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Abstract

Control of movements in limbed terrestrial animals, some rhythmic (e.g., locomotion,
grooming) and some non-rhythmic (e.g., reaching and grasping, crouching, posture-control)
involves complex interactions between the neural controllers, the body/limb biomechanics
and the environment. Animal experiments are often subjected to several restrictions to
study freely behaving animals due to technical and ethical reasons.

Computational modeling represents a powerful tool to complement animal experiments by
capturing the dynamics of motor control. Particularly, neural control of locomotion cannot
be fully understood without revealing feedforward and feedback interactions between the
neural circuits in the brain and spinal cord and the body biomechanics.

A necessary stage in these studies is the development of comprehensive musculoskeletal
models of the whole body. In this thesis, we focus on three important model organisms in
studying animal movements. Namely, Mus musculus (mouse), Drosophila melanogaster
(fly) and Macaca fascicularis. For all three animals, we first developed their biomechanical
models.

With the mouse (Mus musculus) biomechanical model, we conducted a comprehensive
study on the characteristics of limb musculature and the influence of joint moments and
moment-arms on producing limb movements. Our results revealed the complex relation-
ships between muscles and joints and highlighted the significant role of biomechanics in
producing movements.

Next, we investigated the limb kinematics and kinetics of locomotion and grooming
by developing a bio-realistic model of Drosophila melanogaster (fly). Using the fly
biomechanical model driven by neural oscillator models, we found that tripod gaits were
preferentially chosen when simultaneously optimized for wide ranges of speed and static
stability.

In our third model, we developed a computational framework to estimate the spatiotempo-
ral patterns of proprioceptive inputs to the cervical spinal cord during three-dimensional
arm movements in Macaca fascicularis. Estimated maps show complex and markedly
distinct patterns of neural activity for each of the fiber populations spanning the spinal
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cord rostro-caudally. Our results indicate that reproducing the proprioceptive information
flow to the cervical spinal cord requires complex spatio-temporal modulation of each
spinal root. Our model can support the design of neuroprosthetic technologies as well as
in-silico investigations of the primate sensorimotor system.

Finally, from the culminated experience of developing neuromechanical models, we propose
a framework for modeling and simulating of animals and robots (FARMS). The FARMS
aims to standardize neuromechanical simulations for studying animal motor control. Our
work shows how neuromechanical simulations can be used to investigate the different

aspects of animal motor control and complement animal experiments.

Key words: neuromechanical, simulations, spatiotemporal afferent maps, simulation
framework, musculoskeletal, insect locomotion, multi-legged locomotion, inverse dynamics

vi



Résumé

Le controle des mouvements chez les animaux terrestres membrés, rythmiques (par
ex. locomotion, toilettage) et non rythmiques (par ex. accroupi, contréle de la posture)
implique des interactions complexes entre les controleurs neuronaux, la biomécanique
du corps/des membres et I'environnement. Les expérimentations animales pour étudier
leur comportement sont souvent soumises & des restrictions strictes pour des raisons
techniques et éthiques.

La modélisation informatique représente donc un outil puissant pour compléter ces
expériences animales en capturant la dynamique du controle moteur. En particulier, le
controle neuronal de la locomotion ne peut pas étre entiérement compris sans révéler les
boucles de commandes prédictives et de rétroaction qui prennent place entre les circuits
neuronaux du cerveau et de la moelle épiniére et la biomécanique du corps.

Une étape nécessaire de ces études est le développement de modéles musculo-squelettiques
complets du corps entier. Dans cette thése, nous nous focalisons sur trois des organismes
pour ’étude des mouvements des animaux. A savoir, la Mus musculus, la Drosophila
melanogaster et le Macaca fascicularis. Pour ces trois animaux, nous avons en premier
lieu développé leurs modéles biomécaniques.

Avec le modele biomécanique de la souris (Mus musculus), nous avons mené une étude
approfondie sur les caractéristiques de la musculature des membres et son influence sur
la production de leurs mouvements en termes de couples appliqués aux articulations et
de bras de levier. Nos résultats ont révélé les relations complexes entre les muscles et
les articulations et ont mis en évidence le réle important de la biomécanique dans la
production des mouvements.

Ensuite, nous avons étudié la cinématique et la cinétique de la locomotion attachée
et du toilettage ("grooming" en anglais) en développant un modéle bio-réaliste de la
Drosophila melanogaster. En utilisant ce modéle biomécanique commandé par des modéles
d’oscillateurs neuronaux, nous avons constaté que le déplacement en était favorisé lorsqu’il
était optimisé pour de larges plages de vitesse et de stabilité statique.

Dans notre troisiéme modéle, nous avons développé un cadre computationnel pour esti-
mer les caractéristiques spatio-temporelles de I'information proprioceptive vers la moelle

vil
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épiniére cervicale lors des mouvements tridimensionnels des bras chez les singes. Les
relations estimées montrent des modéles d’activité neuronale complexes et nettement
distinctes pour chacune des populations de fibres couvrant la moelle épiniére de maniére
rostro-caudale. Nos résultats indiquent que la reproduction du flux d’informations pro-
prioceptives vers la moelle épiniére cervicale nécessite des modulations spatio-temporelles
de chaque racine spinale. Notre modéle peut apporter un soutien & la conception de tech-
nologies neuroprosthétiques ainsi qu’aux investigations in silico du systéme sensorimoteur
des primates.

Enfin, & partir de I’expérience aboutie en développant des modéles neuromécaniques, nous
proposons un environnement computationnel pour la modélisation et simulation d’animaux
et de robots (FARMS). FARMS vise a standardiser les simulations neuromécaniques
pour I’étude du controle moteur animal. Notre travail démontre comment les simulations
neuromécaniques peuvent étre utilisées pour étudier les différents aspects de controle de
la motricité animale et complimenter les expérimentations animales.

Mots clefs : neuromécanique, simulations, cartes afférentes spatio-temporelles, environne-

ment de simulation informatique, musculo-squelettique, locomotion d’insectes, locomotion
multi-pattes, dynamique inverse, contréle moteur, modéle bioméchanique
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Chapter 1

Introduction

Moving on (Locomotion). . .

“A journey of a thousand miles begins with a single step!” says the Chinese proverb.
My time as a doctoral student has been to probe and investigate how this single step is
achieved by animals. Life over the billions of years has evolved into this astronomically
complex interactions of chemical building blocks. This level of sophistication would not
have been possible if life did not interact with its environment. One of the outcomes of this
interaction with the environment is the ability of life to move. Locomotion (loco: “from a
place” and motion: “to move”) means to move from one place to another. Locomotion had
profound impact on the evolution of life. Animals able to navigate in their environment
increased their chances of survival by exposing themselves to newer resources. Locomotion
also improved their ability to change habitat when their environment was not conducive
anymore. From an evolutionary point-of-view locomotion has played a pivotal role in
shaping life on earth to what we see today.

A key moment in the evolution of life was the transition of life from being purely water
based to land based (Ashley-Ross et al., 2013). Aquatic life moved to shallower waters and
thereby getting closer to land. Once on land, different life forms evolved many strategies
to navigate the new terrain. Some being an extension of their skills from their aquatic
ancestors and some completely evolved for land (Grillner, 2018). Eventually life took off
and developed propelled flight. Over the eons, terrestrial, aquatic and aerial life forms
have all evolved different locomotion strategies to navigate and flourish in their respective
environments.

Over the years, the BioRobotics laboratory has been investigating aquatic and amphibious
locomotion both using mathematical models and robotic platforms. Extending this line
of evolution from amphibious animals, the next transition has been to study terrestrial

locomotion.
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Terrestrial locomotion predominantly evolved into three basic forms: (1) Legged: by
moving its legged appendages; (2) Limbless: by using the body to propel itself with no
additional appendages; (3) Rolling: by rotating the body over the surface. Among the
three forms, legged locomotion is the most common form on land in both vertebrate and
arthropods. Furthermore, not all animals that use legs to locomote are the same (Kubo
and Benton, 2009). They differ in morphology, posture, number of legs and types of
gaits they exhibit. Through the thesis I will explore these differences by studying three
different terrestrial animals. Namely, Macaca fascicularis, Mus musculus (Mouse), and
Drosophila melanogaster. The choice of the animal models were in part driven by funding
choices (mouse model for the Human Brain Project), availability of experimental data
(macaca with EMG and kinematic recordings) and collaborations (drosophila with Prof
Pavan Ramdya).

Before we move to the specific studies, let me first briefly introduce the reader to the
general understanding of animal locomotion in the literature.

Studying locomotion

Locomotion being a primitive component of life, many a times it goes unnoticed as a
tremendous feat of achievement that life has evolved. It may appear trivial due to its
repetitive, rhythmic motion carried out by every animal. But the underlying principles
which allow animals to do efficient, robust and versatile movements are more complex than
it appears to be at first glance (Dickinson, 2000). It is a result of complex interactions
between the body, the neural circuits and the environment (Figure 1.1). Each of these sub-
systems are complex by themselves individually and posses emergent functional properties
when they interact with each other and the environment. The coupling between these
complex modules make it extremely challenging to come up with theories that can explain
and capture how locomotion works in different in species (K. Pearson et al., 2006a).

Studying locomotion can be broadly classified into two popular approaches. One, a
biomechanical perspective, wherein locomotion is studied as the interaction between
the body and the environment with focus on the kinematics and the kinetics of the
movement. Second approach is to study the behavior from a neural perspective, where
in the main goal is to identify the circuitry responsible for producing appropriate body
movements necessary for locomotion. An integrative approach, that merges neural and
biomechanical investigations, has been attempted but is limited due to challenges in
conducting experiments. We will get to that in a moment.
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Figure 1.1: A representative view of the neuro-musculo-skeletal systems involved to
produce locomotion. The neural component comprises of rhythm generating central
pattern generators (CPG) working with reflexes and modulated by descending signals
to produce motorneuronal activity. Excitation-contraction (EC) dynamics transform
motorneuronal activity into muscle activation which produces appropriate muscle forces
defined by its dynamics. The body then responds to the muscle forces to produce
movement by interacting with the environment. The sensory receptors feedback the
proprioceptive (muscle spindles and golgi tendon organs) and exteroceptive (cutaneous
receptors) to the neural system. The figure has been edited and reproduced from the
article of Paul et al. (2005) with kind permission of Springer Science and Business Media.

A biomechanical perspective

The body of an animal has co-evolved along with the neural circuitry to best adapt to its
environment. Movement is possible only when the body interacts with the environment
to produce the necessary forces that propel itself in the desired direction. This body-
environment interaction poses a strong coupling between the two and thereby resulting in
developing bodies conducive to the environment. Of course, this observation is subjected
to the survivorship bias. Nonetheless, it still highlights the importance of biomechanics in
locomotion. Beal et al. (2006) have shown that a dead fish, under the proper conditions,
can exhibit passive propulsion to move ahead in a stream of water. This is an excellent
experiment to highlight the importance of biomechanics and to reflect how well the
biomechanics of the animal is tuned with its environment to produce movement with

3
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minimal neural inputs or in this particular case with no neural inputs.

For legged locomotion, as early as in 1685, Giovanni (1685) proposed the “compass gait”
model to show that walking could be presented without need for active control of the swing
leg. Over the centuries, many mathematical models and theories have been developed to
describe how the body generates necessary forces to interact with the environment. These
theories range from simple inverted pendulum model (Alexander, 1976; Mochon S., 1980)
and Spring Loaded Inverted Pendulum (SLIP) (R., 1989; McMahon T., 1990) model to
complex models that include more detailed biomechanical structures such as muscles
and multi-articulate joints (Siegler et al., 1982; Geyer, Seyfarth, et al., 2006; F. E. Zajac
et al., 2003; Geyer and Herr, 2010). Full and Koditschek (1999) introduced the terms
templates for simple models such as the SLIP model and anchors for more elaborate
models that include multiple joints and muscles from a perspective to understand the
control strategies of the nervous system.

Using template models, Blickhan and Full (1993) showed that even among diverse animals
such as cockroaches, quail and kangaroos, their locomotion can be generalized at the level
of gait energetics and dynamics. Based on studies with simple template models, we can
observe the global commonalities of a seemingly diverse locomotor behaviors. In more
recent studies, experimental data from muscles during locomotor regime has revealed
that muscles are more than just motors producing propulsive forces. From work-loop
analysis, it can be observed that muscles can act as motors (produce positive work), as
brakes (produce negative work), as springs (passive elastic elements) or as struts (force
transmitters) and as dampers (energy dissipation). (Refer to the review by Dickinson
(2000) for more details).

To summarize, animals gaits can be grouped and be modeled as templates. When more
complex musculoskeletal models are considered, the biomechanics reveal that the body is
more sophisticated than just executing the commands from the nervous system.

A neural perspective

The most important contribution to this approach for mammalian locomotion started from
Sir Charles Sherrington (Sherrington, 1910) and later extended by his student Thomas
Graham Brown. Graham Brown showed 100 years ago from studies on decerebrated and
spinals cats that in the absence of descending signals from higher brain centers and afferent
sensory signals, it was still possible to produce rhythmic locomotion in flexor-extensor
muscles of the hindlimb (T. G. Brown, 1911). Eventually, the proposition that special
units in the spinal cord called central pattern generators (CPG’s) emerged. This has
been later confirmed in other vertebrates (Whelan, 2010). Ever since, several studies
investigated spinal circuits responsible for producing rhythmic activity to control and
execute coordinated movement of a large number of joints and muscles in the limbs and
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the body.

Whelan (2010) defines CPG as “A set of interneurons that are capable of producing
rhythmic output without phasic input from afferent or descending projections”. This
means that the spinal cord has the necessary circuits to produce rhythmic locomotion
activity, which is then regulated and modulated by sensory afferents and higher brain
signals to ensure robust behavior. These results led Graham Brown to propose the
“half-center hypothesis” and later extended by Lundberg et al. (1987) to explain the
observed locomotor activity. The hypothesis was that every flexor-extensor antagonist
muscle pairs in each limb were excited by mutually inhibiting half-centers. Though this
model proved very powerful, a shortcoming was that it could not explain the complex
motor-neuron activity apart from flexion-extension rhythmic patterns (McCrea and Ilya A.
Rybak, 2008).

To better explain the experimentally measured neural activity several neural model
structures have been proposed after the half-center model. A brief list of the proposed
models are: (1) the ring model (Székely et al., 1969; Gurfinkel and Shik, 1974); (2)
flexor burst model (K. G. Pearson and Duysens, 1976); (3) unit burst generators (UBG)
(Grillner, 1981); (4) two-level CPG (Ilya A. Rybak et al., 2006). Among these models, the
two-level CPG structure has been able to incorporate and explain the recent observations
in animal experiments (Ausborn, Shevtsova, Caggiano, et al., 2019).

The advent of molecular and genetic tools in animal experiments, especially in mice has
lead to the identification of several classes of interneurons involved in generation and
regulation of locomotor motor patterns. Kiehn (2016) and Ausborn, Shevtsova, and
Simon M. Danner (2021) summarize the experimental findings and the possible neural
circuits based on the findings.

To summarize, since the time of Graham Brown we have come a long way in unraveling
the specific interneurons and their connectivity in the black box locomotor neural system.
It is now widely accepted that CPGs underlie rhythmic locomotor patterns.

A sensory perspective

In the previous sections, we looked the feed-forward aspect of locomotor control with
the central pattern generators. It is very important to take note that sensory /afferent
feedback plays major role in locomotion too. It is the sensory information that tells
the nervous system about the internal state of the body and the implications of the
forces it generated against the environment to move. According to Kuo (2002), from a
control perspective a mechanical system that dictates efficiency and stability is better
accomplished with feedback versus purely feed-forward.

Akay et al. (2014) showed that in healthy mice proprioceptive feedback plays an important
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role in shaping the locomotor activity during swing and stance phase. Removal of these
feedbacks resulted in severe degradation of the patterns. Takeoka and Arber (2019)
and Takeoka, Vollenweider, et al. (2014) showed that in rats after spinal cord injury it
was proprioceptive afferent fibers that were essential in initiation and maintenance of
locomotor recovery. The studies show how closely the feedback circuits are linked with
locomotor circuits in the spinal cord.

To summarize, sensory feedbacks are necessary to generate efficient and robust locomotion
but it still remains very hard to experimentally study them.

An integrated, neuromechanical view

So far we have seen some of the insights gained into animal locomotion in terms of the
individual components that are part of the locomotion loop. Individual perspectives
give us a deeper understanding about the possible roles of each of these components
in generating locomotion. However, from Figure 1.1 we can see that the biomechanics,
the neural circuits, the sensory modalities and the environment are tightly coupled and
influence the behavior of each other. An ideal scenario to study locomotion would thus
be able to perturb and study each of the individual components while recording and
monitoring the others. This is easier said than done. With the advent of genetic tools, we
are getting closer to targeted animal experiments while observing the animal in a freely
behaving environment. Still, this remains a challenging endeavor. In particular because
it is very difficult to measure the activity of spinal circuits and sensory afferents during
locomotion.

It is thus necessary to complement animal experiments with mathematical models that
can fill the gaps in experimental setups. And also make predictions to refine the animal
experiments to be specific and targeted. A promising up and coming solution mainly
due to the advancement of computational ability of computers is to create mathematical
models and computer simulations where the body and neural models interact with the
environment to produce real animal like behaviors so that one can test and study the
principles of locomotion more rigorously and systematically than what is possible with
animals. In order to create these simulation models, data needs to be collected from the
real animal. This establishes a dialogue between the modeling studies and the animal
experiments. Where, observations from one paradigm can be validated! using the other
and then use the validated experiments to deduce new findings and refine our existing
understanding. There have been several important neuromechanical simulation studies in
different animals and at various complexities that have been useful in pushing the field
forward. These include studies in C. elegans (Szigeti et al., 2014), lamprey (Ekeberg,
1993a; Thandiackal et al., 2021), salamander (Ijspeert et al., 2007), cat (Ekeberg and

Tconfirm predictions by comparing direct or indirectly measurable quantities between experiments
and simulations
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K. Pearson, 2005; S. Yakovenko et al., 2004; Ivashko et al., 2003; Markin et al., 2016),
drosophila melanogaster (Ramdya et al., 2017a), stick insect (T6th and Daun, 2019), and
humans (Geyer and Herr, 2010; Dzeladini et al., 2014)

Tools for simulating neuromechanical models

A neuromechanical simulation comprises of developing mathematical models of each of
the individual blocks represented in Figure 1.1 (K. Pearson et al., 2006a). It includes the
neural and biomechanical components along with their interactions. Neural models (spinal
and brain circuits) produce the necessary instruction signals (motorneuron activations)
for a specific movement. Muscle models respond to the neural signals by producing forces
that act on the skeletal model and cause movements. The skeletal model and the body
interact with the environment to produce reaction forces. The sensory organ models
encode the state of the movement (somatosensory afferent feedback signals) and transmit
this information back to the nervous system which then adapts the instruction signals to
sensed perturbations or external forces.

A complex component to model in a neuromechanical simulation is the computation
of linear and angular accelerations (forward dynamics) of the articulated rigid bodies
and its interaction with the environment (contacts) (K. Pearson et al., 2006a). In
fact, neuromechanical simulations are often limited to 2D models due to the difficulties
associated with modeling and simulating 3D forward dynamics and its interactions with
the environment. With applications for articulated rigid body simulations in robotics and
animations has resulted in many stand-alone packages that perform collision detection,
forward dynamics and numerical integration. These packages are commonly termed as
physics engines. Popular physics engines include Open Dynamics Engine (ODE) (Smith,
2001), Simbody (Sherman et al., 2011), Bullet (Coumans, 2015), Mujoco (Todorov et al.,
2012), PhysX (NVIDIA, 2022), Webots (Michel, 2004) (a fork of ODE physics engine)
and DART (J. Lee et al., 2018). The availability of different physics engines has provided
an opportunity for simulating more complex animal morphologies. Each of the mentioned
physics engines have their own advantages and disadvantages. Choosing the appropriate
physics engine for a certain experiment is a difficult one. In this thesis, Webots, Bullet,
Simbody and Mujoco are the three physics engines that are explored and used. For a
comprehensive review on physics engines from a robotics perspective refer to Collins et al.
(2021).

Neural circuits can be modeled at various levels of complexity. Ranging from spike based
Hodgkin-huxley models with conduction based synapses to population based simple first-
order phase oscillators models. The number of neurons and the number of synapses can
increase the complexity of the networks exponentially. Neural libraries such as Neuron (T.
Carnevale et al., 2006) allow for simulating detailed and complex neuron models. While
libraries such as NEST (Gewaltig and Diesmann, 2007) or BRIAN (Stimberg et al., 2019)
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offer a wider range of abstract neural models to be simulated.

Muscles are most often simulated as Hill-type muscle models formulated by F. Zajac (1989).
For different variations of the Hill-type models refer to Romero and Alonso (2016). Simpler
mechanistic muscle models such as the ones formulated by Ekeberg (1993a) are used to
model antagonist muscle pairs. The geometrical route of the muscle along the skeleton
and around the joints also dictates the dynamics of the muscle. Modeling the geometric
paths of the muscle during a simulation is a complex and computationally demanding
procedure. Currently, there are no standalone muscle libraries to simulate different muscle
models. This is mainly because the dynamics of the muscles are dependent on the state
of the rigid bodies and the neural activations. For neuormechanical simulations, people
often implement their own muscle library plugins (Aoi et al., 2019; Dzeladini et al., 2014;
Geyer and Herr, 2010; Ekeberg and K. Pearson, 2005).

Finally, sensory models are based on the states of the forward dynamics of the rigid bodies,
the neural dynamics and the muscle dynamics. Thus the choices of the prior models
influence the ability of modeling a sensory information in the neuromechanical simulation.
A commonly used sensory model is that of the muscles spindles and golgi-tendon organs
formulated by A. Prochazka and M. Gorassini (1998) and Arthur Prochazka and Monica
Gorassini (1998).

Although, there exists many libraries to simulate the individual components required
to build a neuromechanical simulation; there are very few that integrate all the blocks.
OpenSim (Seth, Jennifer L. Hicks, et al., 2018b) is the most commonly used simulator
that has integrated rigid-body physics (Simbody) and the muscle models and an option
to interact with external libraries for modeling neural dynamics. SCONE (Thomas
Geijtenbeek, 2019) is a free and open-source software for predictive simulation of biological
motion. It is simulator agnostic and it currently supports bindings to work with OpenSim
out-of-the-box. Animatlab (David Cofer et al., 2010) has gone further to integrate all the
components of a neuromechanical simulation but has been used seldom in the community.
Neurorobotics platform (Falotico et al., 2017) aims to combine the fields of neuroscience,
computer science and biology to simulate realistic animals and robots models with spiking
neural models. The final chapter 5 of this thesis discusses, FARMS, a novel framework
for modeling, simulating and analyzing neuromechanical models. With FARMS, the
goal is to connect the various works of researchers coming from different fields, including
biomechanics, neuroscience and robotics.
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Thesis Organization and Main Contributions

This work utilizes the approach of creating neuromuscular simulation models and to study
locomotion and limb movement in terrestrial animals. Namely, Macaca fascicularis, Mus
musculus, and Drosophila melanogaster. The studies conducted among the three animals
can be formulated in three folds:

e Develop animal models for neuromuscular simulations

e Investigate the biomechanical and neural components of motor control, particularly
locomotion.

e Establish the bridge between animal experiments and simulations

The introduction chapter introduced reader to the context and the previous literature
related to general terrestrial locomotion. The chapters that follow will cover the modeling
and simulation of studies related to the three different animals. After which, a chapter is
presented to discuss the framework for simulating neuromechanical models. And finally,
a concluding chapter summarizes the studies, presents a reflection of the work and finally

the possible future work to continue.

Chapter 2 describes the development of the first whole body 3D Mus musculus (mouse)
musculoskeletal model. Both the forelimbs and hindlimb musculature was modeled
as Hill-type muscles with all the parameters appropriately estimated. We then
describe the influence of muscle moments and moment-arms on joint motion in a

comprehensive manner.

Chapter 3 describes the development, analysis and simulation of a neuromechanical
model of Drosophila melanogaster. We established a pipeline to transfer tethered
kinematic gaits to 3D physics based simulation to estimate joint torques and contact
forces. Further, we setup a tethered neuromechanical model driven by an open-loop
central pattern generator to study the relationship between speed and static stability
on gait generation.

Chapter 4 describes a study to generate spatial afferent sensory maps in Macaca
fascicularis during reaching and grasping tasks.

Chapter 5 describes FARMS (A Framework for Animal and Robot Modeling and
Simulation), a framework for modeling and simulating robots and neuromechanical
models for studying animal motor control. The framework establishes a philosophy
for simulating diverse animal and robot models and sharing the observations with
the community.
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Main contributions

e We developed a framework called FARMS (A Framework for Animal and
Robot Modeling and Simulation) for neuromechanical simulations.

o We developed the first whole body 3D musculoskeletal model of mouse.

e We present comprehensive ways to present muscle-joint relationship in highly
articulated models.

e We developed a tool chain (NeuroMechFly) for establishing a dialogue between
animal experiments and simulation in Drosophila Melanogaster.

o We studied the relationship between speed and stability in tethered Drosophila
Melanogaster using open-loop central pattern generator networks

e We estimated spatial sensory afferent maps of the spinal cord in Macaca
Fascicularis for reaching and grasping task.

10
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A whole-body musculoskeletal model
of the mouse

Overview

Mouse has become an important model organism in studying locomotion and movement
generation. The advent of molecular and genetic technologies has helped provide deep
insights into the neural circuits of that are responsible for generating and controlling limb
movements. But, there is very little known about the biomechanics of the Mouse. Partly
due to the challenges in performing biomechanical experiments in Mouse due to their
small size. In this chapter, we first aim to build a whole-body musculoskeletal model
of Mouse. Then perform a comprehensive analysis on the relationship between muscle
forces, moment-arms, and moments on the limb movement.

11
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Figure 2.1: Focus of this chapter in the scheme of neuromechanical loop described in
Figure 1.1 for movement generation
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A whole-body musculoskeletal model of the mouse Chapter 2

2.1 Abstract

Neural control of movement cannot be fully understood without careful consideration of
interactions between the neural and biomechanical components. Recent advancements in
mouse (Mus musculus) molecular genetics allow for the identification and manipulation
of constituent elements underlying the neural control of movement. To complement
experimental studies and investigate the mechanisms by which the neural circuitry
interacts with the body and the environment, computational studies modeling motor
behaviors in mice need to incorporate a model of the mouse musculoskeletal system. Here,
we present the first fully articulated musculoskeletal model of the mouse. The mouse
skeletal system has been developed from anatomical references and includes the sets
of bones in all body compartments, including four limbs, spine, head and tail. Joints
between all bones allow for simulation of full 3D mouse kinematics and kinetics. Hindlimb
and forelimb musculature has been implemented using Hill-type muscle models. We
analyzed the mouse whole-body model and described the moment-arms for different
hindlimb and forelimb muscles, the moments applied by these muscles on the joints,
and their involvement in limb movements at different limb/body configurations. The
model represents a necessary step for the subsequent development of a comprehensive
neuro-biomechanical model of freely behaving mice; this will close the loop between the
neural control and the physical interactions between the body and the environment.

13
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2.2 Introduction

Terrestrial animals exhibit a variety of complex motor behaviors, some rhythmic (e.g.,
locomotion, grooming) and some non-rhythmic (e.g., reaching and grasping, crouching,
posture-control). These motor behaviors result from complex interactions between
the neural circuits in the brain and spinal cord, the musculoskeletal system, and the
environment (Figure 2.2) (Dallmann et al., 2021; Kiehn, 2016; Donald H. Edwards, 2010;
Grillner and El Manira, 2019; Grillner, 2011). Investigating the underlying mechanisms of
these motor behaviors in awake, behaving animals is highly challenging. Computational
modeling is a powerful tool to complement experimental studies of neural control. It
provides a platform to investigate the underlying neural mechanisms, allowing investigators
to reproduce existing experimental observations, propose mechanistic explanations for
the observed behaviors, suggest new experiments to test the proposed mechanisms, and
propose possible approaches for treatment of different injuries or disorders (Moraud et al.,
2016; Ausborn, Shevtsova, and Simon M. Danner, 2021).

MUSCLE MODEL

SPINAL CIRCUIT MODEL - SKELETAL MODEL
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Figure 2.2: Components of a closed-loop neuromechanical simulation. Movements in
animals arise due to complex interactions between the nervous system, the musculoskele-
tal system and the environment. A neuromechanical model includes the neural and
biomechanical components along with their interactions. Neural models (spinal and
brain circuits) produce the necessary instruction signals (motorneuron activations) for
a specific movement. Muscle models respond to the neural signals by producing forces
that act on the skeletal model and cause movements. The skeletal model and the body
interact with the environment to produce reaction forces. The sensory organ models
encode the state of the movement (somatosensory afferent feedback signals) and transmit
this information back to the nervous system which then adapts the instruction signals to
sensed perturbations or external forces.
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Recent advances in mouse (Mus musculus) molecular genetic approaches have led to
substantial progress in the studies of spinal and supra-spinal networks involved in motor
control (Jessell, 2000; Goulding, 2009; Kiehn, 2011; Akay et al., 2014; Kiehn, 2016;
Gosgnach et al., 2017; Ruder and Arber, 2019; Ruder, Schina, et al., 2021; Ausborn,
Shevtsova, and Simon M. Danner, 2021; Ferreira-Pinto et al., 2018). Specifically, it
is now possible to dissect the neural network by identifying and manipulating specific
neural populations and to relate them to specific behavioral outcomes (Kiehn, 2016).
The ubiquity of molecular genetic tools available for the mouse made it the preferred
experimental animal for the study of neural control of movement.

Computational modeling of motor control in freely behaving mice, particularly modeling
of locomotion, requires the development of detailed models of both the neural and
biomechanical components and, importantly, their interactions during movements (Merel,
Botvinick, et al., 2019) (Figure 2.2). Such detailed musculoskeletal models have been
developed of the human (Cardona and Garcia Cena, 2019; S. Lee et al., 2019; Arnold,
Ward, et al., 2010; Falisse et al., 2019; Rajagopal et al., 2016), the guinea fowl (Cox
et al., 2019), the ostrich (Hutchinson, Rankin, et al., 2015), and the dog (Stark et al.,
2021). Yet, no detailed whole-body three-dimensional musculoskeletal model of mouse
currently exists; and most of the existing neuromechanical models (models incorporating
neural controllers with the musculoskeletal system) of mammals have been limited to
two-dimensional movements or had significantly simplified musculoskeletal or muscular
components of the system (Ekeberg and K. Pearson, 2005; F. Young et al., 2019; Toeda
et al., 2020; Aoi et al., 2019; S. Yakovenko et al., 2004; Markin et al., 2016; Ausborn,
Shevtsova, and Simon M. Danner, 2021).

Here, we present an open-source, configurable whole-body musculoskeletal model of
the mouse. We digitized all the bones of the mouse skeletal system and identified the
corresponding joints to have a fully articulated rigid body model. Musculature for
hindlimbs and forelimbs were modeled as Hill-type muscles. We compared and validated
the hindlimb musculature of the model with the previously published single hindlimb
model of mouse developed by Charles, Cappellari, Spence, Wells, et al. (2016). The
three-dimensional (3D) model allowed us to explore the relationship of muscle moment-
arms and moments on the hindlimb and forelimb joints in a comprehensive manner. Our
analysis on the operational range of muscle-fibers for limb muscles give insights into the
role of active and passive forces under isometric conditions. Finally, we evaluated the
sensitivities of parameters to highlight a reduced set of crucial parameters in the complex
whole-body mouse model.
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2.3 Methods

2.3.1 Simulation tools

The mouse body was simulated as articulated rigid segments interacting with the en-
vironment. We used the Bullet v3.1.7 physics engine (Erwin Coumans and Yunfei Bai,
2016). Bullet was chosen because it is a fast and stable simulator of complex articulated
rigid bodies. It employs Featherstone’s algorithm (Featherstone, 1983), which uses a
reduced coordinate representation and an articulated-body inertia description to provide
stability for models with long kinematic chains and links with larger mass differences.
Furthermore, Bullet is available on most common operating systems and it has an appli-
cation programming interface (API) for Python that allows for a full control of simulated
behavior. To simulate muscle dynamics and their interactions with the skeletal system,
we developed a simulator-agnostic muscle library and integrated it with Bullet.

2.3.2 Skeletal system

The mouse skeletal system was represented by a set of articulated rigid segments. The
construction of this model involved obtaining skeletal scans, identifying joints, and
computing inertial parameters.

Digitization

The skeletal model was based on several mouse skeletal scans and anatomical reference
data. The model represents a generic mouse based on references from several specimens.
All the bones of the mouse were digitized as individual mesh objects. This included 23 tail
bones, 8 cervical bones, 13 thoracic bones, 6 lumbar bones, 4 sacral (merged together as
Pelvis bone), 3 coccygeal, and 20 caudal vertebrae, 15 bones in each forelimb (including
digits), 13 bones in each hindlimb (including digits), the pelvis, and the head. In total,
the model consists of 108 bones (Table 2.1). The hind and forelimb bones are modeled to
be symmetric across the sagittal plane.

Reference frames

The definition of the reference frames for the model followed the convention used in
Simulation Description Format (SDF) (OSRF, n.d.); a widely used description format
in the robotics community. Figure 2.3 shows the reference frames used to describe the
model.
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Figure 2.3: Reference frames. (A) For each bone (Femur in the example shown), a global
reference frame (link frame; black) is used to define a set of reference frames: a visual
reference frame (green) defines the position and orientation of visual shapes; a collision
reference frame (red) defines the position and orientation of the collision shapes; an
inertial reference frame (blue) defines the position of the center of mass and inertia of the
link. These reference frames (visual, collision and inertial frames) are defined in local
coordinates with respect to the link reference frame. (B) Joint reference frame is defined
with respect to the child link frame in the parent-child relationship defining the joint.
The position of the joint reference frame is the joint rotation center (Knee joint in the
example shown).

