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A B S T R A C T

The rapid uptake of natural gas-fired units in energy systems poses significant challenges in coordinating the
electricity and gas systems. Besides, the uncertainty caused by integrated renewable energy such as wind power
raises more requirements on the robustness of the operation for integrated electricity and natural gas system
(IEGS). To address these challenges, this paper investigates the distributed adjustable robust optimal power and
gas flow (OPGF) model for IEGS. Using linear decision rules (LDRs), we first propose an improved adjustable
robust model combining with the automatic generation control systems to fully exploit its potential in dealing
with renewable energy uncertainty while utilizing the controllable polyhedral uncertainty set to reduce solution
conservatism. This improved LDRs based adjustable robust approach can reduce the computational burden
caused by the existing decomposition based robust approach when applied to distributed optimization. Then,
to preserve the information privacy and decision-making independence of subsystems, two tailored alternating
direction method of multipliers (ADMM) based distributed optimization frameworks for IEGS with and without
a central coordinator are presented, respectively. Effectiveness is illustrated through benchmark case studies.
1. Introduction

Natural gas has already become the second-largest source in the
world energy consumption [1]. The advent of low-cost and high-
efficiency natural gas has promoted the development of natural gas-
fired units (NGUs). Since NGUs serve as producers in electrical net-
works and consumers in natural gas networks, they closely link these
formerly isolated energy systems and optimize them as an integrated
electricity and natural gas system (IEGS).

The similarity in gas and electricity consumption profiles gives
rise to critical mandates for the coordinated operation of IEGS. A
security-constrained planning model for IEGS is presented by [2]. Con-
sidering the 𝑁−1 contingencies, [3] addressed the security-constrained
optimal power and gas flow (OPGF) problem. In [4], a robust de-
fense strategy was proposed against malicious attacks for the IEGS.
[5] presents a two-stage coordinated operation model for IEGS and
electricity–gas-transportation coupled system considering renewable
energy uncertainty. In order to construct the model of steady-state gas
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flow, the quadratic Weymouth equation is widely applied for model
simplification. In [6], the convex relaxation of Weymouth equation for
joint expansion planning of IEGS is presented. A guaranteed accuracy
can be achieved due to the large time constant of gas flow [7], and the
second-order cone programming (SOCP) can be employed to represent
a tradeoff between fidelity and computational tractability. However,
the works mentioned above usually assume a vertically integrated
utility that monitors and controls the IEGS. As a result, the individual
operator’s information diversity and privacy cannot be ensured. In real-
ity, the electricity and natural gas networks may be owned by different
utilities [8,9], which can be classified into two architectures according
to whether there is a central operator (CO), i.e., the distributed and
the decentralized architecture. The electricity operator (EO) and gas
operator (GO) are managed by an upper-level CO in the distributed one.
Moreover, there is no central coordinator in the decentralized one, and
the electricity and natural gas networks are managed by the EO and
GO, respectively.
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Various decomposition techniques have been employed to achieve
the distributed operation of multi-area power systems, which can be
classified into three types: (1) the augmented Lagrangian relaxation
based approaches such as the analytical target cascading (ATC) [10–
12], alternating direction method of multipliers (ADMM) [13–17] and
auxiliary problem principle (APP) [18]; (2) the Karush–Kuhn–Tucker
conditions based approaches such as the heterogeneous decomposition
(HD) algorithm [19] and the optimality condition decomposition (OCD)
algorithm [20]; and (3) the benders decomposition (BD) algorithm
[21]. Whereas, the HD, OCD, and BD algorithms are only suitable
to solve the deterministic optimization problem [13]. As a classi-
cal augmented Lagrangian based algorithm, the alternating direction
multiplier method (ADMM) has shown its superiority in convergence
property, which has been adopted to the integrated transmission and
distribution system scheduling [14], distributed operation of AC/DC
hybrid system [16], and distributed power flow [17] problems. How-
ever, the research on the distributed operation of IEGS is very limited.
Recently, ADMM has been applied to the synergistic operation of
IEGS in [22–24]. However, the renewable energy uncertainty is not
considered. The decentralized operation for IEGS is recently presented
in [25], and the chance-constrained programming is adopted to de-
scribe uncertainties; however, the probability distribution information
of uncertain variables in these models is hard to obtain.

With the growing integration of wind energy, it is desired to hedge
uncertainty for IEGS to achieve a higher overall economic efficiency
and reliability. Robust optimization (RO) is a popular method to de-
scribe uncertainties. A two-stage RO model formulates the uncertainty
in IEGS proposed by [26]. Two-stage RO models consist of the first
stage min problem and the second stage max–min problem, which need
a decomposition algorithm [27,28] based on the master-subproblem
iteration framework to find the robust solution. Unlike the decompo-
sition based robust approach, the linear decision rules (LDRs) model
can provide a slightly conservative yet single tractable solution to the
adjustable robust formulation. Since the robust counterpart of the LDRs
based adjustable approach is usually a tractable convex problem, the
LDRs model is more suitable for applying distributed optimization. The
linear decision rules have been applied to adjustable robust optimal
power flow [29–32], residential distributed generation coordination
[33], generation expansion planning [34], and reactive power control
[35].

Based on the existing literatures about the LDRs adjustable robust
models and distributed optimization models, there are still research
gaps that need to be studied.

1. When considering the renewable energy uncertainty in the tradi-
tional LDRs-based adjustable robust models, the existing works
[29,30] express the uncertainty through allowable output inter-
val, where the AGC participation factors must be predefined such
that the resulting model is linear. However, predefining the par-
ticipation factors is restrictive and thus leads to a conservative
solution. Meanwhile, the potential of AGC units cannot be fully
exploited to deal with uncertainty. The other previous works
[31,32] express the uncertainty through nonadjustable bounded
intervals, which are also quite conservative. Moreover, the wind
power curtailment situation cannot be handled in these models
[29–32]. In short, the relationship between the LDRs model
and AGC systems has not been thoroughly studied, especially
when the wind power curtailment situation is considered and
the uncertainties are expressed through bounded intervals in a
controllable polyhedral uncertainty set.

2. Another classical alternate to consider the renewable energy un-
certainty is the decomposition-based RO models [26–28]. How-
ever, these works mainly have two disadvantages when deploy-
ing distributed optimization to deal with the resulting optimiza-
tion problems. Firstly, the calculation burden will be enlarged
as the inner master-subproblem iteration of the decomposition-
2

based algorithm for RO is needed in each outer ADMM iteration.
Secondly, the robust counterpart of the second-stage max–min
problem in decomposition-based RO models is bilinear and non-
convex. Although this bilinear problem can be either solved
by outer approximation method [27] (only local optimality is
guaranteed) or rewritten into a MILP problem using the big-M
method [26,28], the convergence of ADMM cannot be guar-
anteed on these nonconvex problems. Therefore, the applica-
tion of the decomposition-based RO algorithm to distributed
optimization faces many limitations.

3. The current distributed operation structures for IEGS has not
fully considered the possible infrastructure networks of IEGS,
at least not exactly classifies the networks with respect to the
existence of the central coordinator. In reality, the IEGS can
be classified into two architectures according to whether there
exists a central coordinator, so-called the distributed and the de-
centralized architecture, respectively. Therefore, the applicabil-
ity of ADMM should be fully exploited for different infrastructure
networks specifically based on IEGS.

To fill the research gap in the reported literature, this paper pro-
poses the improved LDRs based distributed adjustable robust OPGF
model for IEGS. It is coincident with the AGC systems, and thus, the
potential of AGC systems in dealing with wind power uncertainty is
fully exploited. Meanwhile, the controllable polyhedral uncertainty set
is utilized to control the robustness level of LDRs model. To solve the
resulting optimization problem, two tailored ADMM based distributed
decision-making strategies are presented. The first strategy considers
the network, including a central coordinator, such that the consensus
between EO and GO has to be achieved by communicating with the
central coordinator. The second one considers a fully decentralized
network in which the EO is directly connected with GO, such that only
peer-to-peer communication is required to achieve consensus. All costly
computations are performed locally in parallel while preserving the
information privacy and decision-making independence of subsystems.

1. We propose an improved LDRs based adjustable robust OFGF
model. Compared to the prior LDRs based models [29,30] that
must predefine the AGC participation factors, our model con-
siders the AGC participation factors as optimization variables to
fully exploit the potential of AGC units in dealing with renewable
energy uncertainty. Moreover, compared to the other existing
LDRs models [31,32], which express uncertain variables through
non-adjustable bounded intervals, we present the bounded inter-
vals in a controllable polyhedral uncertainty set. The uncertainty
in electricity system transferred to gas system through NGUs
is also modeled by LDRs. Furthermore, our improved LDRs
model can deal with the wind power curtailment situation, while
traditional LDRs models [29–32] are not capable. To the best
of our knowledge, this is the first study for the LDRs based
adjustable robust model that can simultaneously optimize the
AGC participation factors, utilize the budget of uncertainty in
a polyhedral uncertainty set, and consider the wind power cur-
tailment situation, leading to significantly less conservative and
more practical solutions.

2. Based on two possible topological IEGS, i.e., with and without
central coordinator, two tailored ADMM algorithms are pro-
posed to solve the adjustable robust OPGF problem. Both vari-
ants solve subproblems individually in parallel with only the
NGUs information is shared among subsystems. These improved
LDRs based adjustable robust extension of ADMM methods are
capable of handling uncertainties in IEGS. To avoid the com-
putational burden caused by too many master-subproblem it-
erations of the decomposition based robust approach [27,28]
when applied to distributed optimization, LDRs are utilized to
recast the adjustable robust OPGF problem into a single tractable
convex problem including both adjustable and non-adjustable

terms. This LDRs model can reduce the computation burden of
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each ADMM iteration and guarantee the convergence of ADMM,
which eliminates the need for using any master-subproblem
decomposition strategy and can be easily applied to distributed
optimization.

