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Abstract

The presence of aerodynamic vortices is widespread in nature. They can be found at
small scales near the wing tip of flying insects or at bigger scale in the form of hurricanes,
cyclones or even galaxies. They are identified as coherent regions of high vorticity
where the flow is locally dominated by rotation over strain. A better comprehension of
vortex dynamics has a great potential to increase aerodynamic performances of moving
vehicles, such as drones or autonomous underwater vehicles. The vortical structures
that form as a result of the interaction between an object and a flow stream are not all
the same. An accelerated flat plate, a pitching airfoil or a jet flow ejected from a nozzle
give rise to the formation of a primary vortex, followed by the shedding of smaller
secondary vortices. The difference between primary and secondary vortices led us to
experimentally study the growth, timing and trajectory of vortices generated from a
rectangular flat plate that is rotated around its centre location in a quiescent fluid. We
systematically vary the rotational speed of the plate to get a chord based Reynolds
number Re that ranges from 800 to 12 000. We identify the critical Reynolds number for
the occurrence of secondary vortices to be at 2500.

The timing of the formation of the primary vortex is Re independent but is affected
by the plate’s dimensions. The circulation of the primary vortex increases with the
dimensionless convective time, which is the angular position « of the plate, until the
angular position oy = 30° is reached. Increasing the thickness and decreasing the chord
lead to a longer growth of the primary vortex. As a consequence, the primary vortex
reaches a higher dimensionless limit strength. We define a new dimensionless time 7™
based on the thickness of the plate to scale the age of the primary vortex. The primary
vortex stops growing when 7™ ~ 10, regardless of the dimensions of the plate. We
consider this value to be the vortex formation number T of the primary vortex generated
from a rectangular flat plate that rotates with a speed resulting in a Reynolds number
in the range from 800 to 12000. When a > «y, the circulation released in the flow is
entrained into the first secondary vortex for Re > 2500. The circulation of all secondary
vortices is approximately 4 to 5 times smaller than the circulation of the primary vortex.
The time interval between the release of successive vortices is not constant during the
rotation but increases the more secondary vortices have been previously released.

We present a modified version of the Kaden spiral that accurately predicts the shear
layer evolution and the trajectory of primary and secondary vortices during the entire
rotation of the plate. We model the timing dynamics of secondary vortices with a



Abstract

power law equation that depends on two distinct parameter: x and ag. The parameter
X indicates the relative increase in o between the convective timing of successive
secondary vortices The parameter o indicates the angular position at which the primary
vortex stops growing and pinches-off from the plate. We also observe that the total
circulation released in the flow is proportional to o!'/3, as predicted by the inviscid
theory. The combination of the power law equation with the total circulation computed
from inviscid theory predict the strength of primary and secondary vortices, based
purely on the plate’s geometry and kinematics. The strength prediction is confirmed by
experimental measurements.

In this thesis we provided a valuable insight into the growth, timing and trajectory of
primary and secondary vortices generated by a rotating flat plate. Future work should
be directed towards more complex object geometries and kinematics, to confirm the
validity of the modified Kaden spiral and explore the influence on the formation number.

Key words: Shear layer roll-up, primary vortex, vortex pinch-off, secondary vortices,
vortex shedding, PIV
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Sommario

La presenza dei vortici € ampiamente diffusa in natura. Si possono trovare piccoli vortici
nelle estremita delle ali di insetti oppure si possono osservare vortici giganteschi nella
forma di uragani o cicloni. Persino le enormi galassie dello spazio profondo possono
essere viste come degli enormi vortici. Possiamo definire i vortici come regioni in cui la
vorticita & estramente elavata e dove il flusso e prevalentamente rotatorio. Una migliore
comprensione della dinamica dei vortici porterebbe a miglioramenti aerodinamici di
veicoli come ad esampio droni o sottomarini a guida automatica. I vortici che si formano
come risultato dell’interazione tra un oggetto e la corrente circostante non sono tutti
uguali. Una piastra che accellera, un profilo alare che ruota o un getto di fluido espulso
da un ugello formano un vortice primario che e seguito dal rilascio di vortici secondari
piu piccoli. La differenza tra vortici primari e secondari ci ha motivato a studiare
sperimentalmente la crescita, le tempistiche e la traiettoria dei vortici generati da una
piastra piatta rettangolare che viene ruotata intorno alla sua posizione centrale in un
fluido quiescente. Abbiamo sistematicamente variato la velocita di rotazione della
piastra per ottenere un numero di Reynolds Re che varia da 800 a 12000. Abbiamo
identificato il numero di Reynolds critico per la comparsa di vortici secondari a 2500.

Il tempo di formazione del vortice primario e indipendente da Re ma e influenzato dalle
dimensioni della piastra. La circuitazione del vortice primario aumenta con il tempo
convettivo adimensionale, che corrisponde alla posizione angolare « della piastra, fino
a quando la piastra non raggiunge la posizione angolare oy = 30°. Aumentando lo
spessore e diminuendo la corda si ottiene una crescita pitt lunga del vortice primario.
Di conseguenza, il vortice primario raggiunge una forza limite adimensionale pit alta.
Definiamo un nuovo tempo adimensionale 7, basato sullo spessore della piastra, per
scalare il tempo di formazione del vortice primario. Il vortice primario smette di crescere
quando 7™ ~ 10, indipendentemente dalle dimensioni della piastra. Consideriamo
questo valore come il numero di formazione del vortice 7" del vortice primario generato
da una piastra piatta rettangolare che ruota con una velocita risultante in un numero di
Reynolds che varia da 800 a 12 000. Quando o« > «y, la circuitazione rilasciata nel flusso
viene trascinata nel primo vortice secondario per Re > 2500. La circuitazione di tutti i
vortici secondari € approssimativamente da 4 a 5 volte piti piccola della circuitazione
del vortice primario. L'intervallo di tempo tra il rilascio di successivi vortici secondari
non & costante durante la rotazione ma aumenta quanto piti vortici secondari sono stati

precedentemente rilasciati.
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Sommario

Presentiamo una versione modificata della spirale di Kaden che predice accuratamente
’evoluzione dello strato di taglio e la traiettoria dei vortici primari e secondari durante
l'intera rotazione della piastra. Modelliamo la dinamica temporale dei vortici secondari
con una di legge di potenza che dipende da due parametri distinti: x e o. Il parametro
x indica I'aumento relativo di « tra i tempi di rilascio di successivi vortici secondari. Il
parametro «g indica la posizione angolare in cui il vortice primario smette di crescere e
si stacca dalla piastra. Osserviamo anche che la circuitazione totale rilasciata nel flusso &
proporzionale a '/3, come previsto dalla teoria inviscida. La combinazione della legge
di potenza con la circuitazione totale calcolata dalla teoria inviscida predice la forza dei
vortici primari e secondari, basandosi puramente sulla geometria e la cinematica della
piastra. La previsione della forza dei vortici € confermata da misure sperimentali.

In questa tesi abbiamo fornito un’importante comprensione della crescita, delle temp-
istiche e della traiettoria dei vortici primari e secondari generati da una piastra piatta
in rotazione. Il lavoro futuro sara diretto verso geometrie e cinematiche di oggetti pitt
complessi, per confermare la validita della spirale di Kaden modificata ed esplorare

I'influenza sul numero di formazione.

Parole chiave: Shear layer roll-up, primary vortex, vortex pinch-off, secondary vortices,
vortex shedding, PIV
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Chapter 1

Introduction

1.1 Welcome to the world of vortex dynamics

The idea of a vortex is generally associated with a mass of fluid that rotates around
an axis. The most intuitive example of a vortex is probably the whirlpool that forms
when removing the cap from a bathtub filled with water. The same phenomenon can
also be observed in tight sea channels when eddies interact with the surrounding land
(Figure 1.1a) or when the river flow encounters the obstacle of a downstream dam.
We can find many other examples of vortices at different scales. At small scales, the
formation of vortices on the leading edge of a wing can explain how insects (Figure 1.1b),
such as dragonflies or bumblebees, support their weight during hovering [127, 12]. A
nectar feeding bat exploits leading-edge vortices to increase the lift during forward
flight [99]. Aerodynamic and aeronautic engineering applications often require to study
the formation of vortices at various scales. For instance, the study of wingtip vortices
detaching from the wings of airplanes (Figure 1.1c) is fundamental to minimize the
induced drag and reduce wake turbulence. At bigger scales, hurricanes and cyclones
(Figure 1.1d) form in particular regions of the Earth devastating everything they meet
on their path. This happened when Hurricane Dolly in 2008 made landfall in southern
Texas, when the internal vortex dynamics strongly contributed to a rapid intensification
of the hurricane strength [64]. We can also observe vortical structures outside the Earth.
The Great Red Spot on Jupiter is an example of an extraterrestrial massive vortex that
is bigger than the entire Earth (Figure 1.1e). Similar to its companion, Saturn exhibits
every Saturn year, about 28 Earth years, a short-lived massive vortex called Great White
Spot. Spiral galaxies, like the NG(C4622 that is located 111 million light-years away
in the constellation Centaurus, looks like an axisymmetric circular vortex that rotates
around its bright centre (Figure 1.1f). The peculiar thing among the previous examples
is that the vortices have all a similar shape, which suggests that vortex dynamics can be

applied in many different fields of research.



Chapter 1. Introduction

Figure 1.1: (a) Picture of a boat approaching a whirlpool in the Naruto Strait, a channel
in Japan between Tokushima and Awaji Islands. (b) Vortices shed from a flying fruit
fly. The flow visualization is realised with schlieren imaging by dispersing glycerol
vapour in the air [18]. Credit: Irmgard Bischofberger, MIT, USA. (c) Wing tip vortices
observed in the wake of an airplane. (d) Slow and lumbering Hurricane Florence churns
across the Atlantic Ocean on the morning of September 12, 2018. Credit: courtesy of
NASA. (e) A view of Jupiter and the Great Red Spot. The white oval storm directly
below the Great Red Spot has the approximate diameter of Earth. Credit: courtesy of
NASA. (f) Photograph of galaxy NG (C4622 taken in May 2001 with Hubble’s Wide Field
Planetary Camera 2. This galaxy is a rare example of a spiral galaxy with arms pointing
in opposite directions. Credit: courtesy of NASA.



1.2. Motivation of the present research

The first mathematical formulation of vortices dates from 1858, when Helmholtz [63]
studied vortex filaments in inviscid flows and showed that the circulation of the vortex
is preserved in absence of non-conservative forces. The study of vortex dynamics had
not been considered of interest for many years, regardless of the potential application
in many fields. Lamb [82] claimed that the motion of a solid in a liquid endowed with
vorticity is a problem of considerable interest, but unfortunately not very tractable. The
first big step forward in vortex dynamics and flow investigation was made by Prandtl
[108], who designed and utilized flow visualization techniques in a water tunnel to
study aspects of unsteady separated flows behind wings and other objects. In his
experiments, Prandtl manually rotated a blade wheel to create flow and added seeding
particles to visualize the flow field. At that time, no quantitative data about flow velocity
or vorticity could be achieved. The definitive step was made in the last 30 years thanks
to the scientific and technical progress achieved in optics, lasers, electronics, video
and computer techniques. The combination of these many technical advances brought
to develop techniques, such as Particle Image velocimetry [114], for qualitative flow
visualization to such a stage that they can be employed for quantitative measurement
of complex instantaneous velocity fields.

1.2 Motivation of the present research

The investigation into the field of vortex dynamics is attractive for several aspects.
The formation of vortices in the wake of wings or airfoils is strongly correlated with
the thrust and lift produced. The lift coefficient on a constantly pitching airfoil keeps
increasing above the static stall angle due to the formation of a leading edge vortex
(LEV) [100]. Milano and Gharib [93] identified a peak in the lift coefficient when the
LEV reaches its maximum strength. When this vortex is no longer in the close proximity
of the airfoil, the lift coefficient suddenly drops. This phenomenon is referred to as
dynamic stall and is observed in helicopter rotor blades or in vertical axis wind turbines
(VAWT). These wind turbines have the main rotor shaft transverse to the wind and they
do not need to be pointed into the wind direction. They are also smaller and easier to
implement and maintain than the more famous and used horizontal axis wind turbines.
However, VAWTs are fatigue-prone due the wide range of experienced forces during
each cycle and dynamic stall is a strong contributor to the fatigue. In this regard, the
study of forming vortices is the key aspect to develop a control system that mitigates
dynamic stall, with the aiming of reducing fatigue issues and making VAWTs more
attractive for wind energy applications.

The prolonged attachment of a LEV on the suction side of a flapping wing results in
a higher lift performance with respect to the steady fixed wing alternative [36]. The
flapping motion is particularly effective at small scales and is used by insects to produce
high lift to sustain their weight during flight. Bio-inspired applications try to mimic

3
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and optimize the insect flapping motion with the aim of implementing it into the flight
of autonomous small scales vehicles or micro air vehicles (MAVs). The study of growth
and separation of the LEV from the flapping wing reveals how the wing kinematics
influence LEV properties. For instance, Gehrke and Mulleners [48] delayed the growth
of a leading-edge vortex generated from a flapping wing by adapting the pitch angle
kinematics. The prolonged growth of the LEV reduces the required aerodynamic power
and increases the hovering efficiency. In this framework, the relationship between LEV
properties and wing kinematics is crucial to control the wing aerodynamic performance
and develop more efficient small-scale vehicles.

The vortex formation is also the mechanism with which sea animals such as squids,
scallops or jellyfishes propel themselves efficiently. These animals generate a jet flow
that rolls-up into a vortex ring [89, 24] and the achieved thrust is strongly correlated with
the strength of the vortex ring. For instance, the normalised time-averaged thrust per jet
pulse is maximum when the vortex ring reaches the maximum strength and pinches-off
from the trailing jet [79, 77]. The study of vortex ring can aid the development of

alternative marine propulsion system.

The strong influence of the vortex formation in engineering and bio-inspired appli-
cations motivate us for an in-depth study of the vortex formation from a simple but
yet fundamental flow configuration. We decide to study the growth, trajectory and
timing of vortices shed in the wake of a pure rotating plate. The growth, timing and
trajectory of vortices define the entire vortex formation. The full characterization of how
a vortex grows, moves and separates from an aerodynamic object has a wide spectrum
of potential applications. We choose to focus on the rotation motion because is a basic
but yet fundamental two-dimensional motion. Every kind of two-dimensional motions
can be decomposed into a pure rotation and translation. There is an extensive literature
that discusses on vortex formation behind translating objects [26, 38, 120, 105]. The
single rotation is less investigated because the rotation is often studied as a pitching
motion, which consists of multiple back and forth rotations [102, 14, 145]. Here, the
vortex formation from a single rotation cycle is investigated in detail, with the future
perspective of generalizing these results in more complicated kinematics. Finally, the
choice of a flat plate as the tested object is because the unsteady flows generated around
wings and fins of flying and aquatic animals are often modelled as flows past a flat plate
[14, 55, 12, 76].

1.3 Thesis outline

The work presented in this thesis is divided into six chapters. Each chapter has a first
section that briefly introduces the topic, a core part in which the topic is extensively
analysed and concluding remarks that summarize the main take home messages of the

4



1.3. Thesis outline

chapter. The present chapter is the introduction chapter and gives a general overview
about vortex dynamics. Particular attention is given to the influence that the formation
of vortices has on engineering and bio-inspired applications. The relationship between
force, thrust and lift with vortex formation gives us the motivation to study the growth,
timing and trajectories of vortices behind a rotating plate.

Chapter 2 presents the theoretical background that is the framework inside which the
work of this thesis is placed. We start from the mathematical and physical modelling
of the shear layer roll-up that leads to the formation of a vortex. Experimental and
numerical studies about the subsequent vortex growth and separation are addressed
and discussed. Finally, we review the occurrence of secondary structures that follow the
first generated vortex, we discuss the stability of the shear layer, and comment on the
effect of wake three-dimensionality. The extensive literature survey allows us to focus
on those aspects that are still unclear and to highlight the questions that are not yet
solved. These unanswered questions lead us to formulate the objectives of the present
thesis that are presented at the end of chapter 2.

Chapter 3 describes the rotation mechanism and the optical experimental set-up used
to record particle image velocimetry (PIV) images of a rotating plate in quiescent water.
These images represent the experimental database of the thesis and particular attention
is given to the processing parameters used to extract qualitative and quantitative
information from PIV images. We describe the evolution of the flow topology as
the plate rotates in water and we discuss the methods and the techniques adopted
to compute vortex quantities, such as vorticity and circulation. The methods and
techniques described in this chapter are the starting point to reach the results showed in
the following chapters.

Chapter 4 and chapter 5 discuss the main results of this research. Chapter 4 focuses
on the trajectory and timing of vortices generated by a rotating rectangular plate in a
quiescent fluid. We develop and validate a model that predicts the shear layer roll-up
and the trajectory followed by all the generated vortices. We also develop a fast and
easy to implement technique to compute the timing at which vortices are released from
the tip of the plate. We find that the timing is not constant and decreases with increasing
rotational speed of the plate. The results obtained in chapter 4 are used in chapter 5 to
analyse the vortex growth and compute the strength of the generated vortices. We show
an analogy between the primary vortex observed here and the vortex ring generated
from a piston-cylinder apparatus, which leads us to define a vortex formation time
above which the primary vortex does not grow anymore.

Finally, chapter 6 summarizes the most important results of the thesis and discusses
potential directions for towards future work. A final paragraph that shows the potential
applications of this research is also included.



Chapter 2

Theoretical background

2.1 The roll-up of the shear layer

Experimental techniques that quantitatively measure flow fields allow to get a closer
look at the formation of vortices. Although the idea of what a vortex is may seem
clear, a universally accepted definition of a vortex is still lacking [68]. As suggested
by Haller et al. [61], vortices are generally considered to be coherent structures of high
vorticity. Among the huge variety of vortex dominated flows, we focus here on the
coherent structures that are generated when an object interacts with a flow stream. The
formation of such vortices often begin with a thin layer of fluid, referred as shear layer,
that emerges at the edge of the body as a result of a relative motion between the fluid
and the body [37, 98, 39, 67]. The shear layer is detected in proximity of plate tips,
leading and trailing edges of airfoils or at the boundary of a trailing jet generated by a
piston-cylinder apparatus. In the present thesis we focus on the life cycle of vortices
and the occurrence and subsequent roll-up of the shear layer is the inception of the
vortex formation. The definition of mathematical models that properly describe the
time evolution of shear layers is fundamental to understand how a vortex forms and
develops.

Figure 2.1: Sketch of local coordinates for a vortex sheet.



2.1. The roll-up of the shear layer

2.1.1 Vortex sheets

In moderate to high Reynolds number fluid problems, the shear layer thickness is thin
compared to other length scales that characterize the flow. In the limit of zero thickness,
the shear layer is described and represented as a vortex sheet. The vortex sheet is an
inviscid approximation of viscous fluid layers and is governed by the Euler equation:

B
p((,;: tu- Vu> — _Vp @.1)

where p is the fluid density, p is the pressure and w is the velocity field. The vortex sheet
is a material surface in which the vorticity w and vortex lines are enclosed in a thin
surface of thickness ¢. The vorticity in a vortex sheet can be expressed as:

w = Kdo(n) (2.2)

where d(n) is the Dirac delta function and n is the sheet normal coordinate. In the limit
of ¢ — 0 (Figure 2.1), the vorticity goes to infinity in a way that ew — «. The parameter
r represent the strength of the sheet and is a finite value that is function of the position
vector s along the sheet. The sheet strength & is a vector that has the same direction as
the vorticity vector. The curves on the sheet parallel to  are vortex filaments. If we
consider a small rectangle in the (s — n) plane that intersects the sheet (Right side of
Figure 2.1) and we integrate w = V x u around the boundaries of the rectangle, we
obtain:

Au=uUs] — U2 = K (2.3)

where Au is the difference of the tangential velocity between the two sides of the sheet.
The previous expression can easily be generalized to give:

K=n X Au. (2.4)

In other words, a vortex sheet induces a discontinuity or a jump in the tangential
velocity across the sheet.

From its definition, a vortex sheet of strength « can represent the boundary layer that
develops on the surfaces of any kind of objects. Following Eldredge [32], Graham et al.
[52], the boundary vortex sheet has two constituent parts:

k= K"+ K° (2.5)

The first, k"¢, is due to the body motion in an irrotational flow. The superscript nc stands
for ‘non-circulatory” and it has a zero-net circulation. This component is attributed to
added mass and consists of a translating and rotating component. Using potential flow,
Corkery et al. [19] derived the term «"“ for a thin plate of chord c that translates at speed

7



Chapter 2. Theoretical background
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Figure 2.2: (Top) Effect of local and far-field vorticity into the boundary layer vortex
sheet of a moving cylinder. (Bottom) Variation of local and far-field components of x4
as the shed vortex moves away from the cylinder. Drawings adapted from Gehlert [47].

U and rotates about the mid-chord at rotational speed (2:
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where —¢/2 < x < ¢/2 is the Cartesian component along the chord.

K" = kS 4 k¢ = =2U

(2.6)

The second constituent part, ¢, is associated with vorticity located away from the plate
in the bulk flow field. The conservation of circulation in the flow field implies that
vorticity of the opposite sign as that accumulated in the flow field needs to be located
within the surface vortex sheet. As a consequence, x° can be seen as a ‘mirror image’
of vorticity present in the surrounding flow. The superscript c refers to as ‘circulatory’
because the associated net vorticity is not necessarily zero.

The term «€ includes the vortex sheet contribution x*"*? due to vorticity that is shed
away from the plate. The effects that vorticity induces on the boundary layer vortex
sheet depends on how far from the surface of the object the vorticity is [47]. If we
consider an external vortex shed from a moving cylinder (top of Figure 2.2), a mirror
image of this vortex is placed inside the cylinder. Both the external and the mirror
vortices generate induced velocity all along the cylinder surface. Immediately after
the shedding, the external vortex is close to the cylinder and the corresponding mirror
image vortex is closer to the cylinder surface than the cylinder centre. The induced
velocities from both vortices add up in the portion of the cylinder surface close to the

external vortex. On the opposite side, the induced velocities tend to cancel out. The

shed

resulting vortex sheet ;]

is therefore confined to the proximity of the external vortex
and almost vanishing elsewhere along the cylinder surface, as shown at the top left of

Figure 2.2.

8



2.1. The roll-up of the shear layer

When this external vortex progressively drifts away, the associated mirror vortex moves
towards the centre of the cylinder. In the limit of an infinitely far away external vortex,
the associated mirror vortex is placed at the cylinder centre. The induced velocity from
the vortex goes to zero because of the large distance and the mirror image at the cylinder
centre induces an equal velocity all along the surface. The result is a vortex sheet of

uniform strength H;Zid_ fielar @s shown at the top right of Figure 2.1.

These observations imply that any shed vortex contributes to either «;"°? or H;Zid_ Fieldr

such that:

shed __ .shed shed
Kk = Klocal + Kfa’r—field (27)

The distance from the cylinder determines the balance between the two terms. If the

shed

external vortex is close to the cylinder, ;<]

dominates. When the vortex moves away
from the cylinder, mffcea‘% decreases whilst f@jf(;id_ Field increases (bottom of of Figure 2.1).

2.1.2 Self-induced velocity of vortex sheets

A vortex filament is characterized by a certain amount of vorticity that generates an
induced velocity field in the surrounding space. The relationship between the vorticity
and the induced velocity field is mathematically identical to the magnetic field generated

by a current filament. In this case, the Maxwell equation:
Hoj=V xB (2.8)
is inverted to give the well-known Biot-Savart law [40]:

B(r) - po [ Idl x (r—1")

- = 2.
At Joo e —1)3 (2.9)

Here, dl is an infinitesimal vector along the path C' in which the electric current of
density I flows and (r — r’) is the displacement vector from the wire element at point r/
to the point r at which the field is being computed. By analogy, for a vortex filament of
circulation I' the induced velocity is:

u(r) = = /C dix (r =) (2.10)

s lr — '3

where dl is an element of length along the filament. Similarly, the velocity u, induced
by a vortex sheet of strength « that changes in time and along the sheet is:

ds x (r —s)

o (1) :% /S a2 2.11)

where dS is an infinitesimal element S, of the sheet and s is the position vector along
the sheet. The integral above is finite when the point vector r is outside the sheet. If we

9



Chapter 2. Theoretical background

want to evaluate the self-induced velocity of the sheet, additional considerations need
to be done.

First, we describe the sheet through the complex coordinate z = = + iy = Z(s,t) and
we rewrite Equation (2.11) as follows:
i k(s t)ds'

U—1w=——

2 ) 2z — Z(¢,t) @12)

The evaluation of self-induced velocity of the vortex sheet requires to evaluate the
integral of Equation (2.12) in the limit z — Z (s, t). This limit is finite but discontinuous
because the vortex sheet induces a jump in the tangential velocity. The value of the limit
depends on the side from which the sheet is approached and the sign is positive if z
approaches Z (s, t) from the direction in which the normal to the sheet n points. If we
define the averaged induced velocity on the sheet as the limit computed from the two
sides of the sheet, we obtain:

- k(s t)ds'

where P.V.[ is a principal value integral analogous to the Cauchy principal value.
Saffman [125] showed that in absence of external forces on the sheet the circulation I'
between two points of the sheet is conserved. This statement is equivalent of saying
that dI'/dt = 0 and therefore that the circulation on the sheet is not time dependant.
This result allows us to change variables and express the equation of the sheet and its
strength in terms of the two independent variables I" and ¢:

z=27Z([,t), k=10Z/0r|! (2.14)
In this way, we have xrds = I' and we can express Equation (2.13) as:

0z i dr’
aﬂnﬂ__%Rv/Z@@—zww)

(2.15)

This non-linear singular integro-differential equation is known as the Birkhoff-Rott
equation [121, 10] and describes how the sheet evolves giving initial strength and shape
of the sheet. This equation presents several mathematical difficulties that are discussed
in the next section.

2.1.3 Mass and momentum entrainment in shear layers

The entrainment rate depends on the Reynolds number and is an inherently viscous
process. The vortex sheet model is based on the inviscid assumption and does not take
into account the entrainment of the surrounding fluid. However, mass and momentum
are entrained into real boundary or shear layers and the inviscid vortex sheet model

10



2.1. The roll-up of the shear layer

should to be extended. DeVoria and Mohseni [28] proposed a dynamic inviscid model
of a viscous layer, called vortex-entrainment sheet, in which the mass and momentum
contained in the viscous layer are preserved. The vortex-entrainment sheet is not a

streamline and replaces the viscous and rotational portion of the fluid.

We consider a sheet of velocity u(z,, t) that is immersed in an irrotational, incompress-
ible fluid with density p and stream velocity v(z, t), which may be discontinuous across
the sheet. We assume that the external fluid may be entrained into the sheet and the

resulting mass conservation is:

Dps
Dt

+ p(V - u) = ~[pw — w) -n] (2.16)

where [ ] brackets indicate the jump across the sheet and p; is the sheet mass density.
With this formulation, the right-hand side of mass equation is not zero and represents a
source of ps due to entrainment from the outer flow. For the conservation of momentum,
we have the following equation:

Du
psﬁ - (V -Ts + psfs) = —[[p(v - u)(v - u) : nﬂ - [[p]]n + [[T]] (2-17)
where [p], [7] are the pressure and the shear stress jumps across the sheet, T'; is the stress
tensor on the sheet and f are ‘body’ forces acting on the sheet. As for the conservation
of mass, the momentum conservation has additional source terms associated with the

momentum flux and entrainment from the flow outside the sheet.

Similar to the definition of the vortex sheet strength given in Equation (2.4), the entrain-

ment at a sheet location x, can be defined as:
q(xs,t) = —/V cv(zs,t)dn = —n - [v] (2.18)

The negative sign is added such that ¢ > 0 corresponds to entrainment into the sheet. On
the contrary, this appears as a sink-like motion on the outer flow. From the definition of
the entrainment sheet ¢, the induced velocity of the vortex-entrainment sheet modifies
from Equation (2.11) to:

o (3, 1) 1 / k(8,t) X (x —x5) — q(zs, 1) (z _mS)dSv (2.19)

T | —z43

Following the analysis we showed in the previous section, we can express Equa-
tion (2.19) with complex variables by replacing x with z = = + iy and x, with Z(s,t) =
xs(s,t) + 1ys(s, t), where s is the arc length coordinate. We obtain then:

0z 1 k(s,t) —iq(s,t)
ot 271'2/5 z— Z(s,t) ds (220

In the limit of z — Z, Equation (2.20) represents a generalized Birkhoff-Rott equation

11



Chapter 2. Theoretical background

Figure 2.3: Flow visualization of vortices separating behind an airfoil. The snapshot is
taken from the recording made by Prandtl [108].

for the vortex-entrainment sheet.