Identification of centers for joint rotation

Joint rotation centers for the model were chosen such that the rotations introduced
minimal interference with neighboring bones within the range-of-motion of the joint. The
rotation centers remain fixed throughout the range-of-motion.

Among the tail and spinal bones, we modeled two rotational degrees-of-freedom (DoFs)
between each pair of consecutive bones: flexion-extension (rotation about the transversal
axis) and lateral bending (rotation about the sagittal axis).

In the hindlimbs, the hip joints were modeled as spherical joints with three rotational DoFs:
flexion-extension (rotation about the transversal axis), abduction-adduction (rotation
about the coronal axis), and internal-external rotation (rotation about the sagittal axis).
Knee joints were modeled with a single DoF, a flexion-extension (rotation about the
transversal axis) joint. Ankle joints were modeled with three DoFs: plantarflexion-
dorsiflexion (rotation about the transversal axis), abduction-adduction (rotation about
the coronal axis) and inversion-eversion (rotation about the sagittal axis). Only a single
DoF of flexion-extension (rotation about the transversal axis) was modeled between each
digit in the hindpaws.

In the forelimbs, the shoulder joints were modeled as a spherical joint with three rotational
DoFs: retraction-protraction (rotation about the transversal axis), abduction-adduction
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(rotation about the coronal axis), and external-internal rotation (rotation about the
sagittal axis). Elbow joints were modeled with two DoFs: extension-flexion (rotation
about the transversal axis) and supination-pronation (rotation about the sagittal axis).
Wrist joints were modeled with two DoFs: extension-flexion (rotation about the transversal
axis), and abduction-adduction (rotation about the coronal axis). Only a single DoF of
flexion-extension (rotation about the transversal axis) was modeled between each digit in

the forepaws.

In total, the mouse model consists of 225 rotational joints. Table 2.1 lists the joints in
the model.

Joint range-of-motion and limits

Joint range-of-motion defines the extent to which a joint can rotate between a minimal
and a maximal angle. It is an important attribute for articulated rigid body simulations.
For animals, joint ranges are imposed due to a combination of factors such as ligaments,
muscles, and elastic forces of tissues. From previous experimental measurements on mice
and rats (osteological ranges), we have compiled and reported the joint limits for the
DoFs of the model in Table 2.1. In this work, we modeled joint limits to mimic elastic
ligaments that engage beyond the specified joint range by applying a resisting torque
(modeled as a torsional spring and damper system as described in Opensim v4.2 (Seth,
Jennifer L. Hicks, et al., 2018Db)).

Zero-pose

Zero-pose defines the reference coordinate system. In the model, the zero-pose was defined
as the pose at which all the joint angles are set to zero with respect to the corresponding
coordinate frame. A non-anatomical pose in which some joints go beyond natural joint
limits is chosen as the zero-pose to facilitate the coordinate frame transformations. Joint
angles are measured with respect to the zero-pose. The model in the zero-pose is shown
in Figure 2.4A and a possible rest-pose is shown in Figure 2.4B.

Estimating inertial properties

Inertial parameters are among the most important parameters for an accurate articulated
rigid-body physics simulation. These parameters include the mass, the center-of-mass,
and the inertia tensor for every bone (and surrounding soft tissues). To compute the
inertial parameters, we assumed an uniform density of water (1000 kg/ m3) along the body
(Bishop et al., 2020; Hutchinson, Ng-Thow-Hing, et al., 2007; Macaulay et al., 2017; Allen
et al., 2009; Bates et al., 2009). The volume around the bones was estimated based on the
convex hulls that represent the net volume encapsulated by the skin, soft-tissues, muscles,
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Group Bones Joint Degree-of-freedom (DoF) Range-of-motion (degree) Model
Hindlimb  Femur Hip extension-flexion [-30.0, 50.0] Mouse’
(left/right) abduction-adduction [-40.0, 20.0] Rat?
external-internal rotation [-10.0, 30.0] Rat?
Tibia Knee flexion-extension [-145.0, -40.0] Mouse!
Tarsus Ankle plantarflexion-dorsiflexion [-50.0, -50.0] Mouse!
inversion-eversion [-30.0, 50.0] Rat?
abduction-adduction [-10.0, 30.0] Rat?
MetaTarsus{1-5} MTP{1-5} extension-flexion [-5.0, -5.0] -
Phalange{1-5}  Phalange{1-5} extension-flexion [-5.0, 5.0] -
Forelimb ~ Humerus Shoulder retraction-protraction [-45.0, 45.0] -
(left /right) abduction-adduction [-36.0, 3.0] Rat?
external-internal rotation [-40.0, 14.0] Rat?
Ulna Elbow extension-flexion [60.0, 153.0] Rat?
Radius Elbow supination-pronation [-5.0, 30.0] Rat?
Carpus Wrist extension-flexion [-20.0, 50.0] Rat?
abduction-adduction [-10.0, 10.0]
MetaCarpus{1-5} MTC{1-5} extension-flexion [-5.0, 5.0]
Phalange Phalange{1-5} extension-flexion [-5.0, 5.0]
Pelvis Pelvis Pelvis - - -
Spine Lumbar{1-6} Lumbar{1-6} flexion-extension [-6.0, 6.0] Mouse®
lateral bending [-5.0, 5.0]
Thoracic{1-6} Thoracic{1-6} flexion-extension [-5.0, 5.0] Mouse®
lateral bending [-5.0, 5.0]
Cervical{1-6} Cervical{1-6} flexion-extension [-9.0, 9.0] Mouse®
lateral bending [-5.0, 5.0]
Head Upper jaw Head flexion-extension [-50.0, 50.0] -
Lower jaw Jaw flexion-extension [0.0, 30.0] -
Tail Tail{1-23} Tail{1-23} flexion-extension [-10.0, 10.0] -
lateral bending [-10.0, 10.0] -

Table 2.1: Mouse skeletal segments grouping, joint names and joint ranges
The skeletal segments are grouped into six sparse groups to fully describe the model.
Bones named {1-n} indicate n bones of the same name suffixed by its appropriate numeric
position. A joint is formed between a parent and child (i.e., the bone that undergoes a
transformation when the joint is rotated) bone. The table describes only the child bone
for each joint. Degree-of-freedom (DoF') indicate the independent DoFs the joint has in
the model. Joint range-of-motion for each DoF have been identified from several existing
studies (see column ‘Model’). For joints where the information is not available for mice,
we have resorted to works that are based on rats instead.

!(Charles, Cappellari, Spence, Wells, et al., 2016), %(Johnson et al., 2008), (Bonnan
et al., 2016), *(Dewan et al., 2010), 5(Shahrokni et al., 2012)

and the bone(Sellers et al., 2012; Coatham et al., 2021). Masses were computed based on
the density and volumes of the convex hulls. The center-of-mass and inertia tensors were
computed based on the shape of the convex hulls and estimated mass assuming uniform
density. The mouse model is 16.90 cm long from the head to the tip of the tail in the
zero-pose and weighs 34.32 g.
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1cm

Figure 2.4: Representation of skeletal model poses. (A) The skeletal model of the mouse
in zero-pose, i.e., when all the joint angles are set to zero. The zero-pose need not
necessarily fall into the range-of-motion for a given joint. For example, the knee joint is
defined to operate between -145.0 and -45.0 with respect to the zero position. (B) An
example of the mouse in a sitting posture that is defined relative to the zero-pose.

2.3.3 Muscle System

Muscles were modeled using the Hill-type formalism (F. Zajac, 1989). Modeling each
muscle required identification of attachment points in the hind and forelimbs and the
estimation of their parameters.

Hill-type muscle model

Hill-type models make use of passive elements such as springs and dampers and experimen-
tal data to represent the active and passive dynamics of a muscle (F. Zajac, 1989). The
contractile element (CE) and the parallel elastic element (PE) represent the muscle fibers;
the series elastic element (SE) represents the total series elasticity of the muscle-tendon
complex. It is important to keep in mind that due to this definition even muscles with
short or no tendon still have non-zero tendon lengths in the parameterization of the
Hill-type muscle model. Figure 2.5 shows the formulation of the muscle model used in
this work. To simplify the dynamics of the muscle model, we assumed rigid tendons
(Millard et al., 2013).

The Hill-type muscle model illustrated in Figure 2.5 was characterized by the following
parameters: the optimal fiber length (I ; the length of muscle-fiber at which the muscle
produces maximal active force), the tendon slack length (I7; the length of the tendon below
which the muscle transfers no force to the attached bones), the maximum muscle-fiber
velocity (v®®), the pennation angle when the fiber length is at its optimal (), and the
maximum isometric force (F,). The formal description of the Hill-type muscle model

used (Millard et al., 2013) is described in Appendix section A.1.
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Figure 2.5: Hill-type muscle model describing the force generation by the muscles. The
contractile element (CE) or the active element produces active contraction forces. The
parallel element (PE) prevents the muscle from over stretching the muscle-tendon unit
during normal operation. The series element (SE) represents the series elasticity of the
muscle, including the muscle-tendon. Contractile element length or fiber-length (I,,) is
the length of muscles fibers. Pennate muscles are defined by the pennation angle «,.
Series tendon-length (I;) is the length of series element. The total length of the muscle
(Ime) is defined as L,y = 1y, cos(ar) + 1

Muscle attachment points

Muscles are attached to the bones via tendons. The attachment at the most proximal
bone is called the origin (that bone tends to move less during muscle contraction) and
the one at the most distal bone is called the insertion (that bone tends to move most
during muscle contraction). The complex muscle paths were approximated as a polyline,
a sequence of straight lines starting at the origin and ending with the insertion and are
connected by waypoints in between (Figure 2.6). The polyline approximation is a common
approach to describe the muscle paths (S. Lee et al., 2019; Seth, Jennifer L. Hicks, et al.,
2018b; S. Delp et al., 1990; F. Young et al., 2019). (Refer to Figure 2.6 for an example
showing the polyline muscle path description around the knee joint). The identification
of the muscle attachment points and waypoints for hind and forelimbs used in this study
is described below.

Hindlimb attachment points The attachment points for mouse hindlimb muscles
have been previously identified by Charles et al. (Charles, Cappellari, Spence, Hutchinson,
et al., 2016; Charles, Cappellari, Spence, Wells, et al., 2016). However, because of the
differences in the bone geometry between our model and Charles, Cappellari, Spence,
Wells, et al. (2016) model, it was necessary to transfer the muscle attachment points from
Charles model to the bone surfaces of our mouse model. To automate the transfer process
and limit the errors, we first performed mesh registration over the two bones from both
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Figure 2.6: Polyline approximation of muscle paths. (A) and (B) show an example of
an extensor muscle around the knee joint. Coordinates Py (origin) through Pj(insertion)
define the polyline muscle path. Coordinates Py through Pyo(waypoint) are attached
to the femur and coordinates Py j(waypoint) through Pj are attached to the tibia. Thus,
Pwo — Py is the only segment of the polyline that changes the muscle length when the
joint is flexed or extended

models (mesh registration involves identifying appropriate landmarks between each bone
segment of the hindlimb of our model and theirs.) Based on the chosen landmarks, a
coordinate transformation matrix was computed to describe an affine transformation from
the bone mesh in Charles model to our model. The affine transformation obtained from
the mesh registration was then used to transfer the attachment points and waypoints
between the models. The above-described process was carried out using the open-source
mesh software CloudCompare (CloudCompare - Open Source Project n.d.). Identification
of the landmarks on each bone from the two models was done manually. This process was
carried out for the pelvis, femur, tibia, and pedal (tarsus, metatarsus, phalange) bones of
the mouse hindlimb (Figure 2.7A).

Forelimb attachment points Modeling the forelimb muscles was challenging because
of the lack of prior studies identifying attachment points of forelimb muscles. DeLaurier et
al. (2008) has previously developed a 3D forelimb atlas of the mouse embryo at embryonic
day 14.5 using Optical Projection Tomography and digital segmentation. Although the
model was based on data from a mouse embryo, it still provides useful information on
muscle attachments to the bones. This data allowed us to identify attachment points and
necessary waypoints for 17 forelimb muscles (Figure 2.7B). To the best of our knowledge
there is no published work that characterizes either the muscle properties or muscle
attachments for forelimb muscles attaching to the scapula or the spine; neither for mice
nor rats. Hence, these muscles were considered beyond the scope of this work.

Estimation of muscle properties

As described above, the Hill-type muscle model is characterized by four parameters. Of

max

4 is dependent on the fiber length and can be expressed as a

these, the fiber velocity v
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Figure 2.7: Lateral view of the musculoskeletal system of the mouse’s (A) right hindlimb
showing the attachment of 42 muscle-tendon units and (B) right forelimb showing the
attachment of 17 muscle-tendon units. For all computations in this paper, the pose of
the limbs shown in (A) and (B) are used unless mentioned otherwise

function of optimal fiber length {2 . As in Charles, Cappellari, and Hutchinson (2018),
we set v to 10 19, /s. Thus, 1%, I, o, and FO had to be identified for each muscle in
the model.

Hindlimb muscle properties Transferring the attachment points from Charles model
to our model meant that the muscle parameters had to be scaled accordingly. Maximum
isometric force (F2) and pennation angle (a,) were retained to be the same as in Charles
model and only the length dependent parameters [optimal fiber length (7)) and tendon
slack length (I)] were scaled. Since the length of the muscle varies over the DoFs it
spans, we computed a scaling factor that is satisfied at all feasible joint poses. To achieve
this, we employed a numerical optimization algorithm based on the one proposed by
Modenese et al. (2016) to compute the scaling factors for each muscle. Refer to the
Appendix section A.2 for further details.

Forelimb muscle properties Parameters /7, and FT?L were extracted from measure-
ments made by Mathewson et al. (2012) and used as preliminary approximations. [,
was scaled in proportion to the muscle-tendon lengths (i.e., the ratio of muscle-tendon
length measured by Mathewson et al. (2012) to the muscle-tendon length in our model
for each forelimb muscle was used as the scaling factor for [2)). The scaling procedure
used for hindlimb muscle parameters could not be employed here because there was no
previous biomechanical model of the mouse forelimb. F,% was computed by multiplying
the physiological cross-sectional area (PCSA) of the muscle by isometric stress (o) taken
to be 0.3 N/mm?, the same used in Charles, Cappellari, Spence, Wells, et al. (2016) for
the hindlimb muscles.

The remaining muscle property, i, was estimated using an adaptation of the numerical
optimization technique formulated by Manal and Buchanan (2004). We removed the
restriction that muscle fibers only operate in the ascending region of the force-length
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curve. We extended the algorithm to consider all the DoFs a muscle operates on while
optimizing for [7. Refer to the Appendix section A.3 for further details.

Computation of muscle-tendon length and moment-arm

Muscle-tendon length (I,,;) is the distance from the origin of the muscle on the proximal
bone to the insertion point on the distal bone. Based on the polyline approximation for
describing the muscle paths (Figure 2.6),

N-1
lmt: Z”Pn—i-l_PnH (21)
n=0

where P,, are the muscle attachment points on the polyline with Py being the origin, Py
the insertion point and waypoints in between P; : i = 1...(N — 1).

Muscle moment-arms (r) were computed using the perturbation method described in
Sherman et al. (Sherman et al., 2013),

7= Ol /00 (2.2)

where 6 is generalized coordinate representing the DoF of interest across which the muscle
moment-arm is to be computed.

2.3.4 Analysis of sensitivity of joint moment-arms and moments to
changes in muscle parameters and attachment points

Like any model, the mouse biomechanical model was developed based on several assump-
tions and simplifications. To highlight and study the influence of various characteristics
of the biomechanical model on the overall motor behavior, we analyzed the sensitivity
of joint moment-arms and moments to changes in muscle attachment points and model
parameters.

For both analyses, we used the Sobol method (Sobol’, 2001), a variance-based global
sensitivity method. The Sobol method decomposes the proportion of model output
variance caused by each individual parameter (Qian and Mahdi, 2020). This method also
allows for the study of the inter-parameter effect on the model’s output variance, but we
restricted our analysis to first-order indices (main effects). First-order indices “measure
the direct contribution of each input factor to the output variance” (Qian and Mahdi,
2020). A value of 1.0 for the first-order indices indicates that the parameter is solely
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responsible for all the variance in the models’ output, whereas a value of 0.0 represents
no influence on the models’ output variance. We used the root-mean-square (RMS) value
of the joint moment-arm or moment over the DoFs range-of-motion to represent the
scalar value necessary to evaluate the sensitivities. The Sobol sensitivity analysis was
performed using SALib v1.4 (Herman and Usher, 2017), an open source python library
for the sensitivity analysis.

The polyline approximation of the muscle paths determines the computation of muscle-
tendon length (l,,,;) and thereby the moment-arm (2.2). For the polyline approximation,
change in I,,; can be reduced to just two attachment points of the segment that cross
the DoF of interest (refer to Figure 2.6 showing an example). Therefore, for the analysis
of sensitivities to muscle attachments, we referred to the proximal attachment point of
the segment as Pyyo and to the distal one as Pyy;. The sensitivities to these attachment
points were computed by varying their 3D position within a range of £0.5 mm in x, y,
and z directions. With Pyo and Py we had six parameters (x, y, and z coordinates for
each point) to study the sensitivity of the joint moment-arm. We limited our analysis
to study how the 3D location of the two attachment points influence the joint moment-
arms. As the total sum of the first-order indices is equal to 1.0, we reported the sum of
the first-order indices along the individual 3D coordinates (x-y-z) for each attachment
point. These values represent a direction-independent measure of moment or moment-arm
sensitivity to the attachment points. Data on the individual sensitivities are available in
the supplementary material.

Muscle force production depends not only on the geometric relationship defined by the
muscle-path but also on the muscle dynamics. The Hill muscle dynamics are parameterized
by four main parameters (as described in section 2.3.3). FBL linearly affects the overall
force produced by the muscle. I7 , I and «, determine the active and passive forces
produced by the muscle and consequently affect the joint moments. Sensitivity of the
joint moments to the changes in muscle parameters were analyzed within a range defined
by +10% of their original parameter values.
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2.4 Results

The parameters of all muscles in the model are specified in Table 2.2. Because of the
differences in the available experimental data, muscle parameters for the hindlimb and
forelimb muscles were obtained using different approaches. For hindlimb muscles, the
maximum isometric force (F.,) and pennation angle (ay,) were directly taken from Charles,
Cappellari, Spence, Wells, et al. (2016) while tendon slack length (Ij) and optimal fiber
length (I7,) were scaled using the method described in Modenese et al. (2016) to account
for the differences in model dimensions. For forelimb muscles, F° and 19, were scaled
from Mathewson et al. (2012) while keeping «, the same. [} was optimized using a
modified version of the algorithm originally described by Manal and Buchanan (2004)
(see Figure 2.3.3 for details). Table 2.2, we reported the ratios between [, and I for
each muscle. The ratio shows the relationship between muscle-fiber length and tendon
lengths. However, the definition of a tendon in the Hill-type muscle models include not
only the external tendon but also the internal part of the tendon (i.e., the aponeurosis
of the muscle) (F. Zajac, 1989). Thus, the ratios indicated necessarily imply muscles
with shorter/longer external tendon physiologically and the has been shown to be true
by in Charles, Cappellari, Spence, Wells, et al. (2016) by comparing the external tendon
lengths of a few hindlimb muscles in the animal with the estimated [; values.
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s (e)

Muscle-tendon Unit Abbreviation  F2@ (N)  1°®) (mm) lf(c) (mm) a°?D (deg) Group!/)
HINDLIMB

Adductor brevis AB 0.23 9.5 2.66 0.0 0.28 Hip

Adductor longus AL 0.4 11.9 4.15 0.0 0.35

Adductor magnus AM 0.61 12.2 4.85 0.0 0.4

Biceps femoris anterior BFA 0.88 17.84 5.97 0.0 0.33

Caudofemoralis CF 0.55 17.85 4.82 0.0 0.27

Gemellus GEM 0.18 3.33 0.02 0.0 0.01

Gluteus maximus(dorsal) GM(dr) 0.94 14.99 5.75 20.42 0.38

Gluteus maximus(mid) GM (i) 1.03 14.28 5.5 20.42 0.38

Gluteus maximus(ventral) GM(ve) 1.05 14.59 5.61 20.42 0.38

Tliacus ILT 0.55 9.67 3.1 0.0 0.32

Obturator externus OE 0.09 4.37 1.71 0.0 0.39

Obturator internus Ol 0.31 6.3 0.72 0.0 0.12

Pectineus PECT 0.36 4.27 2.79 15.18 0.65

Psoas major PMA 1.34 8.01 5.76 15.54 0.72

Psoas minor PMI 1.09 6.79 4.58 12.57 0.67

Quadratus femoris QF 2.03 4.99 1.18 0.0 0.24

Biceps femoris posterior(cranial) BFP(cr) 0.72 16.46 8.02 0.0 0.49  Hip-Knee

Biceps femoris posterior(mid) BFP(mi) 0.73 16.9 8.08 0.0 0.48

Biceps femoris posterior(caudal) BFP(ca) 0.61 19.81 6.72 0.0 0.34

Gracilis anterior GA 0.4 14.76 10.16 0.0 0.69

Gracilis posterior GP 0.34 15.92 7.68 0.0 0.48

Rectus femoris RF 4.16 9.87 15.77 15.89 1.6

Semimembranosus SM 1.92 20.14 7.07 0.0 0.35

Semitendinosus ST 1.3 19.1 8.25 0.0 0.43

Popliteus POP 0.31 3.3 3.26 0.0 0.99 Knee

Vastus intermedius VI 0.37 10.08 11.68 10.92 1.16

Vastus lateralis VL 2.83 11.18 12.07 15.53 1.08

Vastus medialis VM 1.1 10.77 12.67 16.15 1.18

Lateral gastrocnemius LG 3.78 6.97 17.89 17.28 2.57  Ankle-Kne

Medial gastrocnemius MG 1.75 7.29 18.5 14.24 2.54

Plantaris PLANT 0.88 5.75 20.23 17.1 3.52

Extensor digitorum longus EDL 0.37 8.12 30.42 12.39 3.74 Ankle

Extensor haliucis longus EHL 0.07 7.71 23.32 9.56 3.02

Flexor digitorum longus FDL 1.9 5.71 36.6 15.2 6.41

Peroneus brevis PB 0.4 3.04 13.33 11.46 4.39

Peroneus digiti quarti PDQA 0.11 5.05 30.31 12.42 6.0

Peroneus digiti quinti PDQI 0.1 4.72 25.53 9.44 5.41

Peroneus longus PL 0.65 5.21 19.4 14.9 3.72

Peroneus tertius PT 0.46 4.78 15.81 12.46 3.31

Soleus SOL 0.59 4.5 10.53 11.43 2.34

Tibialis anterior TA 2.42 6.61 15.92 16.58 2.41

Tibialis posterior TP 0.55 4.72 19.71 15.44 4.18

Continued on next page
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I3 (e)

Muscle-tendon Unit Abbreviation  F2@ (N) %) (mm) Iy () (mm) a°@ (deg) o Group!)
FORELIMB -

Coracobrachialis COR 0.28 5.18 4.64 13.85 0.9 Shoulder

Biceps Brachii Long Head BBL 0.78 11.63 7.52 21.68 0.65 Elbow-Shoulder

Triceps brachii lateral head TBL 0.71 8.17 4.53 23.41 0.55

Anconeus AN 0.15 1.42 1.49 24.65 1.05  Elbow

Biceps brachii short head BBS 0.84 9.08 6.07 28.27 0.67

Brachialis BRA 0.25 10.06 5.58 9.89 0.56

Pronator teres PTE 0.55 2.75 4.96 26.17 1.81

Triceps brachii medial head TBM 0.45 4.93 6.43 30.33 1.3

Triceps brachii long head* TBO 4.65 7.01 4.88 41.88 0.7

Extensor carpi radialis brevis ECRB 0.35 14.45 7.71 29.49 0.53 Elbow-Wrist

Extensor carpi radialis longus ECRL 0.38 13.86 7.29 26.4 0.53

Extensor carpi ulnaris ECU 0.52 7.67 10.84 20.8 1.41

Extensor indicis proprius 1 EIP1 0.07 5.05 2.99 19.0 0.59

Extensor indicis proprius 2 EIP2 0.07 5.27 3.3 19.0 0.63

Flexor carpi radialis FCR 0.38 8.92 10.74 15.02 1.2

Flexor carpi ulnaris FCU 0.69 8.28 10.29 20.95 1.24

Palmaris longus PLO 0.27 10.9 9.12 24.65 0.84

Table 2.2: Hindlimb and forelimb muscle parameters

(@) Maximum isometric force of the muscle. Hindlimb muscle forces are the same as
reported in Charles, Cappellari, Spence, Wells, et al. (2016). Forelimb muscle forces
are computed by multiplying the physiological cross-sectional area (PCSA) reported
in Mathewson et al. (2012) by isometric stress (o = 0.3 N/mm?) (Charles, Cappellari,
Spence, Wells, et al., 2016; Hutchinson, 2004).

(®) Optimal fiber length for hindlimb scaled to the current model from Charles, Cappellari,
Spence, Wells, et al. (2016) using the scaling based on Modenese et al. (2016) and forelimb
scaled to the current model (Mathewson et al., 2012).

(©) Tendon slack length is obtained in the same way as described for the optimal fiber
length.

(@) Pennation angle for hindlimb is obtained from Charles, Cappellari, Spence, Wells, et al.
(2016) and for forelimb from Mathewson et al. (2012).

(¢) Ratio of optimal fiber length and tendon slack length.

() Sorting of muscles into groups based on the joints they span. For example, Biceps
femoris posterior (BFP) belongs to Hip-Knee group as it spans over one or more hip and
knee joints. The same order is used in the rest of this work.

2.4.1 Moment-arm analysis for the hindlimb muscles

Because of the differences in bone geometries, we transferred the muscle attachment
points from the hindlimb model developed by Charles, Cappellari, Spence, Hutchinson,
et al. (2016) and Charles, Cappellari, Spence, Wells, et al. (2016) to our model. The mesh
registration technique described in Figure 2.3.3 was used to transfer the attachment points.
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Figure 2.8: Comparison of moment-arms from (Charles, Cappellari, Spence, Wells, et al.,
2016) (dotted lines) and current model (solid lines) for muscles (A) pectineus (PECT)
and biceps femoris anterior (BFA) over hip flexion-extension range-of-motion (RoM) (B)
semimembranosus (SM) and vastus intermedius (VI) over knee flexion-extension RoM
(C) medial gastrocnemius (MG) and tibialis anterior (TA) over ankle flexion-extension
RoM. The moment-arms are normalized by the respective thigh length (thighchares =
16.25 mm and thigheyrent = 24.5 mm).

The attachment points of the muscle have a direct influence on the muscle moment-arms
(Figure 2.6) and consequently on the moments on the joints they influence. To compensate
for the lack of wrapping surfaces, additional waypoints were introduced along the muscle
path when necessary. To validate the muscle attachment process, moment-arms of two
flexor muscles of the hip, knee, and ankle joints from Charles model were compared with
the moment-arms in our model (Figure 2.8). For this comparison, moment-arms were
normalized to their respective thigh (femur) lengths, since the two models are of mice of
different age and size. The moment-arms from the two models are in good quantitative
and qualitative agreement throughout the range-of-motion for the three hindlimb joints.

2.4.2 Description of muscle function based on moment-arms and mo-
ments

Figure 2.9 presents a comprehensive overview of each muscle’s influence over every DoF
it spans. We present the functional grouping of the muscles based on the moment-arm
and moment. Each DoF was sub-divided into two functions, representing the possible
directions in which the muscle can influence the DoF. Thus, for every DoF it spans over, a
muscle has the possibility to apply a moment either on one of the DoF functions’ or both
(zero-crossing). Moment-arms were computed in the default pose shown in Figure 2.7;
moments were computed assuming maximal muscle activation (a(t) = 1.0)
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Figure 2.9: Maximum moment arms (A, C) and moments (B, D) for each muscle and
joint function. Grey boxes indicate joint functions for joints the muscle spans but has
zero influence over. For example, a pure hip flexor muscle is considered to be spanning
over both hip flexion and extension joints, but the corresponding hip extension will be in
grey to indicate that the muscle has no influence on hip extension. The moment-arms
and moments are normalized by the muscle which has the maximum influence in the
group. € indicates a very low non-zero positive value

Hindlimb muscles

Figure 2.9A B shows the functional grouping of hindlimb muscles based on the moment-
arm and moment, respectively. For hip flexion, iliacus, psoas major, psoas minor, and
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rectus femoris have the maximal moment-arms. However, since rectus femoris has the
largest maximum isometric force, it exhibits the highest moment towards hip flexion.
For hip extension, adductor longus, adductor brevis, quadratus femoris, biceps femoris
posterior, semimembranosus, and semitendinosus have the dominant moment-arms. How-
ever, grouping them by moment reveals that quadratus femoris, semimembranosus, and
semitendinosus are the dominant muscles. This classification also highlights that all hip
flexors except psoas major, psoas minor, iliacus, and rectus femoris have zero-crossings
(Figure 2.9A). While gluteus mazimus muscle has the highest moment-arm to abduct
the hip, semimembranosus along with gluteus mazimus also strongly contributes to hip
abduction moments as their maximum force is larger. For hip adduction, adductor brevis,
adductor longus, adductor magnus, gracilis antertor, and gracilis posterior are the domi-
nant adductors when we consider the moment-arms. Considering moments, quadratus
femoris and rectus femoris dominate over other muscles because of their large F,%. For
hip external rotators quadratus femoris has the most significant moment-arm and moment
in the group. Also, gluteus mazximus has the largest moment and moment-arm among
the hip internal rotators.

For knee flexion, semitendinosus, biceps femoris posterior, gracilis anterior, gracilis
posterior, and semimembranosus have the strongest moment-arms, but semimembranosus
and semitendinosus show the largest moments followed by lateral gastrocnemius. For
knee extension, rectus femoris, vastus intermedius, vastus lateralis, and vastus medialis
have the largest moment-arms, while rectus femoris exerted the largest moment, followed

by wvastus lateralis and lateral gastrocnemius.

Several muscles show strong moment-arms for ankle plantarflexion with soleus and plan-
taris having the largest moment-arms. Considering the moments, lateral gastrocnemius
overshadows all the other ankle plantarflexors. For ankle dorsiflexion, tibialis anterior
exhibits the strongest moment-arm and moment. Among ankle evertors, peroneus digiti
quarti and peroneus longus show the largest moment-arm but flezor digitorum longus and
peroneus longus, due to their large maximum isometric force, also significantly contribute
to the moments. For ankle inversion, medial gastrocnemius has the highest moment-arm
and moment among all the muscles in its group. Peroneus digiti quarti, peroneus longus,
and peroneus brevis have large moment-arms for ankle abduction, while lateral gastrocne-
maus, flexor digitorum longus, and peroneus longus Can exert large moments for ankle
abduction. Medial gastrocnemius, plantaris, and soleus have significant moment-arms
for ankle adduction group, and lateral gastrocnemius and medial gastrocnemius have the
highest moments.

Forelimb muscles

Figure 2.9C,D show the functional grouping of forelimb muscles based on the moment-
arm and moment, respectively. Anatomically, the forelimb is more complex than the
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hindlimb, the scapula is a floating link with all six DoFs and elbow joints have complex
joint rotations. The kinematic complexities are reflected in the identification of muscle
functions. Most shoulder joint muscles originate from the axial skeleton and scapula.
Here, we have not included those muscles that originate from the spinal segment due
to the lack of available experimental data; the model only includes a limited number of
proximal muscles in the forelimb. Shoulder retraction is actuated by the long head of
biceps brachii whereas shoulder protraction is actuated by coracobrachialis and the lateral
head of triceps brachii. Both latter muscles have similar maximum moment-arms, but
the maximal isometric force of the lateral head of triceps brachii is much larger compared
to coracobrachialis, resulting in a larger moment. Coracobrachialis, the long head of
biceps brachii, and the lateral head of triceps brachii contribute similarly to shoulder
abduction both in terms of moment-arm and moments, while the long head of biceps
brachii and the lateral head of triceps brachii contribute to shoulder adduction. This
shows that shoulder adduction is possible in the model only due to the zero-crossing
of the long head of biceps brachii and the lateral head of triceps brachii. For shoulder
external rotation, coracobrachialis and the lateral head of triceps brachii act on the joint
function with the lateral head of triceps brachii dominating the joint function both in
moment-arm and torque magnitudes. The long head of biceps brachii alone acts on the
shoulder-internal-rotation joint function, leaving us to draw no further inferences about
this joint function.

Among the many forelimbs muscles that span over the elbow joint, the elbow-flexors, the
long head of biceps brachii and extensor carpi radialis longus have the largest moment-
arms followed by short head of biceps brachii, brachialis, extensor carpi radialis brevis,
and flexor carpi radialis. When we consider the moments, long head of biceps brachii has
the largest maximal moment followed by short head of biceps brachii. Other muscles that
had a large moment-arm are weak and exert smaller moments. For elbow-extension, all
the triceps muscles (triceps brachii lateral, triceps brachii medial, and triceps brachii long
head) have relatively strong moment-arms, with the long head of triceps brachii exerting
the largest maximal moment. In the current model, we did not include any elbow-pronator
muscles. For elbow supination, extensor carpi radialis longus has the largest moment-arm,
followed by short head of biceps brachii, extensor carpi radialis brevis, and flexor carpi
ulnaris. The short head of biceps brachii becomes the most dominant muscle for elbow
supination when we consider moments, followed by extensor carpi radialis longus and

flexor carpi ulnaris.