This paper is organized as follows: Section 2 presents the OPGF
ormulation. Section 3 addresses the LDRs based adjustable robust
PGF model. Section 4 proposes two tailored ADMM based distributed

rameworks. Section 5 presents case studies. Section 6 concludes this
aper.

. Problem formulation of OPGF model for IEGS

This section presents an OPGF model for IEGS. In particular, we con-
ider a wind-integrated power system denoted by the tuple
,,,,) for electricity network and the tuple ( , , , ,
) for gas system. Here,  is the set of buses,  ⊆  ×  the set of
transmission lines,  ⊆  the set of NGUs,  ⊆  the set of NGUs and
non-NGUs, and  ⊆  the set of wind farms. Similarly,  denotes the
set of nodes in gas system,  ⊆  × the set of pipelines,  ⊆ 
the set of gas wells,  ⊆  the set of gas storages, and  ⊆  the
set of compressors.

2.1. Objective of coordination

The objective of the OPGF problem is to minimize the total opera-
tion cost of the electricity network and natural gas network. Natural gas
suppliers are gas well and gas storage facilities that provide the natural
gas through its transmission network. Natural gas supplies are modeled
as positive gas injections at related nodes. The objective in the OPGF
problem is then divided into two parts, the fuel cost of non-NGUs given
by

𝑀1 =
∑

𝑖∈∖

{

𝑐1𝑖
(

𝑃𝐺
𝑖
)2 + 𝑐2𝑖𝑃

𝐺
𝑖 + 𝑐3𝑖

}

, (1)

and the gas production cost of gas wells and storages given by

𝑀2 =
∑

𝑚∈

(

𝑝𝑊𝑚 𝐹𝑊
𝑚

)

+
∑

𝑛∈

(

𝑝𝑆𝑛 𝐹
𝑆
𝑛
)

. (2)

ere, 𝑐1𝑖, 𝑐2𝑖, and 𝑐3𝑖 denote the cost coefficients of unit 𝑖, 𝑃𝐺
𝑖 (MW) de-

otes the reference base-point output of unit 𝑖 in the nominal scenario,
𝑊
𝑚 ($/kcf) and 𝑝𝑆𝑛 ($/kcf) denote the gas production cost of gas well
t node 𝑚 and storage at node 𝑛, 𝐹𝑊

𝑚 (kcf) and 𝐹𝑆
𝑛 (kcf) denote the gas

ell output at node 𝑚 and storage output at node 𝑛.

.2. Separative constraints of natural gas system

The typical static characteristics of gas system are given by
𝑊
𝑚 + 𝐹𝑆

𝑚 − 𝐹𝐺
𝑚 − 𝐹𝐷

𝑚 −
∑

𝑘∈𝛹𝐶
𝑚

𝜇𝐶
𝑘 =

∑

𝑛∈𝛹𝑚

𝐹𝑚𝑛 +
∑

𝑘∈𝛹𝐶
𝑚

𝐹𝐶
𝑘 , 𝑚 ∈  (3a)

𝑚𝑛 = 𝐶𝑚𝑛

√

𝜋2
𝑚 − 𝜋2

𝑛 , (𝑚, 𝑛) ∈  (3b)

𝑛 ≤ 𝜋𝑚 , (𝑚, 𝑛) ∈  (3c)

𝑚 ≤ 𝜋𝑚 ≤ 𝜋𝑚 , 𝑚 ∈  (3d)
𝑊
𝑚 ≤ 𝐹𝑊

𝑚 ≤ 𝐹
𝑊
𝑚 , 𝑚 ∈  (3e)

𝑆
𝑚 ≤ 𝐹𝑆

𝑚 ≤ 𝐹
𝑆
𝑚 , 𝑚 ∈  (3f)

≤ 𝐹𝑚𝑛 ≤ 𝐹𝑚𝑛 , (𝑚, 𝑛) ∈  (3g)

≤ 𝐹𝐶
𝑘 ≤ 𝐹

𝐶
𝑘 , 𝑘 ∈  (3h)

𝐶
𝑘 = 𝛾𝑘𝐹

𝐶
𝑘 , 𝑘 ∈  (3i)

𝑘 ≤ 𝜋𝑜𝑢𝑡
𝑘 ∕𝜋𝑖𝑛

𝑘 ≤ 𝑟𝑘 , 𝑘 ∈  (3j)

where 𝛹𝑚 and 𝛹𝐶
𝑚 denote the gas nodes and gas compressors connected

to node 𝑚, respectively, 𝐹𝐺 (kcf) the gas consumption of NGU at node
3

𝑚 w
𝑚, 𝐹𝑚𝑛 (kcf) the gas flow through pipeline (𝑚, 𝑛) ∈  , 𝐹𝐶
𝑘 (kcf) the gas

flow through gas compressor 𝑘, 𝐹𝐷
𝑚 (kcf) the gas demands at node 𝑚,

𝐹𝑚𝑛 (kcf) the maximum allowable gas flow of pipeline (𝑚, 𝑛) ∈  ,
𝐶𝑚𝑛 (kcf/Psig) the Weymouth constant of pipeline (𝑚, 𝑛) ∈  , 𝜋𝑚
(Psig) the gas pressure of node 𝑚, 𝜋𝑚 (Psig) and 𝜋𝑚 (Psig) denote
the maximum and minimum gas pressure of node 𝑚, respectively,
𝜋𝑜𝑢𝑡
𝑘 (Psig) and 𝜋𝑖𝑛

𝑘 (Psig) denote the outlet and inlet pressures of gas
compressor 𝑘, respectively, 𝜇𝐶

𝑘 (kcf) the gas consumption caused by gas
compressor 𝑘, 𝛾𝑘 the energy conversion efficiency of gas compressor 𝑘,
𝑟𝑘 and 𝑟𝑘 denote the maximum and minimum compression ratio of gas
compressor 𝑘, respectively.

Eq. (3a) describes the nodal gas flow balance. Eq. (3b) describes
the steady-state Weymouth gas flow model [7]. Since the gas flow
directions are always pre-specified according to the gas-transmission-
system operation practice in intra-day stage [36], the bi-directional gas
flow is not considered here. This setting is similar to the distributed
dispatch model for IEGS proposed in [37], which is a reasonable
assumption in the short-term OPGF problem, whereas the long-term
operation or planning decision should consider bi-directional gas flows
[38]. (3c) and (3d) denote the nodal pressure. Gas well and storage
supply constraints are given in (3e) and (3f), respectively. (3g) and (3h)
denote the limit of gas pipelines and compressors, respectively. The gas
consumptions of compressors represent a specified percentage of the
transported gas flow as given in (3i), while (3j) denotes the compression
ratio limit of outlet and inlet gas pressures.

2.3. Separative constraints of electricity system

The typical constraints of electricity system are given by

⎧

⎪

⎨

⎪

⎩

𝑃𝐺
𝑖 = 0 , 𝑖 ∈ ∖ , 𝑃𝑊

𝑖 = 0 , 𝑖 ∈ ∖

𝑃𝐺
𝑖 + 𝑃𝑊

𝑖 −
∑

𝑗∈𝑖

𝜃̂𝑖 − 𝜃̂𝑗
𝑥𝑖𝑗

= 𝑃𝐷
𝑖 , 𝑖 ∈ 

(4a)

0 ≤ 𝑃𝑊
𝑖 ≤ 𝑃

𝑊
𝑖 , 𝑖 ∈  (4b)

𝑃𝐺
𝑖 ≤ 𝑃𝐺

𝑖 ≤ 𝑃
𝐺
𝑖 , 𝑖 ∈  (4c)

− 𝐿𝑖𝑗 ≤
𝜃𝑖 − 𝜃𝑗
𝑥𝑖𝑗

≤ 𝐿𝑖𝑗 , (𝑖, 𝑗) ∈  (4d)

𝜃ref
1 = 0 (4e)

where 𝑖 denotes the neighboring buses of bus 𝑖, 𝑃𝑊
𝑗 (MW) denotes the

reference base-point output of wind farm 𝑗 in the nominal scenario,
𝜃̂𝑖 (rad) denotes the reference base-point of phase angle of bus 𝑖 in
the nominal scenario, 𝑃𝐺

𝑖 (MW) and 𝑃𝑊
𝑖 (MW) respectively denote the

output from unit 𝑖 and wind farm 𝑖 under the realization of wind gener-
ation, 𝜃𝑖 (rad) denotes the phase angle of bus 𝑖 under the realization of
wind generation, 𝑃𝐷

𝑖 (MW) denotes the load demand at bus 𝑖, 𝑥𝑖𝑗 (p.u.)
and 𝐿𝑖𝑗 (MW) denote the reactance and capacity of transmission line
(𝑖, 𝑗) ∈ , respectively, 𝑃𝐺

𝑖 (MW) and 𝑃
𝐺
𝑖 (MW) denote the minimum

nd maximum output for all 𝑖 ∈ , respectively, 𝑃
𝑊
𝑖 (MW) denotes the

ind farm forecasts for all 𝑖 ∈  .
Constraint (4a) describes the nodal power balance in the nominal

cenario. (4b) denotes the wind farm output limit. (4c) denotes the
nit output limit, including the NGUs and non-NGUs (4d) denotes the
ower flow limit of the transmission line. (4e) defines bus 1 as the
eference bus in the system. Here, the commonly used approximate
inear DC power flow model is adopted for the transmission level IEGS
22,25,39–41].

