
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

System Support for Robust Distributed Learning

Arsany Hany Abdelmessih GUIRGUIS

Thèse n° 8995

2022

Présentée le 12 juillet 2022

Prof. A. Ailamaki, présidente du jury
Prof. R. Guerraoui, directeur de thèse
Prof. F. Taiani, rapporteur
Prof. M. Canini, rapporteur
Prof. K. Argyraki, rapporteuse

Faculté informatique et communications
Laboratoire de calcul distribué
Programme doctoral en informatique et communications

Do not forsake wisdom, and she will protect you;

love her, and she will watch over you

— The Bible

	
¬Q

�

�
ª
�
K

�	
à

�
@

�
I. m.�

�
�
'

 A

�
Ò
�
»

�
Y
�
ª
�
K. A

�
J
�
�

�
�
�

�	
¬Q

�

�
ª
�
K

�Õ
�
Ë
�
é

��	
K A
�

�	
¯ , A

�
J
�
�

�
�
�

�	
¬Q

�

�
ª
�
K

�
é

��	
K

�
@
��	á
�	
¢
�
�

�
Y
�
g

�
@
�	
àA
�
¿

�	
àA
�

�	
¯

To two pure souls I lost during my PhD: Teta Demiana and Uncle Bassem . . .

Acknowledgements
PhD is hard. It is impossible to get through it alone, especially during a worldwide pandemic.

I was lucky to be surrounded by amazing people who helped me on both (equally important)

technical and non-technical sides. To reflect the contributions of those who helped me on

sthe technical side, I use the pronoun “we" instead of “I" throughout this thesis.

Having a good advisor is a cornerstone to having an enjoyable PhD journey; mine was unfor-

gettable, primarily because of Rachid. Rachid is not only a great researcher and advisor, but

he is also an extremely nice person. Thank you for always being encouraging, patient, and

friendly. Thank you also for giving me the autonomy to explore research areas I like and the

proper guidance, without which I could not have done top-quality research.

Luckily, I had a unique chance to work with brilliant researchers and mentors from different

institutes. These collaborations have led to research contributions, all included in this thesis

(BINGO!). I am grateful to Anne-Marie Kermarrec and Erwan Le-Merrer for hosting me in their

group at Inria. Thank you for allowing me to work on compelling problems in the beautiful

city of Rennes. I would also like to thank Florin Dinu, Javier Picorel, and Do Le Quoc for my

internship at Huawei Research Labs in Munich and the subsequent collaboration. Thank you

for believing in me and pushing me to produce better research. I also want to thank CJ Zheng,

Yitzchak Lockerman, David Eis, and Ari Silburt for my internship at Bloomberg AI. There, I

had a special opportunity to see how to do research in industry settings.

I am grateful to my PhD oral exam jury: Prof. François Taïani, Prof. Marco Canini, and Prof.

Katerina Argyraki. Thank you for your insightful questions and comments, which have helped

me improve my thesis. I am also thankful to Prof. Anastasiia Ailamaki for presiding over my

thesis committee. I had a distinctive chance to present my thesis to Prof. Dahlia Malkhi, whom

I thank for the insightful discussion about my thesis and its scope. Such a discussion helped

me prepare well for the oral exam and gain extra confidence in my work.

I could not have asked for a nicer lab than the distributed computing lab (DCL). First, a special

shoutout to George D. for mentoring me during my first semester in the lab. George had

also reviewed all my paper submissions (until his graduation), for which I am very grateful.

I would also like to thank Mahdi for helping me write my first theory paper in the area of

Byzantine ML. Many thanks to Pierre-Louis, Vasilis, Florin, Nirupam, Rafaël, Andrei, Thanasis,

i

Acknowledgements

Jovan, Gauthier, Sadegh (my awesome office-mate), and Antoine for their valuable comments

on my thesis writing and presentation. I wish to thank Lê and Pierre-Louis for helping me

write a proper french translation of the abstract. Special thanks to Pierre-Louis for helping

me improve my thesis with passion as if it was his; I was impressed by that. Additionally, I

would like to thank all the other members with whom I shared lots of cool chats, discussions,

memories, and outings: the senior guys: George C., Matej, Adi (the lifting buddy), Igor, and

Karolos; the guys of my batch: Sébastien and Matteo; and those who joined afterward: John,

Anastasiia, Youssef, and Diana, the youngest member of the lab, whom I trust to continue

the work on distributed ML systems. I am grateful to the admin staff, who made my PhD life

easier: Fabien, who can solve any technical problem or question you could face, and France,

for being always friendly and helpful with administrative (and not only) challenges.

During my PhD, I mentored a few students (as interns or while doing semester projects or

Master thesis) whom I thank for their trust and great work: Jérémy, Anton, Sahar, and Adrian.

I also wish to thank the Center for Digital Trust (C4DT) at EPFL for believing in my Garfield

project and for spending time and effort to showcase it and create a demo on its functionality.

My work has received generous financial support from EPFL, the Swiss National Science

Foundation, and Huawei via the EDIC PhD fellowship, the FNS Grant 200021_182542, and the

Huawei grant N° 2021-0053, respectively. Bloomberg has also financially supported the work in

Chapter 4, providing the computing resources for the experiments. Some of the experiments

presented in this thesis use the Grid’5000 testbed, which is supported by a scientific interest

group hosted by Inria and including CNRS, RENATER, and several universities as well as other

organizations (see https://www.grid5000.fr). Thank you all for the support.

I want to thank those who made the transition from Alexandria to Lausanne smooth and made

Lausanne feels like home. I am grateful to Abouna Mina for his help and support on many

fronts throughout all these past years. I thank all the members of the Coptic Orthodox Church

(and they are a lot!) in Geneva and Lausanne. Special thanks to Cyril Mikhail for the invaluable

advice, discussions, and help from the first day of my PhD Big thanks to Emad Sabet and

Giovanni Ekram for the great times we had together and for being great friends.

Family is everything. I would like to express my gratitude to my big family, scattered all over

the world. Most importantly, I cannot stress enough how deeply I am grateful to my parents,

Abouna Luka and Madlen Naguib, and my brother Abouna Bishoy for their endless love and

support. I owe you a lot, and I wish to make you always proud of me. Last but not least, I am

profoundly grateful to my life partner, Sandra, without whom I could not imagine how I would

sail the PhD journey, especially during the hard times of COVID. Thank you for constantly

believing in me and encouraging me no matter what. To more amazing moments together!

Lausanne, June 24, 2022 Arsany Guirguis.

ii

https://www.grid5000.fr

Preface
The research presented in this dissertation was conducted in the Distributed Computing

Laboratory at EPFL, under the supervision of Professor Rachid Guerraoui, between 2018 and

2022. The main results of this dissertation appeared originally in the following publications:

1. Rachid Guerraoui, Arsany Guirguis, Jérémy Plassmann, Anton Ragot, and Sébastien

Rouault. Garfield: System support for Byzantine machine learning (regular paper).

In 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN), pp. 39-51. IEEE, 2021.

2. Arsany Guirguis, Yitzchak Lockerman, Chengjian Zheng, David Eis, Rachid Guerraoui.

Elastic resource allocation for multi-tenant deep learning clusters. Under submission.

3. Arsany Guirguis, Florin Dinu, Diana Petrescu, Do Le Quoc, Javier Picorel, Rachid Guer-

raoui. Accelerating transfer learning with cloud object stores. Under submission.

4. Rachid Guerraoui, Arsany Guirguis, Anne-Marie Kermarrec, and Erwan Le Merrer. Fe-

GAN: Scaling distributed GANs. In Proceedings of the 21st International Middleware

Conference, pp. 193-206. 2020.

Besides the above-mentioned publications, I have also contributed to other research projects

that resulted in the following publications (author names are in alphabetical order):

1. Georgios Damaskinos, El-Mahdi El-Mhamdi, Rachid Guerraoui, Arsany Guirguis, and

Sébastien Rouault. Aggregathor: Byzantine machine learning via robust gradient aggre-

gation. In Proceedings of Machine Learning and Systems 1, pp. 81-106. 2019

2. El-Mahdi El-Mhamdi, Rachid Guerraoui, Arsany Guirguis, Lê Nguyên Hoang, and

Sébastien Rouault. Genuinely distributed Byzantine machine learning. In Proceed-

ings of the 39th Symposium on Principles of Distributed Computing, pp. 355-364. 2020.

3. El-Mahdi El-Mhamdi, Sadegh Farhadkhani, Rachid Guerraoui, Arsany Guirguis, Lê-

Nguyên Hoang, and Sébastien Rouault. Collaborative learning in the jungle (decentral-

ized, Byzantine, heterogeneous, asynchronous and nonconvex learning). Advances in

Neural Information Processing Systems 34. 2021.

4. El-Mahdi El-Mhamdi, Rachid Guerraoui, Arsany Guirguis, Lê Nguyên Hoang, and

Sébastien Rouault. Genuinely distributed Byzantine machine learning (extended ver-

sion). Distributed Computing, pp. 1-27. 2022.

June 24, 2022 Arsany Guirguis.

iii

Abstract
Machine learning (ML) applications are ubiquitous. They run in different environments such

as datacenters, the cloud, and even on edge devices. Despite where they run, distributing ML

training seems the only way to attain scalable, high-quality learning. But, distributing ML is

challenging, essentially due to the unique nature of ML applications.

First, ML training needs to be robust against arbitrary (i.e., Byzantine) failures due to its usage

in mission-critical applications. Second, training applications in datacenters run on shared

clusters of computing resources, for which we need resource allocation solutions that meet

the high computation demands of these applications while fully utilizing existing resources.

Third, running distributed training in the cloud faces a network bottleneck, exacerbated by the

fast-growing pace of computing power. Hence, we need solutions that reduce the communica-

tion load without impacting the training accuracy. Fourth, despite the scalability and privacy

guarantees of training on edge devices via federated learning, the heterogeneity of devices’ ca-

pabilities and their data distributions calls for robust solutions that cope with these challenges.

To achieve robustness, we introduce GARFIELD, a library to help practitioners make their ML

applications Byzantine-resilient. Besides addressing the vulnerability of the shared-graph

architecture followed by classical ML frameworks, GARFIELD supports various communication

patterns, robust aggregation rules, and compute hardware (i.e., CPUs and GPUs). We show

how to use GARFIELD in different architectures, network settings, and data distributions.

We explore elastic training (i.e., changing the training parameters mid-execution) to efficiently

solve the resource allocation problem in datacenters’ shared clusters. We present ERA, which

provides elasticity in two dimensions: (1) it scales jobs horizontally, i.e., by adding or removing

resources to or from the running jobs, and (2) it dynamically changes, at will, the per-GPU

batch size to control the utilization of each GPU. We demonstrate that simultaneous scaling in

both dimensions improves the training time without impacting the training accuracy.

We show how to use cloud object stores (COS) to alleviate the network bottleneck of training

transfer learning (TL) applications in the cloud. We propose HAPI, a processing system for TL

that spans the compute and the COS tiers, enabling significant improvements while remaining

transparent to the user. HAPI mitigates the network bottleneck by carefully splitting the TL

application such that feature extraction is, partially or entirely, executed next to storage.

v

Abstract

We show how to efficiently and robustly train generative adversarial networks (GANs) in the

federated learning paradigm with FEGAN. Essentially, we co-locate both components of a

GAN (i.e., a generator and a discriminator) on each device (addressing the scaling problem)

and have a server aggregate the devices’ models using balanced sampling and Kullback-Leibler

weighting, mitigating training issues and boosting convergence.

