
Foundations of Computational Mathematics
https://doi.org/10.1007/s10208-022-09573-9

An Accelerated First-Order Method for Non-convex
Optimization on Manifolds

Christopher Criscitiello1 · Nicolas Boumal1

Received: 19 August 2020 / Revised: 3 February 2022 / Accepted: 1 March 2022
© The Author(s) 2022

Abstract
We describe the first gradient methods on Riemannian manifolds to achieve acceler-
ated rates in the non-convex case. Under Lipschitz assumptions on the Riemannian
gradient and Hessian of the cost function, these methods find approximate first-order
critical points faster than regular gradient descent. A randomized version also finds
approximate second-order critical points. Both the algorithms and their analyses build
extensively on existingwork in the Euclidean case. The basic operation consists in run-
ning the Euclidean accelerated gradient descent method (appropriately safe-guarded
against non-convexity) in the current tangent space, then moving back to the man-
ifold and repeating. This requires lifting the cost function from the manifold to the
tangent space, which can be done for example through the Riemannian exponential
map. For this approach to succeed, the lifted cost function (called the pullback) must
retain certain Lipschitz properties. As a contribution of independent interest, we prove
precise claims to that effect, with explicit constants. Those claims are affected by the
Riemannian curvature of themanifold, which in turn affects the worst-case complexity
bounds for our optimization algorithms.

Keywords Optimization on manifolds · Accelerated gradient descent ·
Non-convex optimization · First-order method · Riemannian manifold · Jacobi field ·
Curvature

Mathematics Subject Classification 65K05 · 65J05 · 90C26 · 90C48 · 90C60 · 58C05

Communicated by James Renegar.

B Nicolas Boumal
nicolas.boumal@epfl.ch

Christopher Criscitiello
christopher.criscitiello@epfl.ch

1 Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Mathematics, EPFL FSB SMA,
Station 8, 1015 Lausanne, Switzerland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10208-022-09573-9&domain=pdf

Foundations of Computational Mathematics

1 Introduction

We consider optimization problems of the form

min
x∈M

f (x) (P)

where f is lower-bounded and twice continuously differentiable on a Riemannian
manifoldM. For the special case whereM is a Euclidean space, problem (P) amounts
to smooth, unconstrained optimization. The more general case is important for appli-
cations notably in scientific computing, statistics, imaging, learning, communications
and robotics: see for example [1, 27].

For a general non-convex objective f , computing a global minimizer of (P) is
hard. Instead, our goal is to compute approximate first- and second-order critical
points of (P). A number of non-convex problems of interest exhibit the property that
second-order critical points are optimal [7, 11, 14, 24, 30, 36, 49]. Several of these
are optimization problems on nonlinear manifolds. Therefore, theoretical guarantees
for approximately finding second-order critical points can translate to guarantees for
approximately solving these problems.

It is therefore natural to ask for fast algorithms which find approximate second-
order critical points onmanifolds, within a tolerance ε (see below). Existing algorithms
include RTR [13], ARC [2] and perturbed RGD [20, 44]. Under some regularity con-
ditions, ARC uses Hessian-vector products to achieve a rate of O(ε−7/4). In contrast,
under the same regularity conditions, perturbed RGD uses only function value and
gradient queries, but achieves a poorer rate of O(ε−2). Does there exist an algorithm
which finds approximate second-order critical points with a rate of O(ε−7/4) using
only function value and gradient queries?The answerwas known to be yes inEuclidean
space. Can it also be done on Riemannian manifolds, hence extending applicability
to applications treated in the aforementioned references? We resolve that question
positively with the algorithm PTAGD below.

From a different perspective, the recent success of momentum-based first-order
methods in machine learning [42] has encouraged interest in momentum-based first-
order algorithms for non-convex optimization which are provably faster than gradient
descent [15, 28]. We show such provable guarantees can be extended to optimiza-
tion under a manifold constraint. From this perspective, our paper is part of a body
of work theoretically explaining the success of momentum methods in non-convex
optimization.

There has been significant difficulty in accelerating geodesically convex optimiza-
tion on Riemannian manifolds. See “Related literature” below for more details on best
known bounds [3] as well as results proving that acceleration in certain settings is
impossible on manifolds [26]. Given this difficulty, it is not at all clear a priori that it is
possible to accelerate non-convex optimization on Riemannian manifolds. Our paper
shows that it is in fact possible.

We design two new algorithms and establish worst-case complexity bounds under
Lipschitz assumptions on the gradient and Hessian of f . Beyond a theoretical contri-
bution, we hope that this work will provide an impetus to look for more practical fast
first-order algorithms on manifolds.

123

Foundations of Computational Mathematics

More precisely, if the gradient of f is L-Lipschitz continuous (in the Riemannian
sense defined below), it is known that Riemannian gradient descent can find an ε-
approximate first-order critical point1 in at most O(� f L/ε2) queries, where � f

upper-bounds the gap between initial and optimal cost value [8, 13, 47]. Moreover,
this rate is optimal in the special case where M is a Euclidean space [16], but it can
be improved under the additional assumption that the Hessian of f is ρ-Lipschitz
continuous.

Recently in Euclidean space, Carmon et al. [15] have proposed a deterministic
algorithm for this setting (L-Lipschitz gradient, ρ-Lipschitz Hessian) which requires
atmost Õ(� f L1/2ρ1/4/ε7/4) queries (up to logarithmic factors), and is independent of

dimension. This is a speed up of Riemannian gradient descent by a factor of �̃(
√

L√
ρε

).

For the Euclidean case, it has been shown under these assumptions that first-order
methods require at least �(� f L3/7ρ2/7/ε12/7) queries [17,Thm. 2]. This leaves a
gap of merely Õ(1/ε1/28) in the ε-dependency.

Soon after, Jin et al. [28] showed how a related algorithm with randomization can
find (ε,

√
ρε)-approximate second-order critical points2 with the same complexity, up

to polylogarithmic factors in the dimension of the search space and in the (reciprocal
of) the probability of failure.

Both the algorithm of Carmon et al. [15] and that of Jin et al. [28] fundamentally
rely on Nesterov’s accelerated gradient descent method (AGD) [40], with safe-guards
against non-convexity. To achieve improved rates, AGD builds heavily on a notion
of momentum which accumulates across several iterations. This makes it delicate
to extend AGD to nonlinear manifolds, as it would seem that we need to transfer
momentum from tangent space to tangent space, all the while keeping track of fine
properties.

In this paper, we build heavily on the Euclidean work of Jin et al. [28] to
show the following. Assume f has Lipschitz continuous gradient and Hessian on
a complete Riemannian manifold satisfying some curvature conditions. With at most
Õ(� f L1/2ρ̂1/4/ε7/4) queries (where ρ̂ is larger than ρ by an additive term affected
by L and the manifold’s curvature),

1. It is possible to compute an ε-approximate first-order critical point of f with a
deterministic first-order method,

2. It is possible to compute an (ε,
√

ρ̂ε)-approximate second-order critical point of f
with a randomized first-order method.

In the first case, the complexity is independent of the dimension ofM. In the second
case, the complexity includes polylogarithmic factors in the dimension ofM and in the
probability of failure. This parallels the Euclidean setting. In both cases (and in contrast
to the Euclidean setting), the Riemannian curvature of M affects the complexity in
two ways: (a) because ρ̂ is larger than ρ, and (b) because the results only apply when
the target accuracy ε is small enough in comparison with some curvature-dependent

1 That is, a point where the gradient of f has norm smaller than ε.
2 That is, a point where the gradient of f has norm smaller than ε and the eigenvalues of the Hessian of f
are at least −√

ρε.

123

Foundations of Computational Mathematics

thresholds. It is an interesting open question to determine whether such a curvature
dependency is inescapable.

We call our first algorithm TAGD for tangent accelerated gradient descent,3 and the
second algorithm PTAGD for perturbed tangent accelerated gradient descent. Both
algorithms and (even more so) their analyses closely mirror the perturbed accelerated
gradient descent algorithm (PAGD) of Jin et al. [28], with one core design choice that
facilitates the extension to manifolds: instead of transporting momentum from tangent
space to tangent space, we run several iterations of AGD (safe-guarded against non-
convexity) in individual tangent spaces. After anAGD run in the current tangent space,
we “retract” back to a new point on the manifold and initiate another AGD run in the
new tangent space. In so doing, we only need to understand the fine behavior of AGD
in one tangent space at a time. Since tangent spaces are linear spaces, we can capitalize
on existing Euclidean analyses. This general approach is in line with prior work in
[20], and is an instance of the dynamic trivializations framework of Lezcano-Casado
[33].

In order to run AGD on the tangent space TxM at x , we must “pullback” the
cost function f from M to TxM. A geometrically pleasing way to do so is via
the exponential map4 Expx : TxM → M, whose defining feature is that for each
v ∈ TxM the curve γ (t) = Expx (tv) is the geodesic ofM passing through γ (0) = x
with velocity γ ′(0) = v. Then, f̂x = f ◦ Expx is a real function on TxM called the
pullback of f at x . To analyze the behavior of AGD applied to f̂x , the most pressing
question is:

To what extent does f̂x = f ◦ Expx inherit the Lipschitz properties of f ?

In this paper, we show that if f has Lipschitz continuous gradient and Hessian and
if the gradient of f at x is sufficiently small, then f̂x restricted to a ball around the
origin of TxM has Lipschitz continuous gradient and retains partial Lipschitz-type
properties for its Hessian. The norm condition on the gradient and the radius of the
ball are dictated by the Riemannian curvature of M. These geometric results are of
independent interest.

Because f̂x retains only partial Lipschitzness, our algorithms depart from the
Euclidean case in the following ways: (a) at points where the gradient is still large, we
perform a simple gradient step; and (b) when running AGD in TxM, we are careful
not to leave the prescribed ball around the origin: if we ever do, we take appropriate
action. For those reasons and also because we do not have full Lipschitzness but only
radial Lipschitzness for the Hessian of f̂x , minute changes throughout the analysis of
Jin et al. [28] are in order.

To be clear, in their current state, TAGD and PTAGD are theoretical constructs. As
one can see from later sections, running them requires the user to know the value of
several parameters that are seldom available (including the Lipschitz constants L and
ρ); the target accuracy ε must be set ahead of time; and the tuning constants as dictated
here by the theory are (in all likelihood) overly cautious.

3 We refrain from calling our first algorithm “accelerated Riemannian gradient descent,” thinking this name
should be reserved for algorithms which emulate the momentum approach on the manifold directly.
4 The exponential map is a retraction: our main optimization results are stated for general retractions.

123

Foundations of Computational Mathematics

Moreover, to compute the gradient of f̂x we need to differentiate through the expo-
nential map (or a retraction, as the case may be). This is sometimes easy to do in closed
form (see [33] for families of examples), but it could be a practical hurdle. On the other
hand, our algorithms do not require parallel transport. It remains an interesting open
question to develop practical accelerated gradient methods for non-convex problems
on manifolds.

In closing this introduction,we give simplified statements of ourmain results. These
are all phrased under the following assumption (see Sect. 2 for geometric definitions):

A 1 The Riemannian manifold M and the cost function f : M → R have these
properties:

• M is complete, its sectional curvatures are in the interval [−K , K], and the covari-
ant derivative of its Riemann curvature endomorphism is bounded by F in operator
norm; and

• f is lower-bounded by flow, has L-Lipschitz continuous gradient grad f and ρ-
Lipschitz continuous Hessian Hess f on M.

1.1 Main Geometry Results

As a geometric contribution, we show that pullbacks through the exponential map
retain certain Lipschitz properties of f . Explicitly, at a point x ∈ M we have the
following statement.

Theorem 1.1 Let x ∈ M. Under A1, let Bx (b) be the closed ball of radius b ≤
min

(
1

4
√
K

, K
4F

)
around the origin in TxM. If ‖grad f (x)‖ ≤ Lb, then

1. The pullback f̂x = f ◦Expx has 2L-Lipschitz continuous gradient ∇ f̂x on Bx (b),
and

2. For all s ∈ Bx (b), we have ‖∇2 f̂x (s) − ∇2 f̂x (0)‖ ≤ ρ̂‖s‖ with ρ̂ = ρ + L
√
K.

(Above, ‖ · ‖ denotes both the Riemannian norm on TxM and the associated operator
norm. Also,∇ f̂x and∇2 f̂x are the gradient and Hessian of f̂x on the Euclidean space
TxM.)

We expect this result to be useful in several other contexts. Section 2 provides a more
complete (and somewhat more general) statement. At the same time and indepen-
dently, Lezcano-Casado [35] develops similar geometric bounds and applies them to
study gradient descent in tangent spaces—see “Related literature” below for additional
details.

1.2 Main Optimization Results

We aim to compute approximate first- and second-order critical points of f , as defined
here:

Definition 1.2 A point x ∈ M is an ε-FOCP for (P) if ‖grad f (x)‖ ≤ ε. A point
x ∈ M is an (ε1, ε2)-SOCP for (P) if ‖grad f (x)‖ ≤ ε1 and λmin(Hess f (x)) ≥ −ε2,
where λmin(·) extracts the smallest eigenvalue of a self-adjoint operator.

123

Foundations of Computational Mathematics

In Sect. 5, we define and analyze the algorithm TAGD. Resting on the geometric
result above, that algorithm with the exponential retraction warrants the following
claim about the computation of first-order points. The O(·) notation is with respect to
scaling in ε.

Theorem 1.3 If A1 holds, there exists an algorithm (TAGD) which, given any x0 ∈ M
and small enough tolerance ε > 0, namely,

ε ≤ 1

144
min

(
1

K
ρ̂,

K 2

F2 ρ̂,
36	2

ρ̂

)

= 1

144
min

(
1

K
,
K 2

F2 ,

(
12L

ρ + L
√
K

)2
)

(ρ + L
√
K), (1)

produces an ε-FOCP for (P) using at most a constant multiple of T function and
pullback gradient queries, and a similar number of evaluations of the exponential
map, where

T = (f (x0) − flow)
ρ̂1/4	1/2

ε7/4
log

(
16	√
ρ̂ε

)6

= O

(
(f (x0) − flow)(ρ + L

√
K)1/4L1/2 · 1

ε7/4
log

(
1

ε

)6
)

,

with 	 = 2L and ρ̂ = ρ + L
√
K. The algorithm uses no Hessian queries and is

deterministic.

This result is dimension-free but not curvature-free because K and F constrain ε and
affect ρ̂.

Remark 1.4 In the statements of all theorems and lemmas, the notations O(·),�(·)
only hide universal constants, i.e., numbers like 1

2 or 100. They do not hide any
parameters.Moreover, Õ(·), �̃(·)onlyhide universal constants and logarithmic factors
in the parameters.

Remark 1.5 If ε is large enough (that is, if ε > �(2

ρ̂
)), then TAGD reduces to vanilla

Riemannian gradient descent with constant step-size. The latter is known to produce
an ε-FOCP in O(1/ε2) iterations, yet our result here announces this same outcome in
O(1/ε7/4) iterations. This is not a contradiction: when ε is large, 1/ε7/4 can be worse
than 1/ε2. In short: the rates are only meaningful for small ε, in which case TAGD
does use accelerated gradient descent steps.

In Sect. 6 we define and analyze the algorithm PTAGD. With the exponential retrac-
tion, the latter warrants the following claim about the computation of second-order
points.

Theorem 1.6 If A1holds, there exists analgorithm (PTAGD)which, givenany x0 ∈ M,
any δ ∈ (0, 1) and small enough tolerance ε > 0 (same condition as in Theorem 1.3)

123

Foundations of Computational Mathematics

produces an ε-FOCP for (P) using at most a constant multiple of T function and
pullback gradient queries, and a similar number of evaluations of the exponential
map, where

T = (f (x0) − flow)
ρ̂1/4	1/2

ε7/4
log

(
d1/2	3/2� f

(ρ̂ε)1/4ε2δ

)6

+ 	1/2

ρ̂1/4ε1/4
log

(
d1/2	3/2� f

(ρ̂ε)1/4ε2δ

)

= O

(
(f (x0) − flow)(ρ + L

√
K)1/4L1/2 · 1

ε7/4
log

(
d

εδ

)6
)

,

with 	 = 2L, ρ̂ = ρ+L
√
K, d = dimM and any� f ≥ max(f (x0)− flow,

√
ε3/ρ̂).

With probability at least 1−2δ, that point is also (ε,
√

ρ̂ε)-SOCP. The algorithm uses
no Hessian queries and is randomized.

This result is almost dimension-free, and still not curvature-free for the same reasons
as above.

1.3 Related Literature

At the same time and independently, Lezcano-Casado [35] develops geometric bounds
similar to our own. Both papers derive the same second-order inhomogenous linear
ODE (ordinary differential equation) describing the behavior of the second derivative
of the exponential map. Lezcano-Casado [35] then uses ODE comparison techniques
to derive the geometric bounds, while the present work uses a bootstrapping technique.
Lezcano-Casado [35] applies these bounds to study gradient descent in tangent spaces,
whereas we study non-convex accelerated algorithms for finding first- and second-
order critical points.

The technique of pulling back a function to a tangent space is frequently used in
other settings within optimization on manifolds. See for example the recent papers of
Bergmann et al. [9] and Lezcano-Casado [34]. Additionally, the use of Riemannian
Lipschitz conditions in optimization as they appear in Section 2 can be traced back to
[21,Def. 4.1] and [23,Def. 2.2].

Accelerating optimization algorithms on Riemannian manifolds has been well-
studied in the context of geodesically convex optimization problems. Such problems
can be solved globally, and usually the objective is to bound the suboptimality gap
rather than finding approximate critical points. A number of papers have studied Rie-
mannian versions of AGD; however, none of these papers have been able to achieve
a fully accelerated rate for convex optimization. Zhang and Sra [48] show that if the
initial iterate is sufficiently close to the minimizer, then acceleration is possible. Intu-
itively thismakes sense, sincemanifolds are locally Euclidean. Ahn and Sra [3] pushed
this further, developing an algorithm converging strictly faster than RGD, and which
also achieves acceleration when sufficiently close to the minimizer.

Alimisis et al. [4–6] analyze the problemof acceleration on the class of non-strongly
convex functions, as well as under weaker notions of convexity. Interestingly, they also
show that in the continuous limit (using an ODE to model optimization algorithms)

123

Foundations of Computational Mathematics

acceleration is possible. However, it is unclear whether the discretization of this ODE
preserves a similar acceleration.

Recently, Hamilton and Moitra [26] have shown that full acceleration (in the
geodesically convex case) is impossible in the hyperbolic plane, in the setting where
function values and gradients are corrupted by a very small amount of noise. In con-
trast, in the analogous Euclidean setting, acceleration is possible even with noisy
oracles [22].

2 Riemannian Tools and Regularity of Pullbacks

In this section, we build up to and state our main geometric result. As we do so,
we provide a few reminders of Riemannian geometry. For more on this topic, we
recommend the modern textbooks by Lee [31, 32]. For book-length, optimization-
focused introductions see [1, 12]. Some proofs of this section appear in Appendices A
and B.

We consider a manifold M with Riemannian metric 〈·, ·〉x and associated norm
‖ · ‖x on the tangent spaces TxM. (In other sections, we omit the subscript x .) The
tangent bundle

TM = {(x, s) : x ∈ M and s ∈ TxM}

is itself a smooth manifold. The Riemannian metric provides a notion of gradient.

Definition 2.1 The Riemannian gradient of a differentiable function f : M → R is
the unique vector field grad f on M which satisfies:

D f (x)[s] = 〈grad f (x), s〉x for all (x, s) ∈ TM,

where D f (x)[s] is the directional derivative of f at x along s.

The Riemannian metric further induces a uniquely defined Riemannian connection
∇ (used to differentiate vector fields on M) and an associated covariant derivative
Dt (used to differentiate vector fields along curves on M). (The symbol ∇ here is
not to be confused with its use elsewhere to denote differentiation of scalar functions
on Euclidean spaces.) Applying the connection to the gradient vector field, we obtain
Hessians.

Definition 2.2 TheRiemannianHessian of a twice differentiable function f : M → R

at x is the linear operator Hess f (x) to and from TxM defined by

Hess f (x)[s] = ∇sgrad f = Dtgrad f (c(t))|t=0 ,

where in the last equality c can be any smooth curve on M satisfying c(0) = x and
c′(0) = s. This operator is self-adjoint with respect to the metric 〈·, ·〉x .

We can also define the Riemmannian third derivative ∇3 f (a tensor of order three),
see [12,Ch. 10] for details. We write

∥∥∇3 f (x)
∥∥ ≤ ρ to mean

∣∣∇3 f (x)(u, v, w)
∣∣ ≤ ρ

for all unit vectors u, v, w ∈ TxM.

123

Foundations of Computational Mathematics

A retraction R is a smooth map from (a subset of) TM to M with the following
property: for all (x, s) ∈ TM, the smooth curve c(t) = R(x, ts) = Rx (ts) on M
passes through c(0) = x with velocity c′(0) = s. Such maps are used frequently in
Riemannian optimization in order tomoveon amanifold. For example, a key ingredient
of Riemannian gradient descent is the curve c(t) = Rx (−tgrad f (x)) which initially
moves away from x along the negative gradient direction.

To a curve c, we naturally associate a velocity vector field c′. Using the covariant
derivative Dt , we differentiate this vector field along c to define the acceleration
c′′ = Dt c′ of c: this is also a vector field along c. In particular, the geodesics of M
are the curves with zero acceleration.

The exponential map Exp : O → M—defined on an open subset O of the
tangent bundle—is a special retraction whose curves are geodesics. Specifically,
γ (t) = Exp(x, ts) = Expx (ts) is the unique geodesic on M which passes through
γ (0) = x with velocity γ ′(0) = s. If the domain of Exp is the whole tangent bundle,
we say M is complete.

To compare tangent vectors in distinct tangent spaces, we use parallel transports.
Explicitly, let c be a smooth curve connecting the points c(0) = x and c(1) = y.
We say a vector field Z along c is parallel if its covariant derivative Dt Z is zero.
Conveniently, for any given v ∈ TxM there exists a unique parallel vector field along
c whose value at t = 0 is v. Therefore, the value of that vector field at t = 1 is a
well-defined vector in TyM: we call it the parallel transport of v from x to y along c.
We introduce the notation

Pc
t : Tc(0)M → Tc(t)M

to denote parallel transport along a smooth curve c from c(0) to c(t). This is a linear
isometry: (Pc

t)−1 = (Pc
t)∗, where the star denotes an adjoint with respect to the

Riemannianmetric. For the special case of parallel transport along the geodesic γ (t) =
Expx (ts), we write

Pts : TxM → TExpx (ts)M (2)

with the meaning Pts = Pγ
t .

Using these tools, we can define Lipschitz continuity of gradients and Hessians.
Note that in the particular casewhereM is a Euclidean spacewe have Expx (s) = x+s
and parallel transports are identities, so that this reduces to the usual definitions.

Definition 2.3 The gradient of f : M → R is L-Lipschitz continuous if

‖P∗
s grad f (Expx (s)) − grad f (x)‖x ≤ L‖s‖x for all (x, s) ∈ O, (3)

where P∗
s is the adjoint of Ps with respect to the Riemannian metric.

The Hessian of f is ρ-Lipschitz continuous if

‖P∗
s ◦ Hess f (Expx (s)) ◦ Ps − Hess f (x)‖x ≤ ρ‖s‖x for all (x, s) ∈ O, (4)

123

Foundations of Computational Mathematics

where ‖ · ‖x denotes both the Riemannian norm on TxM and the associated operator
norm.

It iswell known that theseLipschitz conditions are equivalent to convenient inequal-
ities, often used to study the complexity of optimization algorithms. More details
appear in [12,Ch. 10].

Proposition 2.4 If a function f : M → R has L-Lipschitz continuous gradient, then

∣∣ f (Expx (s)) − f (x) − 〈grad f (x), s〉x
∣∣ ≤ L

2
‖s‖2x for all (x, s) ∈ O.

If in addition f is twice differentiable, then ‖Hess f (x)‖ ≤ L for all x ∈ M.
If f has ρ-Lipschitz continuous Hessian, then

∣∣∣∣ f (Expx (s)) − f (x) − 〈grad f (x), s〉x − 1

2
〈s,Hess f (x)[s]〉x

∣∣∣∣
≤ ρ

6
‖s‖3x and

∥∥P∗
s grad f (Expx (s)) − grad f (x) − Hess f (x)[s]∥∥x

≤ ρ

2
‖s‖2x for all (x, s) ∈ O.

If in addition f is three times differentiable, then
∥∥∇3 f (x)

∥∥ ≤ ρ for all x ∈ M.
The other way around, if f is three times continuously differentiable and the stated

inequalities hold, then its gradient and Hessian are Lipschitz continuous with the
stated constants.

For sufficiently simple algorithms, these inequalities may be all we need to track
progress in a sharp way. As an example, the iterates of Riemannian gradient descent
with constant step-size 1/L satisfy xk+1 = Expxk (sk)with sk = − 1

L grad f (xk). It fol-
lows directly from the first inequality above that f (xk)− f (xk+1) ≥ 1

2L ‖grad f (xk)‖2.
From there, it takes a brief argument to conclude that thismethod finds a pointwith gra-
dient smaller than ε in at most 2L(f (x0) − flow) 1

ε2
steps. A similar (but longer) story

applies to the analysis of Riemannian trust regions and adaptive cubic regularization
[2, 13].

