
A Blueprint for Integrating Task-Oriented Conversational
Agents in Education

Juan Carlos Farah
juancarlos.farah@epfl.ch
School of Engineering

École Polytechnique Fédérale de Lausanne
Lausanne, Switzerland

Basile Spaenlehauer
basile.spaenlehauer@epfl.ch

School of Engineering
École Polytechnique Fédérale de Lausanne

Lausanne, Switzerland

Sandy Ingram
sandy.ingram@hefr.ch

College of Engineering and Architecture of Fribourg
University of Applied Sciences

Fribourg, Switzerland

Denis Gillet
denis.gillet@epfl.ch

School of Engineering
École Polytechnique Fédérale de Lausanne

Lausanne, Switzerland

ABSTRACT
Over the past few years, there has been an increase in the use of
chatbots for educational purposes. Nevertheless, the chatbot tech-
nologies and architectures that are often applied to educational
contexts are not necessarily designed for such contexts. While
general-purpose chatbot technologies can be used in educational
contexts, there are some challenges specific to these contexts that
need to be taken into consideration. Namely, chatbot technologies
intended for education should, by design, integrate directly within
online learning applications and focus on achieving learning goals
by supporting learners with the task at hand. In this paper, we
propose a blueprint for an architecture specifically aimed at inte-
grating task-oriented chatbots to support learners in educational
contexts. We then present a proof-of-concept implementation of
our blueprint as a part of a code review application designed to
teach programming best practices. Our blueprint could serve as a
starting point for developers in education looking to build chatbot
technologies targeting educational contexts and is a first step to-
ward an open chatbot architecture explicitly tailored for learning
applications.

CCS CONCEPTS
•Human-centered computing→Natural language interfaces;
• Applied computing → Interactive learning environments;
• Software and its engineering→ Software system structures.

KEYWORDS
chatbots, conversational agents, digital education, online learning,
task-oriented interactions, software architecture

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CUI 2022, July 26–28, 2022, Glasgow, United Kingdom
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9739-1/22/07. . . $15.00
https://doi.org/10.1145/3543829.3544525

ACM Reference Format:
Juan Carlos Farah, Basile Spaenlehauer, Sandy Ingram, and Denis Gillet.
2022. A Blueprint for Integrating Task-Oriented Conversational Agents in
Education. In 4th Conference on Conversational User Interfaces (CUI 2022),
July 26–28, 2022, Glasgow, United Kingdom. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3543829.3544525

1 INTRODUCTION
The presence of chatbots in educational contexts has been steadily
increasing over the past few years. Recent surveys [29] have shown
widespread interest in the use of chatbots in education both for
research and practice, highlighting tangible benefits [25, 31] and
promising future applications [8, 27]. More concretely, chatbots
have been primarily applied to education as tools for information
retrieval or to support language learning [31]. However, a number
of challenges limit our ability to integrate chatbots into educational
contexts [20], including human-computer interaction (HCI) chal-
lenges (e.g., eliciting the uncanny valley effect [5]), technological
challenges (e.g., lack of integration with learning platforms [35]),
and pedagogical challenges (e.g., difficulty measuring learning out-
comes [23]). In this paper, we focus on addressing these last two
types of challenges.

First—concerning technological challenges—while frameworks
for integrating chatbots in education have been proposed [18, 30,
32], there is no standard approach to building and deploying chat-
bots for educational purposes. This lack of standard results in either
educational chatbots being built from scratch [6, 19] or being pow-
ered by technologies not necessarily aimed at education, such as
Textit [28], Pandorabots [33], Facebook’sMessenger [9], or Google’s
Dialogflow [17]. Both of these approaches have their limitations. On
the one hand, building a custom chatbot architecture requires ad-
vanced knowledge encompassing complex computer programming
skills [26]. On the other hand, while chatbots built with general-
purpose chatbot technologies have been successfully applied to
educational settings [31], they often lack the pedagogical scaffold-
ing required to easily design context-dependent dialog flows that
can be integrated into a formal learning context. This lack of ped-
agogical scaffolding highlights the second challenge, which is to
ensure that the interaction between the chatbot and the learner is
focused on achieving a particular learning goal [23] and stays on

https://orcid.org/0000-0002-2477-4196
https://orcid.org/0000-0001-6606-0768
https://orcid.org/0000-0002-4050-580X
https://orcid.org/0000-0002-2570-929X
https://doi.org/10.1145/3543829.3544525
https://doi.org/10.1145/3543829.3544525


CUI 2022, July 26–28, 2022, Glasgow, United Kingdom Farah et al.

topic [16]—a task that is particularly complex when using free-form
dialog and natural language.

