bellenberg et al. (2018) and that can conduct to a better understanding of mineral 

colonization of bioleaching bacteria. We have also discovered that the growth of A. 

ferriphilusT is inhibited under the presence of BDSF and DSF, molecules from the DSFf 

family, and that the growth A. ferriduransT is inhibited under the presence of BDSF. 

The methodology created in this project will help to implement machine learning 

analysis to biofilm images for axenic and mixed cultures.  
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Résumé 

La biolixiviation est la solubilisation de sulfures métalliques, comme la pyrite 

(FeS2), par un consortium de micro-organismes capables d'oxyder le fer/soufre. Ces 

microorganismes sont principalement des espèces de bactéries et d’archées 

acidophiles qui sont incorporées dans un biofilm formé de substances polymériques 

extracellulaires (EPS). Dans cet EPS, une communication intra/inter-espèces d'une 

grande importance pour comprendre la biolixiviation peut avoir lieu. L'une des 

méthodes utilisées pour communiquer est la détection du quorum (QS), une régulation 

des gènes en fonction de la densité de population, par le biais de facteurs de signaux 

diffusibles (DSFf). Des études ont déjà montré que ces molécules de signaux peuvent 

inhiber la croissance des bactéries de biolixiviation, tel que Leptospirillum ferriphilumT, 

mais leur impact sur d'autres bactéries doit être déterminé. L'analyse automatique des 

images pourrait permettre d'améliorer la compréhension de la colonisation minérale 

chez les bactéries acidophiles dans une dynamique temporelle. L'objectif de cette 

étude est de développer une méthodologie « open-source » d'analyse automatique de 

biofilms pour quantifier la population de colonies. Les logiciels libres Python et Fiji sont 

utilisés pour analyser l'effet de DSFf sur les bactéries Acidithiobacillus ferriphilusT, 

Acidithiobacillus ferriduransT, Acidithiobacillus ferrooxidansT et Leptospirillum 

ferrooxidansT. Nous avons obtenu une nouvelle méthode automatique qui est validée 

par l'analyse des données utilisées par Bellenberg et al. (2018). Nous avons 

également découvert que la croissance de A. ferriphilusT est inhibée en présence de 

DSF et BDSF, des molécules de la famille des DSFf, et que la croissance de A. 

ferriduransT est inhibée en présence de BDSF. La méthodologie créée dans ce projet 

aidera à mettre en place des analyses plus approfondies par « machine learning » des 

images de biofilms de cultures axéniques et mixtes. 
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1. Introduction 

Bioleaching is described as the solubilization of metals catalyzed by 

microorganisms, from ores which are often almost insoluble. (Brierley & Brierley, 2013; 

Martinez et al., 2015; Vera et al., 2013). The microorganisms play the role of enhancer 

and can be used for different types of metal sulfides (MS), like pyrite (FeS2) and 

chalcopyrite (CuFeS2) among others, to recover metals such as copper and nickel. 

Biological leaching can be found in natural and anthropogenic environments, and it is 

particularly used in by mining industry in biomining processes. In copper mining, a 

decrease of high grade ores and an increase of its worldwide demand is observed, 

with a predicted demand being at least 3 times the actual one in 2100 (Schippers et 

al., 2018). Thus, it is strongly necessary to be able to collect metals hardly extractable, 

as in sulfides, in a sustainable way. Biological leaching is responsible for only around 

15% of its amount extracted worldwide (Brierley & Brierley, 2013). 

MS leaching by microorganisms is facing majors challenges, as mine drainage 

or acid rock drainage (AMD/ARD) can occur (Henderson, 2018; Vera et al., 2013). 

AMD is described as the generation of acid effluent which can then enhance the 

solubilization and transport of toxics metals to fresh water sources. It can be caused in 

abandoned or active mining sites or in natural environments, and occurs usually in 

sulfide-aggregated rocks, such as pyrite and chalcopyrite. This pollution can have a 

strong impact in the environment, contaminating the soils, the surface and even 

groundwater sources (Henderson, 2018). AMD is an important issue for Chile, due to 

its typical mineralogy and the high quantity of running and abandoned mining site in 

the north of the country (Obreque-Contreras et al., 2015). Furthermore, Chile is a 

country which is strongly dependent on the mining industry, as it extracts the biggest 

amount of copper worldwide, with 5,787 thousand metric tons in 2019 (Comisión 
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Chilena del cobre, 2020) (Table 1). It is therefore important for the development of the 

country to understand the function of bioleaching and the interactions of 

microorganisms with sulfidic ores, to move towards more sustainable and profitable 

methods for copper extraction. 

 

 

 

 

1.1.  Bioleaching mechanisms 

Bioleaching of MS is conducted by two main processes : direct and indirect 

leaching (Sand et al., 2001; Schippers, 2004; Vera et al., 2013) (Figure 1). Indirect 

bioleaching is subdivided in two types, “contact” and “non-contact”. Indirect non-

contacts leaching refers to the biological oxidation of iron(II)-ions to iron(III)-ions in the 

solution, without attachment of the cells to the mineral. Iron(III)-ions oxidize then the 

mineral to disrupt the sulfide crystals bonds and release the sulfur compounds in the 

solution. 

The indirect contact leaching is using the same processes described above, 

namely oxidation of iron(II)-ions to iron(III)-ions. This process occurs within a biofilm 

on the mineral i.e., colonies of microorganisms embedded within a self-produced 

matrix of extracellular polymeric substances (EPS) (Bellenberg et al., 2014). EPS 

allows to increase the iron(III)-ions concentration at microbe-mineral interface and 

therefore enhance its degradation (Sand et al., 2001).  

Table 1 : Amount of copper produced per country in 2018 and 2019 in metric tons (Comisión 
Chilena del Cobre, 2020) 
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In the direct mechanism, as its name indicates it, the cells would directly oxidize 

the mineral. The membrane of the bacteria interacts directly with the sulfide through 

enzymatic mechanisms (Sand et al., 2001). But it is important to note that this process 

has not been proved until now. 

 

 

 

 

 

 

 

 

 

Bioleaching of metal sulfides has been well studied and different pathways are 

proposed to explain the degradation of the sulfur moiety: the thiosulfate pathway and 

the polysulfide pathway (Schippers & Sand, 1999). The thiosulfate pathway explains 

the oxidation of pyrite, molybdenite (MoS2) and tungstenite (WS2). The following 

equations summarizes the thiosulfate pathway (Schippers & Sand, 1999):  After the 

disruption of the bond between the iron and the metal, the sulfur moiety is oxidized to 

a soluble compound, thiosulfate (Equation 1). This compound is further oxidized to 

different sulfur compound, as tetrathionate, trithionate, pentathionate, and elemental 

sulfur (S0), to finally produce sulfate (Equation 2).  

 

Figure 1 : The different mechanisms of leaching:  (a) the indirect mechanism, (b) 
the indirect contact mechanism, (c) the direct mechanism (Crundwell, 2003) 
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(1)  𝐹𝑒𝑆2 + 6 𝐹𝑒3+ + 3𝐻2𝑂 →  𝑆2𝑂3
2− + 6 𝐹𝑒2+ + 6  𝐻+ 

(2)   𝑆2𝑂3
2− +  8 𝐹𝑒3+ +  5𝐻2𝑂 →  𝑆𝑂4

2− + 8 𝐹𝑒2+ + 10  𝐻+ 

 

The polysulfide pathway is used to explain the dissolution of metal sulfides such 

as orpiment (As2S3) chalcopyrite (CuFeS2), galena (PbS) or sphalerite (ZnS). The 

oxidation of the sulfur moiety result on the formation of S° through a series of reaction 

via polysulfides (Equation 3 and 4). This can then be oxidized biologically to produce 

sulfuric acid (Equation 5) as shown in the following polysulfide pathway equations 

(Schippers & Sand, 1999): 

 

(3)  𝑀𝑆 +  𝐹𝑒3+ + 𝐻+ →  𝑀2+ + 0.5 𝐻2𝑆𝑛 + 𝐹𝑒2+ (𝑛 ≥ 2) 

