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Most metallurgical properties, e.g., dislocation propagation, precipitate formation, can only be fully under-
stood atomistically but most phenomena and quantities of interest cannot be measured experimentally. Accurate
simulation methods are essential but first-principles density functional theory (DFT) is prohibitively expensive
while empirical interatomic potentials are rarely sufficiently accurate for alloys. Machine learning (ML) is
emerging as an approach to create computationally-efficient atomistic potentials achieving near-DFT accuracy.
Building on recent work on binary Al-Cu and ternary Al-Mg-Si, here a family of neural network potentials
(NNPs) for Al alloys of Al-Cu-Mg and Al-Cu-Mg-Zn is developed and assessed using the Behler-Parinello for-
mulation. Training of the potentials uses a robust set of metallurgically-relevant structures including intermetallic
phases, stacking faults, solute/solute and solute/stacking fault interactions, solute clusters, and matrix/precipitate
interfaces. The accuracy of these NNPs is then demonstrated across a comprehensive set of properties derived
from the training set structures and, moreover, many important structures not represented in the training set
such as the generalized stacking fault energy (GSFE) surface of the critical S-phase precipitate in Al-Mg-Cu,
and antisite and vacancy formation energies for Al-Cu-Mg intermetallics. The broader Al-Cu-Mg-Zn NNPs also
have high accuracy for subtle properties such as Cu substitutional energies in the η′ and T phases and formation
energies of small Al-Zn-Mg clusters. Together with earlier results, this paper shows how increasingly complex
multicomponent alloy potentials can be systematically developed by expanding a training database, leading to
a comprehensive set of potentials for a broad alloy family, demonstrated here for the technological Al-2xxx,
Al-5xxx, and Al-7xxx Al alloys.
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I. INTRODUCTION

The performance-controlling mechanical properties of
metals ultimately depend on atomistic details of noncrys-
talline defects. While these defects, or their effects, can
be modeled with high-level approximations such as finite-
elements, phase-field, or discrete dislocation dynamics, all
such models depend on model parameters that must be es-
timated by experiments or atomic simulations. For example,
precipitates are one of the dominating strengthening fea-
tures in most engineering aluminum alloys but how these
precipitates form (solute clustering, transform path, kinetics)
and strengthen (dislocation looping or shearing) can only be
quantitatively modeled atomistically. Even within one spe-
cific alloy family, e.g., Al-Mg-Zn-Cu Al-7xxx, the complexity
across the relevant atomistic configurations required to study
just one feature of performance is daunting, making such
a scope of studies especially computationally challenging.
Thus, methods for atomistic modeling must be both accurate
and computationally efficient.

Currently, there are three main approaches to handling the
chemical energetics of atomistic modeling that are, in order of
increasing computational efficiency, density functional theory
(DFT), machine learning interatomic potentials, and semi-
empirical potentials such as the embedded atom method. DFT
is the most chemically accurate and can capture very subtle
features in an alloy, such as the entropic stabilization of the
Al-Cu θ phase relative to the θ ′ [1] phase. However, DFT
is very computationally expensive, scaling with the cube of

the number of electrons, and so is typically limited to studies
of a few hundred atoms even using state-of-the-art super-
computers. This cost rules out direct simulation of complex
defects and their interactions in alloys. On the other end of the
efficiency spectrum are the semi-empirical potentials (EAM,
MEAM, ADP, BOP) that have analytic functional forms and
at a cost that scales linearly with the number of atoms. These
methods can fit experimental data on basic quantities, but
do not have the breadth of quantitative accuracy of DFT.
Because of the mathematical structures of these methods,
they also have rather limited flexibility to describe alloys,
i.e., materials with more than one element. The emerging
intermediate path of machine learning involves a very flexi-
ble (many-parameter) regression optimization of a large set
of training data generated by DFT. The extensive flexibility
enables ML potentials to capture many material properties
relevant to metallurgy while being extendable to alloys. ML
potentials are more expensive than traditional potentials, and
must be used cautiously to identify regions where the potential
is extrapolating outside the configurational domain of the
training data. However, ML potentials for metal alloys are
rapidly proving to be quantitatively accurate well beyond the
capabilities of traditional potentials while remaining accept-
able in cost, as demonstrated in some of our recent papers
(Al-Cu [2], Mg [3], and Al-Mg-Si [4,5]). Other recent exam-
ples include state-of-the-art potentials for Zn [6], Ti and Zr
[7], Fe-H for hydrogen embrittlement [8], Ga/As [9], Hf-O
refractory oxide (generated automatically with experimental
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input) [10], MoNbTa medium-entropy alloys [11], as well as
MoNbTaW and NbMoTaW high entropy alloys [12,13].

The generality of possible ML methods is spawning a
wide variety of ML potentials [14–16]. Two essential details
enter into the construction of an ML potential: (1) the set of
descriptors of the local atomistic environments that are the
basis on which regression is performed and (2) the scope of
the training dataset that is learned by the ML method. These
two are not entirely independent—the descriptors should ac-
curately and efficiently capture the atomic configurations of
the training set while the training set configurations should
span the necessary range of atomic configurations that dictate
alloy metallurgy. Descriptors have symmetries with respect to
translation, rotation, and substitution, and otherwise should be
as orthogonal as possible to span the configuration space. Two
main families of descriptors are those of Behler and Parinello
[17] and the smooth overlap of atomic orbitals (SOAP) [18]
although others such as a cluster expansion [19] and crystal
graph networks [20] are emerging. The descriptors are used
with some regression scheme, traditionally neural networks
for the Behler-Parinello symmetry functions and Gaussian
kernels for SOAP, to determine optimal weighting parameters
or kernels. New methods that combine the attractive phys-
ical basis of the empirical methods and the parameter-rich
ML methods are also being developed (PINN) [21,22]. Here,
we will use neural network potentials (NNPs) based on the
Behler-Parinello formulation and descriptors.

The training sets used to develop ML potentials are often
large precomputed custom sets of structures spanning those
relevant for the particular problem of interest although po-
tentials created using active learning are becoming popular
[10,23–27]. Knowing the many critical subtleties and ener-
getic competitions that must be properly captured for accurate
modeling of metallurgical behavior, we believe that the train-
ing set should be a curated set of structures spanning all of
the relevant structures and defects for the full scope of met-
allurgical problems in a given alloy. Such an initial training
set can then be expanded to improve predictions, if needed,
for certain defects or problems of interest. Moreover, as we
show here, training sets can be systematically expanded to
introduce increasing alloy complexity; e.g. in the family of
Al alloys, starting with elemental Al [5], then progressing
to binary Al-Cu [2], ternary Al-Mg-Si [4,5] and Al-Cu-Mg
(this paper), and quarternary Al-Cu-Mg-Zn (this paper) by
adding new training structures with each increase in complex-
ity. In following this approach, we also generate an extensive
database that is publicly available for use with any ML method
of interest.

Here, we extend our previous development of NNPs in
Al, Al-Cu, and Al-Mg-Si to the Al-Cu-Mg and Al-Cu-Mg-Zn
systems that constitute the base of the 2xxx (Al-Cu) and 7xxx
(Al-Zn-Mg-Cu) alloys, respectively, both of which are techno-
logically important [28]. We start with the Al-Cu-Mg system
for which much of the training database was previously com-
puted such that the main new additions are associated with
ternary intermetallic phases. This enables the study of the crit-
ical S-phase precipitate (sometimes also labeled S’ phase) and
computation of the generalized stacking fault energy surface
relevant for the shearing of S-phase precipitates in an Al ma-
trix. We then build the Al-Cu-Mg-Zn potential, again making

use of previous datasets including the Al-Cu-Mg structures.
With this potential, we examine Al-Zn-Mg clustering [29] and
the impact of Cu on T and η′ phase formation energies [30],
which were recently studied using DFT. We do not cover all
of the vast scope of issues in these alloys, such as early-stage
Guinier-Preston-Bagaryatsky (GPB) zones in Al-Cu-Mg stud-
ied by Kovarik [31–34] and others [35–40], but the potentials
generated here provide the basis for detailed studies of these
and other metallurgical aspects in these alloys.

The remainder of this paper is structured as follows. In
Sec. II, we summarize the methodology and details of the
NNP creation. In Sec. III we comprehensively assess the ac-
curacy of the NNP for essential properties that are represented
by structures within the training set. In Sec. IV, we examine
the GSFE shearing surface for the S-phase precipitates, the
energetics of Al-Zn-Mg clustering, and antisite energies for
Al-Cu-Mg compounds. Section V summarizes our paper.

II. METHODOLOGY

A. Atomic structures

For Al-Cu-Mg we start with a database of 11 640 atomic
structures, including all Al-Cu structures previously used for
an Al-Cu potential [2] and all Al-Mg structures previously
used for an Al-Mg-Si potential [4]. We then also include new
structures to create the Al-Cu-Mg potential, adding compara-
tively few structures to show the relative ease with which new
potentials can be created by building on prior training sets.
The new structures are:

(i) All Al-Mg, Cu-Mg, and Al-Cu-Mg bulk structures
from the Open Quantum Materials Database OQMD [41] not
previously included in our Al-Cu and Al-Mg-Si potentials

(ii) Al/S-phase interface structures
(iii) Pair and triplet clusters of Al-Cu-Mg elements in 256

atom supercells
(iv) Randomized Mg-Cu structures in FCC supercells
(v) Randomized Al-Mg-Cu structures in FCC supercells
We then use the following structures only for a posteriori

validation:
(i) Antisite and Vacancy structures (unrelaxed) for ternary

(Al-Cu-Mg) structures in the OQMD
(ii) GSF for the S-phase on the {131} and {112} planes
For the Al-Cu-Mg-Zn potential, we include all the new Al-

Cu-Mg training structures and then add:
(i) All Zn-containing compounds (within the Al-Cu-Mg-

Zn system) from the Open Quantum Materials Database
OQMD [41]

(ii) Dilute solute/solute interactions out to 4 nearest neigh-
bors for all solute pairs in 256 atom supercells

(iii) Surface structures for HCP Zn
(iv) Elastically-distorted Zn structures
(v) Pair and Triplet clusters for Al-Cu-Mg-Zn elements in

256 atom supercells
(vi) Randomized Al-Cu-Mg-Zn structures in FCC super-

cells
(vii) Randomized Al-Cu-Mg-Zn structures in HCP super-

cells (using the Zn c/a ratio)
(viii) Fully-relaxed T and η′ phases
(ix) Antisite structures for the T and η′ phases.
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We deviate from our normal practice of not including an-
tisite structures in the training set for this system because,
from prior work, we know the Zn→Cu, i.e., Zn replacing
Cu, substitution energies are very important for precipitation
energetics in the Al-Cu-Mg-Zn system [30].

For the Al-Cu-Mg potential we use the method developed
by Imbalzano et al. [42] to select the 5820 most diverse
structures, i.e., half of the original 11 640, via a furthest-
point-sampling (FPS) method. We subsequently show that
the remaining 5820 structures have NNP errors that are very
similar to those of the chosen most diverse 5820 structures,
indicating that no important features are missed by this selec-
tion. For the Al-Mg-Cu-Zn interatomic potential we add an
additional 4299 structures to the Al-Cu-Mg dataset for a total
of 10 119 structures. We do not remove any of these structures
using the FPS procedure.

Both the atomic simulation environment (ASE) [43] and
Python Materials Genomic (pymatgen) [44] python packages
are extensively used to construct and analyze atomic struc-
tures.

B. DFT Methodology

All first-principles results are calculated via density func-
tional theory (DFT) as implemented using Quantum Espresso
[45] (QE). The GGA-PBE [46] exchange-correlation func-
tional is used with an energy cutoff of 544 eV (40Ry). An
80-k-points/Å−1 Monkhorst-Pack grid [47] corresponding to
a 20 x 20 x 20 k-point grid for the 4.04 Å3 conventional
cubic FCC cell and an 0.6 eV (0.0441Ry) Methfessel-Paxton
smearing parameter [48] are used. We use the Al, Mg, Zn, and
Cu projector augmented wave (PAW) [49] pseudopotentials
of Dal Corso [50]. The Al and Mg pseudopotentials are cho-
sen from the benchmarks of the solid-state pseudopotential
(SSSP) library [51] while the Zn and Cu are not the ones
chosen by the SSSP but are used because they have fewer
valence electrons and thus reduced computational cost relative
to those in the SSSP while retaining similar levels of accuracy
compared to all-electron benchmarks. We also use AiiDA
[52,53] to systematically manage the calculations and to store
and search the results; see Ref. [2] for further details. All
results in this paper are uploaded to the Materials Cloud [54].

C. NNP methodology

We create neural network potentials (NNPs) with the meth-
ods pioneered by Behler and Parrinello [17] and implemented
in the open source code n2p2 [55]. Here we outline the basic
details of the methodology; further details can be found in
the pedagogical review of Behler [56]. The purpose of this
paper is to generate broadly useful potentials for Al alloys,
and so is not aimed at developing new or enhanced ML
methods. Hence, various details below may not be optimal nor
rigorously assessed but are fully satisfactory for achieving our
goals. As noted earlier, our entire first-principles training set
is openly available for use by the community in any other ML
development method.