Keywords: machine learning, distributed computing, robust machine learning, Byzantine

failures, federated learning, elastic training, resource allocation, datacenters, cloud computing,

cloud object stores, transfer learning, generative adversarial networks.

vi

Résumé
Les applications d’apprentissage automatique sont omniprésentes. Elles sont exécutées dans

des environnements aussi divers que les centres de données, le cloud et même sur les appareils

des utilisateurs tels que les ordinateurs personnels et les téléphones portables. Qu’importe l’en-

vironnement d’exécution, distribuer l’entraînement de l’apprentissage automatique semble

être le seul moyen de parvenir à de l’apprentissage de haute qualité et extensible (“scalable”).

Cependant, distribuer l’apprentissage automatique est difficile, notamment en raison de la

nature singulière de ses applications.

Tout d’abord, l’apprentissage automatique doit être robuste contre les pannes arbitraires, dites

Byzantines, en raison de son utilisation dans des applications critiques. Deuxièmement, les ap-

plications d’apprentissage présentes dans les centres de données s’exécutent sur des grappes

de ressources informatiques qui sont partagées entre plusieurs applications, grappes pour les-

quelles nous avons besoin de solutions d’allocation de ressources qui répondent aux demandes

de calcul intensif de ces applications, tout en utilisant pleinement les ressources existantes.

Troisièmement, l’exécution répartie de l’apprentissage dans le cloud est confrontée à un goulot

d’étranglement du réseau, exacerbé par la croissance rapide de la puissance de calcul. Nous

avons donc besoin de solutions qui réduisent leur impact sur les infrastructures réseau sans

pour autant affecter la précision de l’apprentissage. Quatrièmement, malgré l’extensibilité

et les garanties de confidentialité de l’apprentissage effectué sur les appareils personnels via

l’apprentissage fédéré, l’hétérogénéité des capacités des appareils et de la distribution de leurs

données exige des solutions robustes qui permettent de relever ces défis.

Pour atteindre cette robustesse, nous introduisons GARFIELD, une bibliothèque pour aider les

praticiens à rendre leures applications d’apprentissage automatique résistantes aux pannes

Byzantines. En plus de combler la vulnérabilité de l’architecture à graphe partagé utilisée par

les cadres d’applications classiques d’apprentissage automatique, GARFIELD prend en charge

divers modèles de communication, règles d’agrégation robustes et matériels de calcul (i.e., les

CPUs et les GPUs). Nous montrons comment utiliser GARFIELD avec différentes architectures,

configurations réseau et distributions de données.

Nous explorons l’entraînement élastique (i.e., la modification des paramètres d’entraînement

en cours d’exécution) pour résoudre efficacement le problème d’allocation des ressources dans

les grappes d’ordinateurs partagées des centres de données. Nous présentons ERA, qui fournit

vii

Résumé

de l’élasticité dans deux dimensions : (1) il adapte l’extensibilité horizontale des tâches, i.e., en

ajoutant ou en retirant des ressources aux tâches en cours d’exécution, et (2) il modifie dynami-

quement, à volonté, la taille du lot d’apprentissage alloué par GPU pour contrôler l’utilisation

de chaque GPU. Nous démontrons qu’adapter l’extensibilité simultanément dans les deux di-

mensions améliore le temps d’apprentissage sans impacter la précision des modèles entraînés.

Nous montrons comment utiliser le stockage d’objets dans le cloud (COS) pour réduire l’utilisa-

tion du réseau par les applications d’apprentissage par transfert dans le cloud. Nous proposons

HAPI, un système de traitement pour l’apprentissage par transfert qui couvre les niveaux de

calcul et de COS, permettant des améliorations significatives tout en restant transparent pour

l’utilisateur. HAPI désengorge le goulot d’étranglement du réseau en divisant soigneusement

l’application d’apprentissage par transfert, de sorte que l’extraction de variable soit, partielle-

ment ou entièrement, exécutée proche du stockage.

Nous montrons comment entraîner de manière efficace et robuste des réseaux adverses gé-

nératifs (GANs) dans le paradigme de l’apprentissage fédéré avec FEGAN. Pour ce faire, nous

co-déployons les deux composants d’un GAN (i.e., un générateur et un discriminateur) sur

chaque appareil (résolvant le problème d’extensibilité) et nous demandons à un serveur d’agré-

ger les modèles des appareils en utilisant un échantillonnage équilibré et une pondération de

Kullback-Leibler, ce qui atténue les problèmes d’entraînement et accélère la convergence.

Mots clés : apprentissage automatique, informatique distribuée, apprentissage automatique

robuste, panne Byzantine, apprentissage fédéré, entraînement élastique, allocation des res-

sources, centres de données, informatique en nuage, stockage d’objets dans le cloud, appren-

tissage par transfert, réseaux adverses génératifs.

viii

Contents
Acknowledgements i

Preface iii

Abstract (English/Français) v

List of Figures xiii

List of Tables xvii

I Introduction and Background 1

1 Introduction 3

1.1 Thesis Context . 3

1.2 Motivation and Contributions . 4

1.2.1 Byzantine Failures . 4

1.2.2 The Datacenter Case . 5

1.2.3 The Cloud Case . 6

1.2.4 The Federated Learning Case . 7

1.3 Thesis Roadmap . 8

2 Background 9

2.1 Neural Networks . 9

2.2 Stochastic Gradient Descent . 10

2.3 Distributed Machine Learning . 11

2.3.1 Parameter Server . 12

2.3.2 Decentralized Learning . 13

2.3.3 Federated Learning . 13

II Fault-Tolerant Machine Learning 15

3 System Support for Byzantine Learning 17

3.1 Introduction . 17

3.2 Background . 19

ix

Contents

3.2.1 Byzantine Resilience . 19

3.3 The GARFIELD Design . 20

3.3.1 Statistically–Robust GARs . 20

3.3.2 System Components . 23

3.4 The GARFIELD Implementation . 25

3.4.1 Communication in TensorFlow . 25

3.4.2 Communication in PyTorch . 26

3.4.3 SIMT Median Function . 26

3.4.4 Memory Management . 27

3.5 Applications . 28

3.5.1 Single Server, Multiple Workers (SSMW) 28

3.5.2 Multiple Server, Multiple Workers (MSMW) 29

3.5.3 Decentralized Learning . 30

3.6 Performance Evaluation . 31

3.6.1 Methodology . 31

3.6.2 Baselines . 32

3.6.3 GARs Microbenchmark . 33

3.6.4 Convergence Comparison . 34

3.6.5 Tolerating Byzantine Failures . 35

3.6.6 The Cost of Byzantine Resilience . 36

3.6.7 Scalability of GARFIELD . 38

3.7 Related Work . 40

3.8 Concluding Remarks . 41

III Practical Tips for Efficient Training 43

4 Elasticity is All You Need 45

4.1 Introduction . 45

4.2 Background . 48

4.2.1 Elastic Distributed Learning . 48

4.2.2 Deep Learning Scheduling . 48

4.2.3 PyTorch–elastic and ElasticJob . 49

4.3 The ERA Design . 49

4.3.1 Overview . 49

4.3.2 Architecture . 50

4.4 The ERA Implementation . 54

4.4.1 The Operator . 54

4.4.2 State Management . 55

4.4.3 Garbage Collection . 55

4.4.4 Batch Size Synchronization . 56

4.5 Performance Evaluation . 56

4.5.1 Methodology . 56

x

Contents

4.5.2 Baselines . 57

4.5.3 Microbenchmark . 59

4.5.4 End-to-end Large Experiment . 60

4.5.5 Scalability of ERA . 62

4.5.6 Fixed Job Schedule . 63

4.5.7 Convergence Comparison . 64

4.6 Related Work . 65

4.7 Concluding Remarks . 67

5 Cloud Object Stores for Faster Transfer Learning 69

5.1 Introduction . 69

5.2 Background . 72

5.2.1 Cloud Object Stores . 72

5.2.2 Hardware-accelerated pushdowns . 72

5.2.3 Transfer Learning . 73

5.3 Measurement Study . 73

5.3.1 Status Quo . 74

5.3.2 Per-layer Output Size . 76

5.3.3 Per-layer Computation Time . 76

5.3.4 Batch Size vs Per-layer Memory Usage . 77

5.4 The HAPI Design . 79

5.4.1 Insights . 79

5.4.2 System Description . 80

5.4.3 Efficient Client-side Profiling . 82

5.4.4 Splitting Algorithm . 82

5.4.5 Batch Adaptation Algorithm . 84

5.5 The HAPI Implementation . 85

5.6 Performance Evaluation . 86

5.6.1 Methodology . 86

5.6.2 End-to-end Experiment . 88

5.6.3 Impact of Network Bandwidth . 89

5.6.4 Scalability on the COS . 90

5.6.5 Reduction in Transferred Data . 91

5.6.6 Batch Adaptation . 92

5.6.7 Breakdown of Memory . 93

5.7 Related Work . 94

5.8 Concluding Remarks . 95

6 Federated Learning: The Case of Generative Adversarial Networks 97

6.1 Introduction . 97

6.2 Background . 99

6.2.1 Generative Adversarial Networks . 99

6.2.2 Distributed GANs . 100

xi

Contents

6.3 The FEGAN Design and Implementation . 100

6.3.1 Overview . 101

6.3.2 The FEGAN Algorithm . 102

6.3.3 FEGAN Design Choices . 103

6.3.4 FEGAN System Aspects . 105

6.4 Performance Evaluation Methodology . 107

6.5 Convergence Comparison . 110

6.5.1 Convergence in iid Settings . 110

6.5.2 Convergence in Non-iid Settings . 113

6.5.3 FEGAN’s Tolerance to GAN-specific Problems 115

6.6 FEGAN System Performance . 117

6.7 Related Work . 121

6.8 Concluding Remarks . 122

IV Concluding Remarks 123

7 Conclusions and Future Work 125

7.1 Summary and Implications . 125

7.2 Future Directions . 126

Bibliography 129

Curriculum Vitae 153

xii

List of Figures
2.1 A neural network architecture. 10

2.2 Two popular distributed ML architectures: the parameter server and decentral-

ized. 12

3.1 GARFIELD components and API. 23

3.2 Examples of applications that can be built using GARFIELD. 28

3.3 Microbenchmark of different GARs deployed on a GPU. n denotes the number

of inputs to the GAR and d denotes the length of one input/gradient. 33

3.4 Convergence of GARFIELD applications with respect to other baselines using two

models. 34

3.5 GARFIELD tolerance to two Byzantine attacks. 35

3.6 Slowdown of fault–tolerant systems normalized to the vanilla baseline (i.e., Ten-

sorFlow) throughput. 36

3.7 GARFIELD’s overhead breakdown. 37

3.8 The scalability of GARFIELD with increasing nw . 38

3.9 Communication time of decentralized learning and vanilla baseline (deployed

on GPUs) with n and d . 39

3.10 The scalability of GARFIELD with fw and fps . 39

4.1 Cluster and resource utilization with a non–elastic solution. We submit 15 train-

ing tasks to a 64–GPU cluster with a mean arrival time of 4 minutes, following

the Poisson distribution. 46

4.2 The resource allocation architecture. The ERA component, highlighted in green,

is our main contribution. 50

4.3 Microbenchmark experiment: we submit a single job, training ResNet18 using

ImageNet. 58

4.4 The effect of choosing a different number of starting workers, with only 1 job,

training ResNet18 using ImageNet. Based on our configuration, no scaling can

happen beyond 16 workers. 59

4.5 End-to-end real–life scenario with 100 submitted jobs. 60

4.6 The actual effect of improving raw performance metrics (e.g., throughput and

GPU utilization) on the rate of finishing jobs. 61

xiii

List of Figures

4.7 Scalability with a different number of submitted jobs to the cluster. All jobs start

at once at the beginning of the experiment. 62

4.8 Fixed schedule results: we submit 1 job every 2 minutes. 64

4.9 The convergence of ERA (with 2 maximum batch sizes) compared to Static while

training ResNet18 with ImageNet. 65

5.1 Status quo architecture vs our splitting approach for TL computation. 74

5.2 Status quo: streaming images from the COS and doing ML training entirely

in the compute tier. Dataset: ImageNet. Batch size = 500. Bars marked by ‘X’

crashed with OOM error. 74

5.3 Per–layer output sizes for 4 state-of-the-art DNNs. Dataset: Synthetic. Batch

size = 1. 75

5.4 Computation time of the forward pass per layer for 4 state-of-the-art DNNs on

both CPU and GPU. Dataset: Synthetic. Batch size = 200. 76

5.5 Maximum GPU memory used for the forward pass per layer with 4 state-of-the-

art DNNs. For the backward pass, the maximum GPU memory is shown across

all the layers starting from the indexes in Table 5.2 until the end of the network.