2.2 Self-similar solutions of the Birkhoff-Rott equation

Early experimental observations of vortex sheets, such as in the Klein’s Kaffeeloffel
experiment in which the formation of two coarse-grained vortices are observed [125],
show that the roll-up develops in a self-similar way with a spiral geometry. For this
purpose, we consider the following parametric equations of the sheet:

Z(0,t) =t f(0)e”, T(0,t) =t"g(0) (2.21)

where f and g are real functions of the polar coordinate 6. If we substitute them into
Equation (2.15), the existence of a solution requires first that the exponents are related
through n = 2m — 1. Secondly, the functions f and g have to satisfy:

1

—if PR PN §'dé
e [mf + (1 —2m) 2 (f zf)] P.V./f

p 5 PR (2.22)

where the superscript ' denotes the time derivative. The above equation represents the
starting point to find solutions to the Birkhoff-Rott equation that evolves as self-similar

spirals.

2.21 Logarithmic spirals

Logarithmic spirals are often referred to as Prandtl spirals. They were first introduced
by Prandtl [109] to model vortices detaching from tips of wings (Figure 2.3) and to study
the influence that such vortices have on the lift of the wings. Prandtl’s contribution to
the study of the spirals, long time before an introduction of the notion of the Birkhoff-
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2.2. Self-similar solutions of the Birkhoff-Rott equation

Rott equation, were based on studying putative discontinuities of the velocity field, on
dimensional analysis and on physical experiments.

The introduction of Birkhoff-Rott equation (Equation (2.15)) allows a more rigorous
approach to Prandtl’s or logarithmic spirals. We try the following ansatz:

Z(0,t) =t A T(0,t) =t"Be®?, 1(0,t) = |Z(0,t)] = t™Ae™? (2.23)

where o > 0, ¢ > 0 are real numbers and —co < 6 < co. The parameter I'(6, t) indicates
the total circulation at radius r(0,t), and Z(6,t) denotes the parametrization of the
spiral at time ¢ with respect to 0 (Figure 2.4).

If we substitute and reduce the above ansatz into Equation (2.22), we get:

B 0o 00 15
ZZ—SOP.V. / T ses (22w
™

(2a—<p)09A2 1-2 —_ i\ = —
: fm+ (1 - 2m)(a — ) e

The integral in the right-hand side diverges unless o and ¢ have the same sign. More-
over, Equation (2.24) cannot be solved unless ¢ = 2a. In this case, the integral can be
defined by analytic continuation as follows:

oo 1 —elita)d i al—ed’ i+a 225

P.V./Oo e?0dh i 14 e 2T

If we substitute Equation (2.25) into Equation (2.24) and we eliminate A4?/B from both
real and imaginary parts, we obtain:
1 2 2a sinh(4ma/(1 + a?))

- — 2.26
m  1+a?2 1+ a?sin(dra?/(1+ a?)) (226)

from which it follows that for logarithmic spirals the exponent m is in the range —oo <
m < 1/2.

The logarithmic spiral solution defined by Prandtl [109] makes the velocity integral
on the right-hand side of Equation (2.15) divergent at I' — oo [34]. Alexander [2]
overcomes this problem by considering the roll-up of several sheets around a joint centre.
This leads to multi-branched configurations of N number of sheets with equations:

Zy =t () e10+2m(e—1)/N] (2.27)

and a resulting Birkhoff-Rott equation:

07,
—LE(Tp,t) = P V. / (2.28)
ot " kz Zy( Fp,t Zk(l“k, t)
where p € {0,..., N — 1} indicates the number of sheets. The analysis is performed in

the same way as for the above derivation, with the only difference in Equation (2.26),
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Figure 2.4: Sketch of logarithmic spirals in the complex plane for two values of the
exponent m.

where the constant 4 is replaced by 47/N in the last arguments of the right-hand
side. The case of N = 2 corresponds to double-branched spirals that are appropriate
to model the roll-up of an infinite vortex sheet [125]. Alexander [2] considered only
symmetric multi-branched spirals. Elling and Gnann [35] numerically proved that the
integral is not convergent at infinity for unsymmetrical solutions of the Birkhoff-Rott
equation. They also argue that only spirals with NV > 3 symmetric branches appear to
make Equation (2.15) converge.

2.2.2 Semi-infinite vortex sheet

A peculiar solution of the Birkhoff-Rott equation that is not ascribed as a Prandtl’s
spiral is the Kaden’s spiral. The Kaden’s similarity solution [69] is determined for
a semi-infinite vortex sheet that initially extends along the axis 0 < 2 < oco. Kaden
considered the initial parametric equations of the vortex sheet to be:

F2
:4—72, I' = 2kz, /i:fyafl/Q

Z (2.29)
where the parameter x = dI'/dx is the strength of the sheet and v is a dimensional
constant with unit measure m?/2/s. The large intensity at the origin = 0 leads the
vortex sheet to roll-up into a spiral, whose self-similar geometry depends on the constant
v (Figure 2.5). When ¢ > 0, the parametric equation Z is expressed in terms of I, x and

t. From the dimensional analysis:

Z(T,t,y) = (v¢)*/3¢(r) (2.30)
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Figure 2.5: Sketch of a semi-infinite vortex sheet of strength x = y2~1/2 that rolls up
into a Kaden’s spiral.

where 7 = I'/y4/3t1/3, Substituting Z(T', t,v) into the Birkhoff-Rott equation gives the
following singular ordinary integro-differential equation for (7):

_dc 3i o0 dr’

2(—17—==——P.V. —, 0Z 2.31

TV @ 0T R
The existence of a unique solution of Equation (2.31) is an open question. A boundary
condition can be defined for 7 — oo, but the problem does not provide a solution for
7 = 0. The failure is related to the leading edge suction on the sheet at z = 0, where a
principal value cannot be taken [125].

Kaden made some geometrical assumptions to ensure that a solution exists. First he
assumes that the end of the spiral in which the shear layer rolls-up is at Zy = ¢o(t)*/>.
Second, he considers that in the portion of the spiral closer to the centre the turns are
almost circular. This last assumption is consistent with the numerical computation
made by Moore [95]. It follows that the velocity field is approximately tangential to
the radius r computed from the centre of the spiral. If we neglect viscous effects, the
net vorticity inside concentric circles of the spiral remains constant because there is no
radial motion. The circulation I'(r, t) must be therefore independent of ¢ and we can

write from dimensional considerations:
I(r) = 2y(Ar)'/? (2.32)

where ) is an unknown constant whose estimation is discussed later. The tangential
velocity vg at a radius r relative to the centre of the spiral is:
T A AL/2

’1)9 = — =
2r qrl/2

(2.33)

A fluid particle on the sheet that has a circulation I' p corresponds to a specific constituent
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vortex line P of the sheet. The radial distance from the centre of this vortex line P is:

e

=5 (2.34)

TP

The vortex lines move together with the fluid and the angular coordinate §p of the

vortex line P is given by:
'7)‘1/2

3/2
7TTP

Op — t = const. = O (2.35)

For small values of r that corresponds to the portion of the spiral close to the centre and
dropping the suffix P, Equation (2.35) results in the following asymptotic equation:

2 1/3 2/3
_ (A t
(%) (720) 236

This is the equation of Kaden’s spiral and the exponent m is equal to 2/3. From

Equation (2.36), as # — oo the spiral consists of tightly circular turns, which verifies that
the previously made assumptions is dynamically consistent. This simple but yet useful
spiral equation is used in chapter 4 as a starting point to study the roll-up of the shear
layer that is forming around a rotating plate.

Some interesting observations of Kaden’s equation can be made. Firstly, Equation (2.36)
works only for values of r corresponding to the central region of the spiral. Following
dimensional considerations, Moore et al. [97] infers that the radius 7y(¢) of the central
or rolled-up portion of the spiral is given by:

ro(t) ~ (vt)*/? (2.37)

Secondly, the length of the spiral is infinitely long. If we integrate an element ds of the
spiral defined as:

1 /dr\* db

all along the semi-infinite sheet, the integral goes to infinity. Thirdly, we can also discuss
about the strength of the sheet. Remembering that x = |dZ/dT'|~!, we have:

72 T /3

The sheet strength decreases as the spiral centre is approached. On the other side, the
initial condition imposes that the sheet strength vanishes as » — oo. The consequence
of these statements is that the sheet strength has a maximum along the sheet at a given
time. Moore [95] showed that instability may first occur where the sheet strength is

maximum.

The estimation of the unknown coefficient ) is not trivial. It cannot be determined by
local considerations of the vortex sheet dynamics near the tip of the spiral, but is related
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2.2. Self-similar solutions of the Birkhoff-Rott equation

to the entire solution of Equation (2.31). Betz [8] proposed a method to evaluate \. He
made the hypothesis that the vorticity inside a circle of core radius R has no torque
about the centroid of the core. This hypothesis implies that:

R X
27?/ rwdr :/ 'yw_l/2dx (2.40)
0 0

where X is a length portion of the initial sheet. From the conservation of angular

moment, we have:

R X,
—7r/ rwdr = / — 75— 7)%dx (2.41)
0 o wl/?

where T = fOX v/ 2dx/ fOX yx~1/2dz. 1f we compute the radial vorticity from Equa-
tion (2.33):
10 1yAL/2
wir) =5, (rv) = 532 (2.42)
and we substitute it into Equations (2.40) and (2.41), we obtain:

X=AR, A= ; (2.43)

The value of A in Equation (2.36) can be interpreted as the degree of roll-up or tightening
of the sheet. The vorticity that was initially confined in a length X of the sheet moves
into a circle of radius X/\. Pullin [111] numerically estimated A to be approximately 2,
slightly bigger than the value found by Betz [8].

Finally, the conservation of impulse allows us to estimate the location of the spiral
centre (z4(t), ys(t)). The circulation that is originally in the portion between 0 and X is
equal to 2yX /2. At a certain time ¢, this portion of the sheet is rolled up into a circle of
radius R = X \ with circulation 2v(AR)'/2. The conservation of impulse in the vertical
direction gives:

2y(AR) %z = §7X3/2 (2.44)

from which it follows that s = X/3. The second step is to write the equation for the
vertical displacement of the spiral centre. Following Saffman [125]’s analysis, the time
derivative of the impulse is dI/dt = —m~?/4i. This expression is used to write the
conservation of hydrodynamic impulse of the horizontal component as:

1
27(AR) %y, = _Z”% (2.45)

and reducing leads to y, X'/2 = —myt/8. The last step is to equate the time derivative of
X with the x-component of the velocity at X induced by the rolled up vortex:
ax V(AR)UQ Ys

@ Er X —ap 40

From Equations (2.44) to (2.46), Kaden obtained the following relations for the centre of
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the spiral:
zs(t) = p (1), ys(t) = n(y1)*? (2.47)

where 1) = 0.14 and 1 = 0.61 These values are close to what Pullin numerically obtained
in [111]. These equations show that the centre of Kaden'’s spiral moves along an oblique
line with speed ~ t2/3 (Figure 2.5).

2.2.3 Extension of Kaden’s spiral to a finite wing

The derivation that is used to obtain Kaden'’s spiral equation in the above section can be
extended to model vortices formed from a finite wing of span b [97]. It is assumed that
the tip loading is:

x

1—nqy
I = 2yz!™™ =2, <b> (2.48)

where Iy is the given root circulation and 0 < n,, < 1is a constant that represents
the wing loading. The extremes n,, = 0 and n,, = 1 correspond to a delta wing
configuration and to a wing along which the loading is constant and suddenly drops at
zero at the tip. The intermediate case n,, = 1/2 is the elliptic loading. By analogy from
Equation (2.32), the central portion of the spiral has a circulation:

L(r) = 2y (M)t (2.49)

and a tangential velocity:

’}/Alinwrinw

™

vg = Byr ™ (2.50)

The equation of the spiral is then:

/Bwt 1/(nw+1)
= 2.51
" (9 - 9m> 231)

that is valid only in the central portion of the spiral of radius:

ro(t) ~ (Byt)Y/ e tD (2.52)

2.24 Accelerated flow past a wedge

A generalization of Kaden'’s problem, for which the exponent m = 2/3, is done by
Pullin [111] who considered an accelerated flow past a wedge of angle 0 < 3, < 7
(Figure 2.6). The analysis is carried out by using asymptotic expansion and the flow is
effectively divided in two regions. The inner region close to the edge is where the flow
is dominated by roll-up of the vortex sheet The outer region is where the flow can be

18



2.2. Self-similar solutions of the Birkhoff-Rott equation

Leeward

Windward

Figure 2.6: Sketch of the shear layer roll up due to an accelerated flow past a wedge of
angle 3.

considered inviscid and the complex potential depends only on the specific geometry.
An attached flow past a wedge of angle 3, has a complex potential of the form:

w, = —Wit'rzH (2.53)

where v, > 0 is the time exponent and depends on the flow kinematics, W is a positive
dimensional constant and the exponent 1 is related to the wedge angle /3, through the

following relationship:
p=m/(21 — Ba) (2.54)

The above equation is obtained by imposing the boundary condition w = 0 on the faces

of the wedge.

The outer potential w, makes the velocity at the tip of the wedge to be infinite, for the
considered range of 3,. We need to impose a Kutta condition that assumes the separation
of the streamlines at the tip to be smooth. This implies the presence of a stagnation
point at the tip on the leeward side of the wedge (Figure 2.6). As a consequence, the
complex potential of the inner flow must have, by dimensional analysis, the form:

2 Zvptp z
wi = W f(W 1 ) (255)

2—pt 2—p

The match between the inner and the outer flows yields to the following parametric

equation of the sheet:

1
7 - Wﬁtm% " (]_—‘];n> 2m—1 eith/(Qm_l)/Fm/Q_l (256)
where the exponent:
1 1
m = ;_’;f (2.57)
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for wedge angles 0 < 3, < 7. The first term in the right hand side of Equation (2.56)
is the position of the tip of the spiral Z7. If we centre a polar coordinate system on Zr
(Figure 2.6), the circulation at a radius r from the centre is:

[ = gl/mp2=tm oW (2.58)

Proceeding in the same exact way we did above to derive Kaden’s spiral, we obtain the
radial and tangential coordinates of the spiral:

r:k<t>m, p— Lt (2.59)

270 = o2

Figure 2.7a shows the self-similar spiral shape numerically found by Pullin [111], for
a wedge of angle 5, = 7/3. The result presents a remarkable agreement with the
experimental flow visualization made by Pullin and Perry [112], in which a start-up
vortex forms from a wedge (Figure 2.7b).

The equation of the spiral can be alternatively obtained directly from Equation (2.22).
The integral of the right-hand side is approximated as follows (see Saffman [125]):

1 < j_ 9(9)
few/go gd@-—W (2.60)

where 6 — oo corresponds to the centre of the spiral and 6 = 0 is the tip of the wedge.
This approximation makes possible to separate Equation (2.22) into two real equations:

!/

mf + (1 — Qm)g? =0 2n(1-2m)f’=¢ (2.61)
that have the following solution:
g(0) = c0' =", f(0) = (c/2m)/?07™ (2.62)

where the exponent m > 1/2 The equation of the spiral can be finally retrieved from

these two real functions.

2.2.5 Zero wedge angle: flow past a flat plate

When the wedge angle 3, goes to zero, the flow can be modelled as a flat plate that
moves in an inviscid fluid. Earlier attempts to find a solution for this problem have been
made by Anton [3], who studied the impulsive motion of a semi-infinite flat plate. He
found that the parametric equation of the sheet evolves with an exponent m = 2/3, the
same as Kaden’s problem. Refinements and improvements of Anton [3]’s solution are
found by Rott [121], who considered the motion provoked by the incidence of a weak
shock on a plate edge. The problem is also discussed in [111] and an exhaustive analysis
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2.2. Self-similar solutions of the Birkhoff-Rott equation

Figure 2.7: (a) Self-similar vortex sheet shape rolling-up from a wedge of angle 7/3,
numerically obtained by Pullin [111]. (b) Experimental visualization of dye released
from the surface of a wedge of angle /3 made by Pullin and Perry [112]. (c) Numerical
solution obtained by Pullin and Sader [113] of a vortex sheet rolling-up from the edge if
an impulsively started flat plate. (d) Experimental and numerical representation of a
shear layer issuing from the sharp edge of an impulsively started flat plate, made by
Lepage et al. [84]. The dye visualization (black line) and the numerical vortex sheet (red
line) are plotted on top of the vorticity field computed from PIV.
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has been recently published by Pullin and Sader [113]. They consider a two-dimensional
flat plate that rotates and translates according to the following power laws:

Ut) = Upt?, Q(t) = Qot? (2.63)

where Uy and Qg are the characteristic translational and rotational velocities. The
exponents ¢ > 0 and p > 0 specify the time dependence of the translation and rotation
component. The specific kinematics of the plate leads to find similarity solutions for the
vortex sheet in the form of:

Z(M ) = t"F(A), A=1-— :;nr (2.64)
where the similarity parameter A depends on the circulation and replaces # in Equa-
tion (2.21). The edge of the plate is the separation point and corresponds to A = 0 while
A = 11is the vortex-sheet free edge. If we substitute Equation (2.64) into Equation (2.15),
we obtain a solving equation in which the variables are the time exponents ¢ and p
of Equation (2.63). If the rotational motion of the flat plate is predominant over the
translation, the solution of the equation requires the exponents to be:

1+p dp+1 2p—1
—, n= q>

—9
mn 3 3 3

(2.65)

which leads to:
Z(A,t) = t2HP)B r(A) (2.66)

This solution is identified as Type I vortex sheet and represents a strong rolled-up vortex
whose centre is above the plate and moves normally to it. Type I vortex sheet does not
depends on the position of the rotational centre and occurs when the plate experiences
a strong rotation. The shape depends on the exponent p and the spiral issuing from a
plate that rotates at constant speed (p = 0) is shown in Figure 2.7c. While the presence of
a non-zero wedge angle induces elliptical distortions on the spiral shape (Figure 2.7a-b),
we observe that the turns of the spiral for the flat-plate are approximately circular.
This result is experimentally confirmed by Pullin and Perry [112] and more recently
by Lepage et al. [84] (Figure 2.7d), who studied the roll-up of shear layers from the
sharp-edged of a rotating rectangular flat plate.

When the translation dominates over the rotational motion of the plate, the solution
needs the exponent to be:

g+1 2p —1

m=1+4gq, n:p+T, q < 3 (2.67)
with a parametric equation of the sheet:
Z(At) = tT9f(A) (2.68)
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This solution is referred as Type II vortex sheet and occurs when the self-induced
velocity is small compared to the translational component. A Type II solution appears
as a straight vortex sheet that detaches parallel to the plate at the edge and rotates as a
rigid body with the plate.

Finally, when there is dynamic balance between rotation and translation, the solution
requires the exponent to be ¢ = (2p — 1)/3. In this condition a third class of vortex
sheet, called Type III vortex sheet, is defined and represents an intermediate vortex-state
transition between Type I and Type II solutions.

2.3 Growth of a primary coherent structure

When the shear layer rolls-up, a coherent structure emerges in the flow field and
progressively grows. This structure is generally referred to as a primary vortex. As long
as the vortex is attached to the body through the shear layer, the vortex grows in size
and strength. Although the flow conditions and the geometry of the vortex generator
have an influence on how the vortex develops, the mechanism of growth is similar
among the different cases. In this section we review the growth of a primary vortex
generated from three different geometries, with the aim of highlighting the main aspects
about the vortex growth mechanism.

2.3.1 Start-up vortex issuing from a flat plate

We consider a two-dimensional flat plate that rotates and translates according to Equa-
tion (2.63). The motion of the plate causes the occurrence of a start-up vortex. The
growth of this vortex can be divided in four different stages [90]. During the first
stage, called Rayleigh stage, the flow is potential everywhere except for a thin layer
of fluid around the body. The thickness of this layer is constant all around the plate
and is proportional to v/vt, where v is the kinematic viscosity. As the plate moves, the
convective terms of the Navier-Stokes equation become comparable with the viscous
term. The structure of the start-up vortex appears in the flow and the viscous stage
begins. When the convective terms progressively become predominant we have the
self-similar inviscid stage. The shear layer rolls-up with a self-similar spiral shape
that depends on the kinematic exponents p and ¢ of Equation (2.63), as described in
section 2.2.5. In this stage, the vortex generated from the roll-up is still small enough to
be independent of the plate geometry except for the local edge. According to Pullin and
Sader [113]’s analysis, we can determine the circulation I' that is shed in the flow. At
any material point on the vortex sheet, the circulation I' is conserved [125]. It follows
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from Equation (2.64) that the total shed circulation at the plate edge (A = 0) is:
L(t) = Jt" (2.69)

where J is the shed circulation constant. All the total shed circulation released in the
flow due to the plate motion is entrained into the start-up vortex in this stage of the
growth. This means that Equation (2.69) can be used to evaluate the start-up vortex
circulation in the first stages of its formation. When the rotation is predominant over

the translation (Type I vortex sheet), the shed circulation is:

364\ /3 o — 1
_ g (+ap)/3 A
I(t) =3t , J J<1 +p> for ¢ > 3 (2.70)

Here {3 is a fixed parameter that depends on the position of the rotation centre and
on the ratio rotational-to-translational plate velocities. The parameter J is the same
dimensionless constant that Pullin [111] numerically determined.

When the translation is the dominant motion (Type II vortex sheet), the shed circulation

is given by:

2T Le <1 * 1 f— > 2p —1
L(t) = qrt(+9/2) 5 - 3 /1 ~ q for q < D 2.71)
q

3 P 3
Tl =+ —
<2+1+q>

where I'. is the complete gamma function and does not indicate the circulation. When

there is dynamical balance between translation and rotation (Type III vortex sheet) the
shed circulation is identical to Equation (2.70), with the parameter J ~ 1.11072 for B<1
and J ~ 1.1783'/3 for § > 1. These results are numerically confirmed by Koumoutsakos
and Shiels [74] and more recently by Xu and Nitsche [146], who used them to scale the
core trajectory and circulation of the start-up vortex. Rosi and Rival [120] experimentally
show that the circulation in the start-up vortex does not depend on the instantaneous
Reynolds number and follows the inviscid prediction.

Finally, during the fourth and last stage the whole geometry of plate influences and
modifies the start-up vortex growth that progressively drifts downstream the edge of
the plate.

2.3.2 Vortex ring generated from a piston-cylinder apparatus

If we discharge a volume of fluid through a cylinder of diameter D by pushing a piston
inside the cylinder at a speed Up, an axisymmetric vortex ring is generated. Gao and Yu
[46] accurately describe and model the growth mechanism of the vortex ring. During
the first stage, the cylindrical shear layer separated from the cylinder rolls-up and all the
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Figure 2.8: Sketch of the vortex ring growth in a piston-cylinder apparatus. (a) Beginning
of the first stage with the vortex ring that remains close to the nozzle exit. (b) End of the
tirst stage in which the vortex ring diameter is as big as the nozzle diameter and the
trailing jet appears. (c) Beginning of the second stage in which the vortex ring moves
away from the cylinder and the growth is sustained by the flux of vorticity from the
trailing jet. (d) Physical pinch-off of the vortex ring from the trailing jet that indicates
the end of the second stage. Drawings adapted from Gao and Yu [46].
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fluid discharged from the nozzle is entrained into the vortex. The surrounding ambient
fluid is not entrained in the vortex and the entrainment effect is therefore negligible in
this phase. If we use the slug model that assumes the wall-normal velocity component
to be smaller than the stream-wise component, the total circulation I" discharged from

the nozzle into the vortex ring is:
Lo
I(t) = 5Upt (2.72)

The vortex ring can be described as a core of radius r and volume V,. whose centre is at
R from the ring centre, inside which a volume V, is entrained (Figure 2.8a-b). As the
vortex ring grows, both R and r increases with time but the core of the vortex ring is still
sufficiently small to be approximated as a Norbury vortex [101] with a dimensionless
radius € ~ r/R. This approximation allows us to calculate the energy E and the impulse
I of the vortex ring using Fraenkel [42]’s second order formulas (see also [133]):

E= %pRPQ {m(i) - Z - 252 ln<§>}

(2.73)

I = pnT'R? (1 + is2>

where p is the fluid density. The core size is also smaller compared to the nozzle

diameter D and the roll-up of the shear layer can be modelled as a self-similar inviscid
process in two dimensions, in which the radius R of the vortex ring increases as:

R=0.5D + aDt?*/? (2.74)

The coefficient a is experimentally determined by Didden [30] to be 0.17. This stage
is very similar to the third stage of the start-up vortex generated from a flat plate and
is also testified by the 2/3 time exponent. The vortex ring rapidly grows in the radial
direction and it does not translate downstream the cylinder exit. Didden [30] observed
that the vortex does not move in the axial direction until the ring radius R is slightly
larger than the radius of the nozzle. Based on his experiments, the condition R = 0.54D
represents the end of the first stage (Figure 2.8b). No trailing jet is observed during this
stage.

The occurrence of the second stage is associated with the appearance of the trailing jet
(Figure 2.8c). The vortex ring starts moving in the axial direction and now, its growth is
also supported by the flux from the trailing jet. For this reason, the flux of circulation,
impulse and energy into the vortex ring have to be evaluated. If we consider Uy; to be
the local trailing jet velocity near the ring, the vorticity flux at the back of the ring is:

ar

> 1
- / (Us; ~ Upwdr = SU}, ~ U Uiy (2.75)
0

where U is the translational velocity of the leading vortex ring and increases as the
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vortex grows. The flux of impulse and energy from the trailing jet are:

dI
o =T = r)?pUsj(Uy; — Uo)

E 1 (2.76)
== 57r(R —1)?pUz(Uy; — Up)

These additional differential equations coupled with Equations (2.72) and (2.73) describe
the evolution of the dynamical properties of the vortex ring during the second stage of
growth.

2.3.3 Leading edge vortex from a pitching wing

The pitching motion of a wing or an airfoil in the flow field results in the formation
of a coherent structure. This structure is often referred as leading edge vortex (LEV)
because it is generated from the leading edge of the wing. The growth stages of a LEV
induces a transient fluid dynamic load on the wing. At lower Reynolds number, typical
of insects flight [12, 36], the formation of LEVs produces transient high lift on the wing
that helps insects to fly. The growth of a LEV from a constantly pitching airfoil makes
the lift coefficient to increase above the static stall angle, in a phenomenon that is known
as dynamic stall [100].

Eldredge and Jones [33] made an extensive review about the description and modelling
of the LEV growth. When the wing start pitching, the flow in proximity of the leading
edge is accelerated and vorticity generated at the edge forms a shear layer that quickly
rolls up into the LEV. At this stage, the roll-up of the shear layer can again be modelled
as a vortex sheet that evolves with a self-similar spiral shape. At early times, the LEV
is observed as a closed recirculation region on the suction side of the plate. The LEV
size occupies approximately half of the wing chord. As the wing keeps pitching, the
LEV is fed by the shear layer and grows in both size and strength. The estimation of the
amount of circulation into the LEV core requires to first identify the LEV contours. In
experiments and simulations, the boundaries 9A of the LEV may be defined by Eulerian
methods, such as the I'; and I'; functions [51] or the swirling strength criterion [147],
and Lagrangian coherent structure analysis [58] (see chapter 3). If we take u = (u, v, w)
and w = (wg,wy,w;) as the three-dimensional velocity and vorticity vectors, all the
components that contribute to the net rate of change of the LEV circulation are [103]:

. Ow, ow ow ow
I =— dA — — — |dA
LEV /aAsz +/3A<w 0x+wy0y+w 6z>d
Pw, Pw, 0w,
A i)
+V/@A<82x + 92y + 525 )d —l—/aungda—&-

The first term on the right-hand side of Equation (2.77) is the circulation flux due to

(2.77)

span-wise convection. The vortex tilting and stretching is described by the second term
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Figure 2.9: (a) (b) (c) the rear stagnation point S’ and trailing-edge stagnation point .S’
merge to a (separated) fullsaddle S such that the channel for reversed flow opens, as
indicated by the red arrow (d) write descriptions. Drawings adapted from Rival et al.
[118].

and can be interpreted as the local amplification, or reduction, caused by local rate of
strain. The circulation loss due to viscous diffusion is taken into account by the third
term. The fourth term is the main component of the LEV growth and indicates the
flux of circulation due to the feeding shear layer. The symbol ¢ indicates the direction
perpendicular to the shear layer. Finally, the term ® estimates the flux of secondary.
vorticity advected into the LEV from the surface of the plate. The secondary vorticity is
a region of opposite-sign vorticity generated along the surface of the wing due to the
growth of the LEV. The terms in the right-hand side of Equation (2.77) represent all the
sources and sinks of vorticity and describe how the LEV circulation changes in time.