(4)  0.5 𝐻2𝑆𝑛 +  𝐹𝑒3+ → 0.125 𝑆8 + 𝐹𝑒2+ +  𝐻+ 

(5)  0.125 𝑆8 + 1.5𝑂2 + 𝐻2𝑂 → 𝑆𝑂4
2− + 2𝐻+ 

 

In both, thiosulfate and polysulfide pathway, the regeneration of iron(III)-ions is 

driven by the leaching bacteria, which is their main role in bioleaching (Figure 2). 
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1.2. Leaching microorganisms 

1.2.1. Generalities 

Dissolution of MS is mainly conducted in acidic environment with a pH below 3, 

by microorganisms that can oxidize iron(II)-ions and/or reduced inorganic sulfur 

compounds (RISC). These acidophilic microorganisms were mostly discovered in acid 

mine drainage. Despite the limited type of substrate, the high acidity and the high levels 

of metal ions and sulfate, these mining biotopes tend to have a great microbial 

diversity. This diversity consists of oxidizers which can grow heterotrophically, 

autotrophically or mixotrophically at several temperatures, ranging from near 0°C to 

100 °C. They are therefore described either as psychrophilic, mesophilic, moderately 

thermophilic or extremely thermophilic (Diao et al., 2014; Rohwerder et al., 2003; Vera 

et al., 2013). Generally, the microorganisms living at high temperature, the extremely 

thermophilic, belong to the archaeal domain, while the ones living at low temperature, 

psychrophiles, consist of bacteria. The mesophilic and moderately thermophilic can be 

Figure 2 : Pathways of metal sulfide oxidation: (a) thiosulfate pathway and (b) polysulfide 
pathway (Schippers & Sand, 1999, modified). 
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either bacteria or archaea (Rohwerder et al., 2003). Some common acidophilic 

microorganisms, their optimum pH and temperature are detailed on the following table. 

 

 

 

 

 

 

 

 

 

 

The metabolic capacity of leaching microorganisms is also made up of a wide 

range of possibilities. Indeed, it can be limited to a specific substrate, for example 

Leptospirillum ferrooxidans and Leptospirillum ferriphilum can only live in an aerobic 

environment by oxidizing aerobically iron(II)-ions. On the other hand, Acidithiobacillus 

ferrooxidans possess a broad metabolic capacity. This species can live aerobically on 

the oxidation of RISC such as S0, thiosulfate, tetrathionate and trithionate, or of iron(II)-

ions, but it is also capable to oxidize other metal ions, formic acid and molecular 

hydrogen. Its anaerobic growth is conducted by the iron(III)-ions reduction and the 

oxidation RISC or hydrogen. Microorganisms can therefore enhance leaching under 

aerobic or anaerobic conditions, an important detail for AMD. Indeed, common AMD 

Table 2 : Summary of common acidophilic microorganisms (Diao et al., 2014)  
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countermeasures are flooding or organic covering of the tailings or waste heaps, where 

bioleaching occurs. Thus, these measures would not be efficient and anaerobic 

bioleaching could remain operating. 

Bioleaching in general is performed by mixed communities of microorganisms. 

The interactions between the species are not totally understood yet. For example, it 

has been proved that cell attachment and biofilm formation, which are critical factors 

for bioleaching, of sulfur oxidizing bacteria is improved when primary colonizers, 

namely iron oxidizing bacteria, are present. (Bellenberg et al., 2014; Buetti-Dinh et al., 

2020). 

1.2.2. Microorganisms used 

1.2.2.1. Acidithiobacillus ferriphilus DSM 100412T 

A. ferriphilusT can live from the oxidation of iron(II)-ions as well as RISC. This 

species is Gram-negative and strictly chemolithotroph. It grows anaerobically by 

reducing iron(III)-ions, coupled to the oxidation of RISC or aerobically by oxidizing 

Iron(II) or RISC, coupled to molecular oxygen. A. ferriphilusT is mesophilic, with growth 

temperatures between 10°C to 33°C, and acidophilic, with a pH optimum of 2 (Falagán 

& Johnson, 2016).  

1.2.2.2. Acidithiobacillus ferridurans DSM 29468T  

A. ferriduransT grows in a temperature between 10°C to 37°C with an optimum 

at 29°C and a pH range of 1.4 to 3 with an optimum at 2.1. It can grow aerobically or 

anaerobically, by either coupling the oxidation of iron(II)-ions, RISC or hydrogen to the 

reduction of oxygen or either by oxidizing hydrogen or reduced sulfur couple to the 

reduction of iron(III)-ions. A. ferriduransT is a Gram-negative bacterium and obligate 

chemolithoautotrophic (Hedrich & Johnson, 2013).  
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1.2.2.3. Acidithiobacillus ferrooxidans DSM 14882T 

A. ferroxidansT is a facultative anaerobic, Gram-negative, extreme acidophile 

and obligate chemolithotroph species. It uses iron(III)-ions, sulfur or oxygen as electron 

acceptor and hydrogen, RISC and iron(II)-ions as electron donor. A. ferrooxidansT  has 

optimal ranges of temperature of 20°C - 35°C and of pH of 1.8 - 2 (Quatrini & Johnson, 

2019; Rawlings, 2002)   

1.2.2.4. Leptospirillum ferrooxidans DSM 2705T 

L. ferrooxidansT is Gram-negative, chemolithoautotrophic, mesophilic and 

highly acid tolerant (optimal range pH of 1.5-1.8). It is strictly anaerobic and obtains 

the energy to grow by oxidizing iron(II)-ions and by reducing oxygen. Unlike the other 

species, it cannot reduce RISC and its ability of oxidizing iron(II)-ions is not inhibited 

by iron(III)-ions, due to its high affinity for iron(II)-ions (Rawlings, 2002; Tzvetkova et 

al., 2002). 

1.3. Biofilms  

Bioleaching microorganisms usually form biofilms on the surface of MS. In this 

lifestyle, bacterial cells are embedded in a matrix of EPS self-produced and represent 

less than 10% of the dry mass of the biofilm (Flemming & Wingender, 2010). The 90% 

is accounted by EPS matrix that consists of proteins, lipids, extracellular DNA (e-DNA) 

and polysaccharides (Bellenberg et al., 2014; Flemming et al., 2007). EPS are 

important for the cells because it allows them to have a good adhesion to the mineral, 

to be immobilized, to stay in proximity and to improve the cohesion of the biofilm. These 

characteristics provide better interactions and communication between biofilm 

members. Others functions of EPS matrix are retention of water to keep a hydrated 

environment around the microorganisms, the interaction with the environment, to 
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protect cells in case of environment variations and to act as nutrient source, among 

others (Flemming et al., 2007; Flemming & Wingender, 2010; Garnett & Matthews, 

2012).  

The attachment and formation of biofilm can be influenced by environmental 

factors, for example the nature of the surface, the availability of nutrients, the 

temperature, the presence of oxygen, pH and also by the microorganisms embedded 

in the EPS matrix (Bosecker, 1997; Flemming et al., 2007). The biofilm development 

is divided in multiples stages; the first one is the initial attachment of a single planktonic 

cell on the substrate. This step is highly reversible, and the bacteria often needs to 

create adhesion molecules for a better attachment. The second stage is the division of 

the cells and the formation of microcolonies, that leads to interspecies interactions. 

The EPS matrix is then secreted allowing to develop a three-dimensional architecture. 

With the time, these colonies grow to form a mature biofilm, composed of a 

heterogenous disposition of cells and molecules. Finally, depending on environmental 

signals, the biofilm releases planktonic cells that disperse and colonize new 

environments (Figure 3) (Flemming & Wingender, 2010; Garnett & Matthews, 2012).  

