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Abstract—In the analysis of power grid waveforms, the pres-
ence of amplitude or phase steps can disrupt the estimation of
frequency and rate-of-change-of-frequency (ROCOF). Standard
methods based on phasor-models fail in the extraction of signal
parameters during these signal dynamics, often yielding large
frequency and ROCOF deviations. To address this challenge, we
propose a technique that approximates components of the signal
(e.g., amplitude and frequency variations) using dictionaries
based on parameterized models of common signal dynamics.
Distinct from a previous iteration of this method developed by the
authors, the proposed technique allows for the identification of
multiple steps in a window, as well as the presence of interfering
tones. The method is shown to improve signal reconstruction
when applied to real-world waveforms, as compared to standard
static and dynamic phasor-based algorithms.

Index Terms—Power system signals, amplitude and phase
steps, dictionary analysis, power system measurements, rate of
change of frequency (ROCOF)

I. INTRODUCTION

Phasor Measurement Units (PMUSs) are considered at the
forefront of grid monitoring technology with fast and al-
legedly accurate measurements of waveform properties (e.g.,
frequency, rate-of-change-of-frequency (ROCOF), phase an-
gle, etc.). However, fast variations in signal waveforms can
significantly disturb phasor-based analysis, making the results
invalid. In particular, step changes in the amplitude and/or
phase of AC voltage or current waveforms, caused by network
reconfigurations, circuit breaker operations or faults, can be
misinterpreted as large deviations in the frequency inducing
temporary high ROCOF estimations [1]. In distribution sys-
tems, this can lead to false triggering of loss-of-mains (LOM)
protection [1] and errors in synthetic inertia calculations. For
transmission systems, frequency and ROCOF are typically
used for Under-Frequency Load Shedding (UFLS) actions to
reduce the chance of cascading blackouts, generation loss or
grid separation [2].

The IEEE Std. C37.118 [3] specifies performance require-
ments for PMUs when phase and amplitude step changes
occur. As discussed in [4], a possible strategy to meet these
requirements would be to apply Finite Impulse Response

The authors gratefully acknowledge the financial support of the European
Commission - Horizon 2020 program to the project Optimal System-Mix Of
flexibility Solutions for European electricity (OSMOSE) (773406).

Asja.Derviskadic@swissgrid.ch

Asja Derviskadic¢
Swissgrid Ltd.
Aarau, Switzerland

Guglielmo Frigo
METAS
Bern, Switzerland
Guglielmo.Frigo@metas.ch

(FIR) or Kalman filters. The objective of these methods is
to reject the presence of dynamic components for improved
phasor estimation. However, recent literature has demonstrated
that the phasor model may be inappropriate to deal with
waveforms containing these types of events [5]. When signal
dynamics like frequency ramps, phase/amplitude steps and
amplitude modulations are present, the frequency spectrum
of the waveform is broadband with energy distributed across
many frequencies [1], [6]. The narrowband nature of the
phasor model employed in PMUs makes it inherently un-
qualified to capture these signal dynamics and draws into
question the validity of an “underlying” fundamental phasor
[7]. Consequently, application of phasor-based methods to dy-
namic waveforms, particularly those with phase and amplitude
steps, can yield misleading synchrophasor estimations and
inappropriate control actions.

Recent literature discusses signal processing techniques to
better analyze non-stationary waveforms from power grids.
There is significant research on dynamic phasor methods
based on Taylor series expansion or Taylor-Fourier series to
approximate higher order phasor derivatives and broaden the
bandwidth of the signal model [8], [9]. However, these meth-
ods are incapable of handling fast transients like amplitude or
phase steps, as will be demonstrated in this paper.

