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TYPICALITY RESULTS FOR WEAK SOLUTIONS OF THE

INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

Maria Colombo, Luigi De Rosa* and Massimo Sorella

Abstract. In this work we show that, in the class of L∞((0, T );L2(T3)) distributional solutions of
the incompressible Navier-Stokes system, the ones which are smooth in some open interval of times are
meagre in the sense of Baire category, and the Leray ones are a nowhere dense set.
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1. Introduction

In the last 15 years, the fundamental results of De Lellis and Székelyhidi [11, 12, 14] initiated a research
line which allowed to build nonsmooth distributional solutions of various equations in fluid dynamics with
increasingly many regularity properties. All these results share a common approach called convex integration,
which in this context points roughly speaking to build solutions of a nonlinear PDE by an iterative procedure,
where at each step the constructed functions solve the equation up to a smaller and smaller error, which is
corrected each time by means of the nonlinearity of the PDE. This lead to important results such as the proof of
the Onsager conjecture by Isett [3, 17] and the construction of nonsmooth distributional solutions to the Navier-
Stokes equations by Buckmaster and Vicol [2, 4, 8]. Related recent results were obtained for the hypodissipative
Navier-Stokes equations [9, 15] , the surface-quasigeostrophic equation [6, 7, 18] and the transport equation
[1, 20–22] (see also the references quoted therein).

A natural question is then “how many” such distributional solutions can be found, compared to the smooth
ones. In this paper we investigate this question in terms of Baire category. We focus on the Navier-Stokes system
in the spatial periodic setting T3 = R3/Z3

{
∂tv + div(v ⊗ v) +∇p−∆v = 0
div v = 0

in T3 × [0, T ] (1.1)

where v : T3 × [0, T ]→ R3 represents the velocity of an incompressible fluid, p : T3 × [0, T ]→ R is the hydro-
dynamic pressure, with the constraint

�
T3 p dx = 0.
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integration, Baire category.
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We define the following complete metric space

D :=
{
v ∈ L∞((0, T );L2(T3)) : v is a distributional solution of (1.1)

}
,

endowed with the metric dD(u, v) := ‖u− v‖L∞t (L2
x), and its subsets

L := {v ∈ D : v is a Leray–Hopf solution of (1.1)}
S :=

{
v ∈ D : v ∈ C∞(T3 × I) for some open interval I ⊂ (0, T )

}
.

We refer to Section 2.1 for the definitions of distributional and Leray-Hopf solutions. Our main result is the
following

Theorem 1.1. The set L is nowhere dense in D while the set S is meagre in D.

We recall that L is nowhere dense in D if and only if the closure of L has empty interior. In particular, L is
meagre in D.

A partial answer to the question of “how many” distributional solutions there are, compared to the smooth
ones, was given before by the so called “h-principle”, a term introduced by Gromov in the context of isometric
embeddings. In the context of the Euler equations (see for instance [13], Thm. 6), it states that arbitrarily close
in the weak L2 topology to a (suitably defined) strict subsolution one can build an exact distributional solution.
In a slightly different direction, it has been shown in [10] that a dense set of initial data admits infinitely many
distributional solutions with the same kinetic energy, and in [2] that distributional solutions are nonunique for
any initial datum in L2 for the Navier-Stokes system. Previously, convex integration was also used in [16] to
characterize typical energy profiles for the Euler equations in terms of Hölder spaces, which requires to introduce
a suitable metric space to deal with the right energy regularity.

2. The iterative proposition and proof of the main theorem

The proof of Theorem 1.1 is based on an iterative proposition, typical of convex integration schemes and
analogous to [4] of Section 7 and [2] of Section 2; in analogy with the latter, also here we use intermittent jets
(see Sect. 3 below) as the fundamental building blocks. At difference to the previously cited works, we need
to keep track of the kinetic energy in some intervals of time along the iteration in such a way to be able to
prescribe it in the limit, and we also need to make sure with a simple use of time cutoffs that the support of the
perturbation is localized in a converging sequence of enlarging sets. On the contrary, we do not use the cutoffs
to obtain a small set of singular times for our limit, as was done in [2].

In turn the proof of Theorem 1.1 follows from the iterative proposition in this way: to show that the subset
L is nowhere dense in the metric space D, we prove that for every v ∈ L there are arbitrarily close elements
which belong to D \ L. In Step 1 of the proof we reduce to such statement, where we choose elements in D \ L
by imposing locally increasing kinetic energy.

The method presented here to prove Theorem 1.1 is quite general in contexts where the convex integration
scheme works and should apply also to other contexts.

2.1. Basic notations and definitions

We recall that a distributional solution of the system (1.1) is a vector field v ∈ L2(T3 × (0, T );R3) such that

� T

0

�
T3

(v · ∂tϕ+ v ⊗ v : ∇ϕ+ v ·∆ϕ) dxdt = 0,
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for all ϕ ∈ C∞c (T3 × (0, T );R3) such that divϕ = 0. The pressure does not appear in the distributional
formulation because it can be recovered as the unique 0-average solution of

−∆p = div div(v ⊗ v). (2.1)

A Leray Hopf solution of the system (1.1) is a vector field v ∈ L2((0, T );H1(T3)) ∩ L∞((0, T );L2(T3)) and
for a.e. s ≥ 0 and for all t ∈ [s, T ] the following inequality holds

�
T3

|v(x, t)|2

2
dx+

� t

s

�
T3

|∇v(x, τ)|2dxdτ ≤
�
T3

|v(x, s)|2

2
dx. (2.2)

It is a classical result by Leray that Leray-Hopf solutions are smooth outside a closed set of times of Hausdorff
dimension 1/2, see for instance [19].

2.2. The Navier–Stokes–Reynolds system

In this section, for every integer q ≥ 0 we will highlight the construction of a solution (vq, pq, R̊q) to the
Navier-Stokes-Reynolds system {

∂tvq + div(vq ⊗ vq) +∇pq −∆vq = div R̊q
div vq = 0

(2.3)

where the Reynolds stress R̊q is assumed to be a trace-free symmetric matrix valued function. Indeed for any

matrix A we will use the notation Å to remark the traceless property.

2.3. Parameters

Define the frequency parameter λq → +∞ and the amplitudes parameter δq → 0+ by

λq = 2πa(bq),

δq = λ−2β
q .

The sufficiently large (universal) parameter b is free, and so is the sufficiently small parameter β = β(b). The
parameter a is chosen to be a sufficiently large multiple of the geometric constant n∗ defined in Lemma 3.1.
Moreover, we fix another parameter useful to prescribe a precise kinetic energy

ε1 :=

(
ε

supξ∈Λ ‖γξ‖C0 |Λ|C04(2π)3

)2

, (2.4)

where supξ∈Λ ‖γξ‖C0 , |Λ|, C0 are all universal constants independent on q, more precisely: γξ are functions
defined in Lemma 3.1, Λ is the finite set defined in Lemma 3.1, C0 is the constant given by Lemma A.3, ε is a
free constant that will be used in the proof of Theorem 1.1.

Moreover, we will use the intermittent jets (defined in Sect. 3) to define the new velocity increment at step
q + 1.