Bioleaching bacteria create very special biofilms that are mainly composed of 

layers in laboratory conditions. Studies also indicated that its attachment does not 

occur randomly on the metals sulfides as the bioleaching microorganisms prefer attach 

to sites with surface imperfections (Vera et al., 2013). The mechanisms of biofilm 

lifestyle on MS are not totally understood yet. A better understanding on their formation 

and attachment could lead to improvement on bioleaching comprehension and 

implementation on large scale (Zhang et al., 2019). 
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During the maturation of the biofilm, the cells release diverse molecules in the 

matrix, not only to build the biofilm and protect the bacteria, but also to send signals to 

other cells. This communication aims to a better functioning and regulated biofilm and 

that can be done by quorum sensing (QS) (Rendueles & Ghigo, 2012).  

1.4. Quorum sensing 

1.4.1. Generalities 

QS is described as the gene regulation, depending on the population density of 

the community. This density and dose-dependent system is activated when a certain 

number of cells, or quorum, is exceeded. The quorum is sensed through signaling 

molecules, or autoinducers, that accumulate in the environment. Once their 

concentration reaches a threshold, they activate changes in gene expression by 

binding with protein receptors. Quorum sensing can control many bacterial 

phenotypes, such as their competence, virulence factor secretion, sporulation, 

Figure 3 : Stages of biofilm formation (Rendueles & Ghigo, 2012) 
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bioluminescence and biofilm formation (Bassler & Losick, 2006; Monnet & Gardan, 

2015). QS is important for the cooperation between bacteria, but it can also be used 

when competition is involved, by the existence of QS quenching systems (Cheng et 

al., 2010; Rendueles & Ghigo, 2012). This type of communication allows the cell-to-

cell communication and therefore social activity, or “social microbiology”, to be 

established (Della Sala et al., 2019; Rendueles & Ghigo, 2012). QS is present in Gram 

positive and Gram negative bacteria, but they use different molecules to communicate 

(Bassler & Losick, 2006). 

1.4.2. QS in Gram-positive bacteria 

The system used predominantly by Gram-positive quorum sensing bacteria is a 

type of bi-component sensing oligopeptides (Bassler & Losick, 2006; J. Zhou & Cai, 

2018). These autoinducing peptides (AIPs) are created in the ribosome, modified 

inside the cell and transported to the extracellular environment. Once their threshold 

concentration is reached, the peptide can, by activating a histidine kinase or by 

reinternalization, alter the expression of the target genes (Kim & Yeon, 2018; Monnet 

& Gardan, 2015). 

1.4.3. QS in Gram-negative bacteria 

Gram-negative bacteria produce different classes of autoinducers. The main 

ones are the following; the N-acyl-homoserine lactones (AHLs), or autoinducer-1, the 

autoinducer-2 (AI-2), the Pseudomonas quinolone signal (PQS) and the family of 

diffusible signal factors (DSFf) (Della Sala et al., 2019). 

AHLs are synthetized by LuxI-type AHL synthases and consist of a homoserine 

lactone ring bound to a fatty acyl chain that can have a different saturation degree, 

oxidation state at β-position, and length. When the quorum of AHLs is attained in the 
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cell environment, due to a high cell density, the acyl-homoserine lactones activate the 

LuxR receptor protein in the intracellular space, by entering again the cells through 

special transporter channels. LuxR is working as a transcription factor for different 

genes of the cells (Aguilar et al., 2009; Banerjee & Ray, 2016; Della Sala et al., 2019; 

Kim & Yeon, 2018). Studies have demonstrated that bioleaching bacteria such as A. 

ferrooxidans, A. ferrivorans and Acidiferrobacter sp. strain SPIII/3 produce AHLs, and 

that these systems are involved especially in the adhesion and biofilm formation to MS 

and S° (Bellenberg et al., 2014; González et al., 2013; Ruiz et al., 2008). 

The family of AI-2 molecules is made of different cyclic furanone compounds 

that enter the cell once they rich a limit concentration. Insight the bacterium, they 

interact with the LuxP/LuxQ receptor kinase complex situated in the membrane, 

inducing through a chain reaction the inhibition of the expression of regulatory RNAs, 

turning on expression of virulence determinants (Della Sala et al., 2019) 

The third class of signals, the PQSs, include the derivatives of 4-hydroxy-2-

heptylquinoline and its dehydroxylated derivatives, as the 2-heptyl-3,4-

dihydroxyquinoline, or PQS. These autoinducers are used by different species of 

Burkholderia and Pseudomonas and turn on the biofilm formation, the synthesis of 

toxins and further QS molecules by activating virulence factors regulators (Della Sala 

et al., 2019). 

The DSFf of autoinducers is made up of cis-2-unsaturatd fatty acids containing 

different branching and chain length. It is divided in three different categories 

depending on the genomic context of the QS systems. The first one is represented by 

Xanthomonas campestris, in which the DSFf is produced by a DSF synthase, the RpfF. 

With its increase in concentration, the DSFf binds to the RpfC kinase sensor. This 
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binding activates a phosphorelay-cascade and the RpfG response regulator. The 

degradation of cyclic di-GMP is then enhanced and inhibits the global transcription 

factor Clp. This reaction activates the expression of different genes encoding virulence 

factor production or biofilm formation (Della Sala et al., 2019). The second category 

uses a similar system, with the only difference being the regulation of cyclic di-GMP by 

the RpfR sensor. The last category uses an enoyl-coenzyme A hydratase Dspl to 

biosynthesize the DSFf. The mechanisms of perception of the autoinducers have not 

been fully discovered yet (Della Sala et al., 2019; L. Zhou et al., 2017). The main 

molecules of the DSFf autoinducers are family the cis-11-methyl-dodecenoic acid, 

known as DSF, and the cis-2-dodecenoic acid, known as BDSF (Figure 4) (Della Sala 

et al., 2019). 

 

 

 

 

Figure 4 : Structure of DSF and BDSF molecules (Della Sala et al., 2019) 

 

It has been shown that some leaching bacteria contain homologous genes of 

the first category of DSFf systems. Indeed, Christel et al. (2018) described rpfF, rpfG 

and rpfC homologous genes, as well as three LuxR family transcriptional regulators 

protein-encoding genes in the L. ferriphilumT genome. It has also been shown that in 

axenic cultures of L. ferriphilumT and Sulfobacillus thermosulfidooxidansT, DSFf inhibit 

chalcopyrite dissolution and iron(II)-ions oxidation and enhance the dispersion of the 

biofilm. The growth inhibition has  also been observed in mixed culture of the 
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aforementioned two species together, with addition of Acidithiobacillus caldus 

(Bellenberg et al., 2014). This indicates that bioleaching and bacterial dispersion in 

multispecies biofilms could be regulated through several QS systems in acidophiles. 

1.5. Image Analysis 

One of the best tools for biofilm analysis is epifluorescence microscopy (EFM). 

In general, image analysis is assessed trough private EFM software that have 

restricted access. Knowledge sharing and spreading can be limited by these aspects, 

as all the laboratories or research groups do not have the same software tools. The 

use of Free/Libre Open-Source Software (FLOSS) can be applied to tackle these 

limitations. FLOSS, Python’s scripts are often used as they allow a complete 

personalization of the coding and of the analysis of the images. Fluorescence’s images 

of bacteria and bioleaching colonies have already been analyzed through Python in 

different investigations (Bellenberg et al., 2018; Buetti-Dinh et al., 2020), which give 

tools and knowledge for further investigation, but the scripts were unfortunately not 

made publicly available. Python is limited by the need of knowing coding and its 

language, this limitation can be overcome by using Fiji (“Fiji is just ImageJ”) (Schindelin 

et al., 2012, 2015; Schneider et al., 2012), an open-source platform for the treatment 

and the analysis of images through the use of plugin and macros. Fiji is a well-known 

FLOSS that contains several different user-written plugins, that are constantly under 

improvement. Fiji and Python are software that give the possibilities of analyzing high 

quantity of images automatically, a very important aspect for biofilm studies. This 

allows to move from single/few image analysis to robust pipelines for semi/quantitative 

image analysis, for to improving the comprehension of spatial and temporal dynamics 

of mineral colonization in acidophilic bacteria (Bellenberg et al., 2018). The 

implementation of such semi/quantitative analysis could lead to more advanced 
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computational methods, such as machine learning, using neural networks to analyze 

images patterns. Deep learning has recently been used in biofilm analysis of 

bioleaching bacteria, and it has already showed a real potential, compared to human 

expert analysis (Buetti-Dinh et al., 2019). 
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2. Hypothesis and objectives 

2.1. Hypothesis 

Robust open-source automatic image analysis pipelines will contribute to a 

better understanding of the effect of QS on biofilms of acidophilic bacteria. 