.4. Coupling between electricity and natural gas system

NGUs represent the linkages between gas and electricity networks,
hich can also be utilized to deal with renewable energy uncertainty.



International Journal of Electrical Power and Energy Systems 139 (2022) 107963J. Zhai et al.

←→

m

3

f
f
s
w
s

3

j
f
c
o
c
a



H
t
M
w

a
l
d

n
a
d

f

f
r

𝒛

𝜅

f
a

s

−

The relationship between generation output and gas consumption of
NGUs can be described as

𝐹𝐺
𝑚 = 𝜔𝑖𝑃

𝐺
𝑖 , (𝑚, 𝑖) ∈ 𝛺 (5)

where 𝛺 denotes the pairs of node 𝑚 ∈  and its equipped NGU
𝑖 ∈ , 𝜔𝑖 denotes the conversion coefficient of NGU 𝑖.

The gas consumption of the 𝑖th NGU in the electricity network is
fed by gas extracted from the 𝑚th gas node in the gas network. Eq. (5)
assumes a linear relationship [9,42] between the gas consumption of
NGUs and their power outputs under the realization of wind power
generation, which ensures the safe operation of the gas system under
wind power uncertainty.

2.5. Second-order cone reformulation for natural gas system

The nonconvex relationship between pipeline gas flow and the
nodal squared pressure drop is denoted by (3b), which makes the
optimal gas flow problem in gas network nonconvex. SOC relaxation is
an effective way for convexification. However, convexification should
be exact for the feasible region to stay the same compared to the
original primal problem. Here, we apply SOC relaxation introduced in
[7] to deal with the nonconvexity of (3b). In a result, we have convex
second-order cone constraints derived by

𝐹𝑚𝑛 = 𝐶𝑚𝑛

√

𝜋2
𝑚 − 𝜋2

𝑛 ←←→ 𝐹 2
𝑚𝑛∕𝐶

2
𝑚𝑛 = 𝜋2

𝑚 − 𝜋2
𝑛

← 𝐹 2
𝑚𝑛∕𝐶

2
𝑚𝑛 + 𝜋2

𝑛 ≤ 𝜋2
𝑚 ←←→

‖

‖

‖

‖

‖

[

𝐹𝑚𝑛∕C𝑚𝑛
𝜋𝑚

]

‖

‖

‖

‖

‖2
≤ 𝜋𝑚 . (6)

If the solution satisfies (3b), the relaxation is exact and the solution is
globally optimal. However, the relaxation (6) may not always be tight
during the iteration of optimization algorithm. To drive the exactness
of SOC relaxation, an additional penalty term

𝑀3 =
∑

(𝑚,𝑛)∈
𝛽
(

𝜋𝑚 − 𝜋𝑛
)

with positive constant 𝛽 is added to the objective function, which drives
the 𝜋2

𝑚 − 𝜋2
𝑛 toward 𝐹 2

𝑚𝑛∕C
2
𝑚𝑛 [22]. This positive linear penalty term

akes the violation of the constraint (3b) smaller.

. LDRs based adjustable Robust OPGF model for IEGS

This section presents an LDRs based adjustable robust OPGF model
or IEGS coincident with the AGC systems. The AGC participation
actors are treated as optimizable variables and then the LDRs and AGC
ystems are fully combined to utilize the capability of AGC units to deal
ith wind power uncertainty in a controllable polyhedral uncertainty

et.

.1. Uncertainty characterization

The fluctuations in renewable energy generation represent the ma-
or degree of uncertainty and these uncertainties will be propagated
rom the electricity system to the gas system via NGUs, which offers a
onsiderable operational challenge to gas networks. The randomness
f wind farm output is described through bounded intervals in a
ontrollable polyhedral uncertainty set to reduce solution conservatism
s follows:

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑃𝑊 ∈ R||

|

|

|

|

|

|

|

|

|

|

{

∀ 𝑘 ∈  , |𝑧𝑘| ≤ 1

𝑃𝑊
𝑘 = 𝑃

𝑊
𝑘 + 𝛥𝑃𝑊

𝑘 𝑧𝑘,

}

∑

𝑘∈
|𝑧𝑘| ≤ 𝜎 .

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (7)

ere, 𝑃𝑊
𝑘 denotes the uncertain wind farm output, and 𝛥𝑃𝑊

𝑘 denotes
he deterministic maximum magnitude of the deviation from forecasts.
oreover, we introduce the auxiliary variable 𝑧𝑘 to denote the up-
ard/downward deviation from forecasts. The choice of 𝜎 aims at
4

djusting the solution conservativeness. Specifically, choosing 𝜎 = 0
eads to the deterministic model, since uncertain parameters cannot
eviate from their forecasts. However, choosing 𝜎 > 0 leads to the

robust model where the uncertain parameters can deviate from their
forecasts.

3.2. Adjustable robust OPGF model

To derive a tractable form for the adjustable robust OPGF model,
the following LDRs are considered,

𝑃𝑊
𝑗 = 𝑃𝑊

𝑗 −
∑

𝑘∈
𝛽𝑗𝑘

(

𝑃𝑊
𝑘 − 𝑃

𝑊
𝑘

)

, 𝑗 ∈  , (8a)

𝑃𝐺
𝑔 = 𝑃𝐺

𝑔 − 𝛼𝑔
∑

𝑘∈

(

𝑃𝑊
𝑘 − 𝑃

𝑊
𝑘

)

, 𝑔 ∈ , (8b)

1 =
∑

𝑔∈
𝛼𝑔 with 𝛼𝑔 ∈ [0, 1] , 𝑔 ∈ , (8c)

where 𝑃𝐺
𝑔 and 𝑃𝑊

𝑗 are the non-adjustable terms in the nominal sce-
ario. 𝛼𝑔 and 𝛽𝑗𝑘 respectively denote the adjustable terms for units 𝑔
nd wind farm 𝑗 under the realization of wind generation, and 𝛼𝑔 is
irectly compatible with the AGC participation factors.

The LDRs based adjustable robust OPGF model can be obtained
rom (4) and (5) by replacing the certain wind farm forecasts 𝑃

𝑊
𝑖 with

their uncertain values 𝑃𝑊
𝑖 and using the above-mentioned LDRs. Let us

irst have a look at the right hand side of (4c). Substituting (8) into the
ight hand side of (4c) yields the worst possible inequality

𝑃
𝐺
𝑔 − 𝑃𝐺

𝑔 ≥ −𝛼𝑔 ⋅ max
𝑷𝑊 ∈

∑

𝑘∈

(

𝑃𝑊
𝑘 − 𝑃𝑊

𝑘
)

, 𝑔 ∈  . (9)

The inner maximization problem in (9) is equivalent to

max
∈R2||

∑

𝑘∈
𝛥𝑃𝑊

𝑘
(

𝑧+𝑘 − 𝑧−𝑘
)

(10a)

s.t. 0 ≤ 𝑧+𝑘 ≤ 1, 𝑘 ∈  ∣ 𝜅∗+
𝑘 (10b)

0 ≤ 𝑧−𝑘 ≤ 1, 𝑘 ∈  ∣ 𝜅∗−
𝑘 (10c)

𝑧+𝑘 + 𝑧−𝑘 ≤ 1, 𝑘 ∈  ∣ 𝜅∗1
𝑘 (10d)

∑

𝑘∈

(

𝑧+𝑘 + 𝑧−𝑘
)

≤ 𝜎, ∣ 𝜇∗ (10e)

where 𝜅∗+
𝑘 , 𝜅∗−

𝑘 , 𝜅∗1
𝑘 , and 𝜇∗ represent the dual variables with respect to

the polyhedral constraints. In the following, the wild-char superscript
∗ is substituted by 𝐺(𝑟), 𝐺(𝑙), 𝑊 (𝑟), 𝑊 (𝑙), 𝐿(𝑟), 𝐿(𝑙), and 𝑁 in (11),
(38), (12), (39), (13), (40), and (16), respectively. These superscripts
are characters only used to discriminate the dual variables. Using the
duality of (10) leads to the LDRs based robust formulation:

𝑃
𝐺
𝑔 − 𝑃𝐺

𝑔 ≥
∑

𝑘∈

(

𝜅𝐺(𝑟)+
𝑔𝑘 + 𝜅𝐺(𝑟)−

𝑔𝑘 + 𝜅𝐺(𝑟)1
𝑔𝑘

)

+ 𝜎𝜇𝐺(𝑟)
𝑔 , (11a)

−𝛼𝑔𝛥𝑃𝑊
𝑘 ≤ 𝜅𝐺(𝑟)+

𝑔𝑘 + 𝜅𝐺(𝑟)1
𝑔𝑘 + 𝜇𝐺(𝑟)

𝑔 , (11b)

𝛼𝑔𝛥𝑃
𝑊
𝑘 ≤ 𝜅𝐺(𝑟)−

𝑔𝑘 + 𝜅𝐺(𝑟)1
𝑔𝑘 + 𝜇𝐺(𝑟)

𝑔 , (11c)
𝐺(𝑟)+
𝑔𝑘 ≥ 0 , 𝜅𝐺(𝑟)−

𝑔𝑘 ≥ 0 , 𝜅𝐺(𝑟)1
𝑔𝑘 ≥ 0 , 𝜇𝐺(𝑟)

𝑔 ≥ 0 (11d)

or all 𝑘 ∈  and 𝑔 ∈ . In a result, constraint (9) can be replaced by
ffine equality constraints (11).