To address these challenges, we propose a blueprint for a system
that facilitates the integration of conversational agents into online
learning applications. Our blueprint is most aligned with work by
Griol and Callejas [18], who proposed an architecture for building
chatbot interfaces in educative applications and incorporated it into
their Geranium pedagogical system. Nevertheless, while Griol and
Callejas focused on speech-based systems and questionnaire-based
learning applications, our aim is to lay out an architecture for text-
based inputs, and one that is agnostic to the pedagogical context
and type of interaction.

In this paper, we provide an overview of our blueprint. We first
outline the design considerations that emerge from the identified
challenges and motivate our proposed approach to address these
requirements. Second, we detail our blueprint’s architecture, defin-
ing the key building blocks, components, and processes that make
up an interaction between a learner and a chatbot in an educational
context. We then present a proof-of-concept implementation of
our architecture to showcase how it can support a learning activ-
ity. We conclude by discussing how our proposed blueprint could
serve as an initial step toward defining an open standard for inte-
grating chatbots into applications aimed at educational contexts.
Limitations and future work are also examined.

2 DESIGN CONSIDERATIONS
We build on the aforementioned challenges to define the consid-
erations that will inform the design of our blueprint. The guiding
concern was to ensure that these chatbots were (i) integrated and
(ii) task-oriented. For each of these aspects, we highlight the require-
ment that emerges from the literature and our proposed approach
to address that requirement in our blueprint.

2.1 Integrated
2.1.1 Requirement. Chatbots should integrate directly with online
learning applications [35].

2.1.2 Proposed Approach. Our blueprint is centered on the online
learning application that the chatbot is meant to support. This
learning application provides the graphical and pedagogical context
that will ground the chatbot’s interaction. Furthermore, we propose
a modular approach that is system-agnostic and does not require
any specific technology stack. To maximize reuse, components
are loosely coupled and can be composed as needed to support
different learning applications. For example, the communication
between the learning application and the rest of the architecture
is handled by one component in particular. This component could
be adapted in order to integrate different learning applications
without the need to replace the rest of the architecture. Finally,
while we cannot impose that implementations of our proposed
blueprint be open source, we strongly recommend it. Open source
development facilitates uptake, reuse, continuous improvements,
and customization starting from a common codebase, and has been
suggested to be favored by developers in education [10].

2.2 Task-Oriented
2.2.1 Requirement. Chatbots should be designed to support learn-
ers in achieving well-defined learning goals [23].

2.2.2 Proposed Approach. Our blueprint requires that chatbots be
equipped to perform one or more functions. Each function should
be pertinent to the context in which the chatbot is deployed. That
is, a chatbot’s function should take as input the specific learning
activity that it is meant to support. To ensure useful and unobtru-
sive support and minimize the possibility of an unsolicited chatbot
interfering with the learning process, a chatbot does not perform its
task unless it is summoned by the learner. Furthermore, the chatbot
takes into consideration feedback from the learner to improve the
way it carries out or communicates the results of its performed func-
tion(s). This adaptive approach serves to personalize and enhance
interactions with the chatbot and the resulting user experience over
time. Privacy considerations related to the way personal data is
handled by the chatbot should be transparent to the user.

3 ARCHITECTURE
In this section, we outline the key building blocks, components,
and processes that comprise our blueprint, as well as the way they
come together to support a learning activity.

3.1 Building Blocks
To illustrate how our architecture fits with the educational context
that we are targeting, we define a number of building blocks that
make up our components. Specifically, these building blocks show
how the chatbot is tasked to support learners during a learning
activity by performing one or more specific functions. Here, we
outline the key building blocks, providing examples based on the
implementation that we will present in Section 4.

3.1.1 Learning Resource. The learning resource constitutes the
pedagogical context for the interactions between the chatbot and
the learner. The chatbot should be able to perform its task using
this learning resource. An example of a learning resource would be
a code snippet that can be analyzed for potential issues.

3.1.2 Function. A function is performed by the chatbot given a
specific pedagogical context, which serves as the function input.
The idea is that the function takes as its main input the learning
resource and returns a set of talking points that serve to start the
interaction between the learner and the chatbot. An example of a
function would be a linter, which is a static analysis tool that can
detect bugs and other issues in code [22]. A linter would take as
input a code snippet and output the locations in the code snippet
where it has detected an issue.

3.1.3 Concept. A concept refers to a subject that the chatbot can
identify in the pedagogical context that it is embedded in and that
it can subsequently converse about. An example of a concept would
be a code styling rule defining how students should name variables.
In JavaScript, for instance, the ESLint linter [36] can detect when
variables have not been written in camelCase. When analyzing a
code snippet, the chatbot could detect issues in the code that are
related to these concepts and eventually hold an interaction about
them with the learner.