2.2. Objectives 

2.2.1. Main objective 

To quantify biofilm formation dynamics of different bioleaching microorganisms 

through open access automatic image analysis. 

2.2.2. Secondary objectives 

1- To optimize a methodology to analyze a high number of biofilm images 

through Fiji 

2- To optimize a Python’s script for an automatic quantification of biofilm 

images 

3- To validate the analysis with a re-quantification of available data in 

Bellenberg et al. (2018), with this new quantification methodology  

4- To quantify biofilm growth on pyrite surfaces of  A. ferriphilusT, A. 

ferriduransT, A. ferrooxidansT and  L. ferrooxidansT under the presence of 

DSF and BDSF 
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3. Materials and methodology 

3.1. Materials 

3.1.1. Strains and media 

The strains A. ferriphilusT, A. ferriduransT , A. ferrooxidansT and L. ferrooxidansT 

were cultivated in a 150 mL Mackintosh (MAC) medium at pH 2 with 2% pyrite pulp 

density as energy source. 

3.1.2. Experiment 

Axenic cultures of the four species in 3.1.1 were inoculated with a concentration 

of 107 cells/ml on pyrite grains (100 -200 µm). These were incubated at 2% pyrite pulp 

density at 28°C (Figure 5). Samples were taken and cells were stained with 4′,6-

diamidino-2-phenylindole (DAPI), as described (Bellenberg et al., 2018). The mineral 

grains were imaged 7, 16 and 42 days after the inoculation and on the fifth day, DSF 

and BDSF were added separately at 5 µM, creating 3 cultures for each species: control, 

with addition of DSF and with addition of BDSF. Epifluorescence images were taken 

using the wavelet options, calculating an extended focus image with images of at least 

50 z-stacked images (1 µm distance). Background images were taken without 

fluorescence, but instead with background illumination (behind the specimen), in order 

to clearly discriminate mineral particle areas from inter-grain regions. For the day 7, 16 

and 42, 36 images were taken for each species and each condition; background 

images and the fluorescent ones. With 4 species, 3 conditions, 3 time points and 2 set 

of images, a total of 2592 images were taken. These images were kindly provided by 

Dr. Sören Bellenberg (Linnaeus University, Sweden). 
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3.1.3. Images of dataset used in Bellenberg et al. (2018) 

With the collaboration of Dr. Sören Bellenberg (Linnaeus University, Sweden), 

the images analyzed in the paper “Automated Microscopic Analysis of Metal Sulfide 

Colonization by Acidophilic Microorganisms” (Bellenberg et al., 2018) were available 

to compare and validate our methodology for automatization of image analysis.  

3.2. Methodology 

Image analysis was made using the software Zeiss Zen 2.0 Pro, the software 

Fiji, and a Python’s script, written in collaboration with Prof. Timothy Rudge from the 

Institute of Biological and Medical Engineering UC. The treatment of the background 

images and the images containing cell colonies were conducted differently, as the 

analysis was different too; the images containing the bacteria were used to calculate 

the number of colonies, while images of the background were used to calculate the 

area of the grains. 

3.2.1. Colony counting 

EFM Images obtained with the software Zeiss Zen 2.0 were firstly exported as 

JPEG format. Due to the heterogeneous quality of the images, the second step was to 

Figure 5 : Workflow detailing the cultivation and EFM imaging of the experiment 
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find a software able to treat and denoise the images properly, without losing colonies 

in the treatment. Different plugins from the software Fiji were tried, such as Non Local 

Means Denoise (Buades et al., 2011; Darbon et al., 2008), PureDenoise (Luisier et al., 

2010) and DeepImageJ (Gómez-de-Mariscal et al., 2019), among others. After testing 

many software plugins, DeepImageJ was selected to treat the images, a plugin working 

with pre-trained deep learning models (see Results and Discussion). This plugin has a 

user-friendly interface, with the objective to spread deep learning models and their use 

in sciences, without the need of being an expert in coding. The deep learning model 

used is called “Density Estimation by Fully Convolutional Networks (DEFCoN) - A 

fluorescent spot counter for single molecule localization microscopy”. The script was 

written by an EPFL student as a Master Project, in the laboratory of Experimental 

Biophysics, and highlights the fluorescent colonies present on the images while 

denoising them. This pre-trained model was trained with an image from A. ferriduransT, 

to make it effective with the new set of images and therefore creating a new model that 

can be run on all the data. After the creation of the model, the images were treated by 

the plugin through a batch process in Fiji, with the following macros: run("DeepImageJ 

Run", "model=defcon_density_map_estimation_arnaud preprocessing=[no 

preprocessing] postprocessing=[no postprocessing] patch=1588 overlap=100 

logging=normal"). After this step, it was possible to count the colonies of the images, 

through the Python’s script (Annex 1) and through Fiji.  

The script allowed first to define parameters as the size of the colonies and the 

intensity’s threshold. The size of the colonies was set to be with a radius between 0,25 

μm to 1,5 μm and the intensity’s threshold to 0,1. Then, the images were loaded, the 

colonies were detected, and their position and size recorded, using the Panda’s library 

and a blob detection algorithm, blob_log. This algorithm recognizes bright regions on 
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black background using the algorithms of the Laplacian of Gaussian, by successively 

increasing standard deviation and loading them up in a cube, where blobs are local 

maxima. The parameters were set as following: 

min_sigma=min_colony_radius/np.sqrt(2), 

max_sigma=max_colony_radius/np.sqrt(2), num_sigma=10, threshold=threshold, 

overlap=0.2. To ensure the good functioning of the analysis, it is possible to check one 

of the files and the colonies’ position at the end of the script. Finally, the results were 

saved in a .csv file.  

With Fiji, the first step was to threshold the images. As the treatment through 

the DEFCoN model was also highlighting the colonies, the threshold was easily 

feasible and an automatic method was chosen, the Otsu’s threshold. After the 

thresholding, the colonies were counted with the plugin “Analyze particles” and the size 

and the circularity of the colonies were set as following; the radius of the colonies was 

chosen to be between 1,54 and 9,25 pixels, which according to the pixel size of EFM 

images, corresponds to 0,25 μm and 1,5 μm, and the circularity to be between 0 to 1. 

The results were saved in a .csv file. 

The images were also analyzed directly with the Python’s script without prior 

denoising, to evaluate the possibility of gaining time without using Fiji. Most parameters 

remain unchanged from the analysis with denoising, only the threshold was lowered to 

0,012, as there was no highlighting of the colonies and therefore the brightness 

intensity of the colonies was much lower in comparison with denoised images. The 

summary of the process to count the colonies is shown in Figure 6. 
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To compare the counting with and without denoising of the images, an analysis 

of the X, Y positions of the colonies obtained with the Python’s script was conducted. 

A MATLAB’s script (Annex 3) compared the location of each colony within a Euclidian 

distance of 3 pixels and gives the number of colonies having the same coordinate for 

each image. Such analysis is not feasible with Fiji’s results, as the exported files do 

not contain the X, Y positions of the colonies. 

3.2.2. Background Analysis 

The corresponding background images of the colonies were analyzed to 

normalize the colony counting with the area of the grain disponible for their growth. 

The images were taken with the software Zeiss Zen 2.0 and exported as JPEG files. 