However, the inequalities in Proposition 2.4 fall short when finer properties of
the algorithms are only visible at the scale of multiple combined iterations. This is
notably the case for accelerated gradient methods. For such algorithms, individual
iterations may not achieve spectacular cost decrease, but a long sequence of themmay
accumulate an advantage over time (using momentum). To capture this advantage in
an analysis, it is not enough to apply inequalities above to individual iterations. As we
turn to assessing a string of iterations jointly by relating the various gradients and step
directions we encounter, the nonlinearity of M generates significant hurdles.

For these reasons, we study the pullbacks of the cost function, namely, the functions

f̂x = f ◦ Expx : TxM → R. (5)

123

Foundations of Computational Mathematics

Each pullback is defined on a linear space, hence we can in principle run any
Euclidean optimization algorithm on f̂x directly: our strategy is therefore to apply a
momentum-based method on f̂x . To this end, we now work towards showing that if f
has Lipschitz continuous gradient and Hessian then f̂x also has certain Lipschitz-type
properties.

The following formulas appear in [2,Lem. 5]: we are interested in the case R = Exp.
(We use ∇ and ∇2 to designate gradients and Hessians of functions on Euclidean
spaces: not to be confused with the connection ∇.)

Lemma 2.5 Given f : M → R twice continuously differentiable and (x, s) in the
domain of a retraction R, the gradient and Hessian of the pullback f̂x = f ◦ Rx at
s ∈ TxM are given by

∇ f̂x (s) = T ∗
s grad f (Rx (s)) and ∇2 f̂x (s) = T ∗

s ◦ Hess f (Rx (s)) ◦ Ts + Ws,

(6)

where Ts is the differential of Rx at s (a linear operator):

Ts = DRx (s) : TxM → TRx (s)M, (7)

and Ws is a self-adjoint linear operator on TxM defined through polarization by

〈Ws[ṡ], ṡ〉x = 〈
grad f (Rx (s)), c

′′(0)
〉
Rx (s)

, (8)

with c′′(0) ∈ TRx (s)M the (intrinsic) acceleration on M of c(t) = Rx (s + t ṡ) at
t = 0.

Remark 2.6 Throughout, s, ṡ, s̈ will simply denote tangent vectors.

We turn to curvature. TheLie bracket of two smooth vector fields X ,Y onM is itself
a smooth vector field, conveniently expressed in terms of the Riemannian connection
as [X ,Y] = ∇XY −∇Y X . Using this notion, the Riemann curvature endomorphism R
ofM is an operator which maps three smooth vector fields X ,Y , Z ofM to a fourth
smooth vector field as:

R(X ,Y)Z = ∇X∇Y Z − ∇Y∇X Z − ∇[X ,Y]Z . (9)

Whenever R is identically zero, we sayM is flat: this is the case notably whenM is a
Euclidean space and when M has dimension one (e.g., a circle is flat, while a sphere
is not).

Though it is not obvious from the definition, the value of the vector field R(X ,Y)Z
at x ∈ M depends on X ,Y , Z only through their value at x . Therefore, given u, v, w ∈
TxM we can make sense of the notation R(u, v)w as denoting the vector in TxM
corresponding to R(X ,Y)Z at x , where X ,Y , Z are arbitrary smooth vector fields
whose values at x are u, v, w, respectively. The map (u, v, w) �→ R(u, v)w is linear
in each input.

123

Foundations of Computational Mathematics

Two linearly independent tangent vectors u, v at x span a two-dimensional plane
of TxM. The sectional curvature of M along that plane is a real number K (u, v)

defined as

K (u, v) = 〈R(u, v)v, u〉x
‖u‖2x‖v‖2x − 〈u, v〉2x

. (10)

Of course, all sectional curvatures of flat manifolds are zero. Also, all sectional cur-
vatures of a sphere of radius r are 1/r2 and all sectional curvatures of the hyperbolic
space with parameter r are −1/r2—see [32,Thm. 8.34].

Using the connection∇, we differentiate the curvature endomorphism R as follows.
Given any smooth vector field U , we let ∇U R be an operator of the same type as R
itself, in the sense that it maps three smooth vector fields X ,Y , Z to a fourth one
denoted (∇U R)(X ,Y)Z through

(∇U R)(X ,Y)Z = ∇U (R(X ,Y)Z) − R(∇U X ,Y)Z

− R(X ,∇UY)Z − R(X ,Y)∇U Z . (11)

Observe that this formula captures a convenient chain rule on ∇U (R(X ,Y)Z). As for
R, the value of ∇R(X ,Y , Z ,U) � (∇U R)(X ,Y)Z at x depends on X ,Y , Z ,U only
through their values at x . Therefore, ∇R unambiguously maps u, v, w, z ∈ TxM to
∇R(u, v, w, z) ∈ TxM, linearly in all inputs. We say the operator norm of ∇R at x
is bounded by F if

‖∇R(u, v, w, z)‖x ≤ F‖u‖x‖v‖x‖w‖x‖z‖x

for all u, v, w, z ∈ TxM. We say ∇R has operator norm bounded by F if this holds
for all x . If F = 0 (that is, ∇R ≡ 0), we say R is parallel and M is called locally
symmetric. This is notably the case for manifolds with constant sectional curvature—
Euclidean spaces, spheres and hyperbolic spaces—and (Riemannian) products thereof
[41,pp. 219–221].

We are ready to state the main result of this section. Note that M need not be
complete.

Theorem 2.7 Let M be a Riemannian manifold whose sectional curvatures are in
the interval [Klow, Kup], and let K = max(|Klow|, |Kup|). Also assume ∇R—the
covariant derivative of the Riemann curvature endomorphism R—is bounded by F in
operator norm.

Let f : M → R be twice continuously differentiable and select b > 0 such that

b ≤ min

(
1

4
√
K

,
K

4F

)
.

Pick any point x ∈ M such that Expx is defined on the closed ball Bx (b) of radius b
around the origin in TxM. We have the following three conclusions:

123

Foundations of Computational Mathematics

1. If f has L-Lipschitz continuous gradient and ‖grad f (x)‖x ≤ Lb, then f̂x =
f ◦Expx has 2L-Lipschitz continuous gradient in Bx (b), that is, for all u, v ∈ Bx (b)
it holds that ‖∇ f̂x (u) − ∇ f̂x (v)‖x ≤ 2L‖u − v‖x .

2. If moreover f has ρ-Lipschitz continuous Hessian, then ‖∇2 f̂x (s)−∇2 f̂x (0)‖x ≤
ρ̂‖s‖x for all s ∈ Bx (b), with ρ̂ = ρ + L

√
K.

3. For all s ∈ Bx (b), the singular values of Ts = DExpx (s) lie in the interval
[2/3, 4/3].

A few comments are in order:

1. For locally symmetric spaces (F = 0), we interpret K/F as infinite (regardless of
K).

2. If M is compact, then it is complete and there necessarily exist finite K and F .
See work by Greene [25] for a discussion on non-compact manifolds.

3. IfM is a homogeneous Riemannianmanifold (not necessarily compact), then there
exist finite K and F , and these can be assessed by studying a single point on the
manifold. This follows directly from the definition of homogeneous Riemannian
manifold [32,p. 55].

4. All symmetric spaces are homogeneous and locally symmetric [32,Exercise 6–19,
Exercise 7–3 and p. 78] so there exists finite K and F = 0. Let Sym(d) be the set
of real d × d symmetric matrices. The set of d × d positive definite matrices

Pd = {P ∈ Sym(d) : P � 0}

endowed with the so-called affine invariant metric

〈X ,Y 〉P = Tr(P−1X P−1Y) for P ∈ Pd and X ,Y ∈ TPPd ∼= Sym(d)

is a non-compact symmetric space of non-constant curvature. It is commonly used
in practice [10, 37, 38, 43]. One can show that K = 1

2 and F = 0 are the right
constants for this manifold.

5. The following statements are equivalent: (a)M is complete; (b) Exp is defined on
the whole tangent bundle: O = TM; and (c) for some b > 0, Expx is defined on
Bx (b) for all x ∈ M. In later sections, we need to apply Theorem 2.7 at various
points of M with constant b, which is why we then assume M is complete.

6. The properties of Ts are useful in combination with Lemma 2.5 to relate gradients
and Hessians of the pullbacks to gradients and Hessians on the manifold. For
example, if∇ f̂x (s) has norm ε, then grad f (Expx (s)) has norm somewhere between
3
4ε and 3

2ε. Under the conditions of the theorem, Ws (8) is bounded as ‖Ws‖x ≤
9
4K‖∇ f̂x (s)‖x‖s‖x .

7. We only get satisfactory Lipschitzness at points where the gradient is bounded by
Lb. Fortunately, for the algorithms we study, whenever we encounter a point with
gradient larger than that threshold, it is sufficient to take a simple gradient descent
step.

To prove Theorem 2.7, we must control ∇2 f̂x (s). According to Lemma 2.5, this
requires controlling both Ts (a differential of the exponential map) and c′′(0) (the

123

Foundations of Computational Mathematics

intrinsic initial acceleration of a curve defined via the exponential map, but which
is not itself a geodesic in general). On both counts, we must study differentials of
exponentials. Jacobi fields are the tool of choice for such tasks. As a first step, we
use Jacobi fields to investigate the difference between Ts and Ps : two linear operators
from TxM to TExpx (s)M. We prove a general result in Appendix A (exact for constant
sectional curvature) and state a sufficient particular case here. Control of Ts follows
as a corollary because Ps (parallel transport) is an isometry.

Proposition 2.8 Let M be a Riemannian manifold whose sectional curvatures are in
the interval [Klow, Kup], and let K = max(|Klow|, |Kup|). For any (x, s) ∈ O with
‖s‖x ≤ π√

K
,

‖(Ts − Ps)[ṡ]‖Expx (s) ≤ 1

3
K‖s‖2x‖ṡ⊥‖x , (12)

where ṡ⊥ = ṡ − 〈s,ṡ〉x〈s,s〉x s is the component of ṡ orthogonal to s.

Corollary 2.9 Let M be a Riemannian manifold whose sectional curvatures are in
the interval [Klow, Kup], and let K = max(|Klow|, |Kup|). For any (x, s) ∈ O with
‖s‖x ≤ 1√

K
,

σmin(Ts) ≥ 2

3
and σmax(Ts) ≤ 4

3
. (13)

Proof. By Proposition 2.8, the operator norm of Ts − Ps is bounded above by
1
3K‖s‖2x ≤ 1

3 . Furthermore, parallel transport Ps is an isometry: its singular values
are equal to 1. Thus,

σmax(Ts) = σmax(Ps + Ts − Ps) ≤ σmax(Ps) + σmax(Ts − Ps) ≤ 1 + 1

3
= 4

3
.

Likewise, with min/max taken over unit-norm vectors u ∈ TxM and writing y =
Expx (s),

σmin(Ts) = min
u

‖Tsu‖y ≥ min
u

‖Psu‖y − ‖(Ts − Ps)u‖y

= 1 − max
u

‖(Ts − Ps)u‖y ≥ 2

3
.

We turn to controlling the term c′′(0) which appears in the definition of operator Ws

in the expression for ∇2 f̂x (s) provided by Lemma 2.5. We present a detailed proof
in Appendix B for a general statement, and state a sufficient particular case here. The
proof is fairly technical: it involves designing an appropriate nonlinear second-order
ODE on the manifold and bounding its solutions. The ODE is related to the Jacobi
equation, except we had to differentiate to the next order, and the equation is not
homogeneous.

Proposition 2.10 Let M be a Riemannian manifold whose sectional curvatures are
in the interval [Klow, Kup], and let K = max(|Klow|, |Kup|). Further assume ∇R is
bounded by F in operator norm.

123

Foundations of Computational Mathematics

Pick any (x, s) ∈ O such that

‖s‖x ≤ min

(
1

4
√
K

,
K

4F

)
.

For any ṡ ∈ TxM, the curve c(t) = Expx (s + t ṡ) has initial acceleration bounded as

‖c′′(0)‖Expx (s) ≤ 3

2
K‖s‖x‖ṡ‖x‖ṡ⊥‖x ,

where ṡ⊥ = ṡ − 〈s,ṡ〉x〈s,s〉x s is the component of ṡ orthogonal to s.

Equipped with all of the above, it is now easy to prove the main theorem of this
section.

Proof of Theorem 2.7. Consider the pullback f̂x = f ◦ Expx defined on TxM. Since
TxM is linear, it is a classical exercise to verify that ∇ f̂x is 2L-Lipschitz continuous
in Bx (b) if and only if ‖∇2 f̂x (s)‖x ≤ 2L for all s in Bx (b). Using Lemma 2.5, we
start bounding the Hessian as follows:

‖∇2 f̂x (s)‖x ≤ σmax(T
∗
s)σmax(Ts)‖Hess f (Expx (s))‖Expx (s) + ‖Ws‖x ,

with operatorWs defined by (8). Since grad f is L-Lipschitz continuous, ‖Hess f (y)‖y
≤ L for all y ∈ M (this follows fairly directly from Proposition 2.4). To bound Ws ,
we start with a Cauchy–Schwarz inequality then we consider the worst case for the
magnitude of c′′(0):

‖Ws‖x ≤ ‖grad f (Expx (s))‖Expx (s) · max
ṡ∈TxM,‖ṡ‖x=1

‖c′′(0)‖Expx (s).

Combining these steps yields a first bound of the form

‖∇2 f̂x (s)‖x ≤ σmax(Ts)
2L

+ ‖grad f (Expx (s))‖Expx (s) · max
ṡ∈TxM,‖ṡ‖x=1

‖c′′(0)‖Expx (s). (14)

To proceed, we keep working on the Ws-terms: use Proposition 2.10, L-Lipschitz-
continuity of the gradient, and our bounds on the norms of s and grad f (x) to see
that:

‖Ws‖x ≤ max
ṡ∈TxM,‖ṡ‖x=1

‖c′′(0)‖Expx (s) · ‖grad f (Expx (s))‖Expx (s)

≤ 3

2
K‖s‖x · ‖P∗

s grad f (Expx (s)) − grad f (x) + grad f (x)‖x

≤ 3

2
K‖s‖x · (L‖s‖x + ‖grad f (x)‖x)

≤ 3K Lb‖s‖x ≤ 3

4
L
√
K‖s‖x ≤ 3

16
L. (15)

123

Foundations of Computational Mathematics

Returning to (14) and using Corollary 2.9 to bound Ts confirms that

‖∇2 f̂x (s)‖x ≤ 16

9
L + 3

16
L < 2L.

Thus, ∇ f̂x is 2L-Lipschitz continuous in the ball of radius b around the origin in
TxM.

To establish the second part of the claim, we use the same intermediate results and
ρ-Lipschitz continuity of the Hessian. First, using Lemma 2.5 twice and noting that
W0 = 0 so that ∇2 f̂x (0) = Hess f (x), we have:

∇2 f̂x (s) − ∇2 f̂x (0) = P∗
s ◦ Hess f (Expx (s)) ◦ Ps − Hess f (x)

+ (Ts − Ps)
∗ ◦ Hess f (Expx (s)) ◦ Ts

+ P∗
s ◦ Hess f (Expx (s)) ◦ (Ts − Ps)

+ Ws .

We bound this line by line calling upon Proposition 2.8, Corollary 2.9 and (15) to get:

‖∇2 f̂x (s) − ∇2 f̂x (0)‖x ≤ ρ‖s‖x + 4

9
LK‖s‖2x + 1

3
LK‖s‖2x + 3LKb‖s‖x

≤
(

ρ + 1

9
L
√
K + 1

12
L
√
K + 3

4
L
√
K

)
‖s‖x

≤
(
ρ + L

√
K
)

‖s‖x .

This shows a type of Lipschitz continuity of the Hessian of the pullback with respect
to the origin, in the ball of radius b.

3 Assumptions and parameters for TAGD and PTAGD

Our algorithms apply to the minimization of f : M → R on a Riemannian manifold
M equipped with a retraction R defined on the whole tangent bundle TM. The pull-
back of f at x ∈ M is f̂x = f ◦ Rx : TxM → R. In light of Sect. 2, we make the
following assumptions.

A 2 There exists a constant flow such that f (x) ≥ flow for all x ∈ M. Moreover, f
is twice continuously differentiable and there exist constants 	, ρ̂ and b such that, for
all x ∈ M with ‖grad f (x)‖ ≤ 1

2	b,

1. ∇ f̂x is 	-Lipschitz continuous in Bx (3b) (in particular, ‖∇2 f̂x (0)‖ ≤),
2. ‖∇2 f̂x (s) − ∇2 f̂x (0)‖ ≤ ρ̂‖s‖ for all s ∈ Bx (3b), and
3. σmin(Ts) ≥ 1

2 with Ts = DRx (s) for all s ∈ Bx (3b),

where Bx (3b) = {u ∈ TxM : ‖u‖ ≤ 3b}. Finally, for all (x, s) ∈ TM it holds that

4. f̂x (s) ≤ f̂x (0) + 〈∇ f̂x (0), s〉 + 	
2‖s‖2.

123

Foundations of Computational Mathematics

The first three items in A2 confer Lipschitz properties to the derivatives of the
pullbacks f̂x restricted to balls around the origins of tangent spaces: these are the
balls where we shall run accelerated gradient steps. We only need these guarantees
at points where the gradient is below a threshold. For all other points, a regular gra-
dient step provides ample progress: the last item in A2 serves that purpose only, see
Proposition 5.2.

Section 2 tells us that A2 holds in particular when we use the exponential map as a
retraction and f itself has appropriate (Riemannian) Lipschitz properties. This is the
link between Theorems 1.3 and 1.6 in the introduction and Theorems 5.1 and 6.1 in
later sections.

Corollary 3.1 If we use the exponential retraction R = Exp and A1 holds, then A2
holds with flow, and

	 = 2L, ρ̂ = ρ + L
√
K , b = 1

12
min

(
1√
K

,
K

F

)
. (16)

With constants as in A2, we further define a number of parameters. First, the user
specifies a tolerance ε which must not be too loose.

A 3 The tolerance ε > 0 satisfies
√

ρ̂ε ≤ 1
2	 and ε ≤ b2ρ̂.

Then, we fix a first set of parameters (see [28] for more context; in particular, κ plays
the role of a condition number; under A3, we have κ ≥ 2):

η = 1

4	
, κ = 	√

ρ̂ε
, θ = 1

4
√

κ
, γ =

√
ρ̂ε

4
, s = 1

32

√
ε

ρ̂
. (17)

We define a second set of parameters based on some χ ≥ 1 (as set in some of the
lemmas and theorems below) and a universal constant c > 0 (implicitly defined as
the smallest real satisfying a finite number of lower-bounds required throughout the
paper):

r = ηεχ−5c−8, T = √
κχc, E =

√
ε3

ρ̂
χ−5c−7,

L =
√
4ε

ρ̂
χ−2c−3, M = ε

√
κ

	
c−1. (18)

When we say “with χ ≥ A ≥ 1” (for example, in Theorems 5.1 and 6.1), we mean:
“with χ the smallest value larger than A such that T is a positive integer multiple of
4.”

Lemma C.1 in Appendix C lists useful relations between the parameters.

123

Foundations of Computational Mathematics

Algorithm 1 TSS(x, s0) with (x, s0) ∈ TM and parameters ε, η, b, θ, γ, s,T
1: If s0 is not provided, set s0 = 0 and perturbed = false; otherwise, set perturbed = true.
2: v0 = 0
3: for j in 0, 1, . . . ,T − 1 do
4: u j = s j + (1 − θ j)v j with � AGD: capped momentum step

θ j =
{

θ if ‖s j + (1 − θ)v j‖ ≤ 2b,

θ̂ ∈ [θ, 1] such that ‖s j + (1 − θ̂)v j‖ = 2b otherwise.
(19)

5: if (NCC) triggers with (x, s j , u j) then � Negative curvature detection
6: return Rx (NCE(x, s j , v j)) � (Cases 2a, 3a)
7: end if
8: s j+1 = u j − η∇ f̂x (u j) � AGD: gradient step
9: v j+1 = s j+1 − s j � AGD: momentum update

10: if
(
‖s j+1‖ > b

)
or
(
(not perturbed) and ‖∇ f̂x (s j+1)‖ ≤ ε/2

)
then

11: return Rx (s j+1) � (Cases 2b, 2c, 3b)
12: end if
13: end for
14: return Rx (sT) � (Cases 2d, 3d)

4 Accelerated Gradient Descent in a Ball of a Tangent Space

The main ingredient of algorithms TAGD and PTAGD is TSS: the tangent space steps
algorithm. Essentially, the latter runs the classical accelerated gradient descent algo-
rithm (AGD) from convex optimization on f̂x in a tangent space TxM, with a few
tweaks:

1. Because f̂x need not be convex, TSSmonitors the generated sequences for signs of
non-convexity. If f̂x happens to behave like a convex function along the sequence
TSS generates, then we reap the benefits of convexity. Otherwise, the direction
along which f̂x behaves in a non-convex way can be used as a good descent direc-
tion. This is the idea behind the “convex until proven guilty” paradigm developed
by Carmon et al. [15] and also exploited by Jin et al. [28]. Explicitly, given x ∈ M
and s, u ∈ TxM, for a specified parameter γ > 0, we check the negative curvature
condition (one might also call it the non-convexity condition) (NCC):

f̂x (s) < f̂x (u) + 〈∇ f̂x (u), s − u〉 − γ

2
‖s − u‖2 . (NCC)

If (NCC) triggers with a triplet (x, s, u) and s is not too large, we can exploit that
fact to generate substantial cost decrease using the negative curvature exploitation
algorithm, NCE: see Lemma 4.4. (This is about curvature of the cost function, not
the manifold.)

2. In contrast to the Euclidean case in [28], our assumption A2 provides Lipschitz-
type guarantees only in a ball of radius 3b around the origin in TxM. Therefore,
we must act if iterates generated by TSS leave that ball. This is done in two places.
First, the momentum step in step 4 of TSS is capped so that ‖u j‖ remains in the
ball of radius 2b around the origin. Second, if s j+1 leaves the ball of radius b (as
checked in step 10) then we terminate this run of TSS by returning to the manifold.

123

Foundations of Computational Mathematics

Algorithm 2 NCE(x, s j , v j) with x ∈ M, s j , v j ∈ TxM and parameter s

1: if
∥∥v j

∥∥ ≥ s then
2: return s j
3: else
4: v̇ = s

v j∥∥v j
∥∥

5: return argminṡ∈{s j ,s j+v̇,s j−v̇} f̂x (ṡ)
6: end if

Lemma 4.1 guarantees that the iterates indeed remain in appropriate balls, that
θ j (19) in the capped momentum step is uniquely defined, and that if a momentum
step is capped, then immediately after that TSS terminates.

The initial momentum v0 is always set to zero. By default, the AGD sequence is
initialized at the origin: s0 = 0. However, for PTAGD we sometimes want to initialize
at a different point (a perturbation away from the origin): this is only relevant for
Sect. 6.

In the remainder of this section, we provide four general purpose lemmas about
TSS. Proofs are in Appendix D. We note that TAGD and PTAGD call TSS only at
points x where ‖grad f (x)‖ ≤ 1

2	b. The first lemma below notably guarantees that,
for such runs, all iterates u j , s j generated by TSS remain (a fortiori) in balls of radius
3b, so that the strongest provisions of A2 always apply: we use this fact often without
mention.

Lemma 4.1 (TSS stays in balls) Fix parameters and assumptions as laid out in Sect. 3.
Let x ∈ M satisfy ‖grad f (x)‖ ≤ 1

2	b. If TSS(x) or TSS(x, s0) (with ‖s0‖ ≤ b)
defines vectors u0, . . . , uq (and possibly more), then it also defines vectors s0, . . . , sq ,
and we have:

‖s0‖, . . . , ‖sq‖ ≤ b, ‖u0‖, . . . , ‖uq‖ ≤ 2b, and 2ηγ ≤ θ ≤ θ j ≤ 1.

If sq+1 is defined, then ‖sq+1‖ ≤ 3b and, if ‖uq‖ = 2b, then ‖sq+1‖ > b and uq+1 is
undefined.

Along the iterates of AGD, the value of the cost function f̂x may not monotonically
decrease. Fortunately, there is a useful quantity which monotonically decreases along
iterates: Jin et al. [28] call it the Hamiltonian. In several ways, it serves the purpose of
a Lyapunov function. Importantly, the Hamiltonian decreases regardless of any special
events that occur while running TSS. It is built as a combination of the cost function
value and the momentum. The next lemma makes this precise: we use monotonic
decrease of the Hamiltonian often without mention. This corresponds to [28,Lem. 9
and 20].

Lemma 4.2 (Hamiltonian decrease) Fix parameters and assumptions as laid out in
Sect. 3. Let x ∈ M satisfy ‖grad f (x)‖ ≤ 1

2	b. For each pair (s j , v j) defined by
TSS(x) or TSS(x, s0) (with ‖s0‖ ≤ b), define the Hamiltonian

E j = f̂x (s j) + 1

2η
‖v j‖2. (20)

123

Foundations of Computational Mathematics

If E j+1 is defined, then E j , θ j and u j are also defined and:

E j+1 ≤ E j − θ j

2η
‖v j‖2 − η

4
‖∇ f̂x (u j)‖2 ≤ E j .