A Blueprint for Integrating Task-Oriented Conversational Agents in Education CUI 2022, July 26–28, 2022, Glasgow, United Kingdom

Figure 1: The learning application
hosts the learning resource that will
be the focus of the interaction and
serves as the context for our blue-
print.

Figure 2: When summoned, the chat-
bot performs a function and opens
channels through which it can hold
an interaction with the learner.

Figure 3: A learner can respond to the
chatbot’s comments to partake in the
interaction that the chatbot has se-
lected for a given channel.

3.1.4 Learning Graph. Each concept has a corresponding learning
graph, which represents the states that a learner can be in with
respect to the concept at hand. A learner can transition between the
different states in the graph by going through an interaction with
the chatbot. An example of a learning graph would be a Markov
chain with two states (Don’t Know and Know) that indicate whether
the learner has understood a concept or not. In its simplest form,
this learning graph would not include forgetting, i.e., learners can
only transition from Don’t Know to Know.

3.1.5 Channel. A channel is a location in the graphical user in-
terface (GUI) where an interaction between the chatbot and the
learner can take place. Channels can be opened by the chatbot after
it has performed its function. Once the interaction is complete, the
channel is closed. An example of a channel would be a line number
in a code snippet. If a chatbot finds an issue in the code snippet, it
could open a channel linked to the line number where the issue was
located. A dialog box would then appear below the respective line
number, allowing the learner and the chatbot to hold an interaction.
Figures 1–3 depict how channels can be opened in the context of a
learning resource and then serve to hold an interaction between
the user and the chatbot.

3.1.6 Feedback. Feedback is a way to signal the quality of an inter-
action that the learner has had with the chatbot. It can be implicit
or explicit. Examples of implicit feedback would be whether the
learner engaged with the chatbot at all or whether the chatbot was
able to achieve its intent (see Section 3.2.1). Examples of explicit
feedback would be emoji reactions that the learner can select, a
flag to report an issue with a comment made by the chatbot, or a
button that the learner can click on to request that the instructor
intervene in the interaction.

3.2 Components
Our blueprint’s components build on the blocks presented in Sec-
tion 3.1 to provide the functionalities needed for the chatbot. We
divide these components into two types: (i) models and (ii) engines.
Models are concerned with keeping the state of the chatbot’s in-
teractions with a learner. Engines are concerned with executing
the blueprint’s processes, which we will outline in Section 3.3. A

summary of the components and their building blocks is given in
Table 1.

3.2.1 Interaction Model. An interaction takes place within a chan-
nel and consists of a natural language dialog that the learner can
hold with the chatbot. Each interaction is related to a concept and
has an intent, which defines the state that the chatbot would like to
get the learner to. Our blueprint does not enforce the exact tech-
nical implementation of the dialog employed by the chatbot to
fulfill its intent. This allows for flexibility in the selection of the
scripting and/or natural language processing (NLP) technologies
that will power the dialog between the chatbot and the learner. The
interaction model also has one or more end states, which indicate
that the interaction is over. These end states serve as a way to keep
the learner focused on the task at hand. An example of a simple
interaction model would be a tree-based script in which the chat-
bot explains a given concept to the learner and then prompts the
learner with questions aimed at verifying whether the learner has
transitioned from the Don’t Know to the Know state.

3.2.2 Learner Model. The learner model is meant to summarize
a learner’s grasp of the concepts that the chatbot is designed to
support the learner with. When the chatbot performs its function,
it will initialize a learner model. For each concept, it will then select
the appropriate active state of that concept’s learning graph based
on the output of the function. For example, if a JavaScript code
snippet contains variables that have not been written in camelCase,
the resulting learner model generated by the chatbot will contain
a learning graph for the camelCase concept where Don’t Know is
the currently active state.

3.2.3 Interface Engine. The interface engine is in charge of the con-
nection between the chatbot and the GUI that the chatbot can use
to interact with the learners. Some of the functionalities that it han-
dles include: (i) opening the appropriate channels, (ii) posting the
chatbot’s comments, (iii) exposing the graphical elements required
for the learner to respond and provide feedback, and (iv) providing
the learner with a way to summon the chatbot.

3.2.4 Task Engine. The task engine is in charge of executing the
chatbot’s function and translating the output of the function to the



CUI 2022, July 26–28, 2022, Glasgow, United Kingdom Farah et al.

Table 1: An Overview of Our Blueprint’s Key Components and Building Blocks Alongside the Functionalities they Support

Component Building Blocks Functionalities

Interaction Model Concepts Power the dialog between the learner and the chatbot.

Learner Model
Concepts
Learning Graphs

Track the state of the learning graph for each concept.