An NNP makes a prediction of the energy of a complete
structure by assuming that the total energy can be expressed

as a sum of energies E atom
i of each constituent atom,

E structure =
∑

i

E atom
i . (1)

The atomic energy E atom
i depends on the local environment

of atom i and is hierarchically calculated as a function of
weighted neural layers. Here we use an architecture consisting
of two hidden layers each with 24 nodes and do not make a
study of other possible architectures. Specifically, the E atom

i is
computed as

E atom
i = f3

(
b3

1 +
24∑

k=1

a2,3
k,1 f 2

k

(
b2

k +
24∑
j=1

a1,2
j,k f 1

j

×
⎛
⎝b1

j +
NSF

i∑
i=1

a0,1
i, j Gi

⎞
⎠

⎞
⎠

⎞
⎠, (2)

where aq,p
z,w is the weighting factor from node z on layer q to

node z on layer w and bq
z is the bias of node z on layer q. The

fq are activation functions, here taken as the softplus function
ln(1 + ex ) for f1 with f2 and f3 the identity functions. NSF

i ,
i = Al, Mg, Zn, Cu is the number of symmetry functions for
each element.

The functions Gi are the local descriptors of the atomic en-
vironment that have the necessary rotational and translational
invariance.

Here, we use the two-body radial and three-body (nar-
row) angular symmetry functions proposed by Behler and
Parinello,

Gradial
i =

Natom∑
j=1

e−η(Ri j−Rs )2
fc(Ri j ) (3)

Gangular
i = 21−ζ

∑
j �=i

∑
k �=i, j

[(1 + λcosθi jk )ζ e−η(R2
i j+R2

ik+R2
jk )

× fc(Ri j ) fc(Rjk ) fc(Rjk )] (4)

where Rc, η, ζ , and λ are the symmetry function “hyperpa-
rameters”, Ri j is the distance between atoms i and j, and
fc(r) = tanh3(1 − r/rc) is a cutoff function where rc is a cut-
off distance for each symmetry function. We use the CURSEL
method of Imbalzano et al. [42] to select a maximally-
descriptive set of symmetry functions for the training set.
First, we create a dense grid of symmetry functions, 3411
for Al-Cu-Mg and 7264 for Al-Cu-Mg-Zn. Then we run a
CUR decomposition, method of producing a using 11 640
structures for Al-Cu-Mg and 10 119 structures for Al-Cu-
Mg-Zn. CUR decomposition [57] is a process of creating an
approximation of a matrix X as a product of matrices CUR,
where C and R are composed of a selection of rows and
columns of the original matrix X. In our use case the matrix
X is the response of each symmetry function, as columns,
against all the atomic environments as rows. By computing
the matrix C we effectively obtain a reduced number of sym-
metry function to represent the entire system. To compute C,
we iteratively determine the “importance” score of individual
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columns (symmetry functions) via:

πc =
k∑

j=1

(
v( j)

c

)2
, (5)

where k is the number of features that to be chosen and v
( j)
c

is the cth coordinate of the jth right singular vector. We refer
the reader back to the work of Imbalzano et al. [42] for further
details regarding the method. For both Al-Cu-Mg and Al-Cu-
Mg-Zn we also add all five 3-body Al-centered symmetry
functions from the our prior work on Al-Mg-Si [4] because
we find that we otherwise cannot reasonably reproduce the
C44 elastic constant of Al. For the Al-Cu-Mg potential we find
that using 64 SFs per element, plus the five previously-used
3-body Al SFs was sufficient, for a total of 197 SFs that are
listed in Tables I and II in Appendix A. For the Al-Cu-Mg-Zn
potentials, we find that 96 SFs per element, for a total of
389 SFs (including the extra 3-body Al SFs), are needed for
sufficient accuracy; these are also listed in Tables III–V in
Appendix A.

Training of the NNP potential, i.e., determination of the
weights and biases to best-match the DFT reference data, is
handled by the n2p2 library [55,58]. We select at random 90%
of the structures for training and the remainder for testing.
NNP weights are updated during the training using a fading
memory Kalman filter with code parameters ε = 0.07, λ =
0.985, and ν = 0.9987 and we do not use the noise parameter
q. The training is based on minimizing an objective, or loss,
function 	loss based on the total energies Ei of each structure
in the training set and the atom forces force on the jth atom
denote Fi, j and computed by

	loss = 1

N struct

N struct∑
i=1

((
ENNP

i − EDFT
i

)2

+ β

3Natom
i

3Natom
i∑

j=1

(
F NNP

i, j − F DFT
i, j

)2)
, (6)

where the sum is over all input training structures N struct. We
tune the relative importance of forces and energies in the total
loss via the parameter β = 8(Å2). Since each training struc-
ture provides one total energy but 3Natom

i forces, we use only
a fraction 2.1% of the forces, randomly selected, during each
iteration of training. Decreasing this ratio results in a loss of
accuracy while increasing the ratio becomes computationally
expensive. This approach is not perfect since it introduces a
bias toward larger (more atoms) structures.

In standard machine learning, a common practice is to use
“early stopping” wherein training is halted when the errors for
structures in the testing set begin to increase, indicating the
start of possible overfitting. For NNPs, this procedure is chal-
lenging since the energies converge faster than the forces. As
a compromise, we use a fixed 150 iterations [2] and find that
the iterations in the range of 60 to 300 does not substantially
affect the results.

Using the above framework, our initial Al-Cu-Mg-Zn po-
tentials struggled to accurately capture the formation energies
of Zn-containing compounds, particularly binary and triplet
compounds. This was traced mainly to inaccuracy in predict-

ing the energy of dilute Zn in the Al matrix. Adding additional
Zn-in-Al structures does not ameliorate the problem. To over-
come this issue we perform a second round of training, after
training on the entire dataset, on a smaller targeted training set
of 287 structures focused on dilute Zn and Cu-Mg-Zn triplet
structures embedded in Al. We term this process of training
the neural network on a subset of the data to improve specific
properties after initial training on the entire dataset “secondary
training”. This process is somewhat similar to transfer learn-
ing [59], wherein a neural network trained on one task is
retrained on another similar task afterwards. We do not use
this term, however, to emphasize that we are trying to improve
performance on a subset of the original training set rather than
boost performance on a different task altogether. Because we
wish to alter our neural network as little as possible, i.e., to
tune it to our targeted training set without impacting broad
properties, we alter our Kalman filter settings to make it more
“gentle” by increasing the ε parameter from 0.07 to 0.5, where
ε is effectively an inverse of the “learning rate” in standard
gradient descent (see the analysis of Luttmann et al. [60]).
We also do not use forces during secondary training as using
them destroys the quality of the potential w.r.t. properties in
the original dataset. We also switch from a fading memory to
a standard Kalman filter and set the η parameter, which does
not exist in fading memory Kalman, to 0.01 and use zero noise
(q = 0), we do this to make our Kalman filter settings more
directly in line with the analysis of Luttmann et al. Finally
we train for only one epoch, as while training for additional
epochs results can result in further improvements in the target
dataset it comes with the cost of degradation of properties
in the original dataset. The results are sensitive to choice of
Kalman filter during secondary training, in particular, should
ε be too high (effective learning rate low) or the number
of epochs too few, then secondary training has little impact
and the properties of interest remain poor, however, too low
of an ε (learning rate high) or too many epochs, will cause
degradation of properties in the full training set.

Using the above procedures and settings, we have created
20 NNPs each for the Al-Cu-Mg and Al-Cu-Mg-Zn systems.
We use n2p2 via a plugin to LAMMPS [61] to execute
simulations and in most cases use the atomic simulation en-
vironment (ASE) interface [43]. We report the average and
standard deviation for values across all NNPs (noting that
the NNPs are not statistically independent; accurate statistical
analysis requires models such as that developed by Musil
et al. [62]). When we report specific neural networks we
label them with the alloy followed by a neural network index,
e.g., AlCuMgZn-NNP7 refers to seventh AlCuMgZn neural
network potential. Postprocessing uses the Numpy [63] and
Scikit-learn [64] python packages in Jupyter notebooks [65],
atomistic figures are plotted with Ovito [66] and graphs are
constructed with the Matplotlib [67].

III. RESULTS: NNP VERSUS TRAINING
AND TEST DATA

A. Overall NNP accuracy

The accuracy of each NNP is assessed using the root mean
square error (RMSE) for energies and forces for structures in
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FIG. 1. Histogram of errors for the (a) energy and (b) forces for training (blue) and testing (red) for AlCuMg-NNP1. The energy (c) and
force (d) errors for the AlCuMgZn-NNP1 potential for training (blue), test (red) and, for the forces, all Zn-containing structures (black, inset).
The AlCuMgZn results are prior to secondary training on the focused dataset, a comparison of train/test errors of NNP1 before/after secondary
training is in Appendix D.

the testing and training set and is defined as

RMSE(E ) =
(

1

N struct

N struct∑
i

(
EDFT

i − ENNP
i

)2

) 1
2

, (7)

RMSE(F ) =
⎛
⎝ 1

N struct

N struct∑
i

3Natom
i∑
j

1

3Natom
i

(
F DFT

i, j −F NNP
i, j

)2

⎞
⎠

1
2

.

(8)
For the Al-Cu-Mg potentials the average RMSE for en-

ergies across all 20 NNPs is 3.90 meV/atom in the training
set and 5.51 meV/atom in the testing set. The RMSE for the
forces is 40.5 meV/Å in the training set and 71.9 meV/Å in
the testing set. The high average testing errors, particularly for
the forces, across all Al-Cu-Mg NNPs are due mainly to a few
of the NNPs, with AlCuMg-NNP7 having a force test error of
645 meV/Å. Excluding AlCuMg-NNP7, the average RMSE
for force test errors drops to 41.73 meV/Å. In Fig. 1 we show
the error in the (a) energies and (b) forces for AlCuMg-NNP1.
We also perform t-SNE to create an embedded mapping of
the results to get an overall sense of how which structures are
removed via FPS and where the distribution of errors lie, this
analysis is shown in Appendix B along with the t-SNE plot in
Fig. 19.

For the Al-Cu-Mg-Zn potentials, prior to secondary train-
ing, the average RMSE across all potentials for energies is
11.03 meV/atom in the training set and 32.00 meV/atom in
the testing set while the RMSE for forces is 41.28 meV/Å
in the training set and 66.69 meV/Å in the testing set. The
large 32.0 meV/atom test error for energies is not typical,
with half of the NNPs having a test less than 13 meV/atom.
Looking more closely at AlCuMgZn-NNP1 in Fig. 1(c), the
large energy errors are mainly due to relatively few out-
liers. The energy RMSE for all structures (test + train) is
11.54 meV/atom, but with the 10 largest-error structures
(0.1% of total) removed, it is only 6.27 meV/atom while
with the 30 largest-error structures (0.3% of total) removed
it is 4.56 meV/atom. The structures of all the major outliers
for AlCuMgZn-NNP1 are ZnCu (P63mc), MgZn (Pmc21),
Zn3Cu2 (R-3c), and MgZn (P63mc), or, are a structure de-
rived from them, e.g., via volumetric dilation, and all of which
have high formation energies and hence are of very little
practical relevance. While the forces have an overall moderate
RMSE, some individual errors may be quite high, referring
to the histogram of force errors in Fig. 1(d), where we see
a substantial number of structures with errors >500 meV/Å,
always for Zn-containing structures. These errors come from
the following sources (1) structures with very high formation
energies, that are unlikely to come up in practical use, (2)
structures with high forces overall and in which the NNP
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FIG. 2. Deviation of NNPs from DFT reference values (%) for lattice constants, elastic constants, surface energies, for FCC Al and Cu
(a) and HCP Mg and Zn (b) figure (a) also includes and stable and unstable stacking fault energies. All structures from which these properties
are derived are included in the training set.

forces are within ≈10% their DFT values, and (3) intermedi-
ate states in the transition between η′ structures. In Fig. 20 of
Appendix C, we go into greater detail for an example of case
(3) during a relaxation of an antisite-containing η′

I structure.
For Al-Cu-Mg-Zn potentials after secondary training, the

energy and force errors increase but do not change sig-
nificantly. For AlCuMgZn-NNP1 specifically, the secondary
training increases energy errors on the original train and
test datasets from 11.54 meV/atom and 11.52 meV/atom
to 12.68 meV/atom and 12.72 meV/atom respectively,
and for the force errors barely from (train/test) 42.94

meV/Å/45.53 meV/Å to 43.07 meV/Å/45.67 meV/Å, after
secondary training. The histogram of error distribution be-
fore/after secondary training can be seen in the Fig. 21 of
Appendix D. As mentioned, we perform secondary training
on a targeted dataset to improve the quality of dilute solu-
tion energies, in Fig. 22 of Appendix E, we confirm that the
process does indeed improve the accuracy. Furthermore, we
rigorously compare the material properties before and after
secondary training and find that secondary training does little
(aside from improving dilute solute energies) (see Supplemen-
tal Material [68]).
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FIG. 3. Formation energy, atomic volume, and elastic constants C11, C21, and C44 as predicted by DFT, and the NNPs versus structure, for
all Al-Cu-Mg structures in the OQMD database. All structures from which these properties are derived are included in the training set.

B. Elemental bulk properties

Figure 2 shows the relative deviation of NNP results from
the DFT references values for fundamental properties of ele-
mental Al, Cu, Mg, and Zn, using the various NNPs. As found
in earlier NNPs for Al, the C44 in Al is challenging to model
accurately [2,4], with the NNPs consistently overestimating
C44 by 20%. The DFT reference is not a source of error be-
cause the DFT settings were carefully converged with respect
to Al C44. Elastic constants are challenging to capture because
they are second derivatives of the energy and, therefore, most
sensitive to any noise or error, and indeed the errors here are

consistent with other NNPs in the literature [69]. The NNP
for Zn is particularly poor at modeling C33, but this has also
been very challenging for classical potentials until the work
of Dickel et al. [70]. Interestingly, Dickel et al. mention that
it is typically very challenging to capture the c/a ratio for Zn
while the current NNPs are extremely accurate (1% relative
error).