If moreover ‖v j‖ ≥ M , then E j − E j+1 ≥ 4E
T .

Jin et al. [28] formalize an important property of TSS sequences in the Euclidean
case, namely, the fact that “either the algorithm makes significant progress or the
iterates do not move much.” They call this the improve or localize phenomenon. The
next lemma states this precisely in our context. This corresponds to [28,Cor. 11].

Lemma 4.3 (Improve or localize) Fix parameters and assumptions as laid out in
Sect. 3. Let x ∈ M satisfy ‖grad f (x)‖ ≤ 1

2	b. If TSS(x) or TSS(x, s0) (with
‖s0‖ ≤ b) defines vectors s0, . . . , sq (and possibly more), then E0, . . . , Eq are defined
by (20) and, for all 0 ≤ q ′ ≤ q,

‖sq − sq ′ ‖2 ≤ (q − q ′)
q−1∑
j=q ′

‖s j+1 − s j‖2 ≤ 16
√

κη(q − q ′)(Eq ′ − Eq).

For q ′ = 0 in particular, using E0 = f̂x (s0) we can write Eq ≤ f̂x (s0) − ‖sq−s0‖2
16

√
κηq

.

As outlined earlier, in case theTSS sequencewitnesses non-convexity in f̂x through
the (NCC) check, we call upon the NCE algorithm to exploit this event. The final
lemma of this section formalizes the fact that this yields appropriate cost improvement.
(Indeed, if ‖s j‖ > L one can argue that sufficient progress was already achieved;
otherwise, the lemma applies and we get a result from E j ≤ E0 = f̂x (s0).) This
corresponds to [28,Lem. 10 and 17].

Lemma 4.4 (Negative curvature exploitation) Fix parameters and assumptions as laid
out in Sect. 3. Let x ∈ M satisfy ‖grad f (x)‖ ≤ 1

2	b. Assume TSS(x) or TSS(x, s0)
(with ‖s0‖ ≤ b) defines u j , so that s j , v j are also defined, and E j is defined by (20). If
(NCC) triggers with (x, s j , u j) and ‖s j‖ ≤ L , then f̂x (NCE(x, s j , v j)) ≤ E j − 2E .

5 First-Order Critical Points

Our algorithm to compute ε-approximate first-order critical points on Riemannian
manifolds is TAGD: this is a deterministic algorithm which does not require access
to the Hessian of the cost function. Our main result regarding TAGD, namely, Theo-
rem 5.1, states that it does so in a bounded number of iterations. As worked out in
Theorem 1.3, this bound scales as ε−7/4, up to polylogarithmic terms. The complexity
is independent of the dimension of the manifold.

The proof of Theorem 5.1 rests on two propositions introduced hereafter in this
section. Interestingly, it is only in the proof of Theorem 5.1 that we track the behavior

123

Foundations of Computational Mathematics

Algorithm 3 TAGD(x0) with x0 ∈ M and parameters ε, 	, η, b, θ, γ, s,T ,M
1: t ← 0
2: while true do
3: if ‖grad f (xt)‖ > 2	M then
4: xt+1 = Rxt (−ηgrad f (xt)) � Case 1: one Riemannian gradient step
5: t ← t + 1
6: else if ‖grad f (xt)‖ > ε then
7: xt+T = TSS(xt) � Case 2: accelerated gradient in TxtM
8: t ← t + T
9: else
10: return xt � Approximate FOCP
11: end if
12: end while

of iterates of TAGD across multiple points on the manifold. This is done by tracking
decrease of the value of the cost function f . All supporting results (lemmas and propo-
sitions) handle a single tangent space at a time. As a result, lemmas and propositions
fully benefit from the linear structure of tangent spaces. This is why we can salvage
most of the Euclidean proofs of Jin et al. [28], up to mostly minor (but numerous and
necessary) changes.

Theorem 5.1 Fix parameters and assumptions as laid out in Sect. 3, with

χ ≥ log2(θ
−1) ≥ 1. (21)

Given x0 ∈ M, TAGD(x0) returns xt ∈ M satisfying f (xt) ≤ f (x0) and
‖grad f (xt)‖ ≤ ε with

t ≤ T1 � f (x0) − flow
E

T . (22)

Running the algorithm requires atmost 2T1 pullback gradient queries and 3T1 function
queries (but no Hessian queries), and a similar number of calls to the retraction.

Proof of Theorem 5.1 The call toTAGD(x0) generates a sequence of points xt0 , xt1 , xt2 ,
. . . on M, with t0 = 0. A priori, this sequence may be finite or infinite. Considering
two consecutive indices ti and ti+1, we either have ti+1 = ti +1 (if the step from xti to
xti+1 is a single gradient step (Case 1)) or ti+1 = ti +T (if that same step is obtained
through a call to TSS (Case 2)). Moreover:

• In Case 1, Proposition 5.2 applies and guarantees

f (xti) − f (xti+1) ≥ E

T
= E

T
(ti+1 − ti).

• In Case 2, Proposition 5.3 applies and guarantees that if ‖grad f (xti+1)‖ > ε then

f (xti) − f (xti+1) ≥ E = E

T
(ti+1 − ti).

123

Foundations of Computational Mathematics

It is now clear that TAGD(x0) terminates after a finite number of steps. Indeed, if it
does not, then the above reasoning shows that the algorithm produces an amortized
decrease in the cost function f of E

T per unit increment of the counter t , yet the value
of f cannot decrease by more than f (x0)− flow because f is globally lower-bounded
by flow.

Accordingly, assume TAGD(x0) generates xt0 , . . . , xtk and terminates there, return-
ing xtk . We know that f (xtk) ≤ f (x0) and ‖grad f (xtk)‖ ≤ ε. Moreover, from the
discussion above and t0 = 0, we know that

f (x0) − flow ≥ f (x0) − f (xtk) =
k−1∑
i=0

f (xti) − f (xti+1)

≥ E

T

k−1∑
i=0

ti+1 − ti = E

T
tk .

Thus, tk ≤ f (x0)− flow
E T � T1.

How much work does it take to run the algorithm? Each (regular) gradient step
requires one gradient query and increases the counter by one. Each run ofTSS requires
at most 2T gradient queries and 2T + 3 ≤ 3T function queries (3 ≤ T because
T is a positive integer multiple of 4) and increases the counter by T . Therefore, by
the time TAGD produces xt it has used at most 2t gradient queries and 3t function
queries.

The two following propositions form the backbone of the proof of Theorem 5.1.
Each handles one of the two possible cases in one (outer) iteration of TAGD, namely:
Case 1 is a “vanilla” Riemannian gradient descent step, while Case 2 is a call to TSS
to run (modified) AGD in the current tangent space. The former has a trivial and
standard proof. The latter relies on all lemmas from Sect. 4 and on two additional
lemmas introduced in Appendix F, all following Jin et al. [28].

Proposition 5.2 (Case 1) Fix parameters and assumptions as laid out in Sect. 3.
Assume x ∈ M satisfies ‖grad f (x)‖ > 2	M . Then, x+ = Rx (−ηgrad f (x)) sat-
isfies f (x) − f (x+) ≥ E

T .

Proof of Proposition 5.2 This follows directly by property 4 in A2 with f̂x = f ◦ Rx

since f̂x (0) = f (x) and ∇ f̂x (0) = grad f (x) by properties of retractions, and also
using 	η = 1/4:

f (x+) = f̂x (−ηgrad f (x)) ≤ f̂x (0) − η‖grad f (x)‖2

+ 	

2
‖ηgrad f (x)‖2 ≤ f (x) − (7/8)	M 2.

To conclude, it remains to use that (7/8)	M 2 ≥ E
T , as shown in Lemma C.1.

The next proposition correspondsmostly to [28,Lem. 12]. A proof is in Appendix F.

123

Foundations of Computational Mathematics

Algorithm 4PTAGD(x0)with x0 ∈ M and parameters ε, 	, η, b, θ, γ, s, r ,T ,E ,M
1: t ← 0
2: while true do
3: if ‖grad f (xt)‖ > 2	M then
4: xt+1 = Rxt (−ηgrad f (xt)) � Case 1: one Riemannian gradient step
5: t ← t + 1
6: else if ‖grad f (xt)‖ > ε then
7: xt+T = TSS(xt) � Case 2: accelerated gradient in TxtM
8: t ← t + T
9: else
10: ξ ∼ Uniform(Bxt (r)) � Random perturbation
11: xt+T = TSS(xt , ξ) � Case 3: Perturbed accelerated gradient in TxtM
12: if f (xt) − f (xt+T) < 1

2E then
13: return xt � Approximate FOCP, likely an approximate SOCP
14: end if
15: t ← t + T
16: end if
17: end while

Proposition 5.3 (Case 2) Fix parameters and assumptions as laid out in Sect. 3, with

χ ≥ log2(θ
−1) ≥ 1. (23)

If x ∈ M satisfies ‖grad f (x)‖ ≤ 2	M , then xT = TSS(x) falls in one of two cases:

1. Either ‖grad f (xT)‖ ≤ ε and f (x) − f (xT) ≥ 0,
2. Or ‖grad f (xT)‖ > ε and f (x) − f (xT) ≥ E .

6 Second-Order Critical Points

As discussed in the previous section, TAGD produces ε-approximate first-order crit-
ical points at an accelerated rate, deterministically. Such a point might happen to
be an approximate second-order critical point, or it might not. In order to produce
approximate second-order critical points, PTAGD builds on top of TAGD as follows.

Whenever TAGD produces a point with gradient smaller than ε, PTAGD generates a
random vector ξ close to the origin in the current tangent space and runs TSS starting
from that perturbation. The run ofTSS itself is deterministic. However, the randomized
initialization has the following effect: if the current point is not an approximate second-
order critical point, thenwith high probability the sequence generated byTSS produces
significant cost decrease. Intuitively, this is because the current point is a saddle point,
and gradient descent-type methods slowly but likely escape saddles. If this happens,
we simply proceed with the algorithm. Otherwise, we can be reasonably confident
that the point from which we ran the perturbed TSS is an approximate second-order
critical point, and we terminate there.

Our main result regarding PTAGD, namely, Theorem 6.1, states that it computes
approximate second-order critical points with high probability in a bounded num-
ber of iterations. As worked out in Theorem 1.6, this bound scales as ε−7/4, up to

123

Foundations of Computational Mathematics

polylogarithmic terms which include a dependency in the dimension of the manifold
and the probability of success.

Mirroring Sect. 5, the proof of Theorem 6.1 rests on the two propositions of that
section and on an additional proposition introduced hereafter in this section.

Theorem 6.1 Pick any x0 ∈ M. Fix parameters and assumptions as laid out in Sect. 3,

with d = dimM, δ ∈ (0, 1), any � f ≥ max
(
f (x0) − flow,

√
ε3

ρ̂

)
and

χ ≥ log2

(
d1/2	3/2� f

(ρ̂ε)1/4ε2δ

)
≥ log2(θ

−1) ≥ 1.

The call to PTAGD(x0) returns xt ∈ M satisfying f (xt) ≤ f (x0), ‖grad f (xt)‖ ≤ ε

and (with probability at least 1 − 2δ) also λmin(∇2 f̂xt (0)) ≥ −√ρ̂ε with

t + T ≤ T2 �
(
2 + 4

f (x0) − flow
E

)
T . (24)

To reach termination, the algorithm requires at most 2T2 pullback gradient queries
and 4T2 function queries (but no Hessian queries), and a similar number of calls to
the retraction.

Notice how this result gives a (probabilistic) guarantee about the smallest eigenvalue
of the Hessian of the pullback f̂x at 0 rather than about the Hessian of f itself at x .
Owing to Lemma 2.5, the two are equal in particular when we use the exponential
retraction (more generally, whenwe use a second-order retraction): see also [13,§3.5].

Proof of Theorem 6.1 The proof starts the same way as that of Theorem 5.1. The call
to PTAGD(x0) generates a sequence of points xt0 , xt1 , xt2 , . . . on M, with t0 = 0. A
priori, this sequence may be finite or infinite. Considering two consecutive indices ti
and ti+1, we either have ti+1 = ti + 1 (if the step from xti to xti+1 is a single gradient
step (Case 1)) or ti+1 = ti + T (if that same step is obtained through a call to TSS,
with or without perturbation (Cases 3 and 2, respectively)). Moreover:

• In Case 1, Proposition 5.2 applies and guarantees

f (xti) − f (xti+1) ≥ E

T
= E

T
(ti+1 − ti).

The algorithm does not terminate here.
• In Case 2, Proposition 5.3 applies and guarantees that if ‖grad f (xti+1)‖ > ε then

f (xti) − f (xti+1) ≥ E = E

T
(ti+1 − ti),

and the algorithm does not terminate here.
If, however, ‖grad f (xti+1)‖ ≤ ε, then f (xti) − f (xti+1) ≥ 0 and the step from
xti+1 to xti+2 does not fall in Case 2: it must fall in Case 3. (Indeed, it cannot fall

123

Foundations of Computational Mathematics

in Case 1 because the fact that a Case 2 step occurred tells us ε < 2	M .) The
algorithm terminates with xti+1 unless f (xti+1) − f (xti+2) ≥ 1

2E . In other words,
if the algorithm does not terminate with xti+1 , then

f (xti) − f (xti+2) = f (xti) − f (xti+1) + f (xti+1)

− f (xti+2) ≥ 1

2
E = E

4T
(ti+2 − ti).

• In Case 3, the algorithm terminates with xti unless

f (xti) − f (xti+1) ≥ 1

2
E = E

2T
(ti+1 − ti).

Clearly, PTAGD(x0) must terminate after a finite number of steps. Indeed, if it does
not, then the above reasoning shows that the algorithm produces an amortized decrease
in the cost function f of E

4T per unit increment of the counter t , yet the value of f
cannot decrease by more than f (x0) − flow.

Accordingly, assume PTAGD(x0) generates xt0 , . . . , xtk+1 and terminates there
(returning xtk). The step from xtk to xtk+1 necessarily falls in Case 3: tk+1 − tk = T .
The step from xtk−1 to xtk could be of any type. If it falls in Case 2, it could be that
f (xtk−1) − f (xtk) is as small as zero and that tk − tk−1 = T . (All other scenarios are
better, in that the cost function decreases more, and the counter increases as much or
less.) Moreover, for all steps prior to that, each unit increment of t brings about an
amortized decrease in f of E

4T . Thus, tk+1 ≤ tk−1 + 2T and

f (x0) − flow ≥ f (x0) − f (xtk−1) ≥ E

4T
tk−1.

Combining, we find

tk + T = tk+1 ≤
(
2 + 4

f (x0) − flow
E

)
T � T2.

What can we say about the point that is returned, xtk ? Deterministically, f (xtk) ≤
f (x0) and ‖grad f (xtk)‖ ≤ ε (notice that we cannot guarantee the same about xtk+1).
Let us now discuss the role of randomness.

In any run of PTAGD(x0), there are at most T2/T perturbations, that is, “Case 3”
steps. By Proposition 6.2, the probability of any single one of those steps failing to
prevent termination at a point where the smallest eigenvalue of the Hessian of the
pullback at the origin is strictly less than −√ρ̂ε is at most δE

3� f
. Thus, by a union

bound, the probability of failure in any given run of PTAGD(x0) is at most (we use

� f ≥ max
(
f (x0) − flow,

√
ε3

ρ̂

)
≥ max

(
f (x0) − flow, 27E

)
because χ ≥ 1 and

c ≥ 2):

T2
T

· δE

3� f
=
(
2 + 4

f (x0) − flow
E

)
δE

3� f
≤
(

2E

3� f
+ 4

3

)
δ ≤ 2δ.

123

Foundations of Computational Mathematics

In all other events, we have λmin(∇2 f̂xtk (0)) ≥ −√ρ̂ε.
For accounting of the maximal amount of work needed to run PTAGD(x0), use

reasoning similar to that at the end of the proof of Theorem 5.1, adding the cost of
checking the condition “ f (xt) − f (xt+T) < 1

2E ” after each perturbed call to TSS.

Note: the inequality d1/2	3/2
√

ε3/ρ̂

(ρ̂ε)1/4ε2δ
≥ θ−1 holds for all d ≥ 1 and δ ∈ (0, 1) with

c ≥ 4.

The next proposition correspondsmostly to [28,Lem. 13]. A proof is inAppendixG.

Proposition 6.2 (Case 3) Fix parameters and assumptions as laid out in Sect. 3, with
d = dimM, δ ∈ (0, 1), any � f > 0 and

χ ≥ max

(
log2(θ

−1), log2

(
d1/2	3/2� f

(ρ̂ε)1/4ε2δ

))
≥ 1.

If x ∈ M satisfies ‖grad f (x)‖ ≤ min(ε, 2	M) and λmin(∇2 f̂x (0)) ≤ −√ρ̂ε, and ξ

is sampled uniformly at random from the ball of radius r around the origin in TxM,
then xT = TSS(x, ξ) satisfies f (x)− f (xT) ≥ E /2with probability at least 1− δE

3� f

over the choice of ξ .

7 Conclusions and Perspectives

Our main complexity results for TAGD and PTAGD (Theorems 1.3 and 1.6) recover
known Euclidean results when M is a Euclidean space. In particular, they retain the
important properties of scaling essentially with ε−7/4 and of being either dimension-
free (for TAGD) or almost dimension-free (for PTAGD). Those properties extend as is
to the Riemannian case.

However, our Riemannian results are negatively impacted by the Riemannian
curvature of M, and also by the covariant derivative of the Riemann curvature endo-
morphism. We do not know whether such a dependency on curvature is necessary to
achieve acceleration. In particular, the non-accelerated rates for Riemannian gradi-
ent descent, Riemannian trust-regions and Riemannian adaptive regularization with
cubics under Lipschitz assumptions do not suffer from curvature [2, 13].

Curvature enters our complexity bounds through our geometric results (Theo-
rem 2.7). For the latter, we do believe that curvature must play a role. Thus, it is
natural to ask:

Can we achieve acceleration for first-order methods on Riemannian manifolds
with weaker (or without) dependency on the curvature of the manifold?

For the geodesically convex case, all algorithms we know of are affected by curvature
[3–5, 48].Additionally,Hamilton andMoitra [26] show that curvature can significantly
slow down convergence rates in the geodesically convex case with noisy gradients.

Adaptive regularizationwith cubics (ARC)may offer insights in that regard. ARC is
a cubically regularized approximateNewtonmethodwith optimal iteration complexity

123

Foundations of Computational Mathematics

on the class of cost functions with Lipschitz continuous Hessian, assuming access to
gradients and Hessians [19, 39]. Specifically, assuming f has ρ-Lipschitz continuous
Hessian, ARC finds an (ε,

√
ρε)-approximate second-order critical point in at most

Õ(� f ρ
1/2/ε3/2) iterations, omitting logarithmic factors. This also holds on complete

Riemannian manifolds [2,Cor. 3, eqs (16), (26)]. Note that this is dimension-free and
curvature-free. Each iteration, however, requires solving a separate subproblem more
costly than a gradient evaluation. Carmon and Duchi [18,§3] argue that it is possible
to solve the subproblems accurately enough so as to find ε-approximate first-order
critical points with ∼ 1/ε7/4 Hessian-vector products overall, with randomization
and a logarithmic dependency in dimension. Compared to TAGD, this has the ben-
efit of being curvature-free, at the cost of randomization, a logarithmic dimension
dependency, and of requiring Hessian-vector products. The latter could conceivably
be approximated with finite differences of the gradients. Perhaps that operation leads
to losses tied to curvature? If not, as it is unclear why there ought to be a trade-off
between curvature dependency and randomization, this may be the indication that the
curvature dependency is not necessary for acceleration.

On a distinct note and as pointed out in the introduction, TAGD and PTAGD are
theoretical constructs. Despite having the theoretical upper-hand in worst-case sce-
narios, we do not expect them to be competitive against time-tested algorithms such as
Riemannian versions of nonlinear conjugate gradients or the trust-region methods. It
remains an interesting open problem to devise a truly practical accelerated first-order
method on manifolds.

In the Euclidean case, Carmon et al. [15] showed that if one assumes not only
the gradient and the Hessian of f but also the third derivative of f are Lipschitz
continuous, then it is possible to find ε-approximate first-order critical points in just
Õ(ε−5/3) iterations. We suspect that our proof technique could be used to prove a
similar result on manifolds, possibly at the cost of also assuming a bound on the
second covariant derivative of the Riemann curvature endomorphism.

Funding Open access funding provided by EPFL Lausanne.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Parallel Transport vs Differential of Exponential Map

In this section, we give a proof for Proposition 2.8 regarding the difference between
parallel transport along a geodesic and the differential of the exponential map. We use

123

http://creativecommons.org/licenses/by/4.0/

Foundations of Computational Mathematics

these families of functions parameterized by Klow ∈ R:

hKlow(t) =

⎧
⎪⎨
⎪⎩

t if Klow = 0,

r sin(t/r) if Klow = 1/r2 > 0,

r sinh(t/r) if Klow = −1/r2 < 0.

(25)

gKlow(t) =
∫ t

0
hKlow(τ)dτ =

⎧
⎪⎨
⎪⎩

t2
2 if Klow = 0,

r2 (1 − cos(t/r)) if Klow = 1/r2 > 0,

r2 (cosh(t/r) − 1) if Klow = −1/r2 < 0.

(26)

fKlow(t) = 1

t

∫ t

0
gKlow(τ)dτ =

⎧
⎪⎪⎨
⎪⎪⎩

t2
6 if Klow = 0,

r2
(
1 − sin(t/r)

t/r

)
if Klow = 1/r2 > 0,

r2
(
sinh(t/r)

t/r − 1
)

if Klow = −1/r2 < 0.

(27)

Under the assumptions we make below, these functions are only ever evaluated at
points where they are nonnegative. In all cases, functions are dominated by the case
Klow < 0; formally, for all Klow ∈ R, all K ≥ |Klow| and all t ≥ 0:

hKlow(t) ≤ h−K (t), gKlow(t) ≤ g−K (t), fKlow(t) ≤ f−K (t). (28)

If Klow ≥ 0 and t ≥ 0, then

hKlow(t) ≤ t, gKlow(t) ≤ 1

2
t2, fKlow(t) ≤ 1

6
t2. (29)

Independently of the sign of Klow, if 0 ≤ t ≤ π/
√|Klow|, then

hKlow(t) ≤ t + 0.2712 · Klowt
3 ≤ 3.6761 · t,

gKlow(t) ≤ 1.0732 · t2, fKlow(t) ≤ 0.2712 · t2.

For t bounded as indicated, this last line shows that up to constants the sign of Klow
does not substantially affect bounds.

To state our result, we need the notion of conjugate points along geodesics on
Riemannian manifolds. The following definition is equivalent to the standard one
[32,Prop. 10.20 and p. 303]. We are particularly interested in situations where there
are no conjugate points on some interval: we discuss that event in a remark.

Definition A.1 Let M be a Riemannian manifold. Consider (x, s) ∈ TM and the
geodesic γ (t) = Expx (ts) defined on an open interval I around zero. For t ∈ I ,
we say γ (t) is conjugate to x along γ if DExpx (ts) is rank deficient. We say γ has
an interior conjugate point on [0, t̄] ⊂ I if γ (t) is conjugate to x along γ for some
t ∈ (0, t̄).

Remark A.2 Let γ be a geodesic on a Riemannian manifold M. If γ is minimiz-
ing on the interval [0, t̄], then it has no interior conjugate point on that interval

123

Foundations of Computational Mathematics

[32,Thm. 10.26]. Assume the sectional curvatures ofM are in the interval [Klow, Kup].
Then:

1. If Kup ≤ 0, γ has no conjugate points at all [32,Pb. 10-7];
2. If Kup > 0, γ has no interior conjugate points on [0, π/

√
Kup] [32,Thm. 11.9a];

and
3. If Klow > 0 and γ has no interior conjugate point on [0, t̄], then t̄ ≤ π/

√
Klow

[32,p. 298 and Thm. 11.9b]. This will be why, under our assumptions, hKlow (25)
is only ever evaluated at points where it is nonnegative.

We now state and prove the main result of this section. A similar result appears in
[45,Lem. 6] for general retractions. Constants there are not explicit (they are absorbed
in O(·) notation). Their proof is based on Taylor expansions of the differential of the
exponentialmap as they appear in [46,Thm.A.2.9], namely, for s �→ DExpx (s) around
s = 0. In the next section, we investigate a situation around s �= 0. In appendices, we
typically omit subscripts for inner products and norms.

Proposition A.3 LetM be a Riemannian manifold whose sectional curvatures are in
the interval [Klow, Kup], and let K = max(|Klow|, |Kup|). Consider (x, s) ∈ TM and
the geodesic γ (t) = Expx (ts). If γ is defined and has no interior conjugate point on
the interval [0, 1], then

∀ṡ ∈ TxM, ‖(Ts − Ps)[ṡ]‖ ≤ K · fKlow(‖s‖) · ‖ṡ⊥‖, (30)

where ṡ⊥ = ṡ − 〈s,ṡ〉
〈s,s〉 s is the component of ṡ orthogonal to s, Ts = DExpx (s) and

Pts denotes parallel transport along γ from γ (0) to γ (t). (The inequality holds with
equality if Klow = Kup.)