2.4. Inductive estimates and iterative proposition

We define new “slow” parameters, for all q ≥ 0
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sq :=
(s

2

)q+1

, (2.5)

Sq :=

q∑
i=0

si, (2.6)

for some fixed parameter s > 0. By choosing a ≥ a0(s) for a sufficiently large a0(s), we will guarantee that

s−1
q+1 � λq,

indeed s−1
q is a slow parameter compared to λq. Moreover we define the local time interval, for some small

number s > 0, for all q ≥ 0

Iq := (t0 − Sq, t0 + Sq), (2.7)

for some t0 ∈ (0, 1) and s = s(t0) > 0 sufficiently small such that

B2s(t0) := (t0 − 2s, t0 + 2s) ⊂ [0, 1].

Observe that Iq ⊂ B2s(t0) for all q ≥ 0.
In the following, if not specified differently, every space norm is taken with respect to the sup in time localized

in the interval B2s(t0), i.e. for example: if v ∈ L∞t Lpx, we denote ‖v‖Lp the quantity supt∈B2s(t0) ‖v(·, t)‖Lpx . We
use . as an inequality that holds up to a constant independent on q.

For q ≥ 0, we want to guarantee

‖vq‖L2 ≤ 2‖v0‖L2 − ε

4π
δ1/2
q , (2.8a)

‖R̊q‖L1 ≤ λ−3ζ
q δq+1, (2.8b)

‖vq‖C1
x,t(T3×B2s(t0)) ≤ λ4

q, (2.8c)

and moreover1

δq+1

δ1λ
ζ/2
q

≤ e(t)−
�
T3

|vq(x, t)|2dx ≤ δq+1ε1
δ1

, for all t ∈ I0, (2.9a)

SuppT (R̊q) ⊂ Iq, (2.9b)

SuppT (vq − vq−1) ⊂ Iq, for all q ≥ 1, (2.9c)

which are new with respect to the convex integration scheme proposed by Buckmaster and Vicol in [4] of
Section 7.

Proposition 2.1 (Iterative Proposition). Let e : [0, T ]→ (0,∞) be a strictly positive smooth function. For every
ε, s > 0 and t0 ∈ (0, T ) there exist b > 1, β(b) > 0, ζ > 0, a0 = a0(β, b, ζ, e, ε, s) such that for any a ≥ a0 which
is a multiple of the geometric constant n∗ of Lemma 3.1, the following holds. Let (vq, pq, R̊q) be a smooth triple
solving the Navier-Stokes-Reynolds system (2.3) in T3 ×B2s(t0) satisfying the inductive estimates (2.8)–(2.9).

1Here SuppT (u) denotes the closure of {t ∈ (0, 1) : ∃x ∈ T3 u(x, t) 6= 0}.
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Then there exists a second smooth triple (vq+1, pq+1, R̊q+1) which solves the Navier-Stokes-Reynolds system
in T3 ×B2s(t0) (2.3), satisfies the estimates (2.8) and (2.9) at level q + 1. In addition, we have that

‖vq+1 − vq‖L∞(B2s(t0);L2(T3)) ≤
ε

δ
1/2
1 4π

δ
1/2
q+1. (2.10)

2.5. Proof of Theorem 1.1

Step 1. Let v ∈ L∞((0, T );L2(T3)) be a distributional solution of (1.1), such that v ∈ C∞(T3 × I), for some
open interval I ⊂ (0, T ). Then, we prove the following claim: for every ε > 0, there exists a distributional solution
vε ∈ L∞((0, T );L2(T3)) of (1.1) such that

‖vε − v‖L∞((0,T );(L2(T3)) < ε (2.11)

and the kinetic energy of vε is strictly increasing in a sub-interval of (0, T ).
Let t0 ∈ I and choose s > 0 such that B2s(t0) ⊂ I. Let g ∈ C∞([0, T ]) be such that

ε1
2
≤ g ≤ ε1 g′(t0) > sup

t∈(0,1)

∣∣∣∣ d

dt

�
T3

|v(x, t)|2dx

∣∣∣∣ ,
and consider the kinetic energy (increasing in a neighbourhood of t0)

e(t) :=

�
T3

|v(x, t)|2dx+ g(t). (2.12)

Since the function v is smooth in T3 × I we consider the smooth solution p, with zero average, in T3 × I of
(2.1), and define the starting triple (v0, p0, R0) := (v, p, 0).

Clearly (v, p, 0) satisfies the estimates (2.8) and (2.9) at step q = 0, up to enlarge a0
2, thus we can apply

Proposition 2.1 starting from the triple (v0, p0, R0). Hence, we get a sequence {vq}q∈N that satisfies (2.8), (2.9)
and moreover, from (2.10) we get∑

q≥0

‖vq+1 − vq‖L2 ≤ ε

δ
1/2
1 4π

∑
q≥0

δ
1/2
q+1 ≤

ε

δ
1/2
1 4π

∑
q≥0

(a−βb)q+1 ≤ ε

2(1− a−βb)
< ε (2.13)

where the last holds if a0 is sufficiently large in order to have a−βb < 1/2. Hence, there exists the limit
ṽε := limq→∞ vq, in L∞(B2s(t0);L2(T3)) such that ‖ṽε − v‖L∞(B2s(t0);L2(T3)) < ε and it is a distributional

solution of the Navier-Stokes equations in B2s(t0) × T3, because by (2.8b) we have that limq→∞ R̊q = 0 in
L∞(B2s(t0);L1(T3)). One can verify that the vector field

vε =

{
ṽε in B2s(t0)
v in [0, T ] \B2s(t0),

still solves (1.1) in [0, T ] × T3 and satisfies (2.11). Moreover the kinetic energy of vε is increasing in a neigh-
bourhood of t0 thanks to (2.9a) and (2.12).

Step 2. We conclude the proof of Theorem 1.1.

2To be precise we considered v−1 = v0.
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Let v0 be a distributional solution which is smooth in a subinterval of times and ε > 0; for instance, any Leray
solution can be taken as v0 since they are smooth outside a closed set of H1/2 measure 0. We apply the Step 1
and get a distributional solution of Navier-Stokes vε ∈ L∞((0, T );L2(T3)) such that ‖vε− v1‖L∞((0,T );L2(T3)) < ε
with increasing kinetic energy in a sub-interval of [0, T ] and therefore such that vε ∈ D \ L.

Since L is closed with respect to L∞L2 convergence, we deduce that the interior of L which coincides with
the interior of L, is empty.

To show that S is a meagre set in D, we rewrite it as

S ⊂
⋃
s∈Q+

⋃
t∈(0,1)∩Q

{v ∈ D : v ∈ C∞((t− s, t+ s)× T3)},

and we notice that from Step 1 the right-hand side is a countable union of nowhere dense sets, hence it is
meagre.

3. Intermittent jets

In this section we recall from [4] the definition and the main properties of intermittent jets we will use in the
convex integration scheme.

3.1. A geometric lemma

We start with a geometric lemma. A proof of the following version, which is essentially due to De Lellis and
Székelyhidi Jr., can be found in Lemma 4.1 of [2]. This lemma allows us to reconstruct any symmetric 3 × 3
stress tensor R in a neighbourhood of the identity as a linear combination of a particular basis.

Lemma 3.1. Denote by Bsym1/2 (Id) the closed ball of radius 1/2 around the identity matrix in the space of sym-

metric 3×3 matrices. There exists a finite set Λ ⊂ S2∩Q3 such that there exist C∞ functions γξ : Bsym1/2 (Id)→ R
which obey

R =
∑
ξ∈Λ

γ2
ξ (R)ξ ⊗ ξ,

for every symmetric matrix R satisfying |R− Id| ≤ 1/2. Moreover for each ξ ∈ Λ, let use define Aξ ∈ S2 ∩Q3 to
be an orthogonal vector to ξ. Then for each ξ ∈ Λ we have that {ξ, Aξ, ξ ×Aξ} ⊂ S2 ∩Q3 form an orthonormal
basis for R3. Furthermore, since we will periodize functions, let n∗ be the l.c.m. of the denominators of the
rational numbers ξ, Aξ and ξ ×Aξ, such that

{n∗ξ, n∗Aξ, n∗ξ ×Aξ} ⊂ Z3.