All the wrist flexor muscles have similar maximum moment-arms across the joint function,
with extensor carpi radialis brevis, extensor carpi radialis longus, and extensor carpi
ulnaris having the most dominant moment-arms. For moments, extensor carpi ulnaris has
the strongest moment followed by extensor carpi radialis longus and extensor carpi radialis
brevis. Three muscles act on wrist-flexion, of which peroneus longus has the highest
moment-arm followed by flexor carpi ulnaris; when we consider moments, however, the
dominance is flipped. While flezor carpi radialis, flexor carpi ulnaris, and peroneus longus
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have the strongest moment-arms for wrist abduction, the strongest moments are exerted
by the flexor carpis ulnaris, followed by flexor carpi radialis. Among the three muscles
that influence wrist adduction, extensor carpi ulnaris has the strongest moment-arm
followed by extensor carpi radialis brevis and extensor carpi radialis longus. Extensor
carpt radialis longus has a zero-crossing such that it influences both wrist abduction and
adduction. For moments, extensor carpi ulnaris has the highest moment followed by
extensor carpi radialis brevis.

2.4.3 Operational range of muscle-fiber length

The muscle-fiber length (,,,) determines the working region of the muscle in the force-
length (FL) curve (Figure 2.10B). More specifically, the fiber-length determines if the
muscle produces force purely based on muscle contractions or a combination of muscle
contraction and passive forces. The range of operation in the FL relationship is determined
by the muscle attachment points and parameters. Operational range of a muscle-fiber
was computed by moving the joints it influences through its complete range-of-motion.
Then minimum and maximum values of the fiber length for considering all the joints
will determine the operational range of the muscle fibers. The range is then normalized
by the muscles corresponding optimal fiber length (/7). In Figure 2.10A we show the
working ranges of normalized muscle-fiber lengths (le) across all the DoFs each muscle
spans. Muscles that span over a single joint tend to have shorter range of operation in
the FL relationship. Most muscles in the mouse forelimb and hindlimb operate within the
active (I,, < 1.0) and passive force (I,, > 1.0) regions of the FL curve. Gluteus mazimus
in the hindlimb is the only muscle that operates completely in the active region of the FL
curve. Short head of biceps brachii, brachialis, extensor carpi radialis, and extensor indicis
proprius muscles in the forelimb exhibit operation only in the active region. These muscles
in the hindlimb and forelimb have no passive/elastic force contributions during movement.
In the hindlimb, extensor digitorum longus, extensor hallucis longus, peroneus digiti quarti,
and peromeus tertius are the muscles that operate only in the passive region of the FL
curve. All the mentioned muscles span over the ankle joint. Pronator quadratus is the
only muscle in the forelimb that operates only in the passive region of the FL curve. This
is because the optimization of the parameters of forelimb muscles was performed under
the constraint that every muscle must have some operation range in the active section
of the FL curve. A muscle whose operational range is only in the passive region always
produces an elastic force on the joints and the force increases exponentially as the muscle
is stretched. Passive forces are useful as they consume no energy to produce movement
but if the desired movement is against the passive force, then it requires additional energy
to overcome it. Hence, there is an interesting optimum that could be reached to minimize
energy consumption. All the other muscles in the hindlimb and forelimb operate across
the active and passive regions depending on the pose/configuration of the joints.
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Figure 2.10: (A) Range of normalized muscle-fiber length (muscle-fiber length ()
normalized by optimal fiber length (1%)); Iy, = In/1%,) for each muscle in the forelimb
and the hindlimb. The range of I,,, is computed considering the range-of-motion of all
the degrees-of-freedom the muscle spans. (B) Hill-type muscle force-length relationship
showing the normalized force produced by muscle contraction (active force), by series
and parallel elastic forces, and the sum of both (total force) across the . At I, = 1.0
the muscle produces maximum active force in the force length curve.
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2.4.4 Sensitivity analysis

Muscle attachments and muscle parameters together determine the overall function and
moments produced by the muscle. The high number of muscles and the DoFs each muscle
influences makes it a challenging task to perform a comprehensive sensitivity analysis.
Here, we use the Sobol method, a variance-based global sensitivity method to perform
the analysis (see Section 2.3.4).

It is important to note that in Figure 2.11, results of two separate sensitivity analyses
are displayed, one for the muscle attachments and one for the muscle parameters. Thus,
sensitivity indices for the two cases should be interpreted independently.

Sensitivity of joint moment-arms to changes in muscle attachment points

The first observation we can make from the sensitivity analysis to variation in attachment
points is that the majority of muscle joint moment-arms are highly sensitive to either
Py o (attachment to the parent bone of the joint) or Py (attachment to the child bone
of the joint) and only very few to both. Figure 2.12(A-D) shows an example of the
variation of moment-arms when the 3D positions of Py o and Py are varied between
+0.5 mm for gracilis anterior muscle across the 4 DoFs it spans over the hip and the
knee joints. For hip flexion-extension and abduction-adduction, moment-arms of gracilis
anterior are highly sensitive to Pyo. For hip internal and external rotation and knee
flexion-extension DoF, the moment-arm of gracilis anterior is more sensitive to changes in
Py 1 than Pyo. The same observations are reflected in the comprehensive representation
shown in Figure 2.11.

Referring to Figure 2.6, we can interpret the geometric reason for why a muscle-joint pair
is sensitive to either Py, Pwr, or sometimes both. When the attachment points are
perturbed to perform the sensitivity analysis, points further away from the joint rotation
centers will result in larger changes in muscle length within the range-of-motion of the
joint. As we have seen from Equation 2.2, larger change in muscle-tendon length for the
same change in DoF motion results in larger moment-arms. Thus, the proximity of the
attachment point to the joint’s center-of-rotation will influence its sensitivity. From the
analysis (Figure 2.12), we can identify those attachment points that are most important
and interesting to explore for a given muscle-DoF pair.

Sensitivity of joint moment to changes in muscle parameters

In addition to the muscle attachment points, the muscle parameters determine the
dynamics of the muscle and the moments it generates on the joints. Estimation of muscle
parameters is a challenging process that could potentially lead to modeling errors. This
applies to our forelimb model, where the muscle parameters were estimated based on
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several different data sources (See Section 2.3.3). The sensitivity analysis provides an
overview of the parameters that have most influence on the moment generation for each
muscle-joint pair. We performed this analysis for four muscle parameters [maximum
isometric force (F°), optimal fiber length (1%,), tendon slack length (I7), and pennation
angle (a,)] within a range of +£10% of their original values. The sensitivities of joint
moments to changes in muscle parameters are reported in Figure 2.11. We do not show
the results for «,, since no joint moment exhibited a significant sensitivity. plot with ay,
refer to the correspondent figure in the supplementary material.

From the Hill-type muscle force (see Equation A.1 in the Appendix) F° has a linear
influence on the muscle force while {7, and [; have complex, non-linear relationships.

Among the hindlimb muscles that span the hip joint, FBL is the parameter influencing the
joint moments the most; [;, being the next parameter in a few muscles in this group. No
muscle in this group exhibits sensitivity for the choice of I parameter. Next, sensitivity
of moments caused by muscles that span hip and knee joints are equal due to the changes
in F,BL, Iy, and sometimes [;. Muscles spanning only the knee joint exhibit sensitivity
only for FT%. Moments of muscles that span knee and ankle or only ankle joint all have
[ as their most important parameter. Among the forelimb muscles, moments are most
sensitive to the Fgl parameter for almost all muscle-joint pairs. With just a few muscles

for which moments are more sensitive to [, or [j parameters.
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Figure 2.11: Sensitivity of joint moment-arms to changes in muscle attachment points
and of joint moments to changes in muscle parameters. Analysis of muscle attachments
and muscle parameters was done independently but is shown together in the figure. The
colors indicate the first-order indices from the Sobol analysis. A first-order index value of
0.0 indicates that the parameter under observation has no contribution to the output’s
(moment-arm/moment) variance and value of 1.0 indicates that the parameter is respon-
sible for the total output’s variance. Analyzed DoF pairs are: Hip abduction-adduction
(HA), flexion-extension (HF), internal-external rotation (HR), Knee flexion-extension
(KF), Ankle abduction-adduction (AA), flexion-extension (AF), inversion-eversion (AI).
Shoulder abduction-adduction (SA), flexion-extension (SF), internal-external rotation
(SR), Elbow flexion-extension (EF), pronation-supination (ES), Wrist abduction-adduction
(WA), flexion-extension (WF)
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Figure 2.12: (A-D) Variation of gracilis anterior moment-arms for the variation of the
3D position of the attachment points Py o (attachment point in the parent bone of the
joint) and Py (attachment point in the child bone of the joint) within the range of
+0.5 mm for hip flexion-extension (HF), hip abduction-adduction (HA), internal and
external rotation (HR) and knee flexion-extension (KF). (E-H) Variation of Gracilis
anterior moments for the variation of the muscle parameters (maximum isometric force
(FY), muscle fiber length (I,,,), tendon slack length (I;) within the range of 410% of their
default values for HF, HA, HR and KF.

38



A whole-body musculoskeletal model of the mouse Chapter 2

2.5 Discussion

We presented a whole-body three dimensional (3D) musculoskeletal model of the mouse
with a fully articulated skeletal system actuated by identified musculature for both
hindlimbs and forelimbs. Using the model, we performed a systematic and comprehensive
analysis of the limb musculature to study their influence on limb joints. We first studied
how the muscles influence joint function based on the moment-arm and moments they
exert. The analysis gives a comprehensive view to characterize muscle function. Our
results reveal that many muscles that span multiple degrees-of-freedom (DoFs) tend to have
zero-crossing (i.e., change their function over the DoFs range-of-motion). Examining the
muscle-fiber length range showed how the limb muscles distribute their force production
in terms of active and passive forces over the joints’ complete range-of-motion. We then
performed a sensitivity analysis to highlight the crucial parameters in the model and
showed how different parameters affect on each muscle-DoF pair in the model. Although
the model was based on a number of simplifications and assumptions, it is an important
step in the direction of building complex biomechanical, and ultimately neuromechanical
models to study motor behaviors and their underlying neuronal control.

2.5.1 Muscle system development

Identification and characterization of the muscles operating in complex musculoskeletal
systems is a challenging task. It involves a laborious process of extracting individual
muscles from the animal, carefully identifying the attachment landmarks such as origin
and insertion locations of each muscle and identification of major muscle parameters.

These steps were traditionally performed directly on cadavers (Johnson et al., 2008);
later studies, used microCT scans along with digital segmentation, which lead to more
detailed identification about muscle geometry and attachments, especially for deep muscles
(Charles, Cappellari, Spence, Hutchinson, et al., 2016). In this work, we developed the
muscle system of both hindlimb and forelimbs by incorporating data from several studies

on the mouse.

Transferring hindlimb muscle attachment points from Charles model

Development of the hindlimb musculature was largely based on the OpenSim single mouse
hindlimb model of Charles, Cappellari, Spence, Hutchinson, et al. (2016) and Charles,
Cappellari, Spence, Wells, et al. (2016). Since, this model was only of a single hindlimb,
we had to transfer the muscle system to our full mouse model which had a different
bone geometry. The first step in this process was to identify the appropriate landmarks
of origin and insertion points of each muscle on the new model. To accomplish this
task, we setup an automatic process to identify a coordinate transformation between
the bones of two models using mesh-registration technique. With this, every attachment
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point of a muscle defined in a particular coordinate of a bone was transferred to the
coordinate frame of the same bone in the current model. The model in Opensim had
incorporated muscle wrapping surfaces to better describe the muscle paths. However, in
our current framework, muscle paths were approximated as linear polyline paths similar
to S. Lee et al. (2019), S. Delp et al. (1990), and F. Young et al. (2019). To compensate
for this approximation, we had to manually introduce additional waypoints to describe
the muscle path closer to the original model. With the use of polyline method it was
possible to faithfully describe muscle paths. In figure 2.8, we compared moment-arms
of six hindlimb muscles from our current model with the model developed by Charles,
Cappellari, Spence, Wells, et al. (2016) in OpenSim. Among the six muscles, five of
them had used wrapping surfaces in Charles model (except tibialis anterior (TA)). The
comparison showed excellent qualitative and quantitative agreement between the moment-
arms of the two models, highlighting that the approximation of polyline method captured
muscle paths well throughout range-of-motion.

Scaling of hindlimb muscle parameters

After transferring the muscle attachments from Charles’ model to our model, it was
necessary to scale the muscle parameters appropriately to our model’s geometry. Since our
model is a whole-body 3D model, it was very important to consider the influence of the
muscle parameters on all the DoFs the muscle spans. We used the numerical optimization
based algorithm proposed by Modenese et al. (2016) to appropriately scale {2, and [}
parameters considering all the DoFs a muscle spans. While the method emphasizes on
scaling the parameters such that the change in muscle length was preserved between the
original and the scaled model, there is no constraint on preserving the ratios between [,
and [j. In Charles model, I was estimated based on the numerical method proposed by
Manal and Buchanan (2004). Thus, the [ parameter has no direct measurable tendon
property of the muscle. This is in accordance with the original formulation of the Hill-
type muscle models (F. Zajac, 1989). Also, Charles, Cappellari, Spence, Wells, et al.
(2016) showed that the measured tendon lengths were either longer or shorter than the
estimated [; values. Because of these observations, we did not impose any constraints
to the algorithm to preserve the ratios between [;, and [} of Charles’ model. During
future iterations of the model improvement, [; parameter could be estimated from animal
experiments (Cox et al., 2019).

Modeling the mouse forelimb is more challenging than the hindlimb

Developing the forelimb muscle system was more challenging due to the lack of available
biomechanical studies of the mouse or even rat forelimbs. To the best of our knowledge,
Mathewson et al. (2012) was the only published work that measured some of the muscle
properties necessary to model Hill-type muscles. But, since the goal of their work was not
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building a simulation model of the mouse forelimb, information about muscle attachments
were not reported.

DeLaurier et al. (2008) developed a 3D model of mouse embryonic forelimb using Optical
Projection Tomography and digital segmentation. We transferred the attachment points
for each muscle using their 3D atlas to our model. The choice of muscle was based on
muscle data reported in Mathewson et al. (2012). This limited the forelimb model to
mostly distal muscles. Proximal muscles around the shoulder that had origins from the
spine were omitted from the model.

Mathewson et al. (2012) reported 9, and ag for the forelimb muscles. Unlike in the
hindlimb case, we could not employ the algorithm to scale length related parameters from
Modenese et al. (2016) because of a lack of information about muscle lengths at different
model poses. The ;) parameter was thus scaled based on the ratio of average muscle-
tendon length for while oy was used as reported. Ff,)l was computed as by multiplying the
physiological cross-sectional area by the same value of maximum isometric stress used for
hindlimb muscles (0.3 N/mm?).

The final missing parameter [; was estimated based on the extended algorithm by Manal
and Buchanan (2004). (Refer to Appendix A.3 for details on the changes incorporated to
the algorithm.) Determining I; is one of the biggest bottlenecks in Hill-type muscle pa-
rameterization as there is no method to experimentally to estimate it (Charles, Cappellari,
Spence, Wells, et al., 2016). The closest experimental method to estimate [j is described
by Cox et al. (2019). However, performing such experiments are extremely difficult in
the mouse because of their relatively small size. The modifications we proposed to the
numerical method by Manal and Buchanan (2004) should improve the reliability of these
estimates for the mouse as well as for other musculoskeletal model of animals.

To the best of our knowledge there is no published work that characterizes either the
muscle properties or muscle attachments for forelimb muscles attaching to the scapula or
the spine; neither for mice nor rats. Hence, these muscles were considered beyond the
scope of this work.

2.5.2 Muscle moment-arms and moments

The model includes 59 distinct forelimb and hindlimb muscles. It is a challenging task
to provide a comprehensive analysis of a complex model such as this. Conventionally,
the practice is to report and describe the relationship between moment-arm and joint
movement for each muscle individually. This means that it is necessary to assume the
function of a muscle a priori. Instead of making this assumption, we reported a global
view of the possible roles of a muscle based on moment-arm and moment (Figure 2.9).
With this representation one can quickly identify the function of a muscle and observe
the contribution of different muscles to a particular degree of freedom.
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Figure 2.13: (A) Moment and (B) moment-arm of hip flexor muscles adductor brevis (AB),
gemellus (GEM), iliacus (ILI), obturator externus (OE), obturator internus (OI), pectinus
(PECT), psoas magjor (PMA), psoas minor (PMI), rectus femoris (RF). (C) Moment
and (D) moment-arm of elbow flexor muscles anconeus (AN), brachialis (BRA), extensor
carpi radialis longus (ECRL), extensor carpi ulnaris (ECU), triceps brachii lateral head
(TBL), triceps brachii medial head (TBM), triceps brachii long head (TBO)

Previous musculoskeletal modeling studies have reported the behavior of zero-crossing of
muscle moment arms in several animals such as cats (R. P. Young et al., 1993), mouse
(Charles, Cappellari, Spence, Wells, et al., 2016), rat (Johnson et al., 2008) and ostrich
(Hutchinson, Rankin, et al., 2015). R. P. Young et al. (1993) speculated that muscles with
a zero-crossing moment-arms could intrinsically stabilize the joints around which they
change sign without any need for extra neural commands. For the mouse hindlimb model
from Charles, Cappellari, Spence, Wells, et al. (2016), several muscles were reported to
have a zero-crossing. But their analysis was limited to the assumption of functional roles
assigned to each muscle a priori. Here, we identified more muscles that have zero-crossings.
For example, previously only pectineus muscle was reported to have a zero-crossing for
hip flexion-extension. From Figure 2.13A,B we can observe that in addition to pectineus
we have adductor brevis, gemellus, gluteus mazximus (ventral), obturator externus and
internus and quadratus femoris muscles have zero-crossing. Similarly for the different
joints in forelimb and hindlimb, we can observe many muscles exhibiting the zero-crossing
behavior.

A shortcoming of the representation we proposed is that it does not show joints’ angle
information: it is not possible to see at what joint angle the zero-crossing occurs. This
limitation is only in the visual representation in this article, and detailed moment-arms
of all the possible muscle and joint combinations are available. We encourage the readers
to use the data and plotting tools in the code-repository (see https://gitlab.com/paper
submissions/mouse biomechanics paper) to extract the detailed plots.

Along with moment-arms, we also reported the muscle moments across each DoF (Fig-
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ure 2.9). By presenting both moment-arms and moments together, we can quickly observe
how the role and importance of a muscle in actuating a particular DoF can change.
Muscles with large maximum isometric force naturally become the dominating muscle for
the DoF. While the moment-arm is only dependent on the muscle attachments and joint
position, moments also depend on the dynamics of the muscle—most importantly muscle
activation. From a neural control point of view this is very interesting: the nervous
system can operate with a single strong muscle and/or utilize several different weaker
muscles together to produce the same movement. Co-activation of multiple synergistic
muscles with respect to a specific function could also result in a stabilization of the joint
in the other DoFs.

The current muscle moment-arm and moment results were computed while the joint of
interest was rotated within the range of motion and while keeping all other joints in their
default position. This has a strong influence on the results. It limits the scope of the
analysis to a particular pose of the model. This is often the case in biomechanical model
analysis as it becomes very complex to interpret and represent the relationship of different
joints with muscle moment and moment-arm. Young and colleagues (R. P. Young et al.,
1993; F. Young et al., 2019) studied the coupled effect of a bi-articular muscle on joints.
Also, we see from Figure 2.9 that many muscles operate on more than two degrees of
freedom, especially muscles that span joints with multiple degrees of freedom (e.g., hip,
ankle, shoulder, or wrist). With the condensed representation (Figure 2.9), it is possible
to generate plots to study the relationships at various model poses.

2.5.3 Range of normalized muscle-fiber lengths

Muscle-fiber length (l,,,) is a state variable in describing the muscle dynamics (see
Appendix A.1). It depends on the muscle-tendon length (I,,;), the muscle contraction
dynamics, and the muscle activation. I, is thus a very interesting variable to study. In
this paper, we reported the operational range of normalized muscle-fiber length (ZNm) for
each muscle over all the joints it spans in Figure 2.10. (Unlike the moment-arm and
moment representation in Figure 2.9, Figure 2.10 incorporates all the possible joint poses
for a single muscle.) The range of I, reflects the choice of the tendon slack length (1)
and optimal fiber length (I7,) parameters. In future, if we can obtain experimental data of
fiber-lengths at the different limb postures. This data can be used to validate the model
by making sure that the experimental measurements fall within the predicted ranges of

.-

Analyzing the I,,, is also useful in understanding the behaviors by being able to characterize
if a muscle is operating in the ascending, plateau or the descending region in the force-
length curve (Figure 2.9B). In smaller animals, such as mice, due to their low weight
and small inertias, the effect of gravity on the body is negligible (Hooper, 2012; Hooper
et al., 2009). With lower influence of gravity, the forces produced by the passive elements
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become more significant. This has two important consequences on the neural control
circuits. One, it is less essential (compared to larger vertebrates) for the neural system to
monitor the direction of gravity on the limbs during movements. Second, the momentum
of the limbs is less useful during the swing phase during locomotion. For further discussion
on the influence of body size on neural control refer to Hooper (2012). Thus, passive
forces in mice play an important role in movement generation and it would be informative

to use the muscle-fiber length range plots to explore it.

In Arnold, Hamner, et al. (2013), the authors reported the l,n of human leg muscles
during different speeds of walking and running. They observed that the I, has a wide
range of operation in the force-length curve for different speeds of walking and running.
Figure 2.10 for the mouse model also highlights that most muscles with the current muscle
parameters operate both in the ascending and descending region of the force-length
allowing for the kind of variability observed in humans.

2.5.4 Sensitivity analysis

While developing a complex model like the one described here, it is important to identify
the critical parameters that influence the overall performance of the model. To this aim,
we performed a variance based global sensitivity analysis using the Sobol method to
systematically study the influences of muscle attachment points and muscle parameters
on the moment-arms and moments.

In our analysis of sensitivity of moment-arms to muscle attachment points, we considered
only those attachment points (Pyo and Pyyr) that influence the muscle-length effect on
the joint of interest. In Charles, Cappellari, Spence, Wells, et al. (2016), the analysis was
performed directly at the origin and insertion points, and the perturbations applied to
the attachments were along a particular direction. In contrast, in our work, we applied
perturbations to the attachments in all three directions. Similar to the observations made
by Charles, Cappellari, Spence, Wells, et al. (2016), we unsurprisingly observed that the
attachment points located farther from the joint rotation centers had the greatest effect
on the joint moment-arms. With the polyline approximation it therefore becomes very
important to identify the intermediate points as accurately as possible to describe the
muscle paths.

We further analyzed the sensitivity of joint moments to changes in F,?Z, [, 17, and o,
parameters of the Hill-type muscle model. Based on (A.1), the formulation of Hill-type
muscle models, F},)I linearly affects the joint moments. However, [}, I7 and «, have a
non-linear relationship with muscle force production (refer to Appendix A.1 for Hill model
description). Unsurprisingly, moments across many muscle-DoF pairs were most sensitive
to F% with [} being the next most significant parameters. Our observations presented in
Section 2.4.4 agree with the sensitivity analysis by Charles, Cappellari, Spence, Wells,
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et al. (2016). They observed that muscles with larger I compared to their I, had their

S

moments more sensitive to I§ than FC,. In Table 2.2 we reported the ratios of Tt Muscles

m
S

l
with smaller ratios (< 1.0) for th have moments more sensitive to F. and muscles larger

m
S

l% > 1.0 ratios are more sensitive to [f. This in accordance with the previous studies not
orgly in mouse (Charles, Cappellari, Spence, Wells, et al., 2016) but also for chimpanzees
(O’Neill et al., 2013) and humans (S. Delp et al., 1990; Redl et al., 2007).

The same applied to the forelimb muscles as well. Although, in the forelimb we have

very few muscles whose ratios of th is greater than 1.0. The validation of our sensitivity
m

analysis for the hindlimb muscle-joint pairs allows us to increase the confidence levels of

our observations made for forelimb muscles.

Overall, with our comprehensive analysis we have highlighted the most important pa-
rameters in the model. This allows future researchers to identify and work with these
important parameters more critically. The identification of the critical parameters also
allows for adapting and fine tuning the model in case of numerical optimization for specific

behaviors.

2.5.5 Model limitations

In this work, we present the most complete musculoskeletal model of the mouse. Yet, as
with any model, the model construction was possible only because of some simplifications
and assumptions. The skeletal model of the mice was developed from anatomical references
rather than from an actual microCT scan. This allowed us to generate a more generic
representation of the mouse skeleton but meant that not all anatomical features on the
bones were captured. In future iterations, a skeletal model based on CT scans will further
allow for better model validation. Here, we calculated the inertias of the bones using a
bounding box method and assumed a uniform density of water along the body. We did
not consider air cavities with different density in the lungs and head in our model. This
introduces variation of inertial properties of certain bones and the overall center-of-mass
of the mouse musculoskeletal model. Joint rotations were identified manually in this
model and use joints such as revolute or spherical joints to represent the different DoFs
in the model. However, in animals, joints are more complex and often difficult to model.
Any studies that require validated joint movements should try to extend the current
version of the model by including the necessary complexities in joint modeling for the
particular study.

The Hill-type muscles were modeled as muscles with stiff /rigid tendons. This assumption
allowed us to perform faster simulations due to the computational simplicity and thereby
perform a comprehensive study of all the modeled muscles. The rigid-tendon model
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assumption has implications on the changes in muscle-fiber lengths and muscle-forces. The
variation of muscle-forces can be as high as 60% depending the ratio of I7,/I7 (Millard et
al., 2013). The muscle model framework developed in this work also allows for simulating
flexible tendon muscle models. In future iterations of this work, it is necessary to quantify
the difference between the rigid-tendon and flexible tendon muscle models.

For the hindlimb muscles, we were able to build on, compare and validate our model with
the previous mouse (Charles, Cappellari, Spence, Wells, et al., 2016) and rat (Johnson
et al., 2008) hindlimb models. However, similar validation was not possible for the
forelimb. Because of the lack of previous forelimb studies, we had to estimate both the
attachment points and the muscle parameters (FQ, 12,, I and «,). The comprehensive
sensitivity analysis presented in this work provides information about the important
parameters to be critically explored in the model. Further experimental measurements

from the mouse forelimb are necessary to improve the forelimb model.

2.5.6 Model use and future work

A musculoskeletal model complements animal experiments by providing the data (EMG,
afferent firings, interactions forces between the body and the environment) that is chal-
lenging to collect, and they are essential to setup and study closed-loop neuromechanical
simulations (Figure 2.2). The whole-body model of the mouse presented in this work has
the necessary components to contribute to both.

Locomotion is a result of whole-body movement with the neural circuits integrating
feed-forward and sensory-driven strategies to generate the necessary muscle activation
signals. The limb musculature modeled and analyzed in this work presents an excellent
platform to use the model to setup predictive simulations to connect computational
models of neural circuits to drive the musculoskeletal model (Note that the model is
still missing axial muscles necessary for full 3D locomotion. For time being, they can
be replaced by torque motors in the simulation). Alternatively, inverse kinematics and
inverse dynamics approaches can be used to estimate kinematics (e.g., joint angles),
kinetics (e.g., joint moments) and proprioceptive sensory information (e.g., activities of
muscle spindles and Golgi tendon organs) from experimental whole-body trajectories
made possible now by markerless pose estimation methods such as DeepLabCut (Mathis,
Mamidanna, Kevin M. Cury, et al., 2018b).

The majority of the previous locomotion studies in mouse have been limited to straight
forward locomotion. Exploring other locomotor regimes such as turning is now experi-
mentally possible (Cregg et al., 2020) and the current 3D model has the necessary DoFs
to replicate similar behaviors in simulation. The current model also allows to study motor
behaviors that does not involve the whole-body movements like reaching and grasping.

While the possible use cases of our model are plenty, it still is only a preliminary step
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towards a more robust computational model. As mice are one of the most significant
experimental animal models to study normal and pathological motor behaviors, it is
extremely important to develop computational models that can complement these studies.

The open-source and modular musculoskeletal model presented here offers an opportunity
for a community driven approach that can collectively improve and rigorously validate
the different components of the model with experimental data. In future iterations of the
model, a systematic identification the full set of forelimb muscles along with the spinal
muscles will increase the usability of the model in even more complex scenarios and grow
towards a more complete model like the ones available for humans.

While the current work uses Bullet physics engine, most components developed here can be
easily transferred to other physics simulation environments, for example OpenSim (Seth,
Jennifer L Hicks, et al., 2018a).
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Chapter 3

Neuromechfly

Overview

Drosophila Melanogaster commonly known as fruit-fly is the second model organism we
focus on in this thesis. In an experimental setting, Drosophila Melanogaster has many
unique advantages over Mice. Drosophila Melanogaster are easy to modify genetically,
maintain, they reproduce fast, there are no ethical constraints and they have relatively
simple nervous system and still exhibit complex motor behaviors. But there aspects
such as the body dynamics that even harder to measure than with Mice or due to their
size. In the following sections, we describe the development of a bio-realistic in-silico
model of Drosophila Melanogaster. We then study mutli-legged gaits by first replaying
recorded animal kinematics in a rigid-body physics environment and then driving the
neuromechanical model by feed-foward central pattern generator (CPG) networks to
generate animal like gaits.

49



Chapter 3 Neuromechfly

Descending
control
Motorneuronal X CxG Sensory
activit
y Reflexes< feedback
Y
EC Coupling Sensory Receptors
Muscle -
l activation tGOd|gl Muscle  Cutaneous
endon :
Muscle dynamics orcane spmd\les receptors
A
Muscle forces ' '
Body dynamics Kinematics
Muscle length and velocity Reactions

Environment

Figure 3.1: Focus of this chapter in the scheme of neuromechanical loop described in 1.1
for movement generation

Reference publication
The following sections are based on our article which is currently under 2™
Accepted in Nature Methods “Victor Lobato Rios, Shravan Tata Ramalingasetty,
Pembe Gizem Ozdil, Jonathan Arreguit, Auke Jan Ijspeert, and Pavan Ramdya
(Nov. 2021). NeuroMechFly, a Neuromechanical Model of Adult Drosophila
Melanogaster. DO1: 10.1101/2021.04.17.440214” ¢

My contributions

Development and setup of the in-silico model of Drosophila melanogaster

Development of the neural simulation library

Setting up of the original software framework
e Setup, evaluation and analysis of the multi-objective optimizations

e Revisions of the manuscript

“Second and third authors have equal contributions in this work

50


https://doi.org/10.1101/2021.04.17.440214

Neuromechfly Chapter 3

3.1 Abstract

Animal behavior emerges from a seamless interaction between neural network dynamics,
musculoskeletal properties, and the physical environment. Accessing and understanding
the interplay between these intertwined elements requires the development of integra-
tive and morphologically realistic neuromechanical simulations. Until now, there has
been no such simulation framework for the widely studied model organism, Drosophila
melanogaster. Here we present NeuroMechFly, a data-driven model of the adult female fly
within a physics-based simulation environment. NeuroMechFly combines a series of inde-
pendent computational modules including a biomechanical exoskeleton with articulating
body parts—Ilegs, halteres, wings, abdominal segments, head, proboscis, and antennae—
muscle models, and neural network controllers. To enable illustrative use cases, we first
define minimal leg degrees-of-freedom by analyzing real 3D kinematic measurements
during real Drosophila walking and grooming. Then, we show how, by replaying these
behaviors using NeuroMechFly’s biomechanical exoskeleton in its physics-based simulation
environment, one can predict otherwise unmeasured torques and contact reaction forces.
Finally, we leverage NeuroMechFly’s full neuromechanical capacity to discover neural
networks and muscle parameters that enable locomotor gaits optimized for speed and sta-
bility. Thus, NeuroMechFly represents a powerful testbed for building an understanding
of how behaviors emerge from interactions between complex neuromechanical systems
and their physical surroundings.
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3.2 Introduction

Uncoupling the contributions to behavior of many neuronal and biomechanical elements is
daunting. Systems-level numerical simulations can assist in this ambitious goal by consol-
idating data into a dynamic framework, generating predictions to be tested, and probing
the sufficiency of prevailing theories to account for experimental observations (Chiel and
Beer, 1997; Webb, 1999; K. Pearson et al., 2006b; Prilutsky and Donald H Edwards,
2015; Seth, Jennifer L Hicks, et al., 2018a; Einevoll et al., 2019). Computational models,
including neuromechanical simulations, have long played a particularly important role
in the study of movement control in vertebrates (Sigvardt and Miller, 1998; Lansner
et al., 1998; Ijspeert, 2001; Ilya A Rybak et al., 2015) and invertebrates, including stick
insects (Ekeberg, Bliimel, et al., 2004; Toth, Schmidt, et al., 2013; Toth, Grabowska,
et al., 2013; Schilling, Hoinville, et al., 2013), cockroaches (Szczecinski, A. E. Brown,
et al., 2014; Proctor et al., 2010), praying mantises (Szczecinski, Martin, et al., 2015),
and ants (Guo et al., 2018).

For animals like invertebrates with a relatively small number of neurons that can be
identified across individuals, a mapping of real to simulated biomechanical or circuit
elements might enable a cross-talk whereby models make predictions that can then be
tested experimentally. However, for many of the animals for which neuromechanical
models currently exist, there is a dearth or absence of genetic tools that would facilitate
repeatedly recording, or perturbing the same neurons across animals. By contrast, for
a few commonly studied ‘model’ organisms, a dialogue between experimental results
and computational predictions represents an exciting but largely unrealized opportunity.
This is recently enabled by advances in computing power, the realism of physics-based
simulation environments, and improvements in numerical optimization approaches. Neu-
romechanical models of some commonly studied organisms have already been developed
including for the nematode (Caenorhabditis elegans (Szigeti et al., 2014; Izquierdo and
Beer, 2018)), maggots (larval Drosophila melanogaster (Loveless et al., 2019)), and ro-
dents (Merel, Aldarondo, et al., 2019). However, for the adult fly, Drosophila melanogaster,
only 2-dimensional (2D) (Isakov et al., 2016) and morphologically unrefined (Ramdya
et al., 2017b) neuromechanical models exist.