If it also holds that ‖s‖ ≤ π/
√|Klow|, then

∀ṡ ∈ TxM, ‖(Ts − Ps)[ṡ]‖ ≤ 1

3
K‖s‖2‖ṡ⊥‖. (31)

Proof For convenience, we consider ‖s‖ = 1: the result follows by a simple rescaling
of t . Given any tangent vector ṡ ∈ TxM, consider the following smooth vector field
along γ :

J (t) = DExpx (ts)[t ṡ]. (32)

By [32,Prop. 10.10], this is the unique Jacobi field satisfying the initial conditions

J (0) = 0 and Dt J (0) = ṡ, (33)

where Dt is the covariant derivative along curves induced by the Riemannian connec-
tion. Thus, J is smooth and obeys the ordinary differential equation (ODE) known as
the Jacobi equation:

D2
t J (t) + R(J (t), γ ′(t))γ ′(t) = 0, (34)

123

Foundations of Computational Mathematics

where R denotes Riemannian curvature. Fix ed = s and pick e1, . . . , ed−1 so that
e1, . . . , ed form an orthonormal basis for TxM. Parallel transport this basis along γ

as

Ei (t) = Pts(ei), i = 1, . . . , d, (35)

so that E1(t), . . . , Ed(t) form an orthonormal basis for Tγ (t)M. Expand J as

J (t) =
d∑

i=1

ai (t)Ei (t) (36)

with uniquely defined smooth, real functions a1, . . . , ad . Plugging this expansion into
the Jacobi equation yields the ODE

d∑
i=1

a′′
i (t)Ei (t) +

d∑
i=1

ai (t)R(Ei (t), Ed(t))Ed(t) = 0, (37)

where we used the Leibniz rule on Dt , the fact that Dt Ei = 0, linearity of the Riemann
curvature endomorphism in its inputs, and the fact that

γ ′(t) = Pts(γ
′(0)) = Ed(t).

Taking an inner product of this ODE against each one of the fields E j (t) yields d
ODEs:

a′′
j (t) = −

d∑
i=1

ai (t)
〈
R(Ei (t), Ed(t))Ed(t), E j (t)

〉
, j = 1, . . . , d. (38)

Furthermore, the initial conditions fix ai (0) = 0 and a′
i (0) = 〈ṡ, ei 〉 for i = 1, . . . , d.

Owing to symmetries of Riemannian curvature, the summation above can be
restricted to the range 1, . . . , d − 1. For the same reason, a′′

d (t) = 0, so that

ad(t) = ad(0) + ta′
d(0) = t 〈ṡ, s〉 . (39)

It remains to solve for the first d − 1 coefficients (they are decoupled from ad). This
effectively splits the solution J into two fields: one tangent (aligned with γ ′), and one
normal (orthogonal to γ ′):

J (t) = t 〈ṡ, s〉 γ ′(t) + J⊥(t), J⊥(t) =
d−1∑
i=1

ai (t)Ei (t). (40)

The normal part is the Jacobi field with initial conditions J⊥(0) = 0 and Dt J⊥(0) =
ṡ⊥, where ṡ⊥ = ṡ − 〈ṡ, s〉 s is the component of ṡ orthogonal to s.

123

Foundations of Computational Mathematics

Introducing vector notation for the first d − 1 ODEs, let a(t) ∈ R
d−1 have compo-

nents a1(t), . . . , ad−1(t), and let M(t) ∈ R
(d−1)×(d−1) have entries

Mji (t) = 〈
R(Ei (t), Ed(t))Ed(t), E j (t)

〉
. (41)

Then, equations in (38) for j = 1, . . . , d − 1 can be written succinctly as

a′′(t) = −M(t)a(t). (42)

Since a(t) is smooth, it holds that

a(t) = a(0) +
∫ t

0
a′(τ)dτ = a(0) + ta′(0) +

∫ t

0

∫ τ

0
a′′(θ)dθdτ. (43)

Initial conditions specify a(0) = 0, so that (with ‖ · ‖ also denoting the standard
Euclidean norm and associated operator norm in real space):

‖a(t) − ta′(0)‖ ≤
∫ t

0

∫ τ

0
‖M(θ)‖‖a(θ)‖dθdτ. (44)

The left-hand side is exactly what we seek to control. Indeed, initial conditions ensure
ṡ = a′

1(0)e1 + · · · + a′
d(0)ed , and:

‖(DExpx (ts) − Pts)[t ṡ]‖ = ‖J (t) − Pts(t ṡ)‖

=
∥∥∥∥∥

d∑
i=1

[
ai (t)Ei (t) − ta′

i (0)Ei (t)
]
∥∥∥∥∥

=
√

‖a(t) − ta′(0)‖2 + |ad(t) − ta′
d(0)|2

= ‖a(t) − ta′(0)‖.

For the right-hand side of (44), first note that M(t) is a symmetric matrix owing to
the symmetries of R.

Additionally, for any unit-norm z ∈ R
d−1,

z�M(t)z =
d−1∑
i, j=1

zi z j
〈
R(Ei (t), Ed(t))Ed(t), E j (t)

〉 = 〈
R(v, γ ′(t))γ ′(t), v

〉
, (45)

where v = z1E1(t) + · · · + zd−1Ed−1(t) is a tangent vector at γ (t): it is orthogonal
to γ ′(t) and also has unit norm. By definition of sectional curvature K (·, ·) (10), it
follows that

z�M(t)z = K (v, γ ′(t)). (46)

123

Foundations of Computational Mathematics

By symmetry of M(t), we conclude that

‖M(t)‖ = max
z∈Rd−1,‖z‖=1

|z�M(t)z| ≤ K , (47)

where K ≥ 0 is such that all sectional curvatures of M along γ are in the interval
[−K , K]. Going back to (44), we have so far shown that

‖(DExpx (ts) − Pts)[t ṡ]‖ ≤ K
∫ t

0

∫ τ

0
‖a(θ)‖dθdτ. (48)

It remains to bound ‖a(θ)‖. By (40), we see that ‖a(t)‖ = ‖J⊥(t)‖. By the Jacobi
field comparison theorem [32,Thm. 11.9b] and our assumed lower-bound on sectional
curvature, we can now claim that, for t ≥ 0, with hKlow(t) as defined by (25),

‖a(t)‖ = ‖J⊥(t)‖ ≤ hKlow(t)‖ṡ⊥‖, (49)

provided γ has no interior conjugate point on [0, t]. Combining with (48) and with
the definitions of hKlow (25), gKlow (26) and fKlow (27), we find

‖(DExpx (ts) − Pts)[t ṡ]‖ ≤ K‖ṡ⊥‖
∫ t

0

∫ τ

0
hKlow(θ)dθdτ

= K‖ṡ⊥‖
∫ t

0
gKlow(τ)dτ

= K‖ṡ⊥‖ · t fKlow(t). (50)

It only remains to divide through by t , and to rescale s so that t plays the role of ‖s‖.
For the special case where Kup = Klow = ±K (constant sectional curvature),

one can show (for example by polarization) that M(t) = ±K Id−1, that is, M(t) is a
multiple of the identity matrix. As a result, the ODEs separate and are easily solved
(see also [32,Prop. 10.12]). Explicitly, with ‖s‖ = 1,

DExpx (ts)[t ṡ] = J (t) = h±K (t)Pts(ṡ⊥) + t Pts(ṡ‖), (51)

where ṡ‖ = 〈ṡ, s〉 s is the component of ṡ parallel to s. Hence,

DExpx (ts)[t ṡ] − Pts(t ṡ) = (h±K (t) − t)Pts(ṡ⊥), (52)

and the claim follows easily after dividing through by t and rescaling.

As a continuation of the previous proof and in anticipation of our needs in
Appendix B, we provide a lemma controlling the Jacobi field J and its covariant
derivative, assessing both the full field and its normal component.

Lemma A.4 Let M be a Riemannian manifold whose sectional curvatures are in the
interval [Klow, Kup], and let K = max(|Klow|, |Kup|). Consider (x, s) ∈ TM with

123

Foundations of Computational Mathematics

‖s‖ = 1 and the geodesic γ (t) = Expx (ts). Given a tangent vector ṡ ∈ TxM,
consider the Jacobi field J defined by (40):

J (t) = t 〈ṡ, s〉 γ ′(t) + J⊥(t),

where J⊥ is the Jacobi field along γ with initial conditions J⊥(0) = 0 andDt J⊥(0) =
ṡ⊥, and ṡ⊥ = ṡ − 〈ṡ, s〉 s is the component of ṡ orthogonal to s. For t ≥ 0 such that
γ is defined and has no interior conjugate point on the interval [0, t], the following
inequalities hold:

‖J (t)‖ ≤ max(t, hKlow(t))‖ṡ‖, ‖Dt J (t)‖ ≤ (
1 + KgKlow(t)

) ‖ṡ‖,
‖J⊥(t)‖ ≤ hKlow(t)‖ṡ⊥‖, ‖Dt J⊥(t)‖ ≤ (

1 + KgKlow(t)
) ‖ṡ⊥‖,

where hKlow(t) and gKlow(t) are defined by (25) and (26).

Proof The proof is a continuation of that of Proposition A.3. Using notation as in
there,

J⊥(t) =
d−1∑
i=1

ai (t)Ei (t).

Since J⊥ and Dt J⊥ are orthogonal to γ ′ = Ed , we know that

‖J‖2 = t2 〈ṡ, s〉2 + ‖J⊥‖2 and ‖Dt J‖2 = 〈ṡ, s〉2 + ‖Dt J⊥‖2 .

The bound ‖J⊥(t)‖ ≤ hKlow(t)‖ṡ⊥‖ appears explicitly as (49). With α denoting the
angle between s and ṡ, wemaywrite 〈ṡ, s〉2 = cos(α)2‖ṡ‖2 and ‖ṡ⊥‖2 = sin(α)2‖ṡ‖2,
so that

‖J‖2 ≤ t2
(
cos(α)2 +

(
hKlow(t)

t

)2

sin(α)2

)
‖ṡ‖2.

Since the maximum of α �→ cos(α)2 + q sin(α)2 with q ∈ R is max(1, q), we find
for t ≥ 0 that

‖J‖ ≤ max(t, hKlow(t))‖ṡ‖.

With the same tools, we may also bound Dt J = 〈ṡ, s〉 γ ′ + Dt J⊥. Indeed, its
coordinates in the frame E1, . . . , Ed are given by a′

1, . . . , a
′
d with a′

d(t) = 〈ṡ, s〉, so
that

‖Dt J (t)‖2 = 〈ṡ, s〉2 + ‖Dt J⊥(t)‖2 = 〈ṡ, s〉2 + ‖a′(t)‖2,

123

Foundations of Computational Mathematics

where a(t) ∈ R
d−1 collects the d − 1 first coordinates. Moreover,

a′(t) = a′(0) +
∫ t

0
a′′(τ)dτ = a′(0) −

∫ t

0
M(τ)a(τ)dτ.

Note that

∥∥∥∥
∫ t

0
M(τ)a(τ)dτ

∥∥∥∥ ≤ K‖ṡ⊥‖
∫ t

0
hKlow(τ)dτ = K‖ṡ⊥‖gKlow(t).

Combining with the fact that ‖a′(0)‖ = ‖ṡ⊥‖, we get

‖Dt J⊥(t)‖ ≤ (
1 + KgKlow(t)

) ‖ṡ⊥‖,

as announced. We now conclude along the same lines as above with

‖Dt J (t)‖2 ≤
(
cos(α)2 + (

1 + KgKlow(t)
)2 sin(α)2

)
‖ṡ‖2.

Since max(1, 1+ KgKlow(t)) = 1+ KgKlow(t), we reach the desired conclusion.

B Controlling the Initial Acceleration c′′(0)

In this section, we build a proof for Proposition 2.10, whose aim is to control the
initial intrinsic acceleration c′′(0) of the curve c(t) = Expx (s + t ṡ). Since c′(t) =
DExpx (s+ t ṡ)[ṡ], we can think of this result as giving us access to a second derivative
of the exponential map Expx away from the origin. As a first step, we build an ODE
whose solution encodes c′′(0).

Proposition B.1 Let M be a Riemannian manifold with Riemannian connection ∇
and Riemann curvature endomorphism R. Consider (x, s) ∈ TM with ‖s‖ = 1 and
the geodesic γ (t) = Expx (ts). Furthermore, consider a tangent vector ṡ ∈ TxM and
the curve

cts,ṡ(q) = Expx (ts + qṡ)

defined for some fixed t. Let J be the Jacobi field along γ with initial conditions
J (0) = 0 and Dt J (0) = ṡ. We use it to define a new vector field H along γ :

H = 4R(γ ′, J)Dt J + (∇J R)(γ ′, J)γ ′ + (∇γ ′ R
)
(γ ′, J)J .

The smooth vector field W along γ defined by the linear ODE

D2
t W + R(W , γ ′)γ ′ = H

123

Foundations of Computational Mathematics

with initial conditions W (0) = 0 andDtW (0) = 0 is also defined on the same domain
as γ . This vector field is related to the initial intrinsic acceleration of the curve cts,ṡ
as follows:

W (t) = t2c′′
ts,ṡ(0).

Furthermore, the vector field H is equivalently defined as

H = 4R(γ ′, J⊥)Dt J + (∇J R)(γ ′, J⊥)γ ′ + (∇γ ′ R
)
(γ ′, J⊥)J ,

where J⊥ the Jacobi field along γ with initial conditions J⊥(0) = 0 and Dt J⊥(0) =
ṡ⊥ = ṡ − 〈ṡ, s〉 s.
Proof Define

�(q, t) = Expx (t(s + qṡ)),

a variation through geodesics of the geodesic

γ (t) = �(0, t) = Expx (ts).

Then,

J (t) = ∂q�(0, t) = DExpx (t(s + qṡ))[t ṡ]∣∣q=0 = DExpx (ts)[t ṡ]

is the Jacobi field along γ with initial conditions J (0) = 0 and Dt J (0) = ṡ: the same
field we considered in the proof of Proposition A.3. Further consider

W (t) = (
Dq∂q�

)
(0, t), (53)

another smooth vector field along γ . This field is related to acceleration of curves of
the form

cs,ṡ(q) = Expx (s + qṡ),

because cts,t ṡ(q) = �(q, t). Specifically,

W (t) = (
Dq∂q�

)
(0, t) = c′′

ts,t ṡ(0) = t2c′′
ts,ṡ(0). (54)

To verify the last equality, differentiate the identity cts,t ṡ(q) = cts,ṡ(tq) twice with
respect to q, with the chain rule. This shows in particular that

W (0) = 0 and DtW (0) = 0. (55)

Our goal is to derive a second-order ODE for W . In so doing, we repeatedly use the
two following results from Riemannian geometry which allow us to commute certain
derivatives:

123

Foundations of Computational Mathematics

• [32,Prop. 7.5] For every smooth vector field V along � (meaning V (q, t) is
tangent toM at �(q, t)),

DtDqV − DqDt V = R(∂t�, ∂q�)V , (56)

where R is the Riemann curvature endomorphism.
• [32,Lem. 6.2] The symmetry lemma states

Dq∂t� = Dt∂q�. (57)

With the link between W and Dq∂q� in mind, we compute a first derivative with
respect to t :

DtDq∂q� = DqDt∂q� + R(∂t�, ∂q�)∂q�,

then a second derivative:

DtDtDq∂q� = DtDqDt∂q� + Dt
{
R(∂t�, ∂q�)∂q�

}
.

Our goal is to evaluate this expression for q = 0, in which case the left-hand side
yields D2

t W . However, it is unclear how to evaluate the first term on the right-hand
side at q = 0. Focusing on that term for now, apply the commutation rule on the first
two derivatives:

DtDqDt∂q� = DqDtDt∂q� + R(∂t�, ∂q�)Dt∂q�.

Focusing on the first termoncemore, apply the symmetry lemma then the commutation
rule:

DqDtDt∂q� = Dq
{
DtDq∂t�

} = Dq
{
DqDt∂t� + R(∂t�, ∂q�)∂t�

}

= Dq
{
R(∂t�, ∂q�)∂t�

}
.

To reach the last equality, we used that Dt∂t� vanishes identically since t �→ �(q, t)
is a geodesic for every fixed q. Combining, we find

DtDtDq∂q� = R(∂t�, ∂q�)Dt∂q�

+ Dt
{
R(∂t�, ∂q�)∂q�

}+ Dq
{
R(∂t�, ∂q�)∂t�

}
. (58)

Using the chain rule for tensors as in (11) (see also [32,pp. 95–103] or [41,Def. 3.17]),
we can further expand the right-most term:

Dq
{
R(∂t�, ∂q�)∂t�

} = (∇∂q�R
)
(∂t�, ∂q�)∂t� + R

(
Dq∂t�, ∂q�

)
∂t�

+ R
(
∂t�,Dq∂q�

)
∂t� + R

(
∂t�, ∂q�

)
Dq∂t�.

123

Foundations of Computational Mathematics

It is now easier to evaluate the whole expression at q = 0: using

∂q�(0, t) = J (t), ∂t�(0, t) = γ ′(t) and
(
Dq∂q�

)
(0, t) = W (t)

repeatedly, and also Dq∂t� = Dt∂q� twice so that it evaluates to Dt J at q = 0, we
find

D2
t W = 2R(γ ′, J)Dt J + Dt

{
R(γ ′, J)J

}

+ (∇J R)(γ ′, J)γ ′ + R (Dt J , J) γ ′ + R(γ ′,W)γ ′.

This is now an ODE in the single variable t , involving smooth vector fields J , W and
γ ′ along the geodesic γ . We may apply the chain rule for tensors again (we could just
as well have done this earlier too):

Dt
{
R(γ ′, J)J

} = (∇γ ′ R
)
(γ ′, J)J + R

(
γ ′,Dt J

)
J + R(γ ′, J)Dt J ,

here too simplifying one term since γ ′′ vanishes. The algebraic Bianchi identity [32,p.
203] states R(X ,Y)Z + R(Y , Z)X + R(Z , X)Y = 0, so that in particular

R (Dt J , J) γ ′ + R
(
γ ′,Dt J

)
J = −R(J , γ ′)Dt J = R(γ ′, J)Dt J .

(We also used anti-symmetry of R). Overall, D2
t W + R(W , γ ′)γ ′ = H with

H = 4R(γ ′, J)Dt J + (∇J R)(γ ′, J)γ ′ + (∇γ ′ R
)
(γ ′, J)J .

The Jacobi field J splits into its tangent and normal parts (40):

J (t) = t 〈ṡ, s〉 γ ′(t) + J⊥(t).

Since R(γ ′, γ ′) = 0 by anti-symmetry of R, and since for the same reason
(∇·R)(γ ′, γ ′) = 0 as well, by linearity, we may simplify H to:

H = 4R(γ ′, J⊥)Dt J + (∇J R)(γ ′, J⊥)γ ′ + (∇γ ′ R
)
(γ ′, J⊥)J .

This concludes the proof.

To reach our main result, it remains to bound the solutions of the ODE in W . In
order to do so, we notably need to bound the inhomogeneous term H . For that reason,
we require a bound on the covariant derivative of Riemannian curvature.

Theorem B.2 Let M be a Riemannian manifold whose sectional curvatures are in
the interval [Klow, Kup], and let K = max(|Klow|, |Kup|). Also assume ∇R—the
covariant derivative of the Riemann curvature endomorphism—is bounded by F in

123

Foundations of Computational Mathematics

operator norm. Pick any (x, s) ∈ TM such that the geodesic γ (t) = Expx (ts) is
defined for all t ∈ [0, 1], and such that

‖s‖ ≤ min

(
C

1√
K

,C ′ K
F

)

with some constants C ≤ π and C ′. For any ṡ ∈ TxM, the curve

c(t) = Expx (s + t ṡ)

has initial acceleration bounded as

‖c′′(0)‖ ≤ ¯̄WK‖s‖‖ṡ‖‖ṡ⊥‖,

where ṡ⊥ = ṡ − 〈s,ṡ〉
〈s,s〉 s is the component of ṡ orthogonal to s and ¯̄W ∈ R is only a

function of C and C ′. In particular, for C,C ′ ≤ 1
4 , we have

¯̄W ≤ 3
2 .

Proof By Remark A.2, since C ≤ π we know that γ has no interior conjugate point
on [0, 1]. Since the claim is clear for either s = 0 or ṡ = 0, assume ‖s‖ = 1 for
now—we rescale at the end—and ṡ �= 0. We also assume K > 0: the case K = 0
follows easily by inspection of the proof below.

Following Proposition B.1, the goal is to bound W : the solution of an ODE with
right-hand side given by the vector field H . As we did in earlier proofs, pick an
orthonormal basis e1, . . . , ed for TxMwith ed = s and transport it along γ as Ei (t) =
Pts(ei). We expand W and H as

W (t) =
d∑

i=1

wi (t)Ei (t), H(t) =
d∑

i=1

hi (t)Ei (t). (59)

This allows us to write the ODE in coordinates:

w′′(t) + M(t)w(t) = h(t), (60)

where M(t) is as in (41) but defined in Rd×d (thus, it has an extra row and column of
zeros), and w(t), h(t) ∈ R

d are vectors containing the coordinates of W (t) and H(t).
Since W (0) = DtW (0) = 0, we have w(0) = w′(0) = 0 and we deduce

w(t) = w(0) + tw′(0) +
∫ t

0

∫ τ

0
w′′(θ)dθdτ =

∫ t

0

∫ τ

0
−M(θ)w(θ) + h(θ) dθdτ.

Thus,

‖W (t)‖ = ‖w(t)‖ ≤
∫ t

0

∫ τ

0
K‖w(θ)‖ + ‖h(θ)‖ dθdτ. (61)

123

Foundations of Computational Mathematics

To proceed, we need a bound on ‖H(t)‖ = ‖h(t)‖ and a first bound on ‖W (t)‖. We
will then improve the latter by bootstrapping.

Let us first bound H .
Following [29,eq. (9)], we know that R is bounded (as an operator) as follows:

‖R(X ,Y)Z‖ ≤ K0‖X‖‖Y‖‖Z‖ with

K0 =
√
K 2 + (25/36)(Kup − Klow)2 ≤ 2K , (62)

where X ,Y , Z are arbitrary vector fields along γ . We further assume that

‖(∇U R)(X ,Y)Z‖ ≤ F‖U‖‖X‖‖Y‖‖Z‖ (63)

for some finite F ≥ 0. Then,

‖H‖ ≤ 4K0‖γ ′‖ ‖Dt J‖ ‖J⊥‖ + 2F‖γ ′‖2‖J‖‖J⊥‖. (64)

Since ‖γ ′(t)‖ = ‖s‖ = 1 for all t , this expression simplifies somewhat. Using
Lemma A.4, we can also bound all terms involving J and J⊥, so that, also using
K0 ≤ 2K ,

‖H(t)‖ ≤ hKlow(t)
(
8K

(
1 + KgKlow(t)

)+ 2F max(t, hKlow(t))
)
‖ṡ‖‖ṡ⊥‖. (65)

Since hKlow(t) ≤ h−K (t) = t sinh(
√
Kt)√

Kt
and likewise KgKlow(t) ≤ Kg−K (t) =

cosh(
√
Kt) − 1, and since h−K (t) ≥ t , we find

‖H(t)‖ ≤ t
sinh(

√
Kt)√

Kt

(
8K cosh(

√
Kt) + 2Ft

sinh(
√
Kt)√

Kt

)
‖ṡ‖‖ṡ⊥‖ (66)

for all t ≥ 0. Assuming 0 ≤ √
Kt ≤ C for some C > 0, we find

‖H(t)‖ ≤ (aK + bFt) t‖ṡ‖‖ṡ⊥‖ (67)

with a = 8 sinh(C) cosh(C)
C and b = 2 sinh(C)2

C2 . Let us further assume that 0 ≤ t ≤ C ′ K
F .

Then, Ft ≤ C ′K and we write:

‖H(t)‖
‖ṡ‖‖ṡ⊥‖ ≤ (

a + bC ′) Kt � H̄ K t . (68)

Let us now obtain a first crude bound on ‖W (t)‖. To this end, introduce

u(t) = w′(t)/
√
K , y(t) = ‖ṡ‖‖ṡ⊥‖/√K , z(t) =

⎡
⎣
u(t)
w(t)
y(t)

⎤
⎦ .

123

Foundations of Computational Mathematics

Then,

z′(t) = A(t)z(t), with A(t) =
⎡
⎣

0 −M(t)/
√
K h(t)/(‖ṡ‖‖ṡ⊥‖)√

K I 0 0
0 0 0

⎤
⎦ .

Let g(t) = ‖z(t)‖2. Then, g(0) = ‖ṡ‖2‖ṡ⊥‖2/K and

g′(t) = 2
〈
z(t), z′(t)

〉 = 2 〈z(t), A(t)z(t)〉 ≤ 2‖A(t)‖‖z(t)‖2 = 2‖A(t)‖g(t).

Grönwall’s inequality states that

g(t) ≤ g(0) exp

(
2
∫ t

0
‖A(τ)‖dτ

)
.