3.2. Vector fields

Let Φ : R2 → R be a smooth function with support contained in a ball of radius 1. We normalize Φ such that
φ = −∆Φ obeys

1

4π2

�
R2

φ2(x1, x2)dx1dx2 = 1. (3.1)
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We remark that by definition φ has zero average. Define ψ : R → R to be a smooth, zero average function
with support in the ball of radius 1 satisfying

 
T
ψ2(x3)dx3 =

1

2π

�
R
ψ2(x3)dx3 = 1.

We define the parameters r⊥, r|| and µ as follows

r⊥ := r⊥,q+1 := λ
−6/7
q+1 (2π)−1/7, (3.2a)

r|| := r||,q+1 := λ
−4/7
q+1 , (3.2b)

µ := µq+1 := λ
9/7
q+1(2π)1/7. (3.2c)

We define φr⊥ ,Φr⊥ , and ψr|| to be the rescaled cut-off functions

φr⊥(x1, x2) :=
1

r⊥
φ

(
x1

r⊥
,
x2

r⊥

)
,

Φr⊥(x1, x2) :=
1

r⊥
Φ

(
x1

r⊥
,
x2

r⊥

)
,

ψr||(x3) :=

(
1

r||

)1/2

ψ

(
x3

r||

)
.

With this rescaling we have φr⊥ = −r2
⊥∆Φr⊥ . Moreover the functions φr⊥ and Φr⊥ are supported in the ball

of radius r⊥ in R2, ψr|| is supported in the ball of radius r|| in R and we keep the normalization ‖φr⊥‖2L2 = 4π2

and ‖ψr||‖2L2 = 2π.
We then periodize the previous functions abusing the notation

φr⊥(x1 + 2πn, x2 + 2πm) = φr⊥(x1, x2),

Φr⊥(x1 + 2πn, x2 + 2πm) = Φr⊥(x1, x2),

ψr||(x3 + 2πn) = ψr||(x3).

For every ξ ∈ Λ (recalling the notations in Lem. 3.1), we introduce the functions defined on T3 × R

ψξ(x, t) := ψr||(n∗r⊥λq+1(x · ξ + µt)), (3.3a)

Φξ(x) := Φr⊥(n∗r⊥λq+1(x− αξ) ·Aξ, n∗r⊥λq+1(x− αξ) · (ξ ×Aξ)), (3.3b)

φξ(x) := φr⊥(n∗r⊥λq+1(x− αξ) ·Aξ, n∗r⊥λq+1(x− αξ) · (ξ ×Aξ)), (3.3c)

where αξ are shifts which ensure that the functions {Φξ} have mutually disjoint support.
In order for such shifts αξ to exist, it is sufficient to assume that r⊥ is smaller than a universal constant,

which depends only on the geometry of the finite set Λ.
It is important to note that the function ψξ oscillates at frequency proportional to r⊥r

−1
|| λq+1, whereas φξ

and Φξ oscillate at frequency proportional to λq+1.

Definition 3.2. The intermittent jets are vector fields Wξ : T3 × R→ R3 defined as

Wξ(x, t) := ξψξ(x, t)φξ(x).
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If σ := λq+1r⊥n∗ ∈ N, thanks to the choice of n∗ in Lemma 3.1 we have that Wξ has zero average in T3 and

is
(T
σ

)3
periodic. Moreover, by our choice of αξ, we have that

Wξ ⊗Wξ′ ≡ 0,

whenever ξ 6= ξ′ ∈ Λ, i.e. {Wξ}ξ∈Λ have mutually disjoint support. The essential identities obeyed by the
intermittent jets are

‖Wξ‖pLp(T3) =
1

8π3
‖ψξ‖pLp(T3)‖φξ‖

p
Lp(T3)

div(Wξ ⊗Wξ) = 2(Wξ · ∇ψξ)φξξ =
1

µ
∂t(φ

2
ξψ

2
ξξ) (3.4)

 
T3

Wξ ⊗Wξ = ξ ⊗ ξ,

where the last identity will be useful to apply Lemma 3.1.

We denote by P6=0 the operator which projects a function onto its non-zero frequencies P6=0f = f −
�
T3 f , and

by PH we will denote the usual Helmholtz projector onto divergence-free vector fields, PHf = f −∇(∆−1 div f).
Motivated by (3.4), we define

W
(t)
ξ (x, t) := − 1

µ
PHP 6=0φ

2
ξ(x)ψ2

ξ (x, t)ξ. (3.5)

Lastly, we note that the intermittent jets Wξ are not divergence free, then we introduce the following two

functions W
(c)
ξ , Vξ : T3 × R→ R3

Vξ(x, t) :=
1

n∗λ2
q+1

ξψξ(x, t)Φξ(x),

W
(c)
ξ (x, t) :=

1

n∗λ2
q+1

∇ψξ(x, t)× (∇× Φξ(x)ξ).

Using ∆Φξ = −λ2
q+1n

2
∗φξ we compute the intermittent jets in terms of Vξ

λ2
q+1n

2
∗Wξ = λ2

q+1n
2
∗ξφξψξ = −∆Φξψξξ

= ∇× (ψξ∇× (Φξξ))−∇ψξ × (∇× Φξξ)

= ∇×∇× (ψξΦξξ)−∇× (∇ψξ × Φξξ)−∇ψξ × (∇× Φξξ)

= ∇×∇× (ψξΦξξ)−∇ψξ × (∇× Φξξ)

= λ2
q+1n

2
∗

(
∇×∇× Vξ −W (c)

ξ

)
, (3.7)

from which we deduce

div(Wξ +W
(c)
ξ ) ≡ 0.

Moreover, since r⊥ � r||, the correction W c
ξ is comparatively small in L2 with respect to Wξ, more precisely

we state the following lemma (see [5], Sect. 7.4).
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Lemma 3.3. For any N,M ≥ 0 and p ∈ [1,∞] the following inequalities hold

‖∇N∂Mt ψξ‖Lp . r
1/p−1/2
||

(
r⊥λq+1

r||

)N (
r⊥λq+1µ

r||

)M
(3.8a)

‖∇Nφξ‖Lp + ‖∇NΦξ‖Lp . r
2/p−1
⊥ λNq+1 (3.8b)

‖∇N∂Mt Wξ‖Lp . r
2/p−1
⊥ r

1/p−1/2
|| λNq+1

(
r⊥λq+1µ

r||

)M
(3.8c)

r||

r⊥
‖∇N∂Mt W

(c)
ξ ‖Lp . r

2/p−1
⊥ r

1/p−1/2
|| λNq+1

(
r⊥λq+1µ

r||

)M
(3.8d)

λ2
q+1‖∇N∂Mt Vξ‖Lp . r

2/p−1
⊥ r

1/p−1/2
|| λNq+1

(
r⊥λq+1µ

r||

)M
. (3.8e)

The implicit constants are independent of λq+1, r⊥, r||, µ.

