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Abstract
Accurate building electricity load forecasts play a major role in the energy tran-
sition, as they facilitate flexibility deployment, grid stability and overall reduce
costs and CO2 emissions. This research leaverages forecasting and reconciliation
of temporal hierarchies to achieve coherent and accurate forecasts for different
time scales. Two different hierarchical structures and their variants were stud-
ied, a daily and hourly hierarchy. Four different forecasting algorithms were im-
plemented and compared, as well as a variety of reconciliation methods, their
improvements of base forecasts were quantified and assessed, with up to ten per-
cent accuracy gains for certain levels of the hierarchical structure. This thesis
constitutes a comprehensive comparison of and the developed tools for temporal
hierarchical forecasting and reconciliation.
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1 INTRODUCTION

1 Introduction
The worlds final consumption of electricity by the building sector, both residen-
tial and commercial, has been consistently increasing for decades 1. In a time
where the energy transition is a crucial challenge, the field of building energet-
ics continues to gain importance in the worldwide energy market. According to
the International Energy Agency [IEA, 2016], The global building sector energy
demand amounts up to 30% (120 EJ) of total final energy consumption in 2013.
And the building electricity consumption has more than doubled since 1990. In
contrast, the energy use per square meter has been at a steady but slow decrease
since the 90’s, this trend encourages the building sector to increase efficiency.

In Europe, according to a directive of the European Parliament,[EU, 2010],
the building sector accounts for 40% of total energy consumption and 36% of total
CO 2 emissions. This directive also states that the member states must ensure
that by 31 December 2020, all new buildings are nearly zero-energy buildings.
The guidelines on the future of building energetics are thus clear, there must be a
reduction of energy consumption and an increased use of energy from renewable
sources in the building sector. In particular there are important European targets
to be reached by 2030 2, such as a renewable share of 32% and a similar increase
in energy efficiency, the built environment must play a crucial role in reaching
those goals.

In the Netherlands [IEA, 2020], the current electricity generation is dominated
by natural gas, accounting for around 50% of total production. The second source
of electricity are coal fired power plants, despite the sharp decrease in coal since
2015, the sector still provides 27% of the electricity. In 2018, only 16.5% of
electricity came from renewable sources; mainly wind and solar photo-voltaic
(PV) 3, which have seen a substantial increase in recent years, and this trend is
expected to continue.

The Netherlands signed a Climate Act in 2019 4 which sets targets to reduce
Green House Gas (GHG) emissions by 49% by 2030 and by 95% by 2050. The
achievement of these goals would require at least 70% of renewable electricity
generation. The Climate Act also calls for a sharp increase in vehicles powered
by electricity or hydrogen, and shift towards electrified heating and industrial
processes. This entails major changes in the current energy system.

To assist in these needed transformations, the Dutch government is supports
the development of a digitalized energy system which enables a very high pen-
etration of variable renewable energy, and also enhances coordination between
electricity networks. A noteworthy example of this support is the mandate that
all Dutch households be equipped with a smart meter, this shows the importance

1https://www.iea.org/reports/key-world-energy-statistics-2020/final-consumption
2https://ec.europa.eu/clima/policies/strategies/2030en
3https://www.iea.org/countries/the-netherlands
4https://www.government.nl/topics/climate-change/climate-policy
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1 INTRODUCTION

that energy flexibility and data driven services will have in the coming years.
Flexibility in power systems is capacity to balance supply and demand, oper-

ate continuously in unexpected situations, and handle uncertainty on both supply
and demand [Impram et al., 2020]. The supply uncertainty is bound to increase,
due to the trend of power systems to have increasing renewable energy penetra-
tion, the study of generation uncertainty and availability of renewables is a very
extensive field, this thesis focuses on its complementary the energy demand and
more specific; electricity demand forecasting.

The more a building is able to respond to the grid’s need for flexibility, the
better [Junker et al., 2018]. Thus, smart buildings rely on accurate forecasts to
make smart operational decisions, and by making buildings smarter, it becomes
possible to consume locally generated energy when it is available. This provides
benefits for the grid as well as the building clusters, resulting in overall in energy
savings, increasing peak shaving capabilities, and a more efficient use of locally
generated energy. Smart buildings are equipped with data gathering devices and
digital infrastructures and thus the amount of data is constantly increasing, this
increases the need for intelligent building management systems, energy efficiency
measures and adaptive energy systems. Building data could become an event
greater asset when utilizing the appropriate tools and frameworks. Building load
forecasting is a key building block for most or these tools; flexibility deployment,
building operations, management of energy storage systems, electricity purchase
and schedule, among many others.

BAM is part of group of ten leading Dutch companies and institutions, which
understood the importance of the aforementioned concepts. The consortium -
called TROEF 5 - is starting a collaboration that aims to accelerate the energy
transition in the Netherlands by leveraging the Internet of Energy. TROEF is
currently developing a new layered energy ecosystem, that will serve as a platform
where sustainable energy can be optimally and transparently exchanged between
buildings and areas. The goal is that implementation of this platform will mini-
mize CO2 emissions.

Companies, which aim to be better energy service provider (such as BAM) and
improve their data-driven services, would greatly benefit from better forecasts.
Because an improved forecasting accuracy leads to reduced imbalance and allows
for optimization of dispatch planning, it also allows buildings to provide grid
services. These factors are important particularly when regarding a framework
such as TROEF. The main offices of BAM, located in Bunnik, are a so called
living lab. They are equipped with a variety of sensors, batteries, solar PV,
electric vehicle charging. This space is optimal for performing a proof of concept
of new developments on forecasting and other building related technologies.

There are several applications of energy demand forecasting ranging from
country level to building and appliances level, at different granularities and with

5https://www.troef-energy.nl
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1 INTRODUCTION

different forecasting horizons Among the applications of building demand fore-
casting are: medium to long term planning, with seasonal changes of varying
demand, day-ahead planning with variable demand forecasts, intraday reschedul-
ing demand with updated forecasts, and high frequency balancing of forecasts
errors for grid stability. The two uses of electricity demand forecast that have
immediate repercussions, on the Bunnik offices for example are: day-ahead elec-
tricity purchase and stabilizing the intraday or imbalance market. And that will
be the focus of this thesis, short term forecasting, ranging from a hourly to daily
forecasts at different granularities.

1.1 Building load forecasting
The world of time series forecasting has to be specially thankful to Rob J Hynd-
man and George Athanasopoulos, authors of Forecasting: Principles and Practice
[Hyndman, 2018] and a staggering amount of other articles and blogs on fore-
casting. This book is one of the main pillars for time series forecasting, it is a
comprehensive introduction to a variety of methods ranging from time series de-
composition to advanced forecasting algorithms. This thesis mainly incorporated
the contents from the chapters regarding Exponential Smoothing and ARIMA.
Although this book uses the forecasting package of R, many existing Python fore-
casting libraries, which was used, cite it as the main reference and were built on
top of Hyndmans work.

The number of studies on prediction model analysis is extensive, with numer-
ous scientific publications as well as online forecasting competitions with thou-
sands of participants, take for example the Kaggle M competition. [Hyndman,
2020] reviews the history of forecasting competitions, discusses the lessons learned
about their implementation, and what they can teach us about forecasting. For
a more in-depth review of the M4 competition, [Makridakis et al., 2020]

There is a collection of methods for forecasting and modeling of building en-
ergy demand, but they all fall into three main categories: physics driven models
or white-box, hybrid models or gray-box and data-driven models or so called
black-box models. This thesis will focus on a data-driven approach to forecast-
ing. [Bourdeau et al., 2019] provides an extensive review of most of the existing
black-box methods with detail explanation on each algorithm, a description of
the different types of input data in the reviewed studies and a clear review of
the metrics used in those studies. [Ghalehkhondabi et al., 2017] also provides a
consistent overview of forecasting models published between 2005 and 2015 by
categorizing the reviewed papers according to the type of the prediction model
used in the research. This review also shows that the building demand forecasting
is a topic that has gained interest in recent years, with a sharp increase in the
number publications containing ’electricity’, ’load’ and ’power’ in the title.

Classical time series forecasting methods only take into account one particular
time series, but is reality there are time series that present a hierarchical structure,
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1 INTRODUCTION

or different patterns depending on the series granularity. In order to leverage this
aspects of building load data, this thesis will focus on the implementation of
temporal hierarchies for time series forecasting. A hierarchical time series (HTS)
is a collection of time series that follows a hierarchical aggregation structure. The
most classical example is the spatial hierarchy, but in this research, a temporal
aggregation was appropriate; by hour, day, week, etc.

Electricity demand exhibits considerably different characteristics on different
time scales. Therefore, the use of HTS for forecasting is interesting since it con-
siders the characteristics of different time scales in the forecasting procedure

When temporal aggregation is applied to a time series it can strengthen or
attenuate different elements. Non-overlapping tem- poral aggregation is a filter
of high frequency components, there- fore at an aggregate view low frequency
components, such as trend/cycle, will dominate. The opposite is true for disag-
gregate data, where potential seasonality may be visible. Therefore, tem- poral
aggregation can be seen as a tool to better understand and model the data in
hand. When forecasting a hierarchical time series many independent forecasts
are produced, those forecasts must be reconciled to ensure their coherency and in
doing so hopefully improving their accuracy.

The reconciliation of base forecasts, has been a field under active development.
The two classical approaches are bottom-Up and top-Down, but these two are not
optimal. The introduction of an optimal reconciliation method was first published
by [Athanasopoulos et al., 2009]. The authors used a hierarchy based of spatial
an categorical aggregation. The time series of the number of tourists in Australia
was aggregated by four different travel purposes, seven different Australian regions
and whether their destination was a capital city or not, and thus they constructed
a hierarchical tree. This case study of Australian tourism data will be recurrent
in a large portion of studies regarding hierarchical forecasting. The authors also
demonstrate the performance of the proposed method for optimal reconciliation of
base forecasts. This novel method proved superior to the conventional bottom-up
and top-down methods, but by a slight margin. This prompted a series of publi-
cations aimed at improving this optimal reconciliation method. For example [van
Erven and Cugliari, 2015] introduced a Game-Theoretically optimal reconciliation
method, that is proven to only improve a given set of forecasts. This method was
tested on simulated and real energy demand data.

The very concept of temporal hierarchies was introduced in this paper [Athana-
sopoulos et al., 2017], which lays out the ground for forecasting with temporal
hierarchies. The authors constructed a temporal a hierarchy by aggregating in a
temporal manner. A temporal hierarchy can be constructed for any time series by
means of non-overlapping temporal aggregation. Previous to this study, forecast-
ing and reconciliation of only spatial or categorical hierarchies had been explored.
But the principle remains the same; the predictions for all aggregation levels are
combined to result in temporally reconciled forecasts for the different selected
granularities. The aforementioned paper is thus the biggest point of reference for
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1 INTRODUCTION

the following studies on temporal hierarchies.
Some heuristic alternatives to the reconciliation procedure were introduced

by Fonzo and Girolimetto [2020]. The authors provide an iterative reconciliation
framework which extends the optimal reconciliation procedure, and overcomes
some of its weaknesses. In contrast [Jeon et al., 2019] proposed a probabilistic
approach to reconciliation, which includes the use data-driven weights which are
calculated via cross-validation in order to maximise statistical properties of the
reconciled forecast distributions.

