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Abstract— Robot-mediated learning activities are often de-
signed as collaborative exercises where children work together
to achieve the activity objectives. Although miscommunica-
tions and misunderstandings occur frequently, humans, unlike
robots, are very good at overcoming them and converging to a
shared solution. With the aim of equipping a robot with these
abilities and exploring its effects, in this article we investigate
how a humanoid robot can collaborate with a human learner to
construct a shared solution to a problem via suggesting actions
and (dis)agreeing with each other. Concretely, we designed a
learning activity aiming to improve the computational thinking
skills of children, in which the robot makes suggestions on what
to do, that may be in line with what the human thinks or not.
Furthermore, the robot may suggest wrong actions that could
essentially prevent them from finding a correct solution. Via
a pilot study conducted remotely with 9 school children, we
investigate whether the interaction results in positive learning
outcomes, how the collaboration evolves, and how these relate
to each other. The results show positive learning outcomes for
the participants in terms of finding better solutions, suggesting
that the collaboration with the robot might have helped trigger
the learning mechanisms.

Index Terms— human-robot interaction; mutual understand-
ing; collaborative learning; computational thinking.

I. INTRODUCTION

Social robots as embodied agents have demonstrated a
potential for education, where they have been given the role
of a tutor, or a peer i.e. a learning companion; typically
with the knowledge of an exact solution or the underlying
educational concepts [1], [2]. In the educational situation of
collaborative learning, human participants with no knowl-
edge of the correct solution attempt to learn something
together, where their interactions are anticipated to induce
learning even though there is no guarantee that these kind of
processes will happen [3]. However, the interactions among
participants can be ‘designed’ in order to make it more likely
that these productive processes will in fact occur, as they are
shaped by the activity and the environment: it is the shared
experience and the required effort to construct a mutual
understanding together that may trigger the learning [4], [5].

In this work, we investigate the effects of using a social
robot in a collaborative learning activity as a peer for a
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TABLE I
RESEARCH QUESTIONS AND HYPOTHESES.

No. Research Question / Hypothesis

RQ1 How are the learning outcomes after collaborating with the robot?
H1.1 A participant provides a valid solution more in the post-test than the

pre-test.
H1.2 A participant provides a correct solution more in the post-test than the

pre-test.
H1.3 A participant provides a better solution (closer to a correct solution) more

in the post-test than the pre-test.
RQ2 How does performance in the task evolve during collaboration with the

robot?
H2.1 A participant submits better solutions (closer to a correct solution) later

than earlier.
H2.2 A participant suggests correct actions more later than earlier.
H2.3 A participant (dis)agrees more with (in)correct robot suggestions later

than earlier.
RQ3 How does the evolution of performance in the task link to the learning

outcomes?
H3.1 The more a participant’s submissions improve, the better are the learning

outcomes.
H3.2 The more a participant’s suggestions improve, the better are the learning

outcomes.
H3.3 The more a participant’s (dis)agreements improve, the better are the

learning outcomes.

human.3 The robot by design has no knowledge of a correct
solution. We are interested to see if it can help trigger learn-
ing mechanisms by taking actions, and thereby support the
effort to build a mutual understanding about the task, even
without the knowledge of a correct solution. In particular,
we assess the efficacy of the collaboration by considering
the learning outcomes based on individual performance in the
pre- and post-test (RQ1), the evolution of performance while
collaborating with the robot (RQ2), and the link between
them (RQ3).