4. Proof of the iterative proposition

Given (vq, pq, R̊q) a triple solving the Navier-Stokes-Reynolds system (2.3) in T3 × B2s(t0) satisfying the

inductive estimates (2.8) and (2.9) at step q, we have to construct (vq+1, pq+1, R̊q+1) which still solves the
Navier-Stokes-Reynolds system (2.3) in T3 × B2s(t0) and satisfies the estimates (2.8) and (2.9) at step q + 1
and the estimate (2.10) holds.

4.1. Mollification

In order to avoid a loss of derivatives in the iterative scheme, we replace vq by a mollified velocity field ṽ`.
For this purpose we choose a small parameter ` ∈ (0, 1) which lies between λ−1

q and λ−1
q+1 and that satisfies

`λ4
q ≤ λ−αq+1 (4.1a)

`−1 ≤ λ2α
q+1, (4.1b)

where 0 < α� 1. This can be done since αb > 4.
For instance, we may define ` as the geometric mean of the two bounds imposed before

` = λ
−3α/2
q+1 λ−2

q .

With this choice we also have that `� sq+1. Let {θ`}`>0 and {ϕ`}`>0 be two standard families of Friedrichs

mollifiers on R3 (space) and R (time) respectively. We define the mollification of vq and R̊q in space and time,
at length scale ` by

v` := (vq ∗x θ`) ∗t ϕ`,

R̊` := (R̊q ∗x θ`) ∗t ϕ`,

where we possibly extend to 0 the definition of vq outside B2s(t0). We have that v` solves{
∂tv` + div(v` ⊗ v`) +∇p` − ν∆v` = div(R̊` + R̊com)
div v` = 0,

(4.2)
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where R̊com is defined by

R̊com = (v`⊗̊v`)− ((vq⊗̊vq) ∗x θ`) ∗t ϕ`.

We introduce the following notations Uy(Iq) := (t0 − Sq − y, t0 + Sq + y) and Ĩq := U sq+1
2

(Iq). Let η ∈
C∞c (Ĩq;R+) such that

η(t) ≡ 1 for all t ∈ Iq,

‖η‖CN ≤ C
(

2

s

)Nq
,

Moreover, we define

ṽ` = ηv` + (1− η)vq.

Note that ṽ` satisfies

SuppT (ṽ` − vq) ⊂ Ĩq ⊂ Iq+1,

that will be crucial in order to guarantee (2.9c) at step q + 1.
Moreover, using (4.2) and that (vq, pq, R̊q) is a Navier–Stokes–Reynolds solution, we have that ṽ` satisfies

∂tṽ` + div(ṽ` ⊗ ṽ`)−∆ṽ` = (v` − vq)∂tη + η(1− η)div(v`⊗̊(vq − v`))
+ η(1− η)div(vq⊗̊(v` − vq))
+ ηdiv(R` +Rcom) + (1− η)div(R̊q)−∇π`,

for some pressure π`.
We recall the inverse divergence operator from [12].

Definition 4.1. We define the Reynolds operator R : C∞(T3;R3)→ C∞(T3;R3) as

Rv :=
1

4
(∇PH∆−1v + (∇PH∆−1v)T ) +

3

4
(∇∆−1v + (∇∆−1v)T )− 1

2
div (∆−1vId),

for every smooth v with zero average. If v ∈ C∞(T3;R3) we define Rv := R(v −
�
T3 v).

We have the following

Proposition 4.2 (R = div−1). For any v ∈ C∞(T3;R3) with zero average we have

– Rv(x) is a symmetric traceless matrix, for each x ∈ T3,
– divRv = v −

�
T3 v,

– for p ∈ (1,∞), R can be extended to a continuous operator from Lp to Lp,
– for p ∈ (1,∞), R∇ can be extended to a continuous operator from Lp to Lp.

Using (2.9b) and that η(t) ≡ 1 on Iq, we have

(1− η)div(R̊q) ≡ 0.
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Thus ṽ` solves

∂tṽ` + div(ṽ` ⊗ ṽ`)−∆ṽ` +∇π` = div(R` +Rcom +Rloc),

where R` = ηR̊`, Rcom = ηR̊com and

Rloc := η(1− η)v`⊗̊(vq − v`) + η(1− η)vq⊗̊(v` − vq) +R ((v` − vq)∂tη) .

A simple bound on v` − vq on L∞t L
2 is given by

‖v` − vq‖L2 . `‖vq‖C1 ≤ `λ4
q �

1

10
λ−4ζ
q+1δq+2,

where the last holds if 4ζ + 2βb < α. Then using the previous bound, (2.8a) and that ‖R‖L2→L2 . 1 by
Proposition 4.2, we have

‖Rcom‖L1 + ‖Rloc‖L1 � 1

3
λ−3ζ
q+1δq+2,

where we used that λζq+1 � C
(

2
s

)q
, unless to possibly enlarge a0(s, ζ). Note that we also have the property on

the compact supports of the errors

Supp(R`) ∪ Supp(Rcom) ∪ Supp(Rloc) ⊂ Ĩq ⊂ Iq+1.

The mollified functions satisfy

‖ṽ`‖CNx,t(T3×B2s(t0)) . λ4
q`
−N+1 . λ−αq `−N , N ≥ 1, (4.3a)

‖ṽ`‖L2 ≤ ‖vq‖L2 + ‖vq − v`‖L2 ≤ 2‖v0‖L2 − δ1/2
q + λ−αq , (4.3b)

‖ṽ` − vq‖L2 . `λ4
q ≤ λ−αq+1, (4.3c)

‖R`‖L1 ≤ λ−3ζ
q δq+1, (4.3d)

‖R`‖CNx,t . λ−3ζ
q δq+1`

−4−N , N ≥ 0. (4.3e)

We are now ready to go to the perturbation step, in which we will add a small perturbation to ṽ` in order to
cancel the bigger error R` proving (2.8b), (2.9b) and satisfying all the other estimates (2.8), (2.9) and (2.10).

4.2. Amplitudes

Here we define the amplitudes of the perturbation, namely the functions needed to apply Lemma 3.1 and
cancel the Reynolds error R`. We define χ : R+ → R+, a smooth function such that

χ(z) :=

{
1 if 0 ≤ z ≤ 1

z if z ≥ 2

and z ≤ 2χ(z) ≤ 4z for z ∈ (1, 2) and χ(z) ≥ 1 for all z ∈ [0,∞). We define for all t ∈ I0 = [t0 − s
2 , t0 + s

2 ]

ρ(t) :=
1

3
�
T3 χ

(
|R`(x,t)|4λζqδ1

δq+1

)
dx

(
e(t)−

�
T3

|ṽ`(x, t)|2dx− δq+2

2

)
(4.4)
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and with a little abuse of notation we define

ρ(t) := ρ
(
t0 +

s

2

)
for all t > t0 +

s

2
,

ρ(t) := ρ
(
t0 −

s

2

)
for all t < t0 −

s

2
.