C. Bulk properties

Figures 3–6 show the formation energies, atomic volumes,
and elastic constants for all Al-Cu-Mg, Al-Mg, Cu-Mg and
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FIG. 4. Formation energy, atomic volume, and elastic constants C11, C21, and C44 as predicted by DFT, and the NNPs versus structure, for
all Al-Mg structures in the OQMD database. All structures from which these properties are derived are included in the training set.

Al-Cu intermetallic structures within the OQMD database as
computed via DFT and the NNPs developed in this paper, in 6
we also include results form our previously-developed Al-Cu
NNP.

The formation energy �E structure
f of each structure is com-

puted relative to the reference energy ESS
X for bulk FCC Al

and dilute Cu, Mg, and Zn solid-solutions in Al matrix as

ESS
X = EAlM−1(X ) − (M − 1)EAlM /M, (9)

where X = Mg, Cu, Zn with EAlM and EAlM−1(X ) the total
energies of supercells containing M Al atoms and (M − 1) Al
atoms and one atom of X , respectively. The energy E tot

AlM−1(X )

is computed using a 4 x 4 x 4 supercell of the cubic FCC

cell (256 Al atoms) with the volume held fixed. The formation
energy �E structure

f of any other structure is then computed as

�E structure
f =

⎛
⎝E tot

AlX MgY CuZ
−

∑
X=Al,Mg,Cu

nX ESS
X

⎞
⎠/

N, (10)

where E tot
AlX MgY CuZ

is the total energy of a precipitate unit
cell containing X Al atoms, Y Mg atoms, Z Cu atoms and
N = X + Y + Z the total number of atoms, where all atomic
positions are fully relaxed. We only plot the NNP results when
they relax to the same spacegroup as DFT as sometimes they
relax to a lower-energy configuration, e.g., in Fig. 4, Mg2Al2

P6_3/mmc the NNP results are not displayed as all the NNPs
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FIG. 5. Formation energy, atomic volume, and elastic constants C11, C21, and C44 as predicted by DFT, and the NNPs versus structure, for
all Cu-Mg structures in the OQMD database. All structures from which these properties are derived are included in the training set.

relax the structure into one of the lower-energy spacegroups
of the same stoichiometry, e.g., Pmmn and R-3m.

In general, the Al-Cu-Mg potential performs very well
across a very diverse and comprehensive set of structures
including the Al-Cu, Al-Mg, and Cu-Mg binaries as well as
the Al-Cu-Mg ternaries. The larger errors tend to be only
for structures that are not thermodynamically stable with
respect to solid solution, or are mechanically unstable, i.e.,
have negative elastic constants. In particular, we find that the
NNP-predicted formation energies and atomic volumes are
usually very close to the DFT values. As before, we note the
poorer performance of the NNPs in predicting the elastic con-
stants. Despite the increased complexity of modeling a ternary
Al-Cu-Mg potential, the results in Fig. 6 are comparable to
those of our previous binary Al-Cu potential [2]. Results are

also shown for the binaries and ternaries as predicted by the
Al-Cu-Mg-Zn NNP, and are comparable to those for Al-Cu
and Al-Cu-Mg. Hence, no fidelity is lost upon expansion of
the dataset to include new elements (Mg added to Al-Cu, and
Zn added to Al-Cu-Mg). Furthermore, as shown in Fig. 7 and
Figs. 23–28 in Appendix F, for all Zn-containing compounds
within the OQMD, the NNPs reproduce the atomic volume
and formation energy very well with only a few exceptions
for compounds that have high formation energy but preserving
the overall trend.

D. Solutes

We compute the solute-solute formation energies (interac-
tion energies) again using Eq. (10). The DFT and NNP results
for all solute pairs are shown in Fig. 8 with the NNPs generally
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FIG. 6. Formation energy, atomic volume, and elastic constants C11, C21, and C44 as predicted by DFT, and the NNPs versus structure, for
all Al-Cu structures in the OQMD database. All structures from which these properties are derived are included in the training set.

in good agreement with DFT, typically well within 25 meV
(≈kT at room temperature). Notable deviations are found
only for the nearest-neighbor Cu-Vac and Mg-Vac binding
energies. The NNP Cu-Vac energies are slightly positive while
the DFT value is slightly negative but the absolute deviation
remains 25 meV. The NNP Mg-Vac energy is in the range of –
20 to –35 meV, as compared to the DFT value of only –5 meV,
so that the tendency for Mg-Vac binding is overpredicted.

We next examine Mg-Cu-Zn solute triplet cluster
formation energies, again using Eq. (10) as shown in Fig. 9.
Two configurations are examined, one labeled (111) with
all three solutes as near-neighbors on the (111) plane and
another labeled (112) with the three solutes on a (100)
plane as shown schematically in the figure. Overall, both

Al-Cu-Mg and Al-Cu-Mg-Zn NNPs capture the broad trend
exhibited by the DFT results. Quantitatively, most energies
are within 25 meV but the results for Al-Cu-Mg-Zn are
systematically less negative than the DFT. The ternary
Al-Mg-Cu NNP is closer on average to the DFT for most
configurations, but notably higher for the lowest-energy
CuCuCu-112 structure. Hence, early stage clustering and
the competition between 111 and 112 structures would not
be well-represented with the Al-Mg-Cu NNP although the
Al-Cu-Mg-Zn NNPs have more accurate energy differences
for most of these clusters, due to, as discussed in the methods,
triplet structures being included in the secondary-training
dataset for these potentials. Finally, across the full spectrum
of NNPs, there is substantial scatter, with some deviating
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FIG. 7. Formation energy and atomic volume as predicted by DFT, and the NNPs versus structure, for all Al-Cu-Mg-Zn structures in the
OQMD database. All structures from which these properties are derived are included in the training set.

by 50 meV or more from DFT. This suggests that using a
committee model [71], i.e., averaging across multiple NNPs,
might be a very useful approach for early stage cluster
evolution.

The solute misfit volumes are important for solute/
dislocation interactions and consequent solute strengthening
in the solid solution state. We compute the solute misfit vol-
ume �vm as [73]

�vm =
(

1

B

δp

δc

)
, (11)

where B is the Al bulk modulus and δp
δc the slope of the cell

pressure vs solute concentration in the computational cell.
Here, we compute the pressure created by a single solute
introduced into a 256-atom Al cell. Figure 10 shows the misfit
volumes for Cu, Mg, Zn, and the Vacancy in Al, as pre-
dicted by DFT and the NNPs. The NNPs show good accuracy,
although with slightly larger misfit volumes for Cu for the
Al-Cu and Al-Cu-Mg potentials.

Figure 11 shows the solute/stacking fault interaction (sol-
SF) energies for Cu, Mg, and Zn solutes in Al in order of their
distance to the SF plane, here we present the four closest sites
to the SF plane, SF index 1 is the closest site, SF index 2 is
the second closet. This interaction energy between solute and
stacking fault, EX−SF is computed as

EX−SF = ESol−SF
N−1,X − ESF

N − (
E1sol

N−1,X − EPure
N

)
, (12)

where ESol−SF
N−1,X is the energy of a system containing the stack-

ing fault and a single solute, (X = Cu, Mg, Zn) and ESF
N is

the energy of the system with the stacking fault alone. E1sol
N−1,X

and EPure
N are the energies of a structure of the same number

of atoms as the SF-containing one but without the defect and
containing one solute, or of pure Al matrix respectively. There
is general agreement between the NNPs and DFT but some

deviations. For Cu, DFT shows a small third-plane attraction
of –18 meV while the NNPs are around zero. For Mg, DFT
shows a small second-plane attraction while the NNPs show
a small repulsion. Most of the interaction energies are quite
small, below 20 meV in magnitude, so that practical effects
are negligible, except for Cu in the first two planes where the
energy is larger and for which the NNPs perform fairly well.

E. Interface and generalized stacking fault energies

Modeling of interfaces is essential for a metallurgically-
relevant atomic potential in two ways: (1) a dislocation
passing through a precipitate must first pass through the in-
terface and (2) the thermodynamics of precipitate formation
depends on the precipitate/matrix interface energies. Inter-
face energies are rarely considered when fitting EAM-style
potentials and consequently are poorly predicted. Interfaces
are challenging to accurately predict because often there is a
dearth of a experimental information of their structure, which
can often include substantial restructuring or relaxation. How-
ever, approximate structures can be insightful in providing
guidance and potentials trained on approximate structures can
be used to assist in the discovery of lower-energy structures
with the same nominally geometry.

We use the methods in Ref. [2], based on [74], as sum-
marized here. For a structure containing an interface, with N
atoms total, of which there are X atoms of matrix and Y atoms
of precipitate, the formation energy �E interface

f ,(X,Y ) = E interface
X,Y −

XEMatrix
bulk − Y EPrecip

bulk , is related to the number of atoms as

�E interface
f ,(X,Y ) = δE strain

X,Y + 2Aγ interface

N
, (13)

where �E interface
f is the interface formation energy, δEstrain is

the strain energy, A the surface area, γ int the interface energy,
and N = X + Y the total number of atoms in the interface-

053803-11



DANIEL MARCHAND AND W. A. CURTIN PHYSICAL REVIEW MATERIALS 6, 053803 (2022)

FIG. 8. Binary solute formation binding energies for Cu, Mg, Zn, and Vac binary pairs in an Al matrix as a function of nearest neighbor
index. These structures are included in the training set.

containing structure. When computing E inteface
X,Y , the atoms are

free to fully relax while the cell is held fixed in size and
shape. The interface surface energy γ interface is then the slope
of �E interface

f versus 1
N and divided by 2A.

We generate the S-phase/Al interface having a
(012)Al ||(001)S habit plane using the method in Liu et. al
[75]. Figure 29 in Appendix G, we show the structure of the
S phase in detail along with the numerical results we use to
compute the interface energy. Figure 12 shows the interface
energy, as well as those for various Al-Cu θ ′ and θ ′′ interfaces
studied previously [2]. The NNPs predict all of these interface
energies in good agreement with DFT.

We also benchmark the potentials against θ and θ ′′ general-
ized stacking energy surface and find the results to be in very
good agreement with DFT and as accurate as our previously-
developed Al-Cu potential, as can be seen in Figs. 30 and 31
in Appendix H.

F. Antisites for η′ and T phase

We next move to the quarternary Al-Mg-Zn-(Cu) system
and compare the NNP predictions to our recent DFT results
on antisite energies in two important phases in this alloy alloy
[30]. The two key phases are the η′ and T phases, which are
found experimentally to form more easily upon the addition
of a small amount of Cu. DFT shows that the Cu substitutions
lower the formation energy of these precipitates. We compute
the substitutional energies, Esubstitution in the same manner we
later compute the antisite energies, �E antisite

f via:

�E antisite
f = E antisite − Epristine − E ref

new + E ref
old, (14)

where E antisite and Epristine are precipitate energies with and
without the defect (antisite or vacancy) and E ref

new, E ref
old , are new

and old element reference energies as shown in Eq. (9).
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FIG. 9. Triplet formation energies for Cu-Mg-Zn triplets in an Al matrix. We label all triplets by the lengths of their bonds, in the same
manner as Gorbatov et al. [72] 111 indicates all nearest neighbors, and 112 indicates two nearest neighbors and one second-nearest neighbor,
see schematic on the figure. For the 111 triplets, all positions are the same and the order of the elements does not matter, e.g., AlMgCu 111
= CuMgAl 111 = AlCuMg 111. For the 112 triplets, there are two different sites: one that is surrounded by two nearest neighbors, marked
as Y on the schematic, and two that are surrounded by one nearest neighbor and on second-nearest neighbor, marked as X on the schematic.
We label our 112 triplets in XYX elemental order, i.e., the middle element is unique while the two outer elements are equivalent to each other,
e.g., AlMgCu 112 = CuMgAl 112 != AlCuMg 112. These structures are included in the training set.

Figure 13 shows the predicted substitutional energies for
the NNPs and obtained via DFT. Very good agreement is
found for all of the different substitutions in the η′

IV (the
lowest energy η′ phase according to DFT) and the T phase.
The only notable deviations arise for substitution of Cu by
Mg, Mg →Cu, which is energetically the most unfavorable
substitution and so will not arise physically. The error is thus
unimportant for studying real alloys.

FIG. 10. Misfit volumes for the Vacancy and for Cu, Mg, and Zn
solutes in an Al matrix, as predicted by DFT and the various NNPs
as indicated. These structures are included in the training set.

IV. RESULTS: TRANSFERABILITY

A. Generalized stacking fault of the S phase

Here we examine the capability of the Al-Cu-Mg poten-
tial to predict the generalized stacking fault energy (GSFE)
surface of the S phase on the relevant planes for shearing of
S-phase precipitates in an Al matrix. Our structure for the
S phase is the PW model [76] confirmed by Wolverton [77]
and later Liu et al. [75]. It is an orthorhombic structure of
the cmcm spacegroup, where we use our DFT-relaxed lattice
vectors of a = 4.01, b = 9.27, and c = 7.14. We follow the
same methodology as in our previous paper [2], including the
usage of a short-range repulsive Lennard-Jones (LJ) term as
we discuss in Ref. [4]. We briefly summarize the key details
here.