Adult flies are an ideal organism for establishing a synergy between experimental and
computational neuroscience. First, flies generate a large repertoire of complex behaviors
including grooming (Seeds et al., 2014), courtship (Pavlou and Goodwin, 2013), flight (Fry
et al., 2003), and walking (Mendes et al., 2013; Wosnitza et al., 2013) which they use
to navigate complex environments (Pick and Roland Strauss, 2005). The kinematics
of these behaviors can now be quantified precisely using deep learning-based computer
vision tools (Pereira et al., 2019; Mathis, Mamidanna, Kevin M Cury, et al., 2018a)
in 3-dimensions (3D) (Giinel et al., 2019; Gosztolai et al., 2021). Second, flies have a
relatively small number of neurons that can be repeatedly genetically targeted (Jenett
et al., 2012) for recordings or perturbations in tethered, behaving animals (Seelig et al.,
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2010; Maimon et al., 2010; Chin-Lin Chen et al., 2018; Hermans et al., 2021). These
neurons can also be placed within their circuit context using recently acquired brain and
ventral nerve cord (VNC) connectomes (Phelps et al., 2021; Scheffer et al., 2020). We
previously developed a simple physics-based simulation of adult Drosophila melanogaster
to investigate hexapod locomotor gaits (Ramdya et al., 2017b). However, this older model
has a number of important limitations that restrict its widespread use: it lacks (i) the
morphological accuracy needed to simulate mass distributions, compliance, and physical
constraints, (ii) muscle models and their associated passive dynamical properties, as well
as (iii) neural networks or other control architectures.

Here we describe NeuroMechFly, a neuromechanical model of adult Drosophila that fills
this methodological gap by incorporating a new, open-source computational framework
consisting of exchangeable modules which provide access to biomechanics, neuromuscular
control, and parameter optimization approaches. These modules maintain the capacity
for whole organism simulation while also facilitating further open source extensions and
improvements by the scientific community. Thus, NeuroMechFly is a completely new
modeling framework and not simply an improvement of an earlier model (Ramdya et al.,

2017b).
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Figure 3.2: Data-driven development and applications of NeuroMechFly. (A)
Body structures—morphology, joint locations, and degrees-of-freedom—were defined by
x-ray microtomography and kinematic measurements. (B) Real 3D poses were used
to replay kinematics in the model permitting the prediction of unmeasured contact
reaction forces and joint torques. (C) Real limb kinematics were used to constrain
the evolutionary optimization of neuromuscular parameters aiming to satisfy high-level
objectives for walking—speed and static stability. The properties of optimized networks
could then be more deeply analyzed.
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The biomechanical exoskeleton of NeuroMechFly was obtained from a detailed CT-scan of
an adult female fly which was then digitally rendered. We defined the model’s leg degrees-
of-freedom based on an investigation of Drosophila 3D leg kinematics (Figure 3.24),
allowing us to discover that a previously unreported coxa-trochanter leg degree-of-freedom
(DoF) is required to accurately recapitulate real fly walking and grooming. Using this
biomechanical exoskeleton and replaying experimental leg kinematics within the PyBullet
physics-based simulation environment (Figure 3.2B) (Coumans, 2015), we then explored
how one can estimate quantities that cannot be experimentally measured in behaving
flies—ground reaction forces (GRFS), joint torques, and tactile contacts. As a second
use-case illustration of NeuroMechFly’s potential, we leveraged the full neuromechanical
framework—mnow including neural and muscle models—to show how the parameters of
a central pattern generator (CPG)-inspired coupled-oscillator network and associated
torsional spring and damper muscle model could be optimized to discover and explore
controllers for fast and stable walking (Figure 3.2C'). Importantly, the NeuroMechFly
framework is modular and open-source, enabling future extensions including the use of
more detailed neural and muscle models that permit more interpretable experimental
predictions that can inform our understanding of real Drosophila neural circuits. Thus,
NeuroMechFly represents an important step towards comprehending how behaviors
emerge from a complex interplay between neural dynamics, musculoskeletal biomechanics,
and physical interactions with the environment.
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3.3 Methods

3.3.1 Constructing an adult Drosophila biomechanical model

Preparing adult flies for x-ray microtomography

The protocol used to prepare flies for microtomography was designed to avoid distorting
the exoskeleton. We observed that traditional approaches for preparing insects for
either archival purposes or for high resolution microscopy, including scanning electron
microscopy (Chaffey, 2001), result in the partial collapse or bending of some leg segments
and dents in the exoskeleton of the thorax and abdomen. These alterations mostly occur
during the drying phase and while removal of ethanol by using supercritical carbon dioxide
drying reduces these somewhat, it is still not satisfactory. We therefore removed this step
altogether, and instead embedded flies in a transparent resin. This resulted in only a
small surface artifact over the dorsal abdominal segments A1, A2, and A3.

Flies were heavily anaesthetized with CO9 gas, then carefully immersed in a solution of
2% paraformaldehyde in phosphate buffer (0.1M, pH 7.4) containing 0.1% Triton 100,
to ensure fixative penetration, and left for 24 h at 4°C. Care was taken to ensure the
flies did not float on the surface, but remained just below the meniscus. They were then
washed in 0.1M cacodylate buffer (2 x 3 min washes), and placed in 1% osmium tetroxide
in 0.1M cacodylate buffer, and left at 4°C for an additional 24 h. Flies were then washed
in distilled water and dehydrated in 70% ethanol for 48 h, followed by 100% ethanol for
72 h, before being infiltrated with 100% LR White acrylic resin (Electron Microscopy
Sciences, US) for 24 h at room temperature. This was polymerised for 24 h at 60°C inside
a closed gelatin capsule (size 1; Electron Microscopy Sciences) half-filled with previously
hardened resin to ensure the insect was situated in the center of the final resin block, and
away from the side.

X-ray microtomography

We glued the sample onto a small carbon pillar and scanned it using a 160 kV open type,
microfocus X-ray source (L10711/-01; Hamamatsu Photonics K.K., Japan). The X-ray
voltage was set to 40 kV and the current was set to 112 uA. The voxel size was 0.00327683
mm. To perform the reconstruction, we used X-Act software from the microtomography
system developer (RX-solutions, Chavanod, France) obtaining a stack of 982 tiff images
of 1046x1636 pixels each.

Building a polygonal mesh volume from processed microtomography data

First, we isolated cuticle and wings from the microtomography data using Fiji (Schindelin
et al., 2012). We selected 360 images from the tiff stack as the region of interest (ROI)
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beginning at slice 300. The tiff stack with the ROI was then duplicated. The first copy
was binarized using a threshold value of 64 to isolate the cuticle. The second copy was
cropped to keep the upper half of the image—where the wings are—and then binarized
using a lower threshold value of 58. Finally, we applied a closing morphological operation
to isolate the wings. Both binarized stacks were stored as tiff files.

We developed custom Python code to read the tiff stacks, and to fill empty holes within
the body and wings. Finally, we used the Lewiner marching cubes algorithm (Lewiner
et al., 2003) (implemented in the scikit-image package (van der Walt et al., 2014)) to
obtain a polygon mesh for each stack. Both meshes were then exported to a standard
compressed mesh storage format.

Separating and reassembling articulated body parts

We used Blender (Foundation version 2.81 (Foundation, 2012)) to clean and manipulate
polygon meshes obtained from microtomography data.

After importing these meshes into Blender, we removed noise by selecting all vertices
linked to the main body (or wings), inverting the selection, and deleting these vertices.
We explored the resulting meshes, looking for spurious features, and then manually
selected and deleted the related vertices. We obtained 65 body segments (Table B.1)
based on (Ferris, 1950). More recent literature corroborated these propositions for body
morphology and joint degrees-of-freedom. We manually selected and deleted vertices from
our imported 3D body and wing models. Segments were then separated at joint locations
based on published morphological studies. We made some simplifications. Most notably,
in the antennae, we considered only one segment instead of three because cutting this
small element into a few pieces would alter its morphology.

Each wing was separated into an individual segment from the wing model. The body
model was separated into 63 segments as described below. The abdomen was divided into
five segments according to tergite divisions. The first and second tergites were combined
as the first segment (A1A2), and the last segment (A6) included the sixth to tenth tergites.
Each antenna was considered a single segment and separated from the head capsule at
the antennal foramen. Both eyes and the proboscis were separated from the head. The
latter was divided into two parts, the first containing the rostrum (Rostrum), and the
second containing the haustellum and labellum (Haustellum). Each leg was divided in
eight parts: the coxa, trochanter/femur, tibia, and five tarsal segments. The thorax was
considered a single segment and only the halteres were separated from it.

Each segment was processed in Blender to obtain closed meshes. First, a remesh modifier
was used in ‘smooth mode’, with an octree depth of 8, and a scale of 0.9 to close the gaps
generated in the meshes after been separated from the original model. Smooth shading
was enabled and all disconnected pieces were removed. Then, we used ‘sculpt mode’
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to manually compensate for depressions/collapses resulting from the microtomography
preparation, or from separating body segments.

Then, all segments were copied into a single *.blend file and rearranged into a natural
resting pose (Figure 3.3F). We made the model symmetric to avoid inertial differences
between contralateral legs and body parts. For this, we used the more detailed microto-
mography data containing the right side of the fly. First, the model was split along the
longitudinal plane using the bisect tool. Then the left side was eliminated and the right
side was duplicated and mirrored. Finally, the mirrored half was repositioned as the left
side of the model, and both sides of the head capsule, rostrum, haustellum, thorax, and
abdominal segments were joined.

At this point, the model consisted of approximately nine million vertices, an intractable
number for commonly used simulators. We therefore used the decimate tool to simplify
the mesh and collapse its edges at a ratio of 1% for every segment. This resulted in a
model with 87,000 vertices that conserved the most important details but eliminated
small bristles and cuticular textures.

Rigging the Blender model

We added an Armature object alongside our model to build the skeleton of the fly.
To actuate the model, we created a ’bone’—a tool in Blender that is used to animate
characters—for each segment. Bones were created such that the thorax would be the root
of the skeleton and each bone would be the child of its proximal bone, as indicated in
Table B.1. Then, the bones were positioned along the longitudinal axis of each segment
with their heads and tails over the proximal and distal joints, respectively. Each joint was
positioned at a location between neighboring segments. Each bone inherited the name of
its corresponding mesh.

We used the FARMS modeling plugin ( section 5.4) setup in Blender to modify the
properties of each bone. These properties can be used later in a simulator to e.g., define
the maximum velocity, or maximum effort of each link. Furthermore, we added a limit
rotation constraint (range of motion) to each axis of rotation (DoF) for every bone. The
range of motion for each rotation axis per joint was defined as —180° to 180° to achieve
more biorealistic movements. Because, to the best of our knowledge, there are no reported
angles for these variables, these ranges of motion should be further refined once relevant
data become available. The DoF of each bone (segment) were based on previous studies
(Soler et al., 2004; Dickson et al., 2008; Geurten et al., 2014) (see Table B.1). Any bone
can be rotated in Blender to observe the constraints imposed upon each axis of rotation.
These axes are defined locally for each bone.

Finally, we defined a ‘zero-position’ for our model. Most bones were positioned in the
direction of an axis of rotation (Figure B.7). Each leg segment and the proboscis were
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positioned along the Z axis. Each abdominal segment and the labellum were positioned
along the X axis. Wings, eyes, and halteres were positioned along the Y axis. The
head and the antennae are the only bones not along a rotational axis: the head is
rotated 20° along the Y axis, and the antennae are rotated 90° with respect to the head
bone. Positioning the bones along axes of rotation makes it easier to intuit a segment’s
position with its angular information and also more effectively standardizes the direction
of movements.

Exporting the Blender model into the Bullet simulation engine

We used the FARMS modeling plugin in Blender to obtain the name, location, global
rotation axis, range of motion, and custom properties for each bone. As mentioned above,
the axes of rotation are defined locally for each bone. Therefore, our code also transforms
this information from a local to a global reference system, obtaining the rotation matrix
for each bone.

We used the Simulation Description Format (SDF, http://sdformat.org/) convention to
store the model’s information. This format consists of an *.xml file that describes objects
and environments in terms of their visualization and control. The SDF file contains
all of the information related to the joints (rotational axes, limits, and hierarchical
relations) and segments (location, orientation, and corresponding paths of the meshes)
of the biomechanical model. We can modify this file to add or remove segments, joints,
or to modify features of existing segments and joints. To implement joint DoFs, we
used hinge-type joints because they offer more freedom to control individual rotations.
Therefore, for joints with more than one DoF, we positioned in a single location as many
rotational joints as DoFs needed to describe its movement. The parenting hierarchy
among these extra joints was defined as roll-pitch-yaw. The mass and collision mesh were
related to the segment attached to the pitch joint—present in every joint of the model.
The extra segments were defined with a zero mass and no collision shape.

Our model is based upon the physical properties of a real fly. The full body length and
mass of the model are set to 2.8 mm and 1mg, respectively. To make the center of mass
and the rigid-body dynamics of the model more similar to a real fly, rather than having a
homogeneous mass distribution, we used different masses (densities) for certain body parts
as measured in a previous study (Szczecinski, Bockemiihl, et al., 2018). Specifically, these
masses were: head (0.125mg), thorax (0.31mg), abdomen (0.45mg), wings (0.005mg),
and legs (0.11mg).

In PyBullet, contacts are modeled based on penetration depth between any two interacting
bodies. The contact parameters are set to 0.02 units of length (1 unit = 1 m in SI units).
It is preferable to have the bodies of size larger than 0.02 units. Therefore, we performed
a change of units of the physics simulator. Specifically, we changed the units of mass (kg
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to ¢g) and length (m to mm) when setting up the physics of the simulation environment,
and then converted back the calculated values to ST units when recording the results.
Therefore, the physics engine was able to compute the physical quantities without
numerical errors, and the model could also more accurately reflect the physics of a real
fly. Notably, we are not compromising the dynamics of the simulated behaviors.

Comparing leg sizes between NeuroMechFly and real flies

We dissected the right legs from ten wild-type female adult flies, 2-4 days-post-eclosion.
Flies were cold anesthetized using ice. Then the legs were removed using forceps from
the sternal cuticle to avoid damaging the coxae. Dissected legs were straightened onto a
glass slide and fixed with UV-curable glue (Figure B.1A). We used a Leica M205 C stereo
microscope to take images from the legs placed next to a 0.5 mm graduated ruler. Joints
in the legs were manually annotated and then distances between them were measured in
pixels and converted to mm using the ruler as a reference. Lengths between joints were
compared to rigged bone lengths in NeuroMechFly.

3.3.2 Kinematic replay and analysis
Forward walking data

We recorded spontaneous behaviors from wild-type females 3-4 days-post-eclosion. Flies
were mounted on a custom stage and allowed to acclimate for 15 min on an air-supported
spherical treadmill (Chin-Lin Chen et al., 2018). Experiments were conducted in the
evening Zeitgeber time. Flies were recorded five times for 30 s at 5 min intervals. Data
were excluded if forward walking wasn’t present for at least five continuous seconds in 10 s
windows. To record data, we used a 7-camera system as in (Gtinel et al., 2019). However,
we replaced the front camera’s InfiniStix lens with a Computar MLM3X-MP lens at 0.3x
zoom to visualize the spherical treadmill. After the fifth trial of each experiment, we
recorded an extra 10 s trial, having replaced the lens from a lateral camera with another
Computar MLM3X-MP lens. We used these images to calculate the longitudinal position
of the spherical treadmill with respect to the fly for the preceding five trials.

Foreleg/antennal grooming data

Data for kinematic replay of foreleg/antennal grooming were obtained from a previous
study describing DeepFly3D, a deep learning-based 3D pose estimation tool (Giinel et al.,
2019). These data consist of images from seven synchronized cameras obtained at 100
fps (https://dataverse.harvard.edu/dataverse/DeepFly3D). Time axes (Figure 3.6E, F)
correspond to time points from the original, published videos. Data were specifically
obtained from experiment #3, taken of an animal (#6) expressing aDN-GAL4 driving
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UAS-CsChrimson.

Processing 3D pose data

We used DeepFly3D v0.4 (Giinel et al., 2019) to obtain 3D poses from the images
acquired for each behavior. 2D poses were examined using the GUI to manually correct
10 frames during walking and 72 frames during grooming. DeepFly3D, like many other
pose estimation softwares, uses a local reference system based on the cameras’ positions
to define the animal’s pose. Therefore, we first defined a global reference system for

NeuroMechFly from which we could compare data from experiments on different animals
(see Figure B.7).

Aligning both reference systems consisted of six steps. First, we defined the mean position
of each Thorax-Coxa (ThC) keypoint as fixed joint locations. Second, we calculated
the orientation of the vectors formed between the hind and middle coxae on each side
of the fly with respect to the global x-axis along the dorsal plane. Third, we treated
each leg segment independently and defined its origin as the position of the proximal
joint. Fourth, we rotated all data points on each leg according to its side (i.e., left or
right) and previously obtained orientations. Fifth, we scaled the real fly’s leg lengths for
each experiment to fit NeuroMechFly’s leg size: A scaling factor was calculated for each
leg segment as the ratio between its mean length throughout the experiment and the
template’s segment length and then each data point was scaled using this factor. Finally,
we used the NeuroMechFly exoskeleton as a template to position all coxae within our
global reference system; the exoskeleton has global location information for each joint.
Next, we translated each data point for each leg (i.e. CTr, FTi, and TiTa joints) with
respect to the ThC position based on this template.

Calculating joint angles from 3D poses

We considered each leg a kinematic chain and calculated the angle of each DoF to
reproduce real poses in NeuroMechFly. We refer to this process as ‘kinematic replay’.
Angles were obtained by computing the dot product between two vectors with a common
origin. We obtained 42 angles in total, seven per leg. The angles’ names correspond
to the rotational axis of the movement—roll, pitch, or yaw—for rotations around the
anterior-posterior, mediolateral, and dorsoventral axes, respectively.

The thorax-coxa joint (ThC) has three DoFs. The yaw angle is measured between the
dorsoventral axis and the coxa’s projection in the transverse plane. The pitch angle is
measured between the dorsoventral axis and the coxa’s projection in the sagittal plane.
To calculate the roll angle, we aligned the coxa to the dorsoventral axis by rotating the
kinematic chain from the thorax to the FTi joint using the yaw and pitch angles. Then we
measured the angle between the anterior-posterior axis and the projection of the rotated
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FTi in the dorsal plane.

Initially, we considered only a pitch DoF for the CTr joint. This was measured between
the coxa and femur’s longitudinal axis. Subsequently, we discovered that a CTr roll DoF
would be required to accurately match the kinematic chain. To calculate this angle, we
rotated the tibia-tarsus joint (TiTa) using the inverse angles from the coxa and femur
and measured the angle between the anterior-posterior axis and the projection of the
rotated TiTa in the dorsal plane.

The pitch angle for the FTi was measured between the femur and tibia’s longitudinal axis.
The pitch angle for the TiTa was measured between the tibia and tarsus’s longitudinal
axis. The direction of rotation was calculated by the determinant between the vectors
forming the angle and its rotational axis. If the determinant was negative, the angle was
inverted.

To demonstrate that the base six DoFs were not sufficient for accurate kinematic replay,
we also compared these results to angles obtained using inverse kinematics. In other
words, we assessed whether an optimizer could find a set of angles that could precisely
match our kinematic chain using only these six DoFs. To compute inverse kinematics for
each leg, we used the optimization method implemented in the Python IKPy package
(L-BFGS-B from Scipy). We defined the zero-pose as a kinematic chain and used the
angles from the first frame as an initial position (seed) for the optimizer.

Calculating forward kinematics and errors with respect to 3D poses

To quantify the contribution of each DoF to kinematic replay, we used the forward
kinematics method to compare original and reconstructed poses. Since 3D pose estimation
noise causes leg segment lengths to vary, we first fixed the length of each segment as its
mean length across all video frames.

We then calculated joint angles from 3D pose estimates with the addition of each DoF
(see previous section). We formed a new kinematic chain including the new DoF. This
kinematic chain allowed us to compute forward kinematics from joint angles, which were
then compared with 3D pose estimates to calculate an error. We performed an exhaustive
search to find angles that minimize the overall distance between each 3D pose joint
position and that joint’s position as reconstructed using forward kinematics. The search
spanned from —90° to 90° with respect to the ‘zero pose’ in 0.5° increments.

The error between 3D pose-based and angle-based joint positions per leg was calculated
as the average distance across every joint. We note that differences in errors can vary
across legs and leg pairs because each joint’s 3D pose estimate is independent and each
leg acts as an independent kinematic chain adopting its own pose. Thus, errors may also
be asymmetric across the body halves. As well, errors integrate along the leg when using
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forward kinematics (FK) for walking (Figure B.2) and for grooming (Figure B.3). By
contrast, inverse kinematics (IK) acts as an optimizer and minimizes the error at the end
of the kinematic chain (i.e., where the FK error is highest) for walking (Figure B.2D)
and for grooming (Figure B.3D). This explains why errors using FK are generally higher
than those using IK—with the exception of adding a roll degree-of-freedom at the Coxa-
Trochanter joint. To normalize the error with respect to body length, we measured the
distance between the antennae and genitals in our Blender model (2.88 mm). Errors were
computed using 400 frames of data: frames 300-699 for forward walking from fly 1 and
frames 0-399 for foreleg/antennal grooming.

We ran a Kruskal-Wallis statistical test to compare kinematic errors across the eight
methods used. We then applied a posthoc Conover’s test to perform a pairwise comparison.
We used the Holm method to control for multiple comparisons. The resulting p-value
matrices for walking and foreleg/antennal grooming behaviors are shown in Table B.2
and Table B.3, respectively. Our statistical tests suggested that adding a CTr roll DoF
uniquely improved kinematic replay compared with all other methods.

Transferring real 3D poses into the NeuroMechFly reference frame

To incorporate the additional CTr roll DoF into NeuroMechFly, we enabled rotations
along the z axis of CTr joints. Then, we created new SDF configuration files using
utility scripts part of FARMS to include a CTr roll DoF for each leg. To simulate the fly
tethering stage used in our experiments, we added three support joints (one per axis of
movement) that would hold our model in place. We removed these supports for ground
walking experiments (Videos 8 and 10).

We used position control for each joint in the model. We fixed the position of non-actuated
joints to the values shown in Table B.4. The actuated joints (i.e. the leg joints) were
controlled to achieve the angles calculated from 3D pose data. The simulation was run
with a time step of 0.5 ms, allowing PyBullet to accurately perform numerical calculations.
Since the fly recordings were only captured at 100 fps, we up-sampled and interpolated
pose estimates to match the simulation time steps before calculating joint angles.

Comparing real and simulated spherical treadmill rotations

We obtained spherical treadmill rotational velocities from real experiments using Fic-
trac (Moore et al., 2014). We also obtained the relative inclination of each tethered fly (®)
(Figure B.9A) as the angle between the ground plane and the axis between the hind leg
ThC joint and the dorsal part of the neck. Finally, we estimated the position of the ball
with respect to the fly from both front and lateral views (Figure B.9B-C) by identifying
the ball and fly using a Hough transform and standard thresholding, respectively. For
axes observed from both views, we averaged the expected position.
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For the simulated environment we created a spherical body in PyBullet with three hinge
joints along the z,y, and z axes, allowing our sphere to rotate in each direction like a
real spherical treadmill. Rolling and spinning frictions were set to zero to obtain virtually
frictionless conditions similar to a real treadmill floating on air. The mass of the simulated
spherical treadmill was set to 54.6 mg: the measured mass of the real foam sphere. Finally,
the sphere’s diameter was measured and set into the simulation as 9.96 mm.

We ran kinematic replay of walking by setting the simulated spherical treadmill position
and fly inclination based on measurements from experimental images. We used predefined
values for kinematic replay of grooming. Then, we empirically determined the following
parameters:

Global ERP = 0.0

Friction ERP = 0.0

Solver iterations = 1000

Treadmill lateral friction = 1.3

After running the simulation, we compared the rotational velocities estimated for each
axis with the real velocities obtained with Fictrac. First, we smoothed both Fictrac
and estimated signals using a median filter with a window size of 0.1 s. Second, we
interpolated Fictrac data from time steps of 0.1 s (100 fps) to the simulation time step.
Then, we established each signal’s baseline as the mean of the first 0.2 s of data. Finally,
we computed the Spearman correlation coefficient (p) to assess correlations of forward,
lateral, and heading (yaw) velocities for both signals.

Constraint parameter sensitivity analysis

Simulated spherical treadmill velocity estimates depend on constraint force mixing (CFM)
and contact error reduction (contact ERP) parameters. These parameters change the
‘softness’ of joint and contact constraints in the physics engine. Therefore we performed a
sensitivity analysis to determine the best combination of CFM and ERP. CFM values
were swept from 0 to 10, and ERP from 0 to 1.0. Then, we ran a simulation for each of
121 combinations. We assessed their performance by calculating the Spearman correlation

coefficient for each axis (Figure B.8A-C).

Finally, to select optimal parameter values, we applied a weighted sum to the results as
shown in Equation 3.1:

WS, = ax* Fw(p;) + B * Lat(p;) + v * Head(p;) (3.1)
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where Fw, Lat, and Head are the rotational axes, p; is the Spearman correlation coefficient
obtained for each CFM-ERP combination, and «, 3, and y are the standard deviation
contributions for each axis calculated as shown in Equations 3.2, 3.3, and 3.4, respectively.
Therefore, we favored the axis with the largest amplitude of variation.

_ std(Fw)
= std(Fw) + std(Lat) + std(Head) (32)

_ std(Lat)
= std(Fw) + std(Lat) + std(Head) (3-3)
- std(Head) (54)

B std(Fw) + std(Lat) + std(H ead)

Finally, we normalized WS (NWS) with respect to its maximum and minimum values
(Figure B.8D). Consequently, a combination with NWS equal to 1 was selected: CFM =
3 and ERP = 0.1.

Controller gain sensitivity analysis

We performed kinematic replay using a built-in PD position controller in PyBullet (Coumans,
2015). A PD controller was used rather than the more widely known PID controller
because the integral component (‘I in PID) is mainly used to correct steady state errors
(e.g., while maintaining a fixed posture). Thus, it is not used for time-varying postures like
those during locomotion. We used PyBullet’s built-in position control method because it
operates with proportional and derivative gains that are stable and efficient. This PD
controller minimizes the error:

error = Kp(0, — 0,) + Kq(w, — wa) (3.5)

where 6, and 0, denote reference and actual positions, w, and w, are desired and actual
velocities, and K, and Ky are proportional and derivative gains, respectively, which
provides some compliance in the model.

Because the outputs of our model—dynamics of motion—depend on the controller gains
K, and K , we first systematically searched for optimal gain values. To do this, we ran
the simulation’s kinematic replay for numerous K, and Ky pairs, ranging from 0.1 to 1.0
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with a step size of 0.1 (i.e., 100 simulations in total). Target position and velocity signals
for the controller were set as the calculated joint angles and angular velocities, respectively.
To compute joint angular velocities, we used a Savitzky—Golay filter with a first-order
derivative and a time-step of 0.5 ms on the joint angles. Feeding the controller with only
the joint angles could also achieve the desired movements of the model. However, including
the velocity signal ensured that the joint angular velocities of the fly and the simulation
were properly matched. We then calculated the mean squared error (MSE) between the
ground truth—joint angles obtained by running our kinematic replay pipeline on pose
estimates from DeepFly3D (Giinel et al., 2019)—and joint angles obtained from PyBullet.
Then, we averaged the MSE values across the joints in one leg, and summed the mean
MSEs from each of six legs to obtain a total error. We made the same calculations for
the joint angular velocities as well. Our results (Figure B.4) show that our biomechanical
model can replicate real 3D poses while also closely matching real measured velocities.
In particular, an MSE of 360 (rad/sec)? for the six legs corresponds approximately to
7.74 rad/sec per leg, i.e., 1.27 Hz. This is acceptable given the rapid, nearly 20 Hz, leg
movements of the real fly.

After validating the accuracy of kinematic replay, we performed a sensitivity analysis
to measure the impact of varying controller gains on the estimated torques and ground
reaction forces. This analysis showed that torques and ground reaction forces are highly
sensitive to changing proportional gains (K),) (Figure B.5) but are robust to variations
in derivative gain (K;). These results are expected since high proportional gains cause
“stiffness” in the system whereas derivative gains affect the “damping” in a system’s
response. We observed rapid changes in estimated torques and ground reaction forces
at high K, values (Figure B.5). Notably, in principle there can also be internal forces
affecting contact forces. For example, a fly’s legs can squeeze the spherical treadmill with
different internal forces but have identical postures.

As shown in Figure B.4, our model can match the real kinematics closely for almost every
controller gain combination except for the low K, K5 band. By contrast, varying the gains
proportionally increased the torque and force readings. Because there are no experimental
data to validate these physical quantities, we selected gain values corresponding to
intermediate joint torques and ground contact forces (Figure B.5). Specifically, we chose
0.4 and 0.9 for K}, and Ky, respectively. These values were high enough to generate
smooth movements, and low enough to reduce movement stiffness.

Comparing tethered and flat ground walking

To test the ability to run NeuroMechFly in an untethered context, we replayed the
kinematics of a tethered walking experiment (Figure 3.5) but removed body supports and
placed the model on the floor. To remove body supports, we deleted the corresponding
links from the model’s description (SDF configuration file). The physics engine parameters
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remained the same. The lateral friction for the floor was set to 0.1.

Application of external perturbations

To test the stability of the untethered model walking over flat ground, we set the floor’s
lateral friction to 0.5 and introduced external perturbations. Specifically, we propelled
solid spheres at the model according to the following equation of motion,

T

p'=ro+ upt + igt (3.6)
where, p'is the 3D target position(fly’s center of mass ), 7 is the initial 3D position of
the sphere, ug is the initial velocity vector, § is the external acceleration vector due to
gravity in the z-direction, ¢ is the time taken by the sphere to reach the target position
p from 7 with an initial velocity @. The mass of the sphere was 3 mg and its radius 50
um. Spheres were placed at a distance of 2 mm from the fly’s center of mass in the
y-direction. With ¢ set to 20 ms, the initial velocity of the projectile was computed using
Equation 3.6. The spheres were propelled at the model every 0.5 s. Finally, at 3 s into
the simulation, a 3 g sphere with a radius of 150 um was propelled at the fly to topple it
over (Video 10).

Analyzing NeuroMechFly’s contact and collision data

The PyBullet physics engine generates forward dynamics simulations and collision detec-
tions. We plotted joint torques as calculated from PyBullet. To infer ground reaction
forces (GRFs), we computed and summed the magnitude of normal forces resulting
from contact of each tarsal segment with the ball. Gait diagrams were generated by
thresholding GRFs; a leg was considered to be in stance phase if its GRFs was greater than
zero. These gait diagrams were compared with a ground truth (Figure B.10) obtained by
manually annotating when the legs were in contact with the ball for each video frame.
Gait prediction accuracy was calculated by dividing the frames correctly predicted as
being in stance or swing over the total number of frames.

Self-collisions are disabled by default in PyBullet. Therefore, for kinematic replay of
grooming, we enabled self-collisions between the tibia and tarsal leg segments, as well as
the antennae. We recorded normal forces generated by collisions between (i) the right
and left front leg, (ii) the left front leg and left antenna, and (iii) the right front leg
and right antenna. Grooming diagrams were calculated as for gait diagrams: a segment
experienced a contact/collision if it reported a normal force greater than zero.
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Comparing grooming behaviors as a function of NeuroMechFly’s morphological
accuracy

We replayed foreleg/antennal grooming kinematics (Figure 3.6) for three conditions to
assess the degree to which biomechanical realism is important for collision estimation. We
tested two experimental conditions: one in which both front legs were modelled as sticks,
and one in which the front legs as well as the antennae were modelled as sticks. Notably,
multisegmented tarsi are not found in other published insect stick models (Daun-Gruhn,
2011). Thus, as for our previous model (Ramdya et al., 2017b), each stick leg consisted
of four segments: coxa, trochanter/femur, tibia, and one tarsal segment. Each leg and
antennal stick segment had a diameter equal to the average diameter of the corresponding
segment in our more detailed NeuroMechFly model. These changes were accomplished by
modifying the model’s description (SDF configuration file) and by changing the collision
and visual attributes for each segment of interest.

3.3.3 Neural network parameter optimization
CPG network architecture

For evolutionary optimization of neuromusculuar parameters, we designed a CPG-based
controller composed of 36 nonlinear oscillators (Figure 3.7), as for a previous investigation
of salamander locomotion (Ijspeert et al., 2007). These CPGs consisted of mathematical
oscillators that represent neuronal ensembles firing rhythmically in the Ventral Nerve Cord
(VNC) (Mantziaris, Bockemiihl, and Biischges, 2020). The CPG model was governed by
the following system of differential equations:

0; = 2mv; + Z rjwij sin(0; — 0; — ij) &7
J

T = CLZ(RZ - 7"1') (3.8)

M; = Tz‘(l + Sin(ei)) (3.9)

where the state variables—phase and amplitude of the oscillator i—are denoted 6; and
r;, respectively; v; and R; represent oscillator ¢’s intrinsic frequency and amplitude, a;
is a constant. The coupling strength and phase bias between the oscillator 7 and j are
denoted w;; and ¢;;, respectively.
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During optimization, for the entire network of coupled oscillators, we set the intrinsic
frequency v as an open parameter ranging from 6 to 10 Hz, matching the frequencies
of our measured Drosophila joint angle movements and reported stepping frequencies
(DeAngelis et al., 2019). The intrinsic amplitude R was set to 1, and the constant a; was
set to 25. To ensure a faster convergence to a phase-locked regime between oscillators, we
set coupling strengths to 1000 (Cohen et al., 1982). M; represents the cyclical activity
pattern of neural ensembles activating muscles. We solved this system of differential
equations using the explicit Runge-Kutta method of 5th-order with a time step of 0.1 ms.