Now, we consider another local cut-off in time η̃ ∈ C∞c (Iq+1;R+) such that

η̃(t) ≡ 1 for all t ∈ Ĩq,

‖η̃‖CN ≤ C
(

2

s

)Nq
,

and we define

ρ(x, t) := η̃2(t)ρ(t)χ

(
|R`(x, t)|4λζqδ1

δq+1

)
. (4.5)

Lemma 4.3. The following estimates hold

δq+1

δ1λ
ζ
q

≤ ρ(t) ≤ ε1δq+1

δ1
, (4.6)∣∣∣∣R`(x, t)ρ(x, t)

∣∣∣∣ ≤ 1

2
, (4.7)

‖ρ‖L1 ≤ 16π3ε1
δq+1

δ1
. (4.8)

Proof. Note that∣∣‖vq‖2L2 − ‖ṽ`‖2L2

∣∣ ≤ ‖vq − ṽ`‖L2‖vq + ṽ`‖L2 . `‖vq‖C1‖vq‖L2 . `λ4
q ≤ λ−ζq δq+1, (4.9)

where in the last inequality we used that 2β + ζ
b < α. Moreover, thanks to the construction of χ and (2.8b) we

have

(2π)3 ≤
�
T3

χ

(
|R`(x, t)|4λζqδ1

δq+1

)
dx ≤ 2(2π)3. (4.10)

Thus, thanks to (2.9a), (4.9) and (4.10) we get

ρ(t) ≤ 1

3 · (2π)3

(
e(t)−

�
T3

|vq(x, t)|2dx

)
+

1

3 · (2π)3

(�
T3

|vq(x, t)|2dx−
�
T3

|ṽ`(x, t)|2dx− δq+2

2

)
≤ 1

3 · (2π)3

(
2
δq+1ε1
δ1

)
≤ ε1δq+1

δ1
.

and similarly

ρ(t) ≥ 1

6 · (2π)3

(
e(t)−

�
T3

|vq(x, t)|2dx

)
+

1

6 · (2π)3

(�
T3

|vq(x, t)|2dx−
�
T3

|ṽ`(x, t)|2dx− δq+2

2

)
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≥ 1

6 · (2π)3

(
δq+1

δ1λ
ζ/2
q

− δq+1

λζq
− δq+2

2

)
≥ δq+1

δ1λ
ζ
q

,

where the last holds if we choose a0(ζ) sufficiently large. Thus (4.6) holds.
The proof of (4.7) follows from the following computation, observing that SuppT (R`) ⊂ Ĩq, η̃(t) ≡ 1 for all

t ∈ Ĩq and that χ(z) ≥ z/2 for all z ≥ 0

∣∣∣∣R`(x, t)ρ(x, t)

∣∣∣∣ ≤ |R`(x, t)|
ρ(t) |R`(x,t)|2δq+1

4λζqδ1
=

δq+1

2ρ(t)λζqδ1
≤ 1/2.

We conclude the proof by estimating

�
T3

|ρ(x, t)|dx ≤
�
|R`(x,t)|4λ

ζ
qδ1

δq+1
<1

|ρ(x, t)|dx+

�
|R`(x,t)|4λ

ζ
qδ1

δq+1
≥1

|ρ(x, t)|dx

≤ 8π3

(
δq+1

ε1
δ1

)
+

�
T3

|8λζqε1R`|dx

≤ 8π3

(
δq+1

ε1
δ1

)
+ 8ε1λ

2ζ
q ‖R`‖L1

≤ 8π3ε1

(
1

δ1
+ λ−ζq

)
δq+1 ≤ 16π3ε1

δq+1

δ1
.

We can now define the amplitudes functions aξ : T3 × (0, T )→ R as

aξ(x, t) := aξ,q+1(x, t) := ρ1/2(x, t)γξ

(
Id− R`(x, t)

ρ(x, t)

)
, (4.11)

where γξ are defined in Lemma 3.1, hence we also get the identity

ρ(x, t)Id−R`(x, t) =
∑
ξ∈Λ

a2
ξ(x, t)ξ ⊗ ξ. (4.12)

Lemma 4.4. The following estimates hold

‖aξ‖L2 ≤
δ

1/2
q+1

2C0|Λ|
ε

4πδ
1/2
1

, (4.13)

‖aξ‖CNx,t . `−8−5N , (4.14)

where C0 is the universal constant for which Lemma A.3 holds.

Proof. We define

ρ1(x, t) := ρ(t)χ

(
|R`(x, t)|4λζqδ1

δq+1

)
,
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aξ(x, t) := ρ
1/2
1 (x, t)γξ

(
Id− R`(x, t)

ρ(x, t)

)
,

aξ(x, t) = η̃(t)aξ(x, t).

The first estimate follows from (4.8) and the definition of ε1

‖aξ‖L2 ≤ ‖ρ‖1/2L1 ‖γξ‖C0‖η̃‖C0 ≤
(

16π3δq+1
ε1
δ1

)1/2

‖γξ‖C0 ≤
δ

1/2
q+1

2C0|Λ|
ε

4πδ
1/2
1

.

We prove the second estimate. We introduce the notation γ̃ξ(x, t) := γξ

(
Id−R`(x,t)ρ(x,t)

)
and thanks to

Proposition A.2 we have

‖aξ‖CNx,t . ‖ρ
1/2
1 ‖CN ‖γ̃ξ‖C0 + ‖ρ1/2

1 ‖C0‖γ̃ξ‖CN .

We now estimate every piece. Using Proposition A.1 and (2.9a)

‖ρ‖CNt . `−5N .

Thanks to the previous inequality, Proposition A.1 and Proposition A.2 we get

‖ρ1‖CNx,t . `−4−5N . (4.15)

Using Proposition A.1, estimate (4.3e), the previous estimate and that ρ is bounded from below by
δq+1

δ1λ
ζ
q
, we

have

‖γ̃ξ‖CN .

∥∥∥∥R`ρ
∥∥∥∥
CN

. `−8−5N

and using also that
δq+1

δ1λ
ζ
q
≥ ` (choosing ζ = ζ(α) sufficiently small), we have

‖ρ1/2
1 ‖CNx,t . `−5−5N .

Hence

‖aξ‖CNx,t . `−8−5N .

Moreover, by applying Proposition A.2 we get

‖aξ‖CNx,t . ‖aξ‖CNx,t‖η̃‖C0 + ‖η̃‖CN ‖aξ‖C0
x,t

. ‖aξ‖CNx,t ,

since s−1
q+1 � λq � `−1, up to enlarge a0(s, α).
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4.3. Principal part of the perturbation, incompressibility and temporal correctors

The principal part of wq+1 is defined as

w
(p)
q+1 :=

∑
ξ∈Λ

aξWξ. (4.16)

The incompressibility corrector w
(c)
q+1, that we define in order to have the incompressibility of wq+1, is defined

as

w
(c)
q+1 :=

∑
ξ∈Λ

∇× (∇aξ × Vξ) +∇aξ ×∇× Vξ + aξW
(c)
ξ .

Note that

w
(p)
q+1 + w

(c)
q+1 =

∑
ξ∈Λ

∇×∇× (aξVξ),

div(w
(p)
q+1 + w

(c)
q+1) = 0,

where the first equation follows from a direct computation similar to (3.7) with amplitudes functions

aξWξ = aξ∇×∇× Vξ − aξW (c)
ξ

= ∇× (aξ∇× Vξ)−∇aξ × (∇× Vξ)− aξW (c)
ξ

= ∇×∇× (aξVξ)−∇× (∇aξ × Vξ)−∇aξ × (∇× Vξ)− aξW (c)
ξ .