Dataset: Synthetic. 77

5.6 GPU memory breakdown with splitting the forward pass at different layers of 4

DNNs (x-axis). Before splitting (the blue bars), we use a batch size of 100 while

after (the orange bars), we use 1000. We compare this to a no-split case (i.e.,

status quo) in which we use batch size of 1000. With VGG11, we experiment

with split indexes whose output size is smaller than the largest input shown in

Figure 5.3. Dataset: ImageNet. 78

5.7 HAPI - System Overview. 79

5.8 HAPI request flow. A TL application is split at index 10. This shows a training

iteration with training batch size 3000. This results in 3 requests being sent to

the HAPI server. On the COS, for each of the 3 requests, feature extraction is

performed with a COS batch size of 200. 81

5.9 Execution time of BASELINE compared to HAPI with different DNNs. Bars

marked by ‘X’ crashed with OOM error. 88

5.10 The effect of varying bandwidth on HAPI. 89

5.11 Scalability of HAPI with multi-tenants (i.e., multiple concurrent requests) com-

pared to an ALL_IN_COS solution that pushes down the entire computation next

to storage. 90

5.12 Transferred data with HAPI, compared to BASELINE, with different batch sizes.

The y-axis shows the average data size transferred in one iteration. 91

5.13 The benefits of batch adaptation (BA). 92

5.14 Total GPU memory consumption with HAPI compared to BASELINE. 93

6.1 (a) A Parameter server-based deployment [101] with one generator and dis-

tributed discriminators (on 21 machines) outperforms the centralized approach.

Yet, (b) it does not scale due to communication bottlenecks. 98

xiv

List of Figures

6.2 A typical GAN architecture. The generator generates data (from a noisy signal)

that looks like real data. The discriminator tries to differentiate between real and

generated data. Both networks learn simultaneously from the feedback, typically

using a backpropagation algorithm [107]. 100

6.3 FEGAN architecture: D and G are co-located on all devices. Dashed lines denote

the communication of metadata about devices’ datasets and specifications. Data

across devices might be unbalanced and skewed. 101

6.4 A running example of how FEGAN works. Assume a dataset of 50 samples in 4

classes, distributed on 4 devices with C = 0.5 (where C is the fraction of devices

sampled by the server in each round). Each device has an array of 4 entries

depicting how many samples this device has from each class. In the first round,

the server chooses device 1 (with the highest number of samples) and device

3 (with samples from a class not represented by device 1). When the devices

reply, the server updates the model, applying KL weighting to their replies. In the

second round, the server chooses the unsampled devices to maintain fairness

among devices. 102

6.5 Convergence of FEGAN compared to the Centralized approach and MD-GAN.

We distributed the Fashion-MNIST dataset identically and independently (iid)

on 80 devices for the distributed deployments. FID metric: the lower, the better

the generated samples. 110

6.6 Convergence of a few FEGAN configurations in a distributed setup with the

Fashion-MNIST dataset distributed identically and independently (iid) on 80

devices. 112

6.7 Convergence of FEGAN in a distributed setup with MNIST; data is not distributed

identically and independently (non-iid) on devices. 112

6.8 Convergence of FEGAN in a distributed setup with Fashion-MNIST; data is not

distributed identically and independently (non-iid) on devices. 113

6.9 Convergence of FEGAN in a distributed setup with ImageNet; data is not dis-

tributed identically and independently (non-iid) on devices. 114

6.10 Convergence of FEGAN with non-iid Fashion-MNIST data distributed on 80

devices, showing all cases of enabling and disabling weighting and sampling

schemes. 115

6.11 KL divergence of the real distribution from the distribution seen by the central-

ized server. The smaller the KL divergence, the lower the probability of mode

collapse. 116

6.12 The co-location of both networks on all devices avoids yielding a powerful

discriminator (as in MD-GAN), preventing the problem of vanishing gradients. 116

6.13 Scalability of FEGAN with the number of devices. 117

6.14 The impact of the values of E and C (60 devices). 118

6.15 The average number of samples per class seen by the server, through devices’

updates, as a function of FL rounds. Here, the maximum number of samples at

each device is 50. (ImageNet, 80 devices). 119

xv

List of Figures

6.16 Bandwidth consumption at one random device for both MD-GAN and FEGAN.

We observe the same distribution (as plotted) at different sampled devices. Using

FEGAN, each device is picked (by the server), on average, less than 10 times in a

200-second interval. 119

6.17 Convergence of FEGAN in the presence of weak devices in terms of memory or

processing power. FEGAN is adaptive to heterogeneous devices. (ImageNet, 60

devices) . 120

6.18 FEGAN tolerates the server’s crash. 121

xvi

List of Tables
3.1 Models used to evaluate GARFIELD. 32

5.1 The execution time (in seconds) of one request with 4 DNNs using both versions

of HAPI’s server implementation: (1) inside Swift’s proxy and (2) decoupled from

it. 85

5.2 Models used in our evaluation of HAPI. Note that we count only layers at which

splitting would make sense. For example, ResNets are structured as a sequence

of blocks (Figure 5.3b); we count each block as one layer. 86

5.3 The chosen split index by HAPI with different values for the bandwidth (see

Figure 5.10). 89

5.4 The behavior of HAPI’s batch adaptation in the experiment in Figure 5.13. . . . 91

6.1 Time to finish 200 epochs by FEGAN and FL-VANILLA. We use balanced sampling

with the former and random sampling with the latter. The given two numbers

in the first row represent max_class and max_samples, respectively. The gain in

time to finish one epoch can be also viewed as a gain in consumed bandwidth

over random sampling for not looking at diverse data batches. 119

xvii

Part IIntroduction and Background

1

1 Introduction

1.1 Thesis Context

Machine learning (ML) is a revolutionary technology that allows machines to learn from data.

We do not need to give a machine exact commands to follow, instead we can simply give it some

data that it can use to learn some task through a training process. This radical idea is driving

cutting–edge solutions in many domains. Nowadays, ML applications are ubiquitous. We use

ML for day-to-day tasks such as face recognition on smartphones and social media [174, 264],

next word prediction while typing on mobile devices [99], voice-controlled personal assistance

(e.g., using Alexa or Siri) [167, 109], content recommendation [197] (e.g., for a YouTube video

or a Netflix movie) and moderation [30, 80], as well as news feed generation on social media

platforms [220, 234]. Besides, ML powers critical applications such as medical diagnosis and

imaging [24], self-driving cars [208, 34], detecting hate speech [134, 171, 245], fake news [6, 8],

and spams [269]. Clearly, ML has a significant and beneficial effect on our lives.

Practically, executing ML training applications faces several challenges. One issue is the

noticeable computing power required to train an ML model. This issue is evidenced by the

amount of computing resources needed to train state-of-the-art models [7, 78, 228]. On the

solution track, the last decade has seen a considerable leap in specialized hardware such

as GPUs, TPUs, and AI chips by big tech players including Intel [119], AMD [16], Tesla [233],

Google [87], Apple [18], and Huawei [113] to cope with the computational requirements of

ML training. Yet, that is not enough. To capture fine details in training data (and hence,

achieve better overall performance), ML models are getting larger and more complicated [133,

132, 239]. In addition, the amount of data used for training is also constantly increasing,

following the common wisdom: the more data you have, the better your ML model performs.

For instance, the size of Google’s ad impression log (to track the web pages on which an ad

appears) to train an ad click predictor can reach trillions of examples [135], each representing

a high-dimensional feature vector. Such a dataset expands daily with new instances [175].

Another critical issue that faces ML training is data privacy [165, 179]. Especially with the new

regulations for data protection, such as the General Data Protection Regulation (GDPR), it is

3

Chapter 1. Introduction

crucial to care about the privacy of training data (that might include sensitive information).

Therefore, one open question is how we can train ML models without breaking data privacy.

All these challenges call for distributed machine learning solutions [177, 156, 51]. The general

idea behind these solutions is to have multiple devices or machines perform computation

independently and aggregate the results of their training periodically. Practical distributed

system considerations such as the scale of the distributed deployment (how many machines

contribute to training), how machines communicate, and how frequently they communicate

depend on many factors such as the application requirements, the data sources, and the

application scope. Each distribution scheme has its constraints and challenges [240]. Although

some of these challenges are not entirely new to computer systems, the unique nature of ML

opens the door for new solutions that are well-suited to ML and therefore perform better with

ML workloads compared to non-ML, known solutions.

This thesis revisits some of these challenges, pervasive to computer systems, and gives practical

ML-suited solutions as presented in the following. In other words, this thesis improves the

state-of-the-art of distributed training by making it more efficient and robust.

1.2 Motivation and Contributions

We tackle four practical problems, all concerning distributed training. Indeed, this thesis looks

at the same coin, i.e., putting distributed ML to work, from different angles. We first give a

high-level overview of the problems addressed in this thesis, along with our solutions to them.

Distributed ML architectures. Architecturally, there are two main ways to connect machines

for training. The first is following the now-classical parameter server architecture [158, 156]. In

short, a central server holds the model parameters (e.g., weights of a neural network) while a

set of workers performs gradient computation (e.g., using backpropagation [107]), typically

following stochastic gradient descent (SGD) [212] (a standard optimization algorithm) on their

local data, using the latest model they pull from the server. This server, in turn, gathers the

updates from the workers in the form of gradients and aggregates them, usually through

averaging [138]. The alternative and more decentralized approach does not distinguish servers

and workers. Each node has a copy of the model and keeps its data locally [38, 195, 105],

typically to protect this data and save bandwidth or devices’ batteries. In this approach, all

nodes apply SGD and communicate (in a peer-to-peer fashion) what they learned so far to

refine their models, usually also through averaging.

1.2.1 Byzantine Failures

The fragility of distributed ML. Despite the performance benefits of the presented distributed

ML architectures, these distribution schemes are fragile because the typical way to aggregate

4

1.2 Motivation and Contributions

results from participating machines, i.e., averaging, does not tolerate a single corrupted

input [32] as a single carefully-crafted input can jeopardize the training process. Notably,

the multiplicity of machines increases the probability of misbehavior somewhere in the

network. This fragility is problematic because ML plays a central role in safety-critical tasks

such as driving and flying people, diagnosing their diseases, and recommending treatments to

their doctors [151, 74]. We should leave as little room as possible for the routinely reported

vulnerabilities [191, 29, 81] of today’s ML solutions.