Table I presents our research questions and hypotheses.
In RQ1, we postulate that the collaboration with the robot
would have a positive impact in terms of the learning
outcomes, as the effort to build a shared solution can help
the participant realize his/her misconceptions. Hence, we hy-
pothesize that they perform better in the post-test than in the
pre-test, where the tests are designed as individual exercises,
with the collaborative activities as counterparts that are done
together with the robot. The difference between ‘valid’ and
‘correct’ is explained in Sec. III-A. In RQ2, we postulate that
while collaborating with the robot, the human would realize
his/her misconceptions and improve his/her actions through
time. In RQ3 we expect that the more a participant improves

3The code that represents the activity and governs the interac-
tion with the robot is publicly available online, from the GitHub
Repositories https://github.com/utku-norman/justhink world for the activity,
and https://github.com/utku-norman/justhink-ros for the interaction.
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during the collaborative activity, the better are the learning
outcomes. Previous studies e.g. [6] revealed that the link
between the performance in the collaborative activity and
the learning outcomes is not trivial: they are not directly, and
not necessarily linearly correlated. Success and failure can be
productive or not in terms of the learning outcomes, as shown
in [7]. Thus, in RQ3 we specifically consider the performance
change during collaboration, and investigate whether it is
reflected in the learning outcomes as a change from pre- to
post-test.

II. RELATED WORK

Social robotic agents have a potential to become a part of
educational environments by undertaking a unique position
that extends their functional purpose with personal and social
dimensions of interaction [1]. Among agents that provide
support with social interaction, physically embodied robots
tend to have a higher impact on learning and become more
effective for the desired changes in behavior compared to
virtual pedagogical agents [1]. To leverage the social dimen-
sion, these robots can behave in ways to encourage greater
effort towards learning. For instance, within the “learning
by teaching” paradigm [8], the robot takes the role of a
novice needing help from the human; e.g. to enhance their
vocabulary via a robot controlled by Wizard-of-Oz [9], or to
improve handwriting via an autonomous robot [10]. Such a
role is not very straightforward for a human to take on, as it
might not be convincing or even doable, which highlights the
unique position of robots. Our work explores another way to
benefit from this added social dimension which is by having
a physical robot autonomously participate in a collaborative
problem solving process together with the child. The need to
converge on a shared solution engages the child in a meta-
cognitive relationship with the robot that involves trying to
understand why the robot acts the way it does. The socio-
cognitive conflict [11] likely to arise from this relationship
can promote learning [12].

Regarding their role in the interaction, social robots have
been used as teachers or tutors to guide children’s learning
of skills such as a second language [13] (robots teaching
humans). Conversely (humans teaching robots), have been
utilized as teachable agents, namely as “surrogate pupils”
for children to teach [14], by concentrating on i) the benefits
for the robot akin to the “learning from demonstration”
paradigm [15]; or ii) for the children’s learning as in [10].
Our work focuses on the benefits for the child: by collab-
orating with a robot to solve a problem and converging to
a shared solution, we aim at improving the computational
thinking skills of the child. To be effective in achieving
the learning goals, we need to investigate how the robot
should behave within its role [1]. The robot’s behavior is
informed by what it knows about the activity and the human.
Therefore, our work investigates to what extent the robot
needs to model the activity and the human, to produce the
desired learning outcomes. For this, we start with the activity,
and investigate whether the robot could be effective even
while misconceiving the problem.

Fig. 1. Robot and first collaborative activity as seen by the participant.

III. DESIGN

A. Instructional Design

We design the learning experiences, that fundamentally
shape the participant’s interaction with the robot, by the
“backward design” approach [16]: we i) identify the de-
sired results i.e. the learning goals, ii) determine acceptable
evidence that indicate the desired results are achieved, and
iii) design the activities that can lead to learning.

1) Learning goals: The desired results in this study stem
from recent research in learning sciences, which emphasizes
a need to introduce activities to develop the Computational
Thinking (CT) skills of children earlier in schools [17].
Accordingly, we target school children aged 9-12 years old,
with the aim to improve their CT skills, by applying abstract
and algorithmic reasoning to solve a problem on networks.
We choose the minimum-spanning-tree problem on networks
as the underlying objective of the task, that children are
not expected to be familiar with. Thus, our desired result is
that after completing this task, a participant will be able to
correctly choose a subset of connections on a given network,
so that i) all nodes are connected to each other by some
path, and ii) the total cost on these connections is minimized.
Concretely, given an instance of the minimum-spanning-tree
problem, a participant will be able to: (LG1) identify a valid
solution for the given instance, and (LG2) construct a correct
solution to the instance. These goals target “understand” and
“create” levels of learning objectives, respectively, in the
(revised) Bloom’s taxonomy [18].