Moreover, we introduce a temporal corrector similar to (3.5) with amplitude functions

w
(t)
q+1 := − 1

µ

∑
ξ∈Λ

PHP6=0

(
a2
ξφ

2
ξψ

2
ξξ
)
. (4.17)

Note that w
(t)
q+1 satisfies

∂tw
(t)
q+1 +

∑
ξ∈Λ

P6=0

(
a2
ξdiv(Wξ ⊗Wξ)

)
= − 1

µ

∑
ξ∈Λ

PHP 6=0∂t
(
a2
ξφ

2
ξψ

2
ξξ
)

+
1

µ

∑
ξ∈Λ

P6=0

(
a2
ξ∂t
(
φ2
ξψ

2
ξξ
))

= (Id− PH)
1

µ

∑
ξ∈Λ

P 6=0∂t
(
a2
ξφ

2
ξψ

2
ξξ
)

︸ ︷︷ ︸
=:∇Pq+1

− 1

µ

∑
ξ∈Λ

P6=0

(
∂ta

2
ξ

(
φ2
ξψ

2
ξξ
))
.

From this computation and the identity (4.12), it follows that

div(w
(p)
q+1 ⊗ w

(p)
q+1 +R`) + ∂tw

(t)
q+1 =

∑
ξ∈Λ

div
(
a2
ξP6=0 (Wξ ⊗Wξ)

)
+∇ρ+ ∂tw

(t)
q+1

=
∑
ξ∈Λ

P6=0

(
∇a2

ξP6=0 (Wξ ⊗Wξ)
)

+∇ρ+
∑
ξ∈Λ

P 6=0

(
a2
ξdiv (Wξ ⊗Wξ)

)
+ ∂tw

(t)
q+1
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=
∑
ξ∈Λ

P6=0

(
∇a2

ξP6=0 (Wξ ⊗Wξ)
)

+∇ρ+∇Pq+1 −
1

µ

∑
ξ∈Λ

P6=0

(
∂ta

2
ξ

(
φ2
ξψ

2
ξξ
))
. (4.18)

4.4. The velocity increment and proof of the inductive estimates

We now define the total increment

wq+1 := w
(p)
q+1 + w

(c)
q+1 + w

(t)
q+1 (4.19)

and the new vector field is then given by

vq+1 := ṽ` + wq+1. (4.20)

In this section we verify that the inductive estimates (2.8) hold with q replaced by q + 1, and that (2.10) is
satisfied.

4.4.1. Proof of (2.10)

We want to apply Lemma A.3 in L2 with f = aξ and gσ = Wξ, which is by construction
(T
σ

)3−periodic
with σ ∼ λq+1r⊥, where ∼ means up to a constant depending only on n∗ and ξ ∈ Λ. For this purpose, note that
by (4.4) we get

‖Djaξ‖L2 ≤
δ

1/2
q+1

2C0|Λ|
ε

4πδ
1/2
1

`−13j ,

and thus we can take Cf =
δ
1/2
q+1

2C0|Λ|
ε

4πδ
1/2
1

. By conditions on ` we have `−13 ≤ λ26α
q+1, whereas by (3.2) we have that

λq+1r⊥ =
(
λq+1

2π

)1/7

. Thus, since α < 1
7·70 and a is huge, Lemma A.3 is applicable. Combining the resulting

estimate with the normalization ‖Wξ‖L2 = 1 we obtain

‖w(p)
q+1‖L2 ≤

∑
ξ∈Λ

C0δ
1/2
q+1

2C0|Λ|
ε

4πδ
1/2
1

‖Wξ‖L2 ≤ ε

4πδ
1/2
1

1

2
δ

1/2
q+1. (4.21)

For the correctors w
(c)
q+1 and w

(t)
q+1 we can use rougher estimates since they are considerably smaller than w

(p)
q+1.

The following estimates are consequence of Proposition 4.2, estimates (3.2), (3.8) and Lemma 4.4

‖w(p)
q+1‖Lp .

∑
ξ∈Λ

‖aξ‖C0‖Wξ‖Lp . `−8r
2/p−1
⊥ r

1/p−1/2
|| (4.22a)

‖w(c)
q+1‖Lp .

∑
ξ∈Λ

‖aξ‖C2‖Vξ‖W 1,p + ‖aξ‖C0‖W (c)
ξ ‖Lp

. `−18r
2/p−1
⊥ r

1/p−1/2
|| λ−1

q+1 + `−8r
2/p−1
⊥ r

1/p−1/2
||

r⊥
r||

. `−18r
2/p−1
⊥ r

1/p−1/2
|| λ

−2/7
q+1 (4.22b)
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‖w(t)
q+1‖Lp . µ−1

∑
ξ∈Λ

‖aξ‖2C0‖φξ‖2L2p‖ψξ‖2L2p . `−16r
2/p−2
⊥ r

1/p−1
|| µ−1

. `−16r
2/p−1
⊥ r

1/p−1/2
|| λ

−1/7
q+1 , (4.22c)

where in the last inequality we used also the continuity of PH in Lp (for any 1 < p < ∞) and the fact that
‖φ2

ξψ
2
ξ‖Lp = ‖φ2

ξ‖Lp‖ψ2
ξ‖Lp , thanks to Fubini.

Combining (4.21), with the last two estimates of (4.22) for p = 2, and using (3.2), we obtain for a constant
C > 0 (which is independent of q) that3

‖wq+1‖L2 ≤

(
ε

4πδ
1/2
1

1

2
δ

1/2
q+1 + C`−18 r⊥

r||
+ C`−16λ

−1/7
q+1

)

≤ ε

4πδ
1/2
1

(
δ

1/2
q+1

2
+ Cλ

36α−2/7
q+1 + Cλ

32α−1/7
q+1

)
≤ 3

4

ε

4πδ
1/2
1

δ
1/2
q+1.

Moreover from (4.3), by choosing a0 sufficiently large we get

‖vq+1 − vq‖L2 ≤ ‖wq+1‖L2 + ‖ṽ` − vq‖L2 ≤ ε

4πδ
1/2
1

δ
1/2
q+1,

thus (2.10) is satisfied.

4.4.2. Proof of (2.8a)

The bound (2.8a) follows easily from and the previous estimates (if q 6= 0)

‖vq+1‖L2 = ‖vq+1 − vq + vq‖L2 ≤ ‖vq‖L2 + ‖vq+1 − vq‖L2

≤ 2‖v0‖L2 − ε

4π
δ1/2
q +

ε

δ
1/2
1 4π

δ
1/2
q+1 ≤ 2‖v0‖L2 − ε

4π
δ

1/2
q+1,

where in the last inequality we have used that a is taken sufficiently large and b � 1. If q = 0, then (2.8a) is
trivial.

4.4.3. Proof of (2.9c)

The property (2.9c) is verified since

vq+1 − vq = ṽ` − vq + wq+1

and SuppT (ṽ` − vq) ⊂ SuppT η ⊂ Iq+1 , SuppTwq+1 ⊂ SuppTaξ ⊂ SuppT η̃ ⊂ Iq+1.