Byzantine ML in theory. Over the past few years, a growing body of work [32, 11, 47, 253, 27,

67, 229, 242] took up the challenge of Byzantine-resilient ML. The Byzantine failure model, as

formerly introduced in the distributed computing literature [150, 42], encompasses crashes,

software bugs, hardware defects, message omissions, corrupted data, and, even worse, hacked

machines [28, 250]. This problem has been well-studied from a theoretical point of view.

Different solutions were proposed for diverse architectures, including the setup with one

trusted central server collecting the replies of Byzantine workers [32, 47, 60], the architecture

of replicated servers communicating together to agree on a model [70, 71], and the fully

decentralized setup with no central server [268, 69]. However, none of these works considered

the practical costs of Byzantine resilience, and therefore the relevance of their results remains

mostly theoretical.

Our one-size-fits-all solution. We present GARFIELD [92], a library that enables the develop-

ment of Byzantine ML applications on top of popular frameworks such as TensorFlow [1] and

PyTorch [193] while achieving transparency, i.e., applications developed with either framework

do not need to change their interfaces to tolerate Byzantine failures. Essentially, GARFIELD ad-

dresses the Byzantine ML problem from a pragmatic point of view, unlike most of the previous

works, which are mainly theoretical. The practical deployment of these solutions helps find

insightful facts about the costs of Byzantine resilience in ML systems in real-world scenarios.

GARFIELD guides the ML practitioners to develop their applications from a system’s perspec-

tive rather than from an algorithmic perspective; this helps achieve both transparency and

Byzantine resilience. GARFIELD allows for synchronous and asynchronous communication

and includes several statistically-robust gradient aggregation rules (GARs). GARFIELD’s design

is generic: future GARs can be integrated with it with minimal coding effort. GARFIELD also

supports full-stack computations on both CPUs and GPUs. We consider it a one-size-fits-all

solution, as we show how to use it to achieve Byzantine resilience in various distinct scenarios.

1.2.2 The Datacenter Case

Training on shared clusters. In a datacenter, training tasks (also called jobs) usually run on

shared clusters of powerful computing resources [103, 124], e.g., GPUs. Commonly, users

submit their training jobs to a central controller that decides how to schedule them to run

on the cluster. With the immense computing demand of today’s ML applications, it is chal-

5

Chapter 1. Introduction

lenging to satisfy the resource demands of all the applications simultaneously [123]. Previous

approaches [90, 251] proposed several ML-aware scheduling techniques, where the goal is

to come up with a schedule that minimizes the average job completion time and maximizes

resource utilization. Most of these proposals share one limitation: they give a fixed amount

of resources to each job throughout the training. This design hinders achieving optimal per-

formance. On the one hand, the cluster can be saturated quickly with many users’ requests,

leading to longer queuing delays. On the other hand, the case of not having so many requests

leads to resource underutilization. Unfortunately, it is typically hard to predict the optimal

number of devices and the best training batch size [26] required for training. Even with the

most expert ML practitioners, the best parameters for resource utilization usually depend on

the available hardware, which users do not always know in advance.

Elastic resource allocation. Our key to resolving this underutilization is to allow training

jobs to be horizontally elastic, i.e., use a variable number of machines throughout training.

In addition, we dynamically change the batch size (i.e., the computation granularity) during

training to boost throughput and resource utilization. Our insight is that training can utilize

different amounts of resources throughout its lifetime, allowing for better training throughput

and resource utilization without impacting the final accuracy. We realize this with ERA, our

Elastic Resource Allocator [95] that is designed specifically for multi-tenant ML clusters. ERA

provides elasticity in two dimensions: the number of machines (or workers) contributing

to training and the per-machine batch size. ERA scales up jobs that benefit from having

more resources and scales down jobs to maximize the number of concurrently running jobs

on the cluster while being fair to all jobs. Furthermore, ERA detects the underutilization of

GPU memory and processing cycles and scales the batch size accordingly. Interestingly, this

dynamic behavior of ERA allows users to run the same training application on different types

of hardware since ERA takes care of adjusting training parameters seamlessly.

1.2.3 The Cloud Case

The communication overhead in cloud-based applications. Today’s cloud architecture de-

couples computing resources from storage resources [43, 13], organized in separate tiers. This

design allows each tier to scale independently from one another. To process data on the com-

pute tier, one has to stream this data first from the storage devices. The network bandwidth

between both tiers is typically a bottleneck [137, 198]. Different proposals suggested reducing

the amount of data transferred by carefully filtering the data on the storage tier. For instance,

there have been proposals to run SQL queries on the storage tier to reduce the amount of data

transferred over the network [266, 275]. In the context of ML training, the same problem of

limited network bandwidth exists yet is only exacerbated by the immense amount of data

typically used for ML applications. The growing compute capabilities of the cloud object

stores [117, 10] constitute an opportunity to alleviate the network bottleneck of training in

the cloud.

6

1.2 Motivation and Contributions

Cloud object stores to the rescue. Our idea is to partially offload the ML computation to the

cloud object stores (COS), primarily to reduce the amount of data transferred from storage

to compute. We split the training model into two parts, where each tier executes one part.

The optimal splitting point depends on the properties of the training model and the network

bandwidth. We identify the fine-tuning operation of transfer learning (TL) to be the perfect

fit for this split setup, mainly due to its unique structure: a combination of feature extraction

and training. We introduce HAPI [94], a processing system for TL that spans both the COS

(representing the storage tier) and the compute tier. HAPI is transparent to the user, uses

internally only very inexpensive profiling runs, and enables even low-end CPU-only users

to contribute to training. We give practical tips on how the storage tier can serve multiple

concurrent users despite the limited compute and memory resources it usually has.

1.2.4 The Federated Learning Case

The premise of federated learning. Federated learning (FL) [176] seeks to leverage a large

crowd of edge devices to train a global model, using their local private data that never leaves

the device. The training procedure is typically orchestrated by a central server that hosts the

global model that needs to be trained. In that sense, FL achieves scalability and data privacy.

Yet, training in the FL paradigm naturally happens on heterogeneous devices and uses skewed

data. The inherent imbalance of data distribution on the contributing devices negatively

impacts the accuracy of FL [4, 281]. The problem worsens when training more complicated

ML techniques such as generative adversarial networks (GANs) [84]. In addition to the learning

difficulty, scaling their training is also difficult since GANs are typically composed of two

deep networks chained together (called the discriminator and the generator). Commonly, the

generator network stays on a central server while the discriminator network is distributed

among multiple workers (i.e., user devices). The scaling issues arise from the communication

load between the server and the workers in this setup, given the repetitive forward and

backward passes that span both networks.

Scalable GAN training with FL. We propose FEGAN [91], a scalable and robust GAN training

system for the FL paradigm. For scalability, FEGAN co-locates both GAN’s discriminator and

generator networks on the server and all workers contributing to training. For robustness, we

design mechanisms to make FEGAN resilient to GAN-specific issues: mode collapse, vanishing

gradients, and learning divergence.1 FEGAN prioritizes updates from specific workers over

others, using Kullback-Leibler (KL) weighting, and it carefully schedules the application of de-

vices’ updates to the global trained model using balanced sampling. FEGAN is also cognizant

of devices’ heterogeneity regarding memory and computing power. Furthermore, FEGAN

tolerates server and network failures through periodic checkpointing of the learning state.

1In short, mode collapse is the case when the generator learns to generate only a few classes of the training data,
vanishing gradient is the case when the discriminator always beats the generator (i.e., the generator always fails to
generate convincing data), and learning divergence is the case when the learning process fluctuates indefinitely
between sub-optimal states.

7

Chapter 1. Introduction

1.3 Thesis Roadmap

This thesis is organized into four parts that include seven chapters.

Pa
rt

I • Chapter 2 gives the essential common background of all systems presented in this

thesis; this covers an introduction to neural networks, stochastic gradient descent,

and distributed machine learning architectures. Each subsequent chapter gives

even further background that is specific to that chapter.

Pa
rt

II • Chapter 3 presents GARFIELD, the first library that offers robustness, i.e., Byzan-

tine resilience, to machine learning applications (written for popular but fragile

frameworks such as TensorFlow and PyTorch) at a low cost.

Pa
rt

II
I

• Chapter 4 presents ERA, an elastic resource allocator for training tasks in shared

datacenters’ machine learning clusters.

• Chapter 5 presents HAPI, the first processing system that partially offloads the

machine learning computation to the cloud object store, alleviating the typical

network overhead facing cloud-based training.

• Chapter 6 presents FEGAN, a scalable system that trains generative adversarial net-

works in the federated learning setup while being robust to heterogeneous devices

and skewed datasets.

Pa
rt

IV

• Chapter 7 concludes the thesis, giving a summary of the presented work and direc-

tions for future work.

8

2 Background

In this chapter, we give a broad background of the topics discussed in this thesis. This thesis

addresses practical problems facing distributed machine learning (ML) training. To explain

our ideas, we use neural networks as a running example of an ML application throughout the

thesis. We start this chapter by giving an overview of neural networks and how to train them

(via stochastic gradient descent). We then discuss three popular architectures to distribute

training on multiple devices. In each subsequent chapter, we give additional background

specific to that chapter.

2.1 Neural Networks

Neural networks [143, 31] are one of the remarkable ML tools that contributed to significant

successes in the last few years. Neural networks have been successful in various applications,

including object recognition [160], image analysis [17], language modeling [132], and speech

recognition [98]. The idea of neural networks is to mimic how the human brain works. In sim-

ple words, input signals travel among different neurons through synapses, and by activating

specific neurons, the brain can learn new things.

From an architectural point of view, a neural network is only a graph of neurons connected

by edges. Neurons are usually stacked in the form of layers, as shown in Figure 2.1. Each

edge holds a weight that eventually defines how the network does its task. Each neuron

encompasses a mathematical function that is applied to the inputs of that neuron. The output

of each neuron is then passed to other neurons in the next layer through different edges,

each holding a distinct weight. The last layer gives the network’s output, which could be, for

example, the label of an image (e.g., cat or dog) or an embedding vector of the input.

From a mathematical point of view, a neural network is a parameterized mathematical func-

tion, called model. A toy example: f (i) =α i+β, where the factors
(
α,β

)
≜ x ∈Rd are called the

parameters. These parameters are essentially the weights on the edges of the neural network.

9

Chapter 2. Background

Input Cat

Dog

Figure 2.1: A neural network architecture.

2.2 Stochastic Gradient Descent

A natural question is: how can we find the correct weights of a neural network? The answer: via

stochastic gradient descent (SGD) [212]. SGD is the most widely-used optimization algorithm in

ML applications [51, 156]. It has become the de facto standard to optimize objective functions

that can be used with ML techniques, including neural networks. Many impressive results

of the last decade, e.g., in image classification challenges [142, 231], used SGD to optimize a

neural network.

To explain how SGD works, assume the objective function (also called loss function) is L (x) ∈R.

This measures “how incorrect the model is, parameterized by x , when labeling an input”.1

Indeed, the vector x constitutes the weights on the edges of a neural network, for example.