Similarly, the LDRs based adjustable robust form for the right hand
ide of (4b) can be derived as

𝑃
𝑊
𝑗 − 𝑃𝑊

𝑗 ≥
∑

𝑘∈
(𝜅𝑊 (𝑟)+

𝑗𝑘 + 𝜅𝑊 (𝑟)−
𝑗𝑘 + 𝜅𝑊 (𝑟)1

𝑗𝑘 ) + 𝜎𝜇𝑊 (𝑟)
𝑗 , 𝑗 ∈  (12a)

−
(

𝛽𝑗𝑘 + 1
)

𝛥𝑃𝑊
𝑘 ≤ 𝜅𝑊 (𝑟)+

𝑗𝑘 + 𝜅𝑊 (𝑟)1
𝑗𝑘 + 𝜇𝑊 (𝑟)

𝑗 , 𝑗 = 𝑘 (12b)
(

𝛽𝑗𝑘 + 1
)

𝛥𝑃𝑊
𝑘 ≤ 𝜅𝑊 (𝑟)−

𝑗𝑘 + 𝜅𝑊 (𝑟)1
𝑗𝑘 + 𝜇𝑊 (𝑟)

𝑗 , 𝑗 = 𝑘 (12c)

𝛽𝑗𝑘𝛥𝑃
𝑊
𝑘 ≤ 𝜅𝑊 (𝑟)+

𝑗𝑘 + 𝜅𝑊 (𝑟)1
𝑗𝑘 + 𝜇𝑊 (𝑟)

𝑗 , 𝑗 ∈  , 𝑗 ≠ 𝑘 (12d)

𝛽 𝛥𝑃𝑊 ≤ 𝜅𝑊 (𝑟)− + 𝜅𝑊 (𝑟)1 + 𝜇𝑊 (𝑟), 𝑗 ∈  , 𝑗 ≠ 𝑘 (12e)
𝑗𝑘 𝑘 𝑗𝑘 𝑗𝑘 𝑗



International Journal of Electrical Power and Energy Systems 139 (2022) 107963J. Zhai et al.

𝜅

f
n
T
a

d
t
o

𝐹

S

𝐹

U
c

𝐹

f

f

s

T
n
u
T
b
s

m
i
s

i
g
d
b
t

4

O
u
c
o

4

t
r
o
v

o
b

(
f
q

𝛷

𝜅𝑊 (𝑟)+
𝑗𝑘 ≥ 0 , 𝜅𝑊 (𝑟)−

𝑗𝑘 ≥ 0 , 𝜅𝑊 (𝑟)1
𝑗𝑘 ≥ 0 , 𝜇𝑊 (𝑟)

𝑗 ≥ 0 (12f)

for all 𝑘 ∈  .
Note that the voltage angles in (4d) can be divided into two compo-

nents as well, the non-adjustable component associated with predictive
quantities and the adjustable component that varies with the uncertain
wind forecast error, as shown in Appendix-A. With the uncertainty
directly included in branch flow, the uncertain power flow in branch
can also be written as a equivalent set of linear constraints. Regarding
the right hand side of (4d), the LDRs based form is given by

𝐿𝑖𝑗 +
𝜃̂𝑖 − 𝜃̂𝑗
𝑥𝑖𝑗

≥
∑

𝑘∈

(

𝜅𝐿(𝑟)+
𝑖𝑗𝑘 + 𝜅𝐿(𝑟)−

𝑖𝑗𝑘 + 𝜅𝐿(𝑟)1
𝑖𝑗𝑘

)

+ 𝜎𝜇𝐿(𝑟)
𝑖𝑗 , (13a)

1
𝑥𝑖𝑗

(

𝐵̃𝑗𝑘𝛽𝑗𝑘 − 𝐵̃𝑖𝑘𝛽𝑖𝑘 +
∑

𝑔∈
𝐵̃𝑗𝑔𝛼𝑖 −

∑

𝑔∈
𝐵̃𝑖𝑔𝛼𝑖

)

𝛥𝑃𝑊
𝑘 ≤ 𝜅𝐿(𝑟)+

𝑖𝑗𝑘 + 𝜅𝐿(𝑟)1
𝑖𝑗𝑘 + 𝜇𝐿(𝑟)

𝑖𝑗 , (13b)

− 1
𝑥𝑖𝑗

(

𝐵̃𝑗𝑘𝛽𝑗𝑘 − 𝐵̃𝑖𝑘𝛽𝑖𝑘 +
∑

𝑖∈
𝐵̃𝑗𝑔𝛼𝑖 −

∑

𝑔∈
𝐵̃𝑖𝑔𝛼𝑖

)

𝛥𝑃𝑊
𝑘 ≤ 𝜅𝐿(𝑟)−

𝑖𝑗𝑘 + 𝜅𝐿(𝑟)1
𝑖𝑗𝑘 + 𝜇𝐿(𝑟)

𝑖𝑗 , (13c)
𝐿(𝑟)+
𝑖𝑗𝑘 ≥ 0, 𝜅𝐿(𝑟)−

𝑖𝑗𝑘 ≥ 0, 𝜅𝐿(𝑟)1
𝑖𝑗𝑘 ≥ 0, 𝜇𝐿(𝑟)

𝑖𝑗 ≥ 0 (13d)

or all 𝑘 ∈  and (𝑖, 𝑗) ∈ . 𝐵̃𝑖𝑘 and 𝐵̃𝑗𝑘 denote the element of electricity
etwork admittance inverse matrix, with the reference angle at bus 1.
he same approach can be applied to the left hand side of (4b), (4c),
nd (4d), shown in Appendix-B.

The electricity and natural gas coupling constraint (5) can also be
irectly converted into the following form, which is always tight since
he unnecessary natural gas consumption by NGUs will lead to higher
peration costs.
𝐺
𝑚 ≥ 𝜔𝑖𝑃

𝐺
𝑖 , (𝑚, 𝑖) ∈ 𝛺. (14)

ubstituting (8) into (14) yields the worst possible inequality
𝐺
𝑚 − 𝜔𝑖𝑃

𝐺
𝑖 ≥ −𝜔𝑖𝛼𝑖 ⋅ max

𝑷𝑊 ∈

∑

𝑘∈

(

𝑃𝑊
𝑘 − 𝑃𝑊

𝑘
)

, (𝑚, 𝑖) ∈ 𝛺. (15)

sing the duality of (10), the LDRs based adjustable robust form of (5)
an be derived as
𝐺
𝑚 − 𝜔𝑖𝑃

𝐺
𝑖 ≥

∑

𝑘∈

(

𝜅𝑁+
𝑖𝑘 + 𝜅𝑁−

𝑖𝑘 + 𝜅𝑁1
𝑖𝑘

)

+ 𝜎𝜇𝑁
𝑖 , (16a)

−𝜔𝑖𝛼𝑖𝛥𝑃
𝑊
𝑘 ≤ 𝜅𝑁+

𝑖𝑘 + 𝜅𝑁1
𝑖𝑘 + 𝜇𝑁

𝑖 , (16b)

𝜔𝑖𝛼𝑖𝛥𝑃
𝑊
𝑘 ≤ 𝜅𝑁−

𝑖𝑘 + 𝜅𝑁1
𝑖𝑘 + 𝜇𝑁

𝑖 , (16c)

𝜅𝑁+
𝑖𝑘 ≥ 0 , 𝜅𝑁−

𝑖𝑘 ≥ 0 , 𝜅𝑁1
𝑖𝑘 ≥ 0 , 𝜇𝑁

𝑖 ≥ 0 (16d)

or all (𝑚, 𝑖) ∈ 𝛺 and 𝑘 ∈  .
Finally, we obtain the LDRs based adjustable robust OPGF model

or IEGS as follows:
minimize 𝑀1 +𝑀2 +𝑀3

ubject to (3), (4a), (4e), (11)–(13), (16), (38)–(40).
(17)

his problem aims at minimizing the base-case operation cost in nomi-
al scenario, while adaptively and securely adjusting the output of AGC
nits in response to possible realizations of wind power uncertainties.
his adjustable robust OPGF model does not need any decomposition-
ased robust algorithm and can be directly solved by commercial
olvers.

Overall, the proposed model (17) is a convex quadratic program-
ing with convex SOC constraints. It can only be directly solved

n a centralized manner. In reality, the operation for the electricity
5

ystem and gas system is owned by different utilities. Only limited
nformation on NGUs can be shared between electricity system and
as system to ensure consistency in operating, which is an independent
ecision-making process. Therefore, the entire problem is preferable to
e solved in a distributed way to preserve the information privacy and
he independent decision of different operators.

. Distributed optimization for adjustable robust OPGF

In this section, we tailor the ADMM algorithm [14,43] to solve the
PGF problem. Moreover, we address how to implement the algorithm
nder two network configurations based IEGS, one is with a central
oordinator and one is not, which represent two different styles to
perate the IEGS.