Unfortunately, once again the images had a poor quality and several of them were out 

of focus or with a high amount of noise. Therefore, a straight counting of the area with 

a simple threshold was not realistic and feasible. To differentiate the background from 

the grain, the choice was made to use a segmentation plugin from Fiji, “Trainable Weka 

Figure 6 : Summary of the methodology for colony counting 
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segmentation” (Arganda-Carreras et al., 2017). It combines a group of selected 

images’ features to produce pixel-based segmentation through machine learning 

algorithms provided from the toolkit Waikato Environment for Knowledge Analysis 

(WEKA). This plugin allows an automated image analysis with a graphical user 

interface that is easy to access and to understand and works as a bridge between the 

image processing and the machine learning field. Trainable Weka Segmentation uses 

by default binary pixel classification and the class must be selected and traced by 

drawing the region of interest (ROI), thanks to the set of drawing tools present on Fiji, 

such as rectangle, oval, round rectangular, elliptical and freehand selections, between 

others. The classifier (or model) and the data can be trained and loaded through this 

interface. Before the training of the images, it was important to select the features used 

for the segmentation, in the segmentation settings, as many different methods are 

available (Figure 7). 
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The features selected to train the models were the Difference of gaussian, that 

allows to increase the visibility of edges and therefore the difference between the 

background and the grain; the Entropy, that allows to reduce the noise of the images 

and to improve the recognition on the classes; and the Neighbors, to compare each 

pixels with their neighbors as they have a bigger probability to be identic. The plugin 

uses the features with the following method, according to Arganda-Carreras et al. 

(2017): 

“Difference of gaussian : calculates two Gaussian blur images from the original 

image and subtracts one from the other 𝜎 values are varied as usual, so 
𝑛(𝑛−1)

2
 feature 

images are added to the stack. 

Figure 7: Segmentation settings with the features available for the training of the classifier 
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Entropy : draws a circle of radius 𝑟 around each pixel; gets the histogram of that 

circle split in numBins chunks; then calculates the entropy as  

∑ −𝑝 ∗ 𝑙𝑜𝑔2(𝑝)
 

𝑝 𝑖𝑛 ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 
, where 𝑝 is the probability of each chunk in the 

histogram. numBins are equal to 32, 64, 128, 256 . 𝑟 is equal to 𝜎. 

Neighbors : shifts the image in 8 directions by a certain number of pixels, 𝜎. 

Therefore creates 8𝑛 feature images.” 

As the background images have very different qualities, at least one classifier 

was created for each species to analyze all the images. The classifiers were firstly 

trained using between 7 to 14 images, by drawing at least one ROI of the background 

and of the classifier on each one of them (Figure 8). 
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Once the classifier reached a good accuracy, it was then tested on a set of  10 

images to ensure their good functioning. Finally, the classifier was applied to the whole 

Figure 8: Training of the classifier. A) Classification of the region of interest B) Result of the 
training. In red : background area. In green : grain area. 
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set of images of the species through a batch process, using a Beanshell’s script (Annex 

2), a language similar to Java and to Fiji macro language. The open source script is 

available on the ImageJ website (Scripting the Trainable Weka Segmentation, 2020) 

and offers the possibility to analyze all the images present in a folder through a 

classifier, by choosing the input directory, the output directory, the classifier and the 

results (labels or probabilities). The results labels were chosen, to have a clear 

classification of the images 

After the segmentation of the background images, the Otsu threshold method 

was applied, to finally calculate the size of the area through the “Analyze particle” 

plugin. The results were exported in a .csv file. This time, the size of the particles was 

set between 0 to infinity, to consider all area. The summary of the whole analysis of 

the background images is shown in Figure 9. 

 

 

 

 

 

 

 

 

Figure 9: Summary of the methodology used for the analysis of the background 
images 
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4. Results and discussion 

4.1. Colony counting 

For a comprehensive analysis and quantification of biofilm formation by 

bioleaching bacteria, different methodology were implemented on the images. The first 

one is the application a primary treatment on the images, to improve their quality. As 

shown in Figure 10A, a high amount of noise was present on the photography, as 

quantity of images was probably more important than individual quality, when imaging 

was done. For this, the model DEFCoN, from the plugin DeepImageJ, was 

implemented to denoise the images and to highlight the fluorescent spots i.e., cells and 

colonies (Figure 10B). 

The DEFCoN method does work well to treat the images containing only noise 

and which are not out of focus. It also allows to calculate the number of colonies more 

easily, as each cell spot is highlighted.  

After the prior treatment of the images, the colonies were counting with Fiji and 

with a Python’s script. With Fiji, the Otsu’s method was used to have an automatic 

threshold. Due to the highlighting of the DEFCoN’s model, the recognition of the 

colonies in the images is easily and well done. The threshold only amplifies the 

difference between the fluorescent spot underlined and the background, making the 

images to be countable through the plugin “Analyze particle”. The results obtained after 

using this plugin are shown in the Figure 10C. For the Python’s script, the thresholding 

and counting of the colonies is made simultaneously and the results are  shown in the 

Figure 10D. 

Both methods seem to give good results with small differences, but their 

processing is quite time consuming as it was necessary to primary treat the images 
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with DeepImageJ. Therefore, the images were analyzed as well through the Python’s 

script without primary treatment. As the script uses the Laplacian of Gaussian with the 

blob_log algorithm, it does recognize fluorescent spots even if the image is noisy. An 

example of the image result is shown in Figure 10E.  

To compare the different methods of counting, the results of colony counting  for 

the four strains A. ferriduransT, L.  ferrooxidansT, A. ferriphilusT and A. ferrooxidansT 

are plotted on graphs (Figure 11 and 12).  

When the images were preliminary denoised, the counting between Fiji and the 

Python’s script was similar for each of the four species (Figure 11). The difference in 

calculation is small and the behavior of the results was the same for the two 

methodologies. The major difference is that the number of colonies counted by Python 

seems to be higher than Fiji. Indeed, for A. ferriphilusT (Figure 11A), the number of 

colonies calculated with the coded script is 12.5% higher than the one calculated 

through Fiji, for A. ferriduransT it is 8.8% higher (Figure 11B), for A. ferrooxidansT 7.4% 

higher (Figure 11C) and for L. ferrooxidansT 7.9% higher (Figure 11D). These 

differences can be explained by the method used to count the colonies. Even if the 

colonies are priorly highlighted by the DEFCoN’s model, their intensity can still vary. 

Therefore, the threshold of 0.1 used in the Laplacian of Gaussian detects probably 

more colonies than the automatic Otsu’s method. 

To compare colony counting with or without primary imaging denoising, the 

number of colonies identified were also plotted on graphs (Figure 12). For both 

methods, the counting was made through the Python’s script. As for the comparison 

for the counting between Fiji and the script, the results are similar and the trends are 

the same. Indeed, the graphs show little differences between both methods. The 
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difference in percentage for the sum for each colony is about 1.9% for A. ferriphilusT 

(Figure 12A), 15.9% for A. ferriduransT (Figure 12B), 6.8% for A. ferrooxidansT (Figure 

12C) and 4.3% for L. ferrooxidansT (Figure 12D). Clearly, the number of colonies 

counted by the script without denoising depends directly on the threshold implemented, 

therefore the difference of counting does not mean much, as it would vary depending 

on the threshold applied. However, it is important to highlight that the counting seems 

to work well even without having a denoising treatment of the images when the 

Python’s script is used, making possible a straight analysis that can save time. Also, 

the two methods might calculate the same number of colonies, but it does not imply 

that the colonies counted are the same. Indeed, as the functions used to treat the 

images are different, fluorescent points that might not correspond to cell colonies can 

be considered as so. As stated before, the pyrite grains used here had a high amounts 

of quartz mineral and other impurities that are fluorescent under UV illumination and 

therefore can be counted as colonies.  

An analysis of the X, Y positions of the colonies was conducted with the 

MATLAB’s script to compare the location of the cells counted with and without previous 

denoising (Table 3). 

Table 3 : Number and percentage of colocalized colonies counted by the script with and without prior 
denoising. 

Species A. ferriduransT A. ferriphilusT A. ferrooxidansT L. ferrooxidansT 

Number of 
colocalized colonies 

513,493 373,667 832,699 713,729 

Percentage of 
colocalized colonies 

86.1% 82.3% 85.2% 87.0% 

 

The percentage of colocalized colonies represent the ratio between the sum of 

colocalized colonies and the sum of colonies counted with the script for each species. 