Each oscillator pair sends cyclical bursts to flexor and extensor muscles which apply
antagonistic torques to the corresponding revolute joint. We considered three DoFs per
leg that were sufficient for locomotion in previous hexapod models (Daun-Gruhn, 2011)
and that had the most pronounced joint angles (Figure B.13). These DoFs were (i) ThC
pitch for the front legs, (ii) ThC roll for the middle and hind legs, and (iii) CTr pitch
and FTi pitch for all legs. Thus, there were three pairs of oscillators optimized per leg,
for a total of 36. We coupled (i) the intraleg oscillators in a proximal to distal chain, (ii)
the interleg oscillators in a tripod-like fashion (the ipsilateral front and hind legs to the
contralateral middle leg from anterior to posterior), (iii) both front legs to each other,
and (iv) coxa extensor and flexor oscillators to one another. Intraleg coordination is
equally important to generate a fly-like gaits since stance and swing phases depend on
intrasegmental phase relationships. For this reason, both interleg (phase relationships
between ThC joints) and intraleg (phase relationships within each leg) couplings were
optimized for one half of the body and mirrored on the other.

Muscle model

We adapted an ‘Ekeberg-type’ muscle model (Ekeberg, 1993b) to generate torques on the
joints. This model simulates muscles as a torsional spring and damper system, allowing
torque control of any joint as a linear function of motor neuron (CPG output) activities
driving antagonist flexor (Mr) and extensor (Mpg) muscles controlling that joint. The
torque exerted on a joint is given by the equation:

T=a(Mp— Mg)+ B(Mp+ Mg+ v)Ap + 0¢ (3.10)

where «, 3,7, and § represent the gain, stiffness gain, tonic stiffness, and damping
coefficient, respectively (Ijspeert, 2001). Ay is the difference between the current angle
of the joint and its resting pose. ¢ is the angular velocity of the joint. This muscle model
makes it possible to control the static torque and stiffness of the joints based on optimized
muscle coefficients—a, 3,7, 6, and Aep.
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CPG network and muscle parameter optimization

To identify neuromuscular network parameters that could coordinate fast and statically
stable locomotion, we optimized the phase differences for each network connection, the
intrinsic frequency of the oscillators, and five parameters controlling the gains and resting
positions of each spring and damper muscle (i.e., a, 3,7, 9, and Ap). To simplify the
problem for the optimizer, we (i) fixed ThC flexor-extensor phase differences to 180°,
making them perfectly antagonistic, (ii) mirrored the phase differences from the right
leg oscillators to the left leg oscillators, (iii) mirrored muscle parameters from the right
joints to the left joints, and (iv) mirrored phase differences from ThC-ThC flexors to
ThC-ThC extensors. Thus, a total of 63 open parameters were set by optimization: five
phases between ThC CPGs (Figure 3.7, A), 12 phases between intraleg CPGs (ThC-FTi
extensor/flexor, FTi-TiTa extensor/flexor per leg), 45 muscle parameters (five per joint),
and one parameter ( v) controlling the intrinsic frequency of the oscillators. We empirically
set the lower and upper bounds for the parameters so leg movements would stay stable
along the boundaries (Table B.6). Upper and lower bounds for the resting positions of
the joints used in the muscle model were set as the first and third quartiles of measured
locomotor angles. Finally, we optimized the intrinsic frequency of CPGs, denoted by v in
Eq. 3.7 to be between 6 and 10 Hz for the reasons described above.

For parameter optimization, we used NSGA-II (Deb et al., 2002), a multi-objective genetic
algorithm implemented in Python using the jMetalPy library (Benitez-Hidalgo et al.,
2019). We defined two objective functions. First, we aimed to maximize locomotor speed,
as quantified by the number of spherical treadmill rotations (Equation 3.11) along the YV
axis within a specific period of time. Second, we maximized static stability’. In small
animals like Drosophila, static stability is a better approximation for overall stability than
dynamic stability (Szczecinski, Bockemiihl, et al., 2018). We measured static stability by
first identifying a convex hull formed by the legs in stance phase. If there were less than
three legs in stance and a convex hull could not be formed, the algorithm returned -1,
indicating static instability. Then, we measured the closest distance between the fly’s
center of mass—dynamically calculated based on the fly’s moving body parts—and the
edges of the convex hull. Finally, we obtained the minimum of all measured distances at
that time step. If the center of mass was outside the convex hull, we reversed the sign of
the minimum distance to indicate instability. Because the optimizer works by minimizing
objective functions, we inverted the sign of speed and stability values: the most negative
values meant the fastest and most stable solutions, respectively.

Four penalties were added to the objective functions. First, to make sure the model was
always moving, we set a moving lower and upper threshold for the angular rotation of the
ball, increasing from —0.2rad to 1.0rad and from 0 to 7.2 rad in one second, respectively.
These values were determined such that the lower moving boundary was slower than the

"The ability of the animal to remain upright at any given moment of the gait cycle
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slowest reported walking speed of Drosophila (10mm/s = 2rad when the ball radius r is
5mm) (DeAngelis et al., 2019) and the upper moving boundary would exceed the highest
reported walking speed (34 mm/s = 6.8 rad) (Mendes et al., 2013). Second, to avoid
high torque and velocities at each joint, we set joint angular velocities to have an upper
limit of 250 rad/s, a value measured from the data collected from real fly experiments
performed in the kinematic replay section. Third, because we do not introduce physical
joint limits in the model, we emulated these joint limits by setting a penalty on the
difference between the joint angle range observed during kinematic replay of walking
and the joint angles of individual solutions. We used this penalty to prevent joint angles
from generating unrealistic movements (e.g., one full rotation around a DoF). Fourth,
because the optimizer can exploit the objective function by simply leaving all legs on
the ground—the highest possible stability—or can rotate the ball by using as few as two
legs while the remaining legs are constantly on the ground, we introduced a penalty on
duty factors. Specifically, we computed the ratio of stance phase duration to the entire
epoch and penalized solutions whose duty factors for each leg were outside of the range
[0.4,0.9], based on (Mendes et al., 2013).

The optimization was formulated as follows

min  —10- Ry - 0y +0.1-p, +0.05 - pj; + 0.1 - pp, + 100 - pg  (Distance & penalfick))
min —0.01-5+0.1-p, +0.05-pj; + 0.1 - pp, + 100 - pg (Stability & penalfiekl)

with the following penalty terms
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where Ry is the ball radius (5 mm), 6| is the angle of the ball in the direction of walking,

l

tior is the maximum simulation duration, 6y is the angular position of the joint &, t.;,,cc

and t, . are the total times spent in stance and the entire walking epoch duration of
the leg [. Every penalty was multiplied by its corresponding weight and added to the
objective function. Objective functions were evaluated for 2 s (¢4o1q1), @ period that was
sufficiently long for the model to generate locomotion. We ran 60 generations with the
weights given in Equation 3.11 and Equation 3.12.

To avoid a high computational cost during optimization, we reduced the model’s com-
plexity by removing collision shapes, like the wings and head, that were not required for
locomotion, and converting joints that are not used in the simulation (see Table B.4)
from revolute to fixed. This model was saved as a new SDF file. Thus, we could reduce
computational time and memory needed to check for collisions on unused body segments,
and for the position controller to set unused joints to fixed positions. This simplification
increased the speed of the simulation, allowing us to reduce the time step to 0.1 ms and to
run optimization with larger populations. In the simulation, we used a spherical treadmill
with a mass, radius, and friction coefficient of 54.6 mg, 5 mm, and 1.3, respectively. We
additionally increased the friction coefficient of the leg segments from the default value of
0.5 to 1.0.
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Each optimization generation had a population of 200 individuals. Optimization runs
lasted for 60 generations, a computing time of approximately 20 hours per run on an
Intel(R) Core(TM) i9-9900K CPU at 3.60GHz. Mutations occurred with a probability
of 1.0 divided by number of parameters (63), and a distribution index of 20. We set
the cross-over probability to 0.9 and the distribution index to 15 (for more details see
(Benitez-Hidalgo et al., 2019)).

Analysis of optimization results

After optimization, we selected three individual solutions from the last generation for
deeper analysis. First, the objective functions were normalized with respect to their
maximum and minimum values. Note that the signs of the objective functions were
inverted. Then, solutions were selected as follows:

Longest distance traveled (fastest): i = argmin(dy)

Highest stability coefficient (most stable): i = argmin(sy)

Distance-Stability minimum 2-norm (trade-off): i = argmin <1 [d2 + s%),

where d; and sg are the vectors containing the distance and stability values, respectively,
from all individuals in a given generation g.

We plotted CPG activity patterns (as represented by the couple oscillators’ outputs),
joint torques, joint angles, GRFs, and ball rotations from this final generation of solutions.
GRFs were used to generate gait diagrams as previously described. Ball rotations were used
to reconstruct the models’ walking paths. The distances travelled along the longitudinal
(z) and transverse (y) axes were calculated from the angular displacement of the ball
according to the following formula:

Az = Absr Ay = Ab;r,

where Af; and A, denote the angular displacement around the transverse and longitudinal
axes, respectively, and r is the radius of the ball.
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3.4 Results

3.4.1 Constructing a data-driven biomechanical model of adult Drosophila

Behavior depends heavily on the body’s physical constraints and its interactions with
the environment. Therefore, morphological realism is critical to accurately model leg
movements and their associated self-collisions, joint ranges of motion, mass distributions,
and mechanical loading. To achieve this level of realism in our model, we first measured
the morphology of an adult female fly using x-ray microtomography (Video 1). We
first embedded the animal in resin to reduce blurring associated with scanner movements
(Figure 3.34). Then we processed the resulting microtomography data (Figure 3.3B) by
binarizing it to discriminate between foreground (fly) and background (Figure 3.3C).
Finally, we applied a Lewiner marching cubes algorithm (Lewiner et al., 2003) to generate
a polygon mesh 3D reconstruction of the animal’s exoskeleton (Figure 3.3D).

X-ray microtomography X-ray microtomography data

preparation
“\ F
4, [ : e
0
N > ; 1
i ~
Separated segments Reassembled and rigged Textured

Figure 3.3: Constructing a data-driven biomechanical model of adult Drosophila.
(A) An adult female fly is encased in resin for x-ray microtomography. (B) Cross-section
of the resulting x-ray scan. Cuticle, muscles, nervous tissues, and internal organs are
visible. (C) A threshold is applied to these data to separate the foreground (white)
from the background (black). (D) A 3D polygon mesh of the exoskeleton and wings is
constructed. (E) Articulated body parts are separated from one another. (F) These parts
are reassembled into a natural resting pose. Joint locations are defined and constraints
are introduced to create an articulated body (dark red). (G) Textures are added to
improve the visual realism of the model.

Subsequently, to articulate appendages from this polygon mesh, we separated the body
into 65 segments (see Table B.1)(Figure 3.3E) and reassembled them into an empirically
defined natural resting pose. Joints were added manually to permit actuation of the
antennae, proboscis, head, wings, halteres, abdominal segments, and leg segments. Leg
articulation points were based on observations from high-resolution videography (Giinel
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et al., 2019), and previously reported leg DoFs (Soler et al., 2004; Sink, 2006; Cruse et al.,
2007)(Table B.1)(Figure 3.3F'). By measuring leg segment lengths across animals (n =
10), we confirmed that the model’s legs are within the range of natural size variation
(Figure B.1).

To facilitate the control of each DoF in the physics engine, we used hinge-type joints to
connect each of the body parts. We later show that this approximation permits accurate
replay of leg end-effector trajectories. Therefore, to construct thorax-coxa joints with
three DoFs, we combined three hinge joints along the yaw, pitch, and roll axes of the
base link. Finally, we textured the model for visualization purposes (Figure 3.3G). This
entire process yielded a rigged model of adult Drosophila with the morphological accuracy
required for biomechanical studies as well as, in potential future work, model-based
computer vision tasks like pose estimation (Loper et al., 2015; Zuffi et al., 2017; Li et al.,
2020; Mu et al., 2020; Bolanos et al., 2021).

3.4.2 Identifying minimal joint degrees-of-freedom required to accu-
rately replay real 3D leg kinematics

After constructing an articulating biomechanical model of an adult fly, we next asked
whether the six reported and implemented leg DoFs—(i-iii) thorax-coxa (ThC) eleva-
tion/depression, protraction/retraction, and rotation, (iv) coxa-trochanter (CTr) flex-
ion/extension, (v) femur-tibia (FTi) flexion/extension, and (vi) tibia-tarsus (TiTa) flex-
ion/extension (Soler et al., 2004; Sink, 2006)—would be sufficient to accurately replay
measured 3D leg kinematics. We did not add a trochanter-femur (TrF) joint because the
Drosophila trochanter is thought to be fused to the femur (Sink, 2006). For the middle
and hind legs, ThC protraction/retraction occurs along a different axis than similarly
named movements of the front legs. Therefore, we chose to instead use the notations
‘roll’, ‘pitch’, and ‘yaw’ to refer to rotations around the anterior/posterior, medial /lateral,
and dorsal/ventral axes of articulated segments, respectively (Video 2).

For our studies of leg kinematics, we focused on forward walking and grooming, two
of the most common spontaneously-generated Drosophila behaviors. First, we used
DeepFly3D (Giinel et al., 2019) to acquire 3D poses from recordings of tethered flies
behaving spontaneously on a spherical treadmill. Due to 3D pose estimation-related noise
and some degree of inter-animal morphological variability (Figure B.1), directly actuating
NeuroMechFly using raw 3D poses was impossible. To overcome this issue, we fixed the
positions of base ThC joints as stable reference points and set each body part’s length
to its mean length for a given experiment. Then, we scaled relative ThC positions and
body part lengths using our biomechanical model as a template. Thus, instead of using
3D Cartesian coordinates, we could now calculate joint angles that were invariant across
animals and that matched the DoFs used by NeuroMechFly. At first we calculated these
joint angles for the six reported DoFs (Soler et al., 2004; Sink, 2006) by computing the
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dot product between the global rotational axes and coxal joints and between adjacent leg
segments joined by single-rotational joints (see Materials and Methods).

When only these six DoFs were used to replay walking and grooming, we consistently
observed a large discrepancy between 3D pose-derived Cartesian joint locations and those
computed from joint angles via forward kinematics (Figure 3.4, Base DoF Dot product).
Visualization of these errors showed significant out-of-plane movements of the tibia and
tarsus (Video 3, top-left). This was surprising given that each leg is thought to consist
of a ball-and-socket joint (three DoFs in the ThC joint) followed by a series of one DoF
hinge joints that, based on their orientations, should result in leg segments distal to
the coxa residing in the same plane. Therefore, we next tried to identify alternative
leg configurations that might better match 3D poses. First we performed an inverse
kinematics optimization of joint angles rather than dot product operations. This would
allow us to identify angle configurations that minimize error at the most distal tip of
the kinematic chain—in this case, the pretarsus. Although inverse kinematics yielded a
lower discrepancy (Figure 3.4, Base DoF Inverse kinematics), we still observed consistent
out-of-plane leg movements (Video 3, top-middle).

We next examined whether an extra DoF might be needed at the CTr joint to accurately
replicate real fly leg movements. This analysis was motivated by the fact that: (i) other
insects use additional stabilizing rotations at or near the TrF joint (Watson et al., 2002;
Frantsevich and Wang, 2009; Bender et al., 2010; Zill et al., 2017), (ii) unlike other
insects, the Drosophila trochanter and femur are fused, and (iii) Drosophila hosts reductor
muscles of unknown function near the CTr joint (Soler et al., 2004). To ensure that any
improvements did not result simply from overfitting by increasing the number of DoFs, we
also tested the effect of adding one roll or yaw DoF to each of the more distal hinge-type
joints (CTr, FTi and TiTa)(Video 2). Indeed, for both walking (Video 3, top-right)
and foreleg/antennal grooming (Video 4, top-right), we observed that adding a CTr
roll DoF to the six previously reported (‘base’) DoFs significantly and uniquely reduced
the discrepancy between 3D pose-derived and forward kinematics-derived joint positions,
even when compared with improvements from inverse kinematics (Figure 3.4, Base DoF
& CTr roll; for statistical analysis, see Table B.2 and Table B.3). This improvement was
also evident on a joint-by-joint basis for walking (Figure B.2) and grooming (Figure B.3)
and it was not achieved by any other kinematic chain tested—a result that argues against
the possibility of over-fitting (Figure 3.4, Base DoF & CTr yaw, Base DoF & FTi roll,
Base DoF & FTi yaw, Base DoF & TiTa roll, Base DoF & TiTa yaw). These findings
demonstrate that accurate kinematic replay of Drosophila leg movements requires seven
DoFs per leg: the previously reported six DoFs (Soler et al., 2004; Sink, 2006) as well as a
roll DoF near the CTr joint. Thus, by default, NeuroMechFly’s biomechanical exoskeleton
incorporates this additional DoF for each leg (Table B.1).
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Figure 3.4: Adding a CTr roll DoF to base DoFs enables the most accurate
kinematic replay of real walking and grooming. Body-length normalized mean
absolute errors (MAE) comparing measured 3D poses and angle-derived joint positions
for various DoF configurations. Measurements were made for representative examples of
(A) forward walking, or (B) foreleg/antennal grooming. For each condition, n = 2400
samples were computed for all six legs across 4 s of 100 Hz video data. Data for each leg
are color-coded. ‘R’ and ‘L’ indicate right and left legs, respectively. ‘F’, ‘M’, and ‘H’
indicate front, middle, and hind legs, respectively. Violin plots indicate median, upper,
and lower quartiles (dashed lines). Results from adding a coxa-trochanter roll DoF to
based DoFs are highlighted in light gray.

3.4.3 Using NeuroMechFly to estimate joint torques and contact forces
through kinematic replay of real fly behaviors

Having identified a suitable set of leg DoFs, we next aimed to illustrate the utility of
NeuroMechFly as a biomechanical model within the PyBullet physics-based environment.
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PyBullet is an integrative framework that not only gives access to collisions, reaction
forces, and torques but also imposes gravity, time, friction, and other morphological
collision constraints, allowing one to explore their respective roles in observed animal
behaviors. Specifically, we focused on testing the extent to which one might use kinematic
replay of real behaviors to infer torques, and contact forces like body part collisions
and ground reaction forces (GRFs)—quantities that remain technically challenging to
measure in small insects like Drosophila (D. Cofer et al., 2010; Guo et al., 2018). Although
kinematic replay may not provide information about internal forces that are not reflected
in 3D poses (e.g., how tightly the legs grip the spherical treadmill without changes in
posture), estimates of collisions and interaction forces may be a good first approximation
of an animal’s proprioception and mechanosensation.

We explored this possibility by using a proportional-derivative (PD) controller implemented
in PyBullet to actuate the model’s leg joints, replaying measured leg kinematics during
forward walking and foreleg/antennal grooming. We used joint angles and angular
velocities as target signals for the controller. Because, when applying this kind of
controller, there is no unique set of contact solutions that match forces and torques to
prescribed kinematics (i.e., experimental validation of force estimates would ultimately be
necessary), we first quantified how sensitive torque and force estimates were to changes
in PD controller gains. Based on this sensitivity analysis, we selected gain values that
optimized the precision of kinematic replay (Figure B.4, blue squares) and for which small
deviations did not result in large variations in measured physical quantities (Figure B.5, red
traces). We included all seven leg degrees-of-freedom from our error analysis (Figure B.6)
and the model’s ‘zero-angle pose’ was selected to make joint angles intuitive (Figure B.7).
We also set fixed values for the orientation of abdominal segments, wings, halteres, head,

proboscis, and antennae to generate a natural pose (Table B.4).

When we replayed walking (Figure 3.54-C)(Video 5) and foreleg/antennal grooming
(Figure 3.6A-C) (Video 6), we observed that the model’s leg movements were largely
identical to those measured from Drosophila. By measuring real ball rotations (Moore
et al., 2014) and comparing them with simulated spherical treadmill rotations, for a
range of soft constraint parameters (Figure B.8), we quantified high similarity between
real and simulated spherical treadmill forward velocities (Figure B.9D), and to some
extent, yaw velocities (Figure B.9F). Sideways velocities were smaller and, thus, difficult
to compare (Figure B.9F). This was notable given that the ball’s rotations were not
explicitly controlled but emerged from tarsal contacts and forces in our simulation.
These observations support the accuracy of our computational pipeline in processing and
replaying recorded joint positions.

Next, we more directly validated collisions and forces computed within the PyBullet
physics-based simulation environment. From kinematic replay of joint angles during walk-
ing (Figure 3.5F, top), we measured rich, periodic torque dynamics (Figure 3.5E, middle).
These were accompanied by ground reaction forces (GRFs) that closely tracked subtle
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Figure 3.5: Kinematic replay of forward walking allows the estimation of ground
contacts and reaction forces. (A) Multiple cameras and deep learning-based 2D
pose estimation are used to track the positions of each leg joint while a tethered fly is
walking on a spherical treadmill. (B) Multiview 2D poses (solid lines) are triangulated
and processed to obtain 3D joint positions (dashed lines). These are further processed
to compute joint angles for seven DoFs per leg. (C) Joint angles are replayed using
PD control in NeuroMechFly. Body segments in contact with the ground are indicated
(green). (D) Estimated ground reaction force vectors (red arrows) are superimposed on
original video data. (E, top) Kinematic replay of real 3D joint angles permits estimation
of unmeasured (E, middle) joint torques, and (E, bottom) ground reaction forces. Only
data for the left front leg (LF) are shown. Grey bars indicate stance phases when the leg
is in contact with the ground. Joint DoFs are color-coded. (F) A gait diagram illustrating
stance (black) and swing (white) phases for each leg as computed by measuring simulated
tarsal contacts with the ground.

differences in leg placement across walking cycles (Figure 3.5E, bottom). Superimposing
these GRF vectors on raw video recordings of the fly allowed us to visualize expected
tarsal forces (Figure 3.5D)(Video 5, top-left) which could also be used to generate
predicted gait diagrams during tethered walking (Figure 3.5F'). These predictions were
highly accurate (83.5 - 87.3% overlap) when compared with manually labeled ground-truth
gait diagrams for three different animals and experiments (Figure B.10). This result was
notable given that the thorax is fixed and, in principle, subtle changes in attachment
height could increase or decrease the duration of leg-treadmill contacts.
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Similarly, for foreleg/antennal grooming (Figure 3.6 4-C'), we observed that measured joint
angles (Figure 3.6 E, top) could give rise to complex torque dynamics (Figure 3.6 E, middle).
Associated leg and antennal contact forces (Figure 3.6D, E, bottom) reached magnitudes
about three times the fly’s weight. These fall within the range of previously observed
maximum forces measured at the tip of the tibia (~100pN) for ballistic movements
(Azevedo et al., 2020), but further experimental data will be required to fully validate
these measurements. These leg and antennal contact forces were used to generate grooming
diagrams—akin to locomotor gait diagrams—that illustrate predicted contacts between
distal leg segments and the antennae (Figure 3.6 F). During leg-leg grooming, we observed
collisions that moved continuously along the leg segments in proximal to distal sweeps.
These collision data provide a richer description of grooming beyond classifying the body
part that is being cleaned and can enable a more precise physical quantification of many
other behaviors including, for example, inter-animal boxing or courtship tapping. This
approach also revealed the importance of having a morphologically accurate biomechanical
model. When we replaced our CT scan-based leg segments and antennae with more
conventional stick segments having similar diameters and lengths, we observed less rich
collision dynamics including the elimination of interactions between the tarsi and antennae
(Figure B.11) (Video 7).

Because our 3D pose estimates were made on a tethered fly behaving on a spherical
treadmill, we also ‘tethered’ our simulation by fixing the thorax position. Next, we asked
to what extent our model might be able to walk without body support (i.e., keeping
its balance while carrying its body weight). To do this, we replayed 3D kinematics
from tethered walking (Figure 3.5)(Video 5) while NeuroMechFly could walk freely
(untethered) on flat terrain. Indeed, we observed that our model walked stably on the
ground (Video 8). Although an animal’s legs would naturally be positioned differently
on a curved versus a flat surface, the flexibility of NeuroMechFly’s tarsal segments allowed
it to walk freely with a natural pose using 3D poses taken from tethered walking on a
curved spherical treadmill. As expected, flat ground locomotion matched the velocities of
tethered walking (Figure B.12) better than walking paths (Video 8): small deviations in
heading direction yield large changes in trajectories.

In summary, we have shown how NeuroMechFly’s biomechanical exoskeleton—without
muscle or neuron models—can be used to replay real 3D poses to estimate otherwise
inaccessible physical quantities like joint torques, collisions, and reaction forces that are
accessible from its physics-based simulation engine.

3.4.4 Using NeuroMechFly to explore locomotor controllers by opti-
mizing CPG-oscillator networks and muscles

As a full neuromechanical model, NeuroMechFly consists not only of biomechanical
elements, like those used for kinematic replay, but also neuromuscular elements. In our
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Figure 3.6: Kinematic replay allows the estimation of self-collisions and reaction
forces during foreleg/antennal grooming. (A) Multiple cameras and deep learning-
based 2D pose estimation are used to track the positions of each leg joint while a tethered
fly grooms its forelegs and antennae. (B) Multiview 2D poses (solid lines) are triangulated
and processed to obtain 3D joint positions (dashed lines). These are further processed
to compute joint angles for seven DoFs per leg. (C) Joint angles are replayed using PD
control in NeuroMechFly. Body segments undergoing collisions are indicated (green).
(D) Estimated leg-leg and leg-antennae contact forces (red arrows) are superimposed on
original video data. (E, top) Kinematic replay of real joint angles permits estimations
of unmeasured (E, middle) joint torques, and (E, bottom) contact forces. Only data
for the right front (RF) leg are shown. Dark grey bars indicate leg-leg contacts. Light
grey bars indicate leg-antenna contacts. Joints are color-coded. (F) A grooming diagram
illustrating contacts (black) made by the front leg’s five tarsal segments (‘Tal’ and ‘Ta5’
being the most proximal and the most distal, respectively), tibia (‘Ti’), and both antennae
(‘Ant’).

computational framework, these represent additional modules that the investigator can
define to be more abstract—e.g., leaky integrate-and-fire neurons and spring-and-damper
models—or more detailed—e.g., Hodgkin-Huxley neurons and Hill-type muscle models.
Parameters for neural networks and muscles that maximize user-defined objectives and

minimize penalties can be identified using evolutionary optimization.

Here, to provide a proof-of-concept of this approach, we aimed to discover neuromuscular
controllers that optimize fast and statically stable tethered walking. Insect walking gaits
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are commonly thought to emerge from the connectivity and dynamics of networks of CPGs
within the ventral nerve cord (VNC) (Proctor et al., 2010; Fuchs et al., 2011; Szczecinski,
A. E. Brown, et al., 2014; Mantziaris, Bockemiihl, Holmes, et al., 2017). Although
alternative, decentralized approaches have also been proposed (Schilling, Hoinville, et al.,
2013; Schilling and Cruse, 2020), we focused on exploring a CPG-based model of locomotor
control. First, we designed a neural network controller consisting of a CPG-like coupled
oscillator (Ijspeert et al., 2007) for each joint (Figure 3.7A). For simplicity, we denote
the output of each coupled oscillator as the activity of a CPG. These CPGs, in turn,
were connected to spring-and-damper (‘Ekeberg-type’) muscles (Ekeberg, 1993b). This
simple muscle model has been used to effectively simulate lamprey (Ekeberg, 1993b),
stick insect (Ekeberg, Bliimel, et al., 2004), and salamander (Ijspeert, 2001) locomotion.

We aimed to identify suitable neuromuscular parameters for walking in an reasonably
short period of optimization time (less than 24 h per run on a workstation). Therefore,
we reduced the number of parameters and, thus, the search space. Specifically, we limited
controlled DoFs to those which (i) were sufficient to generate walking in other insect
simulations (Daun-Gruhn, 2011) and (ii) had the most pronounced effect on overall leg
trajectories in our kinematic analysis of real flies (Figure B.13). Thus, we used the
following three DoFs per leg that satisfied these criteria: CTr pitch, and FTi pitch for all
legs as well as ThC pitch for the forelegs and ThC roll for the middle and hind legs.

Each DoF was controlled by two coupled CPGs that drove the extensor and antagonistic
flexor muscles. We assumed left-right body symmetry and optimized intraleg joint
phase differences and muscle parameters for the right legs, mirroring these results for
the left legs. In the same manner, we optimized the phase differences between the
coxae flexor CPGs and mirrored them for the coxae extensor CPGs. Thus, we could
connect 36 coupled oscillators in a minimal configuration to remove redundancy and
reduce the optimization search space (Figure 3.7A). Finally, to permit a wide range of
joint movements, each CPG’s intrinsic frequency was set as an open parameter, whose
limits were constrained to biologically relevant frequencies observed from real fly joint
movements during walking (Mendes et al., 2013; DeAngelis et al., 2019)(Figure B.13).
In total, 63 open parameters were optimized including CPG intrinsic frequencies, CPG
phase differences, and muscle parameters (see Materials and Methods).

We performed multi-objective optimization (Oliveira et al., 2011) using the NSGA-II
genetic algorithm (Deb et al., 2002) to identify neuromuscular parameters that drove
walking gaits satisfying two high-level objective functions: forward speed and static
stability. Notably, these objectives can be inversely correlated: fast walking might be
achieved by minimizing stance duration and reducing static stability. Forward speed
was defined as the number of backward ball rotations within a fixed period of time and
quantified as fictive distance traveled (Figure 3.7B, top). Static stability refers to the
stability of an animal’s given pose if, hypothetically, tested while immobile. This metric
can be quantified during walking as the minimal distance between the model’s center-of-
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Figure 3.7: Using evolutionary optimization to identify oscillator network and
muscle parameters that achieve fast and stable locomotion. (A) A network of
coupled oscillators modeling CPG-based intra- and interleg circuits in the ventral nerve
cord of Drosophila. Oscillator pairs control specific antagonistic leg DoFs (gray). Network
parameter values are either fixed (black), modified during optimization (red), or mirrored
from oscillators on the other side of the body (pink). (B) Multi-objective optimization of
network and muscle parameters maximizes forward walking distance traveled (speed) and
static stability. (C) A ‘trade-off’ solution’s locomotor trajectory (distance traveled over
x and y axes) across 60 optimization generations. (D) Pareto front of solutions from the
final (60th) optimization generation. Three individuals were selected from the population
using different criteria: the longest distance traveled (fastest, purple), the most statically
stable solution (‘most stable’, green), and the solution having the smallest 2-norm of
both objective functions after normalization (trade-off). (E) Gait diagrams for selected
solutions from generation 60. Stance (black) and swing (white) phases were determined
based on tarsal ground contacts for each leg. Velocity values were obtained by averaging
the ball’s forward velocity over 2 s. (F) Central Pattern Generator (CPG) outputs, joint
torques, and joint angles of each leg’s femur for the ’trade-off’ solution. Intraleg joint
angles for the left front, middle, and hind legs are also shown. Legs are color-coded and
joints are shown in different line styles.

mass (COM) and the closest edge of the support polygon formed by the legs in stance
phase (i.e., in contact with the ground). This means that the closer the COM is to the
center of the support polygon, the higher the static stability score. (Figure 3.7B, bottom).
Additionally, we defined four penalties to discourage unrealistic solutions including those
with excessive joint velocities (these cause jittering or muscle instability), speeds slower or
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faster than real locomotion (a ‘moving boundary’), as well as joint angle ranges of motion
and duty factors that violate those observed in real flies. Because the optimizer minimizes
the objective functions, we inverted the sign for both functions. Thus, during optimization
the Pareto front of best solutions evolved toward more negative values (Figure B.14A4)
and forward walking speeds became faster over generations (Figure 3.7C)(Video 9).

To more deeply investigate our optimization results, we examined three individual solutions
from the final generation. These were: (i) the fastest solution, (ii) the most stable solution,
and (iii) a ‘trade-off’” solution that was the best compromise between speed and static
stability (see Methods for a precise mathematical definition) (Figure 3.7D). By generating
gait diagrams for each of these solutions, we found a diversity of strategies—mnon-tripod
gaits were observed in all generations (Figure B.14B) even after objectives were maximized
and penalties minimized at generation 60 (Figure B.14C'). However, the trade-off solution—
a compromise between speed and static stability—closely resembled a typical insect tripod
gait (Mendes et al., 2013; R. Strauss and Heisenberg, 1990), supporting the notion that
tripod locomotion satisfies a need for stability during fast insect walking (Ramdya et al.,

2017b).

Because NeuroMechFly provides access to neuromuscular dynamics and physical interac-
tions, we could also analyze then further analyze how these underlying quantities give
rise to optimized locomotor gaits. To illustrate this, we focused on the femur flexors of
each leg for the ‘trade-off’ solution (Figure 3.7F). As expected for a tripod gait, stance
and swing phases of the left front (LF) and hind (LH) legs were coordinated with those
of the right middle (RM) leg. This coordination implies that the middle and hind legs
CPG activities (Figure 3.7F, top, green and brown) are in phase with each other and
phase shifted by 180° with respect to the front leg (Figure 3.7F, top, orange). This is
because, during stance phases, the front legs flex while the middle and hind legs extend.
However, for the tripod generated by other three legs, the CPG activity of the left, middle
(LM) femur was phase shifted with respect to the right front (RF) and hind (RH) legs
(Figure 3.7F, top, red). Torques were highest for the hind legs, suggesting an important
role for driving ball rotations (Figure 3.7F, middle, purple and brown). Finally, we
confirmed that the increased torque of the hind legs was associated with a larger range of
motion as measured by joint angles (Figure 3.7F, bottom).