Other strategies include detection of abrupt transients in
order to flag the reported phasor as either invalid or in need
of additional processing. In [10], a wavelet-based method
is proposed to detect the presence of amplitude and phase
steps in order to select between two phasor-based algorithms
for stationary and dynamic signals. However, the suggested
methods aim to dampen (or remove) the impact of the dynamic
component rather than fully characterize it. Similarly, in [11]
the event location is identified through wavelet analysis. The
pre- and post-event data is then analyzed separately by fitting a
quadratic polynomial to the waveforms with a linear regression
process. The algorithm’s performance when multiple steps or
harmonics are present is not discussed. In [12], a Kalman Filter
for waveform prediction is used to detect deviations of the
input signal from the predicted model. The filter is reset after
the detection of a step to improve post-event analysis. How-
ever, whether the method can determine the type of transient
present and how it would perform on waveforms with slow



transitions (e.g., frequency ramps, amplitude modulations) is
an open question.

Rather than rejecting or neglecting dynamic components,
this paper proposes a technique to fully identify and charac-
terize voltage or current waveforms in dynamic conditions.
Building off of the study in [13], which presents the Func-
tional Basis Analysis (FBA) algorithm for the identification
of various signal dynamics, we have adapted the algorithm to
better capture amplitude and phase step changes. The method
employs a dictionary of parameterized signal models in order
to identify the location and magnitude of step changes as
well as characterize other dynamics in the signal. Furthermore,
the improved method is able to detect interfering tones (e.g.,
harmonics and sub/inter-harmonics) as well as multiple steps
within the same window. Finally, the proposed FBA technique
has reduced computational cost as compared to the original
version, making it suitable for eventual implementation in
embedded devices (e.g., FPGAs) for real-time applications.

The paper is organized as follows: Section II presents the
proposed algorithm for detection of common signal dynamics,
multiple steps and interfering tones. Section III applies the
FBA method to waveforms from three real-world grid events.
The results are compared to both static and dynamic phasor
estimation methods. Finally, Section IV concludes the paper
with a discussion of the potential applications of the method.

II. METHOD

The objective of this paper is to identify and characterize
step dynamics in power system signals for improved frequency
and ROCOF analysis. To address the shortcomings of the pha-
sor model briefly discussed in the introduction, the proposed
method uses a generic model which incorporates common
signal dynamics present in the grid, including amplitude steps
(AS), amplitude modulations (AM), phase steps (PS) and
frequency ramps (FR). The signal is generically modelled as:

z(t) = Ag(1 + ga(t))cos(2m fot + g4 (t) + o) (1)

where A, f, and ¢, represent the fundamental amplitude,
frequency and phase, respectively, and g4 and g4 incorporate
variations in the amplitude and phase, respectively. For the
sake of nomenclature, the common signal dynamics mentioned
above can be incorporated into (1) as follows:

AS: gA(t) = kas(t - ta) (2)
PS: g,(t) = k,s(t —t,) 3)
AM: gA(t) = km605(2ﬂ'fmt + Qom) 4
FR: g4(t) = Rrt” (5)

where s(t) is the step function, k, and k, are the step depths,
t, and t,, are the step locations within the window, k,,,, f,,, and
©,, represent the AM depth, frequency and phase, respectively,
and R is the ramp rate in Hz/s.

Similar to how phasors are often represented as complex
exponentials, (1) can be transformed into its analytic signal
counterpart using the Hilbert Transform (HT). As is known,

the HT is a linear operator that, for a generic time-varying
signal x(¢), is defined as [14]:

Hlz(t)] = 1 /+°° z(7) dr = 1 * x(t) (6)
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where * indicates convolution. Combining the HT H[z(t)]
with the original function yields the analytic signal & (¢) which,
due to the symmetry of the spectrum, contains only positive
frequency components [14]:

#(t) = (1) +jH((1)). )

Applying Euler’s formula to the analytic form (7) allows
for the representation of a real time-domain signal (1) as a
complex exponential function:

B(t) = Ag(1+ ga(t))e/ Brlortas(treo) 8)
which contains information on the signal envelope x 4 (t):
za(t) =|2(t)| 9

The extraction of the signal envelope allows for independent
analysis of this component, as discussed in the next sections.