4.4.4. Proof of (2.8c)

Taking either a spatial or a temporal derivative, using Lemma 3.3, Lemma 4.4, (3.2) and (4.1), we have

‖w(p)
q+1‖C1

x,t
. ‖aξ‖C1

x,t
‖Wξ‖C0

x,t
+ ‖aξ‖C0

x,t
‖Wξ‖C1

x,t

3In the last inequality, we have implicitly used that α < 1/(7 · 74) and a0 be sufficiently large.
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. `−13r−1
⊥ r
−1/2
|| + `−8r−1

⊥ r
−1/2
|| λ2

q+1 . λ
2+8/7+26α
q+1 ,

‖w(p)
q+1‖C1

x,t
. ‖aξ‖C2

x,t
‖Vξ‖C1

x,t
+ ‖aξ‖C1

x,t
‖W (c)

ξ ‖C1
x,t
,

. `18r−1
⊥ r
−1/2
|| λ−2

q+1λ
2
q+1 + `−13 r⊥

r||
r−1
⊥ r
−1/2
|| λ2

q+1 . λ
2+6/7+36α
q+1 ,

‖w(t)
q+1‖C1

x,t
. ‖w(t)

q+1‖C1,α
x,t

.
1

µ
‖a2
ξφ

2
ξψ

2
ξ‖C1,α

x,t

.
1

µ
‖a2
ξ‖C0

x,t
‖φ2

ξ‖C0
x,t
‖ψ2

ξ‖C1,α
t

.
1

µ
`−16r−2

⊥ r
−1/2
|| λ2

q+1λ
2α
q+1 . λ

3−2/7+34α
q+1 .

In the latter inequality we have used that PH is continuous on Hölder spaces. Therefore, using that α < 1/40,
that a0 is sufficiently large and thanks to estimate (4.3a), we have

‖vq+1‖C1
x,t(B2s(t0)×T3) ≤ ‖ṽ`‖C1

x,t(B2s(t0)×T3) + ‖wq+1‖C1
x,t
≤ λ4

q+1.

4.5. The new Reynolds stress

Here we will define the new Reynolds stress R̊q+1. By definitions, ṽq+1 solves

div R̊q+1 −∇pq+1

= ∂t(ṽ` + wq+1) + div((ṽ` + wq+1)⊗ (ṽ` + wq+1))−∆(ṽ` + wq+1)

= −∆wq+1 + ∂t(w
(p)
q+1 + w

(c)
q+1) + div(ṽ` ⊗ wq+1 + wq+1 ⊗ ṽ`)︸ ︷︷ ︸

div(Rlin)+∇plin

+ div
(

(w
(c)
q+1 + w

(t)
q+1)⊗ wq+1 + w

(p)
q+1 ⊗ (w

(c)
q+1 + w

(t)
q+1)

)
︸ ︷︷ ︸

div(Rcor)+∇pcor

+ div(w
(p)
q+1 ⊗ w

(p)
q+1 +R`) + ∂tw

(t)
q+1︸ ︷︷ ︸

div(Rosc)+∇posc

+div(Rcom)−∇p`.

More precisely

Rlin := −R∆wq+1 +R∂t(w(p)
q+1 + w

(c)
q+1) + ṽ`⊗̊wq+1 + wq+1⊗̊ṽ`,

Rcor :=
(
w

(c)
q+1 + w

(t)
q+1

)
⊗̊wq+1 + w

(p)
q+1⊗̊

(
w

(c)
q+1 + w

(t)
q+1

)
,

Rosc :=
∑
ξ∈Λ

R
(
∇a2

ξP6=0(Wξ ⊗Wξ)
)
− 1

µ

∑
ξ∈Λ

R
(
∂ta

2
ξ(φ

2
ξψ

2
ξξ)
)
,

plin := 2ṽ` · wq+1,

pcor := |wq+1|2 − |w(p)
q+1|2,

posc := ρ+ Pq+1,
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where the definitions of posc and Rosc are justified by the previous computation (4.18). Hence we define

pq+1 := p` − pcor − plin − posc

and

R̊q+1 := Rlin +Rcor +Rosc +Rcom +Rloc,

where the last two were defined during the mollification step. We observe that the new Reynolds-stress R̊q+1 is
traceless, this property will be crucial in the energy estimates.

4.6. Estimates for the new Reynolds stress

We need to estimate the new stress R̊q+1 in L1. However, since the Calderón-Zygmund operator ∇R fails to
be bounded on L1, we introduce an integrability parameter,

p ∈ (1, 2] such that p− 1� 1.

Recalling the parameters choice (3.2), we fix p to obey

r
2/p−2
⊥ r

1/p−1
|| ≤ (2π)1/7λ

16(p−1)/(7p)
q+1 ≤ λαq+1, (4.23)

where we recall that 0 < α < 1
7·74 . For instance, we take p = 32

32−7α .

4.6.1. Linear error Reynolds stress

By using Proposition 4.2 we get that

‖Rlin‖Lp . ‖R∆wq+1‖Lp + ‖ṽ`⊗̊wq+1 + wq+1⊗̊ṽ`‖Lp + ‖R∂t(w(p)
q+1 + w

(c)
q+1)‖Lp

. ‖∇wq+1‖Lp + ‖ṽ`‖L∞‖wq+1‖Lp +
∑
ξ∈Λ

‖∂t∇× (aξVξ)‖Lp

.
∑
ξ∈Λ

‖aξ‖C1‖Wξ‖W 1,p + ‖ṽ`‖C1

∑
ξ∈Λ

‖aξ‖C1‖Wξ‖W 1,p

+
∑
ξ∈Λ

(‖aξ‖C1‖∂tVξ‖W 1,p + ‖∂taξ‖C1‖Vξ‖W 1,p).

Thus, by appealing to Lemma 3.3, Lemma 4.4, estimates (4.3) and to the choice of p = 32
32−7α , we conclude

‖Rlin‖Lp . `−13r
2
p−1

⊥ r
1
p−1/2

|| λq+1 + `−18r
2
p−1

⊥ r
1
p−

1
2

|| λq+1 + `−18λ−1
q+1r

2
p−1

⊥ r
1
p−

1
2

||

. `−18λαq+1λq+1r⊥r
1/2
|| . λ

37α− 1
7

q+1 � 1

6
λ−3ζ
q+1δq+2,

where for the last inequality we used that α < 1
7·74 and 2βb+ 3ζ < 1

14 .

4.6.2. Corrector error

The estimate on the corrector error is a consequence of (4.22) and our choice of p

‖Rcor‖Lp ≤ ‖w(c)
q+1 + w

(t)
q+1‖L2p‖wq+1‖L2p + ‖w(p)

q+1‖L2p‖w(c)
q+1 + w

(t)
q+1‖L2p
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≤ 2‖w(c)
q+1 + w

(t)
q+1‖L2p‖wq+1‖L2p

. `−18r
1/p−1
⊥ r

1
2p−

1
2

|| λ
−1/7
q+1 . λ

36α+α
2−1/7

q+1 � 1

6
λ−3ζ
q+1δq+2,

where the last inequality is justified as before.

4.6.3. Oscillation error

By using the boundedness on Lp of the Reynolds operator R, Lemma 3.3, Lemma 4.4, (3.2), Fubini (to
separate φξ and ψξ) and the choice of p we can estimate the second summand in the definition of Rosc as

∥∥∥∥∥∥ 1

µ

∑
ξ∈Λ

R
(
∂ta

2
ξ(φ

2
ξψ

2
ξξ)
)∥∥∥∥∥∥
Lp

≤ µ−1
∑
ξ∈Λ

‖aξ‖2C1‖φξ‖2L2p‖ψξ‖2L2p . µ−1`−26λαq+1 �
1

6
λ−3ζ
q+1δq+2.