Interface Engine
Learning Resource
Channels
Feedback

Provide graphical and pedagogical interfaces to interact with the learning application.

Task Engine
Function
Concepts

Execute the chatbot’s function.
Transmit the list of concepts to the knowledge engine.

Knowledge Engine

Concepts
Learning Graphs
Interaction Models
Learner Model

Create a learning graph for each concept given by the task engine.
Create a learner model from the learning graphs.
Manage the learner model and the interaction models.
Update the models when notified.
Make knowledge accessible to the interaction and learning engines.

Interaction Engine
Channel
Interaction Model
Learner Model

Select the interaction models based on the learning graphs.
Process responses posted to the channels.
Select the next interaction from the interaction model.
Notify the knowledge engine of possible updates to the models.

Learning Engine Feedback Use feedback to update the strategies used by the interaction engine.

list of concepts that will guide the interactions between the chatbot
and the learner.

3.2.5 Knowledge Engine. The knowledge engine keeps track of the
state of the learner and the interactions between the learner and the
chatbot. That is, the knowledge engine is in charge of updating and
tracking the learner and interaction models. Every time a learner
response is processed by the interaction engine (see Section 3.2.6),
the knowledge engine gets notified of any updates that need to
be processed. The knowledge engine also communicates with the
interaction engine (see Section 3.2.6) and the learning engine (see
Section 3.2.7), providing them with the information they need to
carry out their tasks.

3.2.6 Interaction Engine. The chatbot’s interaction engine is in
charge of selecting the appropriate interaction model for a channel
given the state of the learner model. The interaction engine can be
configured to follow different strategies and communicates with
the learning engine to improve or update these strategies (see Sec-
tion 3.2.7). The interaction engine is also in charge of processing the
learner’s interaction with the chatbot. Every time a learner posts
a response or provides feedback, the interaction engine processes
these actions accordingly and passes the result on to the knowledge
engine so that the knowledge engine can update the learner and
interaction models.

3.2.7 Learning Engine. The learning engine is in charge of updating
the strategies guiding the chatbot’s interaction engine based on
feedback from the learner. This allows the chatbot to refine its
behavior at the end of a session. Over time, the learning engine

should allow chatbots to better select the interaction model used to
interact with learners based on the learner’s learner model.

3.3 Processes
Our blueprint’s processes outline the actions that can take place
when there is an interaction between a learner and the chatbot. For
clarity, we focus on a chatbot interacting with a single learner over
a single session. An overview of these processes and how they span
the different components of our architecture is shown in Figure 4.

3.3.1 Summon Chatbot. To start interacting with the chatbot, a
learner summons the chatbot by asking it to perform its function.
This could be done through a button on the GUI of the learning
application (see Figure 1). When the learner clicks on this button,
the interface engine will notify the task engine that it should start
the process of executing the function. The task engine will execute
the function and pass the function’s result—a list of concepts—to
the knowledge engine. The knowledge engine will then create the
learner model based on the output of the task engine. This model
is then passed on to the interaction engine, which will select the
most appropriate interaction model for each of the concepts that
the chatbot will tackle with the learner. These interaction models
are then passed over to the interface engine, which will open the
appropriate channels for the interactions to take place. Figure 2
shows the newly opened channels inside the learning resource.

3.3.2 Hold Interaction. Once a channel is open, the learner can
hold an interaction with the chatbot. The interaction is guided by
the interaction model selected for that channel and always starts
with a message posted by the chatbot. The learner should be able to
respond to the initial message through one or more of the following



A Blueprint for Integrating Task-Oriented Conversational Agents in Education CUI 2022, July 26–28, 2022, Glasgow, United Kingdom

Figure 4: Our blueprint consists of multiple loosely-coupled components, comprising both engines, which are tasked with
executing processes, and models, which keep track of the system’s state. Here, we illustrate how the different components
and processes come together to support the interaction between a learner and a chatbot in the context of a learning activity.

affordances: (i) via natural language through a text input box, (ii) via
emoji reactions, and (iii) via quick reply buttons. Text inputs and
emoji reactions are commonly available in messaging services and
platforms (e.g., WhatsApp [1], Slack [4]), while supporting quick
reply buttons has been proposed as a best practice when designing
chatbot interfaces [15]. Once the learner responds via any of these
affordances (as in Figure 3), the interface engine will forward the
response to the interaction engine, which will process the response
and select the appropriate next message to post based on the in-
teraction model and its underlying dialog system. The interaction
engine will also inform the knowledge engine of the update in the
interaction model so that the knowledge engine can update the
learner model if the learner has gone through a state transition in
the learning graph corresponding to the given interaction’s con-
cept. The exchanges between the learner and the chatbot—as well
as the corresponding updates—continue until the interaction model
reaches an end state.