By triangle inequality and using ‖M(t)‖ ≤ K , we have ‖A(t)‖ ≤ 2
√
K +

‖h(t)‖/(‖ṡ‖‖ṡ⊥‖). Thus, ‖z(t)‖2 can be bounded above and below:

‖w(t)‖2 + ‖ṡ‖2‖ṡ⊥‖2
K

≤ ‖z(t)‖2 ≤ ‖ṡ‖2‖ṡ⊥‖2
K

× exp

(
4
√
Kt + 2

∫ t

0
‖h(τ)‖/(‖ṡ‖‖ṡ⊥‖)dτ

)
. (69)

Using our bound on H(t) (68), we find

exp

(
4
√
Kt + 2

∫ t

0
‖h(τ)‖/(‖ṡ‖‖ṡ⊥‖)dτ

)
≤ exp

(
4
√
Kt + H̄ K t2

)
.

Using
√
Kt ≤ C again we deduce this crude bound:

‖W (t)‖
‖ṡ‖‖ṡ⊥‖ ≤ 1√

K

√
exp
(
4C + H̄C2

)− 1 � 1√
K
W̄ . (70)

We now return to (61) and plug in our bounds for H (68) andW (70) to get an improved
bound on W : assuming t satisfies the stated conditions,

‖W (t)‖
‖ṡ‖‖ṡ⊥‖ ≤

∫ t

0

∫ τ

0
W̄

√
K + H̄ K θ dθdτ = 1

2
W̄

√
Kt2 + 1

6
H̄ K t3.

Plug this new and improved bound on W in (61) once again to get:

‖W (t)‖
‖ṡ‖‖ṡ⊥‖ ≤

∫ t

0

∫ τ

0
K

(
1

2
W̄

√
K θ2 + 1

6
H̄ K θ3

)
+ H̄ K θ dθdτ

= 1

24
W̄ K 3/2t4 + 1

120
H̄ K 2t5 + 1

6
H̄ K t3

123

Foundations of Computational Mathematics

=
(
1

6
H̄ + 1

24
W̄

√
Kt + 1

120
H̄ K t2

)
Kt3.

Wecould nowbound
√
Kt and Kt2 byC andC2, respectively, and stop here. However,

this yields a constant which depends on W̄ : this can be quite large. Instead, we plug
our new bound in (61) again, repeatedly. Doing so infinitely many times, we obtain
a sequence of upper bounds, all of them valid. The limit of these bounds exists, and
is hence also a valid bound. It is tedious but not difficult to check that this reasoning
leads to the following:

‖W (t)‖
‖ṡ‖‖ṡ⊥‖ ≤ 1

6
H̄

(
1 + C2

6 · 7 + C4

6 · 7 · 8 · 9 + C6

6 · · · 11 + · · ·
)
Kt3.

It is clear that the series converges. Let z be the value it converges to; then:

z = 1 + C2

6 · 7 + C4

6 · 7 · 8 · 9 + C6

6 · · · 11 + · · ·

= 1 + C2

6 · 7
(
1 + C2

8 · 9 + C4

8 · · · 11 + · · ·
)

≤ 1 + C2

42
z.

Thus, z ≤ 1

1−C2
42

. All in all, we conclude that

‖W (t)‖
‖ṡ‖‖ṡ⊥‖ ≤ ¯̄WKt3 with ¯̄W = 1

6
H̄

1

1 − C2

42

and

H̄ = 8
sinh(C) cosh(C)

C
+ 2

sinh(C)2

C2 C ′.

For example, with C,C ′ ≤ 1
4 , we have

¯̄W ≤ 3
2 .

From Proposition B.1, we know that for the curve

cts,ṡ(q) = Expx (ts + qṡ)

(recall that s has unit norm) it holds that W (t) = t2c′′
ts,ṡ(0). Thus,

‖c′′
ts,ṡ(0)‖ ≤ ¯̄WK‖ṡ‖‖ṡ⊥‖t .

Allowing s to have norm different from one and rescaling t , we conclude that for the
curve

c(t) = Expx (s + t ṡ)

we have

‖c′′(0)‖ ≤ ¯̄WK‖s‖‖ṡ‖‖ṡ⊥‖,

123

Foundations of Computational Mathematics

provided ‖s‖ ≤ C 1√
K

with C ≤ π and ‖s‖ ≤ C ′ K
F and γ (t) = Expx (ts) is defined

[0, 1].

C Lemma About Parameter Relations

As a general comments: here and throughout, constants are not optimized at all. In
part, this is so that there is leeway in the precise definition of parameters. For example,
the step-size η does not need to be exactly equal to 1/4	, but it is convenient to assume
equality to simplify many tedious computations.

Lemma C.1 With parameters and assumptions as laid out in Sect. 3, the following
hold:

1. κ ≥ 2and log2(θ
−1) ≥ 5

2 , 5. εr + 	
2r

2 ≤ 1
4E ,

2. ε ≤ 1
2	band2	M < 1

2	b, 6. L 2

16
√

κηT
= E ,

3. r ≤ 1
64L andL ≤ s ≤ 1

32b, 7. s2
2η ≥ 2E and (γ−4ρ̂s)s2

2 ≥ 2E ,

4. 	M 2 ≥ 64E
T andθ	M 2 ≥ 4E

T , 8. ρ̂(L + M) ≤ √
ρ̂ε.

D Proofs from Sect. 4 About AGD in a Ball of a Tangent Space

We give a proof of the lemma which states that iterates generated by TSS remain in
certain balls. Such a lemma is not necessary in the Euclidean case.

Proof of Lemma 4.1 Because of how TSS works, if it defines u j for some j , then s j
must have already been defined. Moreover, if ‖s j+1‖ > b, then the algorithm termi-
nates before definingu j+1. It follows that if u0, . . . , uq are defined then ‖s0‖, . . . , ‖sq‖
are all at most b. Also, TSS ensures ‖u0‖, . . . , ‖uq‖ are all at most 2b by construction.

Recall that θ = 1
4
√

κ
. From Lemma C.1 we know κ ≥ 2 so that θ ≤ 1. Moreover,

2ηγ = 1
8κ = 1

2
√

κ
θ ≤ θ . It follows that θ j as presented in (19) is well defined in the

interval [θ, 1]. Indeed, either ‖s j + (1 − θ)v j‖ ≤ 2b, in which case θ j = θ ; or the
line segment connecting s j to s j + (1 − θ)v j intersects the boundary of the sphere
of radius 2b at exactly one point. By definition, this happens at s j + (1 − θ j)v j with
1 − θ j chosen in the interval [0, 1 − θ], that is, θ j ∈ [θ, 1].

Now assume that ‖grad f (x)‖ ≤ 1
2	b. Then, for all 0 ≤ j ≤ q we have

‖η∇ f̂x (u j)‖ ≤ η
(
‖∇ f̂x (u j) − ∇ f̂x (0)‖ + ‖∇ f̂x (0)‖

)

≤ η

(
	‖u j‖ + 1

2
	b

)
≤ 5

2
η	b = 5

8
b < b,

where we used the fact that ‖u j‖ ≤ 2b and that ∇ f̂x is 	-Lipschitz continuous in the
ball of radius 3b around the origin (by A2), the fact that grad f (x) = ∇ f̂x (0), and the

123

Foundations of Computational Mathematics

fact that η	 = 1
4 by definition of η. Consequently, if sq+1 is defined, then

‖sq+1‖ = ‖uq − η∇ f̂x (uq)‖ ≤ ‖uq‖ + ‖η∇ f̂x (uq)‖ ≤ 3b.

If additionally it holds that ‖uq‖ = 2b, then

‖sq+1‖ = ‖uq − η∇ f̂x (uq)‖ ≥ ‖uq‖ − ‖η∇ f̂x (uq)‖ > b.

(Mind the strict inequality: this one will matter.)

Lemma 4.1 applies under the assumptions of Lemmas 4.2, 4.3 and 4.4. This ensures
all vectors u j , s j remain in Bx (3b), and hence the strongest provisions of A2 apply:
we use this often in the proofs below.

We give a proof of the lemma which states that the Hamiltonian is monotonically
decreasing along iterations.

Proof of Lemma 4.2 This follows almost exactly [28,Lem. 9 and 20], with one modifi-
cation to allow θ j (19) to be larger than 1/2: this is necessary in our setup because we
need to cap u j to the ball of radius 2b, requiring values of θ j which can be arbitrarily
close to 1.

Since ∇ f̂x is 	-Lipschitz continuous in Bx (3b) and u j , s j+1 ∈ Bx (3b), standard
calculus and the identity s j+1 = u j − η∇ f̂x (u j) show that

f̂x (s j+1) ≤ f̂x (u j) + 〈s j+1 − u j ,∇ f̂x (u j)〉 + 	

2
‖s j+1 − u j‖2

= f̂x (u j) − η

(
1 − 	η

2

)
‖∇ f̂x (u j)‖2.

Since 	η = 1
4 ≤ 1

2 , it follows that

f̂x (s j+1) ≤ f̂x (u j) − 3η

4
‖∇ f̂x (u j)‖2.

Turning to E j+1 as defined by (20) and with the identity v j+1 = s j+1 − s j , we
compute:

E j+1 = f̂x (s j+1) + 1

2η
‖v j+1‖2 ≤ f̂x (u j) − 3η

4
‖∇ f̂x (u j)‖2 + 1

2η
‖s j+1 − s j‖2.

Notice that

‖s j+1 − s j‖2 = ‖u j − η∇ f̂x (u j) − s j‖2
= ‖u j − s j‖2 − 2η〈u j − s j ,∇ f̂x (u j)〉 + η2‖∇ f̂x (u j)‖2.

123

Foundations of Computational Mathematics

Moreover, the fact that s j+1 is defined means that (NCC) does not trigger with
(x, s j , u j); in other words:

f̂x (s j) ≥ f̂x (u j) − 〈u j − s j ,∇ f̂x (u j)〉 − γ

2

∥∥u j − s j
∥∥2 .

Combining, we find that

E j+1 ≤ f̂x (u j) − 3η

4
‖∇ f̂x (u j)‖2 − 〈u j − s j ,∇ f̂x (u j)〉

+ 1

2η
‖u j − s j‖2 + η

2
‖∇ f̂x (u j)‖2

≤ f̂x (s j) +
(

γ

2
+ 1

2η

)∥∥u j − s j
∥∥2 − η

4
‖∇ f̂x (u j)‖2.

Using the identities u j − s j = (1− θ j)v j and E j = f̂x (s j)+ 1
2η‖v j‖2, we can further

write:

E j+1 ≤ f̂x (s j) +
(

γ

2
+ 1

2η

)
(1 − θ j)

2
∥∥v j

∥∥2 − η

4
‖∇ f̂x (u j)‖2

= E j +
(

γ (1 − θ j)
2

2
+ (1 − θ j)

2 − 1

2η

)
‖v j‖2 − η

4
‖∇ f̂x (u j)‖2

= E j + 1

2η

(
ηγ (1 − θ j)

2 + (1 − θ j)
2 − 1

)
‖v j‖2 − η

4
‖∇ f̂x (u j)‖2.

From Lemma 4.1 we know that ηγ ≤ 1
2θ j and that θ j is in the interval [0, 1]. It is

easy to check that the function θ j �→ 1
2θ j (1− θ j)

2 + (1− θ j)
2 − 1 is upper-bounded

by −θ j over the interval [0, 1].
Thus,

E j+1 ≤ E j − θ j

2η
‖v j‖2 − η

4
‖∇ f̂x (u j)‖2 ≤ E j ,

as announced.
In closing, note that if ‖v j‖ ≥ M then Lemma C.1 shows

E j − E j+1 ≥ θ j

2η
‖v j‖2 ≥ θ

2η
M 2 = 2θ	M 2 ≥ 4E

T
,

which concludes the proof.

We give a proof of the improve-or-localize lemma.

Proof of Lemma 4.3 This follows from [28,Cor. 11], with some modifications for vari-
able θ j and because we allow θ j > 1

2 . By triangular inequality then Cauchy–Schwarz,
we have

‖sq − sq ′ ‖2 =
∥∥∥∥∥∥

q−1∑
j=q ′

s j+1 − s j

∥∥∥∥∥∥

2

≤
⎛
⎝

q−1∑
j=q ′

‖s j+1 − s j‖
⎞
⎠

2

123

Foundations of Computational Mathematics

≤ (q − q ′)
q−1∑
j=q ′

‖s j+1 − s j‖2.

Now use the inequality ‖a + b‖2 ≤ (1 + C)‖a‖2 + 1+C
C ‖b‖2 (valid for all vectors

a, b and reals C > 0) with C = 2
√

κ − 1 (positive owing to κ ≥ 1 by Lemma C.1)
to see that

‖s j+1 − s j‖2 = ‖(s j+1 − u j) + (u j − s j)‖2 ≤ 2
√

κ‖s j+1 − u j‖2

+ 2
√

κ

2
√

κ − 1
‖u j − s j‖2.

By construction, we have s j+1 = u j − η∇ f̂x (u j) and u j = s j + (1 − θ j)v j . Thus:

‖s j+1 − s j‖2 ≤ 2
√

κη2‖∇ f̂x (u j)‖2 + 2
√

κ(1 − θ j)
2

2
√

κ − 1
‖v j‖2

= 16
√

κη

(
η

8
‖∇ f̂x (u j)‖2 + 1

2η

(1 − θ j)
2

4(2
√

κ − 1)
‖v j‖2

)
.

We focus on the second term: recall from Lemma 4.1 that θ j ∈ [θ, 1] with θ = 1
4
√

κ
,

and notice that (1− t)2 ≤ 4(2
√

κ −1)t for all t in the interval defined by 1−θ±√
1−2θ

θ
.

This holds a fortiori for all t in [θ, 1] because θ ≤ 1
4 owing to κ ≥ 1.

It follows that

‖s j+1 − s j‖2 ≤ 16
√

κη

(
η

8
‖∇ f̂x (u j)‖2 + θ j

2η
‖v j‖2

)
.

Apply Lemma 4.2 to the parenthesized expression to deduce that

‖s j+1 − s j‖2 ≤ 16
√

κη
(
E j − E j+1

)
.

Plug this into the first inequality of this proof to conclude with a telescoping sum.

We give a proof of the lemma which states that, upon witnessing significant non-
convexity, it is possible to exploit that observation to drive significant decrease in the
cost function value.

Proof of Lemma 4.4 This follows almost exactly [28,Lem. 10 and 17].We need a slight
modification because the Hessian ∇2 f̂x may not be Lipschitz continuous in all of
Bx (3b): our assumptions only guarantee a type of Lipschitz continuity with respect
to the origin of TxM. Interestingly, even if the last momentum step was capped (that
is, if θ j �= θ)—something which does not happen in the Euclidean case—the result
goes through.

123

Foundations of Computational Mathematics

First, consider the case ‖v j‖ ≥ s, where s is a parameter set in Sect. 3. Then,
NCE(x, s j , v j) = s j . It follows from the definition of E j (20) that

f̂x (NCE(x, s j , v j)) = f̂x (s j) = E j − 1

2η
‖v j‖2 ≤ E j − s2

2η
.

Second, consider the case ‖v j‖ < s. We know that v j �= 0 as otherwise u j =
s j + (1 − θ j)v j = s j : this would contradict the assumption that (NCC) triggers with
(x, s j , u j). Expand f̂x around u j in a truncated Taylor series with Lagrange remainder
to see that

f̂x (s j) = f̂x (u j) + 〈∇ f̂x (u j), s j − u j 〉 + 1

2
〈∇2 f̂x (ζ j)[s j − u j], s j − u j 〉

with ζ j = ts j + (1− t)u j for some t ∈ [0, 1]. Since (NCC) triggers with (x, s j , u j),
we also know that

f̂x (s j) < f̂x (u j) + 〈∇ f̂x (u j), s j − u j 〉 − γ

2

∥∥s j − u j
∥∥2 .

The last two claims combined yield:

〈∇2 f̂x (ζ j)[s j − u j], s j − u j 〉 < −γ
∥∥s j − u j

∥∥2 . (71)

Consider v̇ = s
v j‖v j‖ as defined in the call to NCE. Let ṽ be either v̇ or −v̇, chosen

so that 〈∇ f̂x (s j), ṽ〉 ≤ 0 (at least one of the two choices satisfies this condition). By
construction, NCE(x, s j , v j) is the element of the triplet {s j , s j + v̇, s j − v̇} where f̂x
is minimized. Since s j + ṽ belongs to this triplet, it follows through another truncated
Taylor series with Lagrange remainder (this time around s j) that

f̂x (NCE(x, s j , v j)) ≤ f̂x (s j + ṽ) = f̂x (s j) + 〈∇ f̂x (s j), ṽ〉 + 1

2
〈∇2 f̂x (ζ

′
j)[ṽ], ṽ〉

≤ f̂x (s j) + 1

2
〈∇2 f̂x (ζ

′
j)[ṽ], ṽ〉 (72)

with ζ ′
j = s j + t ′ṽ for some t ′ ∈ [0, 1]. Since ṽ is parallel to v j which itself is parallel

to s j − u j (by definition of u j), we deduce from (71) that

〈∇2 f̂x (ζ j)[ṽ], ṽ〉 < −γ ‖ṽ‖2 = −γ s2.

We aim to use this to work on (72), but notice that ∇2 f̂x is evaluated at two possibly
distinct points, namely, ζ j and ζ ′

j : we need to use the Lipschitz properties of the
Hessian to relate them. To this end, notice that ζ j and ζ ′

j both live in Bx (3b). Indeed,
‖ṽ‖ = ‖v̇‖ = s ≤ b by Lemma C.1 and ‖s j‖ ≤ b, ‖u j‖ ≤ 2b by Lemma 4.1.
Thus, ‖ζ j‖ ≤ ‖s j‖ + ‖u j‖ ≤ b + 2b = 3b and ‖ζ ′

j‖ ≤ ‖s j‖ + ‖ṽ‖ ≤ b + b = 2b.

123

Foundations of Computational Mathematics

In contrast to the proof in [28], we have no Lipschitz guarantee for ∇2 f̂x along the
line segment connecting ζ j and ζ ′

j , but A2 still offers such guarantees along the line
segments connecting the origin of TxM to each of ζ j and ζ ′

j . Thus, we can write:

〈∇2 f̂x (ζ
′
j)[ṽ], ṽ〉 = 〈∇2 f̂x (ζ j)[ṽ], ṽ〉 + 〈(∇2 f̂x (ζ

′
j) − ∇2 f̂x (0))[ṽ], ṽ〉

− 〈(∇2 f̂x (ζ j) − ∇2 f̂x (0))[ṽ], ṽ〉
≤ −γ s2 +

(
‖∇2 f̂x (ζ

′
j) − ∇2 f̂x (0)‖

+‖∇2 f̂x (ζ j) − ∇2 f̂x (0)‖
)

‖ṽ‖2

≤
(
−γ + ρ̂(‖ζ ′

j‖ + ‖ζ j‖)
)
s2

≤ (−γ + 2ρ̂(s + ‖s j‖)
)
s2,

where on the last line we used ζ j = ts j + (1− t)u j , u j = s j + (1− θ j)v j , θ j ∈ [0, 1]
and ‖v j‖ ≤ s to claim that ‖ζ j‖ = ‖s j +(1−t)(1−θ j)v j‖ ≤ ‖s j‖+‖v j‖ ≤ ‖s j‖+s,
and also (more directly) that ‖ζ ′

j‖ ≤ ‖s j‖ + ‖ṽ‖ = ‖s j‖ + s. Plugging our findings
into (72), it follows that

f̂x (NCE(x, s j , v j)) ≤ f̂x (s j) − 1

2

(
γ − 2ρ̂(s + ‖s j‖)

)
s2. (73)

Since f̂x (s j) ≤ E j by definition (20), the main part of the lemma’s claim is now
proved.

We now turn to the last part of the lemma’s claim, for which we further assume
‖s j‖ ≤ L . Recall from Lemma C.1 thatL ≤ s. We deduce from the main claim that

f̂x (NCE(x, s j , v j)) ≤ E j − min

(
s2

2η
,
(γ − 4ρ̂s)s2

2

)
.

To conclude, use Lemma C.1 anew to bound the right-most term.

E Supporting Lemmas

In this section, we state and prove three additional lemmas about accelerated gradient
descent in balls of tangent spaces that are useful for proofs in subsequent sections.
The statements apply more broadly than the setup of parameters and assumptions in
Sect. 3, but of course it is under those provisions that the conclusions are useful to us.

Throughout this section, we use the following notation. For some x ∈ M, let
H = ∇2 f̂x (0). Given s0 ∈ TxM, set v0 = 0 and define for j = 0, 1, 2, . . .:

u j = s j + (1 − θ)v j , s j+1 = u j − η∇ f̂x (u j) and v j+1 = s j+1 − s j (74)

123

Foundations of Computational Mathematics

with some arbitrary θ ∈ [0, 1] and η > 0. Also define s−1 = s0 − v0 for convenience
and

δk = ∇ f̂x (uk) − ∇ f̂x (0) − Huk,

δ′
k = ∇ f̂x (uk) − ∇ f̂x (sτ) − H(uk − sτ), (75)

where τ ≥ 0 is a fixed index. Notice that iterates generated by TSS(x, s0) with
parameters and assumptions as laid out in Sect. 3 conform to this notation so long as
θ j = θ . Owing to Lemma 4.1, the latter condition holds in particular if TSS runs all its
iterations in full because if at any point θ j �= θ then ‖s j+1‖ > b and TSS terminates
early. This is the setting in which we call upon lemmas from this section.

The first lemma is a variation on [28,Lem. 18].

Lemma E.1 With notation as above, for all j ≥ 0 we can write

(
sτ+ j

sτ+ j−1

)
= A j

(
sτ
sτ−1

)
− η

j−1∑
k=0

A j−1−k
(∇ f̂x (0) + δτ+k

0

)
(76)

and

(
sτ+ j − sτ
sτ+ j−1 − sτ

)
= A j

(
0

−vτ

)
− η

j−1∑
k=0

A j−1−k
(∇ f̂x (sτ) + δ′

τ+k
0

)
(77)

where

A =
(

(2 − θ)(I − ηH) −(1 − θ)(I − ηH)

I 0

)
. (78)

Proof By definition of δτ+ j−1, we have ∇ f̂x (uτ+ j−1) = ∇ f̂x (0) + Huτ+ j−1 +
δτ+ j−1. Thus,

sτ+ j = uτ+ j−1 − η∇ f̂x (uτ+ j−1)

= uτ+ j−1 − η∇ f̂x (0) − ηHuτ+ j−1 − ηδτ+ j−1

= (I − ηH)uτ+ j−1 − η(∇ f̂x (0) + δτ+ j−1).

Use the definitions of uk and vk to verify that uk = (2 − θ)sk − (1 − θ)sk−1 (we use
this several times in subsequent proofs). Plug this in the previous identity to see that

sτ+ j = (2 − θ)(I − ηH)sτ+ j−1 − (1 − θ)(I − ηH)sτ+ j−2 − η(∇ f̂x (0) + δτ+ j−1).

123

Foundations of Computational Mathematics

Equivalently in matrix form, then reasoning by induction, it follows that

(
sτ+ j

sτ+ j−1

)
=
(

(2 − θ)(I − ηH) −(1 − θ)(I − ηH)

I 0

)(
sτ+ j−1
sτ+ j−2

)

− η

(∇ f̂x (0) + δτ+ j−1
0

)

= A j
(

sτ
sτ−1

)
− η

j−1∑
k=0

A j−1−k
(∇ f̂x (0) + δτ+k

0

)
.

This verifies Eq. (76). To prove Eq. (77), observe that (76) together with

δτ+k = δ′
τ+k + ∇ f̂x (sτ) − ∇ f̂x (0) − Hsτ

and sτ−1 = sτ − vτ imply

(
sτ+ j − sτ
sτ+ j−1 − sτ

)
= A j

(
0

−vτ

)
− η

j−1∑
k=0

A j−1−k
(∇ f̂x (sτ) + δ′

τ+k
0

)

+ (A j − I)

(
sτ
sτ

)
+

j−1∑
k=0

A j−1−k
(

ηHsτ
0

)
.

The last two terms cancel. Indeed, let M �
∑ j−1

k=0 A j−1−k = A0+· · ·+ A j−1. Notice
that M(A − I) = MA − M = A j − I . Thus,

j−1∑
k=0

A j−1−k
(

ηHsτ
0

)
+ (A j − I)

(
sτ
sτ

)

= M

[(
ηH 0
0 ηH

)(
sτ
0

)
+ (A − I)

(
sτ
sτ

)]

= M

[(
0 −ηH
0 ηH

)(
sτ
0

)
+ (A − I)

(−I −I
−I −I

)(
sτ
0

)
+ (A − I)

(
sτ
sτ

)]

= M

[
0

]
= 0.

To reach the second-to-last line, verify that (A − I)

(−I −I
−I −I

)
=

(
ηH ηH
0 0

)

using (78). The last line follows by direct calculation.

The lemma below is a direct continuation from the lemma above. We use it only
for the proof of Lemma G.1.