To characterize the different stages of LEV growth, Rival et al. [118] performed a
topological analysis of the flow and compared it with experimental results. As pointed
out by Foss [41], a flow domain is defined by the Euler characteristic:

Xsurface = 2-2 Z Nhandles - Z Nholes (278)

This parameter is a topological invariant and remains constant for a given number
of handles and holes across the domain. Handles are obstacles in the flow domain

while inlet and outlet cross-sections are referred to as holes. For a moving wing in
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the flow field, the only handle in the domain is the wing itself and the inflow and
outflows boundaries are the two holes, as shown in Figure 2.9. From Equation (2.78),
the condition y = —2 has to be satisfied by all the possible singular points in the flow
domain. In particular, full nodes IV and saddles S are singular points in the flow and
half-nodes N’ and half-saddles S’ are singular points on solid walls. When computing
the Euler characteristic, full singularities are weighted twice.

The invariance of the Euler characteristic gives the topological scenarios shown in
Figure 2.9. The attached flow is modelled with two half-saddles S’ placed at the leading
and trailing edges of the wing (Figure 2.9a). The occurrence of the LEV leads to two
additional half saddles S’ on the wing and a full node NV at the centre of the LEV region
(Figure 2.9b). These singular points mark the location of the LEV and they do not
change the invariance of the Euler characteristic. As the LEV grows, the half saddle
point closer to the trailing edge moves toward the trailing edge. Once both half-saddles
merge, the resulting new full saddle S separates from the trailing edge. This separation
opens a channel for reversed flow at the trailing edge, as indicated in Figure 2.9¢, that is
pushed towards the shear layer.

2.4 Limit process of the vortex formation

A vortex can not grow endlessly. When the vortex reaches a certain size and circulation,
the shear layer does not feed the vortex anymore. The vortex is now physically separated
from the shear layer and progressively moves away from the vortex generator. The
vortex separation is observed in all the studied vortex configurations and happens when
the circulation entrained in the core stops increasing. However, the precise identification
of vortex separation is complicated. When the separation occurs, the vortex is very
close to the shear layer and is tricky to distinguish the vortex core from the shear layer.
As a consequence, the measure of the moment at which the circulation stops increasing
is uncertain and many studies have been carried out to address this topic. In this
section, we first mention how the primary vortex separates from the vortex generators
we mentioned in the previous section. After that, we move the focus on the definition
of a specific dimensionless number that identifies the vortex separation among all the
different flow conditions.

24.1 Mechanism of separation

When a start-up vortex develops from the edge of a two-dimensional plate, four different
stages of growth are identified [90]. At the end of the fourth stage, the start-up vortex is
not fed by the shear layer anymore. From this moment, the circulation generated from
the plate motion and estimated by Equations (2.70) and (2.71) using inviscid theory, is
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not entrained in the core of the start-up vortex. Sattari et al. [126] made an interesting
argument to identify the vortex growth limit and is related to the "flattening" of the
shear layer. From flow visualization, they observe that streamlines are directed towards
the vortex core before the separation whereas they point away from the core after
the separation. This leads to the argument of the shear layer "flattening”, defined as
the competition between the tendency of shear layer to go straight in the stream-wise
direction and go upwards due to the vortex induced velocity. When the vortex is small
and close to the edge, the contribution of the induced velocity on the shear layer is high
and fluid particles go in the vortex core. When the vortex progressively grows and
moves away from the edge, the induced velocity decreases and the shear layer flattens.
This brings to a gradual separation of the start-up vortex from the shear layer. If we
scale the vortex circulation I" with respect to the maximum velocity w,,q, within the
shear layer velocity and the distance S between the vortex centre and the shear layer,
Sattari et al. [126] showed that separation occurs when I' / (t,4,:5) ~ 1.5.

For a piston-cylinder apparatus, the vortex ring stops growing at the end of the second
stage. In this phase the vortex ring detaches from the trailing jet and Equations (2.72)
and (2.73) fails because the flux from the trailing jet no longer exists. The vortex pinches-
off and additional vorticity flux is rejected by the primary vortex ring [49] and instead
forms secondary vortices similar to a Kelvin-Helmholtz instability [20]. The pinch-
off of a vortex ring can be explained by making some energetic assumptions. The
Kelvin [71] - Benjamin [7] variation principle assumes that a steady, axisymmetric and
translating vortex can only accept additional vorticity from a feeding shear layer if the
dimensionless energy of the new configuration is greater than the dimensionless energy
of an alternative vortex ring configuration in which the additional vorticity is rejected
by the vortex ring. To apply the Kelvin-Benjamin variational principle, we need to
compare the energy provided by the piston £, with the energy required for a steadily
translating vortex ring E'r. This approach needs the computation of the dimensionless

energy of the vortex as follows:
E

\/pIT3

The vortex separates when the dimensionless energy E* delivered by the piston becomes

E* =

(2.79)

lower than the energy of a steadily translating vortex ring [49]. Mohseni and Gharib
[94] found the limiting value of the dimensionless energy to be E* ~ 0.3.

The vortex ring pinch-off can be also explained with a kinematic argument. When the
vortex ring moves faster than its feeding shear layer, the pinch-off occurs. The shear
layer velocity represents the critical separation velocity of the vortex ring. Mohseni
and Gharib [94] estimated the velocity of the feeding shear layer to be around half of
the piston velocity. This estimation is confirmed by Shusser and Gharib [131], who
found that the vortex ring translational velocity is 59% of the piston speed when the
dimensionless energy E* ~ 0.3. This result suggests that the translational velocity and
the dimensionless energy of the vortex ring are related quantities. This relationship
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between the velocity Uy of a viscous steady vortex ring and its dimensionless energy is
estimated by Saffman [124] to be:
_2r

Uh="% (E*\/E + i) (2.80)

where R is the radius of the vortex ring (Figure 2.8).

The growth of a LEV from the leading edge of a wing induces the formation of opposite
sign vorticity along the surface of the airfoil. The opposite sign vorticity is referred to
as secondary vorticity and its magnitude increases together with LEV strength. The
growth of secondary vorticity has two main effects. First, it pushes the LEV away from
the wing surface and second, it cuts off the LEV connection with the feeding shear layer.
This is known as vortex-induced separation [107] and is associated with a rapid drop in
lift, as it happens when a pitching wing dynamically stalls [100]. This process is also
accelerated by the trailing edge vorticity. As shown in Figure 2.9¢, the occurrence and
separation of a full saddle at the trailing edge gives rise to reversed flow. This flow
moves from the trailing edge towards the feeding shear layer. By doing so, it enhances
the secondary vorticity along the surface accelerating the LEV separation process [118].
The LEV separation can also be modelled through the same topological analysis shown
in section 2.3.3 Two additional half-saddles represent the region of secondary vorticity
inside which we place a new full node, a second full node is place in the shear layer
region and finally, a new full-saddle is added where the LEV separates from the shear
layer (Figure 2.9d).

2.4.2 Vortex formation number

In all vortex dominated flows, the vortex formation has a limit above which the vortex
can not entrain vorticity anymore from the feeding shear layer. This situation suggests
the possibility to define a parameter that can be used to identify vortex pinch-off
in the different flows. According to Dabiri [20], we first need to properly define a

dimensionless vortex formation time as:

Ccr

T =
DU

(2.81)
where I' is the vortex circulation, D and U are characteristic speed and length scales and
the constant factor C' depends on the inverse dimensionless vorticity flux provided by
the vortex generator. Once T™ is defined, the vortex pinch-off is identified by the vortex
formation number 7" that is the vortex formation time at which the total circulation fed
by the vortex generator is equal to the final vortex circulation.

The vortex formation number was initially defined for vortex rings generated from
a piston-cylinder apparatus. If we compute the vortex circulation according to Equa-
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tion (2.72) and we consider the piston velocity Up and the nozzle diameter D as the
characteristic length scales, we arrive to:
. Upt L

T* = - =D (2.82)
The dimensionless constant C' is equal to 2 since the vorticity flux is approximately
1/2 [30]. If the piston strokes along a length L = Upt, the dimensionless time of a
piston-cylinder configuration is equivalent to the stroke ratio, described as the ratio of
length to diameter of the ejected fluid column. For a wide range of piston speed profiles,
the vortex ring reaches its critical value of dimensionless energy and separates from the
feeding shear layer when the dimensionless time is around 4. This dimensionless time
is referred as vortex formation number 7' = 4 + 0.5 [49, 93, 116]. Limbourg and Nedié
[87] have recently improved the prediction of the vortex formation number for different
orifice geometries by including the effect of the flow contraction in the slug model at
the exit of the nozzle [87]. When T* < T', the maximum circulation that a vortex ring
can reach is equivalent to the total circulation discharged by the piston. The vortex size
and circulation do not increase anymore when 7* > T.

The wide variety of cases in which the vortex formation number is approximately
4 suggests the existence of a unique formation number that is valid for all vortex
configurations. This idea is analysed and explained by Dabiri [20], who condensed
it in the concept of optimal vortex formation. The optimal vortex formation can be
seen as a unifying principle to understand the various solutions adopted in nature by
animals to efficiently achieve propulsion. If we consider the cruise motion of fishes
and cetaceans, Triantafyllou et al. [137] found a peak in propulsive efficiency when the

Strouhal number, defined as:
_ fd
=0

with f the flapping frequency, U, the cruising speed and d the peak-to-peak motion

St (2.83)

amplitude, is in the range 0.25 < St < 0.35. Taylor et al. [135] claimed that even flying
animals such as birds or bats, have evolved stroke kinematics to satisfy the same range
of the Strouhal number. Dabiri [20] proposed that the inverse of the Strouhal number is
essentially equivalent to the concept of optimal vortex formation. As a consequence,
the cruising kinematics of swimming and flying animals converge towards a formation
time T ranging from 3 and 4. The optimal vortex formation has also been extended to
more complex cases, such as the vortex developing inside a left ventricle. Results show
that in healthy condition, the formation time ranges between 3.3 and 5.5 [50], which is
in agreement with laboratory results [22] and with the expected value of the optimal

vortex formation.

Rival et al. [117] applied the concept of optimal vortex formation for a leading edge
vortex forming from a plunging airfoil and used it as a criterion for LEV pinch-off. A
similar approach is also used by Onoue and Breuer [103] for LEV generated from swept
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and upswept pitching wings. They define a dimensionless time that takes into account
the effect of the pitch rate and the leading-edge sweep angle as follows:

Uy

T =
Bppc

(2.84)
where Uy is the shear layer velocity and 0.5 < 3,, < 1.5 is a parameter related with
the distance between the rotation point and the mid-chord (3,, = 1 when the rotation
point is at the mid-chord). In the way it is defined, Equation (2.84) is analogous to the
dimensionless time of Equation (2.81). The parameter 3, has the role of the constant
factor C that depends on the physical configuration of the vortex generator. The
dimensionless time is scaled by C' = 1//3,,, to account for the fact that the onset of LEV
formation is either advanced or delayed as the rotation point of the wing is placed
forward or after of the mid-chord [53]. The circulation of the LEV stops growing around
a dimensionless time 7™ = 4 for all the different leading-edge sweptback angles and
pitch rates. The applicability of the optimal vortex formation in this configuration is also
confirmed by energetic considerations. We know that the Kelvin-Benjamin variational
principle is only defined for steady axisymmetric vortex ring. The LEV that forms in the
wake of a pitching wing is not a steady axisymmetric vortex ring and the application
of Kelvin-Benjamin variational principle is not ensured. Onoue and Breuer [103] also
showed that the dimensionless energy of the LEV decreases down to a limiting value
of 0.3 when the dimensionless time 7" =~ 4. This is the same number found for vortex
rings [94] and the result extends the Kelvin-Benjamin variational principle to a LEV
formed from a pitching wing.

We do also report numerical and experimental studies that manipulate the vortex
formation time from the optimal number of 4. The growth and the formation number
of a vortex can be controlled by changing the geometry or the kinematics of the specific
vortex generator. Shusser et al. [133] delayed the formation number by constantly
accelerating the piston instead of impulsively starting it. A delay of 10 % in the vortex
formation time is also shown by Dabiri and Gharib [21], who immersed a piston-cylinder
apparatus in a uniform bulk counterflow. On the contrary, Krueger et al. [80] reduced
the formation number by putting the piston-cylinder apparatus in a uniform coflow. In
analogy with the time-varying motion of the velum of a jellyfish, Dabiri and Gharib [23]
delayed the formation number of the vortex ring up to 7' = 8, by varying in time the
cylinder exit diameter during the vortex formation. In direct contrast to the concept of a
unique optimal formation, Afanasyev [1] observed that dipoles ejected from a nozzle
do not pinch-off for values of the stroke ratio up to 15. Higher values of the optimal
vortex formation are experimentally found by [88], who showed that the vortex ring
ejected from an orifice reaches its maximum energy around a non-dimensional time
of 6-7. Pedrizzetti [106] observed a stable growth evolution of the vortex ring with no
evidence of pinch-off, proving that the optimal formation concept is not satisfied for a
two-dimensional starting orifice flow.

33



Chapter 2. Theoretical background

Based on the literature studies we found about the topic, the debate whether the optimal
vortex formation is a unifying principle or not is still open. Moreover, when considering
more complex flow configurations such as the shedding of dipoles, the definition of
an optimal vortex formation requires a view towards the three-dimensional vortex
structure. Finally, no vortex formation numbers are defined in literature for pure
rotating or translating flat plates.

2.5 Flow field after primary vortex separation

When the shear layer stops feeding the primary vortex, additional vorticity provided by
the vortex generator is rejected from the vortex. This vorticity gives rise to the formation
of other coherent structures that are generally refer to as secondary vortices. We observe
the formation of secondary vortices as a result of a shear layer instability, from the
interaction between the primary vortex and a close-by solid surface and from other
mechanisms. In this section we give an overview about the different processes that lead
to the formation of secondary vortices.

251 Kelvin-Helmholtz instability

The most common example of instability that occurs in fluid dynamics is the Kelvin-
Helmholtz (KH) instability (Kelvin [71], Helmholtz [63]). This phenomenon occurs at the
interface of two different fluids that travel at different velocities or when there is velocity
shear in a single continuous fluid. We can observe this kind of instability at different
scales. For instance, the wind interaction with forming clouds in the atmosphere leads
to the occurrence of repetitive curlicues on the stable layer that resemble ocean breaking
waves (Figure 2.10a). These waves will grow to eventually induce the formation of
individual coherent structures. A similar pattern is also noted on the atmosphere
of Jupiter, where bands of fluid at different velocities interact below the Great Red
Spot giving rise to the formation of several coherent structures (Figure 1.1e). We also
recognize the pattern of KH instability in the previously mentioned vortex generators.
For instance, we can observe KH instability behind the trailing edge of a moving airfoil
in the early flow visualization made by Prandtl [108] (Figure 2.3). Several coherent
structures resulting from an unstable shear layer generated from the sharp edge of
a flat plate are also detected in the flow visualization of Kiichemann and Weber [81]
(Figure 2.10b). KH instability appears in the flow topology even if we impulsively
accelerate a thin ellipse instead of a flat plate, as confirmed by the numerical analysis
of Wang et al. [138] and shown in Figure 2.10c. The shear layer does not always
manifest signs of instability. Luchini and Tognaccini [90] show that the emergence of
secondary vortices as a result of an unstable shear layer (Figure 2.10d) occurs only
when the Reynolds number, derived from inviscid assumptions on the path followed
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by the primary vortex core (see Pullin and Perry [112] for further details about the
exact derivation), is higher than 4500. A slightly higher critical Reynolds number of
5000 above which the shear layer becomes unstable and secondary vortices appear is
identified by Pedrizzetti [106]. Finally, the trailing jet issuing from a piston-cylinder
apparatus shows KH instability when the primary vortex ring pinches-off. At this
stage, the primary vortex ring is not fed anymore by the trailing jet and additional
vorticity flux is rejected by the primary vortex ring [49]. The rejected vorticity leads to
the occurrence of secondary vortices similar to a Kelvin-Helmholtz instability in the
trailing jet [20] (Figure 2.10e).

A rigorous and general mathematical approach to describe Kelvin-Helmholtz insta-
bility is presented in Saffman [125]. We consider an undisturbed vortex sheet with
parametric equation Z = I'/U and strength x = U. This sheet is then perturbed with an
infinitesimal periodic disturbance such that the parametric equation becomes:

Z=—=4Y ap(t)e™™ (2.85)

where a,,(t) are infinitesimal coefficients. If we substitute the above equation into the
Birkhoff-Rott equation (Equation (2.15)), we get:

o~ dby _jre iU < 49 s o (1= einfo )
2ot T [0 2 Uane (F5 ) o) eso

with § = I — T'. If we reduce the above equation by considering P.V. [*_df/6 = 0 and
P.V.[% (1 —e™)df/6* = mna, and we equate the coefficients of eI at the first
order, we have:
day, imnU
At A

where \; = 27/aU is the wavelength of the disturbance. Then, the nth Fourier coeffi-

G—py, —00< N <00 (2.87)

cients exponentially grow as e?!, with o4 = £7nU/),4, and the sheet is unstable. The
smaller the wavelength )\, or the higher the mode n of the disturbance, the faster the
growth rate of the instability.

The discussion of the stability of a vortex sheet is a tricky topic. Saffman [123] suggests
that KH instability could be suppressed by stretching the sheet. The stretching of the
sheet implies that the its strength x decreases in time as the sheet rolls-up. Moore and
Griffith-Jones [96] discussed in details the stability of an expanding circular vortex sheet.
Centring a polar coordinates system at the centre of the expanding circular sheet, the
imposed disturbance deforms the circle into the curve:

r = R(t) + e(t)e’™ (2.88)

where |¢| < R and s is a positive integer. The flow outside the sheet is irrotational and
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Figure 2.10: (a) Kelvin-Helmholtz instability in forming clouds observed in Tupper
Lake, New York, in the Adirondack Mountains. (b) Flow visualization of shear layer
fluctuations and instability issuing from the sharp edge of a flat plate. Image taken
from Kiichemann and Weber [81] (c) Shear layer instability behind an impulsively
started thin ellipse. Image taken from the numerical analysis of Wang et al. [138]. (d)
Iso-curves of vorticity field showing instability of the shear layer occurring from a
flat-plate. Adapted image from the numerical analysis of Luchini and Tognaccini [90].
(e) Vorticity rejected in the trailing jet from the pinched-off vortex ring and results in
the formation of secondary structures, akin to KH instability. Image taken from Gharib
et al. [49].
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imposing as boundary conditions the continuity of pressure and the equality of the
normal velocity on the disturbed sheet, we get:

. (2R is R s(s—l)F2 B

The vortex sheet is stable if all solutions of Equation (2.89) that are bounded at ¢t = 0,
remain bounded as t — oco. However, the solution of Equation (2.89) can not be
analytically found for a general R(¢) and s # 2, but a solution can be determined for
the special case:

R(t) = Ro(at +1)™ (2.90)

where R is the initial radius of the circular sheet, a and m arbitrary constants. The
interesting solutions are for s > 2 because when s = 1 the vortex sheet suffers a rigid
displacement and s = 2 is a trivial solution because the vortex sheet deforms into
an ellipse. If all solutions of Equation (2.89) have to remain bounded, Moore and
Griffith-Jones [96]’s analysis lead to the criterion that the expanding vortex sheet is
stable if m > 1 and unstable otherwise. The limit case in which the behaviour of the
instability changes is at m = 1/2. When m < 1/2, the disturbances grow exponentially
as in Kelvin-Helmholtz instability that corresponds to m = 0. For 1/2 < m < 1, the
disturbances grow weakly and independently of the wavelength. For a general R(t)
and s > 1, a Wentzel-Kramers—Brillouin (WKB) expansion is applied and results are
consistent with the criterion obtained from a circular vortex sheet [96].

2.5.2 Other examples of instability

The Kelvin-Helmholtz instability is one example of instability and definitely the most
interesting to discuss for the objectives of the present work. However, we can find other
examples of flow instability.

The Rayleigh-Taylor (RT) instability [129] is an instability that occurs at the interface
of two fluids with different densities. When a heavier fluid is above a lighter fluid,
the interface progressively becomes unstable under gravity. Examples in nature are
water suspended above oil, mushroom clouds from volcano explosions or even more
catastrophic events, such as supernova explosions in which the expanding gas core
accelerates inside a denser shell. If the two fluids at different densities are impulsively
accelerated, we have the Richtmyer-Meshkov (RMI) instability [115, 91]. It normally
appears when a shock wave interacts with the material interface separating the two
different fluids. For both RT and RMI instabilities, the interface can be modelled as an
unstable vortex sheet of varying strength which induces the occurrence of vortices in a
process similar to Kelvin-Helmholtz instability [148].

Finally, an instability that is noteworthy and closer with the physical concepts and

37



Chapter 2. Theoretical background

Figure 2.11: (a) Interaction between two airplane contrails whose instability leads to the
formation of (b) a chain of vortex rings.

results discussed in the present work is the Crow instability.
Crow instability

The Crow instability, originally described by S. C. Crow [122], is a long wave three-
dimensional instability that occurs from the interaction of a pair of counter-rotating
vortices. An example is observed in the wake of large aircraft due to the interaction
between wingtip vortices and contrails from the engine. The result is a distortion in the
shape of the contrail (Figure 2.11a).

If we consider two counter-rotating vortex filaments with radius a and circulation £T'
placed at a distance h and we put a small disturbance with axial wavenumber k on both

tilaments, the displacement x of the disturbed vortices have equation:

x(&,t) =x5(&,t) + T mi (&, t) (2.91)

where ¢ is a Lagrangian parameter increasing along each vortex. Depending on the
nature of the initial disturbance, the two filaments are distorted in symmetric or anti-
symmetric modes through the mutual interaction between the two filaments x,,,; (£, t)
and the self-induction of the single filament z;({,t). The distortions progressively
grow proportional to e”*. Stability analysis shows that antisymmetric modes are stable.
For the symmetric modes, the configuration is stable if o is purely imaginary. For low
values of kh and high values of a/h the configuration is unstable and there is a favoured
wavelength for which the growth rate is maximum. The instability makes the two
tilaments physically interact and reconnect into a chain of vortex rings, as shown in
Figure 2.11b. See also Saffman [125] and Leweke et al. [86] for a more detailed analysis.

2.5.3 Occurrence of secondary vortices

The instability of the shear layer grows and eventually gives rise to the formation of

secondary vortices. The term secondary vortices refers to coherent vortical structures
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formed after the primary vortex. In the way it is formulated, the definition of secondary
vortices is not univocal because it includes all coherent structures formed after the
primary vortex without taking into account the specific formation mechanism. In the
previous section, we discussed the occurrence of secondary vortices from an unstable
shear layer. However, reported studies in literature deal with secondary vortices that
do not arise from an unstable shear layer.

Kissing et al. [72] define secondary vortices as opposite sign vortices that appear at
the surface of a plunging and pitching airfoil. The motion of the airfoil leads to the
formation of a primary vortex at the leading edge and the growth of the primary vortex
induces opposite sign vorticity on the surface of the airfoil. This opposite sign vorticity
grows between the primary vortex and the leading edge and becomes a secondary
vortex. The growth of the secondary vortex interrupts the shear layer to feed the
primary vortex. A third vortex is formed between the leading edge shear layer and
the secondary vortex. These two structures are called secondary vortices and they are
responsible for the primary vortex separation. A similar outline is also observed by
Wojcik and Buchholz [143], in which secondary vorticity is generated at the surface of a
pitching blade.

The formation of opposite sign vorticity between the primary vortex and a solid surface
also happens when a primary vortex is pushed down towards an horizontal ground
plane [62, 86]. The flow underneath the primary vortex induces opposite sign vorticity
on the ground plane and the bounded vorticity separates to form one or more discrete
secondary vortices that orbit the primary vortex. These secondary vortices have a
weaker strength than the primary vortex and induce the primary vortex to rebound
from the surface. Harris and Williamson [62] found that the strength of secondary
vortices generated as a result of a ground effect with the approaching primary vortex
linearly increases with the Reynolds number. They compare the strength of primary
and secondary vortices and they showed that for Re > 3000 the ratio between the two
strengths is Re independent.

A different formation mechanism is the one investigated in the present work and
showed in [43]. When a flat plate rotates around its mid-chord, the separation of the
primary vortex is followed by the shedding of several secondary vortices (Figure 2.12).
The flow topology is similar to the pattern observed in Figure 2.10b-d, but there is a
substantial difference. Secondary vortices generated from the rotating plate do not
arise from an unstable shear layer but they are instead discretely released from the
tip of the plate. The same evidence is also noted in the experiments of Corkery et al.
[19], who studied the case of a rotating plate, and de Guyon and Mulleners [26], who
observed smaller secondary vortices discretely detaching from a translating cone. The
difference in the formation mechanism draws our attention and represents an additional
motivation to study the configuration of a rotating flat plate.
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We observed several formation mechanisms with which secondary vortices are gen-
erated. The frequency at which secondary vortices are released in the flow is also not
unique. This is particularly evident when we look at shedding frequency of secondary
vortices generated in the near wake of a circular cylinder [139]. These secondary vortices
are oriented in the stream-wise direction, perpendicular to the primary Karman vortex
that is oriented in the span-wise direction [13]. This phenomenon was previously called
transition waves by Bloor [11]. The typical shear layer frequency in the wakes of cylin-
ders is much higher than the frequency of the von Karman vortex street. A consensus
about the exact relationship between the frequency of the primary vortex shedding
fx and the secondary vortices fs has not yet been found. Bloor [11] observed that the
ratio between the characteristic frequencies varies with Reynolds number according
to f«/fe = Re 1/2, However, there is no consensus about the exponent value of the
proposed relationship. Prasad and Williamson [110] indicated that an exponent value
of 0.67 works for Re up to 10° and Wei and Smith [139] found 0.87 in the range from
Re = 1200 to 11 000.

No clear relationships are established in the situation of an isolated primary vortex.
Based on the flow visualisation around a submerged flat plate, Grift et al. [57] deter-
mined the shedding frequency of secondary vortices to lie in the range from 13 Hz to
20 Hz, for different values of acceleration, velocity, and immersion depth. This range
corresponds to a Strouhal number around 0.2, according to the plate geometry and
kinematics used by the authors. The secondary vortex shedding frequency behind a
vertical flat plate increases with increasing acceleration of the flat plate according to
Rosi and Rival [120].

What emerged from the reported studies is that the flow configuration affects the
formation mechanism with which secondary vortices are generated. Moreover, there is
not a clear consensus about the shedding frequency of secondary vortices. It is crucial
to define a scaling parameter, such as the Strouhal frequency for the cylinder case, that
allows for a more universal relationship between the shedding frequency or formation
time of primary and secondary vortices as a function of the Reynolds number. Finally,
we found only few studies that compute the strength of secondary vortices and none of
them discuss in details the difference between primary and secondary vortices.

2.6 Three dimensional effects

The previous sections manly deal with two-dimensional flows in which it is supposed
that the out-of-plane velocity component is either a constant or zero. As observed by
Auerbach [4], vortices generated by an impulsively started flow about a sharp edge and
bounded by two sides are not influenced in the mid-plane by these two sides for a time.

For this reason, measurements are carried out in the mid-plane (halfway between the
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Figure 2.12: Snapshots of the vorticity field around a rotating plate for three angular
positions. After the primary vortex formation at approximately 30°, several secondary
vortices are discretely released from the plate tip. Negative vorticity around the plate
has been removed for sake of clarity.

two sides) such that the out-of-plane velocity is negligible and the flow can be treated as
two-dimensional. However, there are plenty of cases in which the three-dimensionality
of the flow cannot be neglected. A pair of straight parallel vortices represents an
elementary vortex configurations, whose study is motivated by its relevance to the
problem of aircraft trailing wakes. Despite the conceptual simplicity, vortex pairs exhibit
a variety of complex behaviours, ranging from two-dimensional dynamics, such as
merging and rotation, to three-dimensional instabilities [86, 142]. The simultaneous
growth of two distinct instabilities on a vortex pair leads to the formation of a chain of

vortex rings, known as Crown instability (Figure 2.11).

An extensive review about the three-dimensional variation of the wake detaching from
bluff bodies, such as spheres or cylinders, is made by Thompson et al. [136]. The
shape of the wake depends on the motion of the body and on the presence of a nearby
wall. In the case of a translating cylinder away from a solid wall, the wake exhibits
three-dimensional instabilities with increasing Reynolds number. Below the Reynolds
number of Re ~ 46, the wake appears as a periodic two-dimensional von Karman wake.
When Re is above 200, the wake undergoes a sinusoidal span-wise distortion with a
wavelength that is approximately four times the cylinder diameter. This wake is referred
as Mode A. A further increase of Re above 260 reduces the span-wise wavelength to
approximately one cylinder diameter and we have the Mode B wake. When the cylinder
rotates and translates, the wake is not symmetric and the transition behaviour changes
compared to the pure translating case. For ratios between the rotation and translation
speeds smaller than 2, the transition to Mode A and Mode B is only shifted to slightly
higher Reynolds number. For ratios higher than 2, the flow topology is significantly
altered and we observe a single-sided vortex shedding. The proximity of a wall to
the cylinder suppresses the passage of fluid underneath the cylinder. This also results
in single-sided shed vortices that induce secondary wall vorticity, which rolls-up into
weaker vortex structures and interact with the primary vortices to form the wake. If the
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cylinder translates and rotates close to the wall, the magnitude of the secondary wall
vorticity increases and induces an earlier development of the wake instability. In this

scenario three-dimensional effects become predominant.