Yet another example of another hierarchical forecast strategy is presented in
[Pennings and van Dalen, 2017]. The authors provide a, so called, integrated
hierarchical forecasting framework, where different than traditional methods, the
authors explore the use of all the series time series at once instead of selecting series
from parts of the hierarchy for forecasting. The authors also use the structure
of the hierarchy itself on the the data-generating process and instantaneously
generate forecasts for all levels of the hierarchy, through state space models and
Kalman filtering. The case study was the aggregation of food products, and
the extension of this approach to temporal hierarchies is not straightforward, if
feasible at all.

This masters thesis covers two hierarchical structures and their variations,
the first and most classical structure: an hourly hierachy. Which is present in the
majority of studies covering temporal hierarchies. The second structure, dedicated
to a longer forecasting horizon is a daily hierarchy. A similar daily hierarchical tree
structure, was used to reconcile day-ahead forecasts of PV production, from more
than three hundred sites in California, as explained in [Yang et al., 2017]. In this
paper the authors cover only the traditional optimal reconciliation reconciliation
methods. The authors also consider the reconciliation step as a viable post-
processing technique.

One of the most recent developments in the reconciliation of hierarchical fore-
casts was done by [Nystrup et al., 2020]. Where the authors introduce four differ-
ent estimators for the covariance matrix that take into account the autocorrelation
structure when reconciling forecasts in a temporal hierarchy. An important ad-
dition to traditional methods, that will play an important role in the content of
this thesis. The authors also argue about the importance of time series model-
ing approaches that rely only historical data, and not on external data sources,
at least when it regards short-term electricity load forecasting. In a later issue,
[Nystrup et al., 2021] give a remarkably detailed and a comprehensive explana-
tion of the forecasting and reconciliation process. In addition, the authors use
the eigen-value decomposition of the in-sample error structure to reduce dimen-
sionality and extract as most information as possible to use in the reconciliation
step.

The use of Machine Learning (ML) in the reconciliation process was introduced
by two closely related papers, first by [Abolghasemi et al., 2019]. Where the
authors used different ML techniques such as Artificial Neural Networks, XGboost
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and SVM to perform the reconciliation task. This study used a hierarchy made
of sales time series, aggregated by retailer and distribution center, and focused on
supply chain optimization. So it was not a temporal hierarchy. The second paper,
[Spiliotis et al., 2020], explains more in detail the methodology of reconciling
hierarchical forecasts based on machine learning. The proposed method allows
for a non-linear combination of the base forecasts, thus being more general than
the traditionally linear approaches. This method achieves in parallel an improved
out-of-sample forecasting accuracy and forecast coherence. The authors test this
method on two data sets: the Australian tourism data set, which involves a four-
level hierarchy with the domestic visitor nights of Australia across 76 regions,
grouped into 27 zones and finally aggregated into 7 states and territories. And
the sales data set which is the same as in [Abolghasemi et al., 2019]. This shows
that there has been active development of ML reconciliation methods in the past
couple of years, but there is still no study available that uses any ML reconciliation
method for temporal hierarchies.

1.2 Motivation
The improvement and validation of a variety of building electricity load forecasts
methods is the main objective of this thesis. In practice, this research aims at
providing a comprehensive overview and comparison of several forecasting and
reconciliation methods. A performance assessment of different hierarchical struc-
tures is presented, to determine which one is best for each scenario. This the-
sis also explores which characteristics the different forecasting and reconciliation
models have, for which granularity do they perform best, and which would be the
practical applications of forecasts for those time scales. This thesis also aims at
identifying the main advantages and disadvantages of certain reconciliation meth-
ods. And at uncovering the possible relationship between forecasting performance
and reconciliation accuracy gains (or losses), and between building metadata and
model performance. To accomplish this research a Python module dedicated to
temporal hierarchies was written and can be found in a public repository6. This
thesis tests and validates the capabilities of this library.

6https://github.com/lorenzodonadio/TimeHierarchy
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2 Methods
This section covers the steps of a temporal hierarchical forecast. This process
starts with pre-processed data that is aggregated into a temporal hierarchy. Then
a forecasting algorithm is applied to the hierarchical tree, which yields a set of
independent forecasts. These independent forecasts or base forecasts are not
coherent and thus need to be reconciled. The following three sub-sections explain
each of these steps in detail, and at last, the validation procedure and the metrics
used in this study are discussed.

2.1 Construction of a Time Hierarchy
The first step to use forecast a HTS is to first create the hierachy, i.e. aggregate
data in a tree structure; which is the best representation of a hierarchy. We start
this process with a time series; A data frame that has the variable of interest and
the time index for each observation.

Figure 1: Two tree examples of hierarchical trees, the number of levels and nodes per level
are presented. Tree A. illustrates a daily hierarchy, with a top aggregation level of 1 day and
a bottom one of 1 hour. Tree B. represents an hourly hierarchy with a top and bottom levels
of one hour and fifteen minutes, respectivly.

A temporal hierarchy is fully characterized by three elements: the granularity
of the bottom (most disaggregated) time series, the number of aggregation levels,
and the number of time series per aggregation level, which corresponds to the
number of tree nodes in that particular level. The last two elements can be rep-
resented as a sum matrix, which entirely describes the hierarchical tree structure.
Let us go through the notation with an example; the tree structure presented in
Figure 1B. The first step is to build the tree structure from the bottom nodes up,
by aggregating the data, k observations at a time, suppose the number of bottom
nodes of a tree is noted by m, then the factor k must be a factor of m. So for the
tree in question we have m = 4, so the possible aggregations are k ∈ {4, 2, 1},
and all of them where chosen, thus k1 = 4, k2 = 2 and k3 = 1, this is the most

Building Electricity Demand Forecasting with Temporal Hierarchies 10



2 METHODS

simplistic example of a hierarchy. In general a hierarchical tree has n nodes in
total, m in the bottom level, K aggregation levels, and the aggregation factor
k ∈ {k1...kK} with k1 = m and kK = 1. Note that the number of nodes in a
certain aggregation level is given by m/k.

With that general formulation in mind, let us take a look at a slightly more
complicated tree structure, the one depicted in Figure 1A, we start with hourly
data, so we havem = 24, and so the possible aggregation levels are k ∈ {24, 12, 8,
6, 4, 3, 2, 1}, there are many more possibilities than in the previous example. But
note that the case k1 = 24 and kK = 1 must be present since they represent
the top and bottom levels of the tree, respectively. There remains the choice of
which intermediate levels to include in the structure, and some combinations of
aggregation factors are not mathematically possible. In Figure 1A we represent
a tree where k1=24, k2=6, k3=1 , note that when hourly data is aggregated by a
factor of 6 then only 4 nodes are obtained at the intermediate level. Let us give
an example of an erroneous combination of aggregation levels; if one attempts to
aggregate according to: k1=24, k2=8,k3=4,k4=1, this clearly does not work even
if 8 and 4 are factors of 24. First an aggregation by a factor of 4 would take place,
yielding 6 nodes, and there is no possibility to aggregate 6 nodes by a groups of
8. Therefore not only the aggregation factors need to be a factor of m but the
product of the k2...kK also must be a factor of m and must be less than m.

S =



1 1 1 1
1 1 0 0
0 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


(1) S =

 Im/k1 ⊗ 1k1
...

Im/kK ⊗ 1kk

 (2)

Equation 1 shows the sum matrix associated with the tree structure illustrated
in Figure 1B. The general formulation for the sum matrix is given in Equation 2,
where ⊗ represents the Kronecker product, Im/k1 is the identity matrix of order
m/k1 and 1k1 represents a vector of ones of size k1.

In practice, it is important to programmatically create and store the hierarchi-
cal tree, for this task a tree is represented as a structure of two nested dictionaries
(key-value pairs). The keys of the first dictionary represent the levels of the tree
and inside each level there is another dictionary. Which keys represent the nodes
of that particular level, the values of the second dictionary contain the actual
time series that compose the hierarchical tree, each value (or tree node) contains
a unique time series.

Building Electricity Demand Forecasting with Temporal Hierarchies 11
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2.2 Forecasting Algorithms
The procedure to forecast a temporal hierarchy, consists on the generation of n
independent forecasts; one for each node, it differs from how a traditional hierar-
chy (spatial, categorical etc.) is forecasted in that the time series of a temporal
hierarchy have different granularities, depending on which aggregation level they
belong to. Figure 2 shows a schematic of what a one step ahead forecast entails;
the creation of a new forecasted tree, each level of the hierarchy must forecast a
number of observations equal to the number of nodes in that hierarchy, for this
example the bottom level forecasts four observations, the middle level two and the
top level only one. This process can be repeated several times if the forecasting
horizon is greater than one step (one hour for this example).

To perform a temporal hierarchical forecast there are two options. Forecasting
models are fitted to either each node, or each aggregation level of the tree. The
developed Python package allows for both choices, if one chooses to fit one model
per node then: each time series has the same time-step, equal to the one of the
top level, each time series has the same length (same amount of data) and the
forecasting horizon is the same for each time series. On the other hand if one
chooses to fit one model per tree level : The number of time series in the tree
would be K instead of n. Each time series has a different length. The forecasting
horizon is different for each time series, and proportional to the number of nodes
of each level. K different forecasting models. This alternative was implemented
but the results are not presented in this paper, because in terms of accuracy there
was no significant difference and the first alternative is more similar to traditional
hierarchical forecasting. Therefore, in total n different forecasting models will be
trained, one model for each node.

Each model needs some hyperparameters, and it is a possibility to give different
hyperparameters to the models of each of the levels of the hierarchy. Because there
is no reason why the optimal hyperparameters for one level of the hierarchy are
the same as for all the other levels. Therefore if deemed appropriate, the user can
specify this option train models with different hyperparameters per aggregation
level, this option gives the hierarchical forecasting more flexibility but also makes
the model selection and parameter tuning somewhat more complex, since it adds
a degree of freedom.

A forecasted tree, such as the one in yellow in Figure 2 has only one observation
per node. Therefore this hierarchical tree can be represented as a vector, by
stacking the observations from top to bottom. The resulting n-sized vector is
called the base forecast vector and is denoted by ŷ ∈ Rn. This notation will come
useful when forecast reconciliation is discussed. Note that this ŷ is a column
vector that is valid for one step ahead forecast. If the horizon is greater than one
step the notation could be extended. A collection of ŷ vectors can be converted -
by horizontal stacking of the vectors - into ŷh which will then be a n× h matrix,
where h is the forecasting horizon.
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Figure 2: Illustration of one step ahead forecast for an hourly temporal hierarchy, the blue tree
represents the most recent available observations and the yellow tree represents the forecasted
tree.