123

Foundations of Computational Mathematics

Lemma E.2 Use notation from LemmaE.1. Given s0, s′
0 ∈ TxM, define two sequences

{s j , u j , v j } and {s′
j , u

′
j , v

′
j } by the update equations (74). Let w j = s j − s′

j . Then,

(
w j

w j−1

)
= A j

(
w0
w−1

)
− η

j−1∑
k=0

A j−1−k
(

δ′′
k
0

)

where δ′′
k = ∇ f̂x (uk) − ∇ f̂x (u′

k) − H(uk − u′
k).

Proof By Lemma E.1 with τ = 0, both of these identities hold:

(
s j
s j−1

)
= A j

(
s0
s−1

)
− η

j−1∑
k=0

A j−1−k
(∇ f̂x (uk) − Huk

0

)
,

(
s′
j

s′
j−1

)
= A j

(
s′
0

s′−1

)
− η

j−1∑
k=0

A j−1−k
(∇ f̂x (u′

k) − Hu′
k

0

)
.

Taking the difference of these two equations reveals that

(
w j

w j−1

)
= A j

(
w0
w−1

)
− η

j−1∑
k=0

A j−1−k
(∇ f̂x (uk) − ∇ f̂x (u′

k) − H(uk − u′
k)

0

)
.

Conclude with the definition of δ′′
k .

The next lemma corresponds to [28,Prop. 19]. The claim applies in particular to
iterates generated by TSS with parameters and assumptions as laid out in Sect. 3 and
R ≤ b, so long as θ j = θ and the s j remain in the appropriate balls. There are a few
changes related to indexing and to the fact that our Lipschitz assumptions are limited
to balls.

Lemma E.3 Use notation from Lemma E.1. Assume ‖∇2 f̂x (s) − ∇2 f̂x (0)‖ ≤ ρ̂ ‖s‖
for all s ∈ Bx (3R) with some R > 0, ρ̂ > 0. Also assume ‖sk‖ ≤ R for all
k = q ′ − 1, . . . , q. Then for all k = q ′, . . . , q we have ‖δk‖ ≤ 5ρ̂R2. Moreover,
for all k = q ′ + 1, . . . , q we have

‖δk − δk−1‖ ≤ 6ρ̂R
(‖sk − sk−1‖ + ‖sk−1 − sk−2‖

)
.

Additionally, we can bound their sum as:

q∑
k=q ′+1

‖δk − δk−1‖2 ≤ 144ρ̂2R2
q∑

k=q ′
‖sk − sk−1‖2 .

(Mind the different ranges of summation.)

123

Foundations of Computational Mathematics

Proof Recall that uk = (2 − θ)sk − (1 − θ)sk−1. In particular,

‖uk‖ ≤ |2 − θ |‖sk‖ + |1 − θ |‖sk−1‖ ≤ 3R for k = q ′, . . . , q.

We use this to establish each of the three inequalities.
First, by definition of H = ∇2 f̂x (0) and of δk , we know that

δk = ∇ f̂x (uk) − ∇ f̂x (0) − Huk =
∫ 1

0
∇2 f̂x (φuk)[uk] − ∇2 f̂x (0)[uk]dφ.

Owing to ‖uk‖ ≤ 3R, we can use the Lipschitz properties of ∇2 f̂x to find

‖δk‖ ≤
∫ 1

0

∥∥∥∇2 f̂x (φuk) − ∇2 f̂x (0)
∥∥∥ dφ ‖uk‖ ≤ 1

2
ρ̂ ‖uk‖2 ≤ 9

2
ρ̂R2.

This shows the first inequality for k = q ′, . . . , q.
For the second inequality, first verify that

‖δk − δk−1‖ =
∥∥∥∇ f̂x (uk) − ∇ f̂x (uk−1) − ∇2 f̂x (0)[uk − uk−1]

∥∥∥

=
∥∥∥∥
(∫ 1

0
∇2 f̂x ((1 − φ)uk−1 + φuk) − ∇2 f̂x (0)dφ

)
[uk − uk−1]

∥∥∥∥ .

Note that the distance between (1 − φ)uk−1 + φuk and the origin is at most
max{‖uk‖ , ‖uk−1‖} for all φ ∈ [0, 1]. Since for k = q ′ + 1, . . . q we have both
‖uk‖ ≤ 3R and ‖uk−1‖ ≤ 3R, it follows that ‖(1 − φ)uk−1 + φuk‖ ≤ 3R for all
φ ∈ [0, 1]. As a result, we can use the Lipschitz-like properties of ∇2 f̂x and write:

‖δk − δk−1‖ ≤ 3ρ̂R ‖uk − uk−1‖ .

Combine uk = (2 − θ)sk − (1 − θ)sk−1 and uk−1 = (2 − θ)sk−1 − (1 − θ)sk−2 to
find uk − uk−1 = (2 − θ)(sk − sk−1) − (1 − θ)(sk−1 − sk−2). From there, it follows
that

‖δk − δk−1‖ ≤ 3ρ̂R ‖(2 − θ)(sk − sk−1) − (1 − θ)(sk−1 − sk−2)‖
≤ 3ρ̂R (2‖sk − sk−1‖ + ‖sk−1 − sk−2‖)
≤ 6ρ̂R (‖sk − sk−1‖ + ‖sk−1 − sk−2‖) .

This establishes the second inequality for k = q ′ + 1, . . . q.
The third inequality follows from the second one through squaring and a sum,

notably using (a + b)2 ≤ 2(a2 + b2) for a, b ≥ 0:

q∑
k=q ′+1

‖δk − δk−1‖2 ≤ 36ρ̂2R2
q∑

k=q ′+1

(‖sk − sk−1‖ + ‖sk−1 − sk−2‖)2

123

Foundations of Computational Mathematics

≤ 72ρ̂2R2
q∑

k=q ′+1

(
‖sk − sk−1‖2 + ‖sk−1 − sk−2‖2

)

= 72ρ̂2R2

⎛
⎝

q∑
k=q ′+1

‖sk − sk−1‖2 +
q−1∑
k=q ′

‖sk − sk−1‖2
⎞
⎠ .

To conclude, extend the ranges of both sums to q ′, . . . , q.

We close this supporting section with important remarks about the matrix A (78),
still following [28].Recall the notationH = ∇2 f̂x (0): this is an operator onTxM, self-
adjoint with respect to the Riemannian inner product on TxM. Let e1, . . . , ed ∈ TxM
form an orthonormal basis of eigenvectors of H associated to ordered eigenvalues
λ1 ≤ · · · ≤ λd . We think of A as a linear operator to and from TxM × TxM.
Conveniently, the eigenvectors ofH reveal how to block-diagonalize A. Indeed, from

A

(
em
0

)
=
(

(2 − θ)(I − ηH) −(1 − θ)(I − ηH)

I 0

)(
em
0

)

=
(

(2 − θ)(1 − ηλm)em
em

)

and

A

(
0
em

)
=
(

(2 − θ)(I − ηH) −(1 − θ)(I − ηH)

I 0

)(
0
em

)

=
(−(1 − θ)(1 − ηλm)em

0

)

it is a simple exercise to check that

J ∗AJ = diag(A1, . . . , Ad) with J =
(
e1 0 e2 0 · · · ed 0
0 e1 0 e2 · · · 0 ed

)
and

Am =
(

(2 − θ)(1 − ηλm) −(1 − θ)(1 − ηλm)

1 0

)
. (79)

Here, J is a unitary operator from R
2d (equipped with the standard Euclidean metric)

to TxM × TxM, and J ∗ denotes its adjoint (which is also its inverse). In particular,
it becomes straightforward to investigate powers of A:

Ak = (
Jdiag(A1, . . . , Ad) J

∗)k = Jdiag
(
Ak
1, . . . , A

k
d

)
J ∗. (80)

For m,m′ in {1, . . . , d} we have the useful identities
〈(

em′
0

)
, Ak

(
em
0

)〉
=
{

(Ak
m)11 if m = m′,

0 if m �= m′,
(81)

123

Foundations of Computational Mathematics

where (Ak
m)11 is the top-left entry of the 2 × 2 matrix (Am)k . Likewise,

〈(
em′
0

)
, Ak

(
0
em

)〉
=
{

(Ak
m)12 if m = m′,

0 if m �= m′.
(82)

Additionally, one can also check that [28,Lem. 24]:

〈(
0
em′

)
, Ak

(
em
0

)〉
=
{

(Ak−1
m)11 if m = m′,

0 if m �= m′.
(83)

F Proofs from Section 5 About TAGD

F.1 Proof of Proposition 5.3

The next two lemmas support Proposition 5.3. Proofs are in Appendix F.2. They
correspond to [28,Lem. 21 and 22]. Notice that it is in Lemma F.2 that the condi-
tion on χ originates, then finds its way into the conditions of Theorem 5.1 through
Proposition 5.3. Ultimately, this causes the polylogarithmic factor in the complexity
of Theorem 1.3.

Lemma F.1 Fix parameters and assumptions as laid out in Sect. 3. Let x ∈ M sat-
isfy ‖grad f (x)‖ ≤ 1

2	b. Let S denote the linear subspace of TxM spanned by the

eigenvectors of∇2 f̂x (0) associated to eigenvalues strictly larger than θ2

η(2−θ)2
. Let PS

denote orthogonal projection to S. Assume TSS(x) runs its course in full.
If there exists τ ∈ {T /4, . . . ,T /2} such that

‖sτ‖ ≤ L , ‖∇ f̂x (sτ) − PS∇ f̂x (sτ)‖ ≥ ε/6,

‖vτ‖ ≤ M , and
〈
PSvτ ,∇2 f̂x (0)[PSvτ]

〉
≤
√

ρ̂εM 2,

then Eτ−1 − Eτ+T /4 ≥ E .

Lemma F.2 Fix parameters and assumptions as laid out in Sect. 3, with

χ ≥ log2(θ
−1) ≥ 1.

Let x ∈ M satisfy ‖grad f (x)‖ ≤ 2	M . Let S denote the linear subspace of TxM
spanned by the eigenvectors of ∇2 f̂x (0) associated to eigenvalues strictly larger than

θ2

η(2−θ)2
. Let PS denote orthogonal projection to S. Assume TSS(x) runs its course in

full.
If E0 − ET /2 ≤ E , then for each j in {T /4, . . . ,T /2} we have

‖PS∇ f̂x (s j)‖ ≤ ε/6 and
〈
PSv j ,∇2 f̂x (0)[PSv j]

〉
≤
√

ρ̂εM 2.

123

Foundations of Computational Mathematics

In Lemmas F.1 and F.2, if S is empty then PS maps all vectors to the zero vector,
and the statements still hold.

Proof of Proposition 5.3 By Lemma C.1, ‖grad f (x)‖ ≤ 2	M < 1
2	b. Thus, the

strongest provisions ofA2 apply at x , as do Lemmas 4.1, 4.2, 4.3 and 4.4. Let u j , s j , v j

for j = 0, 1, . . . be the vectors generated by the computation of xT = TSS(x). Note
that s0 = v0 = 0. There are several cases to consider, based on how TSS terminates:

• (Case 2a) The negative curvature condition (NCC) triggers with (x, s j , u j). There
are two cases to check. Either ‖s j‖ ≤ L , in which case Lemma 4.2 tells us
E j ≤ E0 = f (x) and Lemma 4.4 further tells us that

f (xT) = f̂x (NCE(x, s j , v j)) ≤ E j − 2E ≤ f (x) − 2E .

Or ‖s j‖ > L , in which case Lemma 4.3 used with q = j < T and s0 = 0
implies

E j ≤ f (x) − L 2

16
√

κηT
= f (x) − E .

(See Lemma C.1 for that last equality.) Owing to how NCEworks, we always have
f (xT) = f̂x (NCE(x, s j , v j)) ≤ f̂x (s j) ≤ E j (the last inequality is by definition
of E j (20)). Thus, we conclude that f (xT) ≤ f (x) − E .

• (Case 2b) The iterate s j+1 leaves the ball of radius b, that is, ‖s j+1‖ > b. In this
case, apply Lemma 4.3 with q = j + 1 ≤ T and s0 = 0 to claim

f (xT) = f̂x (s j+1) ≤ E j+1 ≤ f (x) − ‖s j+1‖2
16

√
κηT

≤ f (x) − L 2

16
√

κηT
= f (x) − E .

(The first inequality is by definition of E j+1 (20); subsequently, we use ‖s j+1‖ >

b > L as in Lemma C.1.)
• (Case 2c) The iterate s j+1 satisfies ‖∇ f̂x (s j+1)‖ ≤ ε/2. Recall the chain rule
identity relating gradients of f and gradients of the pullback f̂x = f ◦ Rx with
Ts = DRx (s):

∇ f̂x (s) = T ∗
s grad f (Rx (s)).

In our situation, xT = Rx (s j+1) and ‖s j+1‖ ≤ b (otherwise, Case 2b applies).
Thus, A2 ensures σmin(Ts j+1) ≥ 1

2 and we deduce that

‖grad f (xT)‖ = ‖(T ∗
s j+1

)−1∇ f̂x (s j+1)‖
≤ ‖(T ∗

s j+1
)−1‖‖∇ f̂x (s j+1)‖‖ ≤ 2 · ε

2
= ε.

123

Foundations of Computational Mathematics

• (Case 2d) None of the other events occur: TSS(x) runs its T iterations in full. In
this case, we apply the logic in the proof of [28,Lem. 12], as follows. We consider
two cases. In the first case, E0 − ET /2 > E . Then, we apply Lemma 4.2 to
claim that E0 − ET ≥ E0 − ET /2 ≥ E . Moreover, E0 = f (x) and ET ≥
f̂x (sT) = f (xT). Thus, in this case, f (x) − f (xT) ≥ E . In the second case,
E0 − ET /2 ≤ E . Then, Lemma F.2 applies and we learn the following: Let

S denote the linear subspace of TxM spanned by the eigenvectors of ∇2 f̂x (0)
associated to eigenvalues strictly larger than θ2

η(2−θ)2
. Let PS denote orthogonal

projection to S. For each j in {T /4, . . . ,T /2} we have

‖PS∇ f̂x (s j)‖ ≤ ε/6 and
〈
PSv j ,∇2 f̂x (0)[PSv j]

〉
≤
√

ρ̂εM 2.

Let τ be the first index in the range {T /4, . . . ,T } for which ‖vτ‖ ≤ M . Again,
there are two possibilities. In the first case, τ > T /2. Then, ‖v j‖ > M for all
j in {T /4, . . . ,T /2}. The last part of Lemma 4.2 implies that, for each such j ,
E j − E j+1 ≥ 4E

T . It follows that ET /4 − ET /2 ≥ E . Conclude this case with

Lemma 4.2 which justifies these statements: f (x) = E0, f (xT) = f̂x (sT) ≤
ET , and:

f (x) − f (xT) ≥ E0 − ET ≥ ET /4 − ET /2 ≥ E .

In the second case, τ ∈ {T /4, . . . ,T /2}. We aim to apply Lemma F.1: there are
a few preconditions to check. Here is what we already know:

‖vτ‖ ≤ M ,
〈
PSvτ ,∇2 f̂x (0)[PSvτ]

〉
≤
√

ρ̂εM 2, and

‖PS∇ f̂x (sτ)‖ ≤ ε/6.

Regarding the third one above: we know that ‖∇ f̂x (sτ)‖ > ε/2 because TSS(x)
did not terminate with sτ . We deduce that

‖∇ f̂x (sτ) − PS∇ f̂x (sτ)‖ ≥ ‖∇ f̂x (sτ)‖ − ‖PS∇ f̂x (sτ)‖ ≥ ε

2
− ε

6
>

ε

6
.

We now have a final pair of cases to check. Either ‖sτ‖ ≤ L , in which case
Lemma F.1 applies: it follows that Eτ−1 − Eτ+T /4 ≥ E , and by arguments
similar as above we conclude that f (x) − f (xT) ≥ E . Or ‖sτ‖ > L , in which
case Lemma 4.3 implies (using s0 = 0):

f (xT) ≤ ET ≤ Eτ ≤ f (x) − L 2

16
√

κητ
≤ f (x) − E .

(For the second and last inequalities, we use τ < T and Lemmas 4.2 and C.1.)

This covers all possibilities.

123

Foundations of Computational Mathematics

F.2 Proofs of Lemmas F.1 and F.2

We include fulls proofs for the analogues of [28,Lem. 21 and22] becauseweneed small
but important changes for our setting (as is the case for the other similar resultsweprove
in full), and because of (ultimately inconsequential) small issues with some arguments
pertaining to the subspace S in the original proofs. (Specifically, the subspace S is
defined with respect to the Hessian of the cost function at a specific reference point,
which for notational convenience in Jin et al. [28] is denoted by 0; however, this same
convention is used in several lemmas, on at least one occasion referring to distinct
reference points; the authors easily proposed a fix, and we use a different fix below; to
avoid ambiguities, we keep all iterate references explicit.) Up to those minor changes,
the proofs of the next two lemmas are due to Jin et al.

As a general heads-up for this and the next section: we call upon several lemmas
from [28] which are purely algebraic facts about the entries of powers of the 2 × 2
matrices Am (79): they do not change at all for our context, hence we do not include

their proofs. We only note that Lemma 33 in [28] may not hold for all x ∈
(

θ2

(2−θ)2
, 1
4

]

as stated (there are some issues surrounding their eq. (17)), but it is only used twice,

both times with x ∈
(

2θ2

(2−θ)2
, 1
4

]
: in that interval the lemma does hold.

Proof of Lemma F.1 For contradiction, assume Eτ−1−Eτ+T /4 < E . Then,Lemma4.2
implies that Eτ−1 − Eτ+ j < E for all −1 ≤ j ≤ T /4. Over that range, Lemmas 4.3
and C.1 tell us that

‖sτ+ j − sτ‖2 ≤ 16
√

κη| j ||Eτ − Eτ+ j | < 4
√

κηT E = 1

4
L 2. (84)

The remainder of the proof consists in showing that ‖sτ+T /4 − sτ‖ is in fact larger
than 1

2L .
Starting now, consider j = T /4. From (77) in Lemma E.1, we know that

(
sτ+ j − sτ
sτ+ j−1 − sτ

)
= A j

(
0

−vτ

)
− η

j−1∑
k=0

A j−1−k
(∇ f̂x (sτ) + δ′

τ+k
0

)
.

Let e1, . . . , ed form an orthonormal basis of eigenvectors for H = ∇2 f̂x (0) with
eigenvalues λ1 ≤ · · · ≤ λd . Expand vτ , ∇ f̂x (sτ) and δ′

τ+k in that basis as:

vτ =
d∑

m=1

v(m)em, ∇ f̂x (sτ) =
d∑

m=1

g(m)em, δ′
τ+k =

d∑
m=1

(δ′
τ+k)

(m)em . (85)

Then,

(
sτ+ j − sτ
sτ+ j−1 − sτ

)
=

d∑
m=1

⎡
⎣−v(m)A j

(
0
em

)
− η

j−1∑
k=0

(g(m) + (δ′
τ+k)

(m))A j−1−k
(
em
0

)⎤
⎦ .

123

Foundations of Computational Mathematics

Owing to (81) and (82) which reveal how A block-diagonalizes in the basis e, we can
further write

〈(
em
0

)
,

(
sτ+ j − sτ
sτ+ j−1 − sτ

)〉
= −v(m)(A j

m)12 − η

j−1∑
k=0

(
g(m) + (δ′

τ+k)
(m)
)

(A j−1−k
m)11.

This reveals the expansion coefficients of sτ+ j − sτ in the basis e1, . . . , ed , which is
enough to study the norm of sτ+ j − sτ . Explicitly,

‖sτ+ j − sτ‖2 =
d∑

m=1

⎛
⎝v(m)bm, j − η

j−1∑
k=0

(
g(m) + (δ′

τ+k)
(m)
)
am, j−1−k

⎞
⎠

2

, (86)

where we introduce the notation

am,t = (At
m)11, bm,t = −(At

m)12. (87)

To proceed, we need control over the coefficients am,t and bm,t , as provided by
[28,Lem. 30]. We explore this for m in the set

Sc =
{
m : ηλm ≤ θ2

(2 − θ)2

}
,

that is, for the eigenvectors orthogonal toS. Under our general assumptions it holds that
‖∇2 f̂x (0)‖ ≤ 	, so that |λm | ≤ 	 for all m. This ensures ηλm ∈ [−1/4, θ2/(2 − θ)2]
for m ∈ Sc. Recall that Am (79) is a 2 × 2 matrix which depends on θ and ηλm . It
is reasonably straightforward to diagonalize Am (or rather, to put it in Jordan normal
form), and from there to get an explicit expression for any entry of Ak

m . The quantity∑ j−1
k=0 am,k is a sum of such entries over a range of powers: this can be controlled

as one would a geometric series. In [28,Lem. 30], it is shown that, for m ∈ Sc, if
j ≥ 1 + 2/θ and θ ∈ (0, 1/4], then

j−1∑
k=0

am,k ≥ 1

c4θ2
and

bm, j∑ j−1
k′=0 am,k′

≤ c1/25 max
(
θ,
√|ηλm |

)
, (88)

with some universal constants c4, c5. The lemma applies because θ ∈ (0, 1/4] by
Lemma C.1 and also j = T /4 = χ(c/48) · 3/θ ≥ 3/θ ≥ 4

√
κ + 2/θ ≥ 1 + 2/θ ,

with c ≥ 48.
Building on the latter comments, we can define the following scalars for m ∈ Sc:

pm,k, j = am, j−1−k∑ j−1
k′=0 am,k′

, qm, j = − bm, j

η
∑ j−1

k′=0 am,k′
,

δ̃
′(m)
j =

j−1∑
k=0

pm,k, j (δ
′
τ+k)

(m) ṽ
(m)
j = qm, jv

(m).

123

Foundations of Computational Mathematics

In analogy with notation in (85), we also consider vectors δ̃′
j and ṽ j with expansion

coefficients as above. These definitions are crafted specifically so that (86) yields:

‖sτ+ j − sτ‖2 ≥
∑
m∈Sc

⎛
⎝η

⎛
⎝

j−1∑
k=0

am,k

⎞
⎠
(
g(m) + δ̃

′(m)
j + ṽ

(m)
j

)
⎞
⎠

2

.

We deduce from (88) that

‖sτ+ j − sτ‖ ≥ η

c4θ2

√∑
m∈Sc

(
g(m) + δ̃

′(m)
j + ṽ

(m)
j

)2

= η

c4θ2

∥∥∥PSc

(
∇ f̂x (sτ) + δ̃′

j + ṽ j

)∥∥∥

≥ η

c4θ2

(ε

6
− ‖PSc (δ̃′

j)‖ − ‖PSc (ṽ j)‖
)

, (89)

where Sc is the orthogonal complement of S, that is, it is the subspace of TxM
spanned by eigenvectors {em}m∈Sc , and PSc is the orthogonal projector toSc. In the last
line, we used a triangular inequality and the assumption that ‖PSc (∇ f̂x (sτ))‖ ≥ ε/6.
Our goal now is to show that ‖PSc (δ̃′

j)‖ and ‖PSc (ṽ j)‖ are suitably small.
Consider the following vector with notation as in (75):

� =δτ+k − δ′
τ+k = ∇ f̂x (sτ) − ∇ f̂x (0) − ∇2 f̂x (0)[sτ]

=
(∫ 1

0
∇2 f̂x (φsτ) − ∇2 f̂x (0)dφ

)
[sτ].

By the Lipschitz-like properties of ∇2 f̂x and the assumption ‖sτ‖ ≤ L < b, we
deduce that

‖�‖ ≤ 1

2
ρ̂‖sτ‖2 ≤ 1

2
ρ̂L 2.

Note that
∑ j−1

k=0 pm,k, j = 1. This and the fact that � is independent of k justify that:

‖PSc (δ̃′
j)‖2 =

∑
m∈Sc

(
δ̃
′(m)
j

)2 =
∑
m∈Sc

⎛
⎝

j−1∑
k=0

pm,k, j (δ
′
τ+k)

(m)

⎞
⎠

2

=
∑
m∈Sc

⎛
⎝

j−1∑
k=0

pm,k, j

(
(δτ+k)

(m) − �(m)
)
⎞
⎠

2

=
∑
m∈Sc

⎛
⎝

j−1∑
k=0

pm,k, j (δτ+k)
(m) − �(m)

⎞
⎠

2

,

where�(m) denotes the expansion coefficients of� in the basis e. Define the vector δ̃ j
(without “prime”) with expansion coefficients δ̃

(m)
j = ∑ j−1

k=0 pm,k, j (δτ+k)
(m). Then,

123

Foundations of Computational Mathematics

by construction,

‖PSc (δ̃′
j)‖ = ‖PSc (δ̃ j − �)‖ ≤ ‖PSc (δ̃ j)‖ + ‖�‖ ≤ ‖PSc (δ̃ j)‖ + ρ̂L 2.

Through a simple reasoning using [28,Lem. 24, 26] one can conclude that, under our
setting, both eigenvalues of Am (for m ∈ Sc) are positive, and as a result that the
coefficients am,k (hence also pm,k, j) are positive.

Therefore,

‖PSc (δ̃ j)‖2 =
∑
m∈Sc

⎛
⎝

j−1∑
k=0

pm,k, j (δτ+k)
(m)

⎞
⎠

2

≤
∑
m∈Sc

⎛
⎝

j−1∑
k=0

pm,k, j

(
|(δτ)

(m)| + |(δτ+k)
(m) − (δτ)

(m)|
)
⎞
⎠

2

.