First, we use the crystallographic methodology described
by Cayron [78] and as implemented in the GenOVa program
[79] along with the Al/S-phase orientation relationship (OR)
to find the S-phase slip planes that are well-aligned with the
{111} planes and 1

2 〈112〉 slip directions in FCC Al. Not all
{111} Al planes are equivalent in the S phase. We find that
there are two different families of slip planes in the S-phase:
{112} and {131}. The normal vectors for these planes deviate
from those of {111} Al by 3.81◦ and 4.15◦ respectively. We
also show the results for the {337} and {9 28 7} planes, have
much smaller deviations of 0.87◦ and 0.23◦, respectively, but
are more complex.
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FIG. 11. Solute-stackingfault interaction energy for Cu, Mg, and Zn in Al matrix for the four sites closest to the stacking fault. These
structures are included in the training set.

To compute the GSFE surface for the identified planes
of interest, we follow the same general procedure as [4]
and based on the methods developed in [80]. We start by
constructing unit cells whose z axis is normal to the {112}
or {131} planes of the S phase, resulting in a cell having
some vectors a1, a2, a3, where a1 and a2 span the plane of
interest and a3 is chosen to ensure periodicity. We note that
the proper construction of such a cell is somewhat involved,
and is discussed at great length in [4]. We then shift a3 by
in-plane vectors t to a3 + t, and relax both the atoms and
the cell in the z direction only to obtain the fault energy at
slip vector t. During this procedure some configurations may
arise where the atoms are highly overlapped and, being far

FIG. 12. Energy of S/Al interface as well as the semicoherent
and coherent versions of θ and θ ′ interfaces for NNPs and DFT.
These structures are included in the training set.

outside the NNP training set, may cause a total collapse of the
system. These configurations arise due to the procedure, and
would not occur naturally, and hence to avoid the unphysical
behavior we add the cut-and-shifted repulsive Lennard Jones
potential that is zero over the range of physically-accessible
lengths; numerical detail are given in Appendix I.

Figure 14 shows the atomic structure and GSFE surface
for the S(131) and S(112) surfaces, both of which are smooth.
The S(112) surface has lower energies than the S(131) surface
over most of the domain, and so we predict that the precipitate
will shear most readily on the S(112) surface. Figure 14 also
shows the positions of slip corresponding to the Al 〈111〉{110}
Burgers vectors, and the energies at these locations corre-
spond to the shearing energy for a matrix Al dislocation to
shear the S-phase. These values for the S(112) surface are
indeed lower than those for the S(131) surface, further sup-
porting the prediction that shearing will occur on the S(112)
planes.

Figure 15 validates the NNP results by comparing key
points on the GSFE against a posteriori DFT calculations.
The NNP predictions agree very well with the DFT results
for all the different surfaces and Al Burgers vectors, deviating
only by 100 mJ/m2 with total energies being much larger. The
NNP training did not include any structures corresponding to
the GSFE surfaces, and so this result is a strong validation
of the NNP for a critical feature controlling strengthening in
Al-Cu-Mg alloys.

The misalignment of the S(112) and S(131) surface relative
to an Al matrix is not small, and so dislocation shearing would
also result in a residual Burgers vector content with some
energy cost. We thus examine the GSFEs for the well-aligned
{337} and {9 28 7} planes. These surfaces require very large

053803-14



MACHINE LEARNING FOR METALLURGY IV: A NEURAL … PHYSICAL REVIEW MATERIALS 6, 053803 (2022)

FIG. 13. DFT antisite formation energy vs NNP antisite formation energy for η′ and T phases. These structures are included in the training
set.

FIG. 14. Image of (a) the S(131) and (c) S(112) atomic surface structures and [(b),(d)] their corresponding GSFE surfaces. The (112)
surface is doubled in the S[110] direction for greater clarity of visualization. Grey atoms are Al, brown atoms are Cu, and green atoms are Mg.
These structures are not included in the training set.
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FIG. 15. Burgers vector vs GSFE using all AlCuMg NNPs for the S phase in the {9 28 7} and {337} configurations. These results are
computed with the LJ term. These structures are not included in the training set.

supercells that are not computationally tractable in DFT. We
thus study only the predictions of the NNPs, as shown in
Fig. 16. For these surfaces, the shearing energies are signif-
icantly higher than those for the S(112) plane, and the scatter
among different NNPs is small. Thus, we expect that, in spite
of the misalignment, the S(112) plane will be the dominant
plane of shearing in the S phase.

B. AlZnMg clusters

Here we compare predictions of the AlCuMgZn NNPs to
recent paper by Lervik et al. [29] on novel Mg-Zn clusters.
The clusters are organized in four regions: a central, optional,
interstitial element, followed by a Zn octahedron of 6 atoms,
an Mg cube of 8 atoms, and finally a Zn truncated cube
octahedron (TCO) of up to 24 atoms. These clusters are de-
scribed with the notation iMxZyMz where i = (a, m, z) (for

Al, Mg, Zn), x = (0, ..., 6), y = (0, ...8) and z = (0, ..., 24),
e.g., aZ6M8Z24 is a cluster with an Aluminum interstitial, 6 Zn
octahedral atoms, 8 Mg cube atoms, and 24 Zn TCO atoms;
see Figs. 17(a)–17(d) for images of the inner shells. The
formation energies are computed in the standard way, relative
to solid solution energies. Here, we show both the energy per
solute Eform/solute, which does not include Al atoms, and the
total formation energy Eform/total of the cluster including the
Al atoms. Figure 17(e) compares the predictions of the NNPs
to the DFT results reported by Lervik et al. and to our own
DFT results using settings consistent with the creation of the
training set. Overall, the NNPs perform very well on all the
different structures despite the absence of any such structures
or any similar structures in the training set. The two DFT
results differ slightly, and the NNP agrees better with our DFT,
showing the importance of consistency in DFT methodology

FIG. 16. Burgers vector vs GSFE using all AlCuMg NNPs and DFT for the S phase in the {131} and {111} configurations. The NNPs
show excellent ability to predict GSFEs for DFT with all DFT values being within, or near, the span of NNP-computed values. These results
are computed with the LJ term. These structures are not included in the training set.
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FIG. 17. [(a)–(d)] Images of solute sites, organized in shells, for Al-Zn-Mg cluster (a) interstitial site (dark red) and inner Zn octahedron
(dark green) (b) Mg cube (c) Zn truncated cube octahedron (light green) (d) all shells and the interstitial. Miller indices are in reference to the
Al matrix, whose atoms are light red and semi-transparent. See main text for a more detailed description. (e) Formation energies per solute
(top) and for the entire structure (bottom) for Al-Zn-Mg clusters.

for creating and evaluating NNPs. The total cluster formation
energies are also shown, and the agreement between the NNPs
and DFT is again quite good.

C. Solute antisites, vacancies, and substitutions

We further validate the accuracy of the NNPs using the
energetics of antisites and vacancies in Al-Cu-Mg ternary
systems. Antisites and vacancies inevitably arise during the
formation and growth of precipitates and so accuracy is impor-
tant for any future thermodynamic/kinetic study. Here we use
all the ternary Al-Cu-Mg structures in the OQMD database
and compute these antisite and vacancy energies for every
atom site using supercells of at least 108 atoms to minimize
defect self-interactions in the periodic cell. We use the same
means of computing formation energies, �E antisite

f , as for the
T and η′ phases as shown in Eq. (14), but do not relax the
structure. The lack of relaxation is not important for our com-

parisons between the NNPs and DFT, but would be important
in applications.

Figure 18 shows the antisite energies for ternary Al-Cu-Mg
systems. Figure 32 of Appendix J shows antisite energies for
binary Al-Cu. In cases where there are several unique sites
for a given element we show only the site that has the lowest
energy according to DFT, as this is the most important value
to model correctly; otherwise the figure would be unreadable.
Variations among the NNP energies are seen, but rarely ex-
ceed 0.1 eV, and the NNP average is close to the DFT value.
The NNPs capture even small yet important differences in the
antisites: e.g, that substituting Mg with Cu, Cu → Mg, in
Al4Cu10Mg2 is slightly negative. These results demonstrate
that the NNPs make accurate predictions of point defects that
are not in the training set. Referring to Appendix J, we see that
despite the increased complexity of the Al-Cu-Mg dataset,
the NNP yields very good results for antisites in Al-Cu, with
results comparable to those found using a previous Al-Cu
NNP [2].
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FIG. 18. DFT antisite formation energy vs NNP antisite formation energy for Al-Cu-Mg compounds. These structures are not included in
the training set.

V. CONCLUSIONS

In this paper we have created and tested sets of near-
DFT-accurate Al-Cu-Mg and Al-Cu-Mg-Zn potentials using
the Behler-Parinello neural network formulation. We were
able to achieve this state-of-the-art performance by extend-
ing our previous datasets involving Al-Cu and Al-Mg-Si to
include new data pertinent to the Al-Cu-Mg-Zn alloys, and
thus we continue to prove the viability of this methodology
to construct high-quality metallurgical potentials. The NNPs
reliably predicted essential alloy properties including lattice
constants, elastic constants, surface and stacking fault ener-
gies, precipitate formation energies, and precipitate antisite
or substitutional defects. We have demonstrated that these

NNPs are able to accurately predict (within 100 mJ/m2 of
DFT) GSFE surface of the terminal S phase, thus making our
potential the first, to our knowledge, able to accurately model
dislocation-precipitate strengthening for this system. Finally
our four-element potential for Al-Cu-Mg-Zn that shows very
good predictions for (i) the role of Cu in aiding η′ and T phase
formation and (ii) novel Al-Zn-Mg clusters without explicit
training.

The NNPs are not perfect and we find similar errors and is-
sues as noted in our previous paper [2,4]. For example, C44 for
Al remains challenging to model. Also, the NNPs are highly
inaccurate at close-range interatomic distances requiring the
addition of an ad-hoc repulsive potential to avoid unphysi-
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cal behavior in this regime. There are clear paths that may
improve these potentials, e.g., improvements in symmetry
function selection, new types of symmetry functions, incorpo-
rating a loss function that considers energy differences, and/or
new optimization techniques. However, in many key aspects
the NNPs are very accurate and are the first potentials suitable
for any realistic metallurgical modeling of Al-Cu-Mg-Zn.

We can anticipate that the methodology can be successfully
extended into other alloying elements. At the same time, other
machine learning methods combined with our training data
may yield even better potentials. To this end, we provide all
of our training data on the Materials Cloud [54] and invite the
community to train or test other potentials or methods.

Broadly, however, our results here show that by using a
sufficient dataset covering a wide range of metallurgically
relevant structures, the computationally-efficient NNP for-
mulation produces potentials with the accuracy needed for
many metallurgical applications. This success is thus another
demonstration of the value of the underlying approach and
methodology, advancing the applications of machine learning
interatomic potentials to realistic computational metallurgy.
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APPENDIX A: SYMMETRY FUNCTION
HYPERPARAMETERS

In this section we show all the symmetry functions used for
the neural network potentials.

TABLE I. Hyperparameters for the radial symmetry functions for
Al-Cu-Mg NNPs.

Element1 Element2 η r2 rc

Al Al 1.000 ×10−2 0.000 ×100 2.000 ×101

Al Al 1.073 ×10−1 0.000 ×100 2.000 ×101

Al Al 1.117 ×10−1 1.301 ×101 2.000 ×101

Al Al 1.166 ×10−1 7.071 ×100 2.000 ×101

Al Al 1.350 ×10−1 9.170 ×100 2.000 ×101

Al Al 1.560 ×10−2 0.000 ×100 2.000 ×101

Al Al 1.689 ×10−1 1.057 ×101 2.000 ×101

Al Al 2.102 ×10−1 0.000 ×100 2.000 ×101

Al Al 2.109 ×10−1 7.336 ×100 2.000 ×101

Al Al 2.500 ×10−3 0.000 ×100 2.000 ×101

Al Al 2.982 ×10−1 6.169 ×100 2.000 ×101

Al Al 3.580 ×10−2 0.000 ×100 2.000 ×101

Al Al 3.900 ×10−3 0.000 ×100 2.000 ×101

Al Al 4.466 ×10−1 6.504 ×100 2.000 ×101

Al Al 4.770 ×10−2 1.542 ×101 2.000 ×101

Al Al 5.830 ×10−2 1.000 ×101 2.000 ×101

Al Al 6.900 ×10−3 0.000 ×100 2.000 ×101

Al Al 7.460 ×10−2 1.234 ×101 2.000 ×101

Al Al 8.020 ×10−2 1.189 ×101 2.000 ×101

Al Cu 1.073 ×10−1 0.000 ×100 1.600 ×101

Al Cu 1.117 ×10−1 1.301 ×101 1.600 ×101

Al Cu 1.166 ×10−1 7.071 ×100 2.000 ×101

TABLE I. (Continued.)