2) Assessment of learning: As evidence about the desired
results, we measure the learning outcomes by comparing
the responses of the participant in the pre-test and the post-



TABLE II
THE SEQUENCE OF ACTIVITIES IN THE HUMAN-ROBOT PEDAGOGICAL SCENARIO.

Activity What is the human supposed to do? What does the robot do? Time (min)

Intro. Listen to the robot, while looking at the screen that displays the context of the
game.

Introduce the context and the goal of the game. 2

Tutorial Learn how to interact with the activity on screen: i) pick a connection (i.e. an
edge), ii) clear all the selections, and iii) submit a solution.

Guide the human through the tutorial. Explain the
available actions.

3

Pre-test
5 problem
instances

In each instance, connect the mines by spending as little as possible for the
network. Upon pressing the submit button, confirm the submission or continue
modifying the selection. After confirmation, move on to the next instance.

Motivate the human to solve the problem instances
in the test, state the (dual) goal of connecting all and
spending as little as possible.

≤ 5

Collab.

2 problem
instances

Collaborate with the robot to connect the mines by spending as little as possible
for a given network, by suggesting which connection to pick and (dis)agreeing
in turns: selecting only if agreed. The human or the robot can submit ≤ 4
times per problem instance. Upon submission, receive feedback on whether the
selection is correct.

When it is the robot’s turn, suggest and (dis)agree
according to a sub-optimal strategy based on greedily
traversing the network; submit if there are no outgoing
connections.

≤ 30

Post-test
5 instances

Solve the problem instances in the post-test, identical to the pre-test. Motivate the human to solve the problem instances. ≤ 5

Interview Answer questions from the experimenter. Robot is not present. ≤ 15

test. We design the tests as a sequence of instances of the
minimum-spanning-tree problem, to be solved individually
by the participant. We assess the learning goal of identifying
a valid solution (LG1) by checking whether the responses
(i.e. solutions) of the participant to the tests are feasible solu-
tions or not.4 We evaluate the learning goal of constructing a
correct solution (LG2) by checking i) whether the submitted
solutions are optimal solutions or not,5 and ii) how far the
solutions are from the optimal solutions in terms of their
cost.

3) Pedagogical scenario: As an experience that can make
the desired results happen, we design a human-robot inter-
action scenario where the robot orchestrates a sequence of
activities as described in Table II. The robot first introduces
the scenario in the context of a game, which takes place on
a fictional map of Switzerland with rare metal mines located
in mountains, see Fig. 1. The goal of the game is to build
a railway network to help the miners go from any mine to
any other, and spend as little money as possible to build
these railways. In each of the collaborative activities, the
robot and the participant solve a problem instance together.
The goal of the game is the same as the tests, where the
participant individually solves a series of problem instances.
At the end of the interaction, an experimenter conducts a
semi-structured interview with the participant.

a) Collaborative activities: The human and the robot
as (same-status) peers collaboratively construct a solution by
deciding together which tracks to build, where each track,
if built, connects one mine to another. The cost of each
track is visible to both the human and the robot. The human
and the robot take turns in suggesting to build a specific
connection, where the other agrees or disagrees with this
suggestion, and then makes a new suggestion. A track will
be built only if it is suggested by one and agreed by the
other. The human as well as the robot can submit the current

4A feasible solution to an instance of the minimum-spanning-tree problem
connects all the nodes in the network of that instance to each other by a
path.