Notice that for all 0 ≤ k ≤ j − 1 we have

|(δτ+k)
(m) − (δτ)

(m)| ≤
k∑

k′=1

|(δτ+k′)(m) − (δτ+k′−1)
(m)|

≤
j−1∑
k′=1

|(δτ+k′)(m) − (δτ+k′−1)
(m)|,

and this right-hand side is independent of k. Thus, we can factor out
∑ j−1

k=0 pm,k, j = 1
in the expression above to get:

‖PSc (δ̃ j)‖2 ≤
∑
m∈Sc

⎛
⎝|(δτ)

(m)| +
j−1∑
k=1

|(δτ+k)
(m) − (δτ+k−1)

(m)|
⎞
⎠

2

.

Use first (a + b)2 ≤ 2a2 + 2b2 then (another) Cauchy–Schwarz to deduce

‖PSc (δ̃ j)‖2 ≤ 2
∑
m∈Sc

|(δτ)
(m)|2 + 2(j − 1)

∑
m∈Sc

j−1∑
k=1

|(δτ+k)
(m) − (δτ+k−1)

(m)|2

≤ 2‖δτ‖2 + 2 j
j−1∑
k=1

‖δτ+k − δτ+k−1‖2.

To bound this further, we call upon Lemma E.3 with R = 3
2L ≤ 1

3b, q
′ = τ and q =

τ + T
4 −1. To this end, we must first verify that ‖sτ+k‖ ≤ R for k = −1, . . . , T

4 −1.

123

Foundations of Computational Mathematics

This is indeed the case owing to (84) and the assumption ‖sτ‖ ≤ L :

‖sτ+k‖ ≤ ‖sτ+k − sτ‖ + ‖sτ‖ ≤ 1

2
L + L = R for k = −1, . . . ,T /4.

This confirms that we can use the conclusions of Lemma E.3, reaching:

‖PSc (δ̃ j)‖2 ≤ 50ρ̂2R4 + 288ρ̂2R2 · j
j−1∑
k=0

‖sτ+k − sτ+k−1‖2

= 4050

16
ρ̂2L 4 + 648ρ̂2L 2 · j

τ+ j−2∑
k=τ−1

‖sk+1 − sk‖2

≤ 256ρ̂2L 4 + 648ρ̂2L 2 · 16√κη j(Eτ−1 − Eτ+ j−2),

where the first and last lines follow from the definition of R and from Lemma 4.3,
respectively. Recall that we assume Eτ−1 − Eτ+T /4 < E for contradiction. Then,
monotonic decrease of theHamiltonian (Lemma 4.2) tells us that Eτ−1−Eτ+ j−2 < E
for 0 ≤ j ≤ T /4. Combining with 16

√
κηT E = L 2 (Lemma C.1), we find:

‖PSc (δ̃ j)‖2 ≤ 256ρ̂2L 4 + 162ρ̂2L 4 = 418ρ̂2L 4.

Thus, ‖PSc (δ̃ j)‖ ≤ 21ρ̂L 2 = 84εχ−4c−6 ≤ ε/24 with c ≥ 4 and χ ≥ 1, for
0 ≤ j ≤ T /4.

Recall thatwe aim tomakeprogress frombound (89). The bound‖PSc (δ̃ j)‖ ≤ ε/24
we just established is a first step. We now turn to bounding ‖PSc (ṽ j)‖. Owing to (88),
we have this first bound assuming j = T /4:

‖PSc (ṽ j)‖2 =
∑
m∈Sc

q2m, j (v
(m))2

=
∑
m∈Sc

(
bm, j

η
∑ j−1

k′=0 am,k′

)2

(v(m))2 ≤ c5
η2

∑
m∈Sc

(v(m))2 max
(
θ2, |ηλm |

)
.

(90)

(Recall from (85) that v(m) denotes the coefficients of vτ in the basis e1, . . . , ed .) We
split the sum in order to resolve the max. To this end, note that θ ∈ [0, 1] implies
θ2 ≥ θ2

(2−θ)2
, so that the max evaluates to θ2 exactly when −θ2 ≤ ηλm ≤ θ2

(2−θ)2

(remembering that ηλm ≤ θ2

(2−θ)2
because m ∈ Sc). Thus,

∑
m∈Sc

(v(m))2 max
(
θ2, |ηλm |

)

=
∑

m:−θ2≤ηλm≤ θ2

(2−θ)2

(v(m))2θ2 −
∑

m:ηλm<−θ2

(v(m))2ηλm .

123

Foundations of Computational Mathematics

Let us rework the last sum (we get a first bound by extending the summation range,
exploiting that the summands are non-positive):

−
∑

m:ηλm<−θ2

(v(m))2ηλm ≤ −
∑

m:ηλm≤0

(v(m))2ηλm

=
∑

m:ηλm>0

(v(m))2ηλm −
d∑

m=1

(v(m))2ηλm

=
∑

m:ηλm>0

(v(m))2ηλm − η 〈vτ ,Hvτ 〉

=
∑

m:0<ηλm≤ θ2

(2−θ)2

(v(m))2ηλm

+ η 〈PSvτ ,HPSvτ 〉 − η 〈vτ ,Hvτ 〉
≤ θ2‖vτ‖2 + η 〈PSvτ ,HPSvτ 〉 − η 〈vτ ,Hvτ 〉 .

(Recall that PS projects to the subspace spanned by eigenvectors with eigenvalues
strictly above θ2

η(2−θ)2
.) Combining all work done since (90), it follows that

‖PSc (ṽ j)‖2 ≤ c5
η2

(
2θ2‖vτ‖2 + η 〈PSvτ ,HPSvτ 〉 − η 〈vτ ,Hvτ 〉

)
.

Use assumptions ‖vτ‖ ≤ M and 〈PSvτ ,HPSvτ 〉 ≤ √
ρ̂εM 2 to see that

‖PSc (ṽ j)‖2 ≤ c5
η2

(
2θ2M 2 + η

√
ρ̂εM 2 − η 〈vτ ,Hvτ 〉

)

= 4	c5

(
3

2

√
ρ̂εM 2 − 〈vτ ,Hvτ 〉

)
. (91)

(For the last equality, use 2θ2 =
√

ρ̂ε

2 η and η = 1/4	.) To proceed, we must bound
〈vτ ,Hvτ 〉. To this end, notice that by assumption the (NCC) condition did not trigger
for (x, sτ , uτ). Therefore, we know that

f̂x (sτ) ≥ f̂x (uτ) + 〈∇ f̂x (uτ), sτ − uτ 〉 − γ

2
‖sτ − uτ‖2 .

Moreover, it always holds that

f̂x (sτ) = f̂x (uτ) + 〈∇ f̂x (uτ), sτ − uτ 〉
+ 1

2
〈sτ − uτ ,∇2 f̂x (φsτ + (1 − φ)uτ)[sτ − uτ]〉

123

Foundations of Computational Mathematics

for some φ ∈ [0, 1]. Also using uτ = sτ + (1 − θ)vτ , we deduce that

〈vτ ,∇2 f̂x (φsτ + (1 − φ)uτ)[vτ]〉 ≥ −γ ‖vτ‖2.

With the help of Lemma C.1, note that

‖φsτ + (1 − φ)uτ‖ = ‖sτ + (1 − φ)(1 − θ)vτ‖ ≤ ‖sτ‖ + ‖vτ‖ ≤ L + M ≤ b.

Thus, the Lipschitz-type properties of ∇2 f̂x apply up to that point and we get

‖∇2 f̂x (φsτ + (1 − φ)uτ) − H‖ ≤ ρ̂(L + M) ≤
√

ρ̂ε.

Since γ =
√

ρ̂ε

4 , it follows overall that

〈vτ ,Hvτ 〉 ≥ −5

4

√
ρ̂ε‖vτ‖2 ≥ −5

4

√
ρ̂εM 2.

Plugging this back into (91) with c ≥ 80
√
c5 reveals that

‖PSc (ṽ j)‖2 ≤ 11	c5
√

ρ̂εM 2 = 11c5ε
2c−2 ≤ ε2/242.

This shows that ‖PSc (ṽ j)‖ ≤ ε/24 for j = T /4.
We plug ‖PSc (δ̃ j)‖ ≤ ε/24 and ‖PSc (ṽ j)‖ ≤ ε/24 into (89) to state that, with

j = T /4,

‖sτ+ j − sτ‖ ≥ η

c4θ2

(ε

6
− ε

24
− ε

24

)
= ηε

12c4θ2

= 1

3c4

√
ε

ρ̂
>

√
ε

ρ̂
χ−2c−3 = L /2.

(We used 4θ2 = √
ρ̂εη, then we also set c > (3c4)1/3.) This last inequality con-

tradicts (84). Thus, the proof by contradiction is complete and we conclude that
Eτ−1 − Eτ+T /4 ≥ E .

What follows is the equivalent of the proof of [28,Lem. 22], with the small changes
needed for our purpose.

Proof of Lemma F.2 Since E0 − ET /2 ≤ E and s0 = 0, Lemmas 4.2, 4.3 and C.1
yield:

∀ j ≤ T /2, ‖s j‖ = ‖s j − s0‖ ≤
√
8
√

κηT E = L√
2

≤ L ≤ b. (92)

123

Foundations of Computational Mathematics

By Lemma E.1 with τ = 0 and noting that s0 = 0, s−1 = s0 − v0 = 0, we know that,
for all j ,

(
s j
s j−1

)
= −η

j−1∑
k=0

A j−1−k
(∇ f̂x (0) + δk

0

)
. (93)

Define the operator � j = ∫ 1
0 ∇2 f̂x (φs j) − Hdφ withH = ∇2 f̂x (0). We can write:

PS∇ f̂x (s j) = PS
(
∇ f̂x (0) + Hs j + � j s j

)
. (94)

We shall bound this term by term.
The third term is straightforward, so let us start with this one. Owing to (92), the

Lipschitz-like properties of the Hessian apply to claim ‖� j‖ ≤ 1
2 ρ̂‖s j‖. Therefore,

‖PS� j s j‖ ≤ ‖� j‖‖s j‖ ≤ 1

2
ρ̂‖s j‖2 ≤ 1

2
ρ̂L 2 = 2εχ−4c−6 ≤ ε/18 (95)

with c ≥ 2 and χ ≥ 1. Below, we work toward bounding the other two terms.
As we did in the proof of Lemma F.1, let e1, . . . , ed form an orthonormal basis of

eigenvectors for H with eigenvalues λ1 ≤ · · · ≤ λd . Expand ∇ f̂x (0) and δk in that
basis as

∇ f̂x (0) =
d∑

m=1

g(m)em, δk =
d∑

m=1

δ
(m)
k em .

From (93) and (81) it follows that

s j =
d∑

m′=1

〈
em′ , s j

〉
em′ = −η

d∑
m′=1

j−1∑
k=0

d∑
m=1

〈(
em′
0

)
, A j−1−k

(
em
0

)〉
(g(m) + δ

(m)
k)em′

= −η

j−1∑
k=0

d∑
m=1

(A j−1−k
m)11(g

(m) + δ
(m)
k)em .

Motivated by (94) and reusing notation am, j−1−k = (A j−1−k
m)11 as in (87), we further

write

PS
(
∇ f̂x (0) + Hs j

)
=
∑
m∈S

⎡
⎣g(m) − ηλm

j−1∑
k=0

am, j−1−k(g
(m) + δ

(m)
k)

⎤
⎦ em

=
∑
m∈S

⎡
⎣
⎛
⎝1 − ηλm

j−1∑
k=0

am,k

⎞
⎠ g(m)

123

Foundations of Computational Mathematics

−ηλm

j−1∑
k=0

am, j−1−kδ
(m)
k

⎤
⎦ em, (96)

where S = {
m : ηλm > θ2

(2−θ)2

}
indexes the eigenvalues of the eigenvectors which

span S. This identity splits in two parts, each of which we now aim to bound.
In the spirit of the comments surrounding (88), here too it is possible to control the

coefficients am,k and bm,k (both defined as in (87)), this time for m ∈ S. Specifically,
combining [28,Lem. 25] with an identity in the proof of [28,Lem. 29], we see that

1 − ηλm

j−1∑
k=0

am,k = am, j − bm, j . (97)

Moreover, owing to [28,Lem. 32] we know that

∀ j ≥ 0,∀m ∈ S, max(|am, j |, |bm, j |) ≤ (j + 1)(1 − θ) j/2. (98)

Thus, the first part of (96) is bounded as:

∥∥∥∥∥∥
∑
m∈S

⎛
⎝1 − ηλm

j−1∑
k=0

am,k

⎞
⎠ g(m)em

∥∥∥∥∥∥

2

=
∑
m∈S

(am, j − bm, j)
2(g(m))2 ≤ 4(j + 1)2(1 − θ) j‖∇ f̂x (0)‖2.

One can show using θ ∈ (0, 1/4], χ ≥ log2(θ
−1) and c ≥ 256 (which we all assume)

that

∀ j ≥ T /4, (j + 1)2 ≤ (1 − θ)− j/2. (99)

Then use the assumption ‖∇ f̂x (0)‖ ≤ 2	M and j ≥ T /4 again to replace the
power with j/2 ≥ √

κχc/8 ≥ 4
√

κ · 2χ (with c ≥ 64) and see that

∥∥∥∥∥∥
∑
m∈S

⎛
⎝1 − ηλm

j−1∑
k=0

am,k

⎞
⎠ g(m)em

∥∥∥∥∥∥

2

≤ 16	2M 2(1 − θ) j/2

≤ 16ε2κc−2
(
1 − 1

4
√

κ

)4
√

κ·2χ
.

Use the fact that 0 < (1− t−1)t < e−1 ≤ 2−1 for t ≥ 4 together with κ ≥ 1 to bound
the right-hand side by 16ε2κc−22−2χ . This itself is bounded by 16ε2κc−2θ2 = ε2c−2

123

Foundations of Computational Mathematics

using χ ≥ log2(θ
−1). Overall, we have shown that

∥∥∥∥∥∥
∑
m∈S

⎛
⎝1 − ηλm

j−1∑
k=0

am,k

⎞
⎠ g(m)em

∥∥∥∥∥∥
≤ ε/18, (100)

with c ≥ 18. This covers the first term in (96).
We turn to bounding the second term in (96). For this one, we need [28,Lem. 34]

which states that, for m ∈ S and j ≥ T /4, for any sequence {εk}, we have

j−1∑
k=0

am,kεk ≤
√
c2

ηλm

⎛
⎝|ε0| +

j−1∑
k=1

|εk − εk−1|
⎞
⎠ , and (101)

j−1∑
k=0

(am,k − am,k−1)εk ≤
√
c3√

ηλm

⎛
⎝|ε0| +

j−1∑
k=1

|εk − εk−1|
⎞
⎠ , (102)

with some positive constants c1, c2, c3 and c ≥ c1. Thus, to bound the remaining term
in (96) we start with:

∥∥∥∥∥∥
∑
m∈S

ηλm

j−1∑
k=0

am, j−1−kδ
(m)
k em

∥∥∥∥∥∥

2

≤ c2
∑
m∈S

⎛
⎝|δ(m)

j−1| +
j−1∑
k=1

|δ(m)
k − δ

(m)
k−1|

⎞
⎠

2

≤ 2c2
∑
m∈S

⎡
⎢⎣|δ(m)

j−1|2 +
⎛
⎝

j−1∑
k=1

|δ(m)
k − δ

(m)
k−1|

⎞
⎠

2
⎤
⎥⎦

≤ 2c2
∑
m∈S

⎡
⎣|δ(m)

j−1|2 + (j − 1)
j−1∑
k=1

|δ(m)
k − δ

(m)
k−1|2

⎤
⎦

≤ 2c2‖δ j−1‖2 + 2c2 j
j−1∑
k=1

‖δk − δk−1‖2. (103)

(We used (a+b)2 ≤ 2a2+2b2 again, and another Cauchy–Schwarz on the remaining
sum.) In order to proceed,we call uponLemmaE.3with R = L ,q ′ = 0 andq = j−1,
which is justified by (92) (recall that s−1 = 0). This yields the first inequality in:

∥∥∥∥∥∥
∑
m∈S

ηλm

j−1∑
k=0

am, j−1−kδ
(m)
k em

∥∥∥∥∥∥

2

≤ 50c2ρ̂
2L 4 + 2c2 j · 144ρ̂2L 2

j−1∑
k=0

‖sk − sk−1‖2

≤ 50c2ρ̂
2L 4 + 144c2ρ̂

2L 4. (104)

123

Foundations of Computational Mathematics

The second inequality above is supported by Lemmas 4.2, 4.3 and C.1 as well as
j ≤ T /2 and the assumption E0 − ET /2 ≤ E , through:

j
j−1∑
k=0

‖sk − sk−1‖2 ≤ 16
√

κη j(E0 − E j) ≤ 8
√

κηT E = L 2/2. (105)

Continuing from (104), we see that the right- (hence also left-) hand side is upper-
bounded by

194c2 · ρ̂2L 4 = 194c2 · 16ε2χ−8c−12 ≤ ε2/182,

with c ≥ 4c1/122 and χ ≥ 1. Combine this result with (94), (95), (96) and (100) to
conclude that

∥∥∥PS∇ f̂x (s j)
∥∥∥ ≤ ε

18
+ ε

18
+ ε

18
= ε

6

for all T /4 ≤ j ≤ T /2. This proves the first part of the lemma.
For the second part of the result, consider (93) anew then (81) and (83) to see that:

v j = s j − s j−1 =
d∑

m′=1

〈(
s j
s j−1

)
,

(
em′

−em′

)〉
em′

= −η

d∑
m′=1

j−1∑
k=0

d∑
m=1

(
g(m) − δ

(m)
k

) 〈
A j−1−k

(
em
0

)
,

(
em′

−em′

)〉
em′

= −η

j−1∑
k=0

d∑
m=1

(
g(m) − δ

(m)
k

) (
(A j−1−k

m)11 − (A j−2−k
m)11

)
em .

Using notation as in (87) for am,t , it follows that

PSv j = −η
∑
m∈S

j−1∑
k=0

(
g(m) − δ

(m)
k

) (
am, j−1−k − am, j−2−k

)
em .

We aim to upper-bound
〈
PSv j ,HPSv j

〉
. Compute, then use (102) to bound the sum

in k:

〈
PSv j ,HPSv j

〉 = η2
∑
m∈S

λm

⎛
⎝

j−1∑
k=0

(
g(m) − δ

(m)
k

) (
am, j−1−k − am, j−2−k

)
⎞
⎠

2

= η2
∑
m∈S

λm

⎛
⎝g(m)

j−1∑
k=0

(
am,k − am,k−1

)

123

Foundations of Computational Mathematics

−
j−1∑
k=0

δ
(m)
k

(
am, j−1−k − am, j−2−k

)
⎞
⎠

2

≤ 2η2
∑
m∈S

λm

⎛
⎝g(m)

j−1∑
k=0

(
am,k − am,k−1

)
⎞
⎠

2

+ 2η2
∑
m∈S

λm

⎛
⎝

j−1∑
k=0

δ
(m)
k

(
am, j−1−k − am, j−2−k

)
⎞
⎠

2

. (106)

(We used (a + b)2 ≤ 2a2 + 2b2 again.)
Focusing on the first term of (106), use (97) twice to see that

j−1∑
k=0

(
am,k − am,k−1

) = 1

ηλm
(1 − am, j + bm, j)

− 1

ηλm
(1 − am, j−1 + bm, j−1) − am,−1

= 1

ηλm
(am, j−1 − bm, j−1 − am, j + bm, j).

(Indeed, am,−1 = 0 as it is the top-left entry of a matrix of the form
(
a b
1 0

)−1: that
is zero regardless of a and b �= 0.)

Hence, the first term in (106) is equal to the right-hand side below; the first bound
follows from (a + b + c + d)2 ≤ 4(a2 + b2 + c2 + d2) (Cauchy–Schwarz) and (98),
while the second bound follows from (99) for j ≥ T /4:

∑
m∈S

2

λm

∣∣∣g(m)
∣∣∣
2 (

am, j−1 − bm, j−1 − am, j + bm, j
)2

≤
∑
m∈S

16

λm

∣∣∣g(m)
∣∣∣
2 (

(j + 1)2(1 − θ) j + j2(1 − θ) j−1
)

≤
∑
m∈S

16

λm

∣∣∣g(m)
∣∣∣
2 (

(1 − θ) j/2 + (1 − θ) j/2−1
)

≤
∑
m∈S

128

3λm

∣∣∣g(m)
∣∣∣
2
(1 − θ) j/2.

(The last inequality uses θ ∈ (0, 1/4] so that (1− θ)−1 ≤ 4/3.) Moreover, for m ∈ S

we have λm > θ2

η(2−θ)2
≥ 1

4η θ2 = 1
4η

1
16

√
ρ̂ε

	
=

√
ρ̂ε

16 . Therefore, in light of the latest

considerations and using the assumption ‖∇ f̂x (0)‖ ≤ 2	M and also j/2 ≥ √
κχc/8

123

Foundations of Computational Mathematics

owing to j ≥ T /4, the first term in (106) is upper-bounded by:

∑
m∈S

128

3

16√
ρ̂ε

∣∣∣g(m)
∣∣∣
2
(1 − θ) j/2 ≤ 3000

	2M 2
√

ρ̂ε
(1 − θ)

√
κχc/8

= 3000M 2
√

ρ̂εκ2
(
1 − 1

4
√

κ

)4
√

κ·4χ ·c/128

≤ 3000M 2
√

ρ̂εκ2 · 2−4χ2−c/128 ≤ 1

4
M 2

√
ρ̂ε,

where the second-to-last inequality uses again that 0 < (1 − t−1)t < 2−1 for t ≥ 4,
as well as 4χ · c/128 ≥ 4χ + c/128 with c ≥ 128; and the last inequality uses χ ≥
log2(θ

−1) = log2(4
√

κ) to see that κ22−4χ ≤ 4−4, and also 3000·4−4 ·2−c/128 ≤ 1/4
with c ≥ 720. (With care, one could improve the constant, here and in many other
places.)

Now focusing on the second term of (106), we start with (102) to see that

2η2
∑
m∈S

λm

⎛
⎝

j−1∑
k=0

δ
(m)
k

(
am, j−1−k − am, j−2−k

)
⎞
⎠

2

≤ 2c3η
∑
m∈S

⎛
⎝|δ(m)

j−1| +
j−1∑
k=1

|δ(m)
k − δ

(m)
k−1|

⎞
⎠

2

≤ 4c3η‖δ j−1‖2 + 4c3η j
j−1∑
k=1

‖δk − δk−1‖2

≤ 388c3η · ρ̂2L 4.

The last inequality follows through the same reasoning that was applied to go
from (103) to (104). Through simple parameter manipulation we find

388c3η · ρ̂2L 4 = 97c3
	

· 16ε2χ−8c−12 · 	2

ε2κ
c2 · M 2

= 97c3 · 16χ−8c−10 ·
√

ρ̂εM 2 ≤ 1

4
M 2

√
ρ̂ε,

with c ≥ 3c1/103 and χ ≥ 1.
To conclude, we combine the two main results about (106) to confirm that〈

PSv j ,HPSv j
〉 ≤ 1

4M
2
√

ρ̂ε + 1
4M

2
√

ρ̂ε = 1
2M

2
√

ρ̂ε ≤ M 2
√

ρ̂ε for all
T /4 ≤ j ≤ T /2. This proves the second part of the lemma.

123

Foundations of Computational Mathematics

G Proofs from Sect. 6 About PTAGD

G.1 Proof of Proposition 6.2

The following lemma supports Proposition 6.2. The proof is in Appendix G.2. It
corresponds to [28,Lem. 23]. The condition on χ originates in this lemma, and from
here appears in Theorem 6.1 through Proposition 6.2. It causes the occurrence of
dimension in the polylogarithmic factor in the complexity of Theorem 1.6, but note
that the real reason why d appears in the condition on χ here is so that dimension can
be canceled out in the probabilistic argument in the proof of Proposition 6.2.

Lemma G.1 Fix parameters and assumptions as laid out in Sect. 3, with d = dimM,
δ ∈ (0, 1), any � f > 0 and

χ ≥ max

(
log2(θ

−1), log2

(
d1/2	3/2� f

(ρ̂ε)1/4ε2δ

))
≥ 1.

Let s0, s′
0 ∈ Bx (r) be such that

1. s0 − s′
0 = r0e1 where e1 is an eigenvector of ∇2 f̂x (0) associated to the smallest

eigenvalue and r0 ≥ δE
2� f

r√
d
, and

2. TSS(x, s0) and TSS(x, s′
0) both run their T iterations in full, respectively, gener-

ating vectors u j , s j , v j and u′
j , s

′
j , v

′
j , with corresponding Hamiltonians E j , E ′

j .

If ‖grad f (x)‖ ≤ 1
2	b and λmin(∇2 f̂x (0)) ≤ −√ρ̂ε, thenmax

(
E0 − ET , E ′

0 − E ′
T

)
≥ 2E .