A. Signal Analysis

For the identification and characterization of signal dynam-
ics, we employ dictionaries of parameterized functions based
on the signal models previously discussed. Fundamentally,
dictionary analysis involves projection of the input vector (i.e.,
a sampled, windowed signal) onto a functional basis of vectors
defined by parameterized signal models. The kernel that best
matches the input signal is identified and its corresponding
parameters and model are used to reconstruct the input signal.
Though detailed in the following sections, a brief summary of
the main steps involved are as follows:

1) The signal envelope is analyzed using dictionaries of
amplitude modulations and amplitude steps.

2) The full analytic signal is analyzed for phase steps with
a predefined PS dictionary.

3) The identified elements (i.e., the estimated envelope and
phase steps) are incorporated as fixed components into a
time-domain FR dictionary. The input signal is analyzed
with this adapted dictionary to identify the fundamental
frequency, ramp rate and initial phase.

The above structure of the FBA algorithm has been de-
veloped through several iterations to capture progressively
more complex signals. Analysis of the envelope allows for
identification of amplitude dynamics, independent of other
signal variations (e.g., frequency ramps, phase steps). Projec-
tion of the analytic signal onto a PS dictionary is necessary
for identification of one or more phase steps. Finally, a FR
dictionary was found to be extremely sensitive to the presence
of other signal dynamics, hence the need to include these
identified components in the dictionary kernels. These steps
are thoroughly explained in Algorithm 1.



1) Envelope Analysis: Given a discrete, sampled signal
x(t;) for | = 1...L with an unknown mathematical model,
the analytic form £(¢;) first needs to be approximated by
means of a filter with a magnitude response of nearly 0
dB for positive frequencies and large attenuation (e.g., -120
dB) for the negative frequency domain. The signal envelope
2 4(t;) can be approximated by modulations or steps in
the amplitude: x4 (t;) = Ag(1 + k,,cos(2m f,,t; + ©,,) OF
xA(t) = Ag(1 + kys(t; — t,)), respectively.

The corresponding AM dictionary is therefore defined for all
combinations of the frequency f,,, and phase ¢,, parameters:

diant (fns o) = a;DFT[cos2m frnty + ¢)] - (10)

where a; is a coefficient that normalizes the kernel and DFT
indicates the Discrete Fourier Transform with coefficients for
bins £ = 1...K defined as:
L
X(k) = DFT[e(t))] =
l

|
—

a(t)Wr' (11)

I
=

where Wf = ¢7?™/L is the k-th root of unity modulo L.

Each kernel is then fully determined by the parameter set
¥(fim» Pm) and signal model of the envelope for a sampled
window ¢; where [ = 1...L. The parameter sets vy s =
[fims ©m] are selected to best capture common signal dynamics
in power grids (e.g., f,, € [0,5]Hz). The parameter set
resolutions are also user-defined and depend on performance
requirements and the computational cost of the algorithm.

Similarly, the kernels of the AS dictionary are defined for
different step locations ¢, within the window:

d; as(ty) = a;DFT[s(t; — t,)] (12)

Note that the DFT of the envelope is used rather than the
time-domain waveform since this allows for the compression
of the signal into a reduced set of Fourier coefficients. Ex-
amination of these coefficients yields the remaining model
parameters, such as the scaling factor of the dynamic (i.e.,
Aok, or Agk,,) and the DC shift (i.e., Agy). It is important
to note that the kernels in the AM and AS dictionaries are
defined for frequency ranges that exclude the DC component
(i.e., k = 2...K). This exclusion means that projection of an
input envelope onto this dictionary yields the scaling factor of
the dynamic.

In lines 4-7 of Algorithm 1, the frequency spectrum of
the signal envelope is first computed and curtailed to the
appropriate frequency range (e.g., 0 to 100 Hz). This range is
user-defined and selected to best capture the signal dynamics
of interest. The DC component is separated (X4 pc) while
the remaining frequency bins are normalized by either the
length of the window L or the norm of the vector (i.e., a =
X pun(k = 2..K)[|z") to yield X, and X ,, respectively.
The latter is then projected onto all kernels in the AM (line 8)
and AS (line 17) dictionaries to construct a scaled and rotated
approximation of the input signal (df{ X 4)d;. The kernel that
minimizes the difference between this approximation and the
input vector is then identified (for more details see [13]). The

corresponding parameter sets for AM and AS are recorded in
lines 9 and 18, respectively.