3.3.3 Provide Feedback. Once an interaction is over, the interaction
is analyzed by the learning engine to draw conclusions about the
quality of the interaction. This is done by analyzing any explicit or
implicit actions that the learner took throughout the interaction (see
Section 3.1.6). Based on this analysis, the learning engine provides
feedback to the interaction engine. The interaction engine can then
use this feedback to change its preferred strategy with respect to a
given interaction.

4 IMPLEMENTATION
To provide a proof-of-concept implementation of our blueprint,
we integrated it into an online web application used to teach the
code review process. We selected the code review process as the
context for our proof-of-concept given the increasing presence of
chatbots supporting tasks related to code review on social coding
platforms [34]. In this section, we present the learning scenario
we aimed to support as well as the technical implementation of
the chatbot integration. Where relevant, we highlight the building

blocks and components presented in Section 3 as they appear in
the implementation.

4.1 Learning Scenario
The aim of this implementation was to enhance a code review
application used to teach the code review process to software engi-
neering students in tertiary education. Code reviews are an integral
part of the software development process. These reviews consist of
a developer submitting code for review and then another developer
reviewing the submitted code by adding comments to specific lines
of code.

The code review application allows an instructor to simulate the
code review process within an online learning exercise resembling
a computational notebook [13]. Students are shown a code snippet
and are asked to analyze it for potential issues.While it is interesting
for students to be confronted with an exercise where they can
improve their coding practices by detecting errors in code snippets,
they may still need some guidance [21]. This need for guidance—
which an instructor might not be able to provide to large amounts of
students—motivated us to enhance the code review application with
chatbots that could support students in completing tasks related to
the code review process.

4.2 Technical Implementation
We integrated chatbots into the code review application following
the architecture presented in Section 3. The code review applica-
tion exposes a code snippet (i.e, the learning resource) potentially
containing some issues (i.e., concepts) that can be highlighted by
the chatbot. The chatbot’s task is to support the learner in under-
standing those issues by detecting them in the code snippet and
explaining how to address them. For this implementation, the chat-
bot is equipped with a JavaScript linter (i.e., the function) able to
analyze the code and detect those issues. For example, three issues
that can be detected by the chatbot’s function are (i) not following



CUI 2022, July 26–28, 2022, Glasgow, United Kingdom Farah et al.

Figure 5: The learning activity focuses on a code snippet that is either written by the
student or provided by the instructor via the code review application.

Figure 6: When the learner clicks on the Analyze Code button,
the summoning process is executed. The chatbot then opens
interaction channels below the lines of code exhibiting issues
that were detected by the chatbot’s linting function.

Figure 7: Once the channels are open, the learner and the chat-
bot can hold interactions about the issues that were detected.
These interactions follow a rule-based script.



A Blueprint for Integrating Task-Oriented Conversational Agents in Education CUI 2022, July 26–28, 2022, Glasgow, United Kingdom

JavaScript naming conventions, (ii) writing a line of code that con-
tains too many characters, and (iii) not including a trailing comma
where possible (see Figure 6). Each issue is associated with a simple
learning graph in which a learner can either understand the issue
or not.

As shown in Figure 5, the learner can start the exercise by submit-
ting a code snippet or using a snippet predefined by the instructor.
Whenever a learner is ready to analyze the code snippet, they can
summon the chatbot by clicking a button. This button will start
the summoning process. The interface engine will fetch the code
snippet and send it to the linter for analysis. The linter will output
a list of issues present in the code snippet along with the lines
that they appear in. This list is received by the knowledge engine,
which creates a learner model comprising the list of issues detected,
each with a learning graph initialized to the Don’t Know state. The
interaction engine then randomly selects one of two interaction mod-
els available for each of these concepts. Both interaction models
consist of a short rule-based script—each with slightly different
wording—with the intent being to transition the learner from the
Don’t Know to the Know state. The interaction models are then
passed back to the interface engine, which opens a channel for each
of these interactions to take place under the line containing the
respective issue, as illustrated in Figure 6.

The learner can nowhold an interactionwith the chatbot through
any of the channels that have been opened. At each step in the
interaction, the learner can respond to the chatbot using either a
free-form text response, one of nine preselected emoji reactions, or
a quick reply button with predefined text (see Figure 7). The inter-
action model interprets the response to advance the dialog until
it reaches an end state. At that point, if the end state is marked as
resulting in a transition, the knowledge engine updates the learner
model from the Don’t Know to the Know state. The channel host-
ing the interaction is then closed and the learning engine marks
the chosen interaction model as having been successful or not in
completing the transition. The exercise continues until the learner
completes all the interactions that were opened by the chatbot or
the learner closes the window hosting the application.