Element1 Element2 η r2 rc

Al Cu 1.350 ×10−1 9.170 ×100 2.000 ×101

Al Cu 1.560 ×10−2 0.000 ×100 8.000 ×100

Al Cu 1.689 ×10−1 1.057 ×101 1.600 ×101

Al Cu 2.102 ×10−1 0.000 ×100 8.000 ×100

Al Cu 2.109 ×10−1 7.336 ×100 1.600 ×101

Al Cu 2.500 ×10−3 0.000 ×100 2.000 ×101

Al Cu 2.982 ×10−1 6.169 ×100 8.000 ×100

Al Cu 3.900 ×10−3 0.000 ×100 1.600 ×101

Al Cu 4.466 ×10−1 6.504 ×100 8.000 ×100

Al Cu 4.770 ×10−2 1.542 ×101 2.000 ×101

Al Cu 5.830 ×10−2 1.000 ×101 2.000 ×101

Al Cu 6.900 ×10−3 0.000 ×100 1.200 ×101

Al Cu 7.100 ×10−3 0.000 ×100 2.000 ×101

Al Cu 7.460 ×10−2 1.234 ×101 1.600 ×101

Al Cu 8.020 ×10−2 1.189 ×101 2.000 ×101

Al Mg 1.000 ×10−2 0.000 ×100 2.000 ×101

Al Mg 1.073 ×10−1 0.000 ×100 1.600 ×101

Al Mg 1.117 ×10−1 1.301 ×101 1.600 ×101

Al Mg 1.166 ×10−1 7.071 ×100 2.000 ×101

Al Mg 1.350 ×10−1 9.170 ×100 2.000 ×101

Al Mg 1.560 ×10−2 0.000 ×100 8.000 ×100

Al Mg 1.689 ×10−1 1.057 ×101 1.600 ×101

Al Mg 1.875 ×10−1 0.000 ×100 8.000 ×100

Al Mg 2.109 ×10−1 7.336 ×100 1.600 ×101

Al Mg 2.500 ×10−3 0.000 ×100 2.000 ×101

Al Mg 2.982 ×10−1 6.169 ×100 8.000 ×100

Al Mg 3.900 ×10−3 0.000 ×100 1.600 ×101

Al Mg 4.466 ×10−1 6.504 ×100 8.000 ×100

Al Mg 4.770 ×10−2 1.542 ×101 2.000 ×101

Al Mg 5.830 ×10−2 1.000 ×101 2.000 ×101

Al Mg 6.900 ×10−3 0.000 ×100 1.200 ×101

Al Mg 7.460 ×10−2 1.234 ×101 1.600 ×101

Al Mg 8.020 ×10−2 1.189 ×101 2.000 ×101

Cu Al 1.000 ×10−2 0.000 ×100 2.000 ×101

Cu Al 1.073 ×10−1 0.000 ×100 1.600 ×101

Cu Al 1.117 ×10−1 1.301 ×101 1.600 ×101

Cu Al 1.166 ×10−1 7.071 ×100 2.000 ×101

Cu Al 1.350 ×10−1 9.170 ×100 2.000 ×101

Cu Al 1.560 ×10−2 0.000 ×100 8.000 ×100

Cu Al 1.689 ×10−1 1.057 ×101 1.600 ×101

Cu Al 1.875 ×10−1 0.000 ×100 8.000 ×100

Cu Al 2.109 ×10−1 7.336 ×100 1.600 ×101

Cu Al 2.500 ×10−3 0.000 ×100 2.000 ×101

Cu Al 2.982 ×10−1 6.169 ×100 8.000 ×100

Cu Al 3.900 ×10−3 0.000 ×100 1.600 ×101

Cu Al 4.466 ×10−1 6.504 ×100 8.000 ×100

Cu Al 4.770 ×10−2 1.542 ×101 2.000 ×101

Cu Al 5.830 ×10−2 1.000 ×101 2.000 ×101

Cu Al 6.900 ×10−3 0.000 ×100 1.200 ×101

Cu Al 7.460 ×10−2 1.234 ×101 1.600 ×101

Cu Al 8.020 ×10−2 1.189 ×101 2.000 ×101

Cu Cu 1.000 ×10−2 0.000 ×100 2.000 ×101

Cu Cu 1.073 ×10−1 0.000 ×100 1.600 ×101

Cu Cu 1.117 ×10−1 1.301 ×101 1.600 ×101

Cu Cu 1.166 ×10−1 7.071 ×100 2.000 ×101

Cu Cu 1.350 ×10−1 9.170 ×100 2.000 ×101

Cu Cu 1.560 ×10−2 0.000 ×100 8.000 ×100

Cu Cu 1.590 ×10−2 0.000 ×100 1.200 ×101

Cu Cu 1.689 ×10−1 1.057 ×101 1.600 ×101
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TABLE I. (Continued.)

Element1 Element2 η r2 rc

Cu Cu 2.102 ×10−1 0.000 ×100 8.000 ×100

Cu Cu 2.109 ×10−1 7.336 ×100 1.600 ×101

Cu Cu 2.500 ×10−3 0.000 ×100 2.000 ×101

Cu Cu 2.982 ×10−1 6.169 ×100 8.000 ×100

Cu Cu 3.580 ×10−2 0.000 ×100 8.000 ×100

Cu Cu 3.900 ×10−3 0.000 ×100 1.600 ×101

Cu Cu 4.466 ×10−1 6.504 ×100 8.000 ×100

Cu Cu 4.770 ×10−2 1.542 ×101 2.000 ×101

Cu Cu 5.830 ×10−2 1.000 ×101 2.000 ×101

Cu Cu 6.900 ×10−3 0.000 ×100 1.200 ×101

Cu Cu 7.460 ×10−2 1.234 ×101 1.600 ×101

Cu Cu 8.020 ×10−2 1.189 ×101 2.000 ×101

Cu Mg 1.000 ×10−2 0.000 ×100 2.000 ×101

Cu Mg 1.073 ×10−1 0.000 ×100 1.600 ×101

Cu Mg 1.117 ×10−1 1.301 ×101 1.600 ×101

Cu Mg 1.166 ×10−1 7.071 ×100 2.000 ×101

Cu Mg 1.350 ×10−1 9.170 ×100 2.000 ×101

Cu Mg 1.560 ×10−2 0.000 ×100 8.000 ×100

Cu Mg 1.689 ×10−1 1.057 ×101 1.600 ×101

Cu Mg 2.109 ×10−1 7.336 ×100 1.600 ×101

Cu Mg 2.500 ×10−3 0.000 ×100 2.000 ×101

Cu Mg 2.982 ×10−1 6.169 ×100 8.000 ×100

Cu Mg 3.900 ×10−3 0.000 ×100 1.600 ×101

Cu Mg 4.466 ×10−1 6.504 ×100 8.000 ×100

Cu Mg 4.770 ×10−2 1.542 ×101 2.000 ×101

Cu Mg 5.830 ×10−2 1.000 ×101 2.000 ×101

Cu Mg 6.900 ×10−3 0.000 ×100 1.200 ×101

Cu Mg 7.460 ×10−2 1.234 ×101 1.600 ×101

Cu Mg 8.020 ×10−2 1.189 ×101 2.000 ×101

Mg Al 1.000 ×10−2 0.000 ×100 2.000 ×101

Mg Al 1.073 ×10−1 0.000 ×100 1.600 ×101

Mg Al 1.117 ×10−1 1.301 ×101 1.600 ×101

Mg Al 1.166 ×10−1 7.071 ×100 2.000 ×101

Mg Al 1.350 ×10−1 9.170 ×100 2.000 ×101

Mg Al 1.560 ×10−2 0.000 ×100 8.000 ×100

Mg Al 1.689 ×10−1 1.057 ×101 1.600 ×101

Mg Al 2.102 ×10−1 0.000 ×100 8.000 ×100

Mg Al 2.109 ×10−1 7.336 ×100 1.600 ×101

Mg Al 2.500 ×10−3 0.000 ×100 2.000 ×101

Mg Al 2.982 ×10−1 6.169 ×100 8.000 ×100

Mg Al 3.580 ×10−2 0.000 ×100 8.000 ×100

Mg Al 3.900 ×10−3 0.000 ×100 1.600 ×101

Mg Al 4.466 ×10−1 6.504 ×100 8.000 ×100

TABLE I. (Continued.)

Element1 Element2 η r2 rc

Mg Al 4.770 ×10−2 1.542 ×101 2.000 ×101

Mg Al 5.830 ×10−2 1.000 ×101 2.000 ×101

Mg Al 6.900 ×10−3 0.000 ×100 1.200 ×101

Mg Al 7.460 ×10−2 1.234 ×101 1.600 ×101

Mg Al 8.020 ×10−2 1.189 ×101 2.000 ×101

Mg Cu 1.000 ×10−2 0.000 ×100 2.000 ×101

Mg Cu 1.073 ×10−1 0.000 ×100 1.600 ×101

Mg Cu 1.117 ×10−1 1.301 ×101 1.600 ×101

Mg Cu 1.166 ×10−1 7.071 ×100 2.000 ×101

Mg Cu 1.350 ×10−1 9.170 ×100 2.000 ×101

Mg Cu 1.560 ×10−2 0.000 ×100 8.000 ×100

Mg Cu 1.689 ×10−1 1.057 ×101 1.600 ×101

Mg Cu 2.109 ×10−1 7.336 ×100 1.600 ×101

Mg Cu 2.500 ×10−3 0.000 ×100 2.000 ×101

Mg Cu 2.982 ×10−1 6.169 ×100 8.000 ×100

Mg Cu 3.580 ×10−2 0.000 ×100 8.000 ×100

Mg Cu 3.900 ×10−3 0.000 ×100 1.600 ×101

Mg Cu 4.466 ×10−1 6.504 ×100 8.000 ×100

Mg Cu 4.770 ×10−2 1.542 ×101 2.000 ×101

Mg Cu 5.830 ×10−2 1.000 ×101 2.000 ×101

Mg Cu 6.900 ×10−3 0.000 ×100 1.200 ×101

Mg Cu 7.460 ×10−2 1.234 ×101 1.600 ×101

Mg Cu 8.020 ×10−2 1.189 ×101 2.000 ×101

Mg Mg 1.000 ×10−2 0.000 ×100 2.000 ×101

Mg Mg 1.073 ×10−1 0.000 ×100 1.600 ×101

Mg Mg 1.117 ×10−1 1.301 ×101 1.600 ×101

Mg Mg 1.166 ×10−1 7.071 ×100 2.000 ×101

Mg Mg 1.350 ×10−1 9.170 ×100 2.000 ×101

Mg Mg 1.560 ×10−2 0.000 ×100 8.000 ×100

Mg Mg 1.689 ×10−1 1.057 ×101 1.600 ×101

Mg Mg 2.109 ×10−1 7.336 ×100 1.600 ×101

Mg Mg 2.500 ×10−3 0.000 ×100 2.000 ×101

Mg Mg 2.982 ×10−1 6.169 ×100 8.000 ×100

Mg Mg 3.580 ×10−2 0.000 ×100 8.000 ×100

Mg Mg 3.900 ×10−3 0.000 ×100 1.600 ×101

Mg Mg 4.466 ×10−1 6.504 ×100 8.000 ×100

Mg Mg 4.770 ×10−2 1.542 ×101 2.000 ×101

Mg Mg 5.660 ×10−2 0.000 ×100 2.000 ×101

Mg Mg 5.830 ×10−2 1.000 ×101 2.000 ×101

Mg Mg 6.900 ×10−3 0.000 ×100 1.200 ×101

Mg Mg 7.460 ×10−2 1.234 ×101 1.600 ×101

Mg Mg 8.020 ×10−2 1.189 ×101 2.000 ×101
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TABLE II. Hyperparameters for the angular symmetry functions
added by CURSEL for Al-Cu-Mg NNPs.

Element1 Element2 Element3 η λ ζ rc

Al Al Al 3.900 × 10−3 -1 1.0 2.000 × 101

Al Al Al 3.900 × 10−3 1 1.0 2.000 × 101

Al Al Al 8.900 × 10−3 1 1.0 2.000 × 101

Al Al Cu 1.350 × 10−2 1 1.0 1.600 × 101

Al Al Cu 3.900 × 10−3 -1 1.0 1.600 × 101

Al Al Cu 3.900 × 10−3 1 1.0 1.600 × 101

Al Cu Cu 3.900 × 10−3 1 1.0 1.600 × 101

Al Mg Al 3.900 × 10−3 1 1.0 1.600 × 101

Al Mg Cu 3.900 × 10−3 1 1.0 1.600 × 101

Cu Al Al 3.900 × 10−3 1 1.0 1.600 × 101

Cu Al Cu 1.350 × 10−2 1 1.0 1.600 × 101

Cu Al Cu 3.900 × 10−3 -1 1.0 1.600 × 101

Cu Al Cu 3.900 × 10−3 1 1.0 1.600 × 101

Cu Cu Cu 3.900 × 10−3 1 1.0 1.600 × 101

Cu Mg Al 3.900 × 10−3 1 1.0 1.600 × 101

Cu Mg Cu 3.900 × 10−3 -1 1.0 1.600 × 101

Cu Mg Cu 3.900 × 10−3 1 1.0 1.600 × 101

Cu Mg Mg 3.900 × 10−3 1 1.0 1.600 × 101

Mg Al Al 3.900 × 10−3 1 1.0 1.600 × 101

Mg Al Cu 3.900 × 10−3 1 1.0 1.600 × 101

Mg Cu Cu 3.900 × 10−3 1 1.0 1.600 × 101

Mg Mg Al 3.900 × 10−3 -1 1.0 1.600 × 101

Mg Mg Al 3.900 × 10−3 1 1.0 1.600 × 101

Mg Mg Cu 3.900 × 10−3 -1 1.0 1.600 × 101

Mg Mg Cu 3.900 × 10−3 1 1.0 1.600 × 101

Mg Mg Mg 3.900 × 10−3 1 1.0 1.600 × 101

TABLE III. Hyperparameters for the radial symmetry functions
for Al-Cu-Mg-Zn NNPs.