For each strain, the ratio was between 82% and 87%. The variation of colonies counted 
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by both methodologies can be explained by the difference of thresholding and 

technique applied during the counting. For example, some of the grains of pyrite also 

contains pieces of quartz that are fluorescent on the images and that are accounted 

differently between both methodologies. On Figure 13A, it is possible to distinguish the 

quartz mineral on the upper right side of the raw image.  

On the images containing quartz, the DEFCoN trained model does not 

recognize the entire impurity as a colony, as its size is too big, but the fluorescence of 

its borders is considered as so (Figure 13B).  

 The visual comparison of the Figure 13C and the Figure 13D show a different 

treatment of the quart’s mineral between the analyses with or without denoising. When 

the image was directly analyzed with Python (Figure 13D), the center of the mineral is 

considered as colonies while mainly its borders are highlighted as so when the image 

was firstly denoised (Figure 13C). This highlighting of fluorescent spot can bias the 

results, by increasing the number of colonies counted. When the mineral is of a small 

size, the impact on the results might not be that important but could become relevant 

when the quartz covers a large area, overestimating the number of colonies counted 

on the grains. However, as the images of biofilms were done with the same pyrite 

batch, each set of images contained quartz and random impurities, this overestimation 

should be present in all datasets, and therefore should not have a strong impact when 

it comes to compare the results.  

The percentage of colocalized colonies represent probably the real bacteria 

present on the grains and the rest of signals is probably due to quartz and other 

impurities. The percentage of colocalized colonies is close between each species, 
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meaning that the errors are probably the same for each culture and therefore should 

not have a significant impact in the results comparison. 
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Figure 10: Fluorescent images of species A. ferriduransT before and after denoising treatment. A) Raw 
image. B) Image after denoising through the DEFCoN model. C) Result of the colony counting through 
Fiji. D) Result of the colony counting through the Python’s script with denoising. E) Result of the colony 
counting through the Python’s script without denoising 
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Figure 11 : Comparison of colony counting between the Python's script (teal, yellow and light green) 
and Fiji (blue, orange and dark green) for the control culture (square), culture with 5 µM DSF added at 
day 5 (circle) and culture with 5 µM BDSF added at day 5 (triangle). The cultures correspond of the 
strains A) A. ferriphilusT ,B) A. ferriduransT, C) A. ferrooxidansT and D) L. ferrooxidansT.  
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Figure 12: Comparison of colony counting with the Python's script with prior denoising of the images 
(teal, yellow and light green) and without prior treatment (blue, orange and dark green) for the strains A) 
A. ferriphilusT, B) A. ferriduransT, C) A. ferrooxidansT and D) L. ferrooxidansT, for the control culture 
(square), culture with 5µM DSF added at day 5 (circle) and culture with 5µM BDSF added at day 5 
(triangle). 
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Figure 13 : Fluorescent images of A. ferriduransT containing  a piece of quartz, before and after denoising 
treatment. A) Raw image. B) Image after denoising through the DEFCoN model. C) Result of the colony  
counting through Fiji. D) Result of the colony counting through the Python’s script with denoising. E) 
Result of the colony counting through the Python’s script without denoising 
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4.2. Determination of grain area on images 

The analysis of the grain area was conducted on the background images with 

the Trainable Weka Segmentation plugin of Fiji. The high-quality variation of the 

images does not allow a straight analysis with a simple threshold, as the results would 

be largely biased. Instead, the training of the segmentation plugin allowed to 

differentiate the background from the grain, a distinguishing that would be difficult to 

make without such software. Indeed, most of the background images show some noise 

or grain area with comparable pixel values than the background. Background images 

of different qualities are shown in Figure 14. Figure 14A shows a good differentiation 

between the background, in grey, and the grains, in black, with its corresponding Otsu’s 

threshold (Figure 14B). On the other hand, the Figure 14C is an example where the 

difference between the grain and the background is not clear, with the corresponding 

Otsu’s thresholding result (Figure 14D), showing the difficulty to apply a simple 

threshold to consider only the background. Segmentation was therefore needed, in 

order to have more accurate results (Figure 14E and 14F). But the high variation on 

the quality of images makes difficult to have a perfect segmentation on each image, 

even if classifiers were trained for each specie. Figure 15A shows an image with a high 

area of grains that can be considered as background with a simple thresholding 

method (Figure 15B), while the segmentation considers lower quantity of grain area as 

background, having less biased results (Figure 15C and 15D).  The segmentation does 

therefore improve the analysis and ensure a better accuracy on calculation of grain 

areas. Furthermore, images of same qualities have already been evaluated in earlier 

studies (Bellenberg et al., 2018), and the background’s images were treated only 

through a simple threshold. The segmentation implemented on this project will 

therefore present satisfying results.   
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Figure 14:  Example of background image with and without treatment. A) Raw image with a good 
differentiation between the background (grey) and the grain (black). B) Corresponding threshold of 
image A). C) Raw image with grain area. D) Corresponding threshold of image C). E) Image shown in 
C) after segmentation with the plugin Trainable Weka Segmentation. F) Threshold of image shown in 
E). 
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Figure 15 : Result of different thresholding for background determination of an image out of focus. A) 
Raw image. B) Corresponding thresholding of Image A). C) Image after segmentation with the plugin 
Trainable Weka Segmentation. D) Corresponding thresholding of Segmented image C) 
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4.3. Comparison of the images analysis techniques 

With the analysis of the whole data set of images by Fiji and Python, it is possible 

to compare both techniques and to discuss their advantages and disadvantages for an 

automatic analysis of bioleaching biofilm images. The following table summarizes the 

important characteristics needed to treat the images.  

Table 4: Comparison of automatic methodology using Fiji and Python to analyze biofilm images 

Software Fiji Python 

Colony counting + + 

Analysis of background’s images + +/- 

Ease of use of the interface + + 

Programing skills +/- - 

Personalization of the analysis + + 

Automatization + + 

Time +/- + 

 

Both methodologies can calculate the number of colonies, using different 

functions, even if the images present a high amount of noise or contains elements that 

decreases their quality. It is also possible to calculate the background area with both 

software when the images are of good quality and does not present noise, by using an 

automatic threshold. On the other hand, when the images are of poor quality and a 

trainable segmentation is needed, the Python’s script shows its limit and cannot be 

easily used for such analysis, while Fiji and the different existing plugins can be more 

easily implemented. Indeed, the interface of Fiji is user-friendly and the different plugins 

available online permit to treat images in different ways. Python does also have an 

interface easy to use but it requires a lot of programing skills and knowledge to create 

a script. These skills are not needed to use Fiji, but they can provide a higher diversity 

of images analysis. Indeed, it allows to automatize the analysis of a whole dataset for 
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different plugins, as it has been done with the Beanshell’s script to apply the Weka 

Segmentation to all the background’s images. The personalization of the analysis is 

therefore feasible for both software, if the researcher has the programing skills. The 

most important characteristic of both software is that they can automatize the analysis, 

even though it can be time consuming for Fiji, as it is necessary to automatize plugin-

by-plugin and it is complicated to embed them all in a script, as it can be done with 

Python. 

The two methodologies employed are comparable in terms of functionality and 

they both work as expected to analyze a large set of images. However, the use of the 

Python’s script is simpler and more efficient once it is written as only a few changes in 

the script are needed to run it for a whole set of data. Therefore, Python’s script should 

rather be used when the images are of good quality as the analysis would be faster. In 

contrast, Fiji should be utilized when the images need a prior treatment before analysis. 

  



Arnaud Kolzer Master Project 2020 

43 
 

4.4. Validation of the new quantification methodology 

To corroborate the results obtained with the new methodology employed, 

another dataset from an experiment conducted on chalcopyrite was analyzed. This 

dataset was kindly provided by Dr. Bellenberg (Linnaeus University, Sweden). The 

objective of these experiments was to evaluate the impact of the addition of DSFf on 

axenic and mixed cultures of the moderate leaching thermophiles, A. caldusT, L. 

ferriphilumT and S. thermosulfidooxidansT. The quality of the images was the same 

than the one of pyrite analyzed previously, with a high amount of noise and fluorescent 

impurities. 