In lines 10-11 and 19-20, the parameter sets y4; and Yag
and the vector X 4 are used to calculate the combined scaling
factors, c4g = kA and c4p; = k,,, Ag. A is then computed
in lines 12-13 and 21-22 by removing the spectral leakage
due to the presumed dynamic (X,(k = 1)) from the DC
component X4 pco. With Ay, the combined scaling factors,
canm and cyg, can be used to identify k,, and k, in lines 14
and 23, respectively.

The envelopes are reconstructed in lines 15 and 24 and
compared to x 4 (t) using the time-domain error (TDE) metric:

DB ) = 100l
where z” is the estimated component and x is the reference or
input signal. The envelope with the smaller TDE is reported
as the most likely amplitude dynamic z’ () in line 26.

2) PS Detection: For PS identification, a dictionary is pre-
defined for parameter sets ypg = [fo, &, t,):

di,PS(an kp’ tp) = a; DFT[exp(j (27 fot; + kps(tl - tp)))}
(14)
The kernels for this dictionary are limited to a user-defined
frequency range (e.g., k = 1...K). The frequency spectrum of
the analytic signal X is projected onto the PS dictionary in
line 29 and the best matching kernel with parameter set vpg
is identified. If detected, the PS component is saved as 7 (t;).
3) FR Detection: Using the reconstructed signal envelope
x4 (t;) and the identified PS component z(t;), an adapted
time-domain dictionary is constructed in line 32 for different
fundamental frequency and ramp rate combinations:

13)

d; pr(for R) = 23 (t;)? CTHotH R 00) (g5

The filter-approximated analytic signal @(¢;) is projected
onto each dictionary kernel to find the rotation coefficient:

_d'z
~ 1 HA
||di” 22
which embeds the phase offset py = Zc,, . The phase-shifted
kernel is compared to the original signal and the closest
matching parameter set is identified in line 34. Finally, all

model components of the signal have been identified and are
used to reconstruct the time-domain waveform in line 36.

s (16)

B. Detection of Multiple Steps

Thus far, the algorithm discussed is designed to be applied
to an observation window with a single step. In the case
where multiple amplitude and/or phase steps occur in the same
window, additional measures must be taken. An assumption is
made that the first step is identified when it first enters the
window and that two steps do not arrive in the observation
window within the same reporting period (i.e., the steps do
not occur within one reporting period 7,. of each other).

Once an AS/PS is identified, the magnitude is recorded and
its location is tracked as the window slides so that, in the



Algorithm 1 Functional Basis Analysis Algorithm

1:
2:
3:

A

Input: signal x(¢;), Daar, Dag, Dps
B(ty) = Filter[z(t,)], za(t) = |2(t)]
Remove previous amplitude/phase steps

Envelope Analysis

X puu = DFT [z 4(t))]
X=X ruu(k=2.K)/L
XA = aXfull(k = 2K)
Xapc=Xpu(k=1)/L

AM Detection:

8: Project onto kernels d; in dictionary D 4,
3 . H < v
9: [i"] = arg min, [[|d;" Xad; — X 4ll2]

21:
22:
23:
24:
25:
26:

27:
28:
29:
30:

31:

32:
33:
34:

35:

36:
37:

. *
P TAM

= Yanm = [fm (i), 0 (i7)]
Calculate scaling factor (k,,, Ag)
Xam1 = DFT[sin(27 froty) + )]/ L

H
s cam = [ XapmaXal

Calculate DC shift (A4;)
X2 = DFTlcapsin(27 foty + ¢3,)] /L

D Ap = Xa,pc — Xampa(k=1)

Fem = canr /Ao
= AS(1 + Kk sin(2rfot; + ©m))
Compute TDE(x g7, 4)