These results illustrate how, by combining our biomechanical exoskeleton with neuro-
muscular elements and an optimization framework, we could discover control strategies
that maximize high-level behavioral objectives and minimize penalties informed by real
measurements of Drosophila. For these solutions, neuromuscular dynamics, collisions, and
forces could then be further examined because of their instantiation within a physics-based
simulation environment.
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3.5 Discussion

Here we have introduced NeuroMechFly, a computational model of adult Drosophila
that can be used for biomechanical, and—Dby also including available neural and muscle
models—mneuromechanical studies. We first illustrated a biomechanical use case in which
one can estimate joint torques and contact forces including ground-reaction forces and
body part collisions by replaying real, measured fly walking and grooming. In the future,
directly through force measurements (Takahashi et al., 2017; Elliott and Sparrow, 2012)
or indirectly through recordings of proprioceptive and tactile neurons (Chin-Lin Chen
et al., 2018; Mamiya et al., 2018), these estimates might be further validated. Next, we
demonstrated a neuromechanical use case by showing how high-level optimization of a
neural network and muscles could be used to discover and more deeply study locomotor
controllers. Although here we optimized for speed and static stability during tethered
locomotion, NeuroMechFly can also locomote without body support, opening up the
possibility of optimizing neuromuscular controllers for diverse, untethered behaviors.
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Figure 3.8: Modules that can be independently modified in NeuroMechFly. A
neural controller’s output drives muscles to move a biomechanical model in a physics-
based environment. Each of these modules can be independently modified or replaced
within the NeuroMechFly simulation framework. The controller generates neural-like
activity to drive muscles. These muscles produce torques to operate a biomechanical
model embedded in PyBullet’s physics-based environment. When replacing any module
it is only necessary to preserve the inputs and outputs (colored arrows).
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3.5.1 Limitations and future extensions of the biomechanical module

The biomechanical exoskeleton of NeuroMechFly can benefit from several near-term
extensions by the community. First, actuation is currently only implemented for leg
joints. Additional effort will be required to actuate other body parts including the head,
or abdomen by defining their DoFs, joint angle ranges and velocities based on 3D pose
measurements. Second, the model currently achieves compliant joints during kinematic
replay through position control (akin to a spring-and-damper) in PyBullet. However,
future work may include implementing compliant joints with stiffness and damping based
on measurements from real flies. Third, NeuroMechFly employs rigid bodies that do not
reflect the flexibility of insect cuticle. Although our modeling framework could potentially
include soft-bodied elements—these are supported by the underlying physics engine—we
have chosen not to because it would first require challenging measurements of cuticular
responses to mechanical stresses and strains (i.e. Young’s modulus) (Vincent and Wegst,
2004; Flynn and Kaufman, 2015), and this would increase the model’s computational
complexity, making it less amenable to evolutionary optimization. NeuroMechFly currently
supports flexibility in terms of compliance because the muscle model includes stiffness
and damping terms. Additionally, the fact that kinematic replay is already accurate—
with similar real and simulated joint angle and end-effector positions—suggests that
modeling additional cuticular deformations might only have negligible effects. Therefore,
we currently offer what we believe to be a practical balance between accuracy and
computational cost. Finally, future iterations of our biomechanical model might also
include forces that are observed at small scales, including Van der Waals and attractive
capillary forces of footpad hairs (Kimura et al., 2020).

3.5.2 Limitations and future extensions of the neuromuscular modules

In addition to its biomechanical exoskeleton, NeuroMechFly includes modules for neural
controllers, muscle models, and the physical environment (Figure 3.8). These interact
with one another to generate rich in silico motor behaviors. Each of these modules
can be independently modified in future work to improve biological interpretability,
computational efficiency, and increase the range of possible experiments. First, more
detailed neural controllers could already be implemented including Integrate-and-Fire, or
Hodgkin-Huxley type neurons (Szczecinski, A. E. Brown, et al., 2014). This would aid in
the comparison of discovered artificial neural networks and their dynamics with measured
connectomes (Phelps et al., 2021; Scheffer et al., 2020) and functional recordings (Chin-Lin
Chen et al., 2018), respectively. Second, to increase the realism of movement control, Hill-
type muscle models that have nonlinear force generation properties could be implemented
based on species-specific muscle properties—slack tendon lengths, attachment points,
maximum forces, and pennation angles (Kuan et al., 2020; Azevedo et al., 2020). Third, to
study more complex motor tasks, one can already use the PyBullet framework (Coumans,
2015) to increase the complexity of the physical environment. For example, one can study
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locomotor stability by introducing external objects (Video 10), or locomotor strategies
for navigating heightfield terrains.

In the near-term, we envision that NeuroMechFly will be used to test theories for
neuromechanical behavioral control. For example, one might investigate the respective
roles of feedforward versus feedback mechanisms in movement control (i.e., to what
extent movements are generated by central versus sensory-driven signals). This can be
tested by systematically modifying coupling strengths and sensory feedback gains in
the simulation. Outcomes may then be experimentally validated. In the longer-term,
this modeling framework might also be used in closed-loop with ongoing neural and
behavioral measurements. Real-time 3D poses might be replayed through NeuroMechFly
to predict joint torques and contact forces. These leg state predictions might then inform
the delivery of perturbations to study how proprioceptive or tactile feedback are used to
achieve robust movement control. In summary, NeuroMechFly promises to accelerate the
investigation of how passive biomechanics and active neuromuscular control orchestrate
animal behavior, and can serve as a bridge linking fundamental biological discoveries to
applications in artificial intelligence and robotics.
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Chapter 4

Spatiotemporal Maps of
Proprioceptive Inputs to the
Cervical Spinal Cord During
Three-Dimensional Reaching and
Grasping

Overview

Macaca fascicularis, a nonhuman primate is the third model organism we focus on in
this thesis. Due to their close genetic relationship with humans, Macaca fascicularis are
extremely important in translating discoveries from nonhuman primates to humans for
interventions in motor control treatments. A promising methodology in motor control
recovery after spinal cord injury has been through epidural electrical stimulation (EES)
of the spinal cord. But, for fine control of upper limb movements, Electrical stimulation
of afferent fibers interfere with other neural activity. In this chapter, we developed a
musculoskeletal framework of Macaca fascicularis upper limb to estimate spatiotemporal
maps of individual afferent fibers for reaching and grasping task. Using our framework,
researchers can design better EES strategies for multi-joint limb control rehabilitation.
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4.1 Abstract

Proprioceptive feedback is a critical component of voluntary movement planning and
execution. Neuroprosthetic technologies aiming at restoring move- ment must interact
with it to restore accurate motor control. Optimization and design of such technologies
depends on the availability of quantitative insights into the neural dynamics of proprio-
ceptive afferents during functional movements. However, recording proprioceptive neural
activity during unconstrained movements in clinically relevant animal models presents
formidable challenges. In this work, we developed a computational framework to estimate
the spatiotemporal patterns of proprioceptive inputs to the cervical spinal cord during
three-dimensional arm movements in monkeys. We extended a biomechanical model of
the monkey arm with ex-vivo measurements, and combined it with models of mammalian
group-la, Ib and II afferent fibers. We then used experimental of arm kinematics and
muscle activity of two monkeys performing a reaching and grasping task to estimate
muscle stretches and forces with computational biomechanics. Finally, we projected
the simulated proprioceptive firing rates onto the cervical spinal roots, thus obtaining
spatiotemporal maps of spinal proprioceptive inputs during voluntary movements. Es-
timated maps show complex and markedly distinct patterns of neural activity for each
of the fiber populations spanning the spinal cord rostro-caudally. Our results indicate
that reproducing the proprioceptive information flow to the cervical spinal cord requires
complex spatio-temporal modulation of each spinal root. Our model can support the
design of neuroprosthetic technologies as well as in-silico investigations of the primate

sensorimotor system.
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4.2 Introduction

Traumatic injuries of the central and peripheral nervous system interrupt the bi-directional
communication between the brain and the periphery. Neuroprosthetic systems aiming
at the recovery of motor function have been mainly focused on the restoration of motor
control via direct muscle stimulation (Ethier et al., 2012; Bouton et al., 2016; Ajiboye et
al., 2017), peripheral nerve stimulation (Schiefer et al., 2010; Brill et al., 2018; Raspopovic
et al., 2011) and spinal cord stimulation (Sunshine et al., 2013; Zimmermann et al., 2011;
Holinski et al., 2016; Angeli et al., 2018; Capogrosso, Milekovic, et al., 2016; Barra et al.,
2018). For example, epidural electrical stimulation (EES) (Capogrosso, Wagner, et al.,
2018) of the lumbar spinal cord has shown promising results for the recovery of multi-joint
movements in animals (Capogrosso, Milekovic, et al., 2016; Courtine et al., 2009) and
humans (Angeli et al., 2018; Wagner et al., 2018) with spinal cord injury (SCI). EES
engages motoneurons pre-synaptically by directly recruiting large myelinated afferents
in the posterior roots (Rattay et al., 2000; Capogrosso, Wenger, et al., 2013). In fact,
the stimulation-induced information is processed by spinal circuitry and integrated with
residual descending drive and sensory signals to produce coordinated movement (Moraud
et al., 2016; Edgerton et al., 2008). These encouraging clinical results have produced a
surge of interest in the application of spinal cord stimulation to the cervical spinal cord to
restore also arm and hand movements (Barra et al., 2018; Kasten et al., 2013; D. C. Lu
et al., 2016). However, restoration of voluntary control of arm and hand movements
likely requires even finer integration between stimulation signals, descending drive and
natural sensory feedback (Popovic et al., 2002). Unfortunately, electrical stimulation
patterns interfere with natural afferent activity (Bensmaia, 2015) leading to impairment
of movement execution and conscious perception of proprioception (Formento et al., 2018).
Therefore, application of EES protocols to the complex control of the upper limb should
rely on precise knowledge of cervical sensorimotor circuit dynamics. More generally, any
application that aims at restoring limb function (Bouton et al., 2016; Ajiboye et al., 2017),
or even at the control of external devices (Collinger et al., 2013; Pandarinath et al., 2017),
might benefit from the restoration of proprioceptive feedback to enhance movement quality
and control (Bensmaia, 2015; Bruns et al., 2013). In this view, experimental recordings of
proprioceptive afferent dynamics are pivotal to future developments in neurotechnologies.
Recordings of afferent activity in humans can be performed using microneurography (Edin
and Vallbo, 1990; Birznieks et al., 2001), but this technique only allows the recording of
single fibers in constrained experimental settings. Alternatively, extracellular recordings
of dorsal root ganglion sensory neurons can be obtained in non-primate animal models
during functional movements (Stein et al., 2004; Weber et al., 2006). However, although
the latter allows recording multiple fibers simultaneously, it does not readily permit
discrimination between the different fiber types, which requires a-priori knowledge of
the firing dynamics of each cell type during movement. Moreover, studies addressing
the human upper limb sensory dynamics require more pertinent animal models such as
non-human primates, in which similar invasive recordings during unconstrained functional
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movements still present formidable challenges. Here we sought to combine experimental
recordings of kinematics and muscle activity in monkeys with a biomechanical model
of the primate arm to produce in-silico estimates and characterize the firing rates of
proprioceptive fiber ensembles during arm movements.

Using OpenSim (S. L. Delp et al., 2007), we extended and scaled the biomechanical model
of the Macaca mulatta upper limb developed by Chan and Moran (Chan and Moran,
2006), with dedicated ex-vivo measurements, to the size and functional parameters of
Macaca fascicularis. We then trained two monkeys to reach and grasp a spherical object
while recording arm joint kinematics and electromyograms (EMGs) of the principal arm
and hand muscles. We validated this biomechanical model by comparing simulated
kinematics and muscle activity with experimental recordings, and used the model to
extract muscle stretches and tendon elongation parameters.

Next, we fed simulated muscle and tendon states to empirical models of group Ia, Ib and
IT proprioceptive afferents (Arthur Prochazka and Monica Gorassini, 1998; A. Prochazka
and M. Gorassini, 1998). Finally, we projected the simulated activity of each of the
fiber ensembles onto the spinal segments hosting their homonymous motor pools, thus
obtaining spatiotemporal maps of the proprioceptive input to the cervical spinal cord

during movement.
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4.3 Methods

The computational framework to estimate the firing dynamics of proprioceptive sensory
afferents of the upper limb in non-human primates is presented in Figure Figure 4.2. It
consists of a biomechanical model of the primate’s right arm, fine-tuned to the muscle
mechanical properties and anatomy of Macaca fascicularis, and in a mathematical model
linking muscle and tendon stretches to firing rates of group la, Ib and II afferent fibers. It is
complemented with an experimental dataset of the three-dimensional arm joint kinematics
and muscle activity of Macaca fascicularis during reaching and grasping movements, and
a method to project the afferent activity onto the cervical spinal segments.

4.3.1 Biomechanical model

The right arm model includes 39 musculo-tendon units (MTU), 8 bone structures, and
8 joints. We adapted a SIMM (Motion Analysis Corporation, USA) model of the right
arm of the Macaca mulatta (Chan and Moran, 2006) to OpenSim (National Center for
Simulation in Rehabilitation Research, USA) and scaled each bone separately to the
dimensions of the Macaca fascicularis arm. The parametrization of each arm segment
was complemented with mass (Cheng and S. H. Scott, 2000), and resulting inertia matrix
coeflicients calculated for each segment taken as a homogeneous cylinder. We obtained
further anatomical measurements by dissecting an arm specimen of a female Macaca
fascicularis. During the dissection, approximate muscle fiber and tendon lengths were
also measured. From a dissected muscle, and after removing the tendons, we measured
the fiber volume by submerging it in a graduated beaker. We estimated the fiber principal
cross-sectional area (PCSA) as the muscle belly volume divided by the muscle fiber length.
Subsequently, the maximal isometric force was estimated as

M

max

= o x* PCSA (4.1)

with o = 0.3 N/m? (Charles, Cappellari, Spence, Wells, et al., 2016). We repeated such
measurements for a total of 36 muscles of the arm, hand and shoulder. By combining this
dataset with reported morphological measurements of macaques (Cheng and S. H. Scott,
2000; K. M. Graham and Stephen H. Scott, 2003; Singh et al., 2002), we complemented
the model with novel data and adapted it to the fascicularis anatomy. However given
the difficulty to measure it, we kept the pennation angle parameter at null (Cheng and
S. H. Scott, 2000). Measurements from a subset of representative muscles is reported
in Table 4.1. Moreover, following the observations made during the dissection (For
more information refer to Kibleur (2020)), we adapted several MTU lines of action, and
added wrapping surfaces when necessary to prevent MTUs from crossing bones. These
adjustments preserved the operating ranges of normalized MTU length and moment arm.
Finally, we added a joint to improve representation of the hand. The hand bone structure
was split into two pieces around the first knuckles, in order to obtain the “fingers” and the
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“palm” (with the thumb). For finger actuators such as the flexor digitorum superficialis
muscle (FDS), the model already included a single MTU whose distal attachment point
was located on the palm. However since we wanted to allow for the simulation of power
grasps, we made adaptations to the FDS and its antagonist MTU, the extensor digitorum
(EDC), so that together they could actuate the new finger joint. Both MTUs were
stretched and the tendon lengths increased accordingly, in order to reach opposite sides of
the middle finger’s distal phalanx. A degree of freedom was created to allow fingers flexion
in the range (-10, 90) degrees, where the flat hand was taken to be the neutral fingers
flexion. Reserve actuators (a mechanism of OpenSim) were de-activated for 4 out of 8
joints in the model, including the elbow and shoulder flexions, and heavily constrained
on the remaining 4, such as the fingers flexion. The complete model is available online
(https://cdscience.ch/diffusion/ NHPOPENSIM /repository /master)/).

MTU lgl/;[t [cm] (L [em] V [em?]
Extensor digitorum 7.2 7.8 3.9
Extensor digiti 7.8 5.5 2.3
Flexor digitorum superficialis 9.4 2.7 9.4
Pronator quad 1.6 0.1 0.8
Pronator teres 6.2 0.1 7.8

Table 4.1: Morphometric measurements of a subset of representative arm and forearm
musculo-tendon units (MTU): Optimal fiber length (l%t), Tendon slack length (%), and
fiber volume (V)

4.3.2 Afferent fiber model

The average firing rate of group la, Ib and II afferent fibers can be estimated from the
state of a single MTU at time ¢ using equations developed to fit experimental recordings
of afferent firing rates in cats by Prochazka and colleagues (Moraud et al., 2016; A.
Prochazka and M. Gorassini, 1998; Arthur Prochazka and Monica Gorassini, 1998). MTU
sizes are comparable between the cat hind limb and the Macaca fascicularis upper limb,
therefore we expect such models to offer a reasonable approximation of sensory fiber
dynamics in the fascicularis arm. Specifically, for a given MTU, we approximated the

firing rate fr, of la afferents as:

fra = max{0, k, * sign(v™)|vM|p, + kgr (1M — l%t) + knra+cr} (4.2)

which is the sum of terms that depend on fiber contraction velocity v* [mm/s], fiber

stretch (obtained as the difference between fiber length I [mm] and optimal fiber length
1
rate cy. Please note that the optimal fiber length, which is the length at which the force

[mm)], parsed from the model), the normalized muscle activity a, and a baseline firing
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Figure 4.2: Modelling approach. A: the Macaca fascicularis right arm model of 8 bone
structures, articulated around 8 degrees of freedom (SA: shoulder adduction, SR: shoulder
rotation, SF: shoulder flexion, EF: elbow flexion, RP: radial pronation, WF: wrist flexion,
WA: wrist abduction, FF: fingers flexion) B: 39 musculo-tendon units (MTU) allow
dynamic activation of the joints. 6 virtual markers are added to the model, conform to
the placement of real markers on the recorded animal. C: in the Hill muscle model, a
MTU consists of a Contractile Element (CE) mounted in parallel with a passive element
together representing the fiber, mounted in series with a passive element representing
the tendon. D: Computational flowchart: the joint angles q are produced by OpenSim’s
inverse kinematics, and are fed to OpenSim’s CMC. The latter yields fiber properties
such as the activity a, the fiber length [ and its first derivative v, as well as the fiber
force M. With linear models developed by Prochazka and Gorassini (A. Prochazka and
M. Gorassini, 1998; Arthur Prochazka and Monica Gorassini, 1998), these properties are
used to compute 3 types of sensory feedbacks for each of the 39 MTUs, sensory feedbacks
which are then separately mapped to spinal segments to obtain spinal maps.

production can be maximal, is equivalent to the rest sarcomere length. All constants k.
and ¢y, as well as p, are numerical coefficients that have been previously determined (A.
Prochazka, 1999). The numerical equations are given in Appendix. We finally enforced
a lower bound firing rate of 0 [Hz| or [impulses/s| to each fiber population, to prevent
negative firing rates. The firing rate of Ib afferents was estimated to be proportional to
the ratio of the force exerted by the muscle fiber FM [N] over the maximal isometric
force FM [NJ:

max
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FM
f]b = max{O, ka} (43)
Fmax

Finally, the firing of group-II spindle afferents was estimated as the sum of terms depending
on fiber stretch, muscle activity, and a baseline firing:

frr = max{(), kd[[(lM — l%t) + knrra + CH} (4.4)

4.3.3 Experimental dataset: kinematics

Two females Macaca fascicularis (Mk-Sa, age 7 years, weight 4 kg and Mk-Br, age 4 years,
mass 3.5 kg) were trained to reach with the left arm for a spherical object, grasp it, and
pull it towards a return position to receive a food reward (Barra et al., 2018). Animals
were housed within a group of five animals at the University of Fribourg, Switzerland. All
experimental procedures were performed at the Platform for Translational Neuroscience
at the University of Fribourg in agreement with the veterinary cantonal office of the
Canton of Fribourg according to the license n°2017 04 FR.

We recorded three-dimensional arm-joint kinematics using the VICON Vero system
(VICON, Oxford, U.K.) with 12 infrared cameras, 6 reflective markers attached to the
arm joints, and 2 high definition video cameras. Two sets of n—=9 (Mk-Sa), and n=19
(Mk-Br) reaching and grasping successful trials, each cut between the cue command
and the return to start position, were extracted and used for the results of this study.
Kinematic and video recordings were synchronized and sampled at 100Hz. The recordings
of the reflective markers’ positions in 3D were then resampled over 1000 time points.
Given the constancy of the trial durations (1.62 £ 0.26 s for Mk-Sa, 2.24 + 0.20 s for
Mk-Br), we proceeded to average in normalized time the marker positions across trials.
The duration of this time-normalized average trial was finally scaled back to the real
average trial duration in order to be fed to the chain of computations. The time point
corresponding to the grasping event was manually identified in each video recording
separately. The location of the markers on the arm is shown in Figure 4.2. Markers were
placed at the middle of the upper arm, at the distal end of the humerus, at the elbow
joint and at the proximal end of the ulna, and at the distal ends of the ulna and radius
at the wrist. Finally, we artificially triggered a whole hand flexion of the model’s “fingers”
upon initiation of grasping by the animal. We simulated the fingers’ flexions by making
the fingers’ joint angle follow a logistic function of time fitted to match the start and end
angle values, with its step centered on the time point identified as the grasping onset.
The key criterion in choosing the logistic function for this artificial joint evolution is that
its first derivative is bell-shaped, which is the natural temporal profile of joint velocities
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(Gribble and Ostry, 1999).

4.3.4 Experimental dataset: electromyography

The monkeys were implanted with chronic bipolar teflon coated stainless steel wire
electrodes in the deltoid (DEL), biceps (BIC), triceps (TRI), FDS and EDC muscles
of the left arm (Cooner wires). The surgical procedures have been described elsewhere
(Capogrosso, Wagner, et al., 2018). We recorded differential EMG signals at 12 kHz
using a TDT RZ2 system with a PZ5 pre-amplifier (Tucker Davis Technology, USA)
and synchronized them with the 3D kinematic recordings using analog triggers. Raw
EMG recordings were band-passed filtered between 100 and 800 Hz (Butterworth order
3), and Notch filtered (Butterworth order 3, between 49 and 51 Hz). Then, to obtain
signal envelopes for model validation purposes, the EMGs were high-pass filtered at 0.1Hz,
rectified, and low-pass filtered at 10Hz (Butterworth order 3). EMG signal envelopes were
normalized in amplitude (divided by their maximal value over the trial) independently
for each muscle, and their time course was scaled similarly to that of the kinematic
recordings.

4.3.5 Estimation of Spatiotemporal maps

Proprioceptive sensory afferents, innervating muscles and tendons, converge towards the
spinal cord in peripheral nerves bundled with their homonymous muscle motor axons.
Therefore, we assumed that their organization within the dorsal roots matches that
of their homonymous motor axons in the corresponding ventral roots. Following this
assumption, the afferent activity stemming from each MTU was mapped to the dorsal
roots and thus to the spinal segments using the rostro-caudal distribution of motor pools
in the primate spinal cord (Jenny and Inukai, 1983). As data were missing for the deltoid
in the mentioned publication, we approximated its motor pool localization using data
available in humans (Schirmer et al., 2011). Table 4.2 shows the resulting proportions
of motoneurons of each muscle in each cervical spinal segment, which we assumed to
represent the proportions of afferent fibers of each muscle projecting to each segment as
well. We estimated the input sensory activity a;, of type x, received by the i-th spinal
segment, as:

S wifie
Qi = —I——2 mi ’ xw;} (4.5)
2520

where f;, is the firing rate of the proprioceptive fibers of type = of the j-th MTU,
and w;' the proportion of its afferent fibers projecting to the i-th spinal segment. The
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considerations that led to the expression of a;, are addressed in the discussion.

The set of a;,’s can thus be represented as a color image summarizing the amount of
input sensory activity of type x received by the cervical spinal cord over time, similarly
to spatiotemporal maps of motoneuronal activity (Barra et al., 2018; Sergiy Yakovenko
et al., 2002).
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4.4 Results

4.4.1 Model Validation
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Figure 4.3: Evolution of the principal joint angles during the three-dimensional reaching
and grasping task for Mk-Sa, recorded and simulated (resulting from the estimated muscle
activities). The time of grasping was manually identified for each recording separately.
Joint angles computed by forward dynamics, using estimated muscle activities, are in
excellent agreement with experimental recordings as can be quantified with the cross-
correlation between the two curves, presented in bars.

We recorded simultaneous 3D kinematics of the upper limb and EMGs of the principal
upper limb muscles during an unconstrained three-dimensional reaching, grasping and
pulling movement. To validate our biomechanical model, we fed averaged 3D trajectories
of the joint markers to OpenSim, and computed joint angles with inverse kinematics. We
then used the computed muscle control (CMC) tool to estimate a set of muscle activities,
that represented a plausible solution to the inverse biomechanical problem, i.e.: what is
the set of muscle activities, from which the recorded motion of the arm has originated?

Next we fed the simulated muscle activities to OpenSim’s forward dynamics, thereby
obtaining simulated kinematics solution to the forward biomechanical problem. Compar-
ing the kinematics produced with this approach against the experimental joint angles
(Figure 4.3) shows excellent similarity between simulated and recorded data. In par-
ticular, simulated joint angle trajectories are well within the experimental variability
range of recorded data (R=0.90 for Mk-Sa and R—0.81 for Mk-Br). We then compared
the computed muscle activities and the envelopes of recorded EMG signals from upper
limb muscles. Qualitative analysis of activity patterns shows that the simulated muscle
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activities match the recorded EMGs (Figure 4.4). In particular, upper arm muscles are
activated in the first part of the reaching phase to lift the arm and initiate the whole
limb movement. Successively, forearm and hand muscles are activated to shape the grasp,
and grab the object. Finally, biceps and deltoid muscles are strongly activated during
the pulling phase of the movement. Quantitative comparison between simulated muscle
activities and EMG envelopes shows good correlation levels for almost all muscles in both
animals (Figure 4.4). Results corresponding to cross-correlation values of about 0.50
correspond to model predictions that seem reasonably accurate. While the predictions re-
alized for the finger actuators of Mk-Sa fall short of this accuracy, we observe outstanding
accuracy for the elbow actuators of Mk-Sa, and for finger actuators of Mk-Br.

Experimental EMG Simulated Activity

1 T | |
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Figure 4.4: Averaged and normalized EMG envelopes, compared to computed muscle
activity for Mk-Br. DEL: deltoid, BIC: biceps, TRI: triceps, FDS: flexor digitorum
superficialis, EDC: extensor digitorum. Correlation between the two curves, for each
monkey, are shown in bars.

4.4.2 Sensory Afferent Firing rates

We estimated the firing rates of group Ia, Ib and group II afferent fibers by feeding the
simulated muscle stretches and forces to the mathematical model of afferents firing rates
Equation 4.2, Equation 4.4, Equation 4.3 (Note that according to A. Prochazka (1999),
the velocity and length terms in the equations refer to the muscle-tendon unit length
and not to fiber velocities and lengths). Given the uncertainties in the estimation of
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Figure 4.5: A: Decomposition of Ia sensory activity into the non-constant terms of
equation Equation 4.2, for two principal arm muscles in Mk-Sa. B: Profiles of normalized
moto- and sensory-neurons activations, for two principal arm muscles in Mk-Sa.

muscle activities, it is important to evaluate the impact these can have on the outcomes
of these mathematical models. Therefore, we decomposed the resulting afferent firing
rates into single components. In Figure 4.5A we reported this decomposition for the
agonist /antagonist of the elbow (i.e. biceps and triceps). As expected in NHPs, the
muscular activity has a second-order impact on the total firing rates. Instead, it is the
contraction velocity that dominates the Ia profile, which is coherent with the findings and
predictions of A. Prochazka (1999). We then used our framework to compare the firing
rate of each simulated sensory fiber ensemble with its homonymous muscle activity, during
a whole limb three-dimensional movement (Figure 4.5B). As expected from intuition,
antagonist’s la afferents are anti-correlated. Instead, Group II and Ib afferents are not
entirely anti-correlated between antagonists. Moreover, in the case of the triceps, afferents
show almost complete anti-correlation with active muscle contraction. This is surprising,
considered that group II and Ib afferents should respond more to active muscle force.
However, this is likely resulting from the simultaneous occurrence of both passive and
active tendon elongations, as well as muscle stretches, in multi-joint movements such as

natural reaching.

4.4.3 Spatiotemporal maps of proprioceptive inputs

Using (4.5), we projected the activity of proprioceptive sensory afferents over the spatial
distribution of each fiber population along the cervical dorsal roots, thus obtaining
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Figure 4.6: Spinal map of the three different sensory feedbacks during a standardized
reaching and grasping task, for both animals. Here as well, the three identified phases
present noticeably different patterns of afferent activity.

Spinal segment DEL BIC TRI FDS EDC

Ch 0.20 0.20 0.01 0.0 0.0
C6 0.47 047 0.05 0.0 0.0
c7 025 025 026 0.0 0.03
C8 0.08 0.08 053 0.26 0.65
T1 0.0 0.0 015 0.73 0.32

Table 4.2: Proportional distribution of the motor pools of Deltoid (DEL), Biceps (BIC),
Triceps (TRI), Flexor digitorium superficialis (FDS) and Extensor Digitorium Communis
(EDC)

spatiotemporal maps of each sensory ensemble (Table 4.2, Figure 4.6). These maps show
very distinct patterns in both space and time for each of the fiber populations, across
movement in both subjects. While Ia activity precedes the grasping phase, Ib, and group
IT activity are maximal during the pulling phase, when the animal applies maximal force.
However, Ib activity shows sharp activations along the whole cervical enlargement, while
group II has long bursts of activity that span the entire duration of the pulling phase.
Furthermore, we performed a sensitivity analysis on the impact of muscle activation
predictions, by computing spinal maps with and without the term in muscle activation
terms (ko = 0, kpyr = 0, in Equation 4.2 and Equation 4.4, respectively). Figure 4.7
displays maps that are remarkably similar, confirming that the most important parameters
in NHPs Ia and II sensory firing rates are related to muscle stretch and stretch velocity.
However, although such an analysis is not possible for the Ib afferents, we know that
their firing rates uniquely depend on forces applied at the muscle, and thus they are more
likely to be affected by a poor estimation of the muscle activity. Finally, we computed
the total normalized proprioceptive sensory activity received by the cervical spinal cord,
by summing the normalized activities of each fiber type. The resulting spatiotemporal
map (Figure 4.8) shows how total proprioceptive inputs are conveyed in space and time
to the cervical spinal cord during three-dimensional reaching movements. Proprioceptive
activity first arises in the rostral segments, moves towards the caudal segments during
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grasp pre-shaping and finally peaks in both rostral and caudal segments during the pulling
phase. In particular, it is sustained for the entire duration of the motor bursts responsible
for the movement execution.
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Figure 4.7: Comparison of spatiotemporal maps of sensory inputs in the cervical spinal cord
for Ta- and II-type sensory activities computed by considering (top) and not considering
(bottom) the muscle activation component estimated using OpenSim.
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4.5 Discussion

We extended and validated a biomechanical model of the arm of Macaca fascicularis to
predict the firing rates of ensembles of proprioceptive afferents during three-dimensional
reaching and grasping.

4.5.1 A realistic primate arm model

We reworked a model of the rhesus monkey upper limb to fit the geometrical and
mechanical properties of the Macaca fascicularis arm. We dissected most of the muscles
of the arm, forearm and shoulder from a fascicularis arm specimen and extracted
parameters such as fiber and tendon lengths, as well as fiber volume for each of the
analyzed muscles, in order to refine and complement the initial model parametrization. As
was the case in the original model, the joint angle space was constrained to physiological
values. With forward dynamics, and with limited or de-activated (at the elbow and
shoulder flexions) reserve actuators, our model was able to faithfully reproduce the
recorded kinematics. This confirmed the quality of the skeletal model and its muscular
parametrization. However, when comparing the computed muscle activity with the
envelopes of the recorded EMG signals, we found a weaker correspondence. However,
quantitative discrepancies between simulated and recorded muscle activities are common
in biomechanical models ((Charles, Cappellari, and Hutchinson, 2018; Dzeladini et al.,
2014)). Since we compute muscle activities from joint kinematics, our model cannot
simulate the co-contraction of antagonist muscles (e.g. as occurs during stiffening of the
arm). Indeed, CMC follows an optimization strategy that solves the inverse biomechanical
problem by minimizing the sum of squared MTU activities, i.e. minimizing metabolic
energy consumption ((Anderson and Pandy, 2001)). This generates a solution that might
differ from the actual activation pattern, due to redundancy in muscle space. To bypass
this limitation, other groups have resorted to EMG-driven modeling, i.e. directly using
EMG recordings as inputs, instead of the result of an optimization algorithm ((Lloyd
and Besier, 2003; Sartori et al., 2018)). However, calibrating such models requires long
and specific protocols for each of the joints involved, protocols that are non-practical
when working with NHPs. Indeed, due to the necessity of replicating diverse tasks,
such studies have only been performed on human models, to the best of our knowledge.
Despite these limitations, our sensitivity analysis showed that the estimation of Ia and II
afferent firing rates remain unaffected by a poor estimation of muscle activation patterns,
while Ib afferents could be more affected by a poor quantitative match. However, we
believe that the qualitative results presented in this work remain pertinent. Indeed, the
simulated muscle activity dynamics and kinematics are overall similar to those yielded by
other investigations involving non-human primate upper limb models ((Chan and Moran,
2006)), strengthening our confidence in the validity of our approach ((Dzeladini et al.,
2014; Sreenivasa et al., 2016)). Furthermore, the biomechanical model presented here
constitutes a first step, and could later be embedded in a broader closed-loop simulation
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environment. The estimated sensory activity could be used to compute motoneuronal
activity, itself could be driving the evolution of arm kinematics, and in turn allow to
estimate an updated distribution of sensory activity. Such an approach may enable testing
for different hypotheses regarding the sensorimotor control of the upper limb.