Bluff bodies are not the only example in which three-dimensional instabilities are
observed. Vortices generated from straight sharp edges of plates, wedges or nozzles
can also manifest sign of 3D instability. The influence of three-dimensional effects for
a flat plate rotating around its edge is investigated by Leweke [85] and is interesting
for the purpose of the present work. The rotation of the plate generates a vortex that
expands in the span-wise direction and at mid-span the vortex is axisymmetric with no
influence of the out-of-plane velocity. The perturbation that comes from the bottom of
the plate, propagates along the span and induces a strong axial velocity along the vortex
tube. As a result, the vorticity in the core becomes less concentrated, the vortex loses its
axisymmetry and subsequently splits into smaller vortices. Leweke [85] quantitatively
analysed the axial velocity induced by the perturbation along the vortex and identified
two different regions of the flow. The first region corresponds to the early stage and
there is no axial velocity. The second and late stage starts when the perturbation arrives
at the mid-span, inducing an axial velocity that jeopardizes the symmetry of the vortex.
The boundary between this two regions depends on the velocity of the perturbation
that propagates along the vortex, which is proportional to the Reynolds number. In
chapter 3 we apply the results found in [85] about the perturbation velocity along the
vortex to estimate the influence of three-dimensional effects in the present work.

2.7 Summary and objectives of the research

In this chapter we presented a detailed theoretical background about the formation
of vortices. We started by defining the shear layer and its inviscid approximation
referred to as vortex sheet. The self-induced velocity of vortex sheets is described by
the Birkhoff-Rott equation and self similar solutions of this equation lead to several
mathematical models of the spiralling roll-up of the shear layer. We first introduced the
logarithmic spiral that describes the roll-up of the shear layer behind the trailing edge of
moving airfoils, as observed and studied by Prandtl [109]. Following the work of Pullin
[111], we moved to the spiral solution that describes how an accelerated flow past a
wedge rolls-up and we reported the limit case of a zero wedge angle that corresponds to
the flow past a flat plate. Particular attention was given to the roll-up of a semi-infinite
vortex sheet whose roll-up is described by Kaden’s spiral. The equation of Kaden’s
spiral will be used and adapted for the analysis presented in chapter 4. The roll-up of
the shear layer gives rise to the formation of a primary coherent vortex. We reviewed
the growth process of the primary vortex for three different flow configurations and
we highlighted the limiting process of the vortex growth. The primary vortex can not
grow endlessly and Dabiri [20] hypothesized the existence of a unique vortex formation
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number marking the primary vortex pinch-off in various flow configurations. The
separation of the primary vortex often coincides with a growing instability of the shear
layer that results in the occurrence of secondary coherent structures. These secondary
structures are referred to as secondary vortices because they are generated after the
primary vortex formation. The instability of the shear layer is not the only mechanism
that leads to the generation of secondary vortices. Secondary structures also form from
the interaction between the leading edge vortex and the surface of the airfoil, in ground
effect when a vortex approaches the wall, or they are discretely released from the tip of
a plate. Finally, the majority of the reported studies deal with two-dimensional flows
and in the last section of the chapter we discussed the three-dimensionality of vortices.

The extensive review about the formation and growth of a primary vortex followed
by the occurrence of several secondary structures has prompted us to ask what is the
main difference between primary and secondary vortices. We know that the primary
vortex growth has a limit but it is still not clear how the maximum strength and the
pinch-off depend on the flow conditions or if a unifying principle can be applied. The
occurrence of secondary vortices happens as a result of an unstable shear layer, but this
is not the only formation mechanism. We wonder how the driving mechanism behind
the formation of secondary vortices depends on the flow configuration. Finally, there
is no consensus about a specific frequency range inside which secondary vortices are
released from the different flow configurations. We also did not find experimental or
numerical studies in which the strength of secondary vortices is computed.

These unsolved aspects and the role of vortex formation on lift and thrust production
motivate us to analyse primary and secondary vortices behind a rotating plate. The
tirst objective of the thesis is to characterize the growth process of the primary vortex
as a function of the plate kinematics. This requires the definition of a dimensionless
convective time that helps us to identify the pinch-off time among different experiments.
We also want to determine the maximum limit strength reached when the primary
vortex pinches-off and find the relationship between the plate kinematics and the
primary vortex limit strength and pinch-off. The determination of the primary vortex
limit strength and pinch-off is crucial to define a vortex formation number that works
for all the tested cases. The second objective we want to address is the identification
of the trajectory followed by primary and secondary vortices. This aspect is relevant
in engineering applications because we observed in literature how the progressive
drifting of vortices away from wings or airfoils coincides with a loss of aerodynamic
performance. The third objective is to compute the timing and the strength of secondary
vortices and check how the plate kinematics influence the development of secondary
vortices. A study about the exact determination of the strength of secondary vortices is
missing. We believe that a better understanding about the occurrence and shedding of
secondary vortices might lead us to get additional information about the formation of
the primary vortex. Last but not least, we want to combine all of these information to
be able to predict the growth, the timing and the trajectory of primary and secondary
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vortices. This will help us to get closer to the reason why primary and secondary vortices
are different and have a better insight into the comprehension of vortex formation.
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Chapter 3

Experimental measurements and
analysis

The present thesis is an experimental work and in the current chapter we report and
show how data are obtained and analysed. Firstly, an overview about the experimental
set-up is given. This includes a detailed description of the rotation mechanism used
to make a rectangular flat plate rotate around its mid-chord in quiescent water. The
specific geometry and the kinematics of all the tested flat plates are also discussed.

Secondly, we described the entire optical set-up used to record particle image velocime-
try (PIV) images from which we obtain quantitative velocity fields of the flow around
the rotating plate. An entire section is dedicated to the impact of the camera resolution

on the recorded images.

Finally, we present results from the experimental data and we discuss how the main
flow parameters of the generated vortices, such as vorticity, circulation and size are
computed.

3.1 The rotation mechanism

A schematic representation of the rotation mechanism is shown in Figure 3.1. The
mechanism is fastened to an outer aluminium frame through the supporting base. This
allows us to finely adjust the position of the mechanism such that the mid span of the
plate is at the desired measurement plane. The rotation kinematic input is given by
a servo motor (Maxon RE 35) connected to a stainless steel shaft and transferred to
the flat plate through a 1 : 1 conical coupling. A 1 : 19 gearbox is mounted on the
motor to ensure high torque, speed, and acceleration. The rotational angle, speed, and
acceleration are controlled via a Galil DMC-4040 motion controller, which allows for
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Figure 3.1: A schematic representation of the rotation mechanism used to rotate the
plate model. The inlay shows a zoomed in section of the rectangular plate coupled to
the shaft through a 1 : 1 conical gear. The servo motor makes a rectangular plate of span
s, tip-to-centre length ¢ and thickness ¢ rotate about the z axis to an angle «. The stroke
motion around the y axis is also possible with a second servo motor connected to the
main shaft through a belt gear system, but this is not used here.

accurate control of arbitrary motion profiles. This mechanism is very reliable and robust
and experiments show an error of less than 0.1° between the motor input signal and
the motor output signal measured by the encoder through the entire plate rotation [48].
Motions are conducted with a high level of repeatability.

A second servo motor of the same type is mounted on top of the supporting base to
allow the plate to also perform the stroke motion. The motion is transferred from the
servo motor to the main shaft through a belt gear system. In this way, the plate can also
stroke around the y axis (Figure 3.1). The combination of the stroke and the rotation
about the z axis results in the flapping motion of the plate, similar to the mechanism
used by insects to fly. The flapping motion is outside the scope of the present work
but it is noteworthy because it shows the potential of our mechanism in the study of
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Figure 3.2: Trapezoidal velocity profile as a function of the dimensionless time ¢/T
The grey shaded regions indicate the portion of the motion during which the plate is
accelerated.

vortices generated through more complex and advanced kinematic inputs.

3.1.1 Plate geometry and kinematics

The rotation mechanism allows the plate to rotate about the z axis with an angle o
following a prescribed kinematics (Figure 3.1). In this thesis, we consider a trapezoidal
rotational velocity profile and a fixed rotational amplitude of o = 180°, as schematically
presented in Figure 3.2. To ensure a continuous acceleration profile, the corners of the
velocity trapezoid are smoothed according to the Eldredge smoothing function [31]:

k cosh (at/T) cosh (a(t/T — a))

o(t/T) = —In| (a(t/T — At,./T)) cosh (a(t/T — 1 + At,../T))

3.1)

with 7' the time duration of the motion, a the corner smoothing parameter, At,. the
duration of the acceleration, and k the parameter related to the maximum velocity (2,,.
The grey areas in Figure 4.1b are the regions during which the plate is accelerated and the
added mass effects take place. During the experiments, the corner smoothing parameter
and the rotational acceleration are kept constant to 100 and 6000 °s~2, respectively. The
influence of the plate kinematics into the formation of vortices is studied by varying the
maximum rotational speed of the plate 2, from 30 ° sl to400°s7L.

Regarding the geometry of the plate, we select a rectangular shape whose dimensions
are the span s, the length [ and the thickness h. We refer here to the chord of the plate
c as the distance between the rotation point and the tip of the plate (Figure 3.1). The
value of the plate tip speed depends on the position of the rotation point and we find
the chord c to be a better characteristic length scale than the entire length [ of the plate.
The span s is kept constant among all the different tested cases, but we vary the chord ¢
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and the thickness h.

The first series of experiments is conducted with a rectangular glass flat plate, with
length | = 8 cm, span s = 16 cm and thickness i = 2 mm. The rotation point is placed
at mid-length, which gives a chord ¢ = 4 cm. For this series of experiments, vortices are
formed symmetrically behind both ends of the plate. The second series of measurements
has the aim to evaluate the mutual influence between vortices generated from the two
sides of the plate. For this purpose, the length of the plate is reduced to ! = 4 cm and the
rotation point is shifted to the edge of the plate. As a consequence, the chord length c is
preserved to 4 cm and vortices are formed only on one end of the plate. This allows us
to study the influence of the rotation point and detect potential interferences caused by
symmetric vortex release on both tips when the rotation point is at mid-length. A third
set of measurements with a longer plate with length I = 12 cm and the rotation point at
mid-length, yielding a chord length of ¢ = 6 cm, was conducted to provide insight into
the influence of the chord length on the vortex formation.

Finally, the fourth and last set of measurements are taken with a thicker plate of thickness
h = 4 mm. The length [ is reduced to 8 cm and the rotation point is kept at mid-length
such that ¢ = 4 cm, as it was for the first series of measurements. The thickness is
increased from 2 mm to 4 mm with the objective of defining the role of the thickness on
the vortex formation. All the flat plates with 2 mm thickness are made out of glass. The
glass makes the plate stiff enough to not bend due to the interaction with water and its
transparency prevents shadow regions when performing particle image velocimetry
(PIV). When the thickness of the plate is increased to 4 mm, the glass becomes more
complicated to easily cut. For this reason the chosen material for the 4 mm tested plate
is laser cut PMMA that turns out to be rigid enough to not deform in water. PMMA is
not as transparent as glass, but placing LEDs on both sides of the plate removes all the
shadow regions.

3.1.2 Scaling parameters

After we have presented and discussed the motion kinematics and the geometry of the
plate, we need to identify non-dimensional scaling parameters. In the present thesis,
we use three non-dimensional variables to describe a rotating rectangular plate with
varying speed and dimensions. The first one is the Reynolds number Re , defined as
follows: )

Re = Umer€ _ St (3.2)

1% v

where Upmqz = Qn.c is the maximum tip speed of the plate, c is the distance between
the rotation point and the tip of the plate (referred in the thesis as the plate chord) and
v = 10"6m?s™! is the kinematic viscosity of the water at 20 °C. The maximum rotation
speed of the plate (2, varies from 30 °s™! to 400 °s~! and leads to a Reynolds number
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3.2. Particle image velocimetry

Re = (Q.c?)/v ranging from 840 to 11150. All the measurements mentioned in this
thesis are in this range of Reynolds number.

The second parameter we need to define is a convective or dimensionless time variable
t*. The dimensional time ¢ is given by the ratio between the travelled arc length [ = ac
and the tip speed of the plate wu;;, = {c. If we scale the dimensional time ¢ with respect
to the rotational speed of the plate, we have:

!

Utip

=0 —a (3.3)

It follows that the angular position of the plate serves as the dimensionless time variable.

Finally, the third and last parameter is a dimensionless time scaled with respect to the
plate thickness h:
=% (3.4)
h
We can describe this dimensionless time as the number of thicknesses h that the plate
travels along the arc length I = ac. The importance of this alternative convective time

will be further discussed in chapter 5.

3.2 Particle image velocimetry

Quantitative information of the flow field around the plate is obtained using particle
image velocimetry (PIV), which is easy to use, robust and non-intrusive nature. We
mount the rotation mechanism on top of an octagonal tank. The tank is filled with water
and has an outer diameter of 0.75 m, which is big enough to prevent wall boundary
interference effects on the rotating plate. The exact position of the rotation mechanism
is chosen such that the flat plate is exactly at the centre of the tank. In this way, we
are sure to avoid wall and surface effects on the formation of vortices. The flow is
homogeneously seeded with polystyrene particles that are small enough (= 60 pm) to
follow the fluid. The measurement plane is illuminated with two LEDs as the light
source and a camera is used to record and track the motion of the illuminated particles.
The camera and the two light sources are at a fixed position around the tank (Figure 3.3).

During all our experiments, we first make sure that the plate starts the rotation when
the chord is oriented in the vertical direction. The camera, the LEDs and the rotation
mechanism are synchronised by means of a voltage trigger signal that is programmed
to turn the LEDs on and make the camera record images as soon as the plate motion
starts. With the help of the feedback from the motor encoder, the position of the plate is
monitored and the image recording stops when the plate as travelled 180°. With this
procedure, we can easily link every recorded snapshot to the corresponding angular
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Figure 3.3: Rendering of the optical experimental set-up used to take PIV images. For
sake of clarity, the optical set-up is shown with the LED only on one side of the tank.

position of the plate. In the next part of this section, we discuss in detail the different
components used to record PIV images.

Seeding particles

Polyamide 12 fine powder (VESTOSINT 2157 natural color, from EVONIK Industries)
is used in the current experiment as the seeding agent. These particles have a spherical
shape of diameter 56 pum, a refractive index of 1.5 and a density of 1.016 gcm™. The
amount of particles that are put in water should guarantee a homogeneous distribution
over the entire volume. If the particle density is low, the PIV cross-correlation algorithm
fails to properly compute the velocity flow field in the whole region. On the contrary,
if the density is too high, the correlation algorithm does not distinguish a particle
from the other. This will lead to gaps in the evaluated velocity field. The density of
Polyamide 12 is very close to water density and particles remain suspended in water
and follow the flow. After a few hours of inactivity, these particles start to aggregate
and settle at the bottom of the tank. This situation requires the flow to be stirred before
starting experiments. After stirring the flow, particles need at least 10 min to return in a

quiescent state and have a brownian motion.
Light source

Seeding particles in the fluid need to be illuminated with a high intensity light source.
Two high-power pulsed light-emitting diodes (LED Pulsed System, ILA 5150 GmbH) are
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3.2. Particle image velocimetry

used to create a light sheet with sufficient light intensity in the measurement plane. The
LEDs emit a wavelength around 530 nm that corresponds to a green light. Compared
to lasers that are the most used source of light in PIV, LEDs have a wider spectral
width of up to tens of nanometers and a short coherence length of O(10 ym). As a
consequence, speckle effects do not affect LEDs light sources [114]. In addition, LED
based illumination is easier to set-up, safer and cheaper than lasers. The experimental
applicability of high-power LED for PIV has been demonstrated previously by [15, 140,
76]. LEDs are placed on both sides of the plate to reduce shadow regions. Cylindrical
lenses are installed to create light sheets of equal intensity and are properly aligned
to illuminate the particles in the flow from opposite directions in the same plane. The
two light sheets from opposite ends overlapped at the mid-span of the plate where the
images were captured. The thickness of the light sheet was approximately 5 mm.

Cameras

We use two different cameras during our experiments: a FASTCAM SA-X2 high speed
camera and a PIV sCMOS camera made by ILA 5150 GmbH. The high speed camera
allows to record time-resolved images at a lower resolution and the sCMOS gives us
phase-averaged images at higher resolution. The combination of both set of measure-

ments is crucial for an in-depth analysis of vortex formation.

3.2.1 Time-resolved measurements

Time-resolved PIV images are obtained with a FASTCAM SA-X2 high speed camera.
The camera is equipped with a 35 mm Canon lens and the camera is aligned carefully
such that the optical axis of the lens is aligned with the rotational axis of the plate and
is perpendicular to the light sheet (Figure 3.3). The frame rate and the exposure time
are varied, depending on the dynamics of the motion. A frame rate and exposure time
of 250 Hz and 1 ms are selected for the lowest tested speed. These values are 2000 Hz
and 0.5 ms for the highest tested speeds. The frame rate is high enough to capture the
dynamics of the motion and the LED is set to continuous mode. The camera resolution is
1024 px x 1024 px, which corresponds to a field of view of 20 cm x 20 cm. The raw data
are processed by the commercial software PIVview (PIVTEC GmbH, ILA 5150 GmbH)
using a correlation model based on minimum squared differences and a multi-pass
interrogation algorithm with three iterations. The final interrogation window size is
32 px x 32 px with an overlap of 68 %. A third order B-spline interpolation method for
sub-pixel image shifting is performed on all passes. The resulting physical resolution is
1 mm, or 0.025c with ¢ = 4 cm.
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3.2.2 Phase-averaged measurements

Phase-averaged images are recorded with a PIV sCMOS camera (ILA 5150 GmbH). The
sCMOS camera has a resolution of 2560 px x 2160 px with a maximum frame rate of
100 Hz. This frame rate is too low to capture the whole dynamics at the investigated
speeds and accelerations. The LEDs are set in pulsed mode with a fixed pulse width of
500 ps and pair of snapshots with the plate at 90° are taken. The time interval between
the two pulses is varied from 1500 ps to 12 000 ps, based on the plate speed, and a 600 s
camera exposure time is chosen. The raw data are processed with a correlation mode
based on squared difference and a multi-grid algorithm with image deformation with
three iterations The final interrogation window size is 24 px x 24 px with an overlap
of 65%. A third order B-spline interpolation method for sub-pixel image shifting is
performed on all passes. The resulting physical resolution is 0.5 mm, or 0.0125c with
c = 4 cm, and is double the spatial resolution obtained from processing time-resolved
data.

3.3 Velocity and vorticity fields from PIV data

The processing of PIV images gives direct information about the velocity field. The
outcome of our processed PIV images is a planar velocity field that can be used to
estimate other significant fluid mechanical quantities. For our purpose, the vorticity
field is the most important differential quantity to compute and, unlike the velocity,
is Galilean invariant. The Navier-Stokes equation itself can be rewritten to give the
vorticity equation:

‘Z—‘;’+u-Vw:w-Vu+uv2w (3.5)

which has the advantage of having eliminated the pressure term.

Planar PIV provides only two velocity field components and excludes the possibility to
fully compute differential quantities. If we consider x = (z,y, 2) to be the space vector
and 4 = (u,v,w), w = (Wg, wy,w;) to be the three-dimensional velocity and vorticity
vectors, the velocity gradient tensor:

u v Ow
oxr Ox Oz
W Nou oo ow (3.6)
|0y 9y Oy :
@ ou v ow
0z 0z 0z

can be decomposed into a symmetric and antisymmetric part, which as a function of
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the strain € and vorticity w components is:

1 1 1 1
Ju Exx 5Cxy 5z 0 5Wy —5Wy
— |1 1 1 1
gz |2 Gw 26y + |—gw. O Wy (3.7)
1 1 1 1
5€zx  5Ezy  Ezz —5Wy Wy 0

The first matrix of the right-hand side of the above equation represents the strain tensor,
in which the diagonal components are the elongation strains and off-diagonal elements
are the shearing strains. The second matrix is the antisymmetric part of the velocity
gradient tensor and contains vorticity components.

Given that 2C PIV provides only u and v velocity components, which can be differenti-
ated only in the  and y directions, the only components of the velocity gradient tensor
that we can measure are:

v ou
wz($7y) :%(‘7:73/) - aiy($7y)
d )
Canl,) =5 (@:9) + 5 (29) (38)

v
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From our PIV images, we can only compute the vorticity component w, normal to
the light sheet. We can also determine the in-plane shearing ¢,, and the extensional
strains ., and ¢,,, even though for our scope they are not as relevant as the vorticity
component. Since we take measurements in an incompressible fluid such as water (V-u),
we can also estimate the out-of-plane strain from the third relationship of Equation (3.8):

ow ou ov
1 a - _%("I}ﬂl/) - Fy(x’y) (39)

From the evaluation of out-of-plane strain we can not retrieve the out-of-plane velocity
component w, which can be only estimated through stereo PIV. In the present work, the
flow field evolution of vortices around a rotating plate is mostly shown through the
vorticity component w,.

3.3.1 Flow field evolution in time

The computation of the vorticity field on time-resolved data, gives a qualitative and
quantitative insight about the formation of vortices as the plate rotates. The velocity
and vorticity fields for selected time instants during the full 180° rotation of the plate,
accelerated from rest at 6000 °/s? and with a maximum rotational speed of 300 °s~*, are
shown in Figure 3.4. The corresponding Reynolds number is 8380. At the beginning and
the end of the rotation, the wing’s chord is oriented in the vertical direction. The plate
is rotated clock wisely and the rotational angle « indicates the angle with respect to the
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Figure 3.4: (a-f) Velocity and vorticity fields at several angular positions when the
rotates at 300 °s~!. The dashed line represents the plate tip trajectory and six secondary
vortices are shed after the primary vortex formation. Velocity vectors are plotted every
3 grid points. (bottom) Plate’s angle o with respect to the vertical position as a function
of time and dots correspond to (a-f) flow field snapshots.
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initial vertical orientation of the wing. The vortex development and shedding for both
tips is similar (Figure 2.12) and we focus here on the structures generated around the
tip that was initially at the top. During the rotation, multiple counter-clockwise rotating
vortices are formed at the tips of the plate and they are highlighted by a concentration
of positive vorticity. Negative vorticity is associated with the flow region around the
rotating plate.

At o = 13°, the acceleration phase is already ended and the plate rotates with the
maximum rotational velocity of 300 °s™! (Figure 3.4 bottom). Fluid is accelerated
around the tip creating a cloud of positive vorticity that rolls up into the primary vortex
(Figure 3.4a). As the motion continues, the primary vortex further accumulates vorticity
and grows in size until it pinches-off. When the pinch-off happens, the feeding process
of the primary vortex from the shear layer is stopped and the primary vortex stops
growing. As the plate keeps rotating after the primary vortex has stopped growing,
vorticity continues to be generated and accumulates around the plate tip. At o = 38°,
we observe the formation of the first secondary vortex (Figure 3.4b). The shedding of
secondary vortices carries on until the rotation is finished. At 46°, the first secondary
vortex has shed and convects around the primary vortex. In the meantime, the next
secondary vortex is forming (Figure 3.4c). When the plate has travelled almost half of the
rotation, four secondary vortices are clearly distinguished in the flow field. We also note
that the first secondary vortex merged with the primary vortex and is no longer present
in the flow field (Figure 3.4d). Merging also occurs to the second secondary vortex that
is incorporated in the primary vortex and is no longer visible at 118° (Figure 3.4e). At
this angular position, the fifth secondary vortex has already shed. The sixth and last
secondary vortex separates from the tip when the plate has almost finished rotating. At
173°, only four out of six secondary vortices are observed in the flow field due to the
merging of the first two secondary vortices with the primary vortex (Figure 3.4f).

From the simple visual observation of the velocity and vorticity fields, we highlight
some noteworthy aspects. The primary vortex keeps following the plate tip trajectory,
highlighted by a dashed line in Figure 3.4, during the full rotation. Secondary vortices
are substantially smaller than the first one and they are very similar to each other, akin to
Kelvin-Helmholtz instabilities. The first two secondary vortices tend to roll and merge
into the primary vortex. The later shed secondary vortices follow the tip trajectory
while they drift radially outwards. All the shed vortices seem to follow a spiralling
trajectory that connects the plate tip to the primary vortex centre. We observed in total
the formation of six secondary vortices. The first four form when the plate rotates
from approximately 38° to 90°. The later two formed during the second half of the
motion. This observation suggests that the timing of secondary vortices is not constant
but increases as more vortices are released in the flow. These observations are further
investigated in the next two chapters.

In Figure 3.4, the flow field snapshots are shown in the fixed reference of frame. In the
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following, the flow field is presented in the plate’s reference frame, for sake of simplicity.

3.3.2 Flow field with the plate at 90°

Time-resolved data capture the flow field around the plate during the entire rota-
tion. However, time-resolved data are longer to process, heavier to store and the grid
resolution can be improved. We combine time-resolved data with phase-averaged mea-
surements to get higher resolution images of the flow field at a fixed angular position
of 90°. Phase-averaged images allows us to check how the augmented grid resolution
affects the computation of integral and differential physical flow quantities. Moreover,
high resolution images at 90° provide a quick overview of the flow field as we vary the
Reynolds number, i.e. the maximum speed of the plate.

A number of 15 pair of snapshots recorded at 90° are taken for each tested speed. This
number is high enough to ensure repeatability of measurements. Even from a single
snapshot the flow topology is well resolved. Comparison between a single snapshot
and phase-averaged vorticity fields at Re = 8380 is shown in Figure 3.5. We removed
the negative vorticity around the rotating plate for a clearer view of the flow field. Four
shed secondary vortices follow the primary vortex. The cloud of vorticity at the tip of
the plate indicates the formation of the fifth secondary vortex. A shed secondary vortex
whose centre is at /c = 0.57,y/c = 1 orbits around the primary vortex and is about
to merge (Figure 3.5b). This first secondary vortex is clearly distinguished from the
primary vortex, while in Figure 3.4d the secondary vortex is already included in the
primary vortex region. The higher resolution gives a more detailed view of the merging
process. All the other qualitative details we get from simple flow visualization are well
captured by time-resolved images. This means that the resolution of high-speed images
is considered sufficient to highlight the topology of primary and secondary vortices

formed from the tip of the plate.

If we increase the Reynolds number from 8380 to 11150 (Figure 3.6a), we observe the
presence of three secondary vortices rather than four. A closer look to the right side of
the primary vortex highlights a positive vorticity region that corresponds to the merging
of the first secondary vortex. This means that the flow topology at higher Reynolds
number does not show any substantial changes. If we reduce the Reynolds number to
1955 (Figure 3.6b), we do not observe the occurrence of clear and isolated secondary
structures. We note instead a layer of fluid that connects the primary vortex to the
tip of the plate. This layer of fluid presents some irregularities and is interrupted at
certain locations, which can be interpreted as a sign of an unstable shear layer. If we
further reduce the Reynolds number to 840 (Figure 3.6¢), the shear layer now appears
as a continuous layer of fluid that rolls-up into the primary vortex. In contrast with the
irregular shear layer observed at 1955, the continuous layer of fluid represents a stable
shear layer. From these observations, we identified the existence of three different flow
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Figure 3.5: (a) Single snapshot of the velocity and the vorticity field compared with (b)
their phase-averaged vorticity and velocity fields at Re = 8380. Velocity vectors are
plotted every 5 grid points and negative vorticity is removed for a clearer view of the
vortices. The dashed lines highlight the location of the secondary vortex merging with
the primary vortex.

regimes depending on the Reynolds number. An in-depth analysis about the occurrence
of these three different regimes is given in chapter 4.

3.4 Identification of coherent structures

The tracking of the vortex growth requires us to properly identify the vortex region
in the flow field that represents one of the biggest challenges in vortex dynamics. The
complexity of defining a vortex justifies the introduction of multiple identification
criteria and techniques. Most of them are Eulerian in nature and they exploit the
instantaneous velocity field and its derivatives. They are faster and easier to compute
but they present some disadvantages. Lagrangian methods, which take into account
information along integrated particle trajectories, can be used to overcome some of the
disadvantages of the Eulerian methods. Combination of both Eulerian and Lagrangian
methods represents a powerful tool for an in-depth analysis into vortex formation.