5 DISCUSSION AND CONCLUSIONS
The blueprint proposed in this paper is designed to address the
two main challenges highlighted in Section 1, namely to have chat-
bots be directly integrated into learning applications and to pro-
vide task-oriented interactions aimed at achieving learning goals.
Our blueprint lays out the key building blocks, components, and
processes that a system following our architecture would have to
include. By abstracting as many details as possible, this blueprint
could potentially serve as a first step to implementing a standard
architecture for integrating task-oriented conversational agents
in education. To test the applicability of our blueprint, we used
it to integrate a chatbot into a code review application in order
to support students in learning programming best practices. This
implementation shows that the building blocks of our blueprint
covered the needs of our use case application and facilitated its
design and implementation.

Nevertheless, the current version of the blueprint has some limi-
tations that should be highlighted. First, for this paper, we focused

on the case of a single learner interacting with a chatbot over the
course of one learning activity or session. Further components are
required to handle a learner’s interaction with the same chatbot
over multiple sessions, as well as interactions supporting multiple
learners. Second, so far we have only validated the applicability
of our blueprint in a code review application. Our aim is to target
proof-of-concept implementations in diverse learning contexts and
use case scenarios. As chatbots have been particularly useful in
computer-assisted language learning (CALL) [2, 7, 31], it would be
particularly pertinent to implement chatbots aimed at supporting
tasks in CALL (e.g., providing conversational practice, checking
grammar, interfacing dictionaries). These implementations will
be validated following experimental designs used in previous ex-
ploratory studies [11, 12, 14] comprising controlled experiments
measuring learning gains, engagement, and usability using both
standard (e.g., the User Experience Questionnaire [24] and the Sys-
tem Usability Scale [3]) and bespoke (e.g., scores calculated using
the results of pre/post-tests) instruments. Third, the need to sup-
port instructors in the configuration and deployment of chatbots
built with our blueprint was not addressed. An extension of our
blueprint that incorporates mechanisms for configuration, testing,
and deployment would ensure that instructors can easily integrate
such chatbots into their practice. We aim to further develop our
blueprint in order to address these limitations and consolidate its
architecture in future work.

REFERENCES
[1] Brian Acton and Jan Koum. 2009. WhatsApp. whatsapp.com
[2] Serge Bibauw, Thomas François, and Piet Desmet. 2019. Discussing with a

Computer to Practice a Foreign Language: Research Synthesis and Conceptual
Framework of Dialogue-Based Call. Computer Assisted Language Learning 32, 8
(2019), 827–877. https://doi.org/10.1080/09588221.2018.1535508

[3] John Brooke. 1996. SUS: A ‘Quick and Dirty’ Usability Scale. In Usability
Evaluation In Industry. CRC Press, London, UK.

[4] Stewart Butterfield, Eric Costello, Cal Henderson, and Serguei Mourachov. 2013.
Slack. slack.com

[5] Leon Ciechanowski, Aleksandra Przegalinska, Mikolaj Magnuski, and Peter
Gloor. 2019. In the Shades of the Uncanny Valley: An Experimental Study of
Human–Chatbot Interaction. Future Generation Computer Systems 92 (2019),
539–548. https://doi.org/10.1016/j.future.2018.01.055

[6] Fabio Clarizia, Francesco Colace, Marco Lombardi, Francesco Pascale, and
Domenico Santaniello. 2018. Chatbot: An Education Support System for Stu-
dent. In Cyberspace Safety and Security, Arcangelo Castiglione, Florin Pop, Mas-
simo Ficco, and Francesco Palmieri (Eds.). Lecture Notes in Computer Science,
Vol. 11161. Springer, Cham, Switzerland, 291–302. https://doi.org/10.1007/978-
3-030-01689-0_23

[7] David Coniam. 2014. The Linguistic Accuracy of Chatbots: Usability from an
ESL Perspective. Text & Talk 34, 5 (2014), 545–567. https://doi.org/10.1515/text-
2014-0018

[8] Samuel Cunningham-Nelson, Wageeh Boles, Luke Trouton, and Emily Marg-
erison. 2019. A Review of Chatbots in Education: Practical Steps Forward. In
Proceedings of the 30th Annual Conference for the Australasian Association for
Engineering Education (AAEE 2019) (Brisbane, Australia, 2019). AAEE, Barton,
Australia, 299–306.

[9] Facebook. 2008. Messenger. facebook.com/messenger
[10] Juan Carlos Farah, Sandy Ingram, and Denis Gillet. 2022. Supporting Developers

in Creating Web Apps for Education via an App Development Framework. In
HEAd'22 Conference Proceedings (Valencia, Spain, 2022). Editorial Universitat
Politècnica de València, Valencia, Spain, 893–890.