To estimate the remaining summand we will use Lemma A.4. We apply it with a = ∇a2
ξ , κ = σ = λq+1r⊥ and

P≥σ(f) = P6=0(Wξ ⊗Wξ), that is a T3

σ −periodic function. Then, by choosing L � 1 sufficiently large we can

guarantee that λL

κL−2 ≤ 1 in Lemma A.4 with our choice of parameters, we have

∥∥∥∥∥∥
∑
ξ∈Λ

R
(
∇a2

ξP6=0(Wξ ⊗Wξ)
)∥∥∥∥∥∥
Lp

. (λq+1r⊥)−1‖P6=0(Wξ ⊗Wξ)‖Lp‖∇a2
ξ‖C0

. `−21λ
−1/7
q+1 ‖Wξ‖2L2p . `−21λ

−1/7
q+1 r

2
p−1

⊥ r
1
p−

1
2

||

. λ
42α+α−1/7
q+1 � 1

6
λ−3ζ
q+1δq+2.

Then (2.8b) at step q + 1 follows easily using also the previous estimates for Rcom and Rloc

‖R̊q+1‖L1 ≤ ‖Rlin‖L1 + ‖Rcor‖L1 + ‖Rosc‖L1 + ‖Rcom‖L1 + ‖Rloc‖L1

≤ 2

3
λ−3ζ
q+1δq+2 +

1

3
λ−3ζ
q+1δq+2 ≤ λ−3ζ

q+1δq+2,

where in the last inequality we have used that 2βb+ 3ζ < α. Finally, since SuppTwq+1 ⊂ Iq+1, then also (2.9b)
holds at step q + 1.

4.7. Energy estimate

In order to complete the proof of Proposition 2.1 we only need to prove the energy estimate (2.9a) at step
q + 1.

Lemma 4.5. The following estimate holds for all t ∈ I0

δq+2

λ
ζ/2
q+1

≤ e(t)−
�
T3

|vq+1(x, t)|2dx ≤ δq+2ε1
δ1

. (4.24)
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Proof. Recalling (4.16) and the mutually disjoint supports of {Wξ}ξ∈Λ we notice that

|w(p)
q+1|2 =

∣∣∣∣∣∣
∑
ξ∈Λ

aξWξ

∣∣∣∣∣∣
2

=
∑
ξ∈Λ

Tr(aξWξ ⊗ aξWξ)

=
∑
ξ∈Λ

a2
ξTr

( 
T3

Wξ ⊗Wξ

)
+
∑
ξ∈Λ

a2
ξTr

(
Wξ ⊗Wξ −

 
T3

Wξ ⊗Wξ

)

= 3ρ+
∑
ξ∈Λ

a2
ξTr

(
Wξ ⊗Wξ −

 
T3

Wξ ⊗Wξ

)
, (4.25)

where in the last equation we used the traceless property of R` and (4.12).
Applying Lemma A.5 with f replaced by a2

ξ (which oscillates at frequency ∼ `−5), the constant Cf ∼ `−16

(thanks to the estimate of Lem. 4.4) and gσ replaced with Wξ ⊗Wξ −
�
T3 Wξ ⊗Wξ (where σ = λq+1r⊥), we get

∣∣∣∣∣∣
�
T3

∑
ξ∈Λ

a2
ξTr

(
Wξ ⊗Wξ −

 
T3

Wξ ⊗Wξ

)∣∣∣∣∣∣ . `−21 1

λq+1r⊥
� δq+2

6
, (4.26)

where in the last inequality we used that α < 1
7·74 and 2βb < 1

14 . We write the identity

e(t)−
�
T3

|vq+1|2 = e(t)−
(�

T3

|ṽ`|2 +

�
T3

|w(p)
q+1|2

)
−
(�

T3

|w(c)
q+1 + w

(t)
q+1|2 + 2

�
T3

ṽ` · wq+1

)
−
(

2

�
T3

w
(p)
q+1 · (w

(c)
q+1 + w

(t)
q+1)

)
(4.27)

and thanks to (4.25), (4.26) and to the definition of ρ (4.5), using also that η̃ ≡ 1 in I0, we have

δq+2

λ
ζ/4
q+1

≤ e(t)−
(�

T3

|ṽ`|2 +

�
T3

|w(p)
q+1|2

)
≤ 2δq+2

3
, for all t ∈ I0,

up to possibly enlarge a0(ζ). Moreover, by using (4.3) and (4.22) we can estimate

∣∣∣∣�
T3

|w(c)
q+1 + w

(t)
q+1|2 + 2

�
T3

ṽ` · wq+1

∣∣∣∣ ≤ δq+2

λ
ζ/3
q+1

,∣∣∣∣2 �
T3

w
(p)
q+1 · (w

(c)
q+1 + w

(t)
q+1)

∣∣∣∣ ≤ δq+2

λ
ζ/3
q+1

,

from which (4.24) follows.
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Appendix A. Useful tools

In this section we state some useful results needed in the convex integration scheme.

Proposition A.1. Let Ψ : Ω → R and u : Rn → Ω be two smooth functions, with Ω ⊂ RN . Then, for every
m ∈ N+, there exists a constant C > 0 (depending only on m,N, n) such that

[Ψ ◦ u]m ≤ C([Ψ]1[u]m + ‖DΨ‖Cm−1‖u‖m−1
C0 [u]m),

[Ψ ◦ u]m ≤ C([Ψ]1[u]m + ‖DΨ‖Cm−1‖u‖mC1),

where [f ]m = max|β=m| ‖Dβf‖0.

Proposition A.2. Let f, g : T3 → R be two smooth real value functions. For any integer r ≥ 0 there exists a
constant C > 0, depending only on r such that

[fg]r ≤ C([f ]r‖g‖C0 + ‖f‖C0 [g]r),

where [f ]m = max|β=m| ‖Dβf‖0.

The following lemma is essentially Lemma 3.7 in [4].

Lemma A.3. Fix integers N, σ ≥ 1 and let ζ > 1 such that

2π
√

3ζ

σ
≤ 1

3
and ζ4 (2π

√
3ζ)N

σN
≤ 1. (A.1)

Let p ∈ {1, 2} and let f, g ∈ C∞(T3;R3). Suppose that there exists a constant Cf > 0 such that

‖∇jf‖Lp ≤ Cfζj ,

holds for all 0 ≤ j ≤ N + 4. Then we have that

‖fgσ‖Lp ≤ C0Cf‖gσ‖Lp ,

where C0 is a universal constant.

The following lemma is essentially Lemma B.1 in [4].

Lemma A.4. Fix κ ≥ 1, p ∈ (1, 2], and a sufficiently large L ∈ N. Let a ∈ CL(T3) be such that there exists
1 ≤ λ ≤ κ, Ca > 0 with

‖Dja‖L∞ ≤ Caλj ,

for all 0 ≤ j ≤ L. Assume furthermore that
�
T3 a(x)P≥κf(x)dx = 0. Then we have

‖|∇|−1(aP≥κ(f))‖Lp . Ca

(
1 +

λL

κL−2

)
‖f‖Lp
κ

for any f ∈ Lp(T3), where the implicit constant depends on p and L.



TYPICALITY RESULTS FOR WEAK SOLUTIONS 23

Lemma A.5. Let g : T3 → R be an integrable function such that

 
T3

g(x)dx = 0,

and denote by gσ : T3 → R the function gσ(x) := g(σx). Let f : T3 → R be a C1 function. Then we have

∣∣∣∣�
T3

gσ(x)f(x)dx

∣∣∣∣ . ‖∇f‖C0

σ
‖gσ‖L1(T3),

where . means up to a universal constant.
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[21] S. Modena and L. Székelyhidi Jr., Non-uniqueness for the transport equation with Sobolev vector fields. Ann. PDE 4 (2018)
Paper No. 18, 38.
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