5An optimal solution is a feasible solution with the minimum possible
cost.

solution and receive feedback on whether it is a correct
solution or not: if it is a correct solution the activity ends,
the solution is cleared otherwise. In each problem instance,
a solution can be submitted up to four times. The human
and the robot sequentially work on two problem instances of
the same complexity, composed of 20 edges and 10 nodes.
Fig. 1 shows the first network. For instance, a ‘valid’ solution
for the problem is selecting all the possible connections:
this is however not a ‘correct’ solution as it contains many
redundant connections. The second network is obtained by
transforming the layout of the first network, renaming the
mines, and modifying the costs on the edges.

b) Tests: The pre-test and the post-test consist of five
different instances of the minimum-spanning-tree problem, in
the same context of the collaborative activities. The tests are
identical and no feedback is given on the submitted solutions.
The participant is asked to confirm while submitting. The
networks of the instances in a test are created from the same
underlying network structure, composed of 12 edges and 7
nodes, by transforming (e.g. mirroring, rotating, scaling, and
shifting) the layout and modifying the cost (e.g. by doubling
or adding a constant). Thus, the problem instances in the
tests are of same complexity, and simpler than the instances
in the collaborative activities.

c) Interview: In order to get a deeper insight on the
impressions of the participants regarding the activity and
their interaction with the robot, at the end of the scenario, an
experimenter interviews the participants with 10 questions,
listed in Table III. The first half of the questions investigate
how the participant perceived his/her own strategy and the
strategy of the robot: how the participant and the robot made
suggestions and how did they agree or disagree with each
other. Then, we ask about the participant’s perception of
the optimality and the autonomy of the robot, and finally
if the participant and the robot made guesses about the other
while taking actions. About guesses, the robot behavior is
designed such that it occasionally asks the human to make
a guess, see Sec. III-B. Since we know by design of the
pedagogical scenario and the robot behavior the ground truth
for some of these questions, the responses give us a chance



TABLE III
THE QUESTIONS IN THE INTERVIEW.

No Question

1 How did you decide on which connections to pick?
2 How did you decide on your suggestions to the robot? Is it following

some rule?
3 How does the robot decide on its own suggestions? Does it know the

solution?
4 How did you decide whether to agree or disagree with the robot’s

suggestions?
5 How did the robot agree or disagree with your suggestions?
6 How good were the suggestions of the robot? Were they correct all the

time? Incorrect?
7 How independent do you think was the robot? Do you think it is controlled

by someone?
8 What do you think was going on inside the robot’s mind?
9 Did you select what you think the robot will do, when the robot asks you

to make a guess?
10 Do you think the robot made guesses about what you would do?

to reveal discrepancies in expected and observed behavior of
the participants.

B. Robot’s Role and Behavior

We design the robot behavior such that i) it is completely
autonomous to orchestrate the interaction without a need for
intervention by an experimenter, and ii) it works together
with the human to construct solutions, in such a way that
elicits misconceptions and misunderstandings about the other
and the activity.

1) Throughout the pedagogical scenario: The robot fully
automates the entire interaction by introducing the context
and the goal of the game, (un)pausing the game, and moving
the displayed activity to the next until the interaction con-
cludes. Its behavior includes verbal explanations and support
to motivate the human to try his/her best, facial expressions
to convey emotions such as excitement, and gestures like
pointing to the participant or looking at the screen.

2) During the collaborative activities: Unbeknownst to
the participant, the robot does not know how to solve the
problem correctly: it has the wrong conception of feasible
and optimal solutions (i.e. no LG1 or LG2). The robot
acts in a naive, simplistic and convincible manner, making
suggestions greedily from a node it assumes that they are
at. This results in a sub-optimal strategy, that will traverse
the map in a local-greedy manner, and end up at a visited
node: hence selecting a sub-network that contains a cycle,
which is a sub-optimal solution. What the robot implicitly
and functionally “believes” about the activity and its human
counterpart can be summarized as follows: i) “We are at a
node and we move as we select edges.”, ii) “If we have
nowhere new to select from the node we are at, we are done
and we should submit.”, iii) “My strategy is correct and your
strategy is incorrect.”, and iv) “If you are persistent, then
you are correct.” These beliefs are manifested in the robot’s
actions: when it is the robot’s turn, the robot suggests to pick
one of the cheapest outgoing edges from a specific node, or
submits if there is no edge to select from that node. When
it is the human’s turn, the robot either i) asks the human
to suggest what they should do (with 80% probability), or