.1. ADMM for OPGF

The key of applying ADMM to solve the OPGF problem in a dis-
ributed manner is to achieve consensus between the EO and GO with
espect to the coupling constraint (5). However, ADMM is only capable
f dealing with linear couplings. To this end, we introduce consensus
ariables 𝑟𝑚𝑖 and the affine equality constraints
{

𝐹𝐺
𝑚 − 𝑟𝑚𝑖 = 0 ∣ 𝜆𝐺𝑚𝑖

𝐹𝐸
𝑖 − 𝑟𝑚𝑖 = 0 ∣ 𝜆𝐸𝑚𝑖

(18)

for all (𝑚, 𝑖) ∈ 𝛺. Here, 𝐹𝐸
𝑖 denotes the duplicated gas consumption

f NGU at bus 𝑖 in electricity network such that 𝐹𝐺
𝑚 and 𝐹𝐸

𝑖 are
undled by the additional consensus variable 𝑟𝑚𝑖, 𝜆𝐺𝑚𝑖 and 𝜆𝐸𝑚𝑖 define the

corresponding Lagrangian multipliers. In a result, the constraint (14)
becomes fully local with respect to the electricity system as follows:

𝐹𝐸
𝑖 ≥ 𝜔𝑖𝑃

𝐺
𝑖 . (19)

As the main idea of ADMM is to dualize the consensus constraint
18) using augmented Lagrangian, in order to construct a universal
ramework for two different network configurations, we define the
uadratic terms by functions 𝛷𝐸

𝑚𝑖 ∶ R×R → R≥0 and 𝛷𝐺
𝑚𝑖 ∶ R×R → R≥0,

𝐸
𝑚𝑖(𝐹

𝐸
𝑖 , 𝐹𝐸

𝑖 ) = (𝐹𝐸
𝑖 − 𝐹𝐸

𝑖 )2 , 𝛷𝐺
𝑚𝑖(𝐹

𝐺
𝑖 , 𝐹𝐺

𝑖 ) = (𝐹𝐺
𝑖 − 𝐹𝐺

𝑖 )2

for all (𝑚, 𝑖) ∈ 𝛺, where inputs 𝐹𝐸
𝑖 and 𝐹𝐺

𝑖 can be considered as refer-
ence of 𝐹𝐸

𝑖 and 𝐹𝐺
𝑖 varying in iterations. Accordingly, we summarize

the standard ADMM for solving the OPGF problem as the following
two steps, a parallelizable step and a consensus step. Here, notation
𝜏 indicates the 𝜏-th iteration.

1. Parallelizable Step: Solve the following two problems in parallel
by EO and GO, respectively.

(a) Subproblem 𝒫𝐸 :

min 𝑀1 +
𝜌
2

∑

(𝑚,𝑖)∈𝛺
𝛷𝐸

𝑚𝑖

(

𝐹𝐸
𝑖 , 𝑟𝑚𝑖(𝜏) −

𝜆𝐸𝑚𝑖(𝜏)
𝜌

)

subject to (4a), (4e), (11)–(13), (16), (38)–(40). (20)

(b) Subproblem 𝒫𝐺:

min 𝑀2 +𝑀3 +
𝜌
2

∑

(𝑚,𝑖)∈𝛺
𝛷𝐺

𝑚𝑖

(

𝐹𝐺
𝑚 , 𝑟𝑚𝑖(𝜏) −

𝜆𝐺𝑚𝑖(𝜏)
𝜌

)

subject to (3). (21)

Noted that in subproblem 𝒫𝐸 , variable 𝐹𝐺
𝑚 in constraints (16)

has been replaced by 𝐹𝐸
𝑖 according to (19) such that it is only

with respect to the 𝒫𝐸 . Based on the proposed LDRs based robust
model in Section 3, subproblems 𝒫𝐸 and 𝒫𝐺 are formulated by
using the augmented Lagrangian to construct the models 𝛷𝐸

𝑚𝑖
and 𝛷𝐺

𝑚𝑖 [14] with positive weighting 𝜌 > 0. Here, as the SOC
relaxation is applied to the steady-state Weymouth gas flow
model, (21) is a convex SOCP.
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Fig. 1. Architecture with a central coordinator.

Fig. 2. Architecture without a central coordinator.

2. Consensus Step: The upper-level central coordinator is only re-
sponsible for handling the coupling constraints between the
two networks. In order to update the primal consensus, the
upper-level CO computes

𝑟𝑚𝑖(𝜏 + 1) = argmin
𝑟𝑚𝑖

𝛷𝐸
𝑚𝑖

(

𝐹𝐸
𝑖 (𝜏 + 1), 𝑟𝑚𝑖 −

𝜆𝐸𝑚𝑖(𝜏)
𝜌

)

+𝛷𝐺
𝑚𝑖

(

𝐹𝐺
𝑚 (𝜏 + 1), 𝑟𝑚𝑖 −

𝜆𝐺𝑚𝑖(𝜏)
𝜌

)

=
𝐹𝐸
𝑖 (𝜏 + 1) + 𝐹𝐺

𝑚 (𝜏 + 1)
2

+
𝜆𝐸𝑚𝑖 (𝜏) + 𝜆𝐺𝑚𝑖 (𝜏)

2𝜌
(22)

for all (𝑚, 𝑖) ∈ 𝛺. Here, 𝐹𝐸
𝑖 (𝜏 + 1) and 𝐹𝐺

𝑖 (𝜏 + 1) is given by the
solution of (20) and (21), respectively. Then, the dual consensus
is updated by b

𝜆𝐸𝑚𝑖 (𝜏+1) = 𝜆𝐸𝑚𝑖 (𝜏) +𝜌
[

𝐹𝐸
𝑖 (𝜏+1) − 𝑟𝑚𝑖 (𝜏+1)

]

, (23a)

𝜆𝐺𝑚𝑖 (𝜏+1) = 𝜆𝐺𝑚𝑖 (𝜏) +𝜌
[

𝐹𝐺
𝑚 (𝜏+1) − 𝑟𝑚𝑖 (𝜏+1)

]

. (23b)

As the OPGF problem is convex but not strongly convex, the sublin-
ar convergence rate (1∕𝜏) established in [44] can be directly applied
o the standard ADMM above.

.2. Configuration with central coordinator

When the electricity network is coupled with the natural gas system
ia a central coordinator, the entire system becomes a distributed
rchitecture. The EO and GO can be considered as two lower-level
gents while the upper-level CO coordinates the lower-level agents. The
ommunication strategy is illustrated in Fig. 1. The ADMM for solving
he OPGF problem can be summarized as follows into two main steps,

parallelizable step and a consensus step. Algorithm 1 outlines the
ailored ADMM for the configuration with a CO.

Compared to the standard framework, the dual updates (23a) and
23b) are executed in parallel in EO and GO. After that, the lower-
evel subproblems (20) and (21) are solved locally via EO and GO in
arallel. Therefore, each lower-level decision-maker can operate their
6

1

Algorithm 1 ADMM Variant I: distributed consensus
Initialization:

• EO chooses initial guess 𝐹𝐸
𝑖 (0) and 𝜆𝐸𝑚𝑖(0) for all (𝑚, 𝑖) ∈ 𝛺;

• GO chooses initial guess 𝐹𝐺
𝑖 (0) and 𝜆𝐺𝑚𝑖(0) for all (𝑚, 𝑖) ∈ 𝛺;

• CO chooses initial guess 𝑟𝑚𝑖(0) for all (𝑚, 𝑖) ∈ 𝛺.

Repeat:

1. Parallelizable Step:

a) EO receives 𝑟𝑚𝑖(𝜏) and update

𝜆𝐸𝑚𝑖 (𝜏 + 1) = 𝜆𝐸𝑚𝑖 (𝜏) +𝜌
[

𝐹𝐸
𝑖 (𝜏) − 𝑟𝑚𝑖 (𝜏)

]

(24)

Then, solve 𝒫𝐸 with 𝛷𝐸
𝑚𝑖

(

𝐹𝐸
𝑖 , 𝑟𝑚𝑖(𝜏) −

𝜆𝐸𝑚𝑖(𝜏+1)
𝜌

)

and send

solutions (𝐹𝐸
𝑖 (𝜏 + 1), 𝜆𝐸𝑚𝑖(𝜏 + 1)) to CO.

b) GO receives 𝑟𝑚𝑖(𝜏) and update

𝜆𝐺𝑚𝑖 (𝜏 + 1) = 𝜆𝐺𝑚𝑖 (𝜏) + 𝜌
[

𝐹𝐺
𝑚 (𝜏) − 𝑟𝑚𝑖 (𝜏)

]

(25)

Then, solve 𝒫𝐺 with 𝛷𝐺
𝑚𝑖

(

𝐹𝐺
𝑚 , 𝑟𝑚𝑖(𝜏) −

𝜆𝐺𝑚𝑖(𝜏+1)
𝜌

)

and send

solutions (𝐹𝐺
𝑖 (𝜏 + 1), 𝜆𝐺𝑚𝑖(𝜏 + 1)) to CO.

2. Consensus Step: CO collects from EO and GO

(𝐹𝐸
𝑖 (𝜏 + 1), 𝜆𝐸𝑖 (𝜏 + 1)) and (𝐹𝐺

𝑖 (𝜏 + 1), 𝜆𝐺𝑖 (𝜏 + 1))

and then, update the primal consensus by

𝑟𝑚𝑖 (𝜏 + 1) =
𝐹𝐸
𝑖 (𝜏 + 1) + 𝐹𝐺

𝑚 (𝜏 + 1)
2

+
𝜆𝐸𝑚𝑖 (𝜏 + 1) + 𝜆𝐺𝑚𝑖 (𝜏 + 1)

2𝜌

(26)

and spread it to EO and GO.

individual systems independently with considering that only the NGUs’
information is shared with the central coordinator.

4.3. Configuration without central coordinator

When the electricity network is directly connected with the natural
gas system, each decision-makers need autonomously and simulta-
neously to operate their local systems with the consideration that
only limited information on NGUs is exchanged. Fig. 2 shows this
decentralized structure, where the GO and EO can only establish a
peer-to-peer communication channel to achieve cooperation between
the two infrastructures. Accordingly, Algorithm 2 outlines the second
variant of ADMM with fully decentralized consensus.