3.4.1 Eulerian methods

Eulerian criteria are generally formulated in terms of the invariants of the velocity
gradient tensor Vu [54]. The Q—criterion [66] defines a coherent vortex as the region
where @), the second invariant of Vu, is higher than 0. The A—criterion [17] defines a
vortex core as the region with complex eigenvalues of Vu where pathlines are locally
closed [68] and the discriminant A is positive. The A, criterion considers the presence
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Figure 3.6: Velocity and vorticity fields at (a) Re = 11150, (b) Re = 1955 and (c)
Re = 840. Velocity vectors are plotted every 5 grid points and negative vorticity is
removed for a clearer view of the flow field. The arrow highlights the positive vorticity
region that corresponds to the merging of the first secondary vortex for Re = 11150.

of a pressure minimum in the flow field. The occurrence of a local pressure minimum
requires two negative eigenvalues of the velocity gradient tensor. Since the three
eigenvalues are A\ < Ay < A3, the criterion defines a vortex as the region where A, is
negative [68]. Among all the Eulerian vortex identification methods, we have mostly
used the swirling strength criterion and I" criteria to identify vortex contours.

A criterion

The swirling criterion [147], detects a vortex core in the flow region where Vu has a
complex pairs of eigenvalues. A scalar quantity \.; named as the swirling strength, is
defined as the squared magnitude of the imaginary part of the complex eigenvalue.
Giving a certain positive threshold to A.;, a coherent vortex is identified as the area
where the swirling strength is higher than the selected value. Contours of primary
and secondary vortices identified with the swirling strength criterion are shown in

Figure 3.7a.
T'; and I's criteria

The Eulerian criteria we mentioned above are gradient-based and they are strongly
affected by small-scale turbulence. We describe here two criteria to identify the centre
and the boundary of coherent vortices that considers only the flow topology and not
its magnitude. The first method involves the definition of the following dimensionless
scalar function I'y [51], written here in the discrete form for PIV data:

B (PM X UM
I (P) = 72 TPM]- ||UMH Zsm@M (3.10)

The point M lies in a two dimensional domain S. The region S is centred around P and
z is a unit vector normal to the measurement plane. N represents the number of grid
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Figure 3.7: (a) Swirling strength \.; and (b) I'; criteria applied to time-resolved data
with the plate at 90° and Re = 8380.

points M that lie in the domain S. The angle between the velocity vector Uy and the
radius vector PM is ;. According to its definition, the I'; is in the range —1 < I'; < 1.
In the proximity of the vortex centre the magnitude of I'; reaches values higher than
0.9. The location of the centre is determined based on a threshold computation. The
function I'; is not Galilean invariant and a new function is required to properly identify
the boundary of the vortical structures. If we take into account the local mean velocity
around P, a new dimensionless and Galilean invariant scalar function I'; is defined by
Graftieaux et al. [51] as follows:

Z PMX UM Up)] (3.11)

5 |IPM|-[[Un — Up|

where Up = 1/N Y 5 U. The vortex region is identified as the area where the flow is
locally dominated by rotation and the scalar dimensionless function is in the range
2/m < |I'] < 1. Contours of primary and secondary vortices identified with I'; criterion
are shown in Figure 3.7b.

Eulerian methods are not invariant to time-dependent rotations, and thus are not
objective (frame-independent) [59]. Additionally, all the above Eulerian criteria require
a user-defined threshold to indicate the regions where a structure exists. The use of a
threshold leads to an intrinsic level of ambiguity in the definition of a coherent structure.
In case of high temporal and spatial resolution, Lagrangian techniques can be applied

to provide complementary information.
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3.4.2 Lagrangian data analysis

Lagrangian methods take advantage of the temporal information by integrating the
observed quantities over a time interval. They are more complicated to apply and
present a high computational cost but provide additional information about the flow
field dynamics. They exploit the ergodicity of the system, which makes them inherently

more robust to measurement noise and turbulent fluctuations.

A popular method for tracking vortices and analysing vortex dynamics is based on
the calculation of the finite-time Lyapunov exponent (FTLE) [60]. The FTLE is a scalar
tield computed from particle trajectories and quantifies the stretching between particles
trajectories, highlighting repelling or attracting regions in the fluid. The flow map
Ffol (zo) computes the trajectory of a particle from an initial position x( at time ¢ to its
current position at time ¢;. The flow map gradient VFfO1 (zo) is then computed between

times ¢y and ¢; by finite differences:

x(t1;to, o + 0x) — x(t1;t0, o — 0x)  x(t1;t0, o + Oy) — x(t1;t0, o — OY)

t1 _ 20z 20y
VE, (@) = y(t1;t0, To + 0x) — y(t1;t0, o — 0x)  y(t1;t0, To + 0y) — y(t1;to, o — dy)
20x 26y

(3.12)
The maximum stretching o (¢, o) is given by the maximum eigenvalue \,,q, of the
Cauchy-Green tensor:

T
o(to, To) = \/ Amas ([vpfol (o))" VF] (:130)) . (3.13)
The finite-time Lyapunov exponent is defined as the growth exponent of the maximum

stretching:
In (J(to, x()))

FTLE{ (wo) = P—

(3.14)

For forward time integration (t; > to) FTLE ridges highlight repelling lines in the
flow (positive FTLE). By integrating backward in time (¢; < ty) the attracting lines are
highlighted (negative FTLE). These FTLE ridges, referred to as Lagrangian coherent
structures (LCS), are effective at identifying boundaries of vortical structures and their
temporal evolution in vortex dominated flows. When attracting or repelling lines
intersect the surface of an object, such as a plate, a half-saddle is formed (Figure 3.8).
The existence of an intersection between a solid wall and a FTLE ridge is technically not
possible due to the no-slip condition. Klose et al. [73] recently showed that the no-slip
condition mathematically converts the wall into a set of non-hyperbolic fixed points.
As a result, any intersection with FTLE ridges is inhibited. Attracting lines are a good
indicators of shear layers, and their intersections with repelling lines define Lagrangian
full-saddle points (Figure 3.8). The full-saddles points topologically delimit points
that particles can not cross and provide a good criterion to identify vortex separation
[100, 65, 119, 76]. Eulerian methods are not suitable to easily identify saddle points due
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Figure 3.8: A schematic of the calculation of Lagrangian FTLE ridges around a ro-
tating plate. Fluid particles close to the plate tip are stretched alongside attracting
material lines (NFTLE ridges), whereas fluid particles are repelled by pFTLE ridge. The
intersection between the attracting line and the plate tip identifies a half-saddle point.
The intersection between attracting and repelling lines is a full-saddle point and fluid
particles can not cross it.

to their variation with the frame of reference. The FTLE method is inherently objective

and results are invariant with respect to any Euclidean frame change.

3.5 Computation of the vortex circulation

The velocity field obtained from PIV images can also be used to estimate integral
quantities. The integration of the instantaneous velocity field yields field quantities
such as the stream function or scalar values through path integrals. An example is
the circulation, which is obtained through the path integration of the velocity field.
This quantity is of particular interest in fluid dynamics because it is independent of
the reference frame and is commonly used to quantify the strength of a vortex. The

circulation is related to the vorticity by Stokes theorem:

F:f u-dl:/w-ndS (3.15)
0A A

where 0A is the contour of the flow region A inside which the circulation is computed.
The Stokes theorem can also be applied for (z, y)-gridded velocity data. If we consider
a generic grid point (3, j), the circulation inside the region A is expressed as follows:

I'= Z w,-7jdAi7j == dxdy Z Wi, 5 (316)
i,jEA i,jEA
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where w; ; is the vorticity value in the grid point (¢, j). In this formula we assumed that
each grid point has the same area dA = dxdy, as it is for our data. The circulation can
also be computed from the closed contour integral of the velocity field. If we consider
u; ; and v; ; to be the grid Cartesian components of the velocity field on the contour 0A4,
the circulation is given by:

I'= Z (ui,jdx + vi,jdy) (3.17)
i,jedA

The quantity that is directly measured is the velocity field and vorticity is a derived
quantity. For this reason, the circulation computed from the velocity field can lead to
less uncertainties than the value obtained from Equation (3.16). In the following, we
compare the circulation of primary and secondary vortices obtained from both velocity
and vorticity fields.

The first thing to do when computing the circulation is the identification of the vortex
contour. We used both the swirling strength and the I'; criteria described in the previous
section to identify vortex boundaries. The swirling strength criterion defines the vortex
boundary as the limit over which the swirling strength ), is negative. The threshold
we set for the swirling strength criterion is 0. The contour given by I', considers the
vortex core area as the flow region where I, is higher than 2/7, which is the selected
threshold. The circulation of the primary vortex, normalized with respect to the chord
and the tip speed velocity, as a function of « is computed with both methods and results
are shown in Figure 3.9a. The circulation increases with o until the plate has travelled
approximately 30°. Above this angular position, the primary vortex circulation does
not increase anymore. This behaviour highlights the limiting process of the primary
vortex growth and both I'; and \.; criteria capture this aspect. The difference between
the circulation obtained from the two methods never exceeds 5%. A visual observation
of the primary vortex contours obtained with the two methods is shown in Figure 3.9b,
where we can see that the two different boundaries define approximately the same area.
We conclude that both identification techniques provide the same result in terms of the
primary vortex circulation and in the later chapters we use \.; criterion to detect vortex

regions.

We now compute the primary vortex circulation by integrating the velocity around the
contours defined by I's and A.;. The purpose is to check the discrepancy between the
two methods of integration. We observe from Figure 3.9a that the highest discrepancy
is observed when the plate is around 30° and 70°. At 30°, the vortex has almost reached
is maximum circulation and the first secondary vortex is about to form. This makes the
uncertainty of the velocity field around the primary vortex higher and the circulation
computed from the two different methods deviates more. The discrepancy at 70° can be
justified by considering that the first secondary vortex orbits very close to the primary
and is about to merge. The proximity of the secondary vortex can lead to higher
uncertainty on the velocity field around the primary vortex, which results in a slightly
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Figure 3.9: (a) Comparison between dimensionless circulation of the primary vortex as a
function of o, computed with the swirling strength and I', criteria. Continuous lines and
dots represent circulation computed by integrating vorticity inside the contours. Dashed
lines and diamond marks represent circulation computed by integrating the velocity
around the contours. (b) Vorticity flow field at o = 90° for Re = 8380, overlapped with
the swirling strength and I', contours.

bigger discrepancy in the computation of the circulation. However, the discrepancy
between the two methods of integration never exceeds 5% and both methods provide
the same information about the limiting process of the primary vortex.

The circulation is also computed for all the shed secondary vortices. We follow the same
procedure used for the primary vortex and we first identify the contours with both
criteria (Figure 3.9b). We observe that contours identified with the swirling criterion are
slightly bigger than boundaries obtained from the I'; function. Moreover, I'; criterion
fails to identify closed contours for some of the shed secondary vortices. For this reason,
we decide to use the swirling strength criterion to identify contours of all secondary
vortices. The circulation of all secondary vortices shed at Re = 8380, normalized with
respect to the chord and the tip speed velocity, is shown in Figure 3.10. All secondary
vortices present a much smaller circulation compared to the primary vortex. If we
compute the circulation by integrating vorticity inside the contours (grey box plot in
Figure 3.9) the circulation of all secondary vortices lies in a range that goes from 0.06 to
0.18. The strength of secondary vortices seems to be influenced by the increase of the
number n of previously shed vortices. The uncertainty indicated by the grey box plot
can be reduced if we integrate the velocity field around the vortex contours (purple box
plot of Figure 3.9). The circulation range now goes from 0.06 to 0.14 and we observe
a global increase of the circulation entrained into later shed secondary vortices. The
reason behind this is further investigated in chapter 5.
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Figure 3.10: Circulation of all the n secondary vortices shed at Re = 8380. The box plot
in grey indicates circulation computed by integrating the vorticity inside the contours.
The integration of the velocity field around the same contours is shown by the purple
box plot.

3.6 Computation of radial velocity and vorticity distribution

As a last step, we are interested in extracting a measure of the size of vortices and to
check how computed quantities, such as velocity, vorticity and circulation, are related.
For this purpose, we evaluate the vorticity and velocity distributions of formed vortices.
Experimental velocity and vorticity grid points in the core region of vortices are fitted
with the well known Lamb-Oseen vortex model [82, 104]. This model is an exact solution
of the Navier-Stokes equations for a laminar and axisymmetric flow. If we consider a
polar coordinate system placed at the vortex centre, the tangential velocity as a function
of the radial distance r is:

I’ 2
vg(r,t) = py— [1 —e r%(t)] (3.18)
From the radial equation of the tangential velocity, we can retrieve the vorticity distri-
bution: o
w(r,t) = me re(t) (3.19)

This model is used to represent the viscous decay of a singular line vortex that has a
finite circulation:

r2
[(r,t) = 2mrvg =T [1 - e_rg(t)] (3.20)
and satisfies the following boundary conditions:
I'r=0,t=0)=I', T'(r=0,t)=0, I(r—o0,t)=1' (3.21)
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At t = 0, the entire circulation is concentrated on the line vortex. At a later time ¢, the
line vortex radially expands with an expanding core radius r.(t) = v/4vt, with v being
the kinematic viscosity. The Lamb-Oseen vortex at a "frozen’ time ¢y and core radius
re = \/4vly is equivalent to a g-vortex or a Batchelor vortex [6].

3.6.1 Description of the fitting algorithm

In this section we describe the Lamb-Oseen vortex fitting algorithm used to extract
velocity and vorticity distributions from experimental data. A similar approach was
also used by Stevens and Babinsky [134] to estimate the circulation of a LEV generated
from a pitching flat plate. The initial step is to select a region that fully includes the
analysing vortex. All the vorticity points inside this region are used to retrieve the
Lamb-Oseen fit. The next step is to compute the radial distance r of all the vorticity
points from the vortex centre. We first select the location of the maximum vorticity
level in the selected region as the vortex centre (z., y.). The coordinates of this point
are highlighted in orange in Figure 3.11a. Once we know the vorticity points in the
vortex region and their distance from the centre r, we can fit the experimental points
with Equation (3.19).

The fitting algorithm properly selects the location of the vortex centre and allows to
go beyond the resolution of our PIV data. We consider a neighbourhood area centred

around (., y.) (grey square in Figure 3.11a) and we divide it into a m?

number of points.
The choice of m is based on a sensitivity analysis. We quantify the computational cost
of the algorithm and the percentage error Rmsgq, for increasing m and use them as a
benchmark to evaluate the optimum sub-grid width. The percentage error is calculated
as the root mean square error between the experimental vorticity points and the Lamb-
Oseen fit. The trade-off is made by comparing the benefit from the reduced Rmsgq,
and the drawback due to higher computational cost. The increased computational
time is not worth the reduced percentage error when m > 8 (Figure 3.11c-d) and we
choose to divide the neighbourhood area A,, in 64 points. Each point (z;, y) inside the
neighbourhood area, with 7 = 1, ..., 64, is iteratively assumed to be the vortex centre
(2, yc). The output of our algorithm is to find the best centre location that minimizes the
root mean square between the experimental data and the fit. This point is highlighted
in purple in Figure 3.11a.

The location of the vortex centre significantly influences the goodness of the results. A
comparison between vorticity distributions with the centre placed at the starting point
and at the refined output position is shown in Figure 3.11b. If the centre of the vorticity
distribution is assumed to be the initial position, the error is 20 % higher. This result
proves the goodness of the algorithm to refine the vortex location centre beyond the
grid data resolution.
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Figure 3.11: (a) Schematic drawing of the flow region in which the fitting algorithm
is applied. The rolled-up portion of the spiral describes the vortex location. The grey
square box is the neighbourhood area inside which the best centre location is selected.
The coordinates (., y.) in orange and purple illustrate the initial and the best vortex
centre positions. (b) Vorticity distributions with the centre located at the initial (orange
dots) and final (purple dots) positions. The solid grey line represents the Lamb-Oseen
curve. (c) Percentage error Rmsq, of experimental points from the Lamb-Oseen fit and
(d) computational time as a function of the number of sub-grid points m.

The last thing we mention is the choice of the size of the neighbourhood area. We
perform a sensitivity analysis using the displacement vector A between the initial and
the final centre positions:

A= (xc,f - l'c,i)i =+ (yc,f - yc,i)j (3-22)

as a benchmark to properly evaluate the correct size of the neighbourhood area. For all
the experimental runs, we have never observed a displacement A higher than 0.5 mm.
We decide to choose a square region of side 0.55 mm as the neighbourhood area around
the initial centre location, for all the tested cases. This area is large enough to include
the best output location of the vortex centre but not too large to significantly increase
the computational cost.

3.6.2 Size and velocity profile for the primary vortex

The output of the fitting algorithm is the best location of the vortex centre, from which
the radial scattering of the experimental vorticity points is evaluated. Once the experi-
mental distribution is known, we can fit the experimental data with the Lamb-Oseen fit.
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3.6. Computation of radial velocity and vorticity distribution

We normalized the radial distance from the centre with respect to the plate thickness
h and the vorticity with respect to the angular speed of the plate 2. We first apply
the algorithm to the primary vortex for Re = 8380 and with the plate at 30° that ap-
proximately corresponds to the angular position at which the vortex stops growing
(Figure 3.9a). The solid grey line in Figure 3.11b represents the Lamb-Oseen fit of the
primary vortex at 30°. The fit allows us to estimate the core radius and the maximum
level of vorticity of the vortex. The core radius 7. represents a measure of the vortex
size and the maximum level of vorticity wy,,; at the centre is related to the core radius
through Equation (3.19): ,

r

Tl (3.23)

Wmax =

We estimate a core radius of r./h = 1.6 and a maximum vorticity of wy,q, /2 = 39 for

the primary vortex at 30°.

Once we determine the values of r. and wy,q,, we can compute the circulation as a
function of the distance from the centre with Equation (3.19). The result is shown by
the solid grey line in Figure 3.12a and the curve is compared with the experimental
circulation. We measure the circulation around a varying radius circle centred at the
vortex centre (zc, yc) and the agreement with Lamb-Oseen is remarkable (Figure 3.12a).
The circulation inside a circle of radius r. directly follows from Equation (3.20) and is:

T = wmaxﬂrg(l - 671) (3.24)

For a = 30°, the circulation inside a circle of radius 7. = 0.0034 m is T, /(Qc?) =
0.59. This value is lower than 0.76 measured at 30° with A\, and I', (Figure 3.9a). The
explanation behind this discrepancy is first that the circular core area of radius 7. is
smaller than the region identified with the other two methods (Figure 3.12b). Secondly,
a Lamb-Oseen vortex is by definition a circular core region. Our experiments show that
the vortex region slightly differs from a circular shape (Figure 3.12b). The dimensionless
circulation measured with I', or A\, matches the value retrieved from Lamb-Oseen if we
take a core radius of approximately 1.37. (Figure 3.12a). We define the scaling parameter
k as the ratio between the circulation inside a circle of radius r. and the circulation
measured from the swirling strength or I'; criterion. The value of % is obtained from
Equation (3.20) by considering that the circulation measured from A.; or I'y criterion is

equivalent to the circulation inside a core radius of 1.3r.. This leads us to:

Lre 1—e!
F/\ N 1—6_1'32

k= ~ 0.78 (3.25)

ci

We observe that the primary vortex keeps the same value of the scaling parameter £ for

later angular positions and for all the tested speeds.

The identification of the core radius and maximum vorticity allows us to determine
the tangential and radial velocity distributions. If we set a polar coordinate system at
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Figure 3.12: (a) Measured circulation as a function of the radial distance from the vortex
centre at v = 30° for Re = 8380. The solid grey line corresponds to the Lamb-Oseen
curve. (b) Snapshot of the vorticity field at 30° in which the three different contours are
highlighted.

the vortex centre, the radial velocity of a Lamb-Oseen vortex is zero and the tangential
velocity is given by Equation (3.18) and shown by the grey line in Figure 3.13a. The
tangential velocity increases with the radial distance from the centre, until the core
radius value is reached. At this point the tangential velocity equals the tip plate speed
and decreases afterwards. As we did above for the circulation, we compare the Lamb-
Oseen tangential velocity with experimental values. Each grid point of processed PIV
images has Cartesian components u, v of the velocity field. We need first to pass from
Cartesian to polar coordinates by using the following conversion:

vy = —— ¢ yu, vy = T +y (3.26)
T r

where r = /22 + 32 is the distance from the vortex centre. Then, we subtract the
velocity of the vortex centre from the velocity field. This step is required because the
Lamb-Oseen vortex is irrotational and does not translate while the primary vortex
moves along the tip plate trajectory (Figure 3.4a-f). At each radial distance r from the
vortex centre we calculate the average and the standard deviation of the tangential
velocity. As for the circulation, the match between experimental values of the tangential
velocity and Lamb-Oseen is remarkable (Figure 3.13a). The same is also done for the
radial velocity for which we measure an average value of zero, regardless the distance r

from the centre.

We observed in Figure 3.9a that the primary vortex circulation stops growing when the
plate is around 30°. Beyond this angular position, circulation is not entrained anymore
and the only mechanism acting on the primary vortex is the viscous diffusion. The plate
travels 30° in ¢y = 0.21s, as shown in the bottom plot of Figure 3.4, and the core radius
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Figure 3.13: Measured tangential velocity as a function of the radial distance from
the vortex centre at a = 30° for Re = 8380. The solid grey line corresponds to the
Lamb-Oseen curve. (b) Time evolution of the primary vortex core radius from 30°
compared with the viscous diffusion.

of the primary vortex is .o = 0.0034 m (Figure 3.11b). From this point, we can estimate
the viscous diffusion in time of the core radius with the following equation:

re(t) = rep + VAV (t — tg) (3.27)

that is illustrated in Figure 3.13b by the solid grey line. When the plate travels from 30°
to 70°, the core radius expands in time according to Equation (3.27). Around 0.2 s after
the plate reached 30°, the core radius has a jump and deviates from the viscous diffusion
law. This happens when the plate is around 90° (Figure 3.4d), which corresponds to the
moment at which the first secondary vortex merges with the primary. The increase of
the core size does not correspond to an increase of circulation of the primary vortex that
remains constant to I'/(Q¢?) ~ 0.8 (Figure 3.9a) The hypothesis we make is that during
the merging the vorticity coming from the first secondary vortex is redistributed in a
bigger area such that the circulation remains the same. However, the merging process
of vortices is out of the scope of the present work and we address the reader to the work
of Leweke et al. [86], Meunier et al. [92], in which the merging of a corotating vortex
pair of unequal strength is discussed in details. After that, the core radius returns to
increase according to the viscous diffusion law.

3.6.3 Size and velocity profile for secondary vortices

The same fitting algorithm can also be applied to secondary vortices. We take the first
and the last secondary vortices shed at Re = 8380 and we compute the vorticity and
velocity distributions for both of them. The distributions of the first and last secondary
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Figure 3.14: (a) Vorticity and (b) tangential velocity distribution of the first and last
secondary vortices shed at Re = 8380.

vortices are evaluated when the plate is at 41° and 135°, respectively. These angular
positions correspond to the moment at which the vortices separate from the tip of
the plate. See next chapter and in particular section 4.3.3 for further details about the
identification of the shedding timing of secondary vortices.

The Lamb-Oseen model fits well the experimental data for both secondary vortices
(Figure 3.14a) and confirms that the vorticity inside primary and secondary vortices is
well represented by Lamb-Oseen’s model. The secondary vortex that sheds immediately
after the primary vortex has a non-dimensional maximum vorticity of approximately 10
and a core radius of 1.26 times the plate thickness. The last secondary vortex that is shed
when the plate is towards the end of the rotation presents a maximum vorticity of 17
and a radius-to-thickness ratio r./h of 1.34. This result suggests that the last secondary
vortex is slightly stronger than the first one, as also observed in Figure 3.10.

The tangential velocity increases as a function of the distance from the vortex centre
for both secondary vortices, according to Equation (3.18) (Figure 3.14b). At r = r,, the
tangential velocity around the first secondary vortex is on average around 0.2 times
the tip speed of the plate. A higher value of 0.35 is reached around the last secondary
vortex at a distance 7. from the centre, confirming the evidence that the last vortex is
stronger than the first one. Beyond the core radius 7, the tangential velocity decreases
in agreement with Equation (3.18). The higher uncertainty of experimental values
associated with the tangential velocity around the first secondary vortex is due to the
close presence of the primary vortex.

As we did for the primary vortex, we can estimate the circulation of secondary vortices
from Lamb-Oseen’s fit. We show in Figure 3.15a the circulation of the two analysed
vortices as a function of the radial distance from their centres. At a radial distance r = r,
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Figure 3.15: (a) Measured circulation of the first and last secondary vortices shed at
Re = 8380 as a function of the radial distance from the vortex centre. (b) Circulation of
all shed secondary vortices estimated with Lamb-Oseen (purple dots) overlapped on
the pink region that corresponds to the pink box plot of Figure 3.10.

the dimensionless circulation entrained in the first and last secondary vortices is 0.09
and 0.14. These values are very close to the circulation measured inside the contours
identified with the swirling strength criterion. Contrary to the primary vortex that
slightly differs from a circular shape, a circle of radius . resembles well the contours of
secondary vortices identified with \.; (Figure 3.9b). We estimate the circulation from
Lamb-Oseen for all the six shed secondary vortices at Re = 8380 and we show results
in Figure 3.15b. The later the secondary vortex is released, the higher the circulation
entrained in its core radius. This observation is in line with the results shown in
Figure 3.10, in which the circulation of secondary vortices is computed by integrating
the velocity field around A, contours. The increase of circulation in the later shed
secondary vortices is further discussed in chapter 5.

3.7 Influence of the flow field resolution and three-dimensional
effects

In the previous sections, we showed the comparison between vorticity and velocity
tields from time-resolved and phase-averaged data. Time-resolved data have a lower
spatial resolution compared to phase-averaged images, but all the main topological
aspects of the flow field are still well captured (see Figure 3.4d and Figure 3.5b). The
main difference consists in a more detailed view of the merging process between the
primary and the first secondary vortices.

Here, we analyse the impact of the flow field resolution on the computation of quantita-
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tive flow features, in particular the vorticity distribution. We apply the fitting algorithm
to the primary vortex when the plate is at 90° and we compare results to phase-averaged
data (Figure 3.16). The maximum vorticity has a value of 25 and the same value is
confirmed for higher resolution data. A slight difference is noted for the core radius
that is 17% smaller when we apply the fitting algorithm to phase-averaged data. An
increased resolution provides a more refined and smaller area of the vortex region. As a
consequence, the measured circulation of the primary vortex is lower when the grid
resolution is increased. This evidence is also confirmed by the two identification criteria
Aci and I'y, which identify a slightly smaller region of the primary vortex. There are two
interesting aspects to underline. First, we obtain the same value of circulation inside
the contours identified with \.; and I's for phase-averaged data as well. Second, the
ratio between the circulation inside a circle of radius r. and the circulation inside a \.;
or I'; contour is equal to the same scaling factor £ defined in Equation (3.25). These two
observation add validity to the identification of the primary vortex contour made from

time-resolved images.

We used the fourth secondary vortex as a benchmark to check how the resolution affects
the vorticity distribution of secondary vortices. The reason behind this choice is that the
fourth secondary vortex is shed when the plate is around 90° and the comparison is not
affected by viscous diffusion. As we observed for the primary vortex, the maximum
vorticity of the fourth secondary vortex estimated from higher and lower resolution data
has the same value that is equal to 14 (Figure 3.16). The core radius is approximately
19% smaller for higher resolution data, which leads to a lower measured circulation.
We also measure a smaller core region of the fourth secondary vortex with both A.; and
I'; criteria for higher resolution data.

We conclude that higher resolved data gives a better refinement of the vortex region
and slightly smaller values of circulation compared to time-resolved data. However,
this improvement is not fundamental for the purpose of this work and does not prevent
us to use time-resolved data in the next chapters.