ii) asks the human to make a guess on what it (the robot)
would do (20%). The node from which the robot selects
edges is not revealed to the human, and moves as edges get
suggested and selected. While responding to the human’s
suggestions, the robot agrees if i) it is exactly the same edge
it would pick or ii) it is the second time the human suggests
that edge; it disagrees otherwise: thus the robot is in a sense
“convincible”, a trait which also prevents the interaction from
getting stuck if a human is to insist on selecting a particular
connection.

IV. METHODS

1) Measuring learning outcomes: We quantify the learn-
ing outcomes separately around each learning goal, by as-
sessing the quality of the solutions of a participant in the
pre-test and the post-test. For LG1, we compute the fraction
of feasible solutions in the tests: from 0% (none of the
solutions is feasible) to 100% (all solutions are feasible
and hence valid). For LG2, we calculate the fraction of
optimal solutions in the tests: from 0% (none of the solutions
are correct) to 100% (all solutions are optimal and hence
correct). As a finer assessment of performance in terms of
how far a feasible solution is from an optimal solution, we
define error as the difference between the cost of the
solution and the cost of an optimal solution, normalized by
the cost of the optimal solution. We quantify the overall
performance in a test by the average error per problem in
that test. We quantify the change in the quality of responses
in the post-test, compared to pre-test, on the basis of the
learning gain of a participant, defined by the relative
difference of the average error in pre-test and post-test.

2) Measuring performance in collaborative activities:
Each collaborative activity allows submitting several so-
lutions for a problem instance. Thus, we evaluate each
solution in a collaborative activity separately, as the pair’s
best attempt for a correct solution in that activity: this may
be any of the solutions, and necessarily the last solution if it
is optimal. We use the lowest error of the solutions submitted
by the human as the measure of overall performance of
a participant for each collaborative activity: the lower the
error, the higher the performance, with 0% meaning that
an optimal solution was found. Note that the error is only
computed for the feasible solutions submitted by the human
participant. We measure the performance gain as the
change of performance between the collaborative activities,
by computing the relative difference of the lowest error in
the first collaborative activity and in the second.

3) Characterizing actions in terms of optimality: When
the human and the robot are constructing a solution together,
and while the human is individually constructing a solution in
the tests, the actions taken can be qualified as optimal or not.
To assign a quality label for every action, we consider the
set of possible optimal solutions that can be constructed from
the current solution state, by only adding more connections
(or submitting). Thus, a submit action is optimal if and only
if the submitted solution is optimal. A clear action is optimal,
if there is no optimal solutions that can be constructed
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Fig. 2. The study setup. The participant interacts remotely from a school.

from the current state. We label a suggestion as optimal,
if the suggested connection is part of at least one possible
optimal solution available from that state (and as sub-optimal
otherwise). An agreement is optimal if the suggested edge is
part of at least one of the possible optimal solutions, and a
disagreement is optimal if the suggested edge is not part of
any of the possible optimal solutions.

Optimality in this sense is towards finding an optimal
solution in minimum number of actions: a sub-optimal agree-
ment would result in selecting a connection that will need to
be removed (by e.g. the clear action) in order to obtain an
optimal solution. Likewise, a sub-optimal disagreement is not
‘wrong’, but rather not the quickest way to reach an optimal
solution: in a later suggestion, the same or an equivalent
connection could be suggested and agreed, and an optimal
solution can be constructed (with some more actions taken).