Element1 Element2 η r2 rc

Al Al 1.117 ×10−1 1.301 ×101 1.600 ×101

Al Al 1.166 ×10−1 7.071 ×100 2.000 ×101

Al Al 1.350 ×10−1 9.170 ×100 2.000 ×101

Al Al 1.560 ×10−2 0.000 ×100 8.000 ×100

Al Al 1.590 ×10−2 0.000 ×100 1.200 ×101

Al Al 1.600 ×10−1 0.000 ×100 2.000 ×101

Al Al 1.689 ×10−1 1.057 ×101 1.600 ×101

Al Al 2.102 ×10−1 0.000 ×100 8.000 ×100

Al Al 2.109 ×10−1 7.336 ×100 1.600 ×101

Al Al 2.500 ×10−3 0.000 ×100 2.000 ×101

Al Al 2.982 ×10−1 6.169 ×100 8.000 ×100

Al Al 3.900 ×10−3 0.000 ×100 1.600 ×101

Al Al 4.466 ×10−1 6.504 ×100 8.000 ×100

Al Al 4.690 ×10−2 0.000 ×100 1.600 ×101

Al Al 4.770 ×10−2 1.542 ×101 2.000 ×101

Al Al 5.410 ×10−2 0.000 ×100 8.000 ×100

Al Al 5.830 ×10−2 1.000 ×101 2.000 ×101

Al Al 6.900 ×10−3 0.000 ×100 1.200 ×101

Al Al 7.100 ×10−3 0.000 ×100 2.000 ×101

TABLE III. (Continued.)

Element1 Element2 η r2 rc

Al Al 7.460 ×10−2 1.234 ×101 1.600 ×101

Al Al 8.020 ×10−2 1.189 ×101 2.000 ×101

Al Cu 1.000 ×10−2 0.000 ×100 2.000 ×101

Al Cu 1.073 ×10−1 0.000 ×100 1.600 ×101

Al Cu 1.117 ×10−1 1.301 ×101 1.600 ×101

Al Cu 1.166 ×10−1 7.071 ×100 2.000 ×101

Al Cu 1.350 ×10−1 9.170 ×100 2.000 ×101

Al Cu 1.560 ×10−2 0.000 ×100 8.000 ×100

Al Cu 1.689 ×10−1 1.057 ×101 1.600 ×101

Al Cu 2.102 ×10−1 0.000 ×100 8.000 ×100

Al Cu 2.109 ×10−1 7.336 ×100 1.600 ×101

Al Cu 2.500 ×10−3 0.000 ×100 2.000 ×101

Al Cu 2.982 ×10−1 6.169 ×100 8.000 ×100

Al Cu 3.536 ×10−1 0.000 ×100 8.000 ×100

Al Cu 3.580 ×10−2 0.000 ×100 8.000 ×100

Al Cu 3.900 ×10−3 0.000 ×100 1.600 ×101

Al Cu 4.466 ×10−1 6.504 ×100 8.000 ×100

Al Cu 4.770 ×10−2 1.542 ×101 2.000 ×101

Al Cu 5.830 ×10−2 1.000 ×101 2.000 ×101

Al Cu 6.900 ×10−3 0.000 ×100 1.200 ×101

Al Cu 7.460 ×10−2 1.234 ×101 1.600 ×101

Al Cu 8.020 ×10−2 1.189 ×101 2.000 ×101

Al Mg 1.000 ×10−2 0.000 ×100 2.000 ×101

Al Mg 1.073 ×10−1 0.000 ×100 1.600 ×101

Al Mg 1.117 ×10−1 1.301 ×101 1.600 ×101

Al Mg 1.166 ×10−1 7.071 ×100 2.000 ×101

Al Mg 1.350 ×10−1 9.170 ×100 2.000 ×101

Al Mg 1.560 ×10−2 0.000 ×100 8.000 ×100

Al Mg 1.689 ×10−1 1.057 ×101 1.600 ×101

Al Mg 2.102 ×10−1 0.000 ×100 8.000 ×100

Al Mg 2.109 ×10−1 7.336 ×100 1.600 ×101

Al Mg 2.500 ×10−3 0.000 ×100 2.000 ×101

Al Mg 2.982 ×10−1 6.169 ×100 8.000 ×100

Al Mg 3.580 ×10−2 0.000 ×100 8.000 ×100

Al Mg 3.900 ×10−3 0.000 ×100 1.600 ×101

Al Mg 4.466 ×10−1 6.504 ×100 8.000 ×100

Al Mg 4.770 ×10−2 1.542 ×101 2.000 ×101

Al Mg 5.830 ×10−2 1.000 ×101 2.000 ×101

Al Mg 6.900 ×10−3 0.000 ×100 1.200 ×101

Al Mg 7.460 ×10−2 1.234 ×101 1.600 ×101

Al Mg 8.020 ×10−2 1.189 ×101 2.000 ×101

Al Zn 1.000 ×10−2 0.000 ×100 2.000 ×101

Al Zn 1.073 ×10−1 0.000 ×100 1.600 ×101

Al Zn 1.117 ×10−1 1.301 ×101 1.600 ×101

Al Zn 1.166 ×10−1 7.071 ×100 2.000 ×101

Al Zn 1.350 ×10−1 9.170 ×100 2.000 ×101

Al Zn 1.560 ×10−2 0.000 ×100 8.000 ×100

Al Zn 1.689 ×10−1 1.057 ×101 1.600 ×101

Al Zn 2.102 ×10−1 0.000 ×100 8.000 ×100

Al Zn 2.109 ×10−1 7.336 ×100 1.600 ×101

Al Zn 2.500 ×10−3 0.000 ×100 2.000 ×101

Al Zn 2.982 ×10−1 6.169 ×100 8.000 ×100

Al Zn 3.900 ×10−3 0.000 ×100 1.600 ×101

Al Zn 4.466 ×10−1 6.504 ×100 8.000 ×100
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TABLE III. (Continued.)

Element1 Element2 η r2 rc

Al Zn 4.770 ×10−2 1.542 ×101 2.000 ×101

Al Zn 5.830 ×10−2 1.000 ×101 2.000 ×101

Al Zn 6.900 ×10−3 0.000 ×100 1.200 ×101

Al Zn 7.460 ×10−2 1.234 ×101 1.600 ×101

Al Zn 8.020 ×10−2 1.189 ×101 2.000 ×101

Cu Al 1.000 ×10−2 0.000 ×100 2.000 ×101

Cu Al 1.117 ×10−1 1.301 ×101 1.600 ×101

Cu Al 1.166 ×10−1 7.071 ×100 2.000 ×101

Cu Al 1.350 ×10−1 9.170 ×100 2.000 ×101

Cu Al 1.560 ×10−2 0.000 ×100 8.000 ×100

Cu Al 1.600 ×10−1 0.000 ×100 2.000 ×101

Cu Al 1.689 ×10−1 1.057 ×101 1.600 ×101

Cu Al 2.102 ×10−1 0.000 ×100 8.000 ×100

Cu Al 2.109 ×10−1 7.336 ×100 1.600 ×101

Cu Al 2.500 ×10−3 0.000 ×100 2.000 ×101

Cu Al 2.982 ×10−1 6.169 ×100 8.000 ×100

Cu Al 3.900 ×10−3 0.000 ×100 1.600 ×101

Cu Al 4.466 ×10−1 6.504 ×100 8.000 ×100

Cu Al 4.770 ×10−2 1.542 ×101 2.000 ×101

Cu Al 5.830 ×10−2 1.000 ×101 2.000 ×101

Cu Al 6.900 ×10−3 0.000 ×100 1.200 ×101

Cu Al 7.460 ×10−2 1.234 ×101 1.600 ×101

Cu Al 8.020 ×10−2 1.189 ×101 2.000 ×101

Cu Cu 1.000 ×10−2 0.000 ×100 2.000 ×101

Cu Cu 1.117 ×10−1 1.301 ×101 1.600 ×101

Cu Cu 1.166 ×10−1 7.071 ×100 2.000 ×101

Cu Cu 1.350 ×10−1 9.170 ×100 2.000 ×101

Cu Cu 1.560 ×10−2 0.000 ×100 8.000 ×100

Cu Cu 1.590 ×10−2 0.000 ×100 1.200 ×101

Cu Cu 1.600 ×10−1 0.000 ×100 2.000 ×101

Cu Cu 1.689 ×10−1 1.057 ×101 1.600 ×101

Cu Cu 2.102 ×10−1 0.000 ×100 8.000 ×100

Cu Cu 2.109 ×10−1 7.336 ×100 1.600 ×101

Cu Cu 2.500 ×10−3 0.000 ×100 2.000 ×101

Cu Cu 2.982 ×10−1 6.169 ×100 8.000 ×100

Cu Cu 3.580 ×10−2 0.000 ×100 8.000 ×100

Cu Cu 3.900 ×10−3 0.000 ×100 1.600 ×101

Cu Cu 4.466 ×10−1 6.504 ×100 8.000 ×100

Cu Cu 4.770 ×10−2 1.542 ×101 2.000 ×101

Cu Cu 5.660 ×10−2 0.000 ×100 2.000 ×101

Cu Cu 5.830 ×10−2 1.000 ×101 2.000 ×101

Cu Cu 6.900 ×10−3 0.000 ×100 1.200 ×101

Cu Cu 7.460 ×10−2 1.234 ×101 1.600 ×101

Cu Cu 8.020 ×10−2 1.189 ×101 2.000 ×101

Cu Mg 1.000 ×10−2 0.000 ×100 2.000 ×101

Cu Mg 1.073 ×10−1 0.000 ×100 1.600 ×101

Cu Mg 1.117 ×10−1 1.301 ×101 1.600 ×101

Cu Mg 1.166 ×10−1 7.071 ×100 2.000 ×101

Cu Mg 1.350 ×10−1 9.170 ×100 2.000 ×101

Cu Mg 1.560 ×10−2 0.000 ×100 8.000 ×100

Cu Mg 1.689 ×10−1 1.057 ×101 1.600 ×101

Cu Mg 2.102 ×10−1 0.000 ×100 8.000 ×100

Cu Mg 2.109 ×10−1 7.336 ×100 1.600 ×101

Cu Mg 2.500 ×10−3 0.000 ×100 2.000 ×101

TABLE III. (Continued.)

Element1 Element2 η r2 rc

Cu Mg 2.982 ×10−1 6.169 ×100 8.000 ×100

Cu Mg 3.900 ×10−3 0.000 ×100 1.600 ×101

Cu Mg 4.466 ×10−1 6.504 ×100 8.000 ×100

Cu Mg 4.770 ×10−2 1.542 ×101 2.000 ×101

Cu Mg 5.830 ×10−2 1.000 ×101 2.000 ×101

Cu Mg 6.900 ×10−3 0.000 ×100 1.200 ×101

Cu Mg 7.460 ×10−2 1.234 ×101 1.600 ×101

Cu Mg 8.020 ×10−2 1.189 ×101 2.000 ×101

Cu Zn 1.000 ×10−2 0.000 ×100 2.000 ×101

Cu Zn 1.117 ×10−1 1.301 ×101 1.600 ×101

Cu Zn 1.166 ×10−1 7.071 ×100 2.000 ×101

Cu Zn 1.350 ×10−1 9.170 ×100 2.000 ×101

Cu Zn 1.560 ×10−2 0.000 ×100 8.000 ×100

Cu Zn 1.600 ×10−1 0.000 ×100 2.000 ×101

Cu Zn 1.689 ×10−1 1.057 ×101 1.600 ×101

Cu Zn 2.102 ×10−1 0.000 ×100 8.000 ×100

Cu Zn 2.109 ×10−1 7.336 ×100 1.600 ×101

Cu Zn 2.500 ×10−3 0.000 ×100 2.000 ×101

Cu Zn 2.982 ×10−1 6.169 ×100 8.000 ×100

Cu Zn 3.900 ×10−3 0.000 ×100 1.600 ×101

Cu Zn 4.466 ×10−1 6.504 ×100 8.000 ×100

Cu Zn 4.770 ×10−2 1.542 ×101 2.000 ×101

Cu Zn 5.830 ×10−2 1.000 ×101 2.000 ×101

Cu Zn 6.900 ×10−3 0.000 ×100 1.200 ×101

Cu Zn 7.460 ×10−2 1.234 ×101 1.600 ×101

Cu Zn 8.020 ×10−2 1.189 ×101 2.000 ×101

Mg Al 1.000 ×10−2 0.000 ×100 2.000 ×101

Mg Al 1.073 ×10−1 0.000 ×100 1.600 ×101

Mg Al 1.117 ×10−1 1.301 ×101 1.600 ×101

Mg Al 1.166 ×10−1 7.071 ×100 2.000 ×101

Mg Al 1.350 ×10−1 9.170 ×100 2.000 ×101

Mg Al 1.560 ×10−2 0.000 ×100 8.000 ×100

Mg Al 1.689 ×10−1 1.057 ×101 1.600 ×101

Mg Al 2.102 ×10−1 0.000 ×100 8.000 ×100

Mg Al 2.109 ×10−1 7.336 ×100 1.600 ×101

Mg Al 2.500 ×10−3 0.000 ×100 2.000 ×101

Mg Al 2.982 ×10−1 6.169 ×100 8.000 ×100

Mg Al 3.580 ×10−2 0.000 ×100 8.000 ×100

Mg Al 3.900 ×10−3 0.000 ×100 1.600 ×101

Mg Al 4.466 ×10−1 6.504 ×100 8.000 ×100

Mg Al 4.770 ×10−2 1.542 ×101 2.000 ×101

Mg Al 5.830 ×10−2 1.000 ×101 2.000 ×101

Mg Al 6.900 ×10−3 0.000 ×100 1.200 ×101

Mg Al 7.460 ×10−2 1.234 ×101 1.600 ×101

Mg Al 8.020 ×10−2 1.189 ×101 2.000 ×101

Mg Cu 1.000 ×10−2 0.000 ×100 2.000 ×101

Mg Cu 1.073 ×10−1 0.000 ×100 1.600 ×101

Mg Cu 1.117 ×10−1 1.301 ×101 1.600 ×101

Mg Cu 1.166 ×10−1 7.071 ×100 2.000 ×101

Mg Cu 1.350 ×10−1 9.170 ×100 2.000 ×101

Mg Cu 1.560 ×10−2 0.000 ×100 8.000 ×100

Mg Cu 1.590 ×10−2 0.000 ×100 1.200 ×101

Mg Cu 1.689 ×10−1 1.057 ×101 1.600 ×101

Mg Cu 2.102 ×10−1 0.000 ×100 8.000 ×100
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TABLE III. (Continued.)