The culture analyzed here are the axenic culture of L. ferriphilumT (Figure 16 A 

and B) and the mixed culture of L. ferriphilumT and S. thermosulfidooxidansT (Figure 

16 C and D). For the axenic culture, as shown in the published article, the methodology 

utilized in this project shows a drop of colonies right after the addition of DSF 

molecules, at day 5, and then an increase of population on days X, and Y. The behavior 

is therefore the same for both graphs, but our methodology shows a higher difference 

of growth between the cultures at day 12. 

For the mixed culture of L. ferriphilumT and S. thermosulfidooxidansT, our 

methodology shows a drop of colonies at day 5 followed by an increase until day 12. 

Once again, the methodology used in this project shows a similar behavior than the 

article, with a lower difference between the two cultures at day 3 and a higher 

difference at day 12. 

These differences are mainly due to the methodologies used in the counting of 

colonies as well as in the evaluation of grain area. Indeed, in Figure 17 is an illustration 

of the Python image analysis algorithm used in the article. The analysis of the 
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fluorescence images was made using a blob detection algorithm with Python in both 

researches, but different one; Bellenberg et al. (2018) used the Determinant of Hessian 

(blob_doh algorithm), while we used the Laplacian of Gaussian (blob_log algorithm) in 

this investigation. The Laplacian of Gaussian was preferred as it has a better accuracy 

for small blobs (< 3 pixels) than the Determinant of Hessian, leading to a more accurate 

analysis. For the analysis of the background images, the use of the Trainable Weka 

Segmentation plugin from Fiji allows to have a better appreciation of the grain area 

than the Otsu’s threshold applied in the paper. These differences of methodologies 

used to analyze the images can lead to small differences within. Furthermore, after the 

analysis, Bellenberg et al. (2018) treated the data by removing the deciles of images 

with extremely low or high cell counts and by normalizing the images to 100% of 

mineral grain area.  

The relative closeness of the results and of the conclusion that can be based 

on them shows that the methodology used in this thesis is working and proves to be 

reliable to quantify the development of biofilms over time.  
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Figure 16 : Comparison of biofilm growth over time for the axenic culture of L. ferriphilumT (A and 
B) and the mixed culture of L. ferriphilumT and S. thermosulfidooxidansT (C and D), between the 
results obtained in the paper of Bellenberg et al. (2018) (A and C) and the methodology used in 
this project (B and D). The grey triangles represent the culture where 5 µM DSFf was added after 
day 5 and the white diamonds represent the control culture. Results are expressed in cells/g. 
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Figure 17 : Summary of the Python image analysis implemented in the paper of Bellenberg et al. (2018) 
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4.5. The effect of DSF and BDSF addition on A. ferriphilusT, A. 

ferriduransT, A. ferriduransT and  L. ferrooxidansT cultures 

To analyze the impact of the addition of DSF and BDSF on selected species of 

bioleaching bacteria, the number of colonies per grain area were quantified over time 

using the methodologies detailed in the previous sections. The colonies were analyzed 

through the Python’s script without previous denoising of the images and the grain area 

was evaluated through the plugin Trainable Weka Segmentation in Fiji (Figure 18). 

For A. ferriphilusT (Figure 18A), the control culture has a quite steadily 

population from day 7 to day 42, with a significantly high population. Indeed, the 

number of colonies per area when 5 µM DSF and 5 µM BDSF are added at day 5 were 

lower than the one of the control culture during the whole experiment. These molecules 

seem to inhibit the growth of these species and even to decrease their population 

between day 7 and day 16 for cultures amended with DSF and between day 16 and 

42 for cultures amended with BDSF. Bellenberg et al. (2018) have already emphasized 

that DSF molecules can slow the multiplication of axenic and mixed L. ferriphilumT and 

S. thermosulfidooxidansT and lead to the dispersion of the biofilm for some hours, but 

the bacteria did grow again after their dispersion and did not stagnate for days. It has 

also been shown that organic extracts of supernatants of L. ferriphilumT biofilms, 

potentially containing DSF molecules, inhibit the oxidation of iron(II)-ions in several 

leaching microorganisms (Noël, 2013). Therefore A. ferriphilusT could possibly have 

been affected by DSF and BDSF addition and have its capacity of iron(II)-ions oxidation 

inhibited. 

For A. ferriduransT (Figure 18B), when BDSF was added to the culture, the 

colonies did not grow as much as the other cultures. The number of colonies per area 
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increased from day 7 until day 42 but were all the time lower than in the control culture 

and the culture amended with DSF. The control culture grew steadily from day 7 until 

day 42, while the culture amended with DSF had a decrease of biofilm cell population 

from day 7 to day 16 and then an increase until day 42. The growth of A. ferriduransT 

could be impacted by the BDSF molecules present in the culture as A. ferriphilusT and 

probably was its ability to oxidize iron(II)-ions was inhibited at day 5. The DSF molecule 

does not seem to impact the biofilm growth of A. ferriduransT. 

In A. ferrooxidansT (Figure 18C), the control culture increased its biofilm 

population from day 7 to day 16 and then cell counts decreased until day 42. The 

culture where DSF was added had the same rise of colonies from day 7 to day 16 and 

continues then until day 42. The addition of DSF seems not to impact the growth of A. 

ferrooxidansT over time. In the culture where BDSF was added, the ratio colonies/area 

is the same as the other cultures at day 7 but dropped until day 16, before increasing 

until day 42. This drop could be due to the presence of BDSF inhibiting the growth of 

the bacteria and spreading the biofilm. Since no measurement was made before the 

addition of BDSF, it is not possible to ensure that the number of colonies was indeed 

higher at day 5 than at day 7 and decreased then until day 16 due to the presence of 

BDSF. 

For L. ferrooxidansT (Figure 18D), the control culture grew from day 7 until day 

42. The culture amended with DSF at day 5 showed an increase of colonies from day 

7 to day 16 and then a decrease from day 16 to day 42. The DSF could affect the 

bacteria and slow their biofilm growth before the day 7, spreading the biofilm. This 

spreading might lead to a better repartition of the bacteria over the grain and offering 

the cells new attachment sites and more space to grow. The population then decreased 

slowly until day 42. The colonies might have reached a density limit where colonies 
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start to die. The culture where BDSF was added after 5 days shows a high number of 

colonies per square micrometer at day 7. Probably this molecule seems not to affect 

biofilm growth of L. ferrooxidansT. Then the population of colonies decreased until day 

42. 

It is also important to state that these experiments need to be repeated, as it is 

not possible to control the results due to the lack of technical replicas. Another 

important point is the lack of data before the addition of the DSFf, making impossible 

to ensure that the three different cultures of each species had the same behavior 

before the day 5 ensuring a good development of the experiment. 
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Figure 18 : Biofilm population dynamics of the species A) A. ferriphilusT, B) A. ferriduransT, C) A. 
ferrooxidansT  and D) L. ferrooxidansT over time. Results are expressed in colonies/µm2. Control 
cultures (green squares), cultures with addition of 5 µM DSF after 5 days (blue circles), cultures with 
addition of 5µM BDSF after 5 days (orange triangles). 
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5. Conclusions 

The automatic images analysis methodology used in this project allows to have 

a trustful and open-source quantification of bioleaching bacterial biofilm for 

semi/quantitative analysis. Indeed, the methodology is validated by the dataset 

analyzed in the publication of Bellenberg et al. (2018), ensuring its good functioning 

and the results accuracy. High throughput automatic analysis imaging is essential to 

investigate bioleaching bacterial biofilm to have statistically robust results. This new 

quantification methodology can be freely use in future research on bioleaching 

bacterial biofilm and for the evaluation of microbial colonization on other minerals or 

solid particles. It can provide a basis for temporal analysis of axenic culture, but also 

of mixed cultures with different cell staining. The methodology can indeed be used to 

differentiate species depending on staining to analyze multispecies biofilm patterns, as 

it is possible nowadays to combine lipids, protein, DNA and/or lectins binding staining 

to differentiate species. This work can also help to improve machine learning analysis 

by feeding the deep neural network with verified data, leading to a deeper 

characterization of patterns and dynamisms of biofilms. Machine learning analysis 

would provide more robust statistical analysis by semi/quantitative analysis and help 

for the implementation of bioleaching in an industrial scale. 