The main idea of decentralized consensus is to avoid directly com-
puting the primal consensus 𝑟𝑚𝑖 at each iterations. To this end, we sub-
stitute the explicit form (26) into the dual consensus update (24) and
(25) yielding the dual update (27) and (28). Then, the quadratic model
𝛷𝐸

𝑚𝑖

(

𝐹𝐸
𝑖 ,

𝜆𝐺𝑚𝑖(𝜏)
𝜌 + 𝐹𝐺

𝑚 (𝜏)
)

and 𝛷𝐺
𝑚𝑖

(

𝐹𝐺
𝑚 ,

𝜆𝐸𝑚𝑖(𝜏)
𝜌 + 𝐹𝐸

𝑖 (𝜏)
)

are constructed

y substituting (27) and (28) into (20) and (21).

. Numerical results

A 6-bus-6-node and a 118-bus-20-node IEGS are used and imple-
ented on Matlab R2016a with an Intel Core i5-6500, 3.2 GHz,
6 GB RAM computer, using Gurobi 9.0. The network parameters



International Journal of Electrical Power and Energy Systems 139 (2022) 107963J. Zhai et al.
Algorithm 2 ADMM Variant II: decentralized consensus
Initialization:

• EO chooses initial guess 𝐹𝐸
𝑖 (0) and 𝜆𝐸𝑚𝑖(0) for all (𝑚, 𝑖) ∈ 𝛺;

• GO chooses initial guess 𝐹𝐺
𝑖 (0) and 𝜆𝐺𝑚𝑖(0) for all (𝑚, 𝑖) ∈ 𝛺.

Repeat two parallel steps:

a) EO receives (𝐹𝐺
𝑚 (𝜏), 𝜆𝐺𝑚𝑖(𝜏)) and update

𝜆𝐸𝑚𝑖 (𝜏 + 1) =
𝜆𝐸𝑚𝑖(𝜏) − 𝜆𝐺𝑚𝑖(𝜏)

2
+ 𝜌

𝐹𝐸
𝑖 (𝜏) − 𝐹𝐺

𝑚 (𝜏)
2

(27)

Then, solve 𝒫𝐸 with 𝛷𝐸
𝑚𝑖

(

𝐹𝐸
𝑖 ,

𝜆𝐺𝑚𝑖(𝜏)
𝜌 + 𝐹𝐺

𝑚 (𝜏)
)

and send solutions

(𝐹𝐸
𝑖 (𝜏 + 1), 𝜆𝐸𝑚𝑖(𝜏 + 1)) to GO.

b) GO receives (𝐹𝐸
𝑖 (𝜏), 𝜆𝐸𝑚𝑖(𝜏)) and update

𝜆𝐺𝑚𝑖 (𝜏 + 1) =
𝜆𝐺𝑚𝑖(𝜏) − 𝜆𝐸𝑚𝑖(𝜏)

2
+ 𝜌

𝐹𝐺
𝑚 (𝜏) − 𝐹𝐸

𝑖 (𝜏)
2

(28)

Then, solve 𝒫𝐺 with 𝛷𝐺
𝑚𝑖

(

𝐹𝐺
𝑚 ,

𝜆𝐸𝑚𝑖(𝜏)
𝜌 + 𝐹𝐸

𝑖 (𝜏)
)

and send solutions

(𝐹𝐺
𝑚 (𝜏 + 1), 𝜆𝐺𝑚𝑖(𝜏 + 1)) to EO.

Fig. 3. 6-bus-6-node IEGS.

and other data are available online [45]. Note that the only difference
between Algorithms 1 and 2 is the communication strategy. Thus,
the solutions from Algorithm 1 are adopted to evaluate the solution
accuracy.

5.1. 6-Bus-6-Node IEGS

Case 1 is a 6-bus-6-node IEGS with fixed natural gas flow directions
as shown in Fig. 3. The system has 2 NGUs, 2 non-NGUs, 2 wind farms,
7 branches, 6 electricity loads, 2 natural gas wells, 5 pipelines, and 2
gas loads. Variations of wind generation are considered as 20% of their
forecast values. In the ADMM procedure, the penalty factor 𝜌 is set as
0.002. Convergence tolerance of the primal and dual residues is 0.01
kcf. The initial values of gas consumptions of NGUs and multipliers are
all set at zero.
7

Table 1
Comparisons with varying budgets for Case 1.

Scheme Budget Ite. Gas (kcf) Operation cost ($)

NGU 1 NGU 2 EO GO Total

Cen.
0 – 1876 426 5220 8704 13 924
1 – 1960 1036 4576 9744 14 320
2 – 1844 1780 4041 10 687 14 728

Dis.
0 33 1877 426 5220 8704 13 924
1 82 1960 1037 4577 9745 14 322
2 88 1843 1782 4041 10 688 14 729

Table 2
Operation cost of predefined and optimized AGC participation factors for Case 1.

Budget Total operation cost ($)

Predefined AGC Optimized AGC

0 13 924 13 924
1 14 791 14 320
2 15 482 14 728

5.1.1. Impact of uncertainty budgets
Since there are 2 wind farms, the uncertainty budget can vary from

0 to 2. Results are summarized in Table 1. The budget 𝜎 = 0 degenerates
into a deterministic optimization problem with no wind power varia-
tion. The budget 𝜎 = 2 degenerates into the nonadjustable bounded
interval method in the classical LDRs based adjustable robust models
[31,32], which is the most conservative situation. We can see that the
total operation cost increases steadily with the increasing uncertainty
budget. This is because a larger uncertain budget corresponds to the
more severe wind power fluctuations, which leads to a more conser-
vative solution. This will result in more units generate more energy or
consume more gas uneconomically to deal with the worst-case available
wind power scenario. By increasing the uncertainty budget, the solution
becomes more robust at the expense of higher operation costs. In our
proposed LDRs based adjustable robust model, the robustness level is
controlled using a parameter denominated as the budget of uncertainty,
leading to significantly less conservative and more practical solutions. It
should be noted that the robust solutions here only reveal the operation
cost in the worst-case scenario, the actual solutions can be better than
the displayed results.

5.1.2. Impact of AGC participation factors
The traditional participation factors of AGC units are generally pre-

defined according to their unit capacity [46], i.e., 𝛼𝑔 = 𝑃
𝐺
𝑔 ∕

∑
𝑔=1 𝑃

𝐺
𝑔 ,

so the AGC participation factors are fixed. In our LDRs based adjustable
robust model, the AGC participation factors are treated as optimization
variables, aimed at improving the operational economy. To verify
the effect of optimizing the AGC participation factors, the operation
cost is compared with the traditional predefined participation factors
method [29,30], shown in Table 2. We can see that optimizing AGC
participation factors can reduce the operation cost by up to 5.1%.
This is because different participation factors correspond to different
allocations of wind power among AGC units. If fixed participation
factors are adopted, the large-capacity unit has a large participation
factor, so its allocated wind power is also large. However, the unit cost
for providing the reserve of the large-capacity unit is not necessarily
low, which leads to an increase in operation cost.

5.1.3. Convergence performance
The proposed distributed approach is compared with the tradi-

tional centralized method. The iteration processes of the natural gas
exchanges of NGUs among EO, GO, and CO and the total opera-
tion cost are depicted in Figs. 4 and 6, respectively, summarized
in Table 1. We can see that the distributed solutions with different
uncertainty budgets converge after 33, 82, and 88 iterations. The
converged natural gas exchanges of NGUs and the operation cost found
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Fig. 4. Convergence curve of natural gas exchange for Case 1 (a) NGU 1 (b) NGU 2.
Fig. 5. Convergence curve of dual variables and generation cost for Case 1.
by the distributed method are nearly the same as that identified by the
centralized method.

The values of dual variables (𝜆𝐺𝑚𝑖, 𝜆
𝐸
𝑚𝑖) for the consensus constraint

(18) imply the strength of the coupling between the gas network and
the electricity network such that it further indicates how collaborative
the gas system and the electricity system are operated. Fig. 5 shows
the convergence of dual variables (𝜆𝐸𝑚𝑖, 𝜆

𝐺
𝑚𝑖) in constraint (18) and the

generation costs (functions of the primal variables) with the budget
𝜎 = 1 as an example. Since ADMM is an augmented Lagrangian based
operator splitting approach [43], the generation costs of the electricity
network and gas network at the first iteration are equal to the costs
of operating the electricity system and gas system independently as
the dual variables are initialized by zero. Following the convergence
of dual variables, the generation cost is also changed and converges to
the optimal.

5.2. 118-Bus-20-Node IEGS

The modified IEEE 118-bus electricity network is assumed inter-
connected with a 20-node natural gas network [47] in Case 2. The
system includes 3 NGUs, 51 non-NGUs, 5 wind farms, 186 branches,
91 electricity loads, 3 natural gas wells, 2 natural gas storages, 19
pipelines, 3 compressors, and 10 gas loads. Convergence tolerance of
the primal and dual residues is 0.1 kcf. Variations of wind generation
and other algorithm parameters for ADMM are the same as Case 1.
8

5.2.1. Impact of uncertainty budgets
Case 2 is also optimized with varying budgets and illustrated in

Table 3. The total operation cost increases with the increasing uncer-
tainty budgets. This means a larger uncertain budget corresponds to a
more conservative solution. Similar to Case 1, when the budget 𝜎 = 5
degenerates into the nonadjustable bounded interval method with the
most conservative situation. After the uncertainty budget is greater
than the number of wind farms, the robustness level and operation costs
do not change, since all uncertain parameters have adopted their worst-
case realization values and there is no further uncertain parameter to
change.