4) Quantifying the trend of change of action quality: For
RQ3, we study the trend of improvement of actions of a
specific type, such as suggestions (H3.2), agreements, and
disagreements (H3.3). To quantify how and how much the
quality of actions changes during a collaborative activity,
we i) filter for the specific type of actions taken by the
human in that activity, then ii) annotate each action with
an action quality value by labeling optimal actions as 1 and
sub-optimal actions as 0, iii) annotate the action times as
a fraction of the overall progress in that activity from 0
i.e. 0% at the beginning to 1.0 i.e. 100% at the end, and
iv) compute the slope of the fitted regression line between
the action quality values and action times. Thus, a positive
r indicates an improvement, with e.g. the human suggesting
optimal actions more later than earlier in the activity: the
higher the r, the stronger is the trend.

V. USER STUDY

1) Setup: To comply with COVID-19 school safety reg-
ulations, we had to resort to conducting the pilot study
without bringing any external person or equipment on school
premises. To make as meaningful reference to physical in-
person interaction as possible, i.e. the way we intended,
each child (physically located in a quiet room at school)
interacted with the robot (physically located in our lab)
remotely through a videoconferencing application, see Fig. 2.
One session lasted ≈ one hour and followed the outline in
Table II. We note that this was not the intended scenario,
where the video-view of the robot is probably less engaging
than having the robot in the room: however, this was the
only possibility.

2) Participants: We collected a dataset of 9 children
(3 females and 6 males), aged 10-11 years old, globally

accounting for about 9 hours of interaction, of which around
5 hours spent in the collaborative problem-solving activities
between the human and the robot (3 hours in the first with
M = 19.6, SD = 7.7 min, and 2 hours in the second
with M = 13.0, SD = 5.3 min). The interview took
M = 5.6, SD = 2.4 min, with a maximum of 12.1 min.

VI. RESULTS AND DISCUSSION

1) User Perception: Concerning their own strategy, all
participants reported that they tried to select the cheapest
connections that were available and that they suggested to
the robot the same ones that they would pick. Participants
were not sure how the robot decided on its suggestions: for
two of the participants it “looks at the most efficient way”,
while for three it seemed “random” (“Sometimes it went for
bigger numbers, sometimes for smaller”).

Concerning what the participants did when asked by the
robot to make a guess on what it would do, the replies
indicate they overall tended to rather follow their own
choices. 5 (out of 9) participants thought that their selection
would essentially coincide with what the robot thinks, as the
robot in that case would agree with it. Two followed their
own choices, as they were unsure or wanted to see the robot’s
reaction (“Because I didn’t really understand the pattern it
works in”). The rest occasionally ignored the request (“I
picked what I thought the robot would do but sometimes
I picked my own”). Therefore, in the following analyses we
treat the actions taken when the robot asks to make a guess
as suggestions being made to the robot.

2) RQ1 on the Learning Outcomes: Fig. 3(a-c) illustrate
how the quality of the solutions of the participants changed
from the pre-test to the post-test. A Wilcoxon signed-rank
test shows that the average error in the post-test is statistically
significantly different than in the pre-test (W (8) = 0.0, p =
.008).6. The error is lower in the post-test with a large effect
size (Cliff’s δ(8) = −.61).7 This supports our hypothesis
H1.3: the participants performed better after collaborating
with the robot, by submitting on average better solutions
with lower error.

The data is inconclusive about a difference between the
pre-test and the post-test in terms of submitting more feasible
solutions (H1.1: W (5) = 5.0, p = .63) or more optimal
solutions (H1.2: W (4) = 1.0, p = .25).8 On H1.1, we
observe that all participants except participant 7 submitted
feasible solutions in 80-100% of the tests (see Fig. 3(a)):
this indicates that they already had a good conception for
identifying valid solutions (LG1) prior to the study. For
participant 7, only 40% of the solutions were valid in
the pre-test, and none in the post-test: we interpret that

6Average errors in the post-test are not normally distributed (Shapiro-
Wilk’s W (8) = .82, p = .044)

7The magnitude of Cliff’s Delta (δ) can be interpreted via thresholds
|δ| < .147 “negligible”, |δ| < .33 “small”, |δ| < .474 “medium”, and
otherwise “large” [19].