Four forecasting algorithms were chosen for this thesis: ARIMA, ETS, TBATS
and LGBM. Exponential Triple Smoothing (ETS) and ARIMA models are the two
most widely used and traditional approaches to time series forecasting. These two
models were implemented thanks to the statsmodels Python library [Seabold and
Perktold, 2010].

2.2.1 ETS

In general, exponential smoothing methods do just that; smooth time series data
by applying an exponential window function, which assigns exponentially decreas-
ing weights over time. Exponential smoothing models are based on a description
of the trend and seasonality in the data. In this study we use the most advanced
version of exponential smoothing for forecasting which explicitly adds modeling
for seasonality to the univariate time series: the seasonal Holt–Winters exponen-
tial triple smoothing. The most comprehensive review of the state of the art of
exponential smoothing is provided by [Gardner, 2006], where the author gives
an overview of the history of this method, reviews the formulation, and clearly
explains different methods: additive or multiplicative trend and seasonality. The
following are some examples of the use of ETS in forecasting utilities and traffic
flows, water and gas and PV production, respectively [Gould et al., 2008],[Fildes
et al., 1997],[Dev et al., 2018].

There are many parameters involved in ETS. Most of them do not need to
be known a priori since they will be optimized automatically when fitting the
model. However, the user must ensure that the seasonality is modeled correctly,
the number of time steps in a seasonal period must be specified, a grid search
and trial and error were used to select the appropriate seasonal periods. Since the
focus of this study is forecasting a hierarchical tree, there is the possibility to use
different hyperparameters - or seasonalities - for the ETS models at each level of
the tree.

For this thesis only use additive seasonality and additive trend were used.
Because the additive methods are more adapted to modeling time series where
when the seasonal variations remain roughly constant, which is the case for the
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building demand, as shown in Section 3. Whereas the multiplicative method is
better suited when the seasonal variations are changing proportional to the level
of the series. When using additive or multiplicative seasonality the time series
is seasonally adjusted by subtracting or dividing by the seasonal component, re-
spectively. In other words, the additive method expresses the seasonal component
in absolute terms, for example at night a given building consumes 10kWh more
than during the day, and then that value would be subtracted to the series. The
multiplicative method on the other hand expresses the seasonal component in
relative terms, for example at night the building consumes 50% less than in the
day.

2.2.2 ARIMA

There should be no need to introduce ARIMA models, because it is a popular
and evolving method since the 1970’s. ARIMA models are still widely used in
statistics, econometrics, and in particular in time series analysis and forecasting.
The way ARIMA attempts to model a time series is complementary to exponential
smoothing. ARIMA models aim to describe the autocorrelations in the data to
make accurate forecasts.

ARIMA stands for autoregressive integrated moving average, and a simple
model has three parameters to estimate: p,d and q. Each parameter is responsibly
for a specific behaviour in the data modeling:

• p: the order of the autoregressive part; number of lag observations in the
model.

• d: the number of times that the raw observations are differenced; also known
as the degree of differencing.

• q: the size of the moving average window; also known as the order of the
moving average

A problem with ARIMA is that it does not support seasonal data. That is a
time series with a repeating cycle. And our data exhibits clear seasonality; daily
cycles for example, but there may be more patterns depending on the time-scale
and granularity of the data. So for implementation purposes a Seasonal ARIMA
or SARIMA was preferred over ARIMA. With the addition of seasonality comes
also the addition of four parameters:

• P: Seasonal autoregressive order.

• D: Seasonal difference order.

• Q: Seasonal moving average order.

• m: The number of time steps for a single seasonal period.
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The notation of a SARIMA model is SARIMA(p,d,q)(P,D,Q,m). It is impor-
tant to mention that the m parameter influences the P, D, and Q parameters
and is the only parameter that must be known a priori, because it represents the
intrinsic seasonality of the data. For example, an m of 24 for hourly data suggests
a daily seasonal cycle. To select the correct seasonality (m), one could look at
partial autocorrelation plots, base the choice on intuition or do a grid search of
potential seasonalities to select the best one.

The drawback of Seasonal ARIMA, is that it can potentially have a large
number of parameters and combinations of terms. And when using the wrong set
of parameters the performance of the models drops drastically. Therefore these
parameters must be optimized and in order to do so, various models must be
tested and fitted to the data. Then the best performing model can be selected
using an appropriate criterion. [Hyndman and Khandakar, 2008] introduced a
method for automating the optimization of the ARIMA parameters, this method
was first implemented in R under the name auto_arima, and has since then been
translated to Python where it is called pmdarima7, which was originally pyramid-
arima for the anagram ’py’ + ’arima’.

2.2.3 TBATS

TBATS is useful for forecasting time series with complex seasonal characteristics,
for example non-integer seasonality, or a large-period seasonality; this makes it
possible to create a detailed long-term forecast. This framework is fairly recent,
being introduced by [Livera et al., 2011]. Despite it being so recent there is already
a Python library specialized in TBATS8, which was used in this project.

TBATS is an acronym for key features of the model:

• T: Trigonometric seasonality

• B: Box-Cox transformation

• A: ARIMA errors

• T: Trend

• S: Seasonal components

The price to pay for such a complex model is that when fitting a model, a
multitude of different models are tested and only the best one selected. So when
fitting TBATS to a large time series it becomes remarkably slow. But if the
improvements in accuracy are significant, it might be worth the extra training
time.

7https://pypi.org/project/pmdarima/
8https://pypi.org/project/tbats/
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2.2.4 LGBM

The term Gradient Boosting Models (GBM) denotes a group of ML algorithms
based on decision trees, GBM models can be used to solve a wide range of prob-
lems including regression, classification, and in this case forecasting. As the name
implies, GBM use boosting as an ensembling approach among different decision
trees. There are some effective implementations of GBM methods available such
as XGBoost or CatBoost, but for this thesis LightGBM9 was the chosen imple-
mentation. Since it is by far the fastest and most praised package, an explanation
of the algorithm and what makes it faster is given by Ke et al. [2017].

LGBM is a very popular machine learning framework: it has been widely-
used in many winning solutions of machine learning competitions, for example
the M5 competition. LGBM was designed to be distributed and efficient. It has
been proven to have the following advantages: faster training speed and higher
efficiency, lower memory usage, better accuracy, support of parallel, distributed,
and GPU learning and it is capable of handling large-scale data.

Differently than the previous three algorithms used for forecasting, LGBM is
not precisely a forecasting model. It can primarily be used as a classifier, regressor
or ranker. But isn’t forecasting in the end just a regression problem?. The way
to apply regression algorithms to a forecasting task is the following: first, the
data must be transforms into the required tabular format, where the predictor
variables would be some amount of lags of the target variable as well as some
exogenous features; which are an optional addition to the model. Second, with
data in a tabular format it is straightforward to fit a regressor and finally generate
forecasts. This data manipulation must be repeated when new data is availible,
to create out of sample forecasts; for example in a deployment environment. This
entire process was automated in a wrapper to the LGBM regressor to make it
suitable for forecasting.

There is a wide set of hyperparameters to tune in this case, the ones that are
intrinsic to the LGBM model and the ones that come with the adaptation as a
forecasting model. The intrinsic hyperparameters, which comprise the number of
leaves, the learning rate, the evaluation metric and the number of boosted trees
to fit, these parameters were set to their default values (see the API for more
details). The main reason is because adjusting those parameters did not yield
visible accuracy gains. Only the boosting method was subject of inspection, there
are different boosting methods implemented in LGBM: gbdt, traditional Gradient
Boosting Decision Tree. dart, Dropouts meet Multiple Additive Regression Trees
and goss, Gradient-based One-Side Sampling.

The parameters that appear when adapting LGBM to a forecasting type are
mostly in related to the explanatory variables; the number of lags (of the target
variable) to include, and the selection of exogenous variables that may improve
the model. If the target variable at time t: yt, is to be predicted, then the en-

9https://lightgbm.readthedocs.io/en/latest/Python-API.html
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dogenous predictor variables are: yt−1, yt−2...yt−nlags, and the exogenous variables
are: x1t , x1t ...x

nfeatures
t , where nlags represents the number of lags and nfeatures

the number of exogenous features. The exogenous features used in this study are
divided into two groups: weather variables such as temperature, global radiation
and relative humidity, and time related variables like hour of the day, day of the
year, day of the month and day of the week. The time related variables are gen-
erated automatically from the timestamp of the time series, and are mapped by a
cos or sin functions, because these transformations have been empirically proven
to provide better results.

2.2.5 Hyperparameter Tuning

Each of the previously mentioned forecasting models has a set of hyperparameters
that must be optimized in order to increase performance and select the best model
for comparison. Considering that for a time hierarchy there is one forecasting
model per tree node. The hyperparameter tuning can become truly tedious if a
different set of hyperparameters is selected for each individual model, therefore
this option was not implemented in this research. The most straightforward choice
is to select one set of hyperparameters for all the models in the tree, this is simple
but not very flexible and may not be the optimal solution in therms of accuracy.
A compromise between complexity and flexibility is to allow for a different set of
hyperparameters per aggregation level, arguing that the time series from different
nodes belonging to one aggregation share more properties among themselves than
with time series from other aggregation levels. The two previous options were
implemented, and thus the user is able to give one set of hyperparameters for
all the models in the tree or if deemed necessary one set of hyperparameters per
aggregation level.

The actual parameter tuning used in this research is a simple grid-search on
a predefined set of parameters. The starting parameters are not too far off from
providing a well performing model, because they were selected after inspecting
the data and the autocorrelation plots. In such manner, for each of the sets of
parameters, an entire validation process was run, and then the best parameter
set was selected based on the metrics from that validation process. This entails
fitting the models thousands of times and thus is a very time consuming process.

The hyperparameter tuning of ARIMA is by far the most complex process
of all forecasting algorithms, because only for this particular method the models
have different parameters depending on which aggregation level they belong to.
Thus for an hourly tree with three levels there will be three different optimal sets
or ARIMA models. As explanined in Section 2.2.2, pmdarima was used to find
the best set of parameters, and only the seasonality had to be specified.

For the other forecasting algorithms it was chosen to fit all the models in
the tree with the same set of hyperparameters; the simpler option was chosen
since providing a different set of parameters per aggregation level did not yield
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differences in terms of performance. In addition there is not a package equivalent
to pmdarima for the rest of the algorithms, which assists in an easier automation
of the parameter tuning.

For ETS only one parameter had to be estimated: the seasonal periods; be-
cause only additive trend and additive seasonality where used. Regarding LGBM,
the tuning process consisted mainly in feature selection; which weather and time
features to include, how many observation lags (look back parameter) and which
boosting method to use, since the parameters such as the number of leaves and
the learning rate were kept as the default values.

2.3 Reconciliation Process
Let us assume the forecasting step is finished, so now independent forecasts were
generated for all the aggregation levels. These forecasts will not add up to each
other; they are not coherent. Thus they need to be combined with different
methods to result in temporally reconciled, accurate and robust forecasts and
yield a coherent hierarchical tree. This process supports aligned decisions at
different horizons and granularities.