For illustration purposes, but without loss of generality, we consider an image classification

problem that uses a neural network to map an input image (e.g., the pixel colors of a picture

of a cat) to a label (e.g., “cat”). The training phase then consists in tweaking the parameters

(α and β in the toy example), noted x ∈Rd (R2 in the toy example), until the model correctly

labels many images. The set of pairs of (image, correct label) used during this training phase

is called the training set. In modern ML, the number of parameters d is large, usually above

the million [248, 2, 142] and in some cases billions [55, 40]. The lower the output (xopt), the

more accurately the neural network classifies its inputs. In short, SGD addresses the following

optimization problem:

xopt ≜ argmin
x∈Rd

L(x) (2.1)

The procedure is iterative: in each step k,

1. Estimate the gradient G
(
x (k),ξ

)
,≈∇L

(
x (k)

)
, with a subset ξ of size b of the training set,

1This wording is correct only when omitting any kind of regularization. This background section is only to give
a broad introduction to SGD.

10

2.3 Distributed Machine Learning

called mini–batch. This represents an approximation of the uncomputable real gradient,

typically using the backpropagation algorithm [107]. This is a stochastic estimation of

the uncomputable, real gradient ∇L
(
x (k)

)
.

2. Then, using the estimated gradient, the model parameters (x) are updated as follows:

x (k+1) = x (k) −γk ·G
(

x (k),ξ
)

, (2.2)

where {γk } is called the learning rate.

2.3 Distributed Machine Learning

Estimating the gradient at x is computationally expensive, given the big datasets and the

complex high-dimensional models we have nowadays. It consists of averaging the b estimates

of the gradient G (x,ξi), where ξi is the i th pair (input, correct label) from the mini–batch. Each

G (x,ξi) involves a backpropagation pass, so the number of arithmetic operations to carry out

to estimate G (x ,ξ) ≈∇L
(
x (k)

)
is O (b·d).

Parallelism. Fortunately, this gradient estimation is easily parallelizable. For instance, using

data parallelism, n machines can each partially estimate the gradient using a mini–batch

of size b/n, which can be then aggregated together to restore the complete estimation. The

computation of G
(
x (k),ξ

)
could be done entirely in parallel by distributing the b computations

G
(
x (k),ξi

)
over n machines. Another approach to distributing training is model parallelism.

In this approach, the model (e.g., a neural network) is partitioned onto multiple machines,

each processing only a part of it. Both the forward and the backward passes require a synchro-

nization step: while one machine is doing a computation, the other machines have to wait for

it to finish processing and then pass the processed outputs to the next machine. Due to the

synchronization overhead, this approach is less popular than data parallelism. We focus on

the latter in this thesis.

Training synchrony. Training is synchronous if all machines proceed in synchronized itera-

tions. For example, in synchronous training, no machine can move to iteration t +1 except

when all other machines finish iteration t . On the contrary, asynchronous training does not

restrict the difference between training iterations processed on different machines. While asyn-

chronous training can yield faster updates to the model (due to the absence of synchronization

among participating machines), synchronous training achieves higher-quality updates. In

this thesis, we always consider synchronous training.

Network synchrony. The network is synchronous if there is an upper bound on the time it

takes to transmit a message between two machines in the network. In asynchronous networks,

this upper bound does not exist. Based on this definition, it is impossible to differentiate

11

Chapter 2. Background

....

Parameter Server

x

....
Workers

Dataset

G
x

G
G

G
x x

(a) The parameter server architecture

x

x

x x x

x

x

x

x x
x

x

(b) The decentralized architecture

Figure 2.2: Two popular distributed ML architectures: the parameter server and decentralized.

between a delayed message and a crashed machine in asynchronous networks. In this thesis,

we consider both types of networks. Note that network synchrony/asynchrony is orthogonal

to training synchrony/asynchrony.

Different approaches for distributing machine learning computations have been proposed in

the literature. We highlight three of them in the rest of this chapter.

2.3.1 Parameter Server

The parameter server architecture [158, 157], illustrated in Figure 2.2a, is a milestone for

distributed ML, introduced to accelerate the computation over a single centralized process.

This architecture accelerates training in controlled environments, e.g., in a datacenter, where

communication is usually fast, and the model and the dataset exist within one building. In

this model, a centralized server holds the parameters x and orchestrates the learning process,

where the other machines (called workers) own data batches. For each training step, the server

first broadcasts the parameters to workers, which share the heavy gradient estimation, i.e.,

each worker uses a mini–batch of size b/n. When a worker completes its gradient estimation G ,

it sends it to the parameter server, which finally aggregates the received estimations (typically

by averaging [36]) and updates the parameters x , as in Equation (2.2).

Using the parameter server architecture, one can only employ the data parallelism scheme.

Essentially, each worker holds a full copy of the model and a data shard. In a training loop,

each worker trains the full model using the data shard it has. It then sends an update to the

parameter server. Employing this scheme scales the quality of the update with the number of

workers, as the effective (i.e., aggregate) batch size contributes to the update scales linearly

with the number of workers.

12

2.3 Distributed Machine Learning

2.3.2 Decentralized Learning

Another variant of distributing training is decentralized learning [237] (e.g., AllReduce), shown

in Figure 2.2b. The main difference between this scheme and the parameter server architecture

is that machines collaborate to train a model without a central entity. In decentralized learning,

each machine owns a copy of the model and some local data that is never shared with the

others [195, 105], typically to maintain the privacy of this data in addition to saving the

bandwidth and the devices’ batteries. Notably, the amount of data and its distribution differ

from one machine to another. In each training step, each machine estimates a gradient (using

SGD and its local data) and shares it with the others. Machines can connect in various ways,

including using a ring structure, a tree structure, or in a peer-to-peer fashion. In Chapter 3, we

use peer-to-peer communication because it gives better robustness guarantees, whereas, in

Chapter 4, we use the ring structure due to its high performance. Regardless of the network

topology, after machines communicate the gradient estimations, they aggregate the received

estimations locally and use the aggregate estimate to update the parameters x . Equivalently,

machines can update their local models using their local gradient estimates and then share

the updated model, as shown in Figure 2.2b.

2.3.3 Federated Learning

The federated learning (FL) [176] approach seeks to leverage a large crowd of edge devices

(e.g., smartphones) that own private data without imposing any data movement (unlike the

parameter server model, which requires moving data to the datacenter first). The devices

collaboratively train a global model, which is hosted on a centralized server. The server decides

which subset of the devices should participate in the learning round through random selection.

Note that, in the parameter server architecture, all workers participate in all training iterations.

Selected devices, in turn, send their updates to the server after several local learning iterations

over their private data. This step constitutes a third difference compared to the parameter

server architecture, wherein the latter workers do exactly one local training iteration in each

step. Typically, the server aggregates the devices’ updates using federated averaging [176]. The

accuracy of models trained by FL is negatively impacted by the imbalanced data distribution

on the devices [281].

13

Part IIFault-Tolerant Machine Learning

15

3 System Support for Byzantine Learn-
ing

In this chapter, we show how one can safely run distributed training in a Byzantine envi-

ronment. We present GARFIELD, a library to transparently make machine learning (ML)

applications, initially built with popular (but fragile) frameworks, such as TensorFlow and

PyTorch, Byzantine–resilient. GARFIELD is a one-size-fits-all solution: it supports multiple

architectures, network conditions, and resilience levels. The key idea to GARFIELD’s generality

is that it helps practitioners write their training algorithms from a system’s perspective rather

than an algorithmic perspective, reducing the coding effort and addressing the vulnerability of

the shared–graph architecture followed by classical ML frameworks. GARFIELD encompasses

various communication patterns, supports full-stack computations on both CPUs and GPUs,

and gives multiple robust aggregation functions that are proven to be Byzantine-resilient.

3.1 Introduction

The starting point of this chapter is distributed training, whether the distribution architec-

ture follows the parameter server model (see Section 2.3.1) or the decentralized model (see

Section 2.3.2). As the number of participating machines in a distributed setup increases, so

does the probability of failure of any of these machines. In distributed computing, the most

general way to model such failures is to assume an adversary that can control a subset of the

system and make it arbitrarily deviate from the normal execution: we talk about Byzantine

failures [150]. This failure model includes bogus software, faulty hardware, as well as malicious

attacks. With the increasing use of ML in mission-critical applications [74, 34, 208], building

robust systems against these kinds of failures becomes a necessity. For instance, in a data-

center environment, processing units fail [63], and training data (uploaded by the users of

a service) could be malicious. Using vanilla state machine replication (SMR) to solve such a

problem was shown impractical (and in some cases impossible) in the ML context [60].

Tolerating Byzantine machines without replicating them has been recently well-studied with

various models and settings, e.g., in [11, 242, 70, 71]. The key idea is to replace the vul-

nerable averaging scheme (typically used to aggregate updates of participating machines)

17

Chapter 3. System Support for Byzantine Learning

with a statistically-robust gradient aggregation rule (GAR), e.g., Median [252]. Most work on

Byzantine-resilient ML (e.g., [70, 69, 32]) has, however, been theoretical, and it is not clear how

to put the published algorithms to work, especially in the pragmatic form of library extensions

to existing, and now classical, ML frameworks, namely TensorFlow [1] and PyTorch [193].

These frameworks share two specific characteristics that go against Byzantine resilience. First,

and for performance reasons, they rely on a shared memory design. For instance, TensorFlow

uses one shared computation graph among all machines to define the learning pipeline.

Such a design is problematic as Byzantine nodes can corrupt the learning state at honest

ones. Second, most of the high–level communication abstractions given by such frameworks

assume trusted, highly–available machines. For instance, the distributed library of PyTorch

allows for collective communication among processes, yet such calls block indefinitely (or fail

after some timeout) in the case of a process crash or network failure. In this latter case, for

example, one Byzantine machine can break all the communication rounds, disallowing the

distributed system to learn.

To solve the aforementioned problems, we propose GARFIELD: a library that enables the

development of Byzantine ML applications on top of popular frameworks such as TensorFlow

and PyTorch while achieving transparency: applications developed with either framework

do not need to change their interfaces to tolerate Byzantine failures. Essentially, GARFIELD

addresses the Byzantine ML problem from a practical point of view, unlike most of the previous

works, which are mainly theoretical. Such a library helps find insightful facts about the very

practical costs of Byzantine resilience in ML systems, as we show later.

GARFIELD adopts an object-oriented vision for ML applications. The novelty of GARFIELD’s

design lies in (1) the way the objects, be they servers or workers, communicate, and (2) the

way they aggregate the replies, be they models or gradients. Essentially, our insight is to write

ML applications from the objects’ perspective rather than from an algorithmic perspective;

this enables applications written with GARFIELD to achieve both transparency and Byzantine

resilience. In particular, GARFIELD allows for both synchronous and asynchronous communi-

cation and includes several statistically-robust gradient aggregation rules (GARs). GARFIELD

also supports full-stack computations on both CPUs and GPUs.

Along our GARFIELD implementation journey, we took several design decisions to promote

its practicality. We implemented specific schemes to parallelize Byzantine–resilient GARs,

especially on GPUs. Moreover, we introduce the notion of separate replicated graphs for Ten-

sorFlow rather than relying on its shared graph design, as the latter would be a killer in a fully

Byzantine environment, i.e., without any trusted machine. We use gRPC for point–to–point

pull-based communication due to its speed and because it is currently the defacto standard

communication method for popular ML frameworks. Our implementation parallelizes RPC

calls to improve the scalability of algorithms implemented with GARFIELD. We also carefully

manage the CPU memory to minimize memory copying and allow for faster algorithms.

We report on the usage of GARFIELD with three ML architectures: (1) tolerating Byzantine

18

3.2 Background

workers while assuming one trusted, central server, (2) replicating the parameter server to

account for Byzantine servers as well as Byzantine workers, and (3) considering a peer-to-peer,

decentralized setting with no distinction between servers and workers.