Proof of Proposition 6.2 By Lemma C.1, ‖grad f (x)‖ ≤ 2	M < 1
2	b and ‖ξ‖ ≤

r < b. Thus, the strongest provisions of A2 apply at x , as do Lemmas 4.1, 4.2, 4.3
and 4.4. Let u j , s j , v j for j = 0, 1, . . . be the vectors generated by the computation
of xT = TSS(x, ξ). Note that s0 = ξ and v0 = 0. Owing to how TSS works, there
are several cases to consider, based on how it terminates. We remark that cases 3a and
3b are deterministic (they only use the fact that ‖s0‖ ≤ r), that there is no case 3c, and
that case 3d is the only place where probabilities are involved. Throughout, it is useful
to observe that, since f (x) = f̂x (0), ‖grad f (x)‖ ≤ ε and grad f (x) = ∇ f̂x (0), the
first property of A2 ensures:

f̂x (s0) − f (x) ≤ 〈grad f (x), s0〉 + 	

2
‖s0‖2 ≤ εr + 	

2
r2 ≤ 1

4
E . (107)

(Use Lemma C.1 to relate parameters.) Compare details below with Proposition 5.3.

• (Case 3a) The negative curvature condition (NCC) triggers with (x, s j , u j). Either
‖s j‖ ≤ L , in which case Lemma 4.2 tells us E j ≤ E0 = f̂x (s0) and, by
Lemma 4.4,

f (xT) = f̂x (NCE(x, s j , v j)) ≤ E j − 2E ≤ f (x) − 2E + f̂x (s0) − f (x).

123

Foundations of Computational Mathematics

Or ‖s j‖ > L , in which case Lemma 4.3 used with q = j < T and ‖sq − s0‖ ≥
‖sq‖ − ‖s0‖ ≥ L − r ≥ 63

64L implies

f (xT) ≤ E j ≤ f̂x (s0) − 632

642
L 2

16
√

κηT
= f (x) − 632

642
E + f̂x (s0) − f (x).

(We used Lemma C.1 to relate parameters.) Either way, bound f̂x (s0) − f (x)
with (107). Overall, we conclude that f (x) − f (xT) ≥ 1

2E (deterministically).
• (Case 3b) The iterate s j+1 leaves the ball of radius b, that is, ‖s j+1‖ > b. In this
case, apply Lemma 4.3 with q = j + 1 ≤ T and

‖s j+1 − s0‖ ≥ ‖s j+1‖ − ‖s0‖ ≥ b − r ≥ 4L − 1

64
L ≥ L

to claim (as always, we use Lemma C.1 repeatedly to relate parameters)

f (xT) = f̂x (s j+1) ≤ E j+1 ≤ f̂x (s0) − ‖s j+1 − s0‖2
16

√
κηT

≤ f̂x (s0) − L 2

16
√

κηT
= f̂x (s0) − E .

By (107), it follows that f (x) − f (xT) ≥ 3
4E (deterministically).

• (Case 3d) None of the other events occur: TSS(x, s0) runs its T iterations in full.
In this case, we apply the logic in the proof of [28,Lem. 13], as follows. Define
the set X (stuck)

x as containing exactly all tangent vectors s∗ ∈ Bx (r) such that

1. TSS(x, s∗) runs its T iterations in full, and
2. E∗

0 − E∗
T ≤ 2E , where E∗

j denotes the Hamiltonians associated to TSS(x, s∗).

There are two cases. Either s0 is not in X (stuck)
x , in which case E0 − ET > 2E : it is

then easy to conclude (using (107)) that f (x) − f (xT) > 7
4E . Or s0 is in X (stuck)

x , in
which case we do not lower-bound f (x) − f (xT). The probability of this happening
is

Prob
{
ξ ∈ X (stuck)

x

}
=

Vol
(
X (stuck)
x

)

Vol
(
Bd
r

) ,

where Vol(·) denotes the volume of a set, and Vol
(
B
d
r

)
is the volume of a Euclidean

ball of radius r in a d-dimensional vector space. In order to upper-bound the vol-
ume of X (stuck)

x , we resort to Lemma G.1: this is where we use the assumption
λmin(∇2 f̂x (0)) ≤ −√ρ̂ε.

Let e1 denote an eigenvector of ∇2 f̂x (0) with minimal eigenvalue, and let s0, s′
0 be

two arbitrary vectors in X (stuck)
x such that s0 − s′

0 is parallel to e1. Lemma G.1 implies
that ‖s0 − s′

0‖ ≤ δE
2� f

r√
d
. Now consider a point a ∈ Bx (r) orthogonal to e1, and let 	a

123

Foundations of Computational Mathematics

denote the line parallel to e1 passing through a. The previous reasoning tells us that
the intersection of 	a with X (stuck)

x is contained in a segment of 	a of length at most
δE
2� f

r√
d
. Thus, with 1 denoting the indicator function,

Vol
(
X (stuck)
x

)
=
∫

Bx (r)
1X (stuck)

x
(y)dy

=
∫

a∈Bx (r):a⊥e1

[∫

	a

1X (stuck)
x

(z)dz

]
da

≤ δE

2� f

r√
d
Vol
(
B
d−1
r

)
.

With � denoting the Gamma function, it follows that

Prob
{
ξ ∈ X (stuck)

x

}
≤ δE

2� f

r√
d

· Vol
(
B
d−1
r

)

Vol
(
Bd
r

)

= δE

2� f

r√
d

· 1

r
√

π

�(1 + d/2)

�(1 + (d − 1)/2)
.

One can check (for example, using Gautschi’s inequality) that the last fraction is
upper-bounded by

√
d for all d ≥ 1. Thus,

Prob
{
ξ ∈ X (stuck)

x

}
≤ δE

2
√

π� f
≤ δE

3� f
.

This limits the probability of the only bad event.
This covers all possibilities.

G.2 Proof of Lemma G.1

Proof of LemmaG.1 For contradiction, assume E0−ET and E ′
0−E ′

T are both strictly
less than 2E . Then, by Lemmas 4.2, 4.3 and C.1 and the assumption ‖s0‖, ‖s′

0‖ ≤ r ,
we have

∀ j ≤ T , ‖s j‖ ≤ r + ‖s j − s0‖ ≤ L /64 +
√
32

√
κηT E

= (1/64 + √
2)L ≤ 2L , ‖s′

j‖ ≤ 2L . (108)

The aim is to show that this cannot hold for j = T .
Definew j = s j − s′

j for all j . Observew−1 = s−1− s′−1 = (s0−v0)− (s′
0−v′

0) =
s0 − s′

0 = w0 since v0 = v′
0 = 0. Then, Lemma E.2 provides that

(
w j

w j−1

)
= A j

(
w0
w0

)
− η

j−1∑
k=0

A j−1−k
(

δ′′
k
0

)
, (109)

123

Foundations of Computational Mathematics

where A is as defined and discussed in Appendix E, and

δ′′
k � ∇ f̂x (uk) − ∇ f̂x (u

′
k) − H(uk − u′

k)

=
(∫ 1

0

(
∇2 f̂x (φuk + (1 − φ)u′

k) − ∇2 f̂x (0)
)
dφ

)
[uk − u′

k].

Recall that uk = (2 − θ)sk − (1 − θ)sk−1. In particular, using (108) and Lemma C.1
we have:

‖uk‖ ≤ |2 − θ |‖sk‖ + |1 − θ |‖sk−1‖ ≤ 6L ≤ b.

The same holds for ‖u′
k‖, and ‖φuk + (1 − φ)u′

k‖ ≤ max
(‖uk‖, ‖u′

k‖
) ≤ 6L ≤ b

for φ ∈ [0, 1]. It follows that the Lipschitz-type properties of ∇2 f̂x apply along rays
from the origin of TxM to any point of the form φuk + (1 − φ)u′

k for φ ∈ [0, 1].
Therefore,

‖δ′′
k ‖ ≤ 6ρ̂L ‖uk − u′

k‖ = 6ρ̂L ‖(2 − θ)wk − (1 − θ)wk−1‖
≤ 12ρ̂L (‖wk‖ + ‖wk−1‖) . (110)

This will come in handy momentarily.
As we did in previous proofs, let e1, . . . , ed form an orthonormal basis of eigen-

vectors for H with eigenvalues λ1 ≤ · · · ≤ λd . Expand the vectors w j and δ′′
k in this

basis as:

w j =
d∑

m=1

w
(m)
j em, δ′′

k =
d∑

m=1

(δ′′
k)

(m)em .

Going back to (109), we can write

w j =
d∑

m′=1

〈(
em′
0

)
,

(
w j

w j−1

)〉
em′

=
d∑

m′=1

d∑
m=1

[〈(
em′
0

)
, A j

(
em
em

)〉
w

(m)
0

−η

j−1∑
k=0

〈(
em′
0

)
, A j−1−k

(
em
0

)〉
(δ′′

k)
(m)

⎤
⎦ em′ .

Owing to (81) and (82), only the terms with m = m′ survive. Also, recalling that
w0 = r0e1 by assumption, we have

w j = (
a1, j − b1, j

)
r0e1 − η

d∑
m=1

j−1∑
k=0

am, j−1−k(δ
′′
k)

(m)em, (111)

where am, j , bm, j are defined by (87).

123

Foundations of Computational Mathematics

We aim to show that wT = sT − s′
T is larger than 4L , as this will contradict

the claim that both ‖sT ‖ and ‖s′
T ‖ are smaller than 2L : in view of (108), this is

sufficient to prove the lemma. To this end, we introduce two new sequences of vectors
to split w j according to (111):

w j = y j − z j , y j = (
a1, j − b1, j

)
r0e1, z j = η

d∑
m=1

j−1∑
k=0

am, j−1−k(δ
′′
k)

(m)em .

First, we show by induction that ‖z j‖ ≤ 1
2‖y j‖ for all j . The base case holds since

z0 = 0. Now assuming the claim holds for z0, . . . , z j , we must prove that ‖z j+1‖ ≤
1
2‖y j+1‖. Owing to the induction hypothesis, we know that

∀ j ′ ≤ j, ‖w j ′ ‖ ≤ ‖y j ′ ‖ + ‖z j ′ ‖ ≤ 3

2
‖y j ′ ‖. (112)

By assumption, λ1 (the smallest eigenvalue of∇2 f̂x (0)) is less than−√ρ̂ε. In particu-
lar, it is non-positive.Hence [28,Lem. 37] asserts thatmaxm=1,...,d |am, j−k | = |a1, j−k |,
so that, also using (110) then (112):

‖z j+1‖ ≤ η

j∑
k=0

∥∥∥∥∥
d∑

m=1

am, j−k(δ
′′
k)

(m)em

∥∥∥∥∥ ≤ η

j∑
k=0

|a1, j−k |‖δ′′
k ‖

≤ 12ηρ̂L

j∑
k=0

|a1, j−k | (‖wk‖ + ‖wk−1‖)

≤ 18ηρ̂L

j∑
k=0

|a1, j−k | (‖yk‖ + ‖yk−1‖) .

Moreover, [28,Lem. 38] applies and tells us that

∀ j ′, ‖y j ′+1‖ ≥ ‖y j ′ ‖ ≥ θr0
2

(
1 + 1

2
min

(|ηλ1|
θ

,
√|ηλ1|

)) j ′

. (113)

In particular, ‖y j‖ is non-decreasing with j . Thus, continuing from above, we find
that

‖z j+1‖ ≤ 36ηρ̂L

j∑
k=0

|a1, j−k |‖yk‖ = 36ηρ̂L r0

j∑
k=0

|a1, j−k ||a1,k − b1,k |,

where the last equality follows from the definition of yk . Owing to [28,Lem. 36], the
fact that λ1 is non-positive implies that

∀0 ≤ k ≤ j, |a1, j−k ||a1,k − b1,k | ≤
(
2

θ
+ (j + 1)

)
|a1,k+1 − b1,k+1|.

123

Foundations of Computational Mathematics

Moreover, j + 1 ≤ T (as otherwise we are done with the proof by induction), and
2
θ

≤ 2T with c ≥ 4. Hence,

‖z j+1‖ ≤ 108ηρ̂LT r0

j∑
k=0

|a1,k+1 − b1,k+1| = 108ηρ̂LT

j∑
k=0

‖yk+1‖.

Recall that ‖yk‖ is non-decreasing with k to see that, using j + 1 ≤ T once more:

‖z j+1‖ ≤ 108ηρ̂LT 2‖y j+1‖ ≤ 1

2
‖y j+1‖.

(The last inequality holds with c ≥ 108 because 108ηρ̂LT 2 = 54c−1.) This con-
cludes the induction, from which we learn that ‖w j‖ ≥ ‖y j‖ − ‖z j‖ ≥ 1

2‖y j‖ for all
j ≤ T . In particular, it holds owing to (113) that

‖wT ‖ ≥ 1

2
‖yT ‖ ≥ θr0

4

(
1 + 1

2
min

(|ηλ1|
θ

,
√|ηλ1|

))T
.

As per our assumptions, λ1 ≤ −√ρ̂ε. Therefore, using the definitions of θ , η and κ ,

min

(|ηλ1|
θ

,
√|ηλ1|

)
≥ min

⎛
⎝
√

ρ̂ε
√

κ

	
,

√√
ρ̂ε

4	

⎞
⎠ = min

(
1√
κ

,
1

2

1√
κ

)
= 1

2

1√
κ

.

Moreover, T = √
κχc = 4

√
κχc/4, so that, using (1 + 1/t)t ≥ 2 for t ≥ 4 and

κ ≥ 1, χc ≥ 4:

‖wT ‖ ≥ θr0
4

(
1 + 1

4
√

κ

)4
√

κ·χc/4
≥ θr0

4
2χc/4 ≥ θ

4

δE

2� f

r√
d
2χ(c/4−1)2χ .

At this point, we finally use the assumption χ ≥ log2
(
d1/2	3/2� f

(ρ̂ε)1/4ε2δ

)
on the 2χ factor:

‖wT ‖ ≥ θ

4

δE

2� f

r√
d
2χ(c/4−1) d

1/2	3/2� f

(ρ̂ε)1/4ε2δ
= 1

1024
χ−8c−122χ(c/4−1) · 4L > 4L .

(The last inequality holds with c ≥ 500 and χ ≥ 1: this fact is straightforward to show

by taking derivatives of 2χ(c/4−1)

χ8c12
with respect to χ and c, and showing those derivatives

are positive.) This concludes the proof by contradiction, from which we deduce that
at least one of E0 − ET or E ′

0 − E ′
T must be larger than or equal to 2E .

123

Foundations of Computational Mathematics

References

1. P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Manifolds. Princeton
University Press, Princeton, NJ, 2008.

2. N. Agarwal, N. Boumal, B. Bullins, and C. Cartis. Adaptive regularization with cubics on manifolds.
Mathematical Programming, 188(1):85–134, 2020.

3. Kwangjun Ahn and Suvrit Sra. From nesterov’s estimate sequence to riemannian acceleration. In Jacob
Abernethy and Shivani Agarwal, editors, Proceedings of Thirty Third Conference on Learning Theory,
volume 125 of Proceedings of Machine Learning Research, pages 84–118. PMLR, 09–12 Jul 2020.

4. F. Alimisis, A.Orvieto, G. Bécigneul, andA. Lucchi. Practical accelerated optimization onRiemannian
manifolds. arXiv:2002.04144, 2020.

5. Foivos Alimisis, Antonio Orvieto, Gary Becigneul, and Aurelien Lucchi. A continuous-time perspec-
tive for modeling acceleration in riemannian optimization. In Silvia Chiappa and Roberto Calandra,
editors, Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statis-
tics, volume 108 of Proceedings of Machine Learning Research, pages 1297–1307. PMLR, 26–28 Aug
2020.

6. Foivos Alimisis, Antonio Orvieto, Gary Becigneul, and Aurelien Lucchi. Momentum improves opti-
mization on riemannian manifolds. In Arindam Banerjee and Kenji Fukumizu, editors, Proceedings of
The 24th International Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings
of Machine Learning Research, pages 1351–1359. PMLR, 13–15 Apr 2021.

7. A.S.Bandeira,N.Boumal, andV.Voroninski.On the low-rank approach for semidefinite programs aris-
ing in synchronization and community detection. In Proceedings of The 29th Conference on Learning
Theory, COLT 2016, New York, NY, June 23–26, 2016.

8. G.C. Bento, O.P. Ferreira, and J.G. Melo. Iteration-complexity of gradient, subgradient and prox-
imal point methods on Riemannian manifolds. Journal of Optimization Theory and Applications,
173(2):548–562, 2017.

9. Ronny Bergmann, Roland Herzog, Maurício Silva Louzeiro, Daniel Tenbrinck, and Jose Vidal-Nunez.
Fenchel duality theory and a primal-dual algorithm on riemannian manifolds. Foundations of Compu-
tational Mathematics, 2021.

10. R. Bhatia. Positive definite matrices. Princeton University Press, 2007.
11. S. Bhojanapalli, B. Neyshabur, and N. Srebro. Global optimality of local search for low rank matrix

recovery. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in
Neural Information Processing Systems 29, pages 3873–3881. Curran Associates, Inc., 2016.

12. N. Boumal. An introduction to optimization on smooth manifolds. Available online, 2020.
13. N. Boumal, P.-A. Absil, and C. Cartis. Global rates of convergence for nonconvex optimization on

manifolds. IMA Journal of Numerical Analysis, 39(1):1–33, 2018.
14. N. Boumal, V. Voroninski, and A.S. Bandeira. The non-convex Burer–Monteiro approach works on

smooth semidefinite programs. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
editors, Advances in Neural Information Processing Systems 29, pages 2757–2765. Curran Associates,
Inc., 2016.

15. J.C. Carmon, Y nd Duchi, O. Hinder, and A. Sidford. “convex until proven guilty”: Dimension-free
acceleration of gradient descent on non-convex functions. In Proceedings of the 34th International
Conference on Machine Learning - Volume 70, ICML’17, pages 654–663. JMLR.org, 2017.

16. Y. Carmon, J.C. Duchi, O. Hinder, and A. Sidford. Lower bounds for finding stationary points I.
Mathematical Programming, 2019.

17. Y. Carmon, J.C. Duchi, O. Hinder, and A. Sidford. Lower bounds for finding stationary points II:
first-order methods. Mathematical Programming, September 2019.

18. Yair Carmon and John C Duchi. Analysis of Krylov subspace solutions of regularized nonconvex
quadratic problems. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems 31, pages 10728–10738.
Curran Associates, Inc., 2018.

19. C. Cartis, N.I.M. Gould, and P. Toint. Adaptive cubic regularisation methods for unconstrained
optimization. Part II: worst-case function- and derivative-evaluation complexity. Mathematical Pro-
gramming, 130:295–319, 2011.

20. C. Criscitiello and N. Boumal. Efficiently escaping saddle points on manifolds. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 32, pages 5985–5995. Curran Associates, Inc., 2019.

123

http://arxiv.org/abs/2002.04144

Foundations of Computational Mathematics

21. J.X. da Cruz Neto, L.L. de Lima, and P.R. Oliveira. Geodesic algorithms in Riemannian geometry.
Balkan Journal of Geometry and Its Applications, 3(2):89–100, 1998.

22. Olivier Devolder, François Glineur, and Yurii Nesterov. First-order methods with inexact oracle: the
strongly convex case. LIDAM Discussion Papers CORE 2013016, Universite catholique de Louvain,
Center for Operations Research and Econometrics (CORE), 2013.

23. O.P. Ferreira and B.F. Svaiter. Kantorovich’s theorem on Newton’s method in Riemannian manifolds.
Journal of Complexity, 18(1):304–329, 2002.

24. R. Ge, J.D. Lee, and T. Ma. Matrix completion has no spurious local minimum. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information
Processing Systems 29, pages 2973–2981. Curran Associates, Inc., 2016.

25. R.E. Greene. Complete metrics of bounded curvature on noncompact manifolds. Archiv der Mathe-
matik, 31(1):89–95, 1978.

26. Linus Hamilton and Ankur Moitra. No-go theorem for acceleration in the hyperbolic plane. arXiv:
2101.05657, 2021.

27. J. Hu, X. Liu, Z.-W. Wen, and Y.-X. Yuan. A brief introduction to manifold optimization. Journal of
the Operations Research Society of China, 8(2):199–248, 2020.

28. C. Jin, P. Netrapalli, and M.I. Jordan. Accelerated gradient descent escapes saddle points faster than
gradient descent. In S. Bubeck, V. Perchet, and P. Rigollet, editors, Proceedings of the 31st Conference
on Learning Theory, volume 75 of Proceedings of Machine Learning Research, pages 1042–1085.
PMLR, 06–09 Jul 2018.

29. H. Karcher. A short proof of Berger’s curvature tensor estimates. Proceedings of the American Math-
ematical Society, 26(4):642–642, 1970.

30. Kenji Kawaguchi. Deep learning without poor local minima. In D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 29.
Curran Associates, Inc., 2016.

31. J.M. Lee. Introduction to Smooth Manifolds, volume 218 ofGraduate Texts in Mathematics. Springer-
Verlag New York, 2nd edition, 2012.

32. J.M. Lee. Introduction to Riemannian Manifolds, volume 176 of Graduate Texts in Mathematics.
Springer, 2nd edition, 2018.

33. M. Lezcano-Casado. Trivializations for gradient-based optimization on manifolds. In Advances in
Neural Information Processing Systems (NeurIPS), pages 9157–9168, 2019.

34. Mario Lezcano-Casado. Adaptive andmomentummethods onmanifolds through trivializations. arXiv:
2010.04617, 2020.

35. Mario Lezcano-Casado. Curvature-dependant global convergence rates for optimization on manifolds
of bounded geometry. arXiv: 2008.02517, 2020.

36. Song Mei, Theodor Misiakiewicz, Andrea Montanari, and Roberto Imbuzeiro Oliveira. Solving sdps
for synchronization and maxcut problems via the grothendieck inequality. In Satyen Kale and Ohad
Shamir, editors, Proceedings of the 2017 Conference on Learning Theory, volume 65 of Proceedings
of Machine Learning Research, pages 1476–1515. PMLR, 07–10 Jul 2017.

37. M. Moakher. A differential geometric approach to the geometric mean of symmetric positive-definite
matrices. SIAM J. Matrix Anal. Appl., 26(3):735–747, 2005.

38. M.Moakher and P.G. Batchelor. Symmetric Positive-DefiniteMatrices: FromGeometry to Applications
and Visualization, pages 285–298. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

39. Y. Nesterov and B.T. Polyak. Cubic regularization of Newton method and its global performance.
Mathematical Programming, 108(1):177–205, 2006.

40. Y. E. Nesterov. A method of solving a convex programming with convergence rate o(1/k2). Soviet
Mathematics Doklady, 2(27):372–376, 1983.

41. B. O’Neill. Semi-Riemannian geometry: with applications to relativity, volume 103. Academic Press,
1983.

42. Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv:1609.04747, 2016.
43. S. Sra and R. Hosseini. Conic geometric optimization on the manifold of positive definite matrices.

SIAM Journal on Optimization, 25(1):713–739, 2015.
44. Y. Sun, N. Flammarion, and M. Fazel. Escaping from saddle points on Riemannian manifolds. In

H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems 32, pages 7276–7286. Curran Associates, Inc., 2019.

45. N. Tripuraneni, N. Flammarion, F. Bach, and M.I. Jordan. Averaging stochastic gradient descent on
Riemannian manifolds. In Proceedings of The 31st Conference on Learning Theory, COLT, 2018.

123

http://arxiv.org/abs/2101.05657
http://arxiv.org/abs/2010.04617
http://arxiv.org/abs/2008.02517
http://arxiv.org/abs/1609.04747

Foundations of Computational Mathematics

46. S. Waldmann. Geometric wave equations. arXiv:1208.4706, 2012.
47. H. Zhang and S. Sra. First-order methods for geodesically convex optimization. In Conference on

Learning Theory, pages 1617–1638, 2016.
48. H. Zhang and S. Sra. An estimate sequence for geodesically convex optimization. In S. Bubeck,

V. Perchet, and P. Rigollet, editors,Proceedings of the 31st ConferenceOn Learning Theory, volume 75
of Proceedings of Machine Learning Research, pages 1703–1723. PMLR, 06–09 Jul 2018.

49. Y. Zhang, Q. Qu, and J. Wright. From symmetry to geometry: Tractable nonconvex problems.
arXiv:2007.06753, 2020.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1208.4706
http://arxiv.org/abs/2007.06753

	An Accelerated First-Order Method for Non-convex Optimization on Manifolds
	Abstract
	1 Introduction
	1.1 Main Geometry Results
	1.2 Main Optimization Results
	1.3 Related Literature

	2 Riemannian Tools and Regularity of Pullbacks
	3 Assumptions and parameters for TAGD and PTAGD
	4 Accelerated Gradient Descent in a Ball of a Tangent Space
	5 First-Order Critical Points
	6 Second-Order Critical Points
	7 Conclusions and Perspectives
	A Parallel Transport vs Differential of Exponential Map
	B Controlling the Initial Acceleration c''(0)
	C Lemma About Parameter Relations
	D Proofs from Sect. 4 About AGD in a Ball of a Tangent Space

	E Supporting Lemmas

	F Proofs from Section 5 About TAGD
	F.1 Proof of Proposition 5.3
	F.2 Proofs of Lemmas F.1 and F.2

	G Proofs from Sect. 6 About PTAGD
	G.1 Proof of Proposition 6.2
	G.2 Proof of Lemma G.1

	References