The most basic and straightforward way of reconciling forecasts is disregarding
the upper levels and building a new tree by adding the bottom level, this is
known as Bottom Up reconciliation. Using this method will yield un-biased
and coherent forecasts but it will will entirely disregard the information on the
upper levels of the tree, thus the accuracy will not be significant. Another basic
reconciliation forecast is the Top Down approach, where only the top level of
the hierarchy is forecasted and then it is disaggregated these down the hierarchy
based many different measures, for example on the historical proportions of the
data [Gross and Sohl, 1990]. The problem with Top Down methods is that they
are inherently biased reconciliation methods and they disregard all the lower level
forecasts.

It is clear by now that the optimal reconciliation process involves information
transfer along all levels of the tree. In this thesis we explore three main methods of
reconciliation, the so called generalized least squares (GLS), methods that account
for auto-correlation and machine learning methods.

In an effort to generalize the notation of reconciliation methods, recall the
base forecast notation ŷ, which represents the independent forecasts in a vector
notation. Starting with the base forecasts the aim is to construct a similar vector
of reconciled forecasts ỹ, which satisfies the coherency constraint. This two vectors
are related as follows:

ỹ = SGŷ (3)

Where S is the n×m sum matrix and G is a m×n matrix that maps the base
forecasts into the bottom-levels, this matrix will define the information exchanges
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between nodes, and it is defined according to the desired reconciliation approach.
The G matrix for the bottom up and top method would be the following:

BottomUp : G = [0m×(n−m)|Im] TopDown : G = [pm×1|0m×(n−1)]

In the above equations Im is the identity matrix and pm×1 is a vector of
historical proportions or any other Top Down dissagregation factors, it is worth
to note that the columns of the G matrix have are non-zero elements, are the ones
that will be used to generate the reconciled forecasts, it is thus clear that there is
an important information loss in the above described methods.

SGS = S (4)

Equation 4 presents a constraint to the G matrix, that ensures that the rec-
onciled forecasts are unbiased. The Bottom Up method satisfies this constraint
but no Top Down method does.

2.3.1 Optimal Reconciliation Method

Given a tree of independent forecasts, an optimal reconciliation method should
provide forecasts that are better, than any Top Down or Bottom Up method.
The reconciliation process should also be free of bias, i.e. satisfy Equation 4.
[Hyndman et al., 2011] Introduced an an optimal reconciliation method based on
an estimate of the covariance matrix of the coherency errors. Let us assume the
forecasting process as a linear regression as follows:

ŷh = Sβ(h) + εh (5)

Where β(h) = E[yK,t+h|y1...yt] is the unknown mean of the bottom level K of
the hierarchy at horizon h (t denotes the time index). And εh are the coherency
errors (error between the base forecast and the reconciled forecast) for horizon h,
the coherency errors are assumed to have zero mean and covariance matrix Σh.
With this formulation we can use a Generalized Least Squares estimators (GLS)
[Aitken, 1934] for β(h), we obtain:

β̂(h) = (STΣ−1h S)−1STΣ−1h ŷh (6)

This result allows us, using Equation 5, to calculate the reconciled forecasts.
This method is called GLS reconciliation:

ỹh = SGŷh = S(STΣ−1h S)−1STΣ−1h ŷh (7)

From the above expression we can identify G = (STΣ−1h S)−1STΣ−1h , this ma-
trix clearly satisfies the constraint in Equation 4; so if the base forecasts are
unbiased so will the reconciled forecasts. The main problem with this method is
the estimation of the covariance matrix of the coherency errors Σh, since it was
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proven by [Wickramasuriya et al., 2019], that it can not be identified. [Wickrama-
suriya et al., 2019] also provides a different methodology to the GLS, to find and
optimal reconciliation, is is done via trace minimization of the covariance matrix
of the base forecast errors, this method is called Minimum Trace Estimator or
MinT. In the aforementioned paper it is proven that covariance matrix of the h-
step-ahead reconciled forecast errors (errors between the reconciled forecasts and
the true values) can be written as follows: var[yt+hỹt+h|y1...yt] = SGWhG

TST,
where Wh is the is the covariance matrix of the h-step-ahead base forecast errors,
i.e the errors between the base forecasts and the true values. The MinT method
minimizes finds the reconciled forecasts to be the following:

ỹh = S(STW−1
h S)−1STW−1

h ŷh (8)
Note that it coincides with Equation 7, but with a different covariance matrix.

This is no coincidence, since in a later publication [Wickramasuriya, 2021], the
two formulations: GLS and MinT are formally proven to be equivalent. We will
adopt the name and notation from MinT for simplicity.

After this brief theory background the three more traditional and simpler
methods for the estimation of the covariance matrix are presented as follows:

• Ordinary least squares (OLS) estimator: this estimator is by far the sim-
plest, the covariance matrix is set to be the identity matrix Wh = In. This
estimator neglects all statistical properties of the time series as well as the
structure itself of the hierarchy, and assigns the same weights to each node
of the tree for the reconciliation process.

• Structural estimator (STR): this method is an improvement on the OLS
estimator, it still neglects statistical properties of the data but it includes
information about the structure of the hierarchical tree. It can be computed
as follows: Wh = S1n where S is the sum matrix for the given hierarchy and
1n is a vector of ones of size n. An example of the resulting matrix for an
hourly hierarchy, such as the one presented in Figure 1 B is the following:

Wh =



4 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


• Variance estimator (VAR): this method only estimated the variance, i.e

only the diagonal elements of the covariance matrix are non zero, and thus
Wh = Λ, where Λ is the diagonal variance matrix of the forecasting errors,
and can be written as follows:

Building Electricity Demand Forecasting with Temporal Hierarchies 20



2 METHODS

Λ =


σ2e1 0 . . . 0
0 σ2e2 . . . 0
... ... . . . ...
0 0 . . . σ2en


Where the subscript e1 means the forecasting error at node number one.
The variance estimator, implicitly takes into account the structure of the
hierarchy; it has different weights per level of aggregation. The order of
magnitude of the error variance is different for each aggregation level, the
higher the granularity the bigger the cumulative demand for that period of
time and thus the errors tend to be higher.

2.3.2 Accounting for auto-correlation and cross-correlation

Based on the same Mint framework, this methods incorporates autocorrelation
and cross correlation in the weighting scheme and should provide better results.
The three estimators previously proposed (OLS,STR,VAR), are all diagonal ma-
trices, and therefore neglect any correlation between levels and nodes of the hier-
archy. Several alternative estimators for the covariance matrix were proposed by
[Nystrup et al., 2020]. By including non zero entries for some of the non diagonal
elements of the covariance matrix, autocorrelation is accounted for. The variance
between, two nodes of same level of the hierarchy, is in essence the autocorrela-
tion, to illustrate this fact we refer again to the hourly tree depicted in Figure 1B.
Take for example the bottom nodes, they represent the four quarters of an hour
(15min granularity), and so they can be denoted by: q1,q2,q3,q4. It is clear that
var(q1,q2) is closely linked to the autocorrelation function with lag one (of a sub
sample of the time series), var(q1,q3) to lag two and so on. The full empirical
covariance matrix is also included in this category, since it is a full matrix and
so it also accounts the autocorralation effects (it has non zero off-diagonal ele-
ments). All the reconciliation methods described in this section are based on the
availability of one-step-ahead in-sample forecasting errors. For some models such
as ARIMA and ETS those errors are automatically computed, but others such as
LGBM needed an additional functionality for the in-sample error calculation.

• Full covariance estimator (COV): In this method we compute the full covari-
ance matrix of the base forecast errors, two ways of calculating the matrix
were implemented. The first uses the definition; the i,j element of a covari-
ance matrix is given by10: C(i, j) = 1

N−1
∑n=N

n=1 (xi,n − x̄i)(xj,n − x̄j).The
second, leverages the fact that errors are assumed to have a zero mean
(which is a fair assumption), so we can simply write the covariance matrix
of the base errors as: Wh = 1

N−1εhε
T
h , where εh is a n × N matrix of base

errors (n is the total number of nodes in the hierarchy and N is the number
10https://numpy.org/doc/stable/reference/generated/numpy.cov.html
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of samples). The second formulation is simpler and faster to compute so it
is the default method. The representation of the full covariance matrix in
element notation is the following:

Wh =
1

N − 1


e1e

T
1 e1e

T
2 · · · e1eTn

e2e
T
1 e2e

T
2 · · · e2eTn... ... . . . ...

ene
T
1 ene

T
2 · · · eneTn


• Block covariance estimator (blockCOV). This estimator imposes a zero inter

level covariance, this means that only the covariances between nodes of the
same granularity are accounted for, in practice it is equavalent to enforce
the covariance matrix to have a block-like structure, for example the Wh

matrix for an hourly tree would look as follows: )

Wh =



e1e
T
1 0 0 0 0 0 0

0 e2e
T
2 e2e

T
3 0 0 0 0

0 e3e
T
2 e3e

T
3 0 0 0 0

0 0 0 e4e
T
4 e4e

T
5 e4e

T
6 e4e

T
7

0 0 0 e5e
T
4 e5e

T
5 e5e

T
6 e5e

T
7

0 0 0 e6e
T
4 e6e

T
5 e6e

T
6 e6e

T
7

0 0 0 e7e
T
4 e7e

T
5 e7e

T
6 e7e

T
7


• Glasso estimator 11, with this method the the precision matrix is estimated

directly. The precision is the inverse of the variance: (ρ = 1/σ2), which
corresponds toW−1

h . There is then no need to computeWh, since in 8 there
is no use for the matrix Wh, only of its inverse. The Glasso estimator is
l1 penalized and the estimated matrix will be sparse, in accordance with
the regularization parameter. Only the default value of the regularization
parameter was used.

• Block Glasso estimator, this method is simply a way to impose to the Glasso
estimator a block matrix structure. Therefore only inner level correlations
are included. The imposed structure is analogous to the blockCOV struc-
ture, only that for the blockCOV we imposed a block structure to the Wh

matrix and then computed its inverse, and for the block Glasso the block
structure is directly enforced to the estimated precision matrix, i.e. W−1

h .

• Cross-Correlation Shrinkage (CCS) estimator. This shrinkage estimator of
the cross-correlation matrix was considered as a better was of dealing with
heteroscedasticity problems that may arise with the cross-covariance matrix.
The covariance matrix as follows: W shrink

h = Λ1/2RshrinkΛ
1/2. Where In is

the identity matrix if size n and Rshrink = (1 − λ) ∗ R + λ ∗ In. In the
11https://scikit-learn.org/stable/modules/generated/sklearn.covariance.GraphicalLasso.html
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previous expression, R represents the Pearson product-moment correlation
coefficients, or correlation matrix 12 where the element of Ri,j =

Cij√
Cii∗Cjj

(C

is the covariance matrix). And where Λ is the diagonal matrix of variance.
λ is a regularization parameter between 0 and 1, if λ is equal to one, then
this method is equivalent to the variance scaling (VAR), and if it is equal to
zero then it corresponds to a full covariance scaling (COV). For this research
λ was set to 0.5 for simplicity.