AS Detection:

Project onto kernels d; in dictionary D 4 g
[i*] = argmin, [[|d X ad; — X 4]

— Yas = [ta(i")]

Calculate scaling factor (k,Ag)

Xasa = DFT[s(t; — t,)]/L

cas = |XHs1X 4

Calculate DC shift (A4)

Xas,2 = DFT[cags(t; —ta)]/L

Ay =Xapo — Xasa(k=1)

kq = cas/Ag

Tas = Aj(1+ kls(t — 1))
Compute TDE(x 45,2 4)
TDE comparison — x4 (;)

PS Detection:

X un = DFT[&(t))]

X = Xfu”(kfl K)
Project onto kernels d;( fy, k %
[i"] _argmm [Hd Xd; — X|
%VPS - [fO( )7kp( )7 p( "
xy(t) = kys(t; —t)

FR Detection:
Create dictionary Dpr(fy, R)
Project onto kernels d;( fy, R) from dictionary Dpp
[i"] = argmin,[||c,, d; — 2|5]
— vrr = [fo(i"), R(i")]
po = Lcg,
Reconstruct full signal
Test(t) = Ta(ty)cos(2m foty + R* 7t} + 23 (t) + )
Compute TDE (.4 (t;), z(t;))

t,) from dictionary Dpg
Iz]
)]

consecutive window, the new step location is known to be at
(t* —T,). For detection of any new steps, the impact of all
previous steps must be removed, as indicated in line 3. Note
that if no additional steps are found, then the approximation
of the previous steps can be reevaluated and improved. This
reduces the chance of parameter error being propagated, which
may be the case for a step that first appears at the very end
of the window.

If the previous step includes an AS, then the signal envelope
must be modified to remove its effects:

x4 (t)
zalt) = 1+ka1§(t; )

The envelope is then analyzed normally in lines 8-26. The
detected magnitude of the second step and the reconstructed
envelope must be adjusted again by the first step:

wa(t) =z (t) (14 kays(t, — tg1))
koo = kaa(1 + ka1s(t; — t51))

If the previous step involves a PS, then it must be removed
from the analytic signal before further PS analysis is done:

iy &(t)
x(tl) o ejk;ﬁ(tl—t;ﬂ
For the FR dictionary analysis in lines 32-36, the model should

contain all known AS and PS still present in the window (e.g.,
.I'(b( ) = k‘pls(tl pl) + k;gs(tl - t;;g))

C. Detection of Interfering Tones

a7

(18)
19)

(20)

Following the occurrence of a fault or other disruption in
the grid, additional signal tones may appear in the measured
waveform, corresponding to a harmonic response or the reso-
nance frequency of the grid. The following steps are performed
to identify an interfering tone:

1) Algorithm 1 provides a first estimate of the underlying
signal dynamic (without any additional tones).

2) The extracted signal model x.(t;) is removed from
the original signal x(¢;), leaving the remainder which
contains the additional tone ,.(t;) = z(t;) — zLy (t;).

3) z,(t;) is analyzed by a single tone extraction method
(e.g., interpolated DFT), with a 10% relative amplitude
threshold, to approximate the tone . (t;).

4) x,(t;) is removed from the original signal z(#;) and
analysis with the FR dictionary is repeated to yield a
second estimate, 22, (#; ).

5) These steps can be repeated for a specified number of
iterations or until changes in the time-domain error are
below a given threshold.

D. Computational Complexity

The computational complexity of each step in Algorithm 1
is presented in Table I where IV is the number of kernels in
each dictionary, L represents the number of samples in the
signal, and K is the number of frequency bins analyzed. Cal-
culating the frequency spectrum depends on the method used
(e.g., FFT, DFT) and, therefore, the computational complexity



is represented as (. The size of the dictionaries required is
significantly reduced as compared to the method presented
in [13]. For instance, the AS dictionary is only a function
of the parameter ¢, as opposed the parameter set [fy, kg, tg]
which simplifies analysis. Finally, AM, AS and PS detection
are independent operations which can be done in parallel
on FPGA-based (Field Programmable Gate Array) devices to
improve computational throughput.