The last thing we discuss is the possible influence of three-dimensional effects in the
measurement plane. We place the measurement plane at mid-span and since the plate
rotates about its mid-chord, the symmetry should guarantee that three-dimensional
effects are negligible. As observed by Auerbach [4], vortices generated by an impulsively
started flow about a sharp edge and bounded by two sides are not influenced in the
mid-plane from these two sides for a time. However, the vortex perturbation along the
span propagates from the root of the plate towards the measurement plane and induces
an axial velocity (see section 2.6 for further details). This axial velocity is orthogonal
to the measurement plane and can affect our results. To have a rough estimation of
the velocity ugj, of the perturbation along the vortex we extract data from experimental
observations found in [85]. The velocity with which the perturbation propagates along
the span is proportional to the circulation based Reynolds number Re r =I'/v and in
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Figure 3.16: Vorticity distributions of primary and fourth secondary vortices computed
from time-resolved (orange) and phase-averaged (purple) data. The solid grey lines are
the corresponding Lamb-Oseen fit.

the range 2400 < Re < 12000 can be estimated through the following equation:
ugp, = cRer +d (3.28)

where ¢ = 2.2 x 107° ms~! and d = —0.015 ms™! are fitting constants extracted from
the data in [85]. Equation (3.28) is used to check if the perturbation arrives at the
measurement plane during the motion of the plate. For Re = 8380 the primary vortex
reaches a dimensional strength of 0.0063 m? s~! (Figure 3.9a), which leads to a circulation
based Reynolds number of 6300. The perturbation has to travel 8 cm along the span
direction to reach the measurement plane and has a speed of 0.12 ms™, according to
Equation (3.28). This means that the perturbation arrives at the measurement plane in
0.7 s that corresponds to the entire period of the plate rotation (Figure 3.4 bottom). We
conclude that the perturbation is in the measurement plane only when the rotation has
already finished and is not responsible for the appearance of secondary vortices.

3.8 Summary and conclusions

In this chapter we presented how our experimental data are taken and processed.
The first part is dedicated to the description of the rotation mechanism, highlighting
its robustness and reliability to take repeatable measurements. We also showed the
geometry and the kinematics of the rotating plate, whose motion leads to the formation

of several vortical structures.
The description of the entire optical set-up used to record PIV images was presented
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and particular attention was given to the cameras used. The high-speed camera allowed
us to get time-resolved data during the entire motion of the plate. The processing
of this data showed the occurrence of a primary vortical structures, followed by the
subsequent shedding of smaller secondary vortices. We used the sCMOS, which has
a higher resolution but a lower frame rate than the high speed camera, to grab phase-
averaged data of the velocity and vorticity field when the plate has travelled 90°. We
observed from these images the existence of three different flow topologies, depending
on the maximum rotational speed of the plate. Phase-averaged data allowed us to
check if the increased grid resolution provided additional and more refined quantitative
information about the flow field. A direct comparison between time-resolved and phase-
averaged data showed that higher-resolved data does not contribute more quantitative
information to the purpose of the present work.

Finally, we dedicated the last sections to the computation of the main vortex quantities.
We discussed the different methods used to identify vortex contours and we applied
the swirling strength and the I's criteria. The circulation was computed by integrating
both vorticity inside the contour and velocity around the same contour. Results showed
no discrepancies between the two ways of integration, except for a lower uncertainty
when computing the circulation of secondary vortices from a closed line integral of
the velocity. We also evaluated the vorticity and velocity distributions of primary
and secondary vortices. We fitted the experimental data with the Lamb-Oseen vortex
model and we described the working procedure of the fitting algorithm. The algorithm
provided the best location of the vortex centre and we estimated the core radius and the
maximum level of vorticity for each formed vortex. All the techniques and data showed
in this chapter are the starting point of the next two chapters, in which we present the
main results of the thesis.
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Chapter 4

Discrete shedding of secondary
vortices

In this chapter the focus is manly on the shedding of secondary vortices. First, we recall
the most important studies found in literature about this topic. We highlight the main
questions that are still unanswered and that represent the motivation of our study. At
the end of the first section we clarify the unsolved aspects we are going to address.
Afterwards, a brief summary of the experimental set-up is given. Look at chapter 3 for
further details. The third section is the core part of the chapter. We describe there the
results we got and we try to provide a physical explanation to all of them. Finally, we

summarize the take home messages from this chapter.

The work presented in this chapter has been published in Journal of Fluid Mechanics
[43].

4.1 Literature studies about the topic

The life of vortices around bluff bodies often begins with a shear layer [39, 67, 120, 38, 19].
When a bluff body moves relative to a fluid flow, a thin layer of fluid emerges at the
edge of the body where non-zero shear flow gradients are present. This shear layer
is characterised by increased values of the flow vorticity. In the wake of the body, the
shear layer rolls-up and the shear layer vorticity accumulates into a coherent vortex.
The interplay between the free stream or body’s velocity and the induced velocity of
the growing coherent vortex cause the shear layer to become curved. This curvature
changes continuously in time. The roll-up of a semi-infinite shear layer or vortex sheet
was first described by Kaden [69], who derived the following self-similar equation to
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describe the shear layer shape at any point in time ¢:

r=K(t/§)*3 (4.1)

where K is a dimensional constant, and r and 6 are the radial and angular coordinates
along the spiral with r = 0,6 — oo at the spiral centre, » — o0, § — 0 at the opposite end
of the semi-sheet at infinity. The exponent 2/3 is retrieved from dimensional analysis
and the obtained curve is a spiral with tight inner turns (see section 2.2.2). The initial
strength of the flat sheet increases monotonically with increasing distance away from
the tip of the body. For ¢ > 0, the spiral has an infinite number of turns leading to a
singularity of the velocity and the sheet strength decreases to zero for § — oo in the
spiral centre. The maximum value of the sheet strength is now located somewhere
along the sheet [125]. In reality, viscosity will remove any singularity at the spiral centre
and yield the development of a viscous core [97].

At the early stages of the roll-up, Kaden’s spiral is tight with a low local radius of
curvature. It accurately represents the initial evolution of the shear layer. At later stages,
the radius of curvature increases due to the viscous interactions within the shear layer
and between the shear layer and the coherent primary vortex that grows due to the
continuous accumulation of vorticity at the centre of the spiral. The distortions can be
investigated by modelling the inner portion of the spiral as a single point vortex located
at the centre [95]. The entire shear layer roll-up can also be predicted by a point-vortex
representation of an initially straight vortex sheet [75, 27]. The degree of the elliptical
distortions depends on the shape of the object. They are almost negligible for flat plates
and become more pronounced when the edge has a non-zero wedge angle [111].

The accumulation of the vorticity in the coherent vortex in the spiral centre does not
continue indefinitely. There is a physical limit to the size and the amount of circulation
the primary vortex can collect [49, 26, 46, 94]. When the primary vortex is about to
pinch-off, a trailing pressure maximum is observed along the shear layer [83]. The
shear layer region between the tip and the trailing pressure maximum has an adverse
pressure gradient. The remaining portion of the shear layer is characterised by a positive
pressure gradient. The two regions of the shear layer are now separated and the vorticity
associated with the adverse pressure gradient can not be entrained into the vortex core.
The trailing pressure maximum travels downstream together with the primary vortex,
causing the subsequent pinch-off of the primary vortex [128]. Additional vorticity will
not be entrained by the primary vortex after pinch-off and instead can accumulate into
smaller secondary vortices within the trailing shear layer similar to a Kelvin-Helmholtz
instability [20]. The increases in shear layer curvature during the initial stages of the
vortex formation momentarily stops when the end of the primary vortex growth is
reached [126]. Secondary vortices occur first between the primary vortex and the tip at
locations where the sheet strength according to Kaden is maximal [95, 74].
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4.1. Literature studies about the topic

The emergence of secondary vortices seem to occur only if the Reynolds number is
above a critical threshold. The value of this critical Reynolds number varies for different
object geometries and boundary conditions. Critical values in a range from Re =1000 to
3000 were observed in a cylinder wake by Wu et al. [144]. The lower limit was slightly
higher for [11], who did not detect any instabilities for Re < 1300. The span-wise and
end configurations strongly affect the shear layer breaking behind a cylinder. Parallel
and oblique vortex shedding are obtained by changing the inclination of end plates
[110]. The shear layer manifests instabilities at Re = 1200 for parallel shedding and at
Re = 2600 for oblique shedding. The critical Reynolds number for an accelerated sharp
edged plate lies in a higher range. Pullin and Perry [112], Williamson [141] started to
visually observed secondary vortices along the shear layer for Re = 4268. This value
was later confirmed by Luchini and Tognaccini [90], who numerically observed the
occurrence of secondary vortices in a range from Re = 4500 to 5000.

For Reynolds numbers above the critical value, series of secondary vortices appear in
the trailing shear layer with a seemingly constant distance between them. The typical
shear layer frequency in the wakes of cylinders is much higher than the frequency of
the von Karman vortex street. A consensus about the exact relationship between the
frequency of the primary vortex shedding f, and the secondary of shear layer vortices
fs. has not yet been found. Bloor [11] observed that the ratio between the characteristic
frequencies varies with Reynolds number according to fi/fs. = Re 1/2 However, there
is no consensus about the exponent value of the proposed relationship. Prasad and
Williamson [110] indicated that an exponent value of 0.67 works for Re up to 10°
and Wei and Smith [139] found 0.87 in the range from Re = 1200 to 11 000. No clear
relationships are established in the situation of an isolated primary vortex. Based on
the flow visualisation around a submerged flat plate, Grift et al. [57] determined the
shedding frequency of secondary vortices to lie in the range from 13 Hz to 20 Hz, for
different values of acceleration, velocity, and immersion depth. This range corresponds
to a Strouhal number around 0.2, according to the plate geometry and kinematics used
by the authors. The secondary vortex shedding frequency behind a vertical flat plate
increases with increasing acceleration of the flat plate according to Rosi and Rival. It is
crucial to define a scaling parameter, such as the Strouhal frequency for the cylinder
case, that allows for a more universal relationship between the shedding frequency or

formation time of primary and secondary vortices as a function of the Reynolds number.

Secondary vortices also have a practical relevance for a broad range of applications.
They can create additional lift on delta wings at high angles of attack [45], cause vortex
induced oscillations of solid structure that lead to fatigue damage [130], and lead to
increased drag and noise for wing tip vortices [9]. A precise prediction of secondary
vortices can improve aerodynamic performance and reduce vortex induced vibrations

and noise.

Here, we present an experimental study of secondary vortices generated by a rotating

77



Chapter 4. Discrete shedding of secondary vortices

flat plate in a quiescent fluid. The experimental setup is discussed in details in the
following section and is similar to the configurations used by David et al. [25], Corkery
et al. [19], Carr et al. [16]. The plate is rotated with a constant rotational velocity which
is varied across different experiments. The rotation of the plate generates a start up or a
primary vortex. As the plate keeps rotating, the primary vortex separates and smaller
secondary vortices are observed. First, we determine the critical Reynolds number
above which secondary vortices are observed in the shear layer behind the tip of the
rotating plate. Second, we describe the path of secondary vortices and model their path
using a modified Kaden spiral. Finally, we estimate the timing of the secondary vortex
shedding process and analyse the effect of the Reynolds number on the timing.

4.2 Experimental methods

The first series of measurements is conducted with a rectangular flat glass plate, with
length [ = 8 cm, width or span s = 16 cm and thickness 2 = 2 mm that is rotated about
180° in a water tank around its centre span-wise axis. The distance between the centre
of rotation and the tip of the plate is referred to as the chord length c here. The length of
the plate is reduced to I = 4 cm and the rotation point is shifted to the edge of the plate
for the second set of measurements. The chord length or distance between the rotational
point and the tip of the plate is preserved for both sets of experiments. For the first set of
experiments, vortices are formed symmetrically behind both ends of the plate. For the
second set of experiments, vortices are formed only on one end of the plate. This allows
us to study the influence of the rotation point and detect potential interferences caused
by symmetric vortex release on both tips when the rotation point is at mid-length. A
third set of measurements with a longer plate with length [ = 12 cm and the rotation
point at mid-length, yielding a chord length of ¢ = 6 cm, was conducted to provide
insight into the influence of the chord length on the vortex formation. The glass plate is
stiff enough to not bend due to the interaction with water and its transparency prevents
shadow regions when performing particle image velocimetry (PIV). The experiments
are conducted in an octagonal tank with an outer diameter of 0.75 m filled with water
(Figure 4.1a).

The rotation mechanism is fastened to an outer aluminium frame such that the mid span
of the plate is in the centre of the tank to limit wall interference effects. The kinematic
input is given by a servo motor (Maxon RE 35) connected to a stainless steel shaft and
transferred to the flat plate through a 1 : 1 conical coupling. A 1 : 19 gearbox is mounted
on the motor to ensure high torque, speed, and acceleration. The rotational angle, speed,
and acceleration are controlled via a Galil DMC-40 motion controller, which allows for
accurate control of arbitrary motion profiles. The rotation programme is a trapezoidal
rotational velocity profile with a fixed rotational amplitude of 180° (Figure 4.1b).
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Figure 4.1: (a) Schematic of the experimental set-up and the rotation mechanism. (b)

Trapezoidal velocity profile as a function of the angular position. The grey shaded
regions indicate the portion of the motion during which the plate is accelerated.

To ensure a continuous acceleration profile, the corners of the velocity trapezoid are
smoothed. The maximum rotational speed (2,,,, is varied from 30 ° s 1 to 400 °s7L. This
leads to a Reynolds number Re = (Qax?) /v ranging from 840 to 11150. v is the
kinematic viscosity of the water and the chord c is defined as the distance between the
rotation point and the tip of the plate. The rotational acceleration €2 is fixed at 6000 °s~2.

The PIV images are recorded in the cross-sectional plane at the model mid span. A high-
power pulsed light-emitting diode (LED Pulsed System, ILA 5150 GmbH) is used to
create a light sheet in the measurement plane. The applicability of high-power LED for
PIV has been demonstrated previously by Willert et al. [140], Krishna et al. [76]. Time-
resolved PIV images are recorded with a Photron FASTCAM SA-X2 high speed camera.
The camera is equipped with a 35 mm Canon lens and the camera is aligned carefully
such that the optical axis of the lens is aligned with the rotational axis of the plate and is
perpendicular to the light sheet (Figure 4.1a). The frame rate and the exposure time are
varied, depending on the dynamics of the motion. A frame rate and exposure time of
250 Hz and 1 ms are selected for a rotational speed of 30 °s~!. These values are 2000 Hz
and 0.5 ms for the highest tested speeds. The frame rate is high enough to capture the
dynamics of the motion and the LED is set to continuous mode. The camera resolution is
1024 px x 1024 px, which corresponds to a field of view of 20 cm x 20 cm. The raw data
are processed by the commercial software PIVview (PIVTEC GmbH, ILA 5150 GmbH)
using a correlation model based on minimum squared differences and a multi-pass
interrogation algorithm with three iterations. The final interrogation window size is
32 px x 32 px with an overlap of 68 %. A third order B-spline interpolation method for
sub-pixel image shifting is performed on all passes. The resulting physical resolution is
1 mm, or 0.025c with ¢ = 4 cm.
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4.3 Results

4.3.1 Modelling the shear layer roll-up

At Re = 840, the plate rotation gives rise to the formation of a primary vortex (Fig-
ure 4.2). The vorticity fields at different angular positions are shown in the plate’s frame
of reference. The primary vortex is the only coherent structure that can be observed and
it is connected to the plate tip through a continuous shear layer. No sign of instabilities
are observed in the shear layer as the plate continues the rotation. The shear layer
remains connected to the primary vortex and rolls-up around its core. As a consequence,

the shear layer roll-ups into a spiral that continuously grows in time.

To trace the spiralling topology of the shear layer in the individual snapshots, we start
by fitting the Kaden spiral (Equation (4.1)) to the experimental data. At every time
instant, the Kaden parameter K is determined such that the spiral passes through
the plate’s edge when the spiral centre is shifted to the instantaneous location of the
primary vortex core. The location of the primary vortex core was retrieved using the
dimensionless and Galilean invariant scalar function I', defined by Graftieaux et al. [51].
The resulting Kaden spirals are presented in Figure 4.3 atop three instantaneous vorticity
snapshots after a rotation of o = 105° for increasing values of the Reynolds number:
Re = 840,1955,8380. The dashed lines in Figure 4.3 indicate the plate tip trajectory
since the start of the motion, the markers indicate the centre location of the primary
vortex, and the solid lines are the fitted Kaden spirals. For all three Reynolds numbers,
the centre of the primary vortex is located on the plate tip trajectory and the fitted
spirals match the rolling up shear layer well based on visual inspection. The vorticity
concentration along the shear layer evolves with increasing Reynolds number from
a continuous band of vorticity at Re = 840 (Figure 4.3a) to an alignment of vorticity
lumped into discrete vortices at Re = 8380 (Figure 4.3c). At the intermediate Reynolds
number Re = 1955, the shear layer is undulating and some localised concentrations of
high vorticity can be identified along it (Figure 4.3b). These are signs of an unstable
shear layer. When we further increase the Reynolds number to 8380, the shear layer
instability becomes more prominent. The primary vortex is no longer connected to the
plate tip and the shear layer is broken into a series of distinct individual structures that
we refer to as secondary vortices (Figure 4.3c). The fit of Kaden's spiral still describes
well the unstable shear layer evolution and goes through the secondary vortices for the
entire range of Reynolds numbers considered here.

So far, we have merely fitted Equation (4.1) to our experimental data at every time
instant, treating Kaden’s constant K as a fitting parameter. We observe that the main
topology of the roll up is well captured by the Kaden spiral, but we have not yet gained
any insight into the temporal evolution of the roll up or the motion of the primary
vortex. If our shear layer would follow the time evolution predicted by Kaden'’s spiral,
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Figure 4.2: Vorticity fields for different angular positions (a) o = 50°, (b) o = 86°, and
(c) o = 122° for Re = 840. The dashed line represents the plate tip trajectory.
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Figure 4.3: Fit of the Kaden’s spiral (black solid curve) atop of instantaneous vorticity
fields at & = 105° for (a) Re = 840, (b) Re = 1955, and (c) Re = 8380. The marker x*
indicates the top right edge of the plate and the point where the spiral ends, + indicates
the centre of the primary vortex and the point where the spiral begins. The spiral is only
plotted for 6 ranging from 6,, to 47. The dashed line represents the plate tip trajectory.

tip
the obtained values for K should be constant for all time instants. Based on the results
presented in Figure 4.4, we conclude that K is not a constant value for our data but
increases linearly in time for all Reynolds numbers. The rate of increase of K with
dimensional time decreases with increasing Re (Figure 4.4a), but all curves collapse
when presented in terms of the angular position of the plate (Figure 4.4b). The angular
position of the plate serves as the dimensionless time variable. It corresponds to the
ratio between the travelled arc length [ = Qtc and the chord length and represents
a convective time scale. The chord length refers to the length between the centre of
rotation and the tip of the plate.

Based on these results, we propose here a modified version of the Kaden spiral to
describe and predict the temporal evolution of the shear layer roll up:

(0%

r=na (§>2/3 , (4.2)

where r and ¢ are again the radial and angular coordinates of the spiral with respect
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Figure 4.4: K parameter of Kaden’s equation as a function of (a) time and (b) angular
position of the plate for all the tested Reynolds numbers.

to the spiral centre or primary vortex centre, « is the angular position of the plate and
na replaces the dimensional constant K in Kaden’s formulation (Equation (4.1)). The
value of 7 is constant for all Re and is empirically determined based on the ensemble
of experimental data to n = 1.02 x 10~2. The original solution of the Kaden spiral
was derived for an unbound semi-infinite vortex sheet that starts out as a straight
vortex sheet [69]. The open end of the sheet rolls up into a vortex with the centre at
(r,8) = (0,00) and the other side of the vortex sheet is at infinity (r,8) = (00, 0). For
our experimental conditions, the vortex sheet length is finite and its length increases
in time. The open end rolls up into a primary vortex. The bound end of the vortex
sheet is attached to the tip of the rotating plate and only the portion of the modified
Kaden spiral for § € [6,,, o] corresponds to our finite shear layer. Here, 6,, decreases in
time and indicates the bound end that is connected to the plate tip. The value of 6, is
determined at every time step based solely on the observation that the primary vortex
moves along a path that matches the plate tip trajectory as indicated in Figure 4.2 by
the dashed line. Based on this purely geometric constraint, we also directly obtain the
radial spiral coordinate where the modified Kaden spiral meets the plate tip, indicated
by r,,, and the angular location of the primary vortex with respect to the plate, denoted
by . The detailed derivation of 6,,, 7, and f3 is provided in section 4.5.1. With this
additional information, we can now write the spatial coordinates of the spiral in the
plate’s frame of reference as:

Topirat = T8INO 4 cCOS B (4.3)
Yspira = —7 COS 0 + csin 3, (4.4)

with 6 and 3 defined as indicated in Figure 4.3. This modified version of the Kaden
spiral is now a fully predictive model of the shear layer roll-up and the position of the
primary vortex core with a single empirical constant 7.
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Figure 4.5: Model of the shear layer roll-up (solid curve) atop of nFTLE fields at
a = 105° for (a) Re = 840, (b) Re = 1955, and (c) Re = 8380. The spiral is only plotted

for 6 ranging from 0, to 4.

4.3.2 Validation of the model

The ability of our modified Kaden spiral to describe the roll-up of the shear layer
is visually compared to the negative finite time Lyapunov exponent (nFTLE) fields
corresponding to the vorticity fields presented in Figure 4.3a-c. The FTLE is a local
measure of Lagrangian stretching of evolving fluid particle trajectories [58, 60]. The
maximising ridges of the negative FTLE field indicate regions along which nearby fluid
particles are attracted such as the boundaries of coherent structures. The FTLE ridges
provide insight into the location and growth of vortices and the flow topology [56, 119].

At Re = 840 the shear layer is continuous and the attracting nFTLE ridges appears as
a continuous spiral. The shape and the roll-up of the spiral is well described by our
predictive model (Figure 4.5a). At Re = 1955, we are in a transitional regime where
the shear layer is wavy and unstable (Figure 4.3b). This observation is confirmed by
the FTLE ridges, where the attracting nFTLE ridge oscillates around our predicted
spiral. The deviations become larger where the spiral rolls-up (Figure 4.5b). Finally, at
Re = 8380 the shear layer is no longer visible in the vorticity field snapshot and we
observe discrete secondary vortices instead (Figure 4.3c). The wavelength of the nFTLE
ridge fluctuations has decrease with the increase of the Reynolds number towards
the discrete shedding regime. The spiral computed with Equation (4.2) represents the
middle line along which the FTLE ridge oscillates (Figure 4.5b). We can distinguish four
lobes on the outside of the predicted spiral that surround four secondary vortices in
Figure 4.3c. With increasing value of the Reynolds number, we can distinguish three
regimes: a first regime (Re < 1500) which is characterised by a stable shear layer, a
transitional regime (1500 < Re < 2500) which is characterised by first signs of instability,
and a discrete vortex shedding regime (Re > 2500) where vorticity is only observed in
isolated patches. For the three Re regimes observed, the modified Kaden spiral is able
to predict the roll-up of the shear layer and the path of the secondary vortices for the
entire rotation of the plate.
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Figure 4.6: Variation of the angular location of the primary vortex (3) with convective
time indicated by the plate’s rotation angle («) for (a) rotations around the mid-length
and rotations around the edge, both with ¢ = 4 cm ; and (b) rotation around the mid-
length with ¢ = 6 cm.

To further quantitatively validate our modified Kaden spiral model, we compare the
measured angular locations of the primary vortex as a function of the convective time o
with the predicted model results in Figure 4.6 for different Re . The angular position 3
of the primary vortex increases with a. The relationship between 3 and « is close to,
but not entirely linear. The trajectory of the primary vortex is completely independent
of the Reynolds number and is accurately predicted by the modified Kaden spiral. The
trajectory is also not influenced by the total length of the plate. The measured data
presented in Figure 4.6a include results from the plates with the rotational location at
the mid-length and from the plates with the rotational location at one end of the plate.
The distance between the rotational point and the tip is the same in both cases. From
the perspective of vortex formation and shear layer roll-up, a plate with a length of
4 cm that rotates around one end is equivalent to a 8 cm long plate rotating around its
centre location. The presence of a flipped and mirrored vortex system and shear layer
topology on the other side of the longer plate has no influence on the roll-up nor on the
trajectory of the primary vortex for the plate geometries and Reynolds numbers tested
here.

The influence of the distance between the rotational point and the plate tip, referred
to as the chord length here, is analysed by considering a plate with length 12 cm and
chord length 6 cm. For rotational motions with the longer plate, we observe the same
shear layer topology for the same Re -regimes described before. The modified Kaden
spiral predictions still provide an excellent prediction of the shear layer roll-up and
the trajectory of the primary vortex in Figure 4.6b. The angular velocity in terms of
dB/da is slightly increased for the higher chord length plates and a higher value of
n = 1.59 x 1072 was used for the modified Kaden spiral predictions of the larger chord
length wing. For the two different chord lengths, the ratio /c = 0.260 & 0.005. To take
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1.5

Figure 4.7: Temporal evolution of secondary vortices at different angular positions (a)
a =30.0° (b) @ = 55.7°, (c) @ = 83.0°, (d) @ = 110.5°, (e) o = 137.7°, and (f) o = 160.0°
for Re = 8380. The black curve is the modified Kaden'’s spiral, whose centre and end
are the primary vortex centre (+) and the right top plate edge (x). The spiral is only
plotted for 0 ranging from 6, to 47. The dashed line represents the plate tip trajectory.

tip
into account the influence of the chord length in our modified Kaden spiral model, we
replace the empirical constant  in Equation (4.2) with 7/c to obtain:

«

r=1'ca <§)2/3 , (4.5)

where 1’ = 0.260 for all data presented in this paper.

4.3.3 Timing of the secondary vortex shedding

In the next part, we focus our attention on the successive shedding of secondary vortices.
The first step is to determine if these secondary vortices are generated from the stretching
of an initially unstable shear layer or if they are discretely released after the separation
of the primary vortex. Figure 4.7 shows the flow topology at different plate angular
positions for Re = 8380. Between o« = 0° and o = 30° the primary vortex centre is close
to the plate tip and no secondary vortices are observed. At ov = 30°, the primary vortex
has moved away from the tip along the circular tip trajectory and a first secondary
vortex forms (Figure 4.7a). The first secondary vortex drifts towards the primary vortex
core and they merge as a consequence of their mutual interaction (Figure 4.7b). The
formation and shedding of successive secondary vortices is repeated along the entire
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Figure 4.8: Snapshot of the (a) vorticity field and (b) the swirling strength at o = 115°
for Re = 8380. The black rectangle corresponds to the region in which A, is computed.

(c) Evolution of A, as a function of the angular position of the plate. The dotted lines

mark the local maxima in the average tip swirling strength. The timing of the local
maxima are related to the separation angle of subsequent secondary vortices.

motion. Each vortex is independently formed and subsequently released from the
plate tip. In this situation, the shear layer appears as a cloud of vorticity close to the
plate tip from which vortices are discretely detached. Once the secondary vortices
shed, they move away and are located along the modified time-varying Kaden spiral
(Figure 4.7c-e). Vortices closer to the primary vortex deviate slightly from the predicted
spiralling curve only when the plate rotation is about to finish (Figure 4.7f).

The second step is to compute the timing of secondary vortices. If we consider the
vorticity field, the constant presence of the cloud of vorticity close to the tip hampers
the identification of the separation time. To estimate the timing of shedding of the
individual vortices we use the swirling strength criterion by Zhou et al. [147]. A vortex
is considered a connected region where the value of the swirling strength A is positive.
The swirling strength criteria allows us to distinguish more reliably whether a region of
high vorticity concentration indicates the presence of a secondary vortex or whether
it is due to a strong shear flow (see Figure 4.8a,b). To determine the timing of release
of subsequent secondary vortices, we calculate and analysed the evolution of the local
average swirling strength, denoted by \,,, in a small rectangular region close to the tip
of the plate. As we are purely interested in the counterclockwise rotating structure here,
we only count the positive swirling strength in regions where the vorticity is positive.
The location of the probing region is indicated in Figure 4.8a,b and an example of the
resulting temporal evolution of the local average tip swirling strength for Re = 8380

is presented in Figure 4.8c. The temporal evolution of Xﬁp

has a global maximum
and first peak at a = 32.6° which is followed by six clearly distinguishable smaller
peaks. The initial peak corresponds to the shedding of the primary vortex, and the
subsequent smaller peaks mark the shedding of individual secondary vortices. The
average swirling strength systematically drops to zero in between the individual peaks,
further supporting the conclusion that the secondary vortices are discretely released

from the tip of the plate. The timing of the local maxima of \,, is used to further analyse
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Figure 4.9: Snapshots of the (a,d) vorticity field and (b,e) swirling strength at o = 100°

and (c,f) evolution of Xﬁp as a function of the angular position of the plate. The first row

corresponds to Re = 840 at which the shear layer appears continuous. The second row
is for Re = 1955 at which the shear layer shows signs of instability.

the shedding timing of the secondary vortices. This strategy to determine the timing
of secondary vortex shedding is simple yet robust and allows for a systematic and
automated extraction of the timings for all measurements. The results depend slightly
on the location and size of the probing region which were carefully selected based on a

sensitivity analysis (section 4.5.2).