The analysis of bioleaching bacteria under the presence of DSFf shows that 

some species are impacted by these molecules. Indeed, the colonization of metal 

sulfides by A. ferriphilusT seems to be inhibited in presence of DSF and BDSF and the 

one of A. ferriduransT seems also to be inhibited but only under the presence of BDSF. 

Due to the sanitary situation, the access to the laboratory was limited and it was not 

possible to validate these results with a new experiment. It would therefore be 

interesting to realize a similar experiment with the same species to corroborate the 
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results and to prove again that DSFf can influence directly bioleaching, with images of 

good quality. Even if semi/quantitative analysis is important for a better understanding 

of bioleaching, imaging should not be underestimated as better analysis can be 

realized when the data are of good quality. 
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Annex 

1. Python’s script to analyze colony 

This file extracts the data from an experiment folder and creates a file with the obtained information 

%matplotlib inline 

import matplotlib 

import matplotlib.pyplot as plt 

import numpy as np 

import os.path 

import glob 

import pickle as pkl 

 

#modify some matplotlib parameters to manage the images for illustrator 

matplotlib.rcParams[‘pdf.fonttype’] = 42 

matplotlib.rcParams[‘ps.fonttype’] = 42 

 

from skimage.filters import gaussian 

import skimage.feature as skfeat 

from skimage.io import imread, imsave 

from scipy import ndimage 

 

import pandas as pd 

 

Parameters to define 

# Files to analyse 

im_extension = ‘jpg’ 

folder = ‘/Users/timrudge/Code/MarioVera/Denoised/’ 

 

# Parameters for analysis 

smoothing_sigma = 0.5 # Radius of gaussian smoothing 

min_colony_radius = 3 # Min radius of colony (pixels) 

max_colony_radius = 20 # Max radius of colony (pixels) 

threshold = 0.1 # Intensity threshold to detect colonies 

 

Load Images 

images = {} 
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files = os.listdir(folder) 

images = {f: imread(os.path.join(folder, f)) for f in files} 

 

Detect and record colony size and position 

results = [] 

for file,im in images.items(): 

    sim = gaussian(im, smoothing_sigma) 

    A = skfeat.blob_log( 

        sim,  

        min_sigma=min_colony_radius / np.sqrt(2),  

        max_sigma=max_colony_radius / np.sqrt(2),  

        num_sigma=10,  

        threshold=threshold,  

        overlap=0.2); 

    y = A[:,0] 

    x = A[:,1] 

    r = A[:,2] * np.sqrt(2) 

    result = pd.DataFrame() 

    result[‘x’] = x 

    result[‘y’] = y 

    result[‘r’] = r 

    result[‘file’] = file 

    results.append(result) 

results = pd.concat(results) 

 

Check one of the files 

file = ‘A ferridur_33020_day42_BS-EF-Image Export-04_m01.jpg’ 

im = images[file] 

 

# Show the image 

fig,ax = plt.subplots(1, 1, figsize=(12,12)) 

ax.imshow(im) 

 

# Plot the colony positions 

results.plot(x=’x’, y=’y’, style=’r+’, ax=ax) 

<matplotlib.axes._subplots.AxesSubplot at 0x7ff90fdc8fa0> 
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Count the colonies in each file and create csv file 

results.groupby(‘file’)[‘x’].count() 

results.to_csv(output_file_name) 
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2. Beanshell’s script to implement the plugin Trainable Weka 
Segmentation to a whole dataset 

#@ File(label="Input directory", description="Select the directory with input images", style="directory") 
inputDir 

#@ File(label="Output directory", description="Select the output directory", style="directory") outputDir 

#@ File(label="Weka model", description="Select the Weka model to apply") modelPath 

#@ String(label="Result mode",choices={"Labels","Probabilities"}) resultMode 

  

import trainableSegmentation.WekaSegmentation; 

import trainableSegmentation.utils.Utils; 

import ij.io.FileSaver; 

import ij.IJ; 

import ij.ImagePlus; 

   

// starting time 

startTime = System.currentTimeMillis(); 

   

// caculate probabilities? 

getProbs = resultMode.equals( "Probabilities" ); 

  

// create segmentator 

segmentator = new WekaSegmentation(); 

// load classifier 

segmentator.loadClassifier( modelPath.getCanonicalPath() ); 

   

// get list of input images 

listOfFiles = inputDir.listFiles(); 

for ( i = 0; i < listOfFiles.length; i++ ) 

{ 

    // process only files (do not go into sub-folders) 

    if( listOfFiles[ i ].isFile() ) 

    { 

        // try to read file as image 

        image = IJ.openImage( listOfFiles[i].getCanonicalPath() ); 

        if( image != null ) 

        {                    
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            // apply classifier and get results (0 indicates number of threads is auto-detected) 

            result = segmentator.applyClassifier( image, 0, getProbs ); 

  

            if( !getProbs ) 

                // assign same LUT as in GUI 

                result.setLut( Utils.getGoldenAngleLUT() ); 

              

            // save result as TIFF in output folder 

            outputFileName = listOfFiles[ i ].getName().replaceFirst("[.][^.]+$", "") + ".tif"; 

            new FileSaver( result ).saveAsTiff( outputDir.getPath() + File.separator + outputFileName ); 

   

            // force garbage collection (important for large images) 

            result = null;  

            image = null; 

            System.gc(); 

        } 

    } 

} 

// print elapsed time 

estimatedTime = System.currentTimeMillis() - startTime; 

IJ.log( "** Finished processing folder in " + estimatedTime + " ms **" ); 
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3. MATLAB’s script to analyze the colocalized colonies 

%% 

clear 

T_denoise = readtable('A.ferrooxidan detail.xlsx'); 

x1={}; 

y1={}; 

T_denoise_result=table(); 

for i=1:36 

  name = {'A_ferroox 23270_day16_ctr-EF-Image Export-01_m01.jpg' 

'A_ferroox 23270_day16_ctr-EF-Image Export-01_m02.jpg' 

… 

'A_ferroox 23270_day16_ctr-EF-Image Export-01_m36.jpg' 

}; 

T_denoise_result=T_denoise(strcmp(T_denoise.file, name(i)), :); 

x_1=(str2double(T_denoise_result.x)); 

y_1=(str2double(T_denoise_result.y)); 

x1(:,i)= {x_1}; 

y1(:,i)={y_1}; 

end 

%% 

T_raw = readtable('raw_A.ferrooxidans 23270_012.xlsx'); 

x2={}; 

y2={}; 

T_raw_result=table(); 

for i=1:36 

     

T_raw_result=T_raw(strcmp(T_raw.file, name(i)), :); 

x_2=(str2double(T_raw_result.x)); 

y_2=(str2double(T_raw_result.y)); 

x2(:,i)= {x_2}; 

y2(:,i)={y_2}; 

end 

for j=1:36 

n1(j)=numel(x1{1,j}); 

n2(j)=numel(x2{1,j}); 

end 
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% calculate all pairwise distances 

%% 

sum=0; 

tic 

for k=1:36 

   changes = zeros(n1(k),n2(k)); 

for i = 1:n2(k) 

    changes(:,i) = (x1{1,k}-x2{1,k}(i)).^2 + (y1{1,k}-y2{1,k}(i)).^2; 

end 

% find distances less than a given tolerance 

tol = 9; 

[j,o] = find(changes < tol); 

l(k)=numel(j); 

sum=sum+l(k); 

end 

toc 