Element1 Element2 η r2 rc

Mg Cu 2.109 ×10−1 7.336 ×100 1.600 ×101

Mg Cu 2.500 ×10−3 0.000 ×100 2.000 ×101

Mg Cu 2.982 ×10−1 6.169 ×100 8.000 ×100

Mg Cu 3.580 ×10−2 0.000 ×100 8.000 ×100

Mg Cu 3.900 ×10−3 0.000 ×100 1.600 ×101

Mg Cu 4.466 ×10−1 6.504 ×100 8.000 ×100

Mg Cu 4.770 ×10−2 1.542 ×101 2.000 ×101

Mg Cu 5.830 ×10−2 1.000 ×101 2.000 ×101

Mg Cu 6.900 ×10−3 0.000 ×100 1.200 ×101

Mg Cu 7.460 ×10−2 1.234 ×101 1.600 ×101

Mg Cu 8.020 ×10−2 1.189 ×101 2.000 ×101

Mg Mg 1.000 ×10−2 0.000 ×100 2.000 ×101

Mg Mg 1.073 ×10−1 0.000 ×100 1.600 ×101

Mg Mg 1.117 ×10−1 1.301 ×101 1.600 ×101

Mg Mg 1.166 ×10−1 7.071 ×100 2.000 ×101

Mg Mg 1.350 ×10−1 9.170 ×100 2.000 ×101

Mg Mg 1.560 ×10−2 0.000 ×100 8.000 ×100

Mg Mg 1.590 ×10−2 0.000 ×100 1.200 ×101

Mg Mg 1.689 ×10−1 1.057 ×101 1.600 ×101

Mg Mg 1.875 ×10−1 0.000 ×100 8.000 ×100

Mg Mg 2.109 ×10−1 7.336 ×100 1.600 ×101

Mg Mg 2.500 ×10−3 0.000 ×100 2.000 ×101

Mg Mg 2.982 ×10−1 6.169 ×100 8.000 ×100

Mg Mg 3.580 ×10−2 0.000 ×100 8.000 ×100

Mg Mg 3.900 ×10−3 0.000 ×100 1.600 ×101

Mg Mg 4.466 ×10−1 6.504 ×100 8.000 ×100

Mg Mg 4.770 ×10−2 1.542 ×101 2.000 ×101

Mg Mg 5.830 ×10−2 1.000 ×101 2.000 ×101

Mg Mg 6.900 ×10−3 0.000 ×100 1.200 ×101

Mg Mg 7.460 ×10−2 1.234 ×101 1.600 ×101

Mg Mg 8.020 ×10−2 1.189 ×101 2.000 ×101

Mg Zn 1.000 ×10−2 0.000 ×100 2.000 ×101

Mg Zn 1.117 ×10−1 1.301 ×101 1.600 ×101

Mg Zn 1.166 ×10−1 7.071 ×100 2.000 ×101

Mg Zn 1.350 ×10−1 9.170 ×100 2.000 ×101

Mg Zn 1.560 ×10−2 0.000 ×100 8.000 ×100

Mg Zn 1.590 ×10−2 0.000 ×100 1.200 ×101

Mg Zn 1.600 ×10−1 0.000 ×100 2.000 ×101

Mg Zn 1.689 ×10−1 1.057 ×101 1.600 ×101

Mg Zn 2.102 ×10−1 0.000 ×100 8.000 ×100

Mg Zn 2.109 ×10−1 7.336 ×100 1.600 ×101

Mg Zn 2.500 ×10−3 0.000 ×100 2.000 ×101

Mg Zn 2.982 ×10−1 6.169 ×100 8.000 ×100

Mg Zn 3.900 ×10−3 0.000 ×100 1.600 ×101

Mg Zn 4.466 ×10−1 6.504 ×100 8.000 ×100

Mg Zn 4.770 ×10−2 1.542 ×101 2.000 ×101

Mg Zn 5.830 ×10−2 1.000 ×101 2.000 ×101

Mg Zn 6.900 ×10−3 0.000 ×100 1.200 ×101

Mg Zn 7.460 ×10−2 1.234 ×101 1.600 ×101

Mg Zn 8.020 ×10−2 1.189 ×101 2.000 ×101

Zn Al 1.000 ×10−2 0.000 ×100 2.000 ×101

Zn Al 1.117 ×10−1 1.301 ×101 1.600 ×101

Zn Al 1.166 ×10−1 7.071 ×100 2.000 ×101

Zn Al 1.350 ×10−1 9.170 ×100 2.000 ×101

TABLE III. (Continued.)

Element1 Element2 η r2 rc

Zn Al 1.560 ×10−2 0.000 ×100 8.000 ×100

Zn Al 1.600 ×10−1 0.000 ×100 2.000 ×101

Zn Al 1.689 ×10−1 1.057 ×101 1.600 ×101

Zn Al 2.102 ×10−1 0.000 ×100 8.000 ×100

Zn Al 2.109 ×10−1 7.336 ×100 1.600 ×101

Zn Al 2.500 ×10−3 0.000 ×100 2.000 ×101

Zn Al 2.982 ×10−1 6.169 ×100 8.000 ×100

Zn Al 3.580 ×10−2 0.000 ×100 8.000 ×100

Zn Al 3.900 ×10−3 0.000 ×100 1.600 ×101

Zn Al 4.466 ×10−1 6.504 ×100 8.000 ×100

Zn Al 4.770 ×10−2 1.542 ×101 2.000 ×101

Zn Al 5.830 ×10−2 1.000 ×101 2.000 ×101

Zn Al 6.900 ×10−3 0.000 ×100 1.200 ×101

Zn Al 7.460 ×10−2 1.234 ×101 1.600 ×101

Zn Al 8.020 ×10−2 1.189 ×101 2.000 ×101

Zn Cu 1.000 ×10−2 0.000 ×100 2.000 ×101

Zn Cu 1.117 ×10−1 1.301 ×101 1.600 ×101

Zn Cu 1.166 ×10−1 7.071 ×100 2.000 ×101

Zn Cu 1.350 ×10−1 9.170 ×100 2.000 ×101

Zn Cu 1.560 ×10−2 0.000 ×100 8.000 ×100

Zn Cu 1.600 ×10−1 0.000 ×100 2.000 ×101

Zn Cu 1.689 ×10−1 1.057 ×101 1.600 ×101

Zn Cu 2.102 ×10−1 0.000 ×100 8.000 ×100

Zn Cu 2.109 ×10−1 7.336 ×100 1.600 ×101

Zn Cu 2.500 ×10−3 0.000 ×100 2.000 ×101

Zn Cu 2.982 ×10−1 6.169 ×100 8.000 ×100

Zn Cu 3.536 ×10−1 0.000 ×100 8.000 ×100

Zn Cu 3.580 ×10−2 0.000 ×100 8.000 ×100

Zn Cu 3.900 ×10−3 0.000 ×100 1.600 ×101

Zn Cu 4.466 ×10−1 6.504 ×100 8.000 ×100

Zn Cu 4.770 ×10−2 1.542 ×101 2.000 ×101

Zn Cu 5.830 ×10−2 1.000 ×101 2.000 ×101

Zn Cu 6.900 ×10−3 0.000 ×100 1.200 ×101

Zn Cu 7.460 ×10−2 1.234 ×101 1.600 ×101

Zn Cu 8.020 ×10−2 1.189 ×101 2.000 ×101

Zn Mg 1.000 ×10−2 0.000 ×100 2.000 ×101

Zn Mg 1.117 ×10−1 1.301 ×101 1.600 ×101

Zn Mg 1.166 ×10−1 7.071 ×100 2.000 ×101

Zn Mg 1.350 ×10−1 9.170 ×100 2.000 ×101

Zn Mg 1.560 ×10−2 0.000 ×100 8.000 ×100

Zn Mg 1.600 ×10−1 0.000 ×100 2.000 ×101

Zn Mg 1.689 ×10−1 1.057 ×101 1.600 ×101

Zn Mg 2.102 ×10−1 0.000 ×100 8.000 ×100

Zn Mg 2.109 ×10−1 7.336 ×100 1.600 ×101

Zn Mg 2.500 ×10−3 0.000 ×100 2.000 ×101

Zn Mg 2.982 ×10−1 6.169 ×100 8.000 ×100

Zn Mg 3.580 ×10−2 0.000 ×100 8.000 ×100

Zn Mg 3.900 ×10−3 0.000 ×100 1.600 ×101

Zn Mg 4.466 ×10−1 6.504 ×100 8.000 ×100

Zn Mg 4.770 ×10−2 1.542 ×101 2.000 ×101

Zn Mg 5.830 ×10−2 1.000 ×101 2.000 ×101

Zn Mg 6.900 ×10−3 0.000 ×100 1.200 ×101

Zn Mg 7.460 ×10−2 1.234 ×101 1.600 ×101
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TABLE III. (Continued.)

Element1 Element2 η r2 rc

Zn Mg 8.020 ×10−2 1.189 ×101 2.000 ×101

Zn Zn 1.000 ×10−2 0.000 ×100 2.000 ×101

Zn Zn 1.117 ×10−1 1.301 ×101 1.600 ×101

Zn Zn 1.166 ×10−1 7.071 ×100 2.000 ×101

Zn Zn 1.254 ×10−1 9.514 ×100 1.600 ×101

Zn Zn 1.350 ×10−1 9.170 ×100 2.000 ×101

Zn Zn 1.560 ×10−2 0.000 ×100 8.000 ×100

Zn Zn 1.590 ×10−2 0.000 ×100 1.200 ×101

Zn Zn 1.600 ×10−1 0.000 ×100 2.000 ×101

Zn Zn 1.689 ×10−1 1.057 ×101 1.600 ×101

Zn Zn 2.109 ×10−1 7.336 ×100 1.600 ×101

Zn Zn 2.500 ×10−3 0.000 ×100 2.000 ×101

Zn Zn 2.837 ×10−1 0.000 ×100 8.000 ×100

Zn Zn 2.910 ×10−2 1.414 ×101 2.000 ×101

Zn Zn 2.982 ×10−1 6.169 ×100 8.000 ×100

Zn Zn 3.580 ×10−2 0.000 ×100 8.000 ×100

Zn Zn 3.900 ×10−3 0.000 ×100 1.600 ×101

Zn Zn 4.466 ×10−1 6.504 ×100 8.000 ×100

Zn Zn 4.770 ×10−2 1.542 ×101 2.000 ×101

Zn Zn 5.830 ×10−2 1.000 ×101 2.000 ×101

Zn Zn 6.900 ×10−3 0.000 ×100 1.200 ×101

Zn Zn 7.460 ×10−2 1.234 ×101 1.600 ×101

Zn Zn 8.020 ×10−2 1.189 ×101 2.000 ×101

Zn Zn 9.510 ×10−2 0.000 ×100 2.000 ×101

TABLE IV. Hyperparameters for the angular symmetry functions
added by CURSEL for Al-Cu-Mg-Zn NNPs.

Element1 Element2 Element3 η λ ζ rc

Al Al Al 1.350 ×10−2 1 1.0 1.600 ×101

Al Al Al 3.900 ×10−3 –1 1.0 1.600 ×101

Al Al Al 3.900 ×10−3 1 1.0 1.600 ×101

Al Al Al 3.900 ×10−3 1 4.0 1.600 ×101

Al Al Cu 1.350 ×10−2 1 1.0 1.600 ×101

Al Al Cu 3.900 ×10−3 –1 1.0 1.600 ×101

Al Al Cu 3.900 ×10−3 1 1.0 1.600 ×101

Al Al Cu 3.900 ×10−3 1 4.0 1.600 ×101

Al Al Zn 3.900 ×10−3 –1 1.0 1.600 ×101

Al Al Zn 3.900 ×10−3 1 1.0 1.600 ×101

Al Cu Cu 3.900 ×10−3 1 1.0 1.600 ×101

Al Cu Zn 3.900 ×10−3 1 1.0 1.600 ×101

Al Mg Al 3.900 ×10−3 –1 1.0 1.600 ×101

Al Mg Al 3.900 ×10−3 1 1.0 1.600 ×101

Al Mg Cu 3.900 ×10−3 1 1.0 1.600 ×101

Al Mg Mg 3.900 ×10−3 1 1.0 1.600 ×101

Al Mg Zn 3.900 ×10−3 1 1.0 1.600 ×101

Al Zn Zn 3.900 ×10−3 1 1.0 1.600 ×101

Cu Al Al 3.900 ×10−3 1 1.0 1.600 ×101

TABLE IV. (Continued.)