4.5.2 Sensory afferent firing dynamics

The firing dynamics of primary sensory afferents during active functional movements
is a key information to study sensorimotor integration during voluntary movement
execution. Additionally, modern neuroprosthetic applications aiming at the recovery of
both motor ((Formento et al., 2018)) and sensory ((Bensmaia, 2015; Valle et al., 2018))
functions in patients affected by neurological disorders often seek to design biomimetic
stimulation protocols, with the underlying assumption that the most effective therapy
depends on reproducing the natural activity in primary sensory afferents as closely as
possible. For both these basic and translational applications, knowledge about the firing
dynamics of various types of afferent fibers during functional voluntary movements is
required. A sufficiently accurate computational model can be used to estimate these
firing rates during multi-joint movements in dynamic tasks. Such estimates can support
the interpretation of experimental data, as well as assist the design of neuroprosthetic
systems that aim at reproducing these firing rates. Towards this goal, we describe a
method to study sensory fiber ensembles from multiple muscles simultaneously during
voluntary movements. The results that we reported show the importance of studying
these signals during functional tasks. Indeed, when looking at the II and Ib afferent
firing rates, we notice that in the triceps, the II, Ib afferents are not directly correlated
with muscle activation (Figure 4.5). Ib afferents encode force information via tendon
elongation and are thus commonly expected to be active during muscle contraction and
consequent tendon elongation. However, during a multi-joint movement, active and
passive tendon elongation can also occur due to the contraction of antagonist muscles, or
gravity compensation. Therefore, large discrepancies from the expected firing patterns of
this fiber populations may emerge as a result of complex bio-mechanical interactions, as
it was likely the case in our simulations.

4.5.3 Spatiotemporal patterns of proprioceptive input to the cervical
spinal cord

We assumed that the proprioceptive afferents are distributed along the rostrocaudal
extent of the cervical spinal cord similarly to their homonymous motoneurons. Given the
well-known strong monosynaptic connectivity between muscle spindle Ia afferents and
motoneurons, this approximation seems reasonable ((Iles, 1976)). Using this assumption,
we estimated the spatiotemporal distribution of the proprioceptive input to the spinal
cord during arm movement. The total proprioceptive activity reaching the spinal cord
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Figure 4.8: Spinal map of combined estimated proprioceptive feedbacks of Mk-Sa, during
a standardized reaching and grasping task. The three identified phases present noticeably
different patterns of general afferent activity.

during movement is a combination of both spindle and Golgi tendon fibers activity. This
activity (Figure 4.8) arises in the form of clear bursts that span the spinal segments and
are sustained across the entire duration of movement whilst being strongly modulated.
This is in agreement with the well-known fact that the spinal cord receives large amounts
of neural inputs during movement, and that spinal circuits are continuously fed with
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information. Moreover, the neural input supplied by the different sensory fiber ensembles
present markedly distinct spatiotemporal patterns, suggesting that a stimulation-based
restoration of “proprioceptive” information and perception must target these three fiber
populations independently.

4.5.4 Insights for the design of neuroprosthetic systems

Our results offer important insights for at least two applications in neuroprosthetics. The
first important observation regards the distinct spatiotemporal patterns of each specific
fiber population. Modern biomimetic strategies that aim at restoring sensation ((Valle
et al., 2018)) employ electrical stimulation of the peripheral nerve to convey information
to the central nervous system of amputees. However, this technology does not allow
selectivity on fiber types ((Valle et al., 2018)) is particularly true for Ia and Ib fibers.
Indeed, these afferents have similar diameters and thus similar recruitment thresholds
making it challenging to independently control their firing rates. These fibers convey
complementary information about movement and force, and our simulations show that
they are active at markedly different moments during movement execution. This poses
important questions on the theoretical limitations of electrical stimulation technologies to
achieve realistic proprioceptive feedback in amputees. The second consideration concerns
technologies aiming at the stimulation of the spinal roots such as EES. When active,
electrical stimulation of a specific root will cancel the natural flow of information of each
recruited afferent and substitute it with the imposed stimulation frequency ((Formento
et al., 2018)). However spinal circuits require correct flow of sensory feedback to be
able to produce functional movements. Therefore, development of epidural stimulation
strategies of the spinal cord must take into account the spatiotemporal maps reported
in Figure 4.8. For instance, the T1 spinal roots is supposed to have no input activity
both at the beginning of reaching and at the end of the pulling phase. This means that
stimulation targeting that root in these periods should be avoided to prevent delivery of
aberrant proprioceptive information. Similar consideration can be made for the other
roots.

4.5.5 Model limitations

Our model is limited by the data available for primates. Morphometric measurements, as
well as live recordings, are scarce and scattered. The number of MTUs studied to obtain
the spatiotemporal maps should be extended when data regarding motor pool distributions
of additional muscles will be made available. Hence the reported spatiotemporal maps of
proprioceptive input are built using a limited set of arm and forearm muscles. Yet, the
actual proprioceptive input received by a spinal segment is the number of action potentials
per unit time entering that spinal segment via all the proprioceptive fibers running in
the corresponding dorsal root. However, the exact distribution of proprioceptive fiber
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ensembles in the dorsal roots remains to date surprisingly unknown. We thus limited our
analysis to the 5 MTUs shown in Figure 4.4, for which we could estimate the relative
proportions of fibers in the different spinal roots. We assigned identical weights to the
Ta-afferent pools of every represented MTU (see a;, , Equation 4.5). This is equivalent to
assuming that similar stretches and applied forces in these MTUs induce equal amounts of
proprioceptive input to the spinal cord. This assumption may not hold if large differences
in the absolute number of proprioceptive fibers exist between MTUs. The normalization
introduced in Equation 4.5 eases the interpretation of the spatiotemporal maps. Without

this term, the input sensory activity estimated using Equation 4.5 would be biased
Nrntu

towards those segments for which Z w;- is larger (e.g. C6 compared to C5) and the
i=0

temporal variations in the unfavored segments would have been obscured. In summary,

the spatiotemporal maps shown in Figure 4.7 and Figure 4.8 are best interpreted in terms

of normalized temporal variations of the combined proprioceptive input emerging from

the selected MTUs and received by individual segments, rather than actual amounts of

neural input expressed in impulses/sec.

Motion of the scapula is hard to track and was not incorporated in this study. This leads
to some errors in the kinematics and the muscle activity. In future, incorporating the
scapular motion will further improve the model’s power of estimating spatiotemporal
maps of the afferent activity in the spinal-cord.
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4.6 Conclusion

We presented a computational estimation of the spatiotemporal patterns of proprioceptive
sensory afferent activity during three-dimensional arm movements in a clinically relevant
animal model. We showed that the patterns of proprioceptive inputs during functional
movements are surprisingly complex and do not necessarily match intuition. Additionally,
we showed that different fiber populations have markedly distinct spatiotemporal patterns
of activity, highlighting the need of recruiting these populations independently to restore
the natural flow sensory information. Finally, our model can be integrated in a broader in-
silico platform to simulate the effect of electrical stimulation of the sensory afferents on arm
biomechanics, as well as support basic studies on sensory systems. These advancements
can thus reduce the number of animals involved in invasive experiments.
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Chapter 5

FARMS: Framework for Animal
Robot Modeling and Simulation

Overview

In the previous chapters we have seen how each of the three model organisms in experi-
mental settings have unique advantages and disadvantages. With computational models
we complemented the experimental paradigms by providing insights that are challenging
to measure directly in animals. In this chapter, we propose a novel framework that aims
to bring together diverse animal and robot studies in simulation. As such, FARMS could
help bridge the gap to connect the various works of researchers coming from different
fields, including biomechanics, neuroscience and robotics.
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5.1 Introduction

Animal movement is a result of the complex interactions between the body, the nervous
system, the sensory modalities, and the environment. Each of the sub-systems have
functional properties that emerge only when they interact with each other Dickinson,
2000. Studying individual components reveals only a part of the systems function. This
makes studying animal movement a challenging and inter-disciplinary scientific endeavor.

The method of science simply put involves the following steps. First, make a guess !

or construct an hypothesis, then compute the consequences based on the hypothesis
and finally test the consequences against experimental observations. If the experimental
observations do not match with the hypothesis then the hypothesis simply has to be
replaced. This rigorous process of making experimental verification’s and cross validations
makes scientific advances slow and laborious (Capogrosso and Lempka, 2020). The process
of making the initial guess is arduous. Once, the guess is made it is important to be able
to make testable predictions based on the original idea. As the system of interest gets
more complex, which is often the case in nature, computing testable predictions becomes
as hard as making the hypothesis if not more.

To test the validity of the hypothesis, we need to collect relevant data from animal exper-
iments. There are still several technical challenges associated with collecting animal data.
These challenges vary depending on the animal species we are taking about. For example,
we saw in chapter 3, in small animals such as Drosophila melanogaster, measuring ground
reaction forces during locomotion is currently not possible. Another fundamental compli-
cation that comes up with animal experiments are the ethical restrictions. Depending
on the animal, the ethical restrictions make data collection somewhere between hard to
impossible. All these challenges associated with animal experiments makes it extremely
important to be specific about the exact measurements needed to validate a hypothesis.
It is thus important to be able to adapt the predictions to comply with measurements
possible with the animal experiments.

Developing models based on existing understanding is an important way to systematically
address the process of generating hypothesis and predictions to validate and further
our understanding about animal movement. Models about animal movements can be of
two types. One, theoretical or mathematical models and second, robots that mimic the
behavior of animals. Both these approaches are essential to the field of studying animal
movement motor control. Since, robotics is relatively a new technology by itself, there
are several limitations associated to the replication of animal movements with robots.

Extending the meaning of theoretical or mathematical models we arrive at the idea of
computer simulations. Computer simulation models of animals to study movement can
be termed as neuromechanical simulations. A neuromechanical simulation integrates all

'The use of the word “guess” in this context is far more serious than the usual perception
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the fundamental blocks (as described in Figure 5.1) to reproduce animal movement. The
idea of using neuromechanical simulations to study animal movement is not new. In 90’s
Karl Sims showed that diverse animal morphology’s and locomotion behaviors can be
systematically evolved using genetic algorithms (Sims, 1994b; Sims, 1994a).

Currently, there is a strong need to contribute to the infrastructure of the neurome-
chanical simulation framework to further our understanding in animal motor control. A
neuromechanical simulation can be either be with a model of the animal or that of a
robot. The goal of this work is to setup an open-source modular framework that builds
on existing tools to further the development of neuromechanical models.

To this aim, we developed FARMS (A Framework for Animal and Robot Modeling and
Simulation). FARMS is a framework that is designed to be extendable and modular
throughout its implementation. For example, by writing simple wrapper functions a user
can integrate their favorite physics-engine to run with FARMS. The only requirement is
to follow the conventions defined by FARMS while writing these wrappers. In essence,
FARMS is a set principles upon which wrapper code is written to glue existing softwares.
If a certain functionality is unavailable, then an agnostic plugin is written to cater to the
need. For example, farms-network (used in chapter 3) to simulate sparse neural networks
can be used independently as well as integrated with FARMS.

The most important aspect of FARMS is the data standard. By following a functional
programming approach, we break down the neuromechanical simulation into modules that
operate on data. This allows us to make FARMS extensively modular. Not only that,
since data is saved throughout the simulation, it becomes natural and easy to catalog
experiments to be easily shared with the community.

In the remainder of this chapter, we first briefly present related works that are used for
neuromechanical simulations. Then, we define the core principles of FARMS in section 5.2.
Each of the core modules are then discussed in detail in the following sections. Finally,
we present some concluding remarks about the framework.
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5.2 Framework

FARMS is a modular framework written primarily in Python programming language,
where various components can be used independently to accustom user needs. It is focused
on reusing other available open-source projects wherever possible to take advantage and
contribute back to existing infrastructure. By definition a Framework refers to the basic
structure on top of which other things are built on. Establishing the fundamental structure
allows (i) researchers to define neuromechanical experiments, (ii) developers to extend
the functionality of existing framework, and (iii) share and exchange simulation results
with the community. Figure 5.2 establishes a common practice for modeling, simulating
and analyzing neuromechanical simulations of animals and robots for studying movement
control. According to FARMS framework, a neuromechanical simulation at top level can
be broken down into four components (Figure 5.2); (i) modeling, (ii) simulation, (iii)
analysis, and (iv) data being the bridge connecting the different components. Optimization
and learning algorithms form the layer above all this as they need to be able to manipulate
each component to produce the desired animal or robot movement.

e Modeling: Two basic necessities of any neuromechanical simulation are the descrip-
tions of a robot or animal model and the control law one is interested in exploring to
generate the movements. Modeling block covers the tools and aspects of generating
these sub-blocks.

e Simulation: Once both the model and control are described, the next step is to
be able to perform either a forward or inverse dynamics physics simulation with
the controller in the loop. Simulation involves integrating (i) a physics engine to
simulate articulated rigid bodies, interactions with the environment (land, water,
or water) and (ii) the control laws to compute the actions to generate movements.

e Analysis: Finally, during and at the end of a simulation it is important to monitor
the progress of an experiment. The analysis component deals with aspects of
performing post-processing data, visualizing and replaying simulation data, and
producing representations for scientific sharing and analysis.

e Data: At every step of the framework it is extremely important record and track
the information. This is performed by the data block. Each module can read and
write to the data block. This allows FARMS to be modular and the dependency
between blocks is now data and it can populated by any independent tool.

113



0on

lat

1mu

d Si

ing an

: Framework for Animal Robot Modeli

Chapter 5 FARMS

ONINHY3T LNIWIOHOINIFH

NOILYZINILdO

1sod || S0 NOLLYINNIS | Viva | uonduosaq Juewadx3 | | swewamnseapy
Il A I A A
__ _. @ m 140d m\w.m_On__z_
$J0qoJ 0} Jojsuel) ‘ssaUSNqos 9 Ajjiqejdepe ONI9OOT
‘uonepljen sisayjodAy ‘uosuedwoa [ewiue ‘uosepleA i
Yoleassy \MMWM afosnw adA-jiH Ay ._0«.m>>
synauo [eujds Eom:.._.ﬁwmnmxm 4o1eM uleus)
e > aidfmoEn uewe]
UOHBIIUNWIWIO: sadA} uoinaN
20uBI0S ‘Buliepual ‘sol 1y ‘sonauny YoeqAeld Iv¥N3AN MW_MFWMEOQ LA SN LNIANOHIANT
uolnesijensip NNy AyAno8UL0D
soweuAq esienuj suoistjod VAN3N mM“w%\}
“ ‘QINjOBJILOIE [01UOD Jo4u0D SjoBju0D BRI
‘salI0j08le] ‘S)ED ‘SPUBWILIOD JOJOW ‘SIOSUSS sAROIPBId PO . e
Bumold auyoBW B1B)S S108)U0D) suojowesed :
. Sputor
IVOISSY1D Sy saIpog pibry WOISSY10 AdOg
‘suue-juswow ajosnw ‘sishjeue Auanisuas ‘buLisjjiH Slosuss
Jsjjonuo) soisAyd NOILVNLOY 3IN3OS

Buissaooid-}sod

SISATVNY

NOLLVINNIS

ONIT3dON

SINHVA

Figure 5.2: FARMS Architecture
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5.3 Data

Data is the backbone of any numerical simulation. In FARMS, data block maintains and
records information at every step of the simulation process. The data block in FARMS
decouples the different steps in a neuromechanical simulation and makes FARMS a truly
modular framework. There are several other advantages from this approach. By recording
all the data, simulations become reproducible not only by the user but by the community.
Any one who has access to the shared data can simply read the information and recreate
the original experiment starting from modeling and until the analysis phase in any order.
Currently, FARMS uses Hierarchical Data Format (HDF5) to store and organize the
data. HDF5 format Application Programming Interface (API) for most of the common
programming languages.

5.4 Modeling

For neuromechanical simulation, an experiment can be described by the following minimum
elements: (i) Animal or robot bodies (In FARMS, we define body as an element that
represents “lifeless” physical model of an animal or robot), (ii) Control law and (iii)
the environment with which the animal or robot interacts. Modeling is often neglected
when the conversation is about neuromechanical simulations. But, modeling each of the
three elements is extremely important. Models need to be often modified when new
experimental data is available. Not only that, generating models is an iterative process
by itself. One can evaluate the model performance only after performing simulations.
Which implies that there is a strong necessity to be able rapidly reconfigure models when
the models in a simulation fail or do not agree with experimental data.

In FARMS, we regroup the three basic elements of an experiment description into scene
and control. Scene comprises of the physical elements, the animal or robot model and the
environment. Control defines the elements that decide how the physical elements move,
for example the nervous system.

5.4.1 Scene

A scene can comprise of one or more bodies, be it of animals, robots or both and
an environment in which they live in. Figure 5.3 shows an example of the different
components of a scene while modeling a Mouse.

Body

In FARMS, we treat modeling of a robot or animal to be the same. We primarily use
Blender Community, 2021 to develop and export bodies. Due to the modularity of the
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framework this not a constraint. A user can use any other tool of their comfort to generate
the necessary description files to setup the simulation. A body consists of the following
elements,

e Skin: An external covering that interacts with the environment. In classical robotic
simulations, a collision object can be considered as a skin. While modeling animals
skin becomes important and for robots skin is often the same as the skeleton. An
example for a robot with skin is described by Thandiackal et al. (2021), where the
water-proof suit would be considered as the skin.

e Skeleton: The structural links that defines and supports the entire body. A skeleton
is a collection of links that are described by their location and inertial elements

(mass, center-of-mass, inertia).

e Joints: The articulation of the body emerges from the definition of joints in the
body. They are define how any two links of a skeleton are allowed to move with
respect to each other.

e Muscles: Muscles are “special” actuators that apply forces on the skeleton. They
are defined by the locations at which they attach to the skeleton.

The information necessary to define the animal body and robot body are obtained
differently. Robots are designed by humans in Computer aided design (CAD) softwares
and are well defined. However, animal bodies are obtained usually from computerized
tomography (CT) or magnetic resonance imaging (MRI) scans. They are then exported
to CAD softwares. Thereon, an animal or a robot model is defined in the same way.

Environment

With FARMS, we aim to support different medias as environment. This includes land,
water, sand and air. Physics simulators are responsible to compute the interaction between
the bodies and the environment. Most simulators only support rigid bodies, meaning one
can only model land or rigid terrains. Some simulators support simplified hydrodynamic
environments where bodies can interact with water. With FARMS, we fill this gap by
developing physics simulator agnostic water, sand and air media using particle based
simulations. While modeling the environment it is thus necessary to define the type of

the medium and it’s properties.

5.4.2 Actuation

Once the bodies and the environment are defined, the next step is to model the actuation.
To study animal movement, several different control strategies are possible. The possible
actuation methods are (i) classical control and (ii) neural control.
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Figure 5.3: Scene modeling in FARMS with Blender. From left to right visualizes the
follwing elements of a Mouse body (i) skin, (ii) skeleton, joints and muscles, (iii) inertials
(inertia tensor, mass and center-of-mass)

Classical control methods include mainly come from control theory developed for robotics.
These include methods like inverse dynamics, state-machines and model predictive control
(MPC). From a modeling perspective, classical control mainly involves parameters that
are later used by the controller to determine actions.

Neural control is more oriented towards neural networks either inspired from biology
or machine learning techniques such as reinforcement learning. Modeling them involves
describing the type of neurons, their properties and their connectivity. Currently, there
is a lot of support for machine learning libraries and modeling them would mainly rely
on those existing libraries. For biological networks, we could broadly classify them
into spiking and non-spiking neural networks. For spiking networks, there are excellent
open-source libraries such as NEST (Gewaltig and Diesmann, 2007), Brian (Stimberg
et al., 2019) or Neuron (Hines and N. T. Carnevale, 1997). For sparse, non-spiking
networks there is no library to the best of our knowledge that allows for easy modeling
and simulation of locomotion networks. As part of FARMS, we developed a platform and
simulator agnostic sparse neural network simulator called farms-network. farms-network
provides commonly used neuron model types for locomotion circuits. The library can be
access at https://gitlab.com/farmsim/farms network. Figure 5.4 shows an example of
sparse locomtor network based on Simon M. Danner, Wilshin, et al. (2016) modeling and
visualized using the library developed as part of FARMS.
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Figure 5.4: Example of neural network generation and visualization in FARMS. The two
layered central pattern generator network is based on the computation model proposed
by Simon M. Danner, Wilshin, et al. (2016)

5.4.3 Import/Export

At the end of the modeling step all the necessary data that defines the elements of the
scene and actuation and written to the data block. Since, FARMS supports multiple
physics engines and control libraries, it is important export the bodies and actuation data
to relevant file formats that the respective libraries can process. For physics simulators,
there have been several standards coming mainly from the robots community to describe
the animal or robot bodies. URDF, SDF, MJCF, OSIM, WBT are some examples
file-formats support by the physics engines.

The role of the import/export component is to read the relevant information in the data
block and then generate the specific file-format necessary for the chosen physics simulator
and neural simulator by the user. If a user wishes, the necessary description files can be
generated independently of FARMS to directly continue to the simulation step.
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5.5 Simulation

Once the scene and the actuation methods are fully described, the next step is to perform
the numerical simulation. This step mainly involves performing forward simulation of the
animal or robot model by the rigid body physics simulator, depending on the current state
the controller then computes the necessary actuation signals to be fed back to the physics
simulator to advance to the next time step. These steps are repeatedly performed to
simulate the dynamics of an animal or robot with controller over time. FARMS provides
wrappers that help bridge modalities of the simulation block.

5.5.1 Physics

The physics engine is the core of a neuromechanical simulation. The common steps
performed by a physics engine are described by Geijtenbeek (2013) as:

e Collision detection checks if the body intersects with itself or other physical objects
in the scene.

o Forward dynamics simulations computes the linear and angular accelerations of
each simulated body.

e Numerical integration update positions, orientations and velocities of bodies, based
on the previously computed accelerations.

The steps outlined above only simulate the articulated rigid bodies and its interactions
with rigid terrain. Two important components are missing in the above formulation.

One, muscles are not commonly included as part of physics engines as most of the physics
are in practice built for robotics communities. As part of FARMS we built a platform
and simulator agnostic muscle library named farms-muscle (https://gitlab.com/farmsim/
farms muscle). farms-muscle implements several types of Hill-type muscle models at
various levels of abstractions in a computationally efficient manner.

Second, most physics engines do not commonly support any type of fluid or mixed media
environments. As part of FARMS we provide access to both phenomenological models
of fluid dynamics and more sophisticated fluid simulations based on Smoothed Particle
Hydrodynamics (SPH) methods (Ramachandran et al., 2021).

The choice of physics simulator is extremely important for stable simulations of the
specific experiment. And there are several simulators that employ different strategies to
perform three steps described above to perform the numerical simulation. The unique
prospective of FARMS is its ability to provide an interface to several of these simulators
with little or medium effort. Currently, FARMS uses Bullet (Erwin Coumans and Yunfei
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Bai, 2016) and MuJoCo (Todorov et al., 2012) as its primary physics simulators. For a
comprehensive review on physics simulators from robotics perspective refer to Collins
et al. (2021).

5.5.2 Sensors

At the end of time step of the numerical integration of the physics block, sensors
implemented in the FARMS framework interface collect the complete information of the
state of the simulation. This includes exteroceptive signals such as contact forces, ground
reaction forces and proprioceptive signals such as muscle spindle feedbacks, joint angles,

joint velocities.

5.5.3 Controller

Depending on the decisions made during the modeling phase, the simulation can either be
running classical control or a neural control. For either of these approaches, the controller
block will have complete access to the current state of the simulation through the sensors
block. The controller can compute the necessary actions in the following time step of the
simulation.

5.5.4 Actuators

The outputs of the controller block can be (i) muscle activation commands, (ii) desired
joint positions and velocities or (iii) desired joint torques. FARMS will ensure the correct
actuation is performed depending on the definitions of the body and control in the
modeling phase.

5.5.5 Logging

At each of the four stages described above, the complete state of the block at every time
step is logged into the data block. This ensures complete reproducibility of the simulation
at any point of time. Logging simulation data is extremely important for further analysis
and post-processing and this is seamlessly ensured by the FARMS framework.
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5.6 Analysis

At the end of a successful or an unsuccessful simulation, it is important analyze the
performance. Tools that help visualize and show data in a manner that allows for critical
analysis will be part of the FARMS analysis toolbox. The analysis block can be subdivided
into (i) post-processing, (ii) plotting, (iii) visualization and (iv) outreach. With the data
containing the complete model information and the simulation logs, the analysis block
can combine this information into useful ways to represent data for neuromechanical

simulations.

Plotting and visualization aspects are mainly performed using Blender (Community,
2021). This includes replaying the simulation by overlaying additional data computed
by the post-processing block to provide deeper insights to the researcher. High quality
visualization tools go a long way in helping researchers in understanding the extremely high
dimensional information gathered during the simulations. Figure 5.5 shows a snapshot of
pleurobot robot locomotion replay rendered in FARMS.

Figure 5.5: An example of Pleurobot robot visualized in Blender with contact forces and
center-of-mass
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5.7 Conclusion

In this work we presented a new framework for performing neuromechanical simulations of
animals and robots to study movement control. FARMS is a modular framework, where
various components can be used independently to accustom user needs. It is focused
on reusing other available open-source projects wherever possible to take advantage and
contribute back to existing infrastructure. We have discussed the different components of
the framework in-depth to provide the features and ability of FARMS.

FARMS is meant to serve as a platform which will facilitate the study of locomotion,
and will feature a range of tools to help design models with realistic dynamics, running
the controllers based on neuron models and for comparative studies between the animals
and/or robots. It would also support optimisation methods for parameter tuning and
3D visualisation for debugging and rendering high quality videos for publication. We
aim to make FARMS an open-source community-driven modular project in the future to
accustom to the current needs of the scientific community. As such, FARMS could help
bridge the gap to connect the various works of researchers coming from different fields,
including biomechanics, neuroscience and robotics.
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Conclusion

Studying control of animal movement is a complex, inter-disciplinary area of research.
Each animal model has it’s own advantage and disadvantage when it comes to performing
experiments to study them. The availability of experimental animal data has been a
big reason in this thesis which has driven me to work on three different animal models
while focusing on different aspects of the modeling, simulation and analysis in each
of these models. In this thesis, I studied three of the most important experimental
animal models for studying legged motion, namely Mus musculus (Mouse), Drosophila
melanogaster and Macaca fascicularis. In each of the model animals, we have explored the
musculoskeletal, feed-forward motor control and sensory components using computational
models in simulation. Figure 6.1 shows the areas of research focused in each chapter in
this thesis.

6.1 Mouse : Musculoskeletal model

Mice, due to the advent of molecular and genetic tools, have become an important animal
model for movement control. Due to their small size, recording muscle activity (EMGs)
from several, activity from afferent fibers, and ground reaction forces are challenging and
often unavailable. Today, we have some exciting tools such as DeepLabCut by Mathis,
Mamidanna, Kevin M. Cury, et al. (2018b) for markerless pose estimation. But due to the
large volume of soft-tissues in mice, it still remains extremely difficult to capture accurate
kinematics at the skeletal level in freely behaving animals. With the developed whole
body biomechanical model of the mouse we can now address a few of these experimental

shortcomings.

In chapter 2 we developed a whole body musculoskeletal model of the mouse. Mouse is
one of the most studied animal model for movement control. This ranges from studies
in reaching and grasping to quadrupedal and bipedal locomotion. Yet, there has been
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Figure 6.1: Overview of the focus of individual chapters in this thesis with respect to
neuromechanical control loop

no complete musculoskeletal model of the mouse. The model developed in this thesis
comprises of a fully articulated skeleton along with the musculature of both forelimbs and
hindlimbs. Due to it’s small size, experiments related to estimating properties for forelimb
musculature for musculoskeletal models have been limited. Using numerical optimization
techniques we estimated those missing properties to provide a basis for future models.
We then systematically explored the effects of the limb musculature on producing joint
torques. We showed there are several muscles in the mouse hindlimb and forelimb that
could have a zero-crossing of moment arms. Implying that the role of muscles of mouse
might have much more interesting roles during movement generation. By not assuming
a muscle functional role a-priori but rather infer them by computing their influence on
joints using the developed model has revealed that many muscles in the limb influence
more joints than what previous studies have shown. We also highlighted the range of
active and passive muscle forces in the mouse limbs through their complete ranges of
joint motion. Overall, the musculoskeletal model with limb musculature has provided a
platform to integrate available neural controllers to study complex locomotion behaviors
in in-silico. In future iterations of the model, addition of spinal muscles will further add
to the completeness the model.
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6.2 Drosophila melanogaster : Kinematic replay and feed-
forward locomotion

Drosophila melanogaster commonly known as a fruit-fly, is yet another important species
used in studying animal movement control. As model organisms, they have some very
unique advantages; they have shorter lifecycles, they are inexpensive and easy to reproduce,
availability of genetic tools for manipulation, and expression of diverse movement behaviors
with a relatively simpler nervous system (Jennings, 2011). Compared to a mouse, a
fruit-fly is around 30-50 times smaller. Making any kind of invasive or non-invasive
recordings poses a bigger technical challenge. With the bio-realistic model of the fruit-fly
developed in this thesis, we can now estimate internal and external forces of this model
organism.

In chapter 3, we developed a bio-realistic model of Drosophila melanogaster. Using the
model we setup a dialogue between the animal experiments and the developed model.
Using the model we first established a pipeline to transfer the kinematics of tethered
locomotion over a floating ball to the physics-based simulation model. While doing so,
we observed that for a faithful reconstruction of the joint motion it was necessary to
introduce a new degree-of-freedom in the limb than the conventionally identified degrees-
of-freedom in the literature. The updated model was then used to replay the recorded
kinematics with higher accuracy than before. By replaying the kinematics in a physics
environment, we could estimate the internal and external forces generated in the body
during the performed motion (locomotion and grooming). With this pipeline, we can now
make predictions on the possible motor neuron activity during locomotion or grooming
required to produce the necessary observed forces. Finally, we extended the model by
including antagonist muscles (Ekeberg, 1993b) driven by an open-loop neural oscillator
network (Central pattern generators). We hypothesized that there is a trade-off between
gait speed and static stability during locomotion and investigated the relationship using
multi-objective optimizations. From the results, we observed that the drosophila model
by preferentially using a tripod gait could perform a wide range of walking speeds and
at different static stability metrics. The convergence to a tripod gait was similar to the
observations in the previous simulation study in flies by (Ramdya et al., 2017b).

6.3 Macaca fascicularis : Sensory predictions

A big part of understanding movement control is to finally be able to perform interventions
in humans for rehabilitation and restoration of lost motor control. To this aim, genetically,
physiologically and behaviorally nonhuman primates (NHP) are the closest animal models
to humans (Harding, 2017).

Measuring activity of the sensory neurons in the dorsal root ganglion is important
for understanding motor control and also for techniques such as Epidural Electrical
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Stimulation (EES) for recovering lost motor behaviors. However, performing these
recordings presents formidable challenges in nonhuman primates. And currently infeasible
to do multi-fiber recordings of the same in humans. In chapter 4, we presented a
methodology to estimate spatiotemporal patterns of proprioceptive sensory afferent in
Macaca Fascicularis for reaching and grasping task by projected the estimated afferent
activity onto the spinal segments hosting their homonymous motor pools. With our
methodology we isolated the spatiotemporal maps into specific fiber components (Ia, II
and Ib). To our surprise, the spatiotemporal maps of sensory afferents were more complex
than what we had expected.

6.4 A framework for neuromechanical simulations

In chapter 5, we described a Framework for Animal and Robot Modeling and Simulation
(FARMS). FARMS is a collaborative outcome of the BioRobotics lab. It is a culminated
experience of developing diverse animal (Mouse, Drosophila Melanogaster and Macaca
Fascicularis developed in the thesis) and robot models. FARMS is a modular, open-
source framework that will facilitate the study of animal movement, and will feature
a range of tools to help design models with realistic dynamics, running the controllers
based on neuron models and for comparative studies between the animals and/or robots.
Data is the back bone of FARMS. It is what allows the modules of FARMS to be
independent. For example, one can easily switch between different physics engines
such as Bullet or Mujoco. By standardizing data, (i) we decentralize and modularize
components of neuromechanical simulations, (ii) we provide a stable platform for sharing
and reusing models, (iii) promoting more reproducible research. Finally, we as humans
are largely visual driven to build our intuition and draw inferences from our observations.
FARMS focuses on this aspect by providing state-of-the-art tools and methods to visualize
and represent data that will allow researchers to interpret their experimental data in
newer ways. As such, FARMS could help bridge the gap to connect the various works
of researchers coming from different fields, including biomechanics, neuroscience and
robotics

6.5 Challenges in performing animal simulations

Neuromechanical simulations are a promising tool to complement animal experiments
in many aspects as we have seen from the examples in this thesis. Since, it is a up and
coming tool there are still several fundamental challenges that need to addressed. As
we have seen in section 5.5, the core component of a neuromechanical simulation is the
numerical integration of rigid and soft body physics performed by the physics engines.
Most of the current physics have been built around the idea of simulating robots and not
animal models barring a few exceptions. And robots often are limited to small number of
degrees-of-freedom and comprises of well defined rigid body elements. In this thesis, while
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simulating the Mouse musculoskeletal model and the Drosophila melanogaster one of the
primary challenges was addressing the numerical stability of the physics engines due to
the extremely small size of the animals and their ability to produce large muscle forces
relative to their body size. Along with that models with high number degrees-of-freedom
are another concern as they increase the inaccuracy in the simulation and eventually lead
to instability. Moreover, when the animals interact with the environment, modeling the
contacts between the model and the environment becomes critical. Modeling contacts is
challenging and often makes the simulation stiff and again hard to numerically integrate
to perform forward simulations. Some of these problems can be partially addressed by
simulating the models at a lower integration time-step. This solution is only adequate till
a point where the simulations become so slow that are impractical to perform any kind
of optimizations. Some of these problems haven’t been addressed in the past because
of the lack of such complex models. By developing complex models we will be able to
systematically identify, report and then address them. FARMS, aims to provide the
platform for such community driven improvements to the field.