Results of the timing extraction strategy for Re = 840 and Re = 1955 are summarised
in Figure 4.9. For the lowest Reynolds number Re = 840, we have a continuous
stable shear layer and the associated snapshot of the swirling strength at a = 100° in
Figure 4.9a shows a single isolated coherent structure and no sign of secondary vortices.
This is confirmed by the time evolution of \,, (Figure 4.9a) that exhibits a single peak at
a = 31.9°. No other peaks are observed afterwards confirming that the shear layer is
a continuous layer of fluid without the presence of any instabilities for this Reynolds
number. For the intermediate Reynolds number Re = 1955, the shear layer topology
appeared to be undulating with some localised concentrations of high vorticity along
it (Figure 4.3b). The temporal evolution of the average tip swirling strength reveals
the shedding of two secondary coherent structures formed after the primary vortex
(Figure 4.9b). These two structures are formed and released from the tip and they are
not formed afterwards due to the stretching of the shear layer which does not become

clear based solely on the vorticity flow topology.
The experiments are repeated five times at each Reynolds number. The separation
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Figure 4.10: Delay between the successive shedding of secondary vortices in terms of
(a) dimensional time and (b) convective time or angular distance between secondary
vortices as of the shedding order n. The solid lines are the fit of the angular distance
between vortices and n.

time and angle of successive secondary vortices are computed and analysed for all
experiments with Re > 2500 corresponding to the discrete shedding regime. The timing
of the secondary vortex shedding versus the number corresponding to the order of
successive shedding is presented in Figure 4.10. In general, the time interval between
successive vortices increases the more secondary vortices have been released and the
time interval decreases with increasing Reynolds number, yielding a larger total number
of secondary vortices at the end of the 180° plate rotation. If we hypothesise that the
strength of the secondary vortices remains approximately constant, (see chapter 5 for a
more detailed discussion about this aspect), then the increase in time interval should be
due to a decrease in the circulation feeding rate by the shear layer. This feeding rate is
related to the shear rate of at the tip of the plate and can be estimated by:
dr o v2, —va _ (Qe)? —vi(t)

7 out in ~ in 4
dt 2 2 (4.6)

where v, refers to the velocity at the outer side of the shear layer, which equals the tip
velocity Q2c and v, refers to the velocity at the inner side of the shear layer. The velocity
at the inner side v, is close to zero during the initial part of the rotation as the plate
rotates in a quiescent fluid and increases due to the accumulation of vortex induced
velocity components along the direction of the plate’s motion. The feeding rate thus
decreases when the rotational velocity and the Reynolds number decrease and when
the induced velocity due to an increased number of released vortices. This explains the
general trends observed in Figure 4.10a,b.

To quantify the evolution of the shedding timing of the secondary vortices, we fit the
measured values in Figure 4.10b with a power law in the form:

a(n) = a(1+x)" (4.7)
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Figure 4.11: Coefficient x as a function of the maximum rotational speed of the plate.
The solid grey line is the power law fit of the experimental points.

where o, and x are fitting constants and n counts the number of secondary vortices. This
power law is suitable to represent the timing dynamics for all Reynolds numbers as all
fits have a coefficient of determination R*-value above 99 %. The parameter o does not
significantly change with Re and stays constant around a value of 30 (Figure 4.10b). See
next chapter for an in-depth discussion about a. The fitting parameter y indicates the
relative increase in « between the convective timing of successive secondary vortices, i.e.
Qi /0, = 14 x. A higher value of x indicates a larger delay between successive vortices
and a lower total number of vortices shed at the end of the motion. The evolution of y
as a function of the maximum rotational speed is presented in Figure 4.11. The value of
x decreases when the plate rotates faster and yields an increased feeding rate according
to Equation (4.6). The solid grey line of Figure 4.11 represents the power law fit that can
be expressed as a function of the Reynolds number:

x = aRe ~° (4.8)

where Re varies from 2500 to 12000 in the discrete shedding regime, and the fitting
constants are experimentally determined to be a = 11.7 and b = 0.4229. If we substitute
Equation (4.8) into Equation (4.7), we can estimate the angular positions at which
secondary vortices separate for various speeds of the plate, i.e Reynolds number Re .
For Re = 1955 that corresponds to the unstable shear layer regime, we should get
secondary vortices at o = 47.1°,67.4°,102.6°,151.3°. The first two angular positions
correspond to the locations where we observe the two local peaks of the average
tip swirling strength in Figure 4.9f. Later than 67.4°, we mostly observe zero values
of the average tip swirling strength for Re = 1955, expect around 100° and 150° at
which we have small non-zero values. This evidence may further suggest that the
flow at Re = 1955 present secondary vortices that shed from the plate according to
Equations (4.7) and (4.8), even if the flow topology resembles an unstable shear layer.
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4.4 Summary and conclusion

The roll-up of a shear layer behind a rotating plate in a quiescent fluid is experimentally
studied for different rotational velocities or Reynolds numbers. Particular focus was
directed towards the formation, trajectory, and timing of secondary vortices.

Based on the time-resolved PIV, we identified three Reynolds number regimes based
on the stability of the shear layer. For Re < 1500, a stable shear layer in the form of a
continuous band of vorticity is observed that rolls up into a single coherent primary
vortex. For Re > 2500, the shear layer is unstable and secondary vortices are discretely
released from the plate’s tip during the rotation. In the intermediate regime for 1500 <
Re < 2500, first signs of instability appear. The shear layer is still a continuous band of
vorticity but it shape is wavier and localised concentrations of higher vorticity emerge.
In all three regimes, the centre of the primary vortex is located on the plate tip trajectory
and the shear layer topology matches a spiral shape similar to the roll up of a free shear
layer. A modified version of the Kaden spiral is proposed to describe and predict the
temporal evolution of the shear layer roll up. The key modification is the replacement of
the constant dimensional Kaden constant K by a factor 7’ca that increases linearly with
the rotational angle of the plate and takes into the effect of the chord length. A single
value of 7 has been empirically determined for all experimental conditions presented
in this paper. The proposed modified Kaden spiral model describes the spatiotemporal
evolution of the shear layer and accurately predicts the trajectory of the centre of the
primary vortex for all Reynolds numbers and different plate dimensions.

The timing of secondary vortices shedding for Reynolds numbers in the discrete shed-
ding regimes is determined using the swirling strength criterion. The swirling strength
fields confirm that secondary vortices form directly at the tip of the plate and not further
downstream due to the stretching of the shear layer. The separation time of each sec-
ondary vortex is identified as a local maximum in the temporal evolution of the average
swirling strength close to the plate tip.

The time interval between the release of successive vortices is not constant during the
rotation but increases the more secondary vortices have been released. The shedding
time interval also increases with decreasing Reynolds number, yielding a lower total
number of secondary vortices at the end of the 180° plate rotation for lower Re . The
increased time interval under both conditions is due to a reduced circulation feeding
rate.
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Figure 4.12: Definition of the radial and angular spiral coordinates and its orientation
with respect to the plate’s frame of reference. The trigonometric relationships Equa-
tion (4.9) and Equation (4.10) are obtained in the shaded triangles.

4.5 Appendices

4.5.1 Derivation of the modified Kaden spiral

The modified version of the Kaden spiral we propose takes into account the temporal
increase in the distance between the primary vortex and the tip of the plate where the
bound end of the vortex sheet is fixed. The angular coordinate along the spiral that
The value of 6
at every time step based solely on the observation that the primary vortex moves along

marks the bound end of the vortex sheet is denoted by ¢ is determined

tip* tip
a path that matches the plate tip trajectory. Based on this purely geometric constraint,
we also directly obtain the radial spiral coordinate where the modified Kaden spiral
meets the plate tip, indicated by r,,, and the angular location of the primary vortex with

respect to the plate, denoted by 3. Their detailed derivation is given here.

We consider the flow situation after the plate has rotated for a given « in the plates
frame of reference in Figure 4.12. The plate tips trajectory is indicated by the dashed
line. The primary vortex is located on that circular trajectory. Its angular position with
respect to the plate’s centre of rotation and tip is indicated by §.

Consider that we have shifted the modified spiral defined by Equation (4.5) such that
the spiral centre (r = 0, § — o0) is located in the centre of the primary vortex. The radial
and angular location of the plate tip in the spiral coordinates are given by (r,, 0,,) as
indicated in Figure 4.12. For a given spiral form, there is only one solution for /5 that
allows the spiral to go through the plate tip. This solution can be found by ensuring that
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the trigonometric relationships for the two triangles outlined in Figure 4.12b are met:

B = 2 arcsin(ry, cos by,/2c) 4.9)
B = arcsin(ry, cos by, /c) . (4.10)

The distance between the primary vortex centre and the tip of the plate, r,, is deter-

mined through the modified Kaden spiral (Equation (4.5)), for § = 6,,. In this way,

tip*

Equation (4.9) and Equation (4.10) are only functions of 6,, which is computed by
equalising the two relationships. For 8 > 7/2, we need to use

B = m — arcsin(ry, cos 0y, /c) (4.11)

instead of Equation (4.10). Once §,, is retrieved, we substitute it into Equation (4.9) to
obtain the angular position 3 of the primary vortex. From the value of 3, we compute
the cartesian coordinates of the primary vortex centre, which corresponds to the centre
of our predicted spiral model. The full spiral is finally obtained for every plate angular
position ¢, using Equation (4.3) with 6 € [6,,, oc].

4.5.2 Sensitivity analysis of the location and size of the average tip swirling
strength probing region

The local average swirling strength ), reaches a local maximum value when most of
the vortex fills the selected rectangular region. If the position and dimension of the
rectangular region is not properly set, the identification of the separation time through
local peaks loses accuracy. We perform a sensitivity analysis of the best position and
dimension of the rectangular region. The first thing to set is the centre of the rectangle.
We observed that when the core centre of a secondary vortex is approximately 1 cm
above the plate tip, the following secondary vortex starts growing. Since the trajectory
of each secondary vortex is predicted by the modified Kaden'’s spiral (Equation (4.5)),
we decide to place the centre of the rectangle along the spiral, 1 cm above the tip.
We decided to place it at this distance after we performed a sensitivity analysis on
the position of the box. If the box position is above a height of 0.35¢, the first two
secondary vortices are not clearly detected in the box (Figure 4.13a). Above 0.35¢ the
peak that corresponds to the presence of the primary vortex can not be distinguished
from the smaller peaks that correspond to the presence of the first two secondary
vortices (Figure 4.13a). On the other side, if the box is too close to the tip of the plate,
with the base at a distance lower than 0.12¢ from the tip, the signal is too noisy due to
the presence of the constant cloud of vorticity at the tip (Figure 4.13b). We gradually
move the box in the range 0.15¢ < h < 0.35¢ and compute o and x at each box location,
with the aim of evaluating the best location of the box. The influence of the box location
on the coefficient of the power law are not significant and the value of o varies from
29.9° to 32.8° when moving the box from 0.15¢ to 0.35¢ (Figure 4.13). The dashed line
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marks the location corresponding to h/c = 0.24, where we decide to place the box
because it is where the computed averaged swirling strength gives the clearest peaks
for most of the tested cases. The area of the rectangle has to be large enough to fully
include the vortex but it should not include the swirling strength associated with the
plate and the other secondary vortices. For the plate chord ¢ = 4 cm, a rectangle with a
base of 0.25c¢ is sufficiently large to include the radial dimension of the secondary vortex
and exclude the swirling strength of the plate. A height of 0.15¢ allows to have one
secondary vortex at a time in the selected rectangle.
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Figure 4.13: Computation of the average swirling strength \,, inside a box placed at
(a-b) h/c = 0.35 and (c-d) h/c = 0.15 from the plate. Coefficients (e) oy and (f) x of
Equation (4.6) as a function of the dimensionless vertical distance h/c of the box from
the tip of the plate.
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Chapter 5

Formation and scaling of primary
and secondary vortices

In the previous chapter, we mainly focused on the timing and the trajectory of primary
and secondary vortices. This chapter deals with the strength of all vortices shed from the
rotating plate. We follow the same structure used to present results in chapter 4. First,
we recall the most important studies found in literature about this topic and we clarify
the unanswered questions we are going to address. Afterwards, a brief summary of the
experimental set-up is given. Look at chapter 3 for further details. The third section is
where we describe and discuss the results, trying to give a physical explanation to all of

them. Finally, we summarize the take home messages in the conclusion sections.

5.1 Literature studies about the topic

The presence of vortices is ubiquitous and widespread in nature and engineering
applications. The formation, growth and shedding of coherent vortical structures
becomes predominant when the Reynolds number Re is higher than 102. The vortical
structures that form as a result of the interaction between an object and a flow are not
all the same. In a wide spectrum of vortex dominated flows, the formation of bigger
coherent vortical structures are followed by smaller vortices. We can observe smaller
vortices in the trace left by a main vortex when an object, such as a cone or a flat plate, is
accelerated from rest (Figure 5.1a). In this scenario, the smaller vortices roll up into the
previously formed bigger vortex, as observed by Grift et al. [57], Rosi and Rival [120].
Bigger and smaller vortices can be also observed in more complex flow configurations.
When an airfoil pitches and heaves in a flow stream, a vortex is formed each cycle of
the motion. After the vortex is fully formed, we can observe the formation of smaller
vortices in the flow region between the primary vortex and the leading edge of the
airfoil (Figure 5.1b)

95



Chapter 5. Formation and scaling of primary and secondary vortices

Ayrton [5] first refers to bigger or primary vortices as those structures that attain their
full strength during a single period of the motion. Smaller secondary vortices require
more than a single period of the motion to form and they can be called residual vortices.
The definition of primary vortex is univocal in vortex dominated flow and it refers
to the main and first generated coherent vortical structure (see chapter 2). A leading
edge vortex that arises from unsteady and revolving motions of an airfoil [33, 99] is a
primary vortex. The vortex ring that is generated from the ejection of fluid through a
piston-cylinder apparatus [79, 132] or through an orifice [87, 78] is a primary vortex. An
object that is accelerated from rest induces a vortex behind it. This vortex, often called
a start-up vortex [90, 146, 126, 112], is a primary vortex. The definition of secondary
vortices is more ambiguous. Wei and Smith [139] observed a shear layer instability in
the near-wake of circular cylinder that rolls up into secondary vortices. These secondary
vortices are oriented in the stream-wise direction, perpendicular to the primary Karman
vortex that is oriented in the span-wise direction [13]. This phenomenon was previously
called transition waves by Bloor [11]. Dabiri [20], Gharib et al. [49] identified secondary
vortices in the trailing jet of a primary vortex ring ejected by a piston-cylinder apparatus,
like the sketch reported in Figure 5.1c. These secondary vortices are observed after the
vortex ring has stopped growing. The additional vorticity rejected by the primary vortex
ring forms these secondary vortical structures that are similar to a Kelvin-Helmholtz
instability (Figure 2.10e). In the aforementioned cases, secondary vortices do not play
any role in the primary vortex separation. Kissing et al. [72] defines secondary vortices
as opposite sign vortices that appear between the primary vortex and the airfoil. The
primary vortex induces an opposite sign vorticity on the surface of the airfoil. This
opposite sign vorticity grows ahead of the main vortex and becomes a secondary vortex.
The growth of the secondary vortex interrupts the shear layer to feed the primary vortex.
A third vortex is formed between the leading edge shear layer and the secondary vortex.
These two structures are called secondary vortices and they are responsible for the
primary vortex separation. A similar outline is also observed by Wojcik and Buchholz
[143], where secondary vorticity is generated at the surface of the pitching blade. When
a primary vortex descends towards an horizontal ground plane, the flow underneath
the vortex induces opposite sign vorticity on the ground plane. This bounded vorticity
can separate to form one or more discrete secondary vortices that orbit the primary
vortex [62, 86]. These secondary vortices have a weaker strength than the primary
vortex and induce the primary vortex to rebound from the surface. Here, we refer to
secondary vortices as the coherent structures that are shed after the primary vortex
but still during the same period of motion and they have the same vorticity sign of
the primary vortex. They are discretely shed from the tip of the plate and they do not
form as a result of an unsteady shear layer [43]. In our study, secondary vortices are not
responsible for the separation of the primary vortex from the shear layer.

Our attention and focus is caught by the difference between primary and secondary
vortices, which is unclear yet. The limit strength that the primary vortex can reach is
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Figure 5.1: Sketch of primary and secondary vortices detected in the wake of (a) an
accelerating flat plate, (b) pitching airfoil and (c) piston-cylinder apparatus.

strongly correlated with the formation number, which is the limiting formation time
above which a vortex does not grow anymore. Onoue and Breuer [102] found that the
circulation of the leading edge vortex formed from a pitching plate reaches its maximum
at a formation number of 3.740.3. A similar value is also found by Ringuette et al. [116]
who observed the vortex pinch-off from an accelerating flat plate to occur at a formation
number of approximately 4. These values of the formation number are the same order of
magnitude as the values found by Gharib et al. [49], Milano and Gharib [93], Ringuette
etal. [116], Dabiri [20] for a vortex ring ejected by a piston-cylinder apparatus. However,
there is also a consistent amount of works in literature where the formation number
is not 4. Dabiri and Gharib [23] delayed the formation number of the vortex ring by
varying in time the exit diameter of the piston-cylinder apparatus. Krueger et al. [80]
reduced the formation number by putting the piston-cylinder apparatus in a uniform
co-flow. Shusser et al. [133] delayed the formation number by constantly accelerating
the piston instead of impulsively starting it. These results suggest that depending on
the kinematics or the geometry of the vortex generator, the primary vortex needs less or
more time to reach its limiting strength, leading the formation time to be different from
a hypothetical unique one.

Many works in literature focus only on the shedding frequency of secondary vortices,
which depends on the specific flow configuration. Bloor [11] observed that the ratio
between the characteristic frequencies of primary and secondary vortices shed in the
near-wake of cylinders varies with Reynolds number according to fi/fs = Re '/?,
where f; and f, are the shedding frequencies of the primary and secondary vortices.
However, there is no consensus about the exponent value of the proposed relationship.
Prasad and Williamson [110] indicated that an exponent value of 0.67 works for Re up
to 10° and Wei and Smith [139] found 0.87 in the range from Re = 1200 to 11 000. No
clear relationships are established in the situation of an isolated primary vortex. Based
on the flow visualisation around a submerged flat plate, Grift et al. [57] determined the
shedding frequency of secondary vortices to lie in the range from 13 Hz to 20 Hz, for
different values of acceleration, velocity, and immersion depth. This range corresponds
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to a Strouhal number around 0.2, according to the plate geometry and kinematics used
by the authors. The secondary vortex shedding frequency behind a vertical flat plate
increases with increasing acceleration of the flat plate according to Rosi and Rival
[120]. Francescangeli and Mulleners [43] found that the shedding timing of secondary
vortices behind a rotating plate is not constant during the rotation but increases the
more secondary vortices have been released. The onset of secondary vortices is a sign
of the primary vortex separation [72, 43] and a more detailed investigation of the size
and strength of all secondary vortices is crucial to compare them with the primary
vortex features. Harris and Williamson [62] found that the strength of secondary
vortices generated as a result of a ground effect with the approaching primary vortex
linearly increases with the Reynolds number. They compare the strength of primary
and secondary vortices and they showed that for Re > 3000 the ratio between the two
strengths is Re independent.

A better understanding of the different nature between primary and secondary vortices
leads us to study the limiting process of the formation of both primary and secondary
vortices. We experimentally study vortices generated from a rectangular flat plate that
is rotated around its centre location. We choose to study this configuration because
the rotation, together with the translation, is a simple but basic motion. Any two-
dimensional motion can be decomposed into a combination of these two. The translation
is a widely explored kinematics [26, 38, 120, 105], while there is less information about
vortex formation from pure rotating objects. The objective of this paper is to first define
the limit formation process of the primary vortex. This implies the detection of the
formation time and limit strength of the primary vortex at the moment of pinch-off.
Secondly, the same methodology is applied to retrieve the limit strength of secondary
vortices. The final goal is to compare the limit values of primary and secondary vortices
and explain the differences between them.

5.2 Experimental methods

Here we give a brief description of the experimental set-up used to perform particle
image velocimetry (PIV). We also discuss the parameters we change among different
experiments and how we processed PIV images. For further details refer to chapter 3.

We rotate a rectangular flat plate about 180° around its centre span-wise axis span-wise
axis in an octagonal tank with an outer diameter of 0.75 m filled with water (Figure 4.1a).
The first series of measurements is conducted with a rectangular flat glass plate, with
length | = 8 cm, width or span s = 16 cm and thickness h = 2 mm. The distance
between the centre of rotation and the tip of the plate is referred to as the chord length c.
The thickness of the plate is increased to h = 4 mm for the second set of measurements.
This allows us to study the influence of the thickness on the formation of vortices. A
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third set of measurements with a longer plate with length I = 12 cm, yielding a chord
length of ¢ = 6 cm, was conducted to provide insight into the influence of the chord
length on the vortex formation.

The rotation mechanism is fastened to an outer aluminium frame such that the mid span
of the plate is in the centre of the tank to limit wall interference effects. The kinematic
input is given by a servo motor (Maxon RE 35) connected to a stainless steel shaft and
transferred to the flat plate through a 1 : 1 conical coupling. A 1 : 19 gearbox is mounted
on the motor to ensure high torque, speed, and acceleration. The rotational angle, speed,
and acceleration are controlled via a Galil DMC-40 motion controller, which allows for
accurate control of arbitrary motion profiles. The rotation programme is a trapezoidal
rotational velocity profile with a fixed rotational amplitude of 180° (Figure 4.1b).

To ensure a continuous acceleration profile, the corners of the velocity trapezoid are
smoothed. The maximum rotational speed (2,,,, is varied from 30 ° s 1 t0 400 °s7L. This
leads to a Reynolds number Re = ({,..c?)/v ranging from 840 to 11150. v is the
kinematic viscosity of the water and the chord c is defined as the distance between the
rotation point and the tip of the plate. The rotational acceleration €2 is fixed at 6000 °s~2.
The PIV images are recorded in the cross-sectional plane at the model mid span. A high-
power pulsed light-emitting diode (LED Pulsed System, ILA 5150 GmbH) is used to
create a light sheet in the measurement plane. The applicability of high-power LED for
PIV has been demonstrated previously by Willert et al. [140], Krishna et al. [76]. Time-
resolved PIV images are recorded with a Photron FASTCAM SA-X2 high speed camera.
The camera is equipped with a 35 mm Canon lens and the camera is aligned carefully
such that the optical axis of the lens is aligned with the rotational axis of the plate and is
perpendicular to the light sheet (Figure 4.1a). The frame rate and the exposure time are
varied, depending on the dynamics of the motion. A frame rate and exposure time of
250 Hz and 1 ms are selected for a rotational speed of 30 °s~!. These values are 2000 Hz
and 0.5 ms for the highest tested speeds. The frame rate is high enough to capture the
dynamics of the motion and the LED is set to continuous mode. The camera resolution is
1024 px x 1024 px, which corresponds to a field of view of 20 cm x 20 cm. The raw data
are processed by the commercial software PIVview (PIVTEC GmbH, ILA 5150 GmbH)
using a correlation model based on minimum squared differences and a multi-pass
interrogation algorithm with three iterations. The final interrogation window size is
32 px x 32 px with an overlap of 68 %. A third order B-spline interpolation method for
sub-pixel image shifting is performed on all passes. The resulting physical resolution is
1 mm, or 0.025c with ¢ = 4 cm.
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Figure 5.2: Temporal evolution of vorticity and swirling strength \.; at different
angular positions (a,d) a = 30.0° (b,e) @ = 83.0° and (c,f) o = 115.0°. The black
curve is the modified Kaden’s spiral defined in Francescangeli and Mulleners [43]. The

dashed line represents the plate tip trajectory. (g) Evolution of A, as a function of the

angular position of the plate. The dotted lines mark the separation angle of subsequent
secondary vortices. (h) Delay between the successive shedding of secondary vortices as
a function of the shedding order n for Re = 8380. The solid line is the power law fit.

5.3 Results

What emerged from the previous chapter is that the plate rotation in a range of Reynolds
number from 2790 to 11 170 results in the flow topology shown in Figure 5.2a-c. The
formation of a bigger primary vortex is followed by the occurrence of smaller secondary
vortices that move along a spiralling trajectory. Secondary vortices are discretely re-
leased from the plate tip and we refer to this tested range of Reynolds number as the
discrete shedding regime [43]. The shedding of the individual secondary vortices is esti-
mated with the swirling strength criterion by Zhou et al. [147]. A vortex is considered a
connected region where the value of the swirling strength ) is positive (Figure 5.2d-f).
The evolution of the local average swirling strength, denoted by ), in a small rectan-
gular region close to the tip of the plate for Re = 8380 is presented in Figure 5.2g. The

temporal evolution of Xﬁp

has a global maximum and first peak, followed by six clearly
distinguishable smaller peaks. The initial peak corresponds to the primary vortex, and
the subsequent smaller peaks mark the shedding of individual secondary vortices. The

local maxima of the six smaller peaks identifies the shedding timing of the secondary
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vortices expressed in terms of a.

As observed in the previous chapter, secondary vortices are not released with a constant
frequency during the rotation but with a timing that follows Equation (4.7). This power
law is suitable to represent the timing dynamics for all Reynolds numbers in the discrete
regime. The fitting parameter x is proportional to the ratio o,;1/a,. The higher the
value of x the longer the plate has to rotate before a new secondary vortex sheds. This
parameter depends on the Reynolds number, as shown in Figure 4.10 of the previous
chapter. The fitting parameter «, corresponds to the angular position at which n = 0
(Figure 5.2h). The coefficient oy may represent the separation of the primary vortex.

5.3.1 Primary vortex growth and separation

The focus of this section is the growth and subsequent separation of the primary vortex
from the rotating plate. The first step of our analysis is to identify the plate’s angular
position at which the primary vortex is no longer connected with the feeding shear layer.
To do so, we investigate how the flow topology evolves when the plate approaches the
angular position o = a. If we consider a Reynolds number of 8380, the fitting constant
ayp is found to be 32°+2° (Figure 5.2h). The analysis of the flow topology is performed by
computing both positive (pFTLE) and negative finite-time Lyapunov exponent (nFTLE)
tields [58, 60] before and after the plate reaches «q (Figure 5.3). The ridges in the FTLE
fields help identify the boundaries of coherent flow structures and the intersection
between the ridges of the positive and negative FTLE fields marks a saddle point. The
emergence of saddles points indicates vortex detachment from the plate tip (Mulleners
and Raffel [100], Huang and Green [65], Rockwood et al. [119], Krishna et al. [76]). The
saddle point closest to the wing tip is marked by circles in Figure 5.3. When the plate is
at an angular position o < v, the negative ridges are barely observable in the flow field
(Figure 5.3a). At this stage, no meaningful intersections between positive and negative
FTLE ridges are detected. This indicates that the feeding process of the primary vortex
is still in progress. At o = 33°, the negative ridges are now clearly visible in the flow
field (Figure 5.3b). The overlap between positive and negative FTLE fields shows an
intersection that defines a saddle point very close to the tip plate. The position of the
saddle point (black circle in Figure 5.3b) is exactly along the shear layer that is feeding
the primary vortex. This observation shows that at «,, the primary vortex pinches-off
from the plate tip and is advected downstream. When the plate has surpassed «, the
saddle point is still visible in the flow field and it has moved downstream together with
the primary vortex (Figure 5.3c).

When the saddle point appears, the vortex separates from the plate tip. This implies that
the feeding process from the shear layer to the primary vortex is finished. The growth
rate of the primary vortex is quantified through the measure of its circulation in time.
To measure the primary vortex circulation, we first need to identify the boundaries. We
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Figure 5.3: Positive and negative FTLE ridges at (a) o < «, (b) @ = o and (c) a > «, for
Re = 8380. The black circle mark the position of the saddle point.

use both the swirling strength \.; criterion and the dimensionless Galilean invariant
scalar function I', [51] to identify the boundaries of the primary vortex. The vorticity
is integrated inside the vortex contour and we obtain a measure of the primary vortex
circulation. In chapter 3 we discuss in details how the circulation is computed and we
show the match between the circulation estimated with A, and T',.

We compare the evolution of the primary vortex circulation as a function of a with the
total circulation generated by the right side of the plate rotation, for Re = 4190 and
Re = 8380 (Figure 5.4a). For our analysis, the convective time is the angular position of
the plate o that corresponds to the ratio between the travelled arc length [ = Qtc and
the chord length c. The chord of the plate is the distance between the rotation point
and the tip. The total circulation associated with the positive vorticity released in the
flow constantly increases with increasing «. The rate of increase changes during the
rotation and is higher at the beginning of the motion. When the plate starts rotating, the
primary vortex circulation I'; and the total circulation I',, match. When the plate has
travelled approximately 32°, the primary vortex circulation does not increase anymore
with « while the total circulation keeps increasing. During the feeding process, all the
generated circulation is enrolled into the primary vortex. When the vortex pinches-
off, the circulation is not entrained in the primary vortex anymore and additional
circulation is released in the form of secondary vortices. The primary vortex circulation
deviates from the total circulation and reaches the final value of circulation. We measure
final values of 0.0032(1) m?s~! and 0.0062(2) m?s™! for Re = 4190 and Re = 8380.
These values represent the dimensional limit strength of the primary vortex for the two

presented Reynolds numbers.