• Markov estimator. This method integrates autocorrelation and variance in-
formation, and it only requires the computation of the first-order autocorre-
lation coefficient at each aggregation. level. It inherently has a block struc-
ture, and so no relationships between the aggregation levels are present. The
estimated covariance matrix has the following form: Wmarkov

h = Λ1/2RmarkovΛ
1/2

Where again Λ is the diagonal variance matrix and Rmarkov contains the au-
tocorrelation, an example for an hourly hierarchy is presented as follows:

Rmarkov =



1 0 0 0 0 0 0
0 1 ρhh 0 0 0 0
0 ρhh 1 0 0 0 0
0 0 0 1 ρq ρ2q ρ3q
0 0 0 ρq 1 ρq ρ2q
0 0 0 ρ2q ρq 1 ρq
0 0 0 ρ3q ρ2q ρq 1


Where ρhh represents the first order autocorrelation of the half-hour (30min)
level, and ρq the autocorrelation of the quarter (15min) level. Notice that
the top level autocorrelation is not present, and that for the bottom levels
the autocorrelation have an exponent which is proportional to their distance
to the diagonal. Since the autocorrelation is always less than one, the
exponents ensure that the values far from the diagonal will tend towards
zero. This makes this method suitable for large hierarchies.

In Figure 3 the similarities between VAR and STR methods are clear but also
the fact that the variance estimator brings more information to the reconciliation
process. Note that for this method the in-sample forecasting errors are needed.

2.3.3 Machine Learning Reconciliation

Machine learning reconciliation is a new method that bypasses the linear algebra
of the previous methods by using ML models to directly provide the reconciled
forecast, and thus aims to obtain better accuracy. ML methods combine the base
forecasts in a non-linear way, thus being more general than the previously de-
scribed linear approaches. This reconciliation is fairly recent, only a few studies

12https://numpy.org/doc/stable/reference/generated/numpy.corrcoef.html
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Figure 3: examples of the inverse covariance matrixW−1
h , for an hourly tree. The first element,

from left to right and top to bottom, corresponds to the top level node of the hierarchy (1 hour),
the next two elements to the second level (30 minutes) and the last four elements to the third
level (15 minutes).

have been published,[Abolghasemi et al., 2019] and [Spiliotis et al., 2020]. These
two studies share similar methodologies, the first uses three ML methods: Xg-
boost, Artificial Neural Networks (ANN) and Support Vector Regression (SVR).
The second Xgboost and Random Forests. For this thesis we implemented LGBM
and SVM for reconciliaton, but only the results from LGBM reconciliation are
presented since it greatly outperformed SVM.

An ML method is characterized by its explanatory variables (features or input)
and by its target variable or variables. For the reconciliation task, ML attempts
to predict the true values of the bottom level of the hierarchy based on the entire
tree of base forecasts. In other words, the target variables are the true values of
each of the bottom nodes, and the explanatory variables are the base forecasts
for all the nodes in the hierarchy.

1. A forecasting model is fitted to each time series, and an in-sample forecast
is produced.

2. Create the predictor matrix XN×n and the target variable matrix YN×m.
Notice that it is a Rn → Rm transformation, and most ML models support
only a Rn → R operation, with the exception of multi output methods such
as ANN.

3. Fit a ML reconciliation model to each of the bottom nodes of the hierarchy,
m in total.

4. Perform an out of sample forecast for the entire tree, using the models in
step 1.

5. Using m models trained in step 3, predict the values of the bottom nodes
of the forecasted hierarchy.

6. Use the Bottom Up method to recreate an entire tree of reconciled forecasts
hierarchy; aggregate the nodes starting from the bottom level.
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2.4 Validation and Metrics
The selected metrics for this research are Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE) and Median Absolute Error (MedAE). Their scaled
versions are presented, so that they are comparable between buildings and tree
levels. The inclusion of three different metrics aims to increase the robustness
of the results, if all the metrics are in alignment. Or to point out interesting
behaviours if they differ.

The RMSE is equivalent to the standard deviation of the forecasting errors.
In other words RMSE measures how spread out these errors are. Because it
involves squaring the errors, a large but few frequent error will have an important
influence on the RMSE. In contrast each error contributes to MAE in proportion
to the absolute value of the error, strictly speaking MAE is the average absolute
difference between true and predicted data. The MedAE is a more robust measure
of the error variability, since the median is more robust to outliers than the mean.
But the MedAE is not the most adapted metric at quantifying the few frequent
and large errors of the forecast.

In this research the intention is to quantify the accuracy of the two stages of
predicting temporal hierarchies, the forecasting step and the reconciliation step.
To assess the accuracy in forecasting step, the normalized version of the afore-
mentioned metric were thus chosen, namely: the Mean Absolute Error (nMAE),
the normalized Root Mean Squared Error (nRMSE) and the normalized Median
Absolute Error (nMedAE). Let y represent the true values, ȳ the average of the
true values, ŷ the predicted values and N the sample size. With that notation the
metrics can be written as follows:

nMAE =
100

ȳ

1

N

N∑
i=1

|yi − ŷi| (9)

nRMSE =
100

ȳ

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (10)

nMedAE =
100

ȳ
Median(| y1 − ŷ1 |, . . . , | yN − ŷN |) (11)

After the forecast, comes the reconciliation step, once it is finished, the metrics
are calculated for the reconciled forecasts. In order to assess if an improvement on
the base forecast was made or if on the other had the reconciled forecasts present
worse accuracy, the reconciliation metrics are transformed into the Percentage
Relative Improvement in Average Loss (PRIAL), as recommended by [Hyndman
and Koehler, 2006] and [Nystrup et al., 2021].

By definition, the PRIAL of base forecasts is zero. When comparing the ac-
curacy of reconciled and base forecasts. A positive entry shows a percentage
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decrease in the regarded metric relative to the base forecast, i.e. improved accu-
racy, and a negative entry a decrease in accuracy. Thus the PRIAL provides with
a very straightforward way of quantifying the effect of reconciliation on the based
forecasts.

PRIALMAE = 100× (1− MAE

MAEBase

) PRIALRMSE = 100× (1− RMSE

RMSEBase

) (12)

For the purpose of testing the performance of the different forecasting algo-
rithms, i.e. calculating the metrics on the data in a fair way that reassembles
real life forecasting, the validation scheme shown in Figure 4 was devised. The
original time series was split in train set and test set, both sets together account
only to a fraction for the entire data set, and the test set comes immediately after
the train set. In addition, the size of the test set corresponds to the forecasting
horizon, usually very small when compared to the train size. Once the data is
split, the models are trained and a forecast for the test sample is generated and
stored, the train and test sets are shifted, by the size of the test set, so that there
are no overlapping points in the new test set. This process is repeated for the
remaining data or until a maximum number or iterations is reached. This valida-
tion procedure was also used in several articles but [Yang et al., 2015] provides
the reader with an adequate explanation.

Figure 4: Illustration of the validation process. For each iteration the predicted variable and
its true values are stored, at the end of the process they are concatenated, and only then are
the metrics calculated.

In practice a test size of only five observations was used for this research,
this means that the forecasts in question are at most five steps ahead, so the
forecasting horizon would be five hours and five days for an hourly and daily tree,
respectively. The train size for the hourly tree was 12.5 % of the entire dataset,
and for the daily tree it was 50%. The reason for the small train size is that the
models do not need more data to be performant, and it prevents the models from
learning from trends that occurred far in the past, but are not present in recent
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observations. In addition, the bigger the train set, the slower the training process
and thus the slower the validation procedure, which is already time consuming,
specially when it is used for hyperparameter tuning. Due to time constraints
a final addition to the validation process was made: imposing one hundred as a
limit on the validation rounds. After this adjustment and to make sure the results
were fair, an increased shift was introduced after each validation round, so that
the test set would run through the remaining portion of the data set.
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3 Case Study
This study analyses building electrical demand for 16 BAM office buildings, lo-
cated in 13 different Dutch cities. The electricity demand is the net demand, i.e.
the local PV production has already been subtracted from the demand, so the
net demand is the amount of energy that actually needs to be provided to the
building by the grid. The time series are stored with a granularity of 15 minutes,
for this research 27 months of data were used, from January 2019 to April 2021.
The buildings in question were of different sizes, electricity consumption, energy
label and year of construction. Also some building were equipped with local PV
production and some with natural gas meters, as presented in Table 1. The build-
ings that have a gas meter, mainly use it for heating, but there is no knowledge
about the heating of the buildings that do not have a gas meter installed, they
might still use gas but as part of district heating or they might not use gas at all
and rely on heat pumps for example. The fact that the internal building processes
are a black box makes this a strong and realistic test case.

Building Average Demand (kWh) Gas PV Area (m2) Year Energy Label
r1 25.8 X X 3178 - -
n1 23.4 X 10335 1970 C
p3 21.7 7339 1994 C
t1 20.7 X 9073 2002 A
e1 19.2 4561 - -
s4 18.3 5116 - A
p31 15.1 X X 3954 2004 A
d1 12.0 2200 2019 A
s1 8.0 X 4709 1999 D
p8 7.1 X 2933 - -
l6 6.6 X 2682 - C
k2 6.4 X 4880 - C
k3 5.6 X X 4118 - G
j1 5.6 X X 3159 2003 A
r3 2.7 X X 2124 1990 A
t14 0.8 1941 2009 A

Table 1: Building metadata, the average electricity demand is per the average demand per
15 minute intervals. Gas and PV indicate if a building is equipped with a gas meter or PV
production. The building names are abbreviated for privacy reasons. The Average Demand is
per 15 minute intervals

The majority of buildings have an A as energy label, and the buildings with
a C label are older, as expected. Nevertheless there is one building with D and
another one with G energy labels, which according to Dutch law will not be
allowed From January first, 2023 for office buildings 13.

13https://business.gov.nl/regulation/energy-labels/#article-energy-labels-for-buildings
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The preprocessing of the data was not a very extensive process. There were
some days with missing data, and they were removed accordingly. On the other
hand there was no outlier detection in place, nor data scaling. Even if the devel-
oped Python package natively supports scaling it did not influence performance so
it was decided against. The weekends were removed from the time series, because
the demand on the weekends is mostly constant, so forecasting models are used
for the week-days only. This is the way that the current forecasting is done in
the BAM headquarter offices, and approach that works fairly well. In practice,
different ML algorithms forecast week-data and weekend demand is modeled as
the average profile of past weekends. Therefore the focus is shifted entirely to the
weekdays. The weather data used for forecasting with LGBM, comes from KNMI,
the Dutch weather service. For each building the weather data was interpolated
from the closest weather station.

Figure 5: Illustration of the time series for one building, for different granularities and time
spans. A shows a short term behaviour, and B shows long term behaviour. In B we can see
Christmas effect and also the effect of Covid-19 lockdown. The series starts at the beginning
November, so month number two corresponds to Christmas

Aggregating time series, has a smoothing effect, it is similar to filtering the
high frequencies. Figure 5 A shows that 15 minute data is very volatile, there are
big variations. When aggregated to hourly data this variation decreases but only
slightly, it is only when aggregated to a full daily cycle that it becomes stable.
Forecasting daily demand should thus be easier than hourly or 15 minute demand.