TABLE I
COMPUTATIONAL COMPLEXITY OF SCD METHOD PRESENTED IN
ALGORITHM 1

TABLE II
PARAMETER SETS FOR FBA DICTIONARIES
Dictionary | Parameter | Resolution Range
fo (Hz) 0.04 [49,51]
PS k,, (rad) 0.014 +[n/18, 57 /18]
t, (ms) 04 [5,T,, — 5]
FR fo (Hz) 0.02 [49,51]
R (Hz/s) 0.2 [—10,10]
AS t, (ms) 04 [5, T, — 5]
AM fm (Hz) 0.165 [0.2, 5]
@ (rad) 0.216 [0, 27]

Dynamic Operation Complexity
Projection O(KN)
AM and AS | Scaling Factor | O(L + ( + K)
DC Shift O(L+0)
PS Projection O(KN)
FR Crea{e D_FR O(LN)
Projection O(LN)

III. EXPERIMENTAL VALIDATION

To evaluate the performance of the proposed algorithm, we
applied it to waveforms from 3 grid events and compared the
results to both static and dynamic phasor estimation methods.
For the former, we selected a 3-point iterative Interpolated
DFT (-IpDFT) algorithm [15] with a Hann window and
negative spectrum compensation which is compliant with P
and M class requirements [3]. For dynamic phasor analysis, we
used the Compressed Sensing Taylor-Fourier multifreguency
(CSTEM) method [9] which captures the 1°* and 2" order
derivatives of the phasor. The parameter sets for the FBA
dictionaries presented in Table II were selected to capture
the range of common signal dynamics in power systems.
All methods were applied to the waveforms using a 100 ms
window and 50 frames per second (fps) reporting rate such that
the results are reported for overlapping windows. While shorter
windows are preferable for analysis of waveforms with rapidly
changing parameters, 100 ms was found to be the minimum
length needed to accurately characterize slower dynamics like
FR and AM. Finally, the ROCOF, frequency and parameter
error are examined for the cases with known ground truth
values. In real-world scenarios, however, only the TDE is
available as an indicator of how well the model matches the
input signal. Therefore, even though phasor-based methods are
not intended for point-on-wave reconstruction, this metric will
be provided for comparison.

A. California Grid Event 2016

The first case examined involves a fault in the California
grid in 2016 caused by a wildfire. The fault resulted in a
series of phase steps causing the inverters connecting a number
of solar power plants to trip due to erroneous instantaneous
frequency estimates, cutting 700 MW of generation [16]. A
single phase voltage waveform from the event was analyzed
and found to contain a 26° phase shift and 39.5% amplitude
dip. Approximately 41.3 ms later, the waveform reverted to
base parameters. Using these parameters, identified in [16],
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Fig. 1. California event 2016 [16]: (top) signal and reconstructed waveform,
(middle) TDE and (bottom) ROCOF reported by all methods.

the signal was reconstructed at 60 Hz with an amplitude of 1
p-u., sampling frequency of F, = 50 kHz and 60 dB of white
Gaussian noise as shown in Figure 1. To clarify, the known
step parameters are used as reference values for evaluation
of performance but are unknown by FBA algorithm which
processes the input waveform blindly.

The FBA dictionaries were adjusted to a 60 Hz nominal
frequency (e.g., 59 to 61 Hz range) and 120 ms window. As
shown in Figure 1, the static and dynamic phasor methods are
unable to account for the variation in the waveform, resulting
in an order of magnitude difference in the TDE metric relative
to the FBA results. The maximum TDE for each method,
represented as a percentage of the amplitude 1 p.u., is 0.96%
(static), 0.55% (dynamic) and 0.079% (FBA). Furthermore,
the frequency and ROCOF values reported phasor-based meth-
ods are highly disturbed by the presence of amplitude and
phase steps, with spikes of -43.6 Hz/s (static) and -12.8 Hz/s
(dynamic). In contrast, the FBA method maintains a steady
approximation of the ROCOF with a maximum value of 1.8
Hz/s. As this is a synthetic signal, we can compare these
values to the true ROCOF of 0 Hz/s. Finally, the FBA method
accurately identifies and tracks the location and magnitude
of the two steps in the window, as reported in Table III. No
interfering tones were identified in this signal.