[11] Juan Carlos Farah, Vandit Sharma, Sandy Ingram, and Denis Gillet. 2021. Convey-
ing the Perception of Humor Arising from Ambiguous Grammatical Constructs
in Human-Chatbot Interaction. In Proceedings of the 9th International Conference
on Human-Agent Interaction (HAI '21) (Virtual Event, Japan, 2021). ACM, New
York, NY, USA, 257—262. https://doi.org/10.1145/3472307.3484677

[12] Juan Carlos Farah, Basile Spaenlehauer, Kristoffer Bergram, Adrian Holzer, and
Denis Gillet. 2022. Challenges and Opportunities in Integrating Interactive
Chatbots into Code Review Exercises: A Pilot Case Study. In EDULEARN22
Proceedings (Palma de Mallorca, Spain, 2022). IATED, Valencia, Spain, 10 pages.

whatsapp.com
https://doi.org/10.1080/09588221.2018.1535508
slack.com
https://doi.org/10.1016/j.future.2018.01.055
https://doi.org/10.1007/978-3-030-01689-0_23
https://doi.org/10.1007/978-3-030-01689-0_23
https://doi.org/10.1515/text-2014-0018
https://doi.org/10.1515/text-2014-0018
facebook.com/messenger
https://doi.org/10.1145/3472307.3484677


CUI 2022, July 26–28, 2022, Glasgow, United Kingdom Farah et al.

[13] Juan Carlos Farah, Basile Spaenlehauer, María Jesús Rodríguez-Triana, Sandy
Ingram, and Denis Gillet. 2022. Toward Code Review Notebooks. In 2022 In-
ternational Conference on Advanced Learning Technologies (ICALT) (Bucharest,
Romania, 2022). IEEE, New York, NY, USA, 209–211. https://doi.org/10.1109/
ICALT55010.2022.00068

[14] Juan Carlos Farah, Basile Spaenlehauer, Vandit Sharma, María Jesús Rodríguez-
Triana, Sandy Ingram, and Denis Gillet. 2022. Impersonating Chatbots in a Code
Review Exercise to Teach Software Engineering Best Practices. In 2022 IEEE Global
Engineering Education Conference (EDUCON) (Tunis, Tunisia, 2022). IEEE, New
York, NY, USA, 1634–1642. https://doi.org/10.1109/EDUCON52537.2022.9766793

[15] María Antonieta Ferman Guerra. 2018. Towards Best Practices for Chatbots. Mas-
ter’s thesis. University of Victoria.

[16] Luke K. Fryer, Kaori Nakao, and Andrew Thompson. 2019. Chatbot Learning
Partners: Connecting Learning Experiences, Interest and Competence. Computers
in Human Behavior 93 (2019), 279–289. https://doi.org/10.1016/j.chb.2018.12.023

[17] Google. 2012. DialogFlow. cloud.google.com/dialogflow
[18] David Griol and Zoraida Callejas. 2013. An Architecture to Develop Multimodal

Educative Applications with Chatbots. International Journal of Advanced Robotic
Systems 10, 3, Article 175 (2013), 15 pages. https://doi.org/10.5772/55791

[19] Sebastian Hobert. 2020. Say Hello to ‘Coding Tutor’! Design and Evaluation of a
Chatbot-based Learning System Supporting Students to Learn to Program. In 40th
International Conference on Information Systems (ICIS 2019) (Munich, Germany,
2019), Vol. 3. Curran Associates, Inc., Red Hook, NY, 1776–1792.

[20] Gwo-Jen Hwang and Ching-Yi Chang. 2021. A Review of Opportunities and
Challenges of Chatbots in Education. Interactive Learning Environments (2021),
14 pages. https://doi.org/10.1080/10494820.2021.1952615

[21] Theresia Devi Indriasari, Andrew Luxton-Reilly, and Paul Denny. 2020. A Review
of Peer Code Review in Higher Education. ACM Transactions on Computing
Education 20, 3 (2020), 25 pages. https://doi.org/10.1145/3403935

[22] Stephen Curtis Johnson. 1978. Lint, A C Program Checker. Technical Report. Bell
Laboratories.

[23] Jeya Amantha Kumar. 2021. Educational Chatbots for Project-Based Learning:
Investigating Learning Outcomes for a Team-Based Design Course. International
Journal of Educational Technology in Higher Education 18, 1, Article 65 (2021),
28 pages. https://doi.org/10.1186/s41239-021-00302-w

[24] Bettina Laugwitz, Theo Held, and Martin Schrepp. 2008. Construction and
Evaluation of a User Experience Questionnaire. InHCI and Usability for Education
and Work, Andreas Holzinger (Ed.). Lecture Notes in Computer Science, Vol. 5298.