8For the Wilcoxon tests for H1.1 and H1.2, there are 5 and 4 samples
resp. due to the ties (see Fig. 3), because we can not compute exact p-values
with ties, and a p-value via normal approximation that allows ties is used
for a sample size of typically > 50 [20].
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Fig. 3. (a-c) Learning outcomes for each participant, in terms of the quality difference of their responses from the pre-test to the post-test; (d) change
in performance through the collaborative activities. The overlapping lines are demarcated by a slight offset. A cross indicates that the error can not be
computed. The legend applies to all figures.

7 was confused about the goals of the activity. On H1.2,
we observe that one-third of the participants improved by
40-80%, whereas another third did not submit any optimal
solutions in either of the tests: while the collaboration with
the robot was beneficial for some, it did not seem to help
everyone.

Overall, the results show positive learning outcomes for
the participants in terms of finding better solutions, suggest-
ing that the collaboration with the robot might have helped
trigger the learning mechanisms. However, the interaction
was not necessarily beneficial to all the participants, such as
participant 7, for whom it is likely that initial misconceptions
remained unresolved.

3) RQ2 on the Evolution of Performance in the Task:
Fig. 3(d) shows how the performance changes from the
first to the second collaborative activity, as measured by the
best submission (i.e. lowest error). Performance in the
second activity is higher than in the first with a medium
effect size (Cliff’s δ(8) = −.38), but the difference is not
statistically significant (W (6) = 2.0, p = .09).9 The data is
consistent with H2.1: all participants except for participant 3
performed better or the same (by finding an optimal solution
in both of the activities); for participant 3 performance only
slightly decreased.

From the beginning (0% progress) to the end of the activity
(100%), the median optimal suggestion times have the mean
at = 50.7% (SD = 30.5%) and 49.4% (SD = 31.1%) in
the first and the second collaborative activity, respectively.
In addition, median optimal (dis)agreement times have the
mean = 50.0% (SD = 31.1%) and 59.2% (SD = 31.4%).
While we hypothesized in H2.2 and H2.3 that the optimal
suggestions and (dis)agreements would come later in the
interaction, we observe that they tend to occur throughout
the interaction, spread around the middle of an activity.

All in all, participants tended to visibly improve across
the collaborative activities, showing better performance in
the second compared to the first, even though the robot did

9Lowest errors in the first & second collab. activities are not normally
distributed (Shapiro-Wilk’s W (8) = .80, p = .030 and W (8) = .48,
p < .00001, respectively).

not know how to solve the problem. Surprisingly, within
the collaborative activities, we do not observe such a trend
of improvement in the quality of the actions over time:
the notion that optimal actions tend to come later in the
interaction is thus probably too simplistic a view for how
the interaction evolves.

4) RQ3 on the Link Between Performance and Learning:
The change of performance across collaborative activities,
i.e. performance gain, has a weak correlation coef-
ficient with the learning outcomes as measured by the
learning gain (Pearson’s r(8) = −.21, p = .60).10

Thus, the data does not support H3.1. When we look into
the specific action types, the trend for suggestions only has a
moderate correlation coefficient with the learning outcomes
(first activity: ρ(8) = −.31, p = .46; second: ρ(8) = .64, p =
.09): hence, the data is inconclusive on H3.2. The trend for
optimal (dis)agreements has a strong negative correlation
with the learning outcomes for the first activity (ρ(8) =
.83, p = .01) and a very weak correlation coefficient for the
second (ρ(8) = .07, p = .87). To investigate this result in the
first activity further, we separately check optimal agreements
and disagreements: for these, the trends have very weak to
moderate correlation coefficients (ρ(8) = −.14, p = .74
and ρ(8) = −.41, p = .32, respectively). Thus, there
seems to be a non-trivial combined effect of treating them
together, without a clear trend for either optimal agreements
or disagreements occurring later (median slope for both are
at 0). Therefore, we conclude that H3.3 is not supported.