We report on our evaluation of GARFIELD, addressing the general question of the practical cost

of Byzantine resilience in a distributed ML deployment. We consider various ML models and

datasets, as well as different hardware, i.e., CPUs and GPUs. We also study the cost of different

degrees of resilience.

Essentially, we show that Byzantine resilience introduces up to a 10% loss in accuracy com-

pared to non–Byzantine deployments. In contrast, crash resilience does not introduce any

such loss. In the latter case, the server is replicated, but Byzantine behavior is not tolerated.

In terms of throughput, we quantify the overhead of various Byzantine resilience degrees

compared to a vanilla deployment. We find that tolerating Byzantine servers induces much

more overhead than tolerating Byzantine workers. For instance, we quantify the cost of adding

Byzantine resilience to servers, compared to tolerating only Byzantine workers with a trusted

server, to 53%, and the cost of Byzantine resilience, compared to the crash–tolerant baseline,

to 22% (using GPUs). We attribute the resilience overhead mainly to communication. Our

experiments show that communication accounts for more than 75% of the overhead, while

robust aggregation contributes to only 11% of such overhead. We also highlight that Byzantine

algorithms in a peer-to-peer setup do not scale, unlike those following the parameter server

architecture. We also report on the fact that the overhead of Byzantine resilience depends

more on the number of participating nodes, be they workers or servers, than on the model

dimension. Notably, using GPUs achieves a performance improvement of at least one order of

magnitude over CPUs.

GARFIELD is an open-source project and is available at https://github.com/LPD-EPFL/Garfield.

3.2 Background

3.2.1 Byzantine Resilience

In the parlance of classical distributed computing, a system tolerates a Byzantine fault when

it copes with a machine that can deviate arbitrarily from the algorithm assigned to it [150].

Such a behavior abstracts all kinds of failures, including software bugs, hardware defects,

corrupted data [79], communication omissions, or even adversarial attacks. This problem

is well-studied in the literature on distributed systems with many proposed algorithms. We

consider the ML context where any machine contributing to the learning process, i.e., a worker

or a server, can behave arbitrarily. In fact, Byzantine resilience also captures the classical data

poisoning problem in the ML literature [28], which addresses the issue of workers holding

poisoned/corrupted data. Employing such data in a gradient computation leads to faulty

gradients, corrupting the entire learning procedure [60]. In such a context, tolerating Byzantine

behavior ensures following the same learning path that would have been achieved in the

19

https://github.com/LPD-EPFL/Garfield

Chapter 3. System Support for Byzantine Learning

absence of Byzantine machines.

Is state machine replication (SMR) suitable for ML? A simple solution to the Byzantine ML

problem is to replicate the computation on multiple machines (e.g., to replicate workers).

While this idea would work abstractly, it faces a few practical challenges. Replicating workers

in different locations might be problematic in the case of employing private data for model

training [2, 221]. Even if possible, classical SMR might incur prohibitive communication costs,

diminishing the benefit of distributing the ML application. Fortunately, however, the very

nature of an ML computation requires an eventual form of consistency as only convergence to

a good state is required. There is no notion of total ordering that should be preserved among

workers’ updates; this drastically reduces the difficulty of the Byzantine problem.

3.3 The GARFIELD Design

GARFIELD is a library to build Byzantine–resilient SGD–based ML applications that rely on

(1) robust aggregation and (2) communication of plain vectors (without compression nor

quantization). GARFIELD builds on the insight that distributed ML algorithms do not require

strong consistency; only convergence to high accuracy is required [32, 73]. This insight has

two implications: (1) the servers do not need to run SMR, and (2) the servers do not need to

collect replies from all workers; only a subset of replies is sufficient. This latter observation is a

cornerstone in tolerating Byzantine behavior in asynchronous networks [73, 69]. This weak

consistency model has been shown sufficient for correctness and convergence in theory, even

in asynchronous environments. Essentially, GARFIELD masks the faults at the application layer,

abstracting all the faults of the lower layers like communication omissions [60].

We first introduce a few statistically–robust gradient aggregation rules (GARs) that are included

in GARFIELD and then, we discuss the modular design of GARFIELD.

3.3.1 Statistically–Robust GARs

A GAR is merely a function of
(
Rd

)q →Rd , with d , the dimension of the input vector space Rd

(i.e., a gradient or a model), and q , the number of input vectors to be aggregated. All GARs

are synchronous, i.e., wait for q vectors before applying an aggregation function on them.

Hence, in synchronous, non–faulty settings, these GARs can be deployed with q machines in

the system (so that the aggregator node can gather replies from all nodes in the system within

some time limit). Yet, in asynchronous networks, one would require to deploy q + f nodes to

use these GARs to ensure the liveness of the protocol, where f denotes the maximum number

of Byzantine inputs. In short, all GARs output a vector with special statistical properties that

make them safe to use in the Byzantine setting.

1. Median [252] outputs a vector of coordinate-wise medians among the input vectors. We

20

3.3 The GARFIELD Design

formally define the median function (applied per-coordinate) as follows:

∀q ∈N− {0} , ∀(
x1 . . . xq

) ∈Rq , (3.1)

median
(
x1 . . . xq

)
≜ xs ∈R (3.2)

such that with sorted
(
x1 . . . xq

)
,

{
xs = x⌈ q

2 ⌉ if q is odd

xs =
x q

2
+x q

2 +1

2 if q is even.
(3.3)

We formally define the coordinate–wise median (i.e., Median) as follows:

∀(
d , q

) ∈ (N− {0})2 , ∀(
x1 . . . xq

) ∈ (
Rd

)q
, (3.4)

Median
(
x1 . . . xq

)
≜ xs ∈Rd (3.5)

such that:

∀i ∈ [1 ..d] , xs[i] = median
(
x1[i] . . . xq [i]

)
(3.6)

Median requires q ≥ 2 f +1, and its asymptotic complexity is O (qd).

2. Krum [32] assigns a score to each vector (equals to the sum of ℓ2 distances with the closest

q − f − 2 neighbors) and then returns the smallest scoring vector. Multi–Krum (a variant

of Krum) instead averages the m smallest scoring vectors, achieving a better convergence

rate than Median [60]. Formally, given vectors
(
x1 . . . xq

) ∈ (
Rd

)q
, Multi–Krum averages the

m = q − f −2 vectors with the smallest scores (i.e., ℓ2 norm from the other vectors). We define

the score of each vector s(i) as follows:

s(i) = ∑
i→ j

∥xi −x j∥2, (3.7)

where i → j means that x j is among the q − f −2 closest vectors to xi . Multi–Krum then

chooses a set S of vectors as follows:

S = (m)argmin
i∈{1,...,q}

s(i), (3.8)

where given a function s(i), (m)argmin(s(i)) denotes the indexes i with the m smallest s(i)

values. Multi–Krum then returns the average of vectors whose indexes ∈S . Krum sets m = 1.

Both Krum and Multi–Krum require however q ≥ 2 f +3, and their asymptotic complexity is

O (q2d).

3. MDA [211] finds a subset group of vectors of size q − f with the minimum diameter among

21

Chapter 3. System Support for Byzantine Learning

all other subsets, where the diameter of a group is defined as the maximum distance between

any two vectors of this subset. MDA then outputs the average of the chosen subset. We

formally define the MDA function as follows:

Let
(
x1 . . . xq

) ∈ (
Rd

)q
, and X ≜

{
x1 . . . xq

}
the set containing all the input vectors.

Let R ≜
{
M |M ⊂X , |M | = q − f

}
the set of all the subsets of X with a cardinality of q − f ,

and let:

S ≜ argmin
M∈R

(
max

(xi ,x j)∈M 2

(∥∥xi −x j
∥∥))

. (3.9)

Then, the aggregated gradient is given by:

MDA
(
x1 . . . xq

)
≜

1

q − f

∑
x∈S

x. (3.10)

Notably, MDA carries an exponential1 asymptotic complexity of O
((q

f

)+q2d
)
. Yet, as we will

discuss later, its assumptions about the variance between input vectors are weaker than for

the previous two GARs. It requires q ≥ 2 f +1.

Algorithm 1 The Bulyan algorithm.

1: Bulyan (f , [x1, ..., xq]):
2: θ = n −2 f
3: β= θ−2 f
4: X ext = Ar r ay[θ][d] ▷ set to store extracted vectors.
5: M = Ar r ay[d] ▷ set to store coordinate-wise medians.
6: C = Ar r ay[β][d] ▷ β set to store closest coordinates to the median.
7:

8: For (i ∈ [1, ...,θ]) do:
9: xsel = f ([x1, ..., xq] \ X ext) ▷ f is another GAR, e.g., Krum.

10: X ext = X ext +xsel ▷ ’+’ denotes append to list.
11: M = Median(X ext)
12: For (j ∈ [1, ...,d]) do:
13: C [:][j] = Ar g par ti t i on(|X ext [:][j]−M [j]|,β) ▷ the closest β coordinates to M[j]
14: return Aver ag e(X ext [C]) ▷ coordinate-wise average of selected coordinates
15: end function

4. Bulyan [72] (explained in Algorithm 1) robustly aggregates q vectors by iterating θ = q −2 f

times over another Byzantine–resilient GAR, e.g., Krum (lines 8–10). In each iteration, Bulyan

removes the vector selected by such a GAR from the input set in the subsequent iterations and

puts that vector in a selection set. When the size of the selection set becomes θ = q−2 f , Bulyan

computes the coordinate-wise median of the vectors in that set (line 11). For each coordinate,

Bulyan extracts the closest β= q −4 f values (from the selection set) to the computed median

for that coordinate and averages these values, i.e., it computes the coordinate-wise average of

the β= q −4 f closest values to the median (lines 12–13). Finally, Bulyan outputs the vector of

1Exponential when f =O
(
q
)
, polynomial when f =O (1).

22

3.3 The GARFIELD Design

Main Objects
Server

 init()
 cur_model()
 cur_updating_grad()
 update_model()
 write_model()
 compute_accuracy()

 cur_model()

Byzantine Server

Worker
 init()
 compute_gradients()

 compute_gradients()

Byzantine Worker

Aggregation

 get_gar()

GARs

Median
 init()
 aggregate()

MDA
 init()
 aggregate()

BulyanMulti-krum
 init()
 aggregate()

Average
 init()
 aggregate()

 init()
 aggregate()

Networking
 get_gradients()
 get_models()

has

Figure 3.1: GARFIELD components and API.

all the coordinate-wise averages. Unlike previous GARs, Bulyan can sustain a model with a

large dimension. Yet, it requires q ≥ 4 f +3, and its asymptotic complexity is O (q2d).

Tradeoffs. In addition to the differences in the ratio of tolerated Byzantine nodes (inequalities

relating q with f) and the computational cost of each GAR, the model dimension is also

crucial in deciding which GAR to use. For high dimensions (e.g., order of millions) and a strong

adversary, one should use Bulyan. In low dimensions, the application setup should satisfy the

variance assumption, as given below:

∃κ ∈]1,+∞) , ∀(
i , t ,θ

) ∈ [
1.. q − f

]×N×Rd , (3.11)

κ∆

√
E

(∥∥∥g (i)
t −Eg (i)

t

∥∥∥2
)
≤ ∥∥∇L

(
θ
)∥∥ , (3.12)

where,

∆=

2
p

2 f
q− f if GAR = MDA [72]√

2
(
q− f + f (q− f −2)+ f 2(q− f −1)

q−2 f −2

)
if GAR = Krum [32]√

q − f if GAR = Median [252],

(3.13)

where g (i)
t is the estimated gradient by an honest2 worker i at time t , and L(θ) is the loss

function at the model state θ.