The amount of circulation in the flow field depends on the Reynolds number. The
higher the Reynolds number, the higher the total circulation produced. The Reynolds
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Figure 5.4: (a) Dimensional and (b) dimensionless primary vortex and total circulation
for Re = 4190 and Re = 8380. The solid grey line is the evolution of I'* predicted by
the inviscid theory.

number is based on the plate rotational velocity and we scale the circulation as follows:

_ I
)

*(t) (6.1)
where (2 is the value of the rotational speed at each angular position. The acceleration
time among all the tested cases is not fixed because the rotational acceleration is kept
constant to 6000 °s~2 and the maximum speed is varied. The choice of the instantaneous
value of the speed instead of the maximum rotational speed, allows for a better scaling
of the circulation during the acceleration period. For all the tested rotational speeds, the
acceleration phase ends when the plate has travelled 24°, a value lower than ag. From
this angular position, 2 is equal to the maximum rotational speed 2,,... The evolution of
the dimensionless total and primary vortex circulation, I';,, and T, as a function of « is
not affected by the increase in the Reynolds number from 4190 to 8380 (Figure 5.4b). The
match between I, and I lasts until 32°, after which I’y remains constant to 0.79 + 0.03
for both Re. The angular position at which the primary vortex circulation reaches its
maximum value corresponds to the moment at which we observe the occurrence of a
saddle point in the field (Figure 5.3b). Both events happen at the same time and within
the computed range of ap = 31° & 2°. These observations confirm that o, represents the
angular position at which the feeding process of the primary vortex ends.

The evolution of ag as a function of Re is shown in the box plot of Figure 5.5a. In the
tested range, the Reynolds number does not influence much the coefficient «, that seems
to remain constant around 30°. The only influence of the Reynolds number is a slightly
higher uncertainty associated to the measure for Re > 8000. If we compute the average
oy of the mean values retrieved at each Re , we obtain an angle of 31.4°. We take this
angular position as the moment at which the feeding process of the primary vortex ends,
for Re ranging from 2500 to 12000. We experimentally measured the dimensionless
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Figure 5.5: (a) Fitting parameter «, as a function of the Reynolds number. (b) Dimension-
less circulation I of the primary vortex measured at @y, as a function of the Reynolds
number. The dashed line is the prediction of the primary vortex limit circulation with
Equation (5.6).

circulation I'j of the primary vortex at &g for each Re . The value of I that is enrolled
in the primary vortex when the plate approaches @y does not change with Re and stays
in a range of 0.81 4 0.02 (Figure 5.5b). This value represents the limit dimensionless
strength I, enrolled in the primary vortex.

The next step is to predict the primary vortex growth and limit strength with the
inviscid theory by following the analysis made by Pullin [111]. When the plate rotates
at a constant speed, we experimentally observe that:

W=

I* = Ko (5.2)
where the fitting constant K is experimentally determined to be 1.02 with « expressed
in radians. The dimensionless total circulation is proportional to o!/3, (solid grey
curve in Figure 5.4b), the same dependency shown by Pullin and Sader [113] for a
two-dimensional plate moving at a constant speed. This result is also experimentally
and numerically confirmed by Xu and Nitsche [146], Rival et al. [118]. We want now to
check if the value of the fitting constant K is in agreement with results from inviscid
theory. When a flow encounters a wedge of angle j3,, the total circulation released in
the flow is given by [111]:

1
2(1+vp) 9 _ 1— 5
= Jort = Y 0= [W] o (5.3)
D

where 1 = 7/(2m — 8,) and v, is a constant that is related to the time exponent m of
Equation (2.21) and depends on the flow kinematics (see section 2.2.4). An impulsively
started flow corresponds to v, = 0. The motion of a flat plate can be modelled as a flow
past a wedge of angle 3, = 0°, which leads to ;» = 1/2. The constant J depends weakly
on v, and is numerically determined by Pullin [111] for a zero wedge angle and several
values of v,. For the specific case of an impulsively started flat plate, the constant J is
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numerically determined to be 2.64 and Equation (5.3) reduces to:

1

™ = JCHs C=[@2—p1—p)]>* (5.4)

with y = 1/2. Then, the dimensionless circulation is T* = 2.3t'/3 and the proportional
constant is approximately double the value of K we determined above. If we consider
a constant k; = 2.3, we can relate our experimental constant & with Pullin’s constant .J
computed from inviscid theory:

J

K= l@-w-w]™, u=j 55)

When the plate is at a < ap, the growth of the primary vortex is described by Equa-
tions (5.2) and (5.5). At a = @p, the vortex does not grow anymore and the limit strength
value can be determined as:

J
k;

1 1
Tfyp = =09 [(2— u)(1 — u)] 7% = 0.83 (5.6)
This value is within the uncertainty of the measured dimensionless circulation of the
primary vortex at ag in the discrete shedding regime (2500 < Re < 12000), as shown in

Figure 5.5b.

For Reynolds numbers lower than 2500, we observe a continuous (Re = 840) and
an unstable (Re = 1955) shear layer that connects the tip of the plate to the primary
vortex (see Figures 3.6 and 4.3). One may think that the shear layer keeps feeding
the primary vortex for a longer convective time than @g at lower Re . This could be
a solid hypothesis especially at Re = 840, in which the shear layer is continuous
and has no sign of instability. We know from experiments that the dimensionless
total circulation released in the flow follows Equation (5.2) for all the tested Reynolds
(800 < Re < 12000). If the shear layer feeds the primary vortex for a longer convective
time than a@p, the primary vortex may reach a higher limit strength at lower Reynolds
number. The objective is to evaluate the limit strength of the primary vortex at lower
Re . In the discrete shedding regime, the primary vortex reaches its limit strength
immediately before the formation of the first secondary vortex. This helped us to reduce
the angular range around which we expect the primary vortex separation. At lower
Reynolds number, we do not observe any secondary vortices and the identification
of the primary vortex separation is trickier. We compute the strength of the primary
vortex at Re = 840 and Re = 1955 for angular positions a > @g (Figure 5.6). The

circulation stays constant around a value of 0.82 for both Re . This value is close to I';; |
computed in Equation (5.6) and is reached at o = @y, because the total shed circulation
is still predicted by Equation (5.2) in the range of Re that goes from 800 to 12 000. We
conclude that the primary vortex reaches the same limit strength at the same angular
position in all the three different regimes. This result shows that the limit strength of

the primary vortex is not related with the topology of the shear layer. The shear layer
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Figure 5.6: Dimensionless primary vortex circulation outside the discrete shedding
regime, for Re = 840 and Re = 1955. The solid grey line is the evolution of I'* predicted
by the inviscid theory.

does not feed the primary vortex when o > @y, even if the shear layer topology appears
as a continuous layer of fluid that rolls-up into the primary vortex (Figures 3.6 and 4.3).
The main difference is that the circulation released in the flow after the primary vortex
separation is entrained into individual coherent secondary structures in the discrete
shedding regime. For 800 < Re < 2500, the circulation is shed from the plate as a shear
tflow.

5.3.2 Analogy with the piston-cylinder apparatus

We now try to make an interpretation about the vortex separation, based on a kinematic
argument. When a vortex ring is ejected from a piston-cylinder apparatus, Mohseni and
Gharib [94] proved that the vortex pinches-off from the trailing jet when its velocity
ranges from 0.5U to 0.6U, with U being the piston velocity. In this range of speed the
vortex ring moves faster than the feeding shear layer. In analogy with the vortex ring,
we make the hypothesis that the primary vortex at oy is faster than the feeding shear
layer.

We estimate the velocity of the primary vortex Uy based on the results of the previous
chapter. The angular position 5 of the primary vortex with respect to the plate is
completely independent of the Reynolds number and increases with the convective
time « (Figure 4.6). The relationship between § and « is close to, but not entirely linear
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and is well approximated by the following second order polynomial equation:
B =p1a® + paa + p3 (5.7)

where the polynomial coefficients are p; = 0.037, p» = 0.512, p3 = 0.029 with a and
expressed in radians. From Equation (5.7), the primary vortex velocity relative to the
plate is computed as follows:

Uy = fBe = e’ (5.8)

do

The velocity Uy is normalized with respect to the maximum velocity U, = €,4,c and
results are shown in Figure 5.7 for various Re . At the beginning of the motion, the
primary vortex speed is between 0.1U, and 0.3U,, and the vortex remains close to the
plate. During this phase the primary vortex is fed by the shear layer and its speed
relative to the plate progressively increases, depending on the acceleration time of the
plate. The higher the acceleration time of the plate, the slower the primary vortex moves
away from the plate. When the acceleration phase ends, Uy /U, linearly increases as
a function of a with the same slope for all the tested Re . When the plate is at &y, the
velocity of the primary vortex centre is 0.55U,, for all the tested cases. This value is
exactly in the middle of the velocity range observed by [94] in which vortex separation
occurs. The velocity of the primary vortex centre does not depend on the kinematics
of the plate (see chapter 4) and the primary vortex reaches its limit speed at the same
angular position, regardless of the Reynolds number. As a consequence, the primary
vortex reaches the same final dimensionless strength for all the tested Re . Above the
limit speed, the separation from the feeding shear layer is triggered and the primary
vortex stops growing.

5.3.3 Primary vortex formation number

The analogy between the primary vortex and the vortex ring ejected from a piston-
cylinder apparatus suggests to define a formation number for the primary vortex. Dabiri
[20] referred to the vortex formation number 7" as the dimensionless convective time at
which the total circulation fed by the vortex generator is equal to the vortex circulation
(see section 2.4.2 for further details).

Here, the dimensionless convective time can be defined as [/c or I/h, where | = ac
is the arc length travelled by the tip of the plate. To determine which scaling is more
appropriate to characterize the age of the primary vortex generated by the rotating
plate, we tested two additional plates in the same range of Reynolds number to check
how the chord and thickness of the plate influence the primary vortex separation. One
plate has the same thickness of the first tested plate, but we increase the chord length
from 4 cm to 6 cm. The other plate keeps the same chord length but has a thickness of
4 mm, the double of the first tested plate. For a Re = 8380, we compare in Figure 5.8a
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Figure 5.7: Dimensionless velocity of the primary vortex centre as a function of the
plate’s angular rotation, for various Re . The dashed line identifies the angular position
ap and the grey region refers to the velocity range in which Mohseni and Gharib [94]
observed the vortex separation.

the dimensionless circulation growth of the primary vortex as a function of « for the
three different plates. When the chord of the plate is increased from 4 c¢m to 6 cm, the
primary vortex stops growing at o = 20°, which is lower than @g. As a consequence, the
limit strength of the primary vortex issuing from a 6 cm plate is around 0.7. This value
is approximately 13% smaller than the value of the strength measured when the plate
has a smaller chord. If we increase the thickness of the plate from 2 mm to 4 mm, the
primary vortex growth lasts for a longer time. The circulation stops increasing when
the plate reaches an angular position o = 58°. The normalized strength reached by the
primary vortex is higher compared to the two other plates and is around 1. This result
suggests that the dimensions of the plate, in particular the chord and the thickness,
influence the growth of the primary vortex. Increasing the chord results in an earlier
separation of the primary vortex that entrains a smaller amount of circulation. A bigger
thickness delays the separation and the primary vortex entrains a larger amount of

circulation.

The scaling of the primary vortex separation requires the definition of a new dimen-
sionless time that takes both thickness and chord into account. We define the following
dimensionless time to reach this goal and identify the vortex formation number:

ac

T =
h

(5.9)

where | = ac is the arc length travelled by the plate and & is the plate thickness. We
can describe this dimensionless time as the number of thicknesses & that the plate has
to travel along the arc length [ before the primary vortex separates. The comparison
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Figure 5.8: Primary vortex circulation for 3 different plate geometries as a function of (a)
the plate’s angle of rotation and (b) the dimensionless time 7'.

between the dimensionless circulation of the primary vortex generated from the three
different plates as a function of the new dimensionless time 7™ is shown in Figure 5.8b.
Regardless of the dimensions of the plate, the primary vortex stops growing when
T* ~ 10. We consider this value the vortex formation number 7" of the primary vortex
generated from a rectangular flat plate that rotates with a speed resulting in a Reynolds
number range from 840 to 12 000. This result proves that the angular position at which
the primary vortex separates is not unique, but given by:

ao=T (5.10)

ol

Increasing the thickness and decreasing the chord lead to a longer growth of the primary
vortex. As a consequence, the primary vortex reaches a higher dimensionless limit
strength. The considerations about the plate dimensions are valid with an increase of the
thickness small enough to still consider the plate thin. If we exceed this range, the thin
flat plate becomes a three-dimensional object and the out-of-plane velocity component
together with three-dimensional effects cannot be neglected. In the hypothesis of a very
long chord length, the primary vortex has no time to grow according to Equation (5.10).
On the contrary, the primary vortex does not stop growing if the chord length is really
short. This observations are not physically consistent and we cannot prove the validity
of Equation (5.10) outside of the range of tested aspect ratios.

The total circulation released in the flow by the thicker and longer plates follows
Equation (5.2) (Figure 5.9) and we can still use inviscid theory to predict the limit
strength of the primary vortex generated from different plate dimensions. This means
that the chord length c is the right characteristic length to scale the total circulation
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Figure 5.9: Total dimensionless circulation released in the flow from the longer and
thicker plates. The solid grey line is the evolution of I'* predicted by the inviscid
theory and the dashed lines mark the limit strength of the two plates computed from
Equation (5.11).

because the fluid particles are first advected along the chord and then entrained into
the primary vortex (see Figure 3.4). As a consequence, the dimensionless convective
time o = [/c is the right parameter to scale the primary vortex growth (Figure 5.8a).
On the contrary, results show that the dimensionless convective time 7% = [/h is the
right parameter to scale the age of the primary vortex (Figure 5.8b). The primary vortex
pinches-off when the plate has travelled an arc length of approximately 10 times the
plate thickness. The thickness of the plate has the same order of magnitude of the
width of the feeding shear layer and may explain why the plate thickness is the correct
parameter to scale the primary vortex pinch-off. A confirmation of this statement
requires a further investigation on the relationship between the plate thickness and the
shear layer width.

If we substitute Equation (5.10) into Equation (5.2), we get:

W=

T = (12 2= 01 = ] 7 611)
This equation gives the limit strength of the primary vortex as a function of the thickness-
to-chord ratio. For the thicker plate of 4 cm chord and 4 mm thickness, the limit value is
1.01. For the other plate of 6 cm chord and 2 mm, the maximum strength of the primary
vortex is 0.71. The values computed with Equation (5.11) are in agreement with the
measured values.
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Figure 5.10: (a) Comparison between circulation of all secondary vortices measured with
the swirling strength criterion and predicted with the inviscid theory, for Re = 8380. (b)
Values of circulation computed with Equation (5.16) for all the tested Reynolds number.

5.3.4 Strength of secondary vortices

The last section of the results is dedicated to determine the circulation of secondary
vortices. As for the primary vortex, the circulation of each secondary vortex AT, is
measured with the swirling strength criterion when the vortex separates from the plate.
See section 4.3.3 and chapter 3 for further details. Figure 5.10a shows AT, as a function
of the shedding order n of secondary vortices for Re = 8380 and the plate of 4 cm chord
and 2 mm thickness. All secondary vortices have a circulation much smaller than to the
primary vortex, within a range that approximately goes from 0.06 to 0.14. The strength
of secondary vortices seems to be slightly influenced by the increase of the number
n of previously shed vortices. The later the secondary vortex is shed, the higher the

circulation we measure.

We use our previous results and inviscid theory to interpret our experimental data
and explain how circulation for successive secondary vortices evolves and how the
Reynolds number affects secondary vortices strength. We start the analysis from the
power law that describes the shedding of secondary vortices:

an(n) =ag(l+ x)" (5.12)

where @y depends on the dimension of the plate through the vortex formation number
(Equation (5.10)). We observed from the previous chapter that the parameter x depends
on the Reynolds number (Figure 4.10). The value of x decreases when the plate rotates
faster and we fit the experimental data with the following law:

x = aRe 7° (5.13)
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where Re varies from 2500 to 12000 in the discrete shedding regime, and the fitting
constants are experimentally determined to be a = 11.7 and b = 0.4229. The second
step we make is to consider the total circulation released in the flow from the plate.
When secondary vortices shed, the plate rotates at a constant speed and the circulation
increase is proportional to a'/?. The limit strength of the primary vortex is given by
Equation (5.11) and the total circulation generated from the plate during the shedding
of secondary vortices is:

I — K[a% + (T]Z) 3] (5.14)

where 7' = 10.6 is the primary vortex formation number and the constant K is related
with the constant J numerically determined by Pullin [111] through Equation (5.5)
and does not change with the plate dimensions. If we substitute Equation (5.12) into
Equation (5.14) we get:

1

I'*(n) = K(Tﬁ) ’ {1 +(1+ X)’??] (5.15)
that represents the total circulation released in the flow at each shedding of a secondary
vortex. Let us now consider a generic secondary vortex n shed from the plate at the
angular position «,,. We can reasonably assume that the total circulation released in the
flow when the plate travels from «,,—1, which is the separation angle of the (n — 1)y
secondary vortex, to «, is fully entrained into the ny, secondary vortex. This observation
leads us to calculate the circulation of each secondary vortex as AI';, =TI}, — I';,_; and
if we use Equation (5.15) we obtain:

ATy (n) = K<T}CL> (1+ x)nT_l[(l + x)% —1] (5.16)

This equation represents the circulation of each ny, secondary vortex in which the
dependence on the Reynolds number is inside the parameter x. We compare circulation
values computed from the above equation with measured values in Figure 5.10a, for
Re = 8380. There are two noteworthy aspects. First, the circulation of all secondary
vortices computed with Equation (5.15) is within the uncertainty range of the measured
values. This makes our prediction of the secondary vortices strength reasonable. Second,
the secondary vortices do not have the same strength. The vortex is stronger the later
it is released. This behaviour is even more pronounced at lower Reynolds number, in
which the strength difference between two successive secondary vortices is larger than
at higher Re (Figure 5.10b). The strength increase of successively released secondary
vortices is surprising because the plate rotates at constant speed and the feeding rate
decreases as:

dar dar 1
bt _ Qmami _ *KQQ 2 —2/3
@) da ca

when these secondary vortices are released. In chapter 4 we made the hypothesis that

(5.17)

the strength of secondary vortices is constant and the timing increases to compensate the
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decrease of the feeding shear layer. However, these latest results show that the timing
also increases to make the strength of successively shed secondary vortices increase.
We do not have a convincing physical explanation for such behaviour yet. It seems that
focusing solely on the strength of secondary vortices is not enough to have a global
picture and an in-depth investigation inside the core of secondary vortices is required.
As a future perspective, we would suggest to increase the flow field spatial resolution
to values higher than 0.5 mm per grid point. In this way we could capture small-scale
phenomena inside the core of secondary vortices that are not observable with our data.

5.4 Summary and conclusions

The growth of primary and secondary vortices, generated from the rotation of a rectan-
gular flat plate in the range of Reynolds number from 840 to 11170, is experimentally
investigated. Particular focus was directed towards the limit process of vortex formation
and the identification of the limit strength and formation number of both primary and

secondary vortices.

The identification of the limit properties of the primary vortex requires first to determine
the pinch-off moment, which is given by the coefficient «, of Equation (4.7). Before
the separation, the circulation of the primary vortex increases as the plate rotates and
matches the total circulation released in the flow. At a = «, the primary vortex pinches-
off and the circulation reaches the maximum value, regardless of the Reynolds number.
The Reynolds number does not influence the limit dimensionless strength of the primary
vortex and we can use inviscid theory to predict the limit strength, which is in agreement
with experimental observations. We also test thicker and longer plates and results show
that increasing the thickness and decreasing the chord lead to a longer growth of the
primary vortex. As a consequence, the primary vortex reaches a higher dimensionless
limit strength. We define a new dimensionless time 7™ based on the thickness of the
plate to scale the age of the primary vortex. Regardless of the dimensions of the plate,
the primary vortex stops growing when 7 = 10.5. We consider this value to be the
vortex formation number 7' of the primary vortex generated from a rectangular thin flat
plate that rotates with a speed resulting in a Reynolds number range from 840 to 12 000.
The validity of the defined vortex formation number is limited in the range of the tested
plate aspect ratios and further measurements should be performed to extend the range.

When o > «, the first secondary vortex starts forming. For the rest of the plate rotation,
several secondary vortices are shed in the wake. The circulation of all secondary vortices
is approximately 4—5 times smaller than the primary vortex one. If we combine with this
the timing of secondary vortices defined in Equation (4.7), we can predict the strength of
all secondary vortices. The prediction agrees with experimental observations and shows
that the strength of successively shed secondary vortices increases. This behaviour is
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even more pronounced at lower Reynolds number, in which the strength difference
between two successive secondary vortices is larger than at higher Re . This behaviour
is interesting because the feeding rate decreases when secondary vortices are released.
A possible explanation may be found by looking at the vorticity distribution inside the
core of secondary vortices. This requires additional measurements at higher spatial

resolution.
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The work presented in this thesis is an experimental characterization of vortices gen-
erated in the wake of a rotating plate. Particular focus is directed towards the growth,
timing and trajectory of the vortices. We build a rotation mechanism that allows us to
rotate a rectangular flat plate in quiescent water. We systematically vary the rotational
speed of the plate to check the influence of the plate velocity into the vortex formation.
The Reynolds number based on the speed and the chord of the plate varies from 800
to 12000. We illuminate the mid-section of the plate and we record PIV images. The
velocity and vorticity fields of the flow around the plate is computed by processing PIV
images. The vorticity field gives a preliminary view of the flow topology as a function
of the Reynolds number. For Re < 1500, a stable shear layer in the form of a continuous
band of vorticity is identified. The continuous shear layer rolls up into a single coherent
primary vortex. For 1500 < Re < 2500, the shear layer still appears as a continuous
band of vorticity rolling-up into the primary vortex but its shape is wavier and localised
concentrations of higher vorticity emerge. For Re > 2500, we observe the occurrence of
secondary vortices that are discretely released from the plate’s tip during the rotation.
The critical Reynolds number for the occurrence of secondary vortices is around 2500.

The velocity field obtained from processing PIV images allows us to compute relevant
scalar quantities such as the circulation. The circulation defines the strength of a vortex
and requires the identification of the vortex contour to be properly computed. We
used Lagrangian and Eulerian techniques to provide an in-depth analysis of how
vortex contours evolve in time. The computation of the vortex strength is crucial to
quantify the vortex growth. The primary vortex starts forming immediately after the
plate is impulsively started. The circulation of the primary vortex increases with the
dimensionless convective time, which is the angular position « of the plate, and matches
with the total circulation released in the flow. We observe a limit process of the primary
vortex growth when a plate of chord ¢ = 4 cm and thickness h = 2 mm reaches the
angular position g = 30°, regardless the tested Re . At this angular position the primary
vortex has its maximum strength. We also test thicker and longer plates and results show

115



Chapter 6. Summary and conclusions

that increasing the thickness and decreasing the chord lead to a longer growth of the
primary vortex. As a consequence, the primary vortex reaches a higher dimensionless
limit strength. We define a new dimensionless time 7™ based on the thickness of the
plate to scale the age of the primary vortex. Regardless of the dimensions of the plate,
the primary vortex stops growing when 7™ ~ 10. We consider this value to be the vortex
formation number 7’ of the primary vortex generated from a rectangular flat plate that
rotates with a speed resulting in a Reynolds number range from 840 to 12 000.

During the entire rotation of the plate, the primary vortex follows the arc travelled
by the tip of the plate. The trajectory of the primary vortex remains the same for all
Re and tested plates. When o > ay, the circulation released in the flow is entrained
into the first secondary vortex for Re > 2500. For the rest of the plate rotation, several
secondary vortices are shed. The circulation of all secondary vortices is approximately
4 — 5 times smaller than the primary vortex one. We use the swirling strength criterion to
compute the timing of secondary vortices. The separation time of each secondary vortex
is identified as a local maximum in the temporal evolution of the average swirling
strength close to the plate tip. The time interval between the release of successive
vortices is not constant during the rotation but increases the more secondary vortices
have been released. The shedding time interval also increases with decreasing Reynolds
number, yielding a lower total number of secondary vortices at the end of the 180° plate
rotation for lower Re . The increased time interval results in an increase of the strength
of successively released secondary vortices. This behaviour is even more pronounced
at lower Reynolds number, in which the strength difference between two successive
secondary vortices is larger than at higher Re .

Finally, we combined all of these results to predict the growth, the timing and the
trajectory of vortices generated behind a rotating plate. We proposed a modified version
of the Kaden spiral that accurately describes the spatio-temporal evolution of the shear
layer and accurately predicts the trajectory of the centre of the primary vortex for all
Reynolds numbers and different plate dimensions. The spiral also represents the path
followed by the secondary vortices. Our modified version of the spiral accurately
predicts the shear layer evolution and the trajectory of primary and secondary vortices
during the entire rotation of the plate. Based on experimental results, the timing
dynamics of secondary vortices is well modelled by a power law equation. This equation
depends on two distinct parameter: x and og. The parameter x indicates the relative
increase in a between the convective timing of successive secondary vortices and
decreases with increasing Re . A higher value of x indicates a larger delay between
successive vortices and a lower total number of vortices shed at the end of the motion.
The parameter o indicates the angular position at which the primary vortex stops
growing and pinches-off from the plate. It does not depend on Re . We also observe
that the total circulation released in the flow is proportional to a!/3, as predicted by
the inviscid theory. We combine the power law equation that describes the timing
dynamic of primary and secondary vortices with the total circulation computed from
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Figure 6.1: Overlap of the modified Kaden'’s spiral computed from Equation (4.5) in the
wake of a translating cone from the experiments of de Guyon and Mulleners [26].

inviscid theory to predict the strength of primary and secondary vortices. The strength

prediction is confirmed by experimental measurements.

6.1 Future work and potential applications

The work we presented in this thesis covered the main aspects about the formation of
primary and secondary vortices generated behind a rotating plate. This research is only
a piece of the puzzle and more work has to be done to extend and improve these results.
We investigated the motion of an impulsively started plate with a trapezoidal motion
profile. Future work has to be addressed towards the influence of the acceleration into
the growth, timing and trajectory of vortices. This is fundamental to further extend the
results to more complex kinematics. We determined the timing of secondary vortices as
a function of the Reynolds for a single plate dimension. The validity of the power law
equation has to be checked for different chord lengths and thicknesses of the plate. This
requires to check how x varies with the thickness of the plate and extend the validity
of the formation number 7 for a wider spectrum of plate aspect ratios. Higher spatial
resolution PIV images are desirable to provide a more resolved insight in the core of
secondary vortices, with the objective to point out small scale phenomena that could
explain the increase in strength of successively released secondary vortices. Finally, our
model based on the modified Kaden’s spiral can be extended and generalized to predict
the flow from different object geometries and kinematics (see example in Figure 6.1).
This has the potential to describe the shear layer roll-up, trajectory and timing of vortices
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Chapter 6. Summary and conclusions

generated from several vortex generators by using a relatively simple equation.

We performed a fundamental research about vortex dynamics, which can be used as
the basis for several applications. Here, we report a bio-inspired example in which
the present investigation can be directly applied. Kashi et al. [70] observed that the
emulation of the sea lion propulsion can improve the manoeuvrability of underwater
vehicles. A sea lion relies predominantly on its fore-flippers for thrust production. The
large flippers move through the water in a clapping motion that ends with each flipper
adducted against the animal’s torso [44]. This movement generates a downstream jet
due to the squeezing of the fluid. Rotating the flipper more quickly produces larger
downstream jet velocities that contribute to enhance the produced thrust for high speed
manoeuvrers such as escaping or prey capturing [70]. During the clapping phase, the
fore-flipper bends due to its flexibility. The clapping motion is similar to an impulsively
started rotating plate in a quiescent fluid [29] that experiences a ground effect due to the
presence of a nearby solid surface. To mimic the fin clapping motion of a sea lion, we
suggests to rotate a flexible flat plate about 90° that ends the rotation in the proximity of
a nearby surface. Particle image velocimetry and load measurements of this set-up have
the potential to directly correlate the vortex formation with the forces generated on the
plate and extend the results presented here to the case of a flexible object in ground
effect.
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