Fig. 4 shows how the performance of the participants
evolve through the scenario: from the pre-test instances, to
collaborative activities and to post-test instances. We observe
in general better performance in collaborative activities com-
pared to tests, even though the robot does not know how to
correctly solve the problem by itself. Furthermore, we see
that high performance in collaborative activities does not
always result in a high performance in the test afterwards.

Overall, the results indicate that the trend of change in the

10The magnitude of Spearman’s ρ can be interpreted by: .00− .19 “very
weak”, .20 − .39 “weak”, .40 − .59 “moderate”, .60 − .79 “strong”, and
≥ .80 “very strong” [21].
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scenario.

optimality of actions is not the right level of assessing and
predicting the learning outcomes: how the participants think
about the activity is not necessarily synchronized with their
behavior in the interaction as objectively seen by the actions
they take. It is likely that their improvement reflects in the
mental representations of the participants about the activity
and their collaborator - the robot.

5) Observations on the Dynamics of Interaction: In the
collaborative activities, the robot essentially implements a
dialogue model. Thus, the goal of this study was, beyond
testing the learning activity, to see how much the children
‘enter’ into the ‘dialogic game’ more or less as if it was a
real dialogue, not just an interaction based on a few rules.
For this purpose, we inspect the dynamics of interaction to
see patterns of good and bad agreements and disagreements
between a child and the robot over time.

Fig. 5 shows the distribution of the optimal and sub-
optimal actions taken by each participant. We observe that
the children have no problems with disagreeing with the
robot. Furthermore, there are some episodes of ‘fight’, in
which the robot’s proposed connections are repeatedly re-
jected. For example, Participant 4 systematically disagreed
with the robot’s suggestion five times consecutively near the
end of the first collaborative activity, and all the disagree-
ments were optimal. Since the robot has an incorrect strategy,
optimal disagreements are necessary to achieve the task’s
goal: i.e. the participant needs to say ‘no’ to an unnecessary
connection, or a costlier connection which if selected would
lead to a sub-optimal solution. Thus, it seems that the child
asserted his/her belief that the robot was making incorrect
choices.

We also observe intervals of possible dis-engagement, in
which the child agrees systematically. For example, Partic-
ipant 8 simply agreed with every suggestion of the robot
within the last attempt (seven times, during t > 20 min).
The second agreement was sub-optimal, and thus the latter
agreements and suggestions lead to a sub-optimal solution.

VII. CONCLUSION

In this study, we observed positive learning outcomes for
participants in terms of finding better solutions, after col-
laboration with the robot to solve a computational problem
together. Furthermore, we observed better performance in the
collaborative activities compared to the tests, even though

the robot did not know how to solve the problem at hand;
however, this high collaborative performance was not always
carried over to the individual post-test. We did not observe a
correlation between learning outcomes and the evolution of
the quality of actions, which indicates a need to delve deeper
into the participant’s representation of the activity and the
robot.

As the robot in our study is not aware of a correct solution,
but rather of the process of the interaction, this indicates a
shift from the focus on robot knowing and enacting a correct
approach to a problem, to rather better modeling the child.
We hypothesize that a robot that maintains beliefs about the
human would be able to work at a more suitable level, with a
better proxy to track the learning process: it could guide the
interaction using these beliefs and thus bring about learning
more effectively. Also, we believe that this type of behavior
is easy to port to other activities; as a correct approach need
not be included in the behavioral design. Lastly, although
the study was conducted with a remote-telepresent robot and
was limited to a small number of participants, we believe the
results allow further investigation.
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