5.2.2. Impact of AGC participation factors
The traditional predefined participation factors method is also com-

pared with the proposed optimized participation factors model in Case
2, shown in Table 4. We can conclude that the proposed optimized AGC
participation factors method can greatly reduce the total operation cost
and make the solution less conservative. Additionally, the intention of
involving AGC reference output base-points is to account for how the
AGC units will respond to the power mismatch caused by wind power
uncertainties, but not to generate signals to control the actual output
of AGC units. Output base-points are provided to AGC units for refer-
ence only, and the actual power outputs of these units are ultimately
controlled by the AGC system to compensate the area control error.
Noted that this proposed LDRs based adjustable robust OPGF model
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Fig. 6. Convergence curve of total operation cost for Case 1.
Table 3
Comparisons with varying budgets for Case 2.

Scheme Budget Iter. Operation cost ($) Time (s)

EO GO Total

Cen.

0 \ 53 940 32 205 86 145 6.4
1 \ 54 090 32 201 86 291 7.9
2 \ 54 333 32 145 86 478 9.2
3 \ 54 595 32 090 86 685 9.5
4 \ 54 838 32 060 86 898 8.2
5 \ 54 976 32 045 87 021 11.0

Dis.

0 29 53 940 32 205 86 145 26.7
1 23 54 089 32 202 86 291 24.4
2 24 54 333 32 145 86 478 23.7
3 22 54 596 32 089 86 685 25.5
4 22 54 838 32 059 86 897 23.1
5 22 54 977 32 044 87 021 28.7

Table 4
Operation cost of predefined and optimized AGC participation factors for Case 2.

Budget Total operation cost ($)

Optimized AGC Predefined AGC

0 86 145 86 145
1 86 291 86 702
2 86 478 87 313
3 86 685 88 124
4 86 898 88 570
5 87 021 89 169

can simultaneously optimize the AGC participation factors, utilize the
budget of uncertainty in a polyhedral uncertainty set, and consider
the wind power curtailment situation, which leads to significantly less
conservative and more practical solutions.

5.2.3. Convergence performance
The convergence curve of the total operation cost is depicted in

Fig. 7 and summarized in Table 3. We can see that the distributed
solutions with different uncertainty budgets nearly coincide with the
traditional centralized approach after 29, 23, 24, 22, 22, and 22 it-
erations, respectively. The solutions from the distributed and the cen-
tralized approach are close, which indicates the effectiveness and high
solution quality of the distributed approach. The comparison of com-
putation time with the traditionally centralized model is also shown
9

Fig. 7. Convergence curve of total operation cost for Case 2.

in Table 3. The required computation time of the proposed distributed
model is slightly higher than the centralized model. Since only a limited
set of information is shared among system operators, communication
burdens, which usually account for more processing time in practice,
are alleviated and information privacy is preserved. With the growth
in the IEGS scale, the centralized model will become more difficult
to deploy as it requires data for both power system and gas system
which generally correspond to different market regulations or adminis-
trative jurisdictions. This LDRs based adjustable robust model can also
reduce the computation burden of each ADMM iteration and guarantee
the convergence of ADMM, which eliminates the need for using any
master-subproblem decomposition strategy and can be easily applied
to distributed optimization.

The only parameter that affects the convergence performance is the
penalty parameter 𝜌. Theoretically, the choice of 𝜌 does not affect the
convergence guarantee. But of course, its value affects the numerical
performance. As shown in Table 3, the different budgets have little im-

pact on the iterations and computation time, thus we test the sensitivity
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Table 5
Impact of 𝜌 on iterations for Case 2.
𝜌 Iterations Time (s)

0.02 36 44.3
0.002 22 25.5
0.0002 43 60.1

Table 6
Optimality gap for Cases 1 and 2.

Cases Total operation cost ($) Optimality gap

NLP SOCP

1 14 392 14 320 0.5%
2 86 721 86 685 0.04%

of the results to 𝜌 with the budget 𝜎 = 3. Results are shown in Table 5.
We can see that the iteration numbers of distributed optimization de-
pend on the value of 𝜌. In order to improve the convergence efficiency
of distributed optimization, a careful selection of 𝜌 is essential.

5.3. Accuracy of second-order cone relaxation

We solve the original nonlinear programming (NLP) model by
IPOPT as a heuristic method to measure the optimality gap of SOC
relaxations, presented in Table 6. The uncertainty budgets in Cases
1 and 2 are respectively 𝜎 = 1 and 𝜎 = 3. We can observe that the
optimality gap is relatively small. Besides, these gaps can be mitigated
by adjusting gas linepacks. Therefore, the SOC relaxation for the natural
gas system is assumed to be exact. In practice, sufficient conditions for
an exact SOC relaxation of natural gas flow represent an open issue for
further research.

5.4. Discussion

5.4.1. Algorithm 1 vs. Algorithm 2
To compare the communication efficiency of the proposed Algo-

rithm 1 and Algorithm 2, numbers of information units exchanged
in the distributed procedure are compared. One information unit is
defined as transforming one variable (including the gas consumption
of an NGU and consensus variables) from one subsystem to another.
In Case 1, the numbers of information units exchanged per iteration
in Algorithm 1 and Algorithm 2 are 12 and 8, respectively. While in
Case 2, they are 18 and 12, respectively. The numbers of information
units exchanged per iteration in Algorithm 2 is one-third smaller than
that of Algorithm 1, which indicates that Algorithm 2 is a more com-
municational efficient method and can help reduce the communication
bottleneck. Algorithm 2 is more flexible and robust in response to
system changes since no detailed data need to be collected at the central
controller.

5.4.2. Applicability and extensibility
The traditional centralized method can be only used for a case

in which the natural gas and electricity networks are operated by a
vertically integrated utility. Unfortunately, this is an unrealistic as-
sumption, because natural gas and electricity networks are generally
managed by different operators in real life. The proposed ADMM based
operation structures for two possible infrastructure networks based
IEGS (e.g. Great Britain, China, and South American counties [8,9])
have strong applicability where strict claims for reducing commu-
nication and privacy preservation burdens are met. The individual
operator in power sector and gas sector can operate their respective sys-
tems independently, and the information privacy and decision-making
independence are preserved among different operators.

In real applications, the regional subproblems of the gas system
and the electricity system can be simultaneously implemented by local
computers in parallel. Compared to the centralized framework, the
10
proposed distributed method is, thus, potentially more efficient on
computation w.r.t the size of the problem that can be addressed and
on communication w.r.t the size of information exchanged between the
gas and electricity systems. Moreover, only a mild level of accuracy
required in practice further improves the effectiveness of the proposed
distributed algorithm.

Although the electricity system operator may not have direct control
over generating units under the electricity market environment, the
generating units can only submit their offering curves to the indepen-
dent system operator (ISO) according to the market rules. For instance,
in the PJM electricity market, generating units cannot determine their
own power output. Instead, ISO will clear the market and directly send
the cleared quantities to generating units. Thus, the proposed model is
practical.

These two Algorithms can be straightforwardly extended to a multi-
period operation model considering line-pack. When the discrete de-
cisions (e.g. gas direction) for the long-term operation problem of
IEGS are included, some ADMM based heuristic procedure [48] can
be adopted to enhance the convergence performance. When the non-
linear constraints (e.g. AC power flow equation) are included, an-
other distributed optimization approach, called Augmented Lagrangian
based Alternating Direction Inexact Newton [49], can be adopted to
guarantee locally quadratic convergence for AC power flow.

6. Conclusions

This paper considered the operation problem of IEGS and presented
the distributed adjustable robust OPGF model. The linear decision rules
are improved to reformulate the adjustable robust OPGF model as
a computationally tractable problem while simultaneously optimizing
the AGC participation factors, utilizing the controllable polyhedral
uncertainty set, and considering the wind power curtailment situation.
The main conclusions include: (1) The potential of AGC systems in
dealing with renewable energy uncertainty is fully exploited, and the
budget of uncertainty is used to control the solution robustness level.
(2) This improved LDRs based adjustable robust approach can reduce
the computational burden caused by the existing decomposition based
robust approach when applied to distributed optimization. (3) Based
on two possible topological IEGS, i.e., with and without a central
coordinator, two tailored ADMM algorithms are proposed to solve
subproblems individually in parallel.
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Notation: Appendix uses boldface lower case and upper case letters
to represent vectors and matrices, respectively.