3.3.2 System Components

We have designed GARFIELD in a modular way, as shown in Figure 3.1. In this section, we

describe each of these modules.

2Note that we cannot assume the same for Byzantine workers, which can act arbitrarily.

23

Chapter 3. System Support for Byzantine Learning

Main objects. GARFIELD defines two main objects that can be used for learning: Server and

Worker. The server is responsible for storing and updating the model state while workers train

this model using their local data. The server typically initiates a learning step by asking a few

workers to compute a gradient estimate given the model state it owns. For this, the server

object exposes the method get_gradients(), which we describe later in detail. Some algorithms

require servers to exchange their model states, and hence the server object comes with the

method get_models(), which is the second key method in our Networking interface, as we

describe below. In addition to the Networking methods, the server object exposes methods

to (1) update the model state, given some optimizer and a gradient estimate, (2) re-write the

model, which is useful in the case of multiple server replicas, and (3) compute accuracy, given

the model state and a test set.

The worker design, on the other hand, is much simpler. The worker object is passive in the

sense that it only responds to requests of the server. Basically, the worker owns some data and

defines some loss function. Its main job is to compute a gradient estimate (when asked by

the server) using the data chunk it owns. The worker then replies to the server by the gradient

estimate it computed.

To support experimenting with Byzantine behavior, GARFIELD defines two objects: Byzan-

tine Server and Byzantine Worker, which inherit from our main objects, Server and Worker,

respectively. Both objects implement the popular attacks used in the Byzantine ML literature

including simple ones like reversing vectors, dropping vectors, or random vectors [60, 70] and

the state–of–the–art attacks like little is enough [25] and fall of empires [256].

Networking. Existing networking abstractions in both frameworks, TensorFlow and PyTorch,

are not enough to be used (1) in a Byzantine, asynchronous environment and (2) with repli-

cated parameter servers.3 For example, one can deploy distributed training on PyTorch using

DistributedDataParallel() or on TensorFlow by choosing the ParameterServerStrategy(). How-

ever, both are high–level abstractions that assume trusted, always–available machines.

GARFIELD (as a part of the Networking API) supports two abstractions to handle communica-

tion: get_gradients() and get_models(). The first one is used to read the computed gradients

by the workers. It accepts two parameters: t , the index of the current iteration, and qw , the

number of workers from which a server should receive replies with qw ≤ nw (nw denotes the

total number of workers); qw = nw denotes synchronous communication with no faults in the

system, i.e., a server is expecting to receive replies from all workers. This function then returns

the fastest qw gradients it receives. The second abstraction works in the same way, yet fetching

models from servers instead of gradients from workers. Both abstractions then enable easy

and natural communication among all machines in the network in both synchronous and

3Not to be confused with replicated graphs in TensorFlow. What we mean by replicated parameter servers is the
case where the server needs to be replicated where these replicas (all have the same graph) are independent, rather
than shared between machines, and they do exactly the same computation on the same data for fault tolerance
rather than for performance. Both kinds of replication can be also combined.

24

3.4 The GARFIELD Implementation

asynchronous settings (as we describe in Section 3.5). We give the implementation details of

these abstractions in Section 3.4.

Aggregation. GARFIELD implements the Byzantine–resilient GARs presented in Section 3.3.1

on both CPUs and GPUs. We create wrappers (including dependency management and

automatic compilation and loading) to use them as custom operations4 in both TensorFlow and

PyTorch. Such wrappers make it possible to involve the GARs with the same interface for both

frameworks, though the lower–level interfaces each framework provides differ substantially.

To use a GAR, the common interface consists in two functions: init() and aggregate(). The

init() function takes the name of the required GAR (e.g., “median”), the value of n, the total

number of inputs, and f , the maximum number of Byzantine inputs. The second function,

aggregate(), takes n tensors (could represent gradients or models) and outputs the aggregated

one. Whether this function will execute on a CPU or a GPU depends on the device on which

the input vectors are stored. In this way, our design abstracts the device, CPU or GPU, and the

framework, TensorFlow or PyTorch, away from the developer.

3.4 The GARFIELD Implementation

First, we present how we implement the communication abstractions, i.e., get_models() and

get_gradients() in TensorFlow and PyTorch. Then, we show how we implement an efficient

version of the median function (which is used in Median and Bulyan GARs) on GPUs.5 Finally,

we discuss some tricks we employ for better memory management. We have open-sourced

our code of GARFIELD [96].

3.4.1 Communication in TensorFlow

TensorFlow adopts the notion of a shared dataflow graph in which all computations are de-

fined in one graph, even if deployed in a distributed environment, where all participating

nodes share this graph. This is a critical vulnerability in the Byzantine setting, as Byzantine

nodes can write and execute code on the other honest nodes [60]. Also, such a shared graph

abstraction hides the data communication among workers and servers, reducing the program-

ming flexibility and disallowing having multiple communication rounds per learning step,

which is crucial for Byzantine resilience in some cases [70].

We follow another route in which all nodes create an independent yet replicated graph. Though

this design has high memory overhead, we believe it is necessary to tolerate adversarial

behavior.6 In addition to resolving the vulnerability, this design allows for more flexible

4For example, https://www.tensorflow.org/guide/create_op
5We also include GPU implementation of other GARs yet, we focus on median because its GPU implementation

is challenging as we discuss.
6Such an overhead could be reduced if the environment is Byzantine–free.

25

https://www.tensorflow.org/guide/create_op

Chapter 3. System Support for Byzantine Learning

communication patterns among the participating nodes. We use gRPC for communication

and protocol buffers [238] for serializing and deserializing data. We use the pull model for

transferring data: when a node, be it a worker or a server, needs some data, it pulls this

data from the other nodes by initiating multiple remote procedure calls to such nodes. Each

node implements a server that serves these requests. We define the protocol buffers which

encode data exchanged between participants. We parallelize the replicated communication

between workers and servers for requesting gradients and updated models so as to reduce

the communication time as much as possible. However, abandoning the highly optimized

TensorFlow distributed runtime and using independent graphs on each node require context

switches between TensorFlow and Python runtimes (as protocol buffers currently cannot

serialize tensors directly). Concretely, when a node is requested to send a gradient or a model,

it serializes the requested data to a protocol buffer, exiting the TensorFlow graph/runtime. On

the receiver side, a node deserializes the received bytes back to a tensor. Our experiments

show that the overhead of these conversions (including memory copying) is non-negligible.

3.4.2 Communication in PyTorch

We implement the same abstractions in PyTorch yet with a slightly different design compared

to the TensorFlow one. First, there is no context switch between PyTorch and Python since

PyTorch gives communication abstractions that can be used directly on tensors. Second, we

pipeline the communication with aggregation (whenever possible) as PyTorch gives access

to gradients of each layer in the deep network separately; this allows for better utilization of

both network and computation devices and hence, better scalability. Third, in addition to

RPC support,7 our networking library also supports the distributed communication collectives

of PyTorch.8 In the latter case, our implementation automatically chooses the best commu-

nication backend between nccl and gloo to allow GPU-to-GPU communication whenever

possible. This is a plus compared to the RPC–based implementation as the latter does not

allow communication over GPUs.

3.4.3 SIMT Median Function

Our implementation of the median function on CPU is straightforward: each of the m ≥ 1 avail-

able cores processes a continuous share of n/m coordinates. Then each core applies, for each co-

ordinate of its share, introselect (or equivalent) by calling the standard C++ std::nth_element.

Nevertheless, even embarrassingly parallel algorithms like median would not necessarily

benefit from running on GPGPUs (General-Purpose computing on Graphics Processing Unit).

That is because modern GPGPUs, to achieve parallel execution on many threads while lim-

iting instruction fetch costs, batch threads into groups of, e.g., 32 threads that execute the

7PyTorch fully supports gRPC communication only in v1.6.
8https://pytorch.org/docs/stable/distributed.html

26

https://pytorch.org/docs/stable/distributed.html

3.4 The GARFIELD Implementation

same instruction.9 Algorithms like introselect [183] are branch–intensive, with possibly many

instructions executed in each branch, and so fail to scale on GPUs.

Reminiscent of [130], our implementation of median is built around a primitive that orders 3

elements without branching, by the use of the selection instruction, which converts a predicate

to an integer value. Let v be the table of size 3 to reorder by increasing values. Thanks to the

selection instruction, we can compute

int[] c = {v[0] > v[1], v[0] > v[2], v[1] > v[2]},

where a > b is 1 if a > b else 0.

Then using the intermediate results (found by solving the “reordering truth tables”):

int[] i = {
(1+c[0]+2*c[1]+c[2]-(c[1]⊕c[2]))/2,
(4-c[0]-2*c[1]-c[2]+(c[0]⊕c[1]))/2 },

we can finally reorder the elements of v into w with:

int[] w = {v[i[0]], v[3-i[0]-i[1]], v[i[1]]}.

Using this reordering primitive, we manage to implement an efficient version of the QuickSelect

algorithm (i.e., with minimal branching), which we use to compute the median.

3.4.4 Memory Management

We describe here a few tricks that we use to minimize memory footprint and reduce copying

data between the CPU and the GPU memory. First, whenever possible, we pin training data to

memory. This pinning impacts the time it takes to copy data to the GPU memory for computing

gradient estimates on workers. On the other hand, we do not pin the test set to memory as

using it is usually much less frequent than the training data. Second, we pin model weights in

the parameter server main memory as gRPC currently does not allow communicating values

that reside on the GPU memory. Given that the model weights are communicated in each

round, we never copy such weights to the GPU memory (except when testing the accuracy).

Yet, we store the model on workers on the GPU (or multiple GPUs whenever possible) so as to

accelerate gradient computation.

We carefully optimize the memory used by our GARs. For example, aggregating gradients may

require multiple iterations, calculating some distance-based scores for each of them in each

iteration, e.g., with Multi-Krum or Bulyan. We then cache the results of each of these iterations

(in the CPU or GPU memory) and hence remove redundant computations. Besides, we reduce

the memory cost by allocating space only for one iteration along with the intermediate selected

gradients, further reducing the memory cost.

9In the case of branching, the threads execute in lock-step.

27

Chapter 3. System Support for Byzantine Learning

Central Server

Workers

(a) Single server, multiple workers

Servers

Workers

(b) Multiple server, multiple workers

Devices

(c) Decentralized learning

Figure 3.2: Examples of applications that can be built using GARFIELD.

3.5 Applications

In this section, we show how one can use GARFIELD to build Byzantine ML applications. We

give three examples (depicted in Figure 3.2) that span different architectures for Byzantine–

resilient algorithms. We use the following notations in this section: nw is the number of

workers, f w is the number of Byzantine workers, nps is the number of parameter servers, and

f ps is the number of Byzantine parameter servers. When there is no distrinction between

servers and workers (e.g., in Section 3.5.3), we use n and f to denote the number of machines

and Byzantine machines respectively.

3.5.1 Single Server, Multiple Workers (SSMW)

Our first application represents the standard setup that was vastly studied in the last few years,

e.g., in [32, 11, 60]. Such a setup uses the vanilla parameter server architecture [158] (see

Figure 3.2a), yet with one crucial difference: instead of aggregating the workers’ updates by

averaging them, the server uses a statistically–robust GAR (see Section 3.3.1) for aggregation.