On panel B, the Christmas of 2019 effect is visible; a period of low demand
because of closed buildings. But most importantly the immediate effect of Covid-
19 lockdown in March 2020 is clearly noticeable. When remote work became the
norm and thus electricity demand dropped drastically for office buildings, the
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profile of the demand became more erratic because peoples habits were entirely
different and so was energy consumption. This poses a big challenge to the fore-
casting models because they are confronted to forecasting data that looks nothing
like there was before, so it is expected that the most resilient model will have the
best performances. In Figure 5 B, one can observe that even at 1 day granularity
there is still an important variability of the demand; some high frequency oscil-
lations remain, even after the daily cycle has vanished due to aggregation. But
when aggregated at 5 day scale only a smooth trend of the data remains, and if
it were not for Covid-19 the constant behaviour from the first two months of the
graph is expected to remain more or less unchanged throughout the year.

Figure 6: Dispersion index vs surface area of the buildings, this shows a tendency for larger
buildings to have a smaller dispersion index.

The larger buildings are, the more random processes that take place inside
the building; There are more people that come and go, more appliances, com-
puters, lights and so on. Thus for large buildings the variations of these random
processes tend to cancel out and produce a demand profile with less variability.
This behaviour is related to the law of large numbers in probability theory, which
states that the averages of some random events have a long-term stability. In
addition, larger buildings tend to have more operations that are scheduled and
which account for a big part of the electricity consumption, such as ventilation or
cooling. In Figure 6 this relationship between building size, expressed with the
buildings surface are in this case, and the index of dispersion is presented. The
index of dispersion is a variance to mean ratio, i.e. how big is the variance with
respect to the mean. There is no clustering of building with and without PV,
therefore statistical properties of those buildings are not immensely different and
it is thus fair to compare the performance of the forecasts.
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Figure 7: Partial autocorrelation functions for all 16 buildings. Panel A shows data aggregated
at hourly granularity, and panel B at daily granularity.

The partial autocorrelation for all the buildings is shown in Figure 7. Panel
A shows data aggregated at hourly granularity and panel B at daily granularity.
These two granularities correspond to the top level of aggregation for a daily
and hourly tree, as shown in Figure 1. Studying the autocorrelation at those
particular levels can help identify the behaviour of the time series, and thus the
parameters, specially the seasonality, of the forecasting models. Panel A clearly
shows, as expected, a daily cycle and some weak intra-day autocorrelation. In
contrast Panel B lacks the weekly cycle due to the removal of weekend data, but
nevertheless there is a small peak in autocorrelation at day five; which indicates
that, for example Mondays are more similar to Mondays than to other day of the
week.
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4 Results and Discussion
This section is split in two parts, the results for the forecasting step and the results
for the reconciliation step. The forecast results allow for a selection of the best
set of hyperparameters for each algorithm, and identify the most performant one
for each hierarchy. The reconciliation results are built on the basis of the most
accurate forecasting algorithm for each building. After that, a selection of recon-
ciliation algorithms are applied only to the best forecast algorithm. With the aim
of identifying the best reconciliation method. This chapter separately evaluates
the two different application cases: hour ahead and day ahead forecasting.

4.1 Forecast
The hyperparameter tuning was performed with a subset of eight buildings; half
of the total. This choice is based on simulation time constraints. For each fore-
casting algorithm, several sets of parameters where tested; this entails running
the entire validation process many times, calculating the metrics for each set of
hyperparameters and then selecting the best set.

Three forecasting algorithms were selected for this process: ARIMA, ETS
and LGBM. In contrast TBATS was disregarded because of its prohibitively low
training speed, the ARIMA, ETS and LGBM all train all the models in a tree
structure in 5 to 10 seconds on average, but TBATS is two orders of magnitude
slower, therefore the parameter tuning was impossible to perform with TBATS.

4.1.1 Hourly Tree Structure

This tree structure is focused on the short term forecasting; few hours ahead. The
main pattern in hourly data is the daily cycle of electricity demand. This tree
structure includes the smallest granularity and thus the time series are charac-
terized by high frequency variability. All this factors will play a role on which
forecasting algorithm is best suited for and hourly tree structure.

ARIMA

Based on the partial autocorrelation form Figure 7, a seasonality up to 24 hours
seems reasonable, so three different seasonalities were tested: 6, 12 and 24 hours.
The results for the best parameters are shown in Table 2.

Order (p,d,q) Seasonal (P,D,Q,m)
Level 1 (4, 1, 0) (2, 0, 0, 12)
Level 2 (2, 1, 2) (2, 0, 0, 12)
Level 3 (1, 1, 5) (0, 0, 0, 12)

Table 2: Optimal ARIMA parameters per aggregation level for an hourly tree.
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It is interesting to note that the selected seasonality does not amount to an
entire day but instead to 12 hours, half a daily cycle, this may be linked to
the day and night differences. However the difference in performance between a
seasonality of 24 and 12 is small; the order of 1% of RMSE and 0.5% of MAE
when contrasted to the 10-20% decrease of performance when a seasonality of 6
hours is chosen. Nevertheless The seasonal component plays a role in the first two
levels of the hierarchy (non-zero PDQ) whereas for the last level all the seasonal
parameters are zero, so it has no influence. It is worth noting that the optimal
ARIMA parameters change indeed between aggregation levels, this is backed my
the fact that aggregation changes the properties of a time series and thus different
hyperparameters are needed for its modeling. Figure 8 presents the metrics from
this optimal set of ARIMA models.

Figure 8: Average across buildings of the normalized RMSE, MAE and MedAE for the optimal
ARIMA models fitted on an hourly hierarchy.

The three concerned metrics show a similar behaviour; they show an impor-
tant drop in performance when regarding level 3 (15min granularity), the metrics
almost double. The metrics for the first two levels are acceptable but not remark-
ably good: 25% RMSE and 16% MAE and 10% MedAE. The standard deviation
is considerable: 16% for RMSE and 10% MAE and 4.5% MedAE, which indicates
a high variability of performance across buildings which is not desirable. The fact
that there is no seasonality included in the 15 minute granularity could explain
why the performance is poor for that level, another possible explanation is the
higher variability of the data at that particular level, this could also be a factor
that affects performance.

ETS

Concerning ETS, the seasonal periods that were considered, ranges from 12 to 96,
i.e. half a day up to four days. The optimal seasonal period is found to be 24, so
an entire daily cycle. The metrics from this model are presented in Figure 9.
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Figure 9: Average across buildings of the normalized RMSE, MAE and MedAE for the optimal
ETS models fitted on an hourly hierarchy.

The three metrics are in agreement, showing a slight increase in performance
as the granularity increases, the best forecast at the 1 hour level have 22% RMSE,
15% MAE and 10% MedAE, this is a slight improvement from ARIMA. But the
greatest improvement comes at the 15 min aggregation level, this shows that the
simplicity of ETS makes it robust enough to over-perform ARIMA. Nevertheless
the standard deviation is the highest of all three algorithms: 16% RMSE, 11%
MAE and 7%MedAE, this is a red flag when selecting the best forecasting method;
ETS is not a robust enough method for this particular task.

LGBM

The best parameters for the LGBM model are the following. The most adequate
boosting type is undeniably the traditional gbdt (gradient boosting decision tree).
The look back parameter (the number of lags included as features) was found to
be 72, out of a range from 12 to 96. Which means that the LGBM model will have
as input 3 days of past electricity demand in order to make a forecast. Regarding
the exogenous predictors, only weather data was selected: temperature, global
radiation and relative humidity. There were no time features selected such as
hour of the day or day of the year. The results obtained using the previously
described LGBM forecasting model are presented in Figure 10.

Figure 10: Average across buildings of the normalized RMSE, MAE and MedAE for the
optimal LGBM models fitted on an hourly hierarchy.

The same agreement between metrics as in ARIMA and ETS is again present,
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but this time there is a better overall performance and a sharper increase in
accuracy when going up in the hierarchy levels. for the 1 hour level the metrics are:
18% RMSE, 11.5% MAE and 6% MedAE with the respective standard deviation
being: 7.5% for RMSE, 4% for MAE and 2% for MedAE. These results show that
LGBM is the most suited forecasting algorithm for this given hourly hierarchy,
and that the top level of the hierarchy is better forecasted than the bottom level,
there is a 3% difference of RMSE between the 1 hour and the 15 minute levels.

4.1.2 Daily Tree Structure

A daily tree structure entails that the intraday fluctuations have vanished due to
the aggregation, thus any seasonality could come from weekly, monthly or even
yearly cycles. To find the best seasonality time-scale for the models, the search
began at small values: starting from no seasonality at all its value was then
increased gradually to detect any possible improvement up to 28 day seasonality.

ARIMA

Based on the partial autocorrelation form Figure 7, a seasonality up to 24 hours
seems reasonable, so three different seasonalities were tested: 6, 12 and 24 hours.
The results for the best parameters are shown in Table 3.

Order (p,d,q) Seasonal (P,D,Q,m)
Level 1 (0, 1, 2) (1, 0, 1, 3)
Level 2 (2, 0, 2) (0, 1, 2, 3)
Level 3 (2, 0, 2) (0, 0, 1, 3)

Table 3: Optimal ARIMA parameters per aggregation level for a daily tree.

The optimal seasonality was found to be of 3 days, and the non-zero P,D,Q
parameters indicate that it does play an important role in the forecasting. Such
seasonality is best to capture short term patterns, and shows the lack of monthly
or weekly cycles. It is important to remember that the weekend data was removed.
The metrics from this optimal model are presented in Figure 11.

Figure 11: Average across buildings of the normalized RMSE, MAE and MedAE for the
optimal ARIMA models fitted on a daily hierarchy.
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The metrics coincide in the fact that the daily granularity is the best forecasted
one, with a RMSE of 18%, MAE of 12.5% and MedAE of 8.5%, this constitutes
the best performance of the three models. Nevertheless the accuracy of the 1 hour
level still leaves room for improvement. In contrast with an hourly hierarchy, the
standard deviation is drastically lower.

ETS

The optimal seasonal period was found to be of 3 days, same as for ARIMA. This
further supports the claim that long-term cycles do not help the forecasting at a
daily level. The results using the optimal ETS model are shown in Figure 12.

Figure 12: Average across buildings of the normalized RMSE,MAE and MedAE for the
optimal ETS models fitted on a daily hierarchy.

The metrics corresponding the 1 day granularity are: 19.5% RMSE, 13.5%
MAE and 9.5% MedAE. An acceptable accuracy for such a simple model, but
around 1% worse than ARIMA.