International Journal of Electrical Power and Energy Systems 139 (2022) 107963J. Zhai et al.

w
t
t

𝜽

w

p
f

𝑷

w
s
w
s
c
t
w

𝛥

N
n
i
e

𝑃

A

i

𝑃

𝛼

𝜅

∀

T
a

𝑃

𝛽

𝜅

T
a

𝜅

R

A.1. Derivation for line flow limit

It is desired to derive the LDRs of (4d) using the full-set formulation
that makes use of the sparse network equations directly in the problem.
To this end, the power balance under the realization of wind generation
can be written in matrix format:

𝑷𝐺 + 𝑷𝑊 − 𝑩𝜽 = 𝑷𝐷, (29)

here 𝑷𝐺, 𝑷𝑊 , 𝑷𝐷, and 𝜽 denote vectors of the corresponding quanti-
ies and 𝑩 is the network admittance matrix. By taking the first bus as
he reference in (4e), the bus angles can be computed as:

= 𝑩̃
(

𝑷𝐺 + 𝑷𝑊 − 𝑷𝐷) , (30)

here 𝑩̃ =

[

0 𝟎1×(𝑛−1)
𝟎(𝑛−1)×1 𝑩̇−1

]

and 𝑛 denote the number of buses in

ower network, 𝑩̇ is the sub-matrix obtained from 𝑩 by removing the
irst row and column. Also express (8) in vector form:
𝑊 = 𝑷̂𝑊 − 𝜷𝝃, (31a)

𝑷𝐺 = 𝑷̂𝐺 − 𝜶
(

𝒆𝑇 𝝃
)

, (31b)

here 𝒆𝑇 is a vector of ones, 𝜶 denotes vector of adjustable term as-
ociate with unit output, 𝜷 denotes matrix of adjustable term associate
ith wind generation, 𝝃 denotes vector of wind forecast errors. Sub-

tituting (31a) and (31b) in (30) reveals that the bus angles have two
omponents, 𝜽̂ that represents the non-adjustable term corresponding
o the wind forecasts and 𝛥𝜽 that represents the adjustable term varying
ith the uncertain wind forecast error:

𝜽 = 𝜽̂ + 𝛥𝜽, (32a)

𝜽̂ = 𝑩̃
(

𝑷̂𝐺 + 𝑷̂𝑊 − 𝑷𝐷
)

, (32b)

𝜽 = 𝑩̃
[

−𝜷𝝃 − 𝜶
(

𝒆𝑇 𝝃
)]

. (32c)

ote that 𝑩̃ is a dense matrix while 𝑩 is sparse in all practical power
etworks; because the power network should be balanced at any point
n time, (32b) that governs the bus angles 𝜽̂ can be equivalently
xpressed using the elements of the sparse network admittance matrix:

̂𝐺
𝑖 + 𝑃𝑊

𝑖 −
∑

𝑗∈𝑖

𝜃̂𝑖 − 𝜃̂𝑗
𝑥𝑖𝑗

= 𝑃𝐷
𝑖 , 𝜃̂1 = 0, 𝑖 ∈ . (33)

Expanding (32c) gives

𝛥𝜽 = −𝑩̃𝜷𝝃 − 𝑩̃𝜶
(

𝒆𝑇 𝝃
)

. (34)

From (34), the change in the angle of bus 𝑖 due to the uncertain wind
forecast error is

𝛥𝜃𝑖 = −
∑

𝑘∈
𝐵̃𝑖𝑘𝛽𝑖𝑘𝜉𝑘 −

(

∑

𝑔∈
𝐵̃𝑖𝑔𝛼𝑔

)

∑

𝑘∈
𝜉𝑘 (35a)

= −
∑

𝑘∈

(

𝐵̃𝑖𝑘𝛽𝑖𝑘 +
∑

𝑔∈
𝐵̃𝑖𝑔𝛼𝑔

)

𝜉𝑘. (35b)

Similarly, the change in the angle of bus 𝑗 is

𝛥𝜃𝑗 = −
∑

𝑘∈

(

𝐵̃𝑗𝑘𝛽𝑗𝑘 +
∑

𝑔∈
𝐵̃𝑗𝑔𝛼𝑔

)

𝜉𝑘. (36)

The uncertain power flow in branch 𝑖𝑗 can be now obtained from (4d),
(32a), (35), and (36):

𝑃𝑖𝑗 =
1
𝑥𝑖𝑗

(

𝜃̂𝑖 − 𝜃̂𝑗 + 𝛥𝜃𝑖 − 𝛥𝜃𝑗
)

= 1
𝑥𝑖𝑗

[

𝜃̂𝑖 − 𝜃̂𝑗 +
∑

𝑘∈

(

𝐵̃𝑗𝑘𝛽𝑗𝑘 − 𝐵̃𝑖𝑘𝛽𝑖𝑘 +
∑

𝑔∈
𝐵̃𝑗𝑔𝛼𝑔 −

∑

𝑔∈
𝐵̃𝑖𝑔𝛼𝑔

)

𝜉𝑘

]

.
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(37)
.2. LDRs adjustable robust form

The LDRs based adjustable robust form for the left hand side of (4c)
s as follows:

̂𝐺
𝑔 − 𝑃𝐺

𝑔 ≥ 𝜎𝜇𝐺(𝑙)
𝑔 +

∑

𝑘∈
𝑠
(

𝜅𝐺(𝑙)+
𝑔𝑘 + 𝜅𝐺(𝑙)−

𝑔𝑘 + 𝜅𝐺(𝑙)1
𝑔𝑘

)

(38a)

𝑔𝛥𝑃
𝑊
𝑘 ≤ 𝜅𝐺(𝑙)+

𝑔𝑘 + 𝜅𝐺(𝑙)1
𝑔𝑘 + 𝜇𝐺(𝑙)

𝑔 (38b)

− 𝛼𝑔𝛥𝑃
𝑊
𝑘 ≤ 𝜅𝐺(𝑙)−

𝑔𝑘 + 𝜅𝐺(𝑙)1
𝑔𝑘 + 𝜇𝐺(𝑙)

𝑔 (38c)
𝐺(𝑙)+
𝑔𝑘 ≥ 0 , 𝜅𝐺(𝑙)−

𝑔𝑘 ≥ 0 , 𝜅𝐺(𝑙)1
𝑔𝑘 ≥ 0 , 𝜇𝐺(𝑙)

𝑔 ≥ 0 (38d)

𝑔 ∈ ,∀𝑘 ∈  .

he LDRs based adjustable robust form for the left hand side of (4b) is
s follows.

̂𝑊
𝑗 ≥

∑

𝑘∈

(

𝜅𝑊 (𝑙)+
𝑗𝑘 + 𝜅𝑊 (𝑙)−

𝑗𝑘 + 𝜅𝑊 (𝑙)1
𝑗𝑘

)

+ 𝜎𝜇𝑊 (𝑙)
𝑗 , 𝑗 ∈  (39a)

(

𝛽𝑗𝑘 + 1
)

𝛥𝑃𝑊
𝑘 ≤ 𝜅𝑊 (𝑙)+

𝑗𝑘 + 𝜅𝑊 (𝑙)1
𝑗𝑘 + 𝜇𝑊 (𝑙)

𝑗 , 𝑗 = 𝑘 (39b)

−
(

𝛽𝑗𝑘 + 1
)

𝛥𝑃𝑊
𝑘 ≤ 𝜅𝑊 (𝑙)−

𝑗𝑘 + 𝜅𝑊 (𝑙)1
𝑗𝑘 + 𝜇𝑊 (𝑙)

𝑗 , 𝑗 = 𝑘 (39c)

𝑗𝑘𝛥𝑃
𝑊
𝑘 ≤ 𝜅𝑊 (𝑙)+

𝑗𝑘 + 𝜅𝑊 (𝑙)1
𝑗𝑘 + 𝜇𝑊 (𝑙)

𝑗 , 𝑗 ∈  , 𝑗 ≠ 𝑘 (39d)

− 𝛽𝑗𝑘𝛥𝑃
𝑊
𝑘 ≤ 𝜅𝑊 (𝑙)−

𝑗𝑘 + 𝜅𝑊 (𝑙)1
𝑗𝑘 + 𝜇𝑊 (𝑙)

𝑗 , 𝑗 ∈  , 𝑗 ≠ 𝑘 (39e)
𝑊 (𝑙)+
𝑗𝑘 ≥ 0 , 𝜅𝑊 (𝑙)−

𝑗𝑘 ≥ 0 , 𝜅𝑊 (𝑙)1
𝑗𝑘 ≥ 0 , 𝜇𝑊 (𝑙)

𝑗 ≥ 0. (39f)

he LDRs based adjustable robust form for the left hand side of (4d) is
s follows.

𝐿𝑖𝑗 −
𝜃̂𝑖 − 𝜃̂𝑗
𝑥𝑖𝑗

≥
∑

𝑘∈

(

𝜅𝐿(𝑙)+
𝑖𝑗𝑘 + 𝜅𝐿(𝑙)−

𝑖𝑗𝑘 + 𝜅𝐿(𝑙)1
𝑖𝑗𝑘

)

+ 𝜎𝜇𝐿(𝑙)
𝑖𝑗 (40a)

− 1
𝑥𝑖𝑗

(

𝐵̃𝑗𝑘𝛽𝑗𝑘 − 𝐵̃𝑖𝑘𝛽𝑖𝑘 +
∑

𝑔∈
𝐵̃𝑗𝑔𝛼𝑔 −

∑

𝑔∈
𝐵̃𝑖𝑔𝛼𝑔

)

𝛥𝑃𝑊
𝑘

≤ 𝜅𝐿(𝑙)+
𝑖𝑗𝑘 + 𝜅𝐿(𝑙)1

𝑖𝑗𝑘 + 𝜇𝐿(𝑙)
𝑖𝑗 (40b)

1
𝑥𝑖𝑗

(

𝐵̃𝑗𝑘𝛽𝑗𝑘 − 𝐵̃𝑖𝑘𝛽𝑖𝑘 +
∑

𝑔∈
𝐵̃𝑗𝑔𝛼𝑔 −

∑

𝑔∈
𝐵̃𝑖𝑔𝛼𝑔

)

𝛥𝑃𝑊
𝑘

≤ 𝜅𝐿(𝑙)−
𝑖𝑗𝑘 + 𝜅𝐿(𝑙)1

𝑖𝑗𝑘 + 𝜇𝐿(𝑙)
𝑖𝑗 (40c)

𝐿(𝑙)+
𝑖𝑗𝑘 ≥ 0, 𝜅𝐿(𝑙)−

𝑖𝑗𝑘 ≥ 0, 𝜅𝐿(𝑙)1
𝑖𝑗𝑘 ≥ 0, 𝜇𝐿(𝑙)

𝑖𝑗 ≥ 0 (40d)

∀(𝑖, 𝑗) ∈ ,∀𝑘 ∈  .
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