Springer, Berlin, Germany, 63–76. https://doi.org/10.1007/978-3-540-89350-9_6
[25] Alexander Lidén and Karl Nilros. 2020. Perceived Benefits and Limitations of

Chatbots in Higher Education. Technical Report. Linnaeus University. 49 pages.
[26] Crystal Jing Luo and Donn Emmanuel Gonda. 2019. Code Free Bot: An Easy Way

to Jumpstart Your Chatbot!. In 2019 IEEE International Conference on Engineering,
Technology and Education (TALE) (Yogyakarta, Indonesia, 2019). IEEE, New York,
NY, USA, 3 pages. https://doi.org/10.1109/TALE48000.2019.9226016

[27] Chinedu Wilfred Okonkwo and Abejide Ade-Ibijola. 2021. Chatbots Applica-
tions in Education: A Systematic Review. Computers and Education: Artificial
Intelligence 2 (2021), 100033. https://doi.org/10.1016/j.caeai.2021.100033

[28] Nicolas Pottier. 2013. Textit. textit.com
[29] José Quiroga Pérez, Thanasis Daradoumis, and Joan Manuel Marquès Puig. 2020.

Rediscovering the Use of Chatbots in Education: A Systematic Literature Review.
Computer Applications in Engineering Education 28, 6 (2020), 1549–1565. https:
//doi.org/10.1002/cae.22326

[30] Jonas Sjöström, NamAghaee,MarithaDahlin, and Pär J. Ågerfalk. 2018. Designing
Chatbots for Higher Education Practice. In Proceedings of the 2018 AIS SIGED
International Conference on Information Systems Education and Research (2018).
Association for Information Systems, Atlanta, GA, USA, Article 4, 8 pages.

[31] Pavel Smutny and Petra Schreiberova. 2020. Chatbots for Learning: A Review of
Educational Chatbots for the Facebook Messenger. Computers & Education 151
(2020), 103862. https://doi.org/10.1016/j.compedu.2020.103862

[32] William Villegas-Ch, Adrián Arias-Navarrete, and Xavier Palacios-Pacheco. 2020.
Proposal of an Architecture for the Integration of a Chatbot with Artificial
Intelligence in a Smart Campus for the Improvement of Learning. Sustainability
12, 4, Article 1500 (2020), 20 pages. https://doi.org/10.3390/su12041500

[33] Richard Wallace. 2002. Pandorabots. home.pandorabots.com
[34] Mairieli Wessel, Bruno Mendes de Souza, Igor Steinmacher, Igor S. Wiese, Ivanil-

ton Polato, Ana Paula Chaves, and Marco A. Gerosa. 2018. The Power of Bots:
Characterizing and Understanding Bots in OSS Projects. Proceedings of the
ACM on Human-Computer Interaction 2, CSCW (2018), 19 pages. Issue CSCW.
https://doi.org/10.1145/3274451

[35] Shanshan Yang and Chris Evans. 2019. Opportunities and Challenges in Using
AI Chatbots in Higher Education. In Proceedings of the 2019 3rd International
Conference on Education and E-Learning (Barcelona, Spain, 2019). ACM, New
York, NY, USA, 79–83. https://doi.org/10.1145/3371647.3371659

[36] Nicholas C. Zakas. 2013. ESLint. eslint.org

https://doi.org/10.1109/ICALT55010.2022.00068
https://doi.org/10.1109/ICALT55010.2022.00068
https://doi.org/10.1109/EDUCON52537.2022.9766793
https://doi.org/10.1016/j.chb.2018.12.023
cloud.google.com/dialogflow
https://doi.org/10.5772/55791
https://doi.org/10.1080/10494820.2021.1952615
https://doi.org/10.1145/3403935
https://doi.org/10.1186/s41239-021-00302-w
https://doi.org/10.1007/978-3-540-89350-9_6
https://doi.org/10.1109/TALE48000.2019.9226016
https://doi.org/10.1016/j.caeai.2021.100033
textit.com
https://doi.org/10.1002/cae.22326
https://doi.org/10.1002/cae.22326
https://doi.org/10.1016/j.compedu.2020.103862
https://doi.org/10.3390/su12041500
home.pandorabots.com
https://doi.org/10.1145/3274451
https://doi.org/10.1145/3371647.3371659
eslint.org

	Abstract
	1 Introduction
	2 Design Considerations
	2.1 Integrated
	2.2 Task-Oriented

	3 Architecture
	3.1 Building Blocks
	3.2 Components
	3.3 Processes

	4 Implementation
	4.1 Learning Scenario
	4.2 Technical Implementation

	5 Discussion and Conclusions
	References