TABLE III
MEAN STEP PARAMETER ERROR AS APPROXIMATED BY THE FBA.
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[ Sepl | 04 is 16
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Fig. 2. Bornholm grid event [17]: (top) signal and reconstructed waveform,
(middle) TDE and (bottom) ROCOF reported by all methods.

B. Bornholm Grid Event 2018

The second case involves data from a study of LOM trig-
gered events in the Bornholm Island, a power network with a
large portion of renewable energy and a single interconnection
to the Nordic power grid [17]'. The study found that a
number of false ROCOF triggers were due to phase shifts
in the waveforms rather than underlying frequency dynamics.
The waveform analyzed in Fig. 2 demonstrates an example
fault on February 2" 2018, as recorded by a metrology
grade digitizer installed in a LV substation on the Bornholm
Island. A fitting of the waveform, provided by [17], reveals
that an amplitude dip of 33% and phase shift of —0.4 rad
occurs then recovers after a few cycles (e.g., k,; = —0.33,
koo = 0.33, k,; = —0.4 rad, k,» = 0.4 rad). There is no
significant underlying frequency change, despite what phasor-
based methods report.

As in the California case, the static and dynamic phasor
methods are incapable of capturing the signal, yielding max-
imum TDE (relative to the nominal 230 V) of 0.95% and
0.48%, respectively. In contrast, the FBA method can detect
and incorporate the phase and amplitude steps into the model
such that the maximum TDE is 0.14%. The phasor methods
also report large ROCOF deviations of up to 71.6 Hz/s (static)
and 89.6 (dynamic). In contrast, the FBA technique yields
a maximum ROCOF of -2.2 Hz/s. The parameter errors for
the phase and amplitude steps are shown in Table III. No
interfering tones were identified in this signal.

"For project details see http://www.rocofmetrology.eu/rocof-measurements-
on-bornholm-green-island/
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Fig. 3. Adapted IEEE 39-bus grid event [2]: (top) signal and reconstructed
waveform, (middle) TDE and (bottom) ROCOF reported by all methods.

C. IEEE 39-Bus Fault Simulation

The final case study involves simulations of an adapted
version of the standard IEEE 39-bus test system in [2].
The model involves 39 buses with 19 loads, 10 synchronous
generators, and an additional 4 wind generators. The waveform
analyzed in Figure 3 is due to the tripping of 1.5 GW of
generation, as simulated in MATLAB Simulink and Opal-RT
eMEGAsim RTS [2].

The maximum TDE for each method, relative to the nominal
voltage of 345 kV, is 0.63% (static), 0.59% (dynamic) and
0.44% (FBA). The FBA method yields an average 4.2 kV
and 3.8 kV decrease in point-by-point time domain error
of the static and dynamic methods, respectively. While the
ROCQOF values are harder to verify since the ground truth is
unknown, the time-domain error indicates a better fit of the
original signal. A small phase step on the order of —7 /18 is
identified around 1 s. Finally, the FBA method also identifies
an interfering tone at 196 Hz and 15% magnitude which was
confirmed by frequency analysis of the waveform.

IV. CONCLUSION

This paper presents an algorithm for the detection and
characterization of one or more amplitude and/or phase steps
in a power system waveform, as well as the identification
of other common signal dynamics (e.g., interfering tones,
frequency ramps, amplitude modulations). The FBA technique
is shown to improve time-domain signal reconstructions and
frequency and ROCOF estimations during real-world grid
events. For this reason, potential applications would include
LOM protection schemes and UFLS operations. Next steps in
this research will involve implementation of the technique in
an FPGA device for real-time applications and validation.
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