LGBM

The selected parameters for LGBM are similar than those form the hourly hi-
erarchy, again gbdt is the preferred boosting method and the weather features:
temperature, global radiation and relative humidity were chosen, with no time
features included. The only difference is the look back, or number of lags, the
optimal value is 3, so to make a forecast only the past 3 days are included. The
look back is in accordance to the seasonality from ARIMA and ETS, and shows
that the short-term trends dominate when forecasting building load at a daily
scale. The results from LGBM are presented in Figure 13.
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Figure 13: Average across buildings of the normalized RMSE,MAE and MedAE for the
optimal LGBM models fitted on a daily hierarchy.

The metrics for the 1 day granularity are the following: 20.5% RMSE, 14.5%
MAE and 10% MedAE. Again, it is an acceptable accuracy but around 1% worse
than ETS and 2% worse than ARIMA.

4.1.3 Base Forecast Correlation

The performance of the base forecasts is related to some building characteristics.
In Figure 14 the RMSE of the best forecasts (of all the levels of both daily and
hourly hierarchies) is compared with some of the metadata from Table 1. The
energy label, gas or PV meters and the year of construction of the building did
not present any correlation and thus were excluded from the scatter plot. Only
metadata about the building electricity demand and the area are presented.

Figure 14: The RMSE of the best independent forecasts is plotted against building meta-
data,namely: mean electricity demand, standard deviation of the electricity demand (both in
kWh per 15min), dispersion of the electricity demand and building area (units of 1000m2).
It shows a consistent correlation for both tree structures, a different hierarchical structure is
indicated by the subscript _h for hourly or _d for daily tree structure. The Pearson correlation
is presented for each scatter-plot
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There is a clear negative correlation between the average demand and the
RMSE, hence larger buildings have more accurate forecasts. This claim is also
supported by the negative correlation between area and RMSE. It is interesting
to note a negative correlation between the standard deviation of the electricity
demand and the RMSE. This implies that the higher the variability the better the
prediction, and this claim is misleading. In reality when a building increases in
size, so does the electricity demand and also its the standard deviation, seen from
this perspective the correlation of the standard deviation is due to the standard
deviation becoming a proxy for building size more due to the variability of the
time series. To detach the building size from the variability the dispersion should
be the variable in question, recall that the dispersion is the standard deviation
scaled by the mean. In this case there is a positive correlation between dispersion
and RMSE, which in accordance to common knowledge, indicates that more noisy
and variable a time series, the more difficult it is to forecast it.

4.2 Reconciliation
In this section the results from the reconciliation step are presented.Even if in
the previous section about forecasting, the best algorithm (on average) per tree
structure was identified, the reconciliation process is be based on all tree fore-
casting algorithms and then the best pair forecasting-reconciliation per building
is selected.

The reason for this choice is simply that it is impossible to known a priori how
much the reconciliation will improve the forecasts, and if it will give the same
improvement for all the forecasting algorithms or if it will perform better on one
of them, which may not necessarily be the best in terms of base forecast metrics.
For example, let us assume that for one building, ARIMA was the best algorithm
for forecasting, but LGBM was not far behind, and that after the reconciliation
step, the overall accuracy is better for LGBM plus reconciliation than for ARIMA
plus reconciliation.

It is worth mentioning that only one machine learning reconciliation method
is presented: LGBM. Because the performance of SVM in reconciliation was ex-
tremely poor and was not deemed worthy of discussion.

4.2.1 Hourly Tree Structure

In this section, the following reconciliation methods are presented: VAR, STR,
OLS, LGBM (machine learning reconciliation), COV, GLASSO, blockCOV, CCS,
markov.

For each building, all the reconciliation methods were applied to the best base
forecasts. The results are presented in Figure 15. It is clear that, overall, the
reconciliation improves the base forecasts in terms of RMSE; the vast majority of
the values in the heatmap are positive. Only LGBM reconciliation presents some
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negative PRIAL values, that go as low as -1.7% for building j1, but remarkably
enough LGBM also provides the best PRIAL for a different building.

Regarding the best reconciliation per building, highlighted in blue. The max-
imum improvement is of 7.3% of RMSE for building k2 and comes from LGBM
reconciliation. The minimum improvement is of 2.4% for building t1 and comes
from markov reconciliation.

The reconciliation method that performed the best for the most buildings is
COV; 4 buildings. followed by VAR, STR and LGBM, each of them was selected
best for 3 buildings. Then comes markov with 2 buildings and last blockCOV
with 1 building. GLASSO and CCS were never selected as best reconciliation for
any building. Nevertheless, on several occurrences, the differences in performance
were limited, so that picking one reconciliation method over another for a given
building would not change much in practice.

Figure 15: For each building, the average PRIAL RMSE across aggregation levels is presented.
The highest value is highlighted in blue, which corresponds to the best reconciliation method.

It is also important to inspect how the reconciliation step acts on every level
of the hierarchy, therefore the highlighted methods in Figure 15 will be studied
in more detail. In Figure 16 the PRIAL for each aggregation level of the best
reconciliation methods are shown. The most clear and unequivocal remark is that
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the best forecasting method was LGBM for all the buildings, again in accordance
with Section 4.1.1. There is a significant difference on how the reconciliation
improved the forecasts for the different levels. On the 15 minute level there is
a slight improvement for most of the buildings, an almost zero improvement for
four of them and a worse forecast for only one; building k3. Regarding the two
upper levels of the hierarchy, they show a relatively good overall improvement, of
an average of 5.8% improvement for the 1 hour level and a 4.3% improvement for
the 30 minute level. The noisy data from the 15 minute level could be the reason
for the small reconciliation improvements for that level. Another possibility is
that the reconciliation algorithms adjust less the values at the bottom of the tree,
this possibility is supported by the weighting schemes in Section 2.3.

Figure 16: Best forecasting and reconciliation algorithm and the corresponding PRIAL RMSE
for the different aggregation levels of each of the buildings in the case study.

4.2.2 Different Number of Aggregation Levels

Before diving into the results for a daily tree structure, let us have a word about
the other possible tree structures for a daily hierarchy. The tree structure from
Figure 1A is not the only possible tree that can be constructed with a top granu-
larity of one day and a bottom granularity of one hour. Here the results of three
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different structures are presented, each with a different number of aggregation
levels: three, four, and five.

• Three aggregation levels. This structure is the one presented in Figure 1A.
It has three different granularities: 1 day, 6 hours, 1 hour. The 6 hour level
has a total of four nodes.

• Four aggregation levels. This structure has the following levels: 1 day, 6
hours, 3 hours, 1 hour, notice the only modification is the addition of the 3
hour aggregation level, which has a total of eight nodes.

• Five aggregation levels. This structure is quite different from the last two,
since none of the intermediate levels share the same granularity. This five
level tree has the following levels: 1 day, 8 hours, 4 hours, 2 hours, 1 hour.
The 2 hours, 4 hours and 8 hours aggregation levels have twelve, six and
three nodes, respectively.

It is worth noting that the only two granularities shared by all three structures
are 1 day and 1 hour; which correspond to the top and bottom levels. The follow-
ing tables compare the performances of these two levels in terms of normalized
RMSE.

1 Day 3 levels 4 levels 5 levels
building RMSEMin Algorithm RMSEMin Algorithm RMSEMin Algorithm

d1 22.00 ETS_LGBM 25.93 LGBM_CCS 25.84 ARIMA_LGBM
e1 17.88 ARIMA_OLS 18.66 ETS_LGBM 18.64 LGBM_LGBM
j1 22.74 ARIMA_OLS 16.11 ETS_LGBM 15.62 ETS_LGBM
k3 16.09 ARIMA_markov 11.47 ARIMA_OLS 11.45 ARIMA_OLS
k2 17.57 ARIMA_VAR 11.11 LGBM_VAR 11.16 LGBM_CCS
l6 12.78 ARIMA_STR 12.05 ETS_LGBM 11.80 ETS_LGBM
n1 12.77 ARIMA_STR 10.68 ARIMA_CCS 10.71 ARIMA_VAR
p3 18.27 ARIMA_STR 12.79 ARIMA 12.79 ARIMA
p31 15.87 ETS_COV 12.33 LGBM_CCS 12.56 LGBM_VAR
p8 17.49 ARIMA_VAR 20.02 ARIMA 20.02 ARIMA
r1 12.73 ARIMA_LGBM 9.33 ARIMA 9.33 ARIMA
r3 22.32 ARIMA_OLS 19.19 LGBM 19.11 LGBM_markov
s4 15.35 ARIMA_markov 11.66 ARIMA_OLS 11.67 ARIMA_OLS
s1 15.45 ARIMA_OLS 16.45 ETS 16.45 ETS
t1 10.79 ARIMA_VAR 11.60 ARIMA_VAR 11.67 ARIMA_CCS
t14 23.04 ARIMA_OLS 29.33 ARIMA_VAR 29.52 ARIMA_VAR

Average 17.07 - 15.54 - 15.52 -

Table 4: Normalized RMSE for the 1 Day aggregation level - top level. This table compares
different tree structures with three, four and five aggregation levels. For each building, the
structure with the lower nRMSE is highlighted. It is worth noting that the Min subscript
indicates that the RMSE corresponds to best algorithm for that particular building, forecast
and reconciliation combined. The forecasting algorithm comes first and after the underscore is
the corresponding reconciliation method
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It is visible in Table 4 that the addition of one or two extra levels decreases on
average 1.5% the RMSE. This is a small but significant improvement, but suggests
that a 5 level tree is a more suitable structure. The results can also be analyzed
from the perspective of performance of individual buildings, for some buildings
the 3 level structure performs best, and for others the 4 or 5 level structure.
Thus there is no such thing as a rule that more aggregation levels increase the
forecasting plus reconciliation performance, but that modifying a tree structure
is a tool to better model time series data that should be studied in an individual
manner. The results from Table 5, for the 1 hour level, are similar but show
a more defined preference towards a structure with 4 or 5 levels, this time the
average difference in RMSE is of 3% and only three, out of the sixteen buildings,
show their best performance with three aggregation levels.

Tables 4 and 5 also show the most performant foretasting and reconciliation
methods per building and per tree structure. It is interesting to note that, in
agreement with the results from Section 4.1.2, ARIMA is by a very big margin
the most used algorithm for the 3 level tree, even if for a few buildings ETS
is found to be best. But once the hierarchical structure starts to change, then
ARIMA loses some relevance, for example with 5 aggregation levels, ARIMA is
only chosen for seven buildings (in terms of RMSE), in contrast to the twelve
buildings from the 3 level hierarchy.