Once we simulate an animal model in-silico the immediate question is, how do we
validate our results?. With neuromechanical simulations we are predicting aspects of the
movement control that are difficult or even currently impossible to measure in animal
experiments. How does one then validate the observations from simulations? One method
is to build robots that can replicate these observations. Currently, the robotic technology
has limitations that make it a far fetched solution too. Another method is to rigorously
validate every aspect of the simulation that is experimentally measurable. Similar to the
methodology we described in validating the model of Macaca fascicularis. In the mouse
model study, we performed a detailed sensitivity analysis of all the muscle parameters.
The results from the analysis highlighted important parameters that need to be more
critically looked into. Cox et al. (2019) described a detailed methodology to estimate
and validate muscle parameters. Similar experimental studies in the mouse will aid in
validating the model developed in this thesis. For the Drosophila melanogaster model,
we were available to measure the animal kinematics during locomotion. We then used
that data to compare and predict aspects of the gait to further validate the model. The
need of the hour is collecting extensive amounts of experimental data from animals in
a systematic manner and sharing it with the community. And then with frameworks
such as FARMS, we could establish a better dialogue between animal experiments and
simulations.

6.6 Future work

There are so many exciting avenues to take using neuromechanical simulations to explore
control of animal movement. And the work we did during the thesis has been a great
experience to learn and contribute to the field of animal movement.
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Chapter 6 Conclusion

Due to the diversity of the problems tackled in this thesis, each chapter is an opportunity
to explore many more scientific questions. The idea of exploring the role of feed-forward
and sensory afferents in the producing movements is a key question to be explored in
each of the models organisms.

In chapter 2, we developed a whole body musculoskeletal model of the mouse. Currently
the musculoskeletal model has only limb musculature model. Due to the lack of experi-
mental data, forelimb muscle parameters were numerically optimized. This needs to be
validated by making experiments measurements in Mouse. Additionally, the model needs
to be extended by characterizing and adding spinal musculature as well. This allow us to
simulate the flexible bending of the spinal cord as well.

After the biomechanical analysis that we performed, the immediate next step is to connect
the model to the neural network. In the literature there are several neural models of
Mouse to study locomotion. Simon M. Danner, Wilshin, et al. (2016), Simon M Danner
et al. (2017), and Simon M. Danner, Zhang, et al. (2019) describe computational models
of neural circuits for quadrupedal locomotion based on available experimental data. These
circuits have already been implemented in the FARMS framework and the preliminary
results of coupling the circuits with the whole-body mouse model are showing promising
results. Extending, it would be to interesting to include the sensory feedbacks with the
circuits. This opens up a great number of open scientific questions on how to connect the
sensory feedbacks to the circuits as we know very little about it. Typically, locomotion
studies are limited to straight walking, both experimentally and in-silico. With the
3D model developed, we can now explore more complex locomotor problems such as
turning and navigation. The methodology developed in chapter 4 can be used with the
mouse model to estimate spatiotemporal maps of sensory afferents during locomotion and
reaching tasks. Combined with closed loop experiments this will allow us to expand our
understanding on the role of sensory feedbacks in modulating central pattern generators
in the spinal cord.

NeuroMechFly framework described in chapter 3 provides a basis for a large set of new
experiments. The immediate set questions to be explored are related to untethering the
fly and performing free locomotion over ground. Due to the flexibility of the framework,
we were able to already perform preliminary experiments in this direction with positive
results. To further improve the bio-realism of the fly model, the natural future step would
be to model the Hill-type muscles for the limbs. Soler et al. (2004) highlighted the limb
musculature of the fly using GFP markers and confocal microscopy. Using their work,
we can identify the attachments of the muscles on the exoskeleton. But, estimating the
muscle parameters still remains to be challenging. Once we do that, we can perform
a systematic and comprehensive biomechanical analysis of the fly; similar to the study
described in chapter 2.

With the powerful experimental toolkit available with the fly, one can perform targeted
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excitation or suppression of specific neural populations. By closing the gap between
the experiment and the simulation, in future we could perform real-time perturbations
in the fly based on the additional information we can gather using simulations and
simultaneously improve the simulation model with the new experimental data that is
being recorded. This would reduce the overhead time of years of effort to bridge the gap
between simulations and experiments.

The work described in chapter 4 was limited to only the upper-limb model of Macaca
fascicularis. In future, one should extend this to a full body musculoskeletal model like
we did with the mouse in chapter 2. With a whole body model of Macaca fascicularis
we could first perform a systematic biomechanical analysis as described in chapter 2.
Further, the model can be used to prepare spatiotemporal maps of both the motor neurons
pools and proprioceptive sensory afferents for locomotion. Such maps would be of great
significance in setting up controllers for epidural stimulation technologies in humans to
restore locomotion after spinal cord injuries.

FARMS in future could standardize how we perform neuromechanical simulations. By
setting up environments such as OpenAl gym for complex neuromechanical models in
FARMS, we could attract a large community of researchers from various disciplines.
Currently, FARMS is in a early stage of development. Once we make it open-source, like
many open-source projects the community could lead the development into avenues that
are hard to foresee. A long term goal with FARMS would be to use neuromechanical
simulations to train deep neural networks (DNNs). Currently, DNNs can generate
kinematics from markerless animal movement videos. The captured kinematics could
be fed into the simulations to replay the kinematics in a physics-based environment like
we showed in chapter 3. Then, the estimated proprioceptive and exteroceptive data can
be used to train the DNNs to learn them. At the end of the pipeline, we could hope
that one can estimate a feasible set of solutions of kinematics and kinetics from simple
experimental videos of animals locomoting.
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Appendix A

Supplementary Information : Mouse
BioMechanics

A.1 Hill-type muscle model

The force produced by the contractile and parallel elements was modeled as,

F= Fr(r)l(a(t)fl([m)fv(ﬁm) + fPE(Zm) + B{}m) (Al)

FT% is the maximum isometric force the muscle is capable of producing. a(t) is the muscle
activation. fl(ZNm) defines the force-length relationship curve during isometric contractions
with I, being the normalized muscle-fiber length. fu(Up,) defines the force-velocity
relationship curve during isotonic contractions with ¥, being the normalized muscle-fiber
length. Passive forces are generated in the muscle when stretched beyond a threshold
length, this is represented by the passive-force-length given by pr(Zm). B0y, represents
the additional damping in the muscle with 8 being the damping coefficient, set to 0.1 by
default.

The activation dynamics (a(t)) and passive-force-length (fpg) are described based on the
implementation from Opensim(Thelen, 2003).

da(t)  u(t) —a(t)
dt N Tact (AQ)

where u(t) is the neural-excitation input signal to the muscles bounded within a range of
0 and 1, and 74 is the time-constant (Note that we used a constant value for 74 instead
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of varying it as a function of u(t) and a(t) as described by Thelen (2003).

exp (/{pE(Zm — 1)/66”) -1

exp(kpp) — 1 (83)

fre(ln) =

The active-force-length (f;) and force-velocity (f,) relationships described below are based
on the description by De Groote et al. in (De Groote et al., 2016)

3 ~ 2
. 051 — bay)
fillym) = bijexp | —mmm—— A4

) ; ' bsi + bailm (A4

FolGm) = dy log [(dgf)m +d3) + /((datm + d3)? + 1))
+di (A5)

Since, the tendon is assumed to be rigid and inextensible, the force along the tendon (F)
equates to the force produced by the contractile element described in Equation A.1 as,

F; = F cos(a) (A.6)

A.2 Hindlimb muscle parameter scaling

Optimal muscle-fiber length (I7,) and muscle-tendon slack length (I7) were scaled from
Charles model (Charles, Cappellari, Spence, Wells, et al., 2016) (referred to as reference
model) to our model (referred to as target model). To do the scaling, we used the
algorithm proposed by Modenese et al. (2016), steps for which are described below,

e In the reference model, identify the N, degrees-of-freedom spanned by the muscle.
Discretize each joint into ng4,¢ poses to create a set of n = (ng, f)Nq possible joint

pose combinations.

e In the reference model, for each pose 1, 2, 3, ....n, compute a vector of pennation

angles (ayer), normalized muscle-fiber length (L, rer) and normalized muscle-tendon
lengths (Itmef)

132



Supplementary Information : Mouse BioMechanics Chapter A

Table A.1: Hill-type muscle model parameters

Activation dynamics Tact(s) 0.001
Active force-length by 0.815

by 1.055
b3y 0.162
by 0.063
b1 0.433
b 0.717
bso -0.030
b4 0.200
b 0.100
bos 1.00
bss 0.354
b3y 0.0
Active force-velocity di -0.318
ds -8.149
ds -0.374
dy 0.886
Passive force-length kpg 4.0
€0 0.600
Tendon force-length kr 35
C1 0.200
C2 0.995
C3 0.250
Damping 15} 0.100

e In the target model, for the same n poses, compute a vector of muscle-tendon
lengths (lmt,targ)

e Solve for muscle-tendon slack length [ in the target model by solving Equation A.7
using a least-squares like numerical method.

i8] 1L, cos(a) 1}

12, 12,cos(a) 2 o

"l H (A7)
I

. . . targ

e ] | Icos(a) I}

targ 4 ref

We solved Equation A.7 using the least squares method implemented in Scipy v1.70
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A.3 Muscle-tendon slack length estimation

Muscle-tendon slack length for the forelimb muscles were estimated based on the modified
algorithm proposed by Manal and Buchanan (2004).

For the purpose of estimating the muscle-tendon slack length, we consider the tendons
~ ~ l
to be elastic and non-rigid whose force-tendon length (f:(l;)) (with I, = Z—Z being the

t
normalized muscle-tendon length) characteristics are defined by the formulation by De
Groote et al. (2016) as,

ft(ZNt) = exp[k:T(it —c2)] —c3 (A.8)

Substituting Equation A.8 in Equation A.6,

ngft(it) = Fr?z(a(t)fl(im)fv(ﬁm)+
frE(ln) + Bim) (A9)

The total length of the muscle-tendon unit is,

Lt = L cos(a) + 1 (A.10)

Equation A.10 can be expressed in terms of normalized muscle-fiber length (I,,,) and
normalized tendon (I;) as,

Lt = 12, cos(a) + LIS (A.11)

From Equation A.11 [} can be written as,

Lt — l~ml$n cos(a)

Iy

15 = (A.12)

Considering a maximal activation (a(t) = 1.0) under isometric conditions (o, = 0.0),
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from Equation A.8, Equation A.9 and Equation A.12, [] can be written as,

crexplhr(ly — )] — e3 = (filly) + fre(lm)) cos(a) (A.13)
=2t (log[((f1(Im) + kaE(im)) cos(a) + c3)/c1]) (A.14)
T

Lt — lelfn cos(«)
ca + (10g[((fi(lm) + fre(lm)) cos(a) + c3)/c1]) /kr

15 = (A.15)

Here we uses the tendon force-length relationship formulated by De Groote et al. (2016)
instead of the one described by Manal and Buchanan (2004).

Given Iy, at L and knowing l9., we can compute tendon slack length [; from Equation A.15.
But, we do not know I, in practice. Manal et al. proposed to use numerical methods to
estimate l~m at short, long and mid range of l,,,; such that [ is to be a constant, which
was formulated as a minimization problem.

minimize [(lfl - 552)2 + (lfl - lfg)2 + (1292 - lfg)z]

subject to, Iy < 1.0

We extended this formulation by Manal and Buchanan (2004) for [} including the passive
forces (fpe(ly)) in Equation A.15s0 that we include the complete force-length curve for
estimation. The formalization described above is limited to the muscles’ relationship
with only a single degree-of-freedom. We extend this to all the degrees-of-freedom (ndof)
where the muscle has a significant moment-arm. This is done by estimating Ly at short,
long and mid range of [,,,; for each degree-of-freedom the muscle influences. The new
minimization problem is defined as,

ndof

minimize DI =122+ (5 - 13"+ (17 = 1)) (A.16)
n=1

subject to, 0.6 <l, <14 (A.17)

We used differential evolution, a stochastic population based optimization technique
implemented in Scipy v1.70 to minimize the objective in Equation A.16 for each muscle
in the forelimb. A population size of 20, maximum iterations of 1000 and relative and
absolute tolerances were set to 1e 0.
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Supplementary Figures and Tables

NeuroMechFly

Table B.1: Model body parts and degrees-of-freedom between each segment and its parent.

Degrees of
Body part Segment Parent freedom

AT1A2 Thorax 1
A3 ATA2 1
Abdomen | A4 A3 1
A5 A4 1
A6 A5 1
Head capsule Thorax 3
Eyes (x2) 0
Head Antennae (x2) Head 1
Rostrum 1
Haustellum Rostrum 1
Coxa (x6) Thorax 3
Trochanter /Femur (x6) | Coxa 2
Tibia (x6) Femur 1
Legs Tarsusl (x6) Tibia 1
Tarsus2 (x6) Tarsusl 1
Tarsus3 (x6) Tarsus2 1
Tarsus4 (x6) Tarsus3 1
Tarsus5-Claw (x6) Tarsus4 1
Halteres (x2) 3
Thorax Wings (x2) Thorax 3
Thorax - 0
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Table B.2: Matrix of p-values from pairwise comparisons of position errors after calculating
forward kinematics for walking. Numbers in bold (except in the case of identity) indicate
that the p-value > 0.001 (i.e., no statistical difference).

Base K Base & Base & Base & Base & Base & Base &
CTr roll | CTr yaw | FTi roll | FTi yaw | TiTa roll | TiTa yaw

Base 1.00 542¢-13 | 0.00 | 7.080-184 | 2.28¢-133 | 4.53¢-50 | 9.956-01 | 1.53¢-197
K 5.42¢-13 1.00 0.00 | 4486285 | 4.376-222 | 6.820-110 | 5.42-13 | 8.626-302
Base & 0.00 0.00 1.00 | 5.49¢-138 | 2.96e-189 |  0.00 0.00 1.57¢-126
CTr roll
Base & | 00 184 | 4.48¢-285 | 5.49¢-138 1.00 2.52¢-05 | 5.13e-45 | 7.83¢-184 | 5.38e-01
CTr yaw
Base & | 000133 | 4.370.222 | 2.960-189 | 2.520-05 1.00 8.33¢:22 | 2.44e-133 | 1.08¢-07
FTi roll
Base & | o050 | 6.820110 |  0.00 51345 | 8.330-22 1.00 453¢-50 | 6.050-52
FTi yaw
Base & 1 g 05001 | 542013 0.0 7.830-184 | 2.44¢-133 | 4.53¢-50 1.00 1.71e-197
TiTa roll
Base & | oo 107 | 8.630-302 | 1.57¢.126 | 5.38¢-01 | 1.08¢.07 | 6.05¢.52 | 1.71e-197 1.00
TiTa yaw

Table B.3: Matrix of p-values matrix from pairwise comparisons of position errors after
calculating forward kinematics for grooming. Numbers in bold (except in the case of
identity) indicate that the p-value > 0.001 (i.e., no statistical difference).

Base IK Base & Base & Base & Base & Base & Base &
CTr roll | CTr yaw | FTiroll | FTi yaw | TiTa roll | TiTa yaw

Base 1.00 | 4.34e-128 | 0.00 | 7.57¢-149 | 2.59¢-131 | 4.72¢-32 1.00 2.47¢-192
K 134e128 | 1.00 0.00 | 2.02e-01 | 1.00 | 430034 | 3.270-126 | 1.11e-07
Base &
P 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
Base & | 0 149 | 2.02¢-01 |  0.00 1.00 | 3.04e-01 | 2.56¢-45 | 8.05¢-147 | 1.08e-03
CTr yaw
Base & 1, 500131 | 1.00 000 | 3.04e-01 | 1.00 8.96¢-36 | 2.08¢-129 | 5.70e-07
FTi roll
Base & 1) 70039 | 430034 0.00 2.560-45 | 8.96¢-36 1.00 3.84e-31 | 4.86e-71
FTi yaw
Base & 1.00 | 3.27¢-126 |  0.00 | 8.05¢-147 | 2.08¢-129 | 3.84¢-31 1.00 4.85¢-190
TiTa roll
Base & 1y 170192 | 111007 000 | 1.08e-03 | 5.700-07 | 4.86e-71 | 4.85¢-190 1.00
TiTa yaw
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Table B.4: Fixed angles for body joints during kinematic replay and optimization.

Body part Joint le?geg;lgle Body part Joint le?ge;lgle
A1A2 0 Left haltere roll 0
A3 -15 Left haltere pitch 0
Abdomen A4 -15 Left haltere yaw 0
A5 -15 Right haltere roll 0
A6 -15 Right haltere pitch 0
Head capsule r(.>11 0 Thorax Right l.laltere yaw 0
Head capsule pitch 10 Left wing roll 90
Head capsule yaw 0 Left wing pitch 0
Head Left antenna 35 Left wing yaw -17
Right antenna -35 Right wing roll -90
Rostrum 90 Right wing pitch 0
Haustellum -60 Right wing yaw 17
Table B.5: Fixed angles for leg joints during optimization (deg).
Body Part | Side | ThC yaw | ThC pitch | ThC roll | CTr pitch | CTr roll FTi TiTa
Front Left 0 actuated 10 actuated 0 actuated | -39
Right 0 actuated -10 actuated 0 actuated | -39
Middle Left 7.45 -5 actuated actuated 0 actuated | -54
Right -7.45 -5 actuated actuated 0 actuated | -54
Hind Left 3.45 6.2 actuated actuated 0 actuated | -45
Right -3.45 6.2 actuated actuated 0 actuated | -45

Table B.6: Lower and upper limits for the muscle parameters during optimization.

Ay a B Y d
Body part Joint [Lower limit, [Lower limit, [Lower limit, | [Lower limit, | [Lower limit,
Upper limit] Upper limit]| Upper limit] | Upper limit] | Upper limit]
ThC pitch [0.0,0.47] 1x1070 5% 1077
Front leg | CTr pitch | [-2.0,—1.68] | [1x 10701 x 1077
FTi 1.31,2.05 1x1079 1 x1077
ThC pitch 2.18,2.01 1x107Y 5x 1077 _10 - _13
Middle leg | CTr pitch | [-2.14,—2.01] | [L x 10~ 7,1 x 107 [i i 18,9]’ [1.0,10.0] [1": 118,11]’
FTi [1.96,2.22] 1x107Y 1 x1077
ThC pitch | [2.69,2.53] 1x1077,5x 1077
Hind leg | CTr pitch | [-2.14,—1.55] | [1 x 10710, 1 x 1077
FTi [1.43,2.26] 1x107W 1 %1077
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B.1 Supplementary Figures

A Front legs

1.01 * NeuroMechFly

0.6

04 T

Leg segment length (m

0.2 ?

0.0

Coxa Femur Tibia Tarsus Coxa Femur Tibia Tarsus Coxa Femur Tibia Tarsus

Front Leg Middle Leg Hind Leg

Figure B.1: Leg segment lengths for real female Drosophila melanogaster and NeuroMechFly.
(A) Legs were dissected, straightened, and fixed onto a glass slide for measurements. Scale bar is 0.5mm.
(B) The lengths of leg segments from 1-3 dpe animals (pink) and NeuroMechFly (red) are shown. Violin

plots indicate median, upper, and lower quartiles.
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Figure B.2: The position error for every joint in the distal leg during walking as a function
of kinematic chain configuration. Body-length normalized mean absolute errors (MAE) comparing
measured 3D poses and angle-derived joint positions during walking. Errors are compared among different
DoF configurations for (A) Coxa-Trochanter joints, (B) Femur-Tibia joints, (C) Tibia-Tarsus joints, and
(D) Claw positions. For each condition, n = 2400 samples were computed across all six legs from 4s of
100 Hz video data. Data for each leg are color-coded. ‘R’ and ‘L’ indicate right and left legs, respectively.
‘F’, ‘M’, and ‘H’ indicate front, middle, and hind legs, respectively. Violin plots indicate median, upper,
and lower quartiles (dashed lines). Results from adding a coxa-trochanter roll DoF to based DoFs are

highlighted in light gray.
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Figure B.3: The position error for every joint in the distal leg during grooming as a function
of kinematic chain configuration. Body-length normalized mean absolute errors (MAE) comparing
measured 3D poses and angle-derived joint positions during grooming. Errors are compared among
different DoF configurations for (A) Coxa-Trochanter joints, (B) Femur-Tibia joints, (C) Tibia-Tarsus
joints, and (D) Claw positions. For each condition, n = 2400 samples were computed across all six legs
from 4s of 100 Hz video data. Data for each leg are color-coded. ‘R’ and ‘L’ indicate right and left legs,
respectively. ‘F’, ‘M’; and ‘H’ indicate front, middle, and hind legs, respectively. Violin plots indicate
median, upper, and lower quartiles (dashed lines). Results from adding a coxa-trochanter roll DoF to

based DoFs are highlighted in light gray.
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A Cumulative MSE of joint angles w.r.t. Kp and Kp B cumulative MSE of joint velocities w.r.t. Ke and Kp
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Figure B.4: Mean squared error between tracked and simulated joint positions and velocities

as a function of position and velocity gain values. MSE of (A) joint angles and (B) joint velocities

as a function of derivative (Kg4) and positional gain (Kj). Selected K, and K, values are indicated in

blue. White areas indicate K, and K4 pairs rendering the simulation nonfunctional.
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Figure B.5: Sensitivity of estimated joint torques and contact forces to proportional and
derivative gains. (A) Estimated torques during forward walking as a function of proportional gain
(Kp). The derivative gain (Ky) is fixed at 0.9. Shown are measurements of ThC pitch torques for the
right legs. Measurements for the contralateral legs were nearly symmetrically identical and are not shown.
(B) Contact force measurements of the right legs during forward walking as a function of K, values.
Results from the selected K, and K4 values are shown in red. (C) Estimated torques during forward
walking as a function of derivative gain (Kg4). The proportional gain (Kj) is fixed at 0.4. Shown are
measurements of ThC pitch torques for the right legs. Measurements for the contralateral legs were
nearly symmetrically identical and are not shown. (D) Contact force measurements of the right legs
during forward walking as a function of K4. Results from the selected K, and K, values are shown in
red.
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A Thcroll= B

ThC yaw/
CTr roll—

Figure B.6: Leg joint degrees-of-freedom and their rotational axes. Each leg is composed of 11
hinge joints. Joints with more than one DoF were modeled as a union of multiple hinge joints. The left
foreleg observed from (A) front and (B) side views. The global coordinate system’s x, y, and z axes are

red, green, and blue, respectively.

Figure B.7: The ‘zero pose’ of NeuroMechFly. Each body segment (Table B.1) is aggregated
using hinge joints. Rotational axes of joints are shown. (A) Zero pose from (A) front and (B) side

views. The global coordinate system’s x, y, and z axes are shown (red, green, and blue, respectively).
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Figure B.8: Sensitivity of simulated spherical treadmill rotation prediction accuracy during
tethered walking to ERP and CFM constraint parameters. Spherical treadmill rotational
velocities resulting from Kinematic Replay of walking depend on simulation constraint parameters. Shown
are Spearman correlation coefficients computed between measured and estimated treadmill rotational
velocities for (A) forward, (B) lateral, and (C) yaw axes when varying the simulation’s error reduction
parameter (ERP), and the constraint force mixing (CFM). (D) The best combination of ERP and
CFM—0.1 and 3, respectively (black outline)—was selected through a normalized weighted sum (NWS)
of the correlation coeflicients for each axis.
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Figure B.9: Comparing real to simulated spherical treadmill rotational velocities during

tethered walking. Spherical treadmill rotations depend on a tethered fly’s (A) inclination (®, green), (B)

lateral, and (C) longitudinal positions with respect to the ball (green outlines). These positions (orange

dots) were automatically detected and recreated in the simulation. Rotational velocities of the spherical

treadmill generated by three real flies (blue) were compared with those generated by NeuroMechFly

(orange) for (D) forward, (E) lateral, and (F) yaw axes. Spearman correlation coefficients (p) comparing

blue and orange traces are indicated.
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Figure B.10: Comparing real and simulation predictions for gait diagrams during tethered
walking. Gait diagrams showing manually-annotated stance phases for three real flies (A-C, gold) as
well as those obtained from estimated ground reaction forces in NeuroMechFly (blue). Percentage of
overlap in real and simulated stance phases (green) is quantified. ‘R’ and ‘L’ indicate right and left legs,

respectively. ‘F’, ‘M’; and ‘H’ indicate front, middle, and hind legs, respectively.
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Figure B.11: The impact of the morphological realism on estimates of leg-leg and leg-

antenna contact during grooming. Collision diagrams from kinematic replay of foreleg/antennal

grooming when using either (A) NeuroMechFly’s morphologically detailed legs and antennae, or after

replacing its (B) forelegs, or (C) forelegs and antennae with simple cylinders, as in a conventional stick

skeletal model.
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Figure B.12: Comparison of walking paths and velocities for real tethered walking versus
kinematic replay in a tethered or untethered model. Leg kinematics from a tethered walking
experiment (blue) were used for kinematic replay in NeuroMechFly either tethered on a simulated
spherical treadmill (orange) or freely walking on flat ground (green). Shown are resulting (A) integrated

walking paths, as well as associated (B) forward, (C) lateral, and (D) yaw velocities.
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Figure B.13: Measured joint angles during real forward walking. Joint angles for the (A)
left and (B) right legs measured from a real fly during forward walking. Only the three DoFs with the
highest amplitudes (solid lines) were controlled during optimization. These were: for the front legs: ThC
pitch, CTr pitch, and FTi pitch; for the middle and hind legs: ThC roll, CTr pitch, and FTi pitch DoFs.
The remaining four DoFs (dashed lines) for each leg did not exhibit pronounced angular changes and

were fixed to their mean values during optimization.
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Figure B.14: Objectives, penalties, and individual solutions over generations when opti-
mizing for fast and statically stable tethered walking. (A) Pareto front approximations for six
optimization generations. Later generations are more negative because the optimizer aims to minimize the
distance and stability objective functions, whose signs are inverted. Four individual solutions dominated
by the pareto optimal solutions were selected for more in-depth analysis (10th (purple), 20th (blue),
30th (green), and 50th (dark red); all are outlined in black). (B) Gait diagrams from selected solutions.
Stance (black) and swing (white) phases were calculated by reading-out tarsal ground contacts for each
leg. Indicated are the velocities of each solution as calculated by averaging the spherical treadmill forward
velocity. (C) Progression of weighted objective values (shown without sign inversion) and penalties over
the course of 60 generations. Objectives (distance and stability coefficients) increase across generations,
while penalties decrease or converge to, or near, zero. The objective distance (mm) is the distance
traveled in 2 s. The penalty duty factor is the number of legs violating the duty factor constraint. The

remaining penalties are shown in Arbitrary Units.
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B.2 Supplementary Videos

Video 1: Constructing a data-driven biomechanical model of adult Drosophila.
An adult female fly is encased in resin for x-ray microtomography. The resulting x-ray
microtomography data reveals cuticle, muscles, nervous tissues, and internal organs. These
data are thresholded to separate the foreground from background. Then the exoskeleton
is voxelized into a 3-dimensional polygon mesh. Articulated body segments are separated
from one another and then reassembled into a natural pose. Bones are added and rigged
to permit actuation. Finally, textures are added to the model for visualization purposes.
https://www.dropbox.com/s/pkbh4081bdomx1x/Videol.mov?dl=0

Video 2: Visualization of possible additional leg degrees-of-freedom. Neu-
roMechFly’s left-middle leg is sequentially actuated along DoFs that are later analyzed to
test their requirement for accurate replay of real fly leg kinematics. The articulated joint
(e.g., ‘CTr’) and type of movement (‘roll’) are indicated.
https://www.dropbox.com/s/8uhi9cyzhdntyd4 /Video2.mov?dl=0

Video 3: The effect of additional degrees-of-freedom on the accuracy of
replaying forward walking. Measured 3D poses (solid lines) and forward kinematic
replay (dashed lines) for forward walking. Forward kinematics are determined either
(top-left) using no additional degrees-of-freedom (Base DoF, dot product), (top-middle)
instead using inverse kinematics to optimize joint angles and minimize error with only
base degrees-of-freedom (Base DoF, inverse kinematics), or (top-right and bottom
row) by adding a single new DoF (BaseDoF & ‘joint’ ‘DoF”). Legs are color-coded.
https://www.dropbox.com/s/3f23rdpvz70s640/Video3.mov?dl=0

Video 4: The effect of additional degrees-of-freedom on the accuracy of
replaying foreleg/antennal grooming. Measured 3D poses (solid lines) and forward
kinematic replay (dashed lines) for foreleg/antennal grooming. Forward kinematics are
determined either (top-left) using no additional degrees-of-freedom (Base DoF, dot
product), (top-middle) instead using inverse kinematics to optimize joint angles and
minimize error with only base degrees-of-freedom (Base DoF, inverse kinematics), or
(top-right and bottom row) by adding a single new DoF (BaseDoF & ‘joint’ ‘DoF”’).
Legs are color-coded.

https://www.dropbox.com /s/zv860h9ic2r8li2 /Video4d.mov?dl=0

Video 5: Kinematic replay of Drosophila forward walking using NeuroMechFly.
(top-left, ‘Raw data’) A tethered adult fly is shown walking on a spherical treadmill.
One of six synchronized camera views is shown. Data are replayed at 0.2x real time.
(bottom-left, ‘2D tracking’) 2D poses (filled circles) and connecting ‘bones’ (lines) are
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superimposed for the proximal three legs. (bottom-right, ‘3D reconstruction’) These
six 2D poses are triangulated to obtain 3D poses. Overlaid are triangulated 3D poses
(solid lines) and 3D poses obtained by solving forward kinematics from joint angles (dashed
lines). (top-right, ‘Kinematic replay’) These 3D joint angles actuate NeuroMechFly
leg movements while it walks on a simulated spherical treadmill. Tarsal contacts with the
ground are indicated (green). Estimated ground reaction force vectors for the proximal
three legs are superimposed on the original video data (top-left).

https://www.dropbox.com/s/iieuwgmx8bazzmd /Video5.mov?dl=0

Video 6: Kinematic replay of Drosophila foreleg/antennal grooming using
NeuroMechFly. (top-left, ‘Raw data’) A tethered adult fly is shown grooming on a
spherical treadmill. One of six synchronized camera views is shown. Data are replayed at
0.2x real time. (bottom-left, ‘2D tracking’) 2D poses (filled circles) and connecting
‘bones’ (lines) are superimposed for the proximal three legs. (bottom-right, ‘3D
reconstruction’) These six 2D poses are triangulated to obtain 3D poses. Overlaid are
triangulated 3D poses (solid lines) and 3D poses obtained by solving forward kinematics
from joint angles (dashed lines). (top-right, ‘Kinematic replay’) These joint angles
actuate NeuroMechFly leg movements while it grooms on a simulated spherical treadmill.
Leg segments and antennal collisions are indicated (green). Estimated collision force
vectors for the front legs and antennae are subsequently superimposed on the original
video data (top-left).
https://www.dropbox.com/s/m3j6wievzenhfkn/Video6.mov?dl=0

Video 7: The influence of leg and antenna morphological detail on collision
predictions. (top-left, ‘Raw data’) Real fly grooming as recorded from the front
camera. (top-right, ‘NeuroMechFly’) NeuroMechFly performing kinematic replay
of grooming. (bottom-left, ‘Stick model legs’) NeuroMechFly with stick legs but
detailed antennae. (bottom-right, ‘Stick model legs and antennae’) NeuroMechFly
with stick legs and stick antennae.
https://www.dropbox.com/s/7wpnf2a8s4pzi65/Video7.mov?dl=0

Video 8: Kinematic replay of tethered Drosophila forward walking using Neu-
roMechFly on flat terrain without body support. (Right) Pose estimates obtained
from a real tethered fly walking on a spherical treadmill are replayed in NeuroMechFly as
it walks untethered on flat terrain without body support. (Left) Integrated paths are
shown for tethered (orange) and flat ground (green) scenarios.
https://www.dropbox.com/s/e7qvz4tmlexhefl /Video8.mov?dl=0

Video 9: Forward walking across optimization generations. Forward walking for
four solutions shown across optimization generations 15, 30, 45 and 60. Tarsal contacts
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with the ground are indicated (green). Videos are replayed at 0.1x real time. Solutions
shown are: (top-left) a random individual, (top-right) the fastest individual (i.e., with the
longest distance traveled), (bottom-left) the most stable individual, and (bottom-right)
the best trade-off achieving both high speed and static stability.
https://www.dropbox.com /s /lizgd3ss2yftlxb/Video9.mov?dl=0

Video 10: Replaying real tethered walking kinematics on flat terrain and
applying external perturbations. Pose estimates obtained from a real tethered fly
walking on a spherical treadmill are replayed in NeuroMechFly as it walks untethered
on flat terrain without body support. Simulated spheres are projected at the model to
illustrate perturbations and the possibility of using more complex physical environments
in PyBullet.

https://www.dropbox.com/s/ae6zrejhddwduun /Video10.mov?dl=0

B.3 Code and data availability

Data are available at:

https://doi.org/10.7910/DVN/Y3TAEC

Code, and documentation are available at:
https://github.com/NeLy-EPFL/NeuroMechFly
https://nely-epfl.github.io/NeuroMechFly
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degrees-of-freedom.
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Appendix C

Supplementary Information :
Non-human Primate

C.1 Muscle spindle and golgi tendon model equations

The equations (4.2), (4.3), and (4.4), in numerical form, were:

f1a = max {0, 4.3 * sign (UM) ‘UM‘O'G +2 (lM — lé\gt) + 50a + 20}

F]\/[
fIb = maw{o, 333FT} (A2)

max

fir = max{0, 13.5 (" —1)}) +20a + 10} (A3)
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