Element1 Element2 Element3 η λ ζ rc

Cu Al Cu 1.350 ×10−2 1 1.0 1.600 ×101

Cu Al Cu 3.900 ×10−3 –1 1.0 1.600 ×101

Cu Al Cu 3.900 ×10−3 1 1.0 1.600 ×101

Cu Al Cu 3.900 ×10−3 1 4.0 1.600 ×101

Cu Al Zn 3.900 ×10−3 –1 1.0 1.600 ×101

Cu Al Zn 3.900 ×10−3 1 1.0 1.600 ×101

Cu Cu Cu 1.350 ×10−2 1 1.0 1.600 ×101

Cu Cu Cu 3.900 ×10−3 –1 1.0 1.600 ×101

Cu Cu Cu 3.900 ×10−3 1 1.0 1.600 ×101

Cu Cu Zn 3.900 ×10−3 –1 1.0 1.600 ×101

Cu Cu Zn 3.900 ×10−3 1 1.0 1.600 ×101

Cu Mg Al 1.350 ×10−2 1 1.0 1.600 ×101

Cu Mg Al 3.900 ×10−3 –1 1.0 1.600 ×101

Cu Mg Al 3.900 ×10−3 1 1.0 1.600 ×101

Cu Mg Cu 3.900 ×10−3 –1 1.0 1.600 ×101

Cu Mg Cu 3.900 ×10−3 1 1.0 1.600 ×101

Cu Mg Mg 3.900 ×10−3 1 1.0 1.600 ×101

Cu Mg Zn 3.900 ×10−3 1 1.0 1.600 ×101

Cu Zn Zn 3.900 ×10−3 –1 1.0 1.600 ×101

Cu Zn Zn 3.900 ×10−3 1 1.0 1.600 ×101

Mg Al Al 3.900 ×10−3 1 1.0 1.600 ×101

Mg Al Cu 3.900 ×10−3 –1 1.0 1.600 ×101

Mg Al Cu 3.900 ×10−3 1 1.0 1.600 ×101

Mg Al Zn 3.900 ×10−3 1 1.0 1.600 ×101

Mg Cu Cu 3.900 ×10−3 1 1.0 1.600 ×101

Mg Cu Zn 3.900 ×10−3 –1 1.0 1.600 ×101

Mg Cu Zn 3.900 ×10−3 1 1.0 1.600 ×101

Mg Mg Al 1.350 ×10−2 1 1.0 1.600 ×101

Mg Mg Al 3.900 ×10−3 –1 1.0 1.600 ×101

Mg Mg Al 3.900 ×10−3 1 1.0 1.600 ×101

Mg Mg Cu 1.350 ×10−2 1 1.0 1.600 ×101

Mg Mg Cu 3.900 ×10−3 –1 1.0 1.600 ×101

Mg Mg Cu 3.900 ×10−3 1 1.0 1.600 ×101

Mg Mg Mg 3.900 ×10−3 1 1.0 1.600 ×101

Mg Mg Zn 3.900 ×10−3 –1 1.0 1.600 ×101

Mg Mg Zn 3.900 ×10−3 1 1.0 1.600 ×101

Mg Zn Zn 3.900 ×10−3 –1 1.0 1.600 ×101

Mg Zn Zn 3.900 ×10−3 1 1.0 1.600 ×101

Zn Al Al 3.900 ×10−3 1 1.0 1.600 ×101

Zn Al Cu 3.900 ×10−3 –1 1.0 1.600 ×101

Zn Al Cu 3.900 ×10−3 1 1.0 1.600 ×101

Zn Al Zn 3.900 ×10−3 –1 1.0 1.600 ×101

Zn Al Zn 3.900 ×10−3 1 1.0 1.600 ×101

Zn Cu Cu 3.900 ×10−3 1 1.0 1.600 ×101

Zn Cu Zn 3.900 ×10−3 –1 1.0 1.600 ×101

Zn Cu Zn 3.900 ×10−3 1 1.0 1.600 ×101

Zn Mg Al 3.900 ×10−3 1 1.0 1.600 ×101

Zn Mg Cu 3.900 ×10−3 1 1.0 1.600 ×101

Zn Mg Mg 3.900 ×10−3 1 1.0 1.600 ×101

Zn Mg Zn 3.900 ×10−3 1 1.0 1.600 ×101

Zn Zn Zn 1.350 ×10−2 1 1.0 1.600 ×101

Zn Zn Zn 3.900 ×10−3 –1 1.0 1.600 ×101

Zn Zn Zn 3.900 ×10−3 1 1.0 1.600 ×101
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TABLE V. Hyperparameters for the angular symmetry functions
manually added from previous work for both Al-Cu-Mg and Al-Cu-
Mg-Zn NNPs.

Element1 Element2 Element3 η λ ζ rc

Al Al Al 7.000 × 10−3 1 1.0 1.200 × 102

Al Al Al 7.000 × 10−3 –1 1.0 1.200 × 102

Al Al Al 1.600 × 10−2 1 1.0 8.000 × 102

Al Al Al 7.000 × 10−3 1 4.0 1.200 × 102

Al Al Al 1.600 × 10−2 –1 1.0 8.000 × 101

APPENDIX B: t-SNE ANALYSIS OF AlCuMg DATASET

In Fig. 19 we show a mapping of all the structures via
the t-SNE [81] method. The t-SNE method is an embed-
ding method wherein it attempts to preserve the distances
between points in high-dimensional space, in our case a

197-dimensional space of all SFs, into a lower dimensional
space, wherein the distances between nearby objects in the
high-dimensional space are preserved in the lower dimen-
sional embedding. This method does not, however, preserve
long-range distances therefore clusters only indicate groups
of structures that are similar to each other but clusters that
are far apart from each other may not mean the structures are
substantially different.

In Fig. 19(a) we see all the structures colored by their order
in the original 11 620 structure database and labeled by struc-
ture group. We see that t-SNE is able to broadly categorize
the different groups, e.g., we see that the randomized Al-Cu,
Mg-Cu, and Al-Cu-Mg supercell structures form broad local
clusters varying by composition. In Fig. 19(b) we see the
structures that were selected to be kept or removed by the
FPS method. We see that most of the structures selected for
removal are from the “OQMD Bulk” category, this is expected

FIG. 19. Structures mapped in two dimensions using the t-SNE method (perplexity = 30) with structures colored by (a) their index within
the database, with key categories labeled (b) whether the structure is included or rejected by the FPS method (c) the error in energy for the
structure (d) the average force error for the structure.
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FIG. 20. Force in the y direction vs relaxation step for DFT
and AlCuMgZn-NNP1 on atom 8 for η′

I Mg4(Zn5Cu)(Al7Zn) as it
relaxes into η′

IV form. Only the points marked with x are eligible for
training and of these only 2.1% are used in a given epoch. The NNP
results are computed using structures taken from the DFT relaxation.

because many of these structures are very similar to each other
differing only by small elastic distortions or by small atomic
displacements for the phonon dataset. We see that FPS largely
keeps all the randomized supercells as these structures are
more likely to be sufficiently different or diverse from each
other so that each carries relatively unique structural informa-
tion. FPS also keeps most of the Al-Mg-Si structures from the
dataset by Kobayashi et. al [5], this too makes sense because

these structures have been pre-screened via a FPS selection
process prior to inclusion in this database. In Figs. 19(c)–19(d)
we see these same structures but colored by their energy and
force errors. Energetic errors are largely randomly distributed
while force errors tend to be higher in the fully randomized
supercell calculations.

APPENDIX C: DFT VS NNP FOR FORCE ERROR
DURING RELAXATION

In Fig. 20 we see an example of a situation where the NNP
can have very high (≈1 eV/Å) errors in the forces while still
respecting the overall dynamics of the system. We focus on
the y component of forces on atom 8 because this is where
some of the greatest force errors for the entire system occur.
We see that there is a massive spike in the y direction of forces
in DFT at timestep 40, which does not have a correspondingly
high force using the NNP and in the the next relaxation. While
the errors at timesteps 40 and 41 are massive, we see that
the NNP still respects the overall shape, and even predicts
roughly same maximum force. Note that we do not export
all structures during relaxation for training, since many have
little difference, see steps 10–30 especially, when we dump
structures we only use those that have at least 0.5 eV differ-
ence in energy for the entire structure. Importantly if we take
the same starting structure and relax with AlCuMgZn-NNP1
we see that the structure still undergoes the same transforma-
tion as it would under DFT.

APPENDIX D: ERROR HISTORGRAM FOR ALCUMGZN-NNP1 BEFORE AND AFTER SECONDARY TRAINING

In Fig. 21 of this section we show the distribution of errors after secondary training.

FIG. 21. Histogram of errors for the energies and forces both before [(a),(b)] and after [(c),(d)] secondary training on a the focused dataset
for AlZnCuMg NNP1.
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APPENDIX E: COMPARISON OF DILUTE SOLUTE ENERGIES TO DFT BEFORE AND AFTER SECONDARY TRAINING

In Fig. 22 of this section we show how secondary training improves the peformance of dilute Zn solute energies for the
NNPs.

FIG. 22. Comparison of energies for of a single-atom of Cu, Mg, and Zn solute in 256 Al atom supercell to DFT.

APPENDIX F: NNP BENCHMARKS ON Zn-CONTAINING OQMD STRUCTURES

Here, in Fig. 23–28, we show benchmarks for all Zn-containing compounds taken from the OQMD that are not shown in the
main text.

FIG. 23. Formation energy and atomic volume as predicted by DFT, and the NNPs versus structure, for all Al-Cu-Zn structures in the
OQMD database. All structures from which these properties are derived are included in the training set.
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FIG. 24. Formation energy and atomic volume as predicted by DFT, and the NNPs versus structure, for all Al-Mg-Zn structures in the
OQMD database. All structures from which these properties are derived are included in the training set.

FIG. 25. Formation energy and atomic volume as predicted by DFT, and the NNPs versus structure, for all Cu-Mg-Zn structures in the
OQMD database. All structures from which these properties are derived are included in the training set.
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FIG. 26. Formation energy and atomic volume as predicted by DFT, and the NNPs versus structure, for all Al-Zn structures in the OQMD
database. All structures from which these properties are derived are included in the training set.

FIG. 27. Formation energy and atomic volume as predicted by DFT, and the NNPs versus structure, for all Cu-Zn structures in the OQMD
database. All structures from which these properties are derived are included in the training set.
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FIG. 28. Formation energy and atomic volume as predicted by DFT, and the NNPs versus structure, for all Mg-Zn structures in the OQMD
database. All structures from which these properties are derived are included in the training set.

APPENDIX G: SPHASE INTERFACE

In Fig. 29 of this section we show both a schematic of the Sphase interface, along with energy validation for the NNPs.

FIG. 29. Image of S/Al interface (left) where a = 4.03 Å, b = 9.17 Å, and c varies with the number of S and Al units (in this figure c =
32.26 Å). Grey atoms are Al, brown atoms are Cu and green atoms are Mg. Plot of �Einterface vs 1/N showing good agreement between DFT
and NNPs on the slope.

APPENDIX H: GSF FOR θ′′ and θ

Here, in Figs. 30 and 31, we show the GSF energy benchmarks for the NNPs for both the θ ′′ and θ phases.

FIG. 30. Validation of key points on the θ GSF surface for DFT and NNPs. These structures are not included in the training set.
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FIG. 31. Validation of key points on the θ ′′ GSF surface for DFT and NNPs. These structures are not included in the training set.

APPENDIX I: LJ TERM FOR INTERATOMIC POTENTIAL

As discussed in the main text, the major errors in the NNP are found for very close atomic distances. In this short-range
domain, the NNP energies can become strongly negative, driving the system to collapse toward zero atomic spacings. Since the
potentials are repulsive at larger distances, such short distances would rarely, if ever, be present in most applications governed
by thermodynamics. However, when atoms are placed in positions a priori, such as in defining an initial path for a transition
state analysis or an initial configuration for computing a fault energy, atoms can be placed close together and the serious failure
of the NNP can lead to problems for these types of applications. To avoid pathological results, in principle, more structures with
close atom spacings could be added to the set of training structures. Because these structures would have high energy, they could
adversely affect the quality of the the NNP in the domains of physical interest. Another solution, demonstrated here, is to simply
add an ad-hoc repulsive cut-and-shifted Lennard-Jones (LJ) potential at short distances to counteract the deficiencies of the NNP.

Specifically, we introduce a cut-and-shifted LJ potential to create a purely repulsive potential. The potential between atoms i
ad j at distance r is taken to be

LJi, j (r) =
{

4ε
[( σi, j

r

)12 − ( σi, j

r

)6] + 4ε, r � rcut

0, r > rcut

(I1)

where rcut = 2
1
6 σ . For a ternary alloy, we have 6 LJ functions, and we use a common energy scale ε = 20(eV ) and pair-specific

distances σi, j . We choose rcut = 0.85r0,i j where r0,i j j = i is the bulk interatomic distance for atom i given in the ASE [43]
package. For unlike pairs j �= i, we use r0,i j = 0.5(r0,ii + r0, j j ).

APPENDIX J: Al-Cu ANTISITE ENERGIES

Here, in Fig. 32, we confirm the good peformance of AlCuMgZn NNPs for Al-Cu antsite energies.

FIG. 32. DFT antisite formation energy vs NNP antisite formation energy for Al-Cu compounds. These structures are not included in the
training set.
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