It is also worth noting that for 3 levels of aggregation, the inclusion of a recon-
ciliation algorithm always improved the forecasts; there is always a reconciliation
method after the forecasting method (separated by an underscore). Whereas this
is not always the case with a larger hierarchy. In Table 5 there are five build-
ings where only the forecasting algorithm is present (no underscore followed by
the name of a reconciliation method), this means that for that particular level
the forecasting alone provided a better RMSE. This hints to a weakness in the
reconciliation methods; scalability to large hierarchies.
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1 Hour 3 levels 4 levels 5 levels
building RMSEMin Algorithm RMSEMin Algorithm RMSEMin Algorithm

d1 45.10 ETS_LGBM 52.46 LGBM_CCS 52.67 LGBM_CCS
e1 25.81 ARIMA_CCS 24.31 ETS_LGBM 24.56 ETS_LGBM
j1 37.01 ARIMA_LGBM 28.49 ETS_LGBM 27.89 ETS_LGBM
k3 28.62 ARIMA_VAR 17.12 ARIMA_VAR 17.26 ARIMA_VAR
k2 30.41 ARIMA_VAR 24.16 LGBM_VAR 24.10 LGBM_VAR
l6 23.55 ETS_CCS 21.76 LGBM_OLS 21.49 ETS_LGBM
n1 20.04 ARIMA_LGBM 16.21 ETS 16.21 ETS
p3 24.75 ARIMA_STR 16.42 ARIMA 16.42 ARIMA
p31 25.91 ARIMA_VAR 20.09 ETS_LGBM 19.96 ETS_LGBM
p8 27.53 ARIMA_VAR 28.57 ARIMA_LGBM 28.44 ARIMA_LGBM
r1 22.50 ETS_LGBM 19.83 ARIMA_VAR 19.75 ARIMA_CCS
r3 38.73 ARIMA_VAR 28.22 LGBM 28.22 LGBM
s4 24.08 ARIMA_LGBM 21.23 ARIMA_LGBM 21.01 ARIMA_CCS
s1 22.95 ETS_CCS 22.52 ETS_LGBM 23.05 ETS_markov
t1 18.36 ARIMA_CCS 17.85 ARIMA 17.85 ARIMA
t14 34.60 ARIMA_CCS 44.43 ARIMA_LGBM 44.47 ARIMA

Average 28.12 - 25.23 - 25.21 -

Table 5: Normalized RMSE for the 1 hour aggregation level - bottom level. This table
compares different tree structures with three, four and five aggregation levels. Please note that
the Min subscript indicates that the RMSE corresponds to best algorithm for that particular
building, forecast and reconciliation combined. The forecasting algorithm comes first and after
the underscore is the corresponding reconciliation method

4.2.3 Daily Tree Structure

The results of a five level tree structure are presented, since it was previously
shown that in terms of RMSE and MAE the best results overall are obtained
with a five level tree. In this section we only present the following reconcilia-
tion methods: VAR, STR, OLS, LGBM (machine learning reconciliation), CCS,
markov. Some methods were not suited for this tree structure: COV, GLASSO,
blockCOV. Because of computational problems regarding the calculation of the
inverse variance matrix.

For each building, all the reconciliation methods were applied to the best base
forecasts. The results are presented in Figure 17.For this different tree structure,
the improvement of reconciliation on the base forecasts. It is clear that, overall,
the reconciliation improves the base forecasts in terms of RMSE; the vast majority
of the values in the heatmap are positive. LGBM reconciliation presents abundant
negative PRIAL values, that go as low as -7% for building k2, but on the other
hand LGBM also provides the best PRIAL for two different buildings; for a daily
tree structure LGBM reconciliation can be performant but it is unreliable. OLS
reconciliation does not bring much to the table, with PRIAL values ranging from
-1% to 1.9% even if for building s1 it is regarded as the best reconciliation method.

Regarding the best reconciliation per building, highlighted in blue. The max-
imum improvement is of 5.3% of RMSE for building p31 and comes from VAR
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reconciliation. The minimum improvement is of 0.81% for building s1 and comes
from OLS reconciliation.

Figure 17: Average PRIAL RMSE across levels .

The reconciliation method that was the most performant for the highest
amount of buildings is VAR; 5 buildings. followed by CCS and markov with
3 each. Then there is LGBM and STR each with 2 occurrences and last OLS
which was only best for only 1 building.

For a more complex tree structure, the classic reconciliation methods, pro-
vide the better and more robust the results. VAR and STR, have merits to be
important reconciliation methods despite their simplicity. Although the methods
accounting for autocorrelation (CCS and markov) trail the classical methods but
are not far behind, and deserve their recognition.

The intra-level performance of the best forecasting and reconciliation pairs
of algorithms, highlighted in blue in Figure 17, is presented in Figure 18. The
first important remark is that all three forecasting algorithms are present, differ-
ent than the hourly hierarchy where LGBM was the most performant for every
building. Nevertheless LGBM remains the forecast selected for the majority of
buildings, with a total of nine, followed by ARIMA with four buildings and then
ETS with three. Regarding reconciliation, the disparity in PRIAL in quite re-
markable, both when comparing the results for different buildings or the different
levels of the same building. The intermediate levels seem to have the most con-
sistency in the results. In particular the 8 hours level, where the reconciliation
always improved the forecasts by more than 1%, and has an average PRIAL of
4%. Similar to the behaviour of reconciliation on an hourly hierarchy, the bottom
level is where the least improvements are made. In this case, the 1 hour level im-
proved the forecast of only three buildings above 1%, and for two other buildings
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Figure 18: Best forecasting and reconciliation algorithm and the corresponding PRIAL RMSE
for the different aggregation levels of each of the buildings in the case study.

the reconciliation worsened the forecasts by the same margin. In addition, the
rest of the buildings have a PRIAL close to zero, which amounts to an average
PRIAL of 0.5% for this 1 hour level, on average the forecasts are still improved
but not in a substantial way.

The top level of the hierarchy; the 1 day granularity, is where the most surpris-
ing results happen, different than for an hourly tree where the top level showed
consistent improvements, for a daily tree it is either an important improvement or
a decrease in accuracy. There are three buildings with very substantial improve-
ments from reconciliation; above 10%. Two other buildings also have a PRIAL
of around 5%, so roughly a third of the buildings show significant gains in accu-
racy from reconciliation. On the other hand, six building exhibit negative PRIAL
values, as low as -1.7%, this amounts to another third of buildings that lose in
performance from reconciliation at the 1 day level. The rest of the buildings have
a PRIAL near zero or one percent, so on average for the 1 day aggregation level
the PRIAL is 2.7%, which is a high value but comes from striking differences
between buildings.
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4.2.4 Reconciled Forecast Correlations

Here the performance of the influence of building data and forecasting perfor-
mance on the reconciliation step will be discussed. In Figure A1 the reconciliation
PRIALRMSE is plotted against the same building data as in Figure 14, but no
actual relationship is found. Which means that the performance of the reconcil-
iation step is not influenced by the size of the building nor the dispersion of the
original time series.

Figure 19: Reconciliation PRIAL plotted against forecasting RMSE for an hourly tree struc-
ture. The Pearson correlation is presented for each scatter-plot and it shows no link between
forecasting and reconciliation performance.

If reconciliation performance is not related to building metadata, then it may
be related for the forecast accuracy. To get some insight on this possible depen-
dency, the best forecast RMSE is plotted against the corresponding reconciliation
PRIALRMSE. In Figure 19 an example of an hourly hierarchy is shown. Re-
markably the correlations are weak and there seem to be no consistent patterns.
Therefore the reconciliation is not influenced by the forecast accuracy, based only
on the base forecast there is no way to predict if the reconciliation step will per-
form well or not. This claim is also supported by Figure A2, where the same
scatter plot of RMSE against PRIAL is shown, but this time for a daily tree
structure.
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5 Conclusion
Throughout this research different models were tested for building load forecast
using a temporal hierarchical scheme. After a validation step the best models
were selected based on different metrics. A variety of reconciliation methods
were studied, to ensure forecasts coherency and increase accuracy. Two different
hierarchical structures were examined: daily and hourly hierarchy, with a dataset
of sixteen office buildings and more than two years of fifteen minute electricity
demand data available.

The quality of electricity demand forecasting, is crucial to the operation and
trading activities the energy market, the deployment of energy flexibility and
ultimately the reduction of CO2 emissions. One of the potential benefits of the
studied forecasting methods is rapid deployment for a large portfolio where there
is limited knowledge of the buildings.

For certain applications it might be more convenient to forecast building de-
mand at a different granularities, for example regarding day ahead electricity
purchase, the use of the one hour granularity is best suited. Because generally
the bottom level of a hierarchy exhibits a lesser amount of improvements from
reconciliation than the top and intermediate levels.

Among the four implemented forecasting models, the adaptation of LGBM to
a forecasting task, proved superior to other methods overall, for both a daily and
an hourly time hierarchy. The performance of ARIMA was a match for LGBM
on a daily tree structure but it was overshadowed in an hourly hierarchy. On
the other hand ETS, performed as expected and remained a robust and simple
baseline forecasting algorithm. The prohibitively slow TBATS was not considered
in the comparison, because it was impossible to run it as many times as the others,
and on a reduced data set it did not prove to be strikingly better.

The structure itself of the temporal hierarchy was proved to influence the
performance of both forecasting and reconciliation steps, as well as the choice
of which forecasting algorithm is best suited for a particular building. Larger
hierarchies could be further investigated, for example a one week hierarchical
structure seems like the logical next step in this direction; to test the scalability
of the algorithms.

This research considered only sixteen buildings, a further study could ben-
efit from a larger number of buildings and more variety; including residential
and commercial buildings as well. Nevertheless the results, indicate that an im-
plementation of hierarchical forecasting and reconciliation needs a case by case
approach.

An important limitation of this study is that, only one type of forecasting
model was used for the entire tree, the reconciliation process allows for different
models per aggregation level or even per node, since only the in-sample errors,
and not the method from which they come is important in the reconciliation.

Another limitation is that the reconciliation approaches, with the exception of
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machine learning reconciliation, either have constant weights or the weights are
a function of in-sample errors. Therefore they are not determined in reference to
the metrics used to assess forecasting performance. And with larger hierarchical
structures the in-sample errors can produce near-singular weight matrices if full
covariance methods are used.

On the other hand machine learning reconciliation, solves the dependency
on in-sample errors and can be very performant, but it can also fail drastically
and provide the worst results, all depending on which building is taken in to
account, in other words its performance depends on the time series in question.
The reliability of machine learning methods must be assessed case by case before
deploying it in a real production environment.

The inclusion of autocorrelation in the reconciliation algorithm proved effective
in improving the base forecasts, but the gains in accuracy are still limited and the
traditional variance scaling remains a central asset in the reconciliation methods.

Overall a thorough investigation on the temporal hierarchies was completed,
pointing out the strengths and weaknesses of this method. A Python package,
specialized for the task, was developed and is now available for public use. This
thesis contributes to increase the importance of temporal hierarchies in the field
of time series forecasting.
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Appendices

Figure A1: Reconciliation PRIAL plotted against building metadata ,namely: mean electric-
ity demand, standard deviation of the electricity demand (both in kWh per 15min), dispersion
of the electricity demand and building area (units of 1000m2). A different hierarchical struc-
ture is indicated by the subscript _h for hourly or _d for daily tree structure. The Pearson
correlation is presented for each scatter-plot and it shows a little to no correlation between
reconciliation performance and building characteristics.
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Figure A2: Reconciliation PRIAL plotted against forecasting RMSE for a daily tree structure.
It shows no link between forecasting and reconciliation performance
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