Such setup usually assumes a synchronous network, i.e., there is an upper bound on the time

it takes the workers to compute gradients and reply to the server.

Listing 3.1 shows how to build such a setup, using GARFIELD, in a few lines of code.

Listing 3.1: The implementation of SSMW setup with GARFIELD.

1 from garfield import Server , GARs
2 # parsing training arguments
3 ps = Server (...) #args omitted for brevity
4 for i in range(num_iter):
5 gradients = ps. get_gradients (i, nw)
6 aggr_grad = gar(gradients =gradients , f=fw)
7 ps. update_model (aggr_grad)
8 if i% comp_acc_freq == 0:
9 acc = ps. compute_accuracy ()

Listing 3.1 depicts the code on the parameter server side, given the passiveness of workers in

28

3.5 Applications

our design. First, the server object is initiated (line 3) with the appropriate parameters. Then,

the training loop (lines 4–7) runs as much as the user specifies. In each training iteration,

the server first asks the workers to compute gradient estimates using the current model state.

Note that the second argument in get_gradients() method specifies the number of replies the

server should wait for before continuing the iteration. The server then applies some GAR on

the received gradients and then updates the model using the aggregated gradient. Periodically,

the server computes the accuracy of the current model state (lines 8–9).

Notably, AGGREGATHOR’s official code base [62] (which implements this setup) is in the order

of thousands of lines of code.

3.5.2 Multiple Server, Multiple Workers (MSMW)

Our second application extends the first one by considering multiple servers and multiple

workers. This setup was considered recently [70, 71] to tolerate Byzantine servers as well as

Byzantine workers. Such a setup requires replicating the server on multiple machines (see

Figure 3.2b). It can also accommodate asynchronous networks in the sense that it does not

assume any upper bound on the computation nor communication delays.

Listing 3.2 shows how to build MSMW setup, allowing multiple server replicas and asyn-

chronous communication.

Listing 3.2: The implementation of MSMW setup with GARFIELD.

1 from garfield import Server , GARs
2 # parsing training arguments
3 ps = Server (...) #args omitted for brevity
4 for i in range(num_iter):
5 gradients = ps. get_gradients (i, nw -fw)
6 aggr_grad = gar(gradients =gradients , f=fw)
7 ps. update_model (aggr_grad)
8 models = ps. get_models (nps -fps)
9 aggr_models = gar(gradients =models ,f=fps)

10 ps. write_model (aggr_models)
11 if i% comp_acc_freq == 0:
12 acc = ps. compute_accuracy ()

We focus here again on the server side. Lines 1–7 are very similar to those in Listing 3.1 (except

for the number of expected gradients to collect in line 5). Lines 8–10 show the additional

communication step required among the server replicas to ensure consistency among servers’

parameters and hence, convergence. In such a step, each server first fetches the updated

model from a few other servers (whose number is given as an argument to get_models()

method). Then, it aggregates the collected models and stores the result as the new model.

29

Chapter 3. System Support for Byzantine Learning

3.5.3 Decentralized Learning

Our third application considers the Byzantine ML problem in decentralized settings as in e.g.,

[268, 267, 69]. Decentralized learning is different from the previous two use cases as it does

not use the parameter server architecture (see Figure 3.2c), i.e., communication is done in

a peer–to–peer fashion. Such a setup is mainly useful when data is sensitive and should be

kept private. Notably, it addresses settings where data is not identically distributed on the

contributing machines.

Listing 3.3 shows how to build such an application, allowing for a decentralized setup and

multiple communication steps per training iteration, which are mainly required to keep weak

consistency among models of the contributing nodes.

Listing 3.3: The implementation of decentralized learning with GARFIELD.

1 from garfield import Server , Worker , GARs
2 # parsing training arguments
3 wrk = Worker (...) #args omitted for brevity
4 ps = Server (...) #args omitted for brevity
5 for i in range(num_iter):
6 gradients = ps. get_gradients (i, n-f)
7 aggr_grad = gar(gradients =gradients , f=f)
8 if non_iid :
9 aggr_grad = contract (...)

10 ps. update_model (aggr_grad)
11 models = ps. get_models (n-f)
12 aggr_models = gar(gradients =models ,f=f)
13 ps. write_model (aggr_models)
14 if i% comp_acc_freq == 0:
15 acc = ps. compute_accuracy ()
16

17 def contract (...):
18 for _ in range(steps):
19 ps. latest_aggr_grad = aggr_grad
20 aggr_grads = ps. get_aggr_grads (n-f)
21 aggr_grad = gar(gradients =aggr_grads , f=f)
22 return aggr_grad

Note that the function g et_ag g r _g r ad s (used in line 20) is used to fetch l atest_ag g r _g r ad

(defined in line 19) from the other machines. g et_ag g r _g r ad s then fetches the aggregated

gradients from the previous step. We define this function solely to serve algorithms that

require multiple aggregations of gradients in a single SGD step. We highlight here two main

differences compared to the previous examples. First, each node creates both Server and

Worker objects (lines 3–4). Second, there is a multi-round step (lines 17–22) in each iteration

to contract models on correct machines, especially when the data is not identically distributed

on them. The goal of this step is to force the model states on all machines to get closer to each

30

3.6 Performance Evaluation

other (i.e., to achieve approximate consensus [69]).

3.6 Performance Evaluation

We first describe the settings we use and the baselines we consider. We then show mi-

crobenchmarks for the GARs we implemented, followed by large–scale experiments, evaluating

GARFIELD using the applications given in the previous section.

3.6.1 Methodology

Testbed. Our experimental platform is Grid5000 [89]. For the experiments deployed with

CPUs, we employ nodes from the same cluster, each having 2 CPUs (Intel Xeon E5-2630 v4)

with 10 cores, 256 GiB RAM and 2×10 Gbps Ethernet. For the GPU-based experiments, we

employ nodes from two clusters (due to the limited number of nodes in one cluster); nodes in

different clusters have different specifications. Each node has 2 identical GPUs.

Metrics. We use the following standard metrics:

Accuracy. This measures the top-1 cross-accuracy: the fraction of correct predictions among

all the predictions using the test set; this shows the quality of the learned model over time.

Throughput. This quantifies the number of updates that the system processes per second.

For deployments that employ multiple parameter servers, we report the highest throughput,

which corresponds to the fastest correct machine.

Application. We consider three applications, all discussed in Section 3.5. In some experiments,

we focus more on the setup with multiple servers and multiple workers (MSMW) as it gives the

flexibility to test with a different number of Byzantine servers and workers. We consider two

variants of MSMW : the first one uses Bulyan [72] to aggregate gradients and hence achieves

Byzantine resilience in high dimensions while assuming network asynchrony. The second

one uses Multi–Krum [60] to aggregate gradients while assuming network synchrony. Unless

otherwise stated, we use our TensorFlow version with the first variant and PyTorch for the

second one. We consider image classification due to its wide adoption as a benchmark for

distributed ML systems [51, 1]. We use MNIST [152] and CIFAR-10 [141] datasets. MNIST is a

dataset of handwritten digits with 70,000 28×28 images in 10 classes. CIFAR-10 consists of

60,000 32×32 colour images in 10 classes. Table 3.1 presents the models we use for evaluation.

Setup. Unless otherwise stated, we use the following default setup. For TensorFlow exper-

iments, we employ 18 workers, including at most 3 faulty workers (nw = 18, fw = 3), and 6

servers, including at most 1 faulty server (nps = 6, fps = 1). Note that in decentralized learning

31

Chapter 3. System Support for Byzantine Learning

Table 3.1: Models used to evaluate GARFIELD.

Model # parameters Size (MBs)
MNIST_CNN 79510 0.3

CifarNet 1756426 6.7
Inception 5602874 21.4
ResNet50 23539850 89.8

ResNet200 62697610 239.2
VGG19 128807306 491.4

experiments, we do not use any servers (i.e., workers communicate in a peer–to–peer fashion).

We employ a batch size of 32 for each worker, leading to an effective batch size of 480 in the

normal case (i.e., counting only batches of honest workers). For PyTorch experiments, we use

10 workers, with 3 Byzantines, and 3 servers, with only 1 Byzantine. We use a batch size of 100

for each worker. We repeated all the experiments multiple times and found that the error bars

are always very small and hence, omitted for better readability.

3.6.2 Baselines

To the best of our knowledge, GARFIELD is the first library to accommodate both Byzantine

servers and workers. We chose the following baselines for our evaluation of GARFIELD.

Vanilla baseline. This is the vanilla deployment of TensorFlow or PyTorch. Such deployment

fails to tolerate any Byzantine behavior whatsoever. We highlight two key differences between

this deployment and GARFIELD–based deployments. First, this setup uses only one trusted

parameter server, and hence, uses less number of communication links in the network and

eliminates the overhead of synchronization required in the case of using multiple servers.

Second, a lightweight GAR i.e., Average is used by such a baseline, where more computational

intensive ones e.g., Bulyan are used by GARFIELD. Comparing GARFIELD to this baseline

quantifies the overhead of Byzantine resilience.

AGGREGATHOR [60]. This is the only existing scalable ML system that achieves Byzantine

resilience, yet only for Byzantine workers. It is built on top of TensorFlow and supports train-

ing only on CPUs. AGGREGATHOR uses one central, trusted server while tolerating Byzantine

workers (i.e., uses SSMW setup), and it considers synchronous networks. For a fair compar-

ison with our GARFIELD–based systems, we use the same GAR for both deployments. Thus,

comparing with this baseline quantifies the overhead of using our object–oriented design and

the communication layer we provide.

Crash–tolerant protocol. We implement a strawman approach to tolerate crash failures,

assuming synchronous communication, using GARFIELD components. As worker crashes do

32

3.6 Performance Evaluation

7 9 11 13 15 17 19 21 23
n - Number of inputs

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

A
gg

re
ga

tio
n

tim
e

(s
ec

) Bulyan
MDA
Multi-Krum
Median
Average

(a) Number of Inputs

105 106 107 108

d - Input dimension

10−4

10−3

10−2

10−1

A
gg

re
ga

tio
n

tim
e

(s
ec

) Bulyan
MDA
Multi-Krum
Median
Average

(b) Input dimension

Figure 3.3: Microbenchmark of different GARs deployed on a GPU. n denotes the number of
inputs to the GAR and d denotes the length of one input/gradient.

not affect the learning convergence eventually, we only tolerate server crashes by replicating

the server. Server replicas get the updates from all workers and average them in each iteration,

but workers contact only one of these replicas, i.e., the primary, to get the updated model. In

the case of primary crash (signaled by a timeout), workers contact the next server, marking it

as the new primary. The new primary sends its view of the model to all workers so as to inform

them about the change. The model sent by the new primary could be outdated compared

to the model of the crashed primary (due to missing some updates). We consider this as

acceptable behavior, and learning can converge eventually [255], given that nps ≥ fps + 1,

where nps is the total number of replicas, and fps is the maximum number of crashing nodes,

i.e., servers. Thus, this deployment guarantees eventual convergence without any guarantees

on throughput or convergence rate. Some ML systems already use Paxos [149] for crash

fault tolerance [51, 158]. However, our strawman algorithm, we believe, gives strictly weaker

guarantees (in terms of consistency of model state among replicas) and hence has a higher

throughput than Paxos.

3.6.3 GARs Microbenchmark

The Byzantine–resilient GARs are the basic enabling tools for Byzantine resilience. We pro-

vide a microbenchmark for their GPU–based implementation performance with respect to

the number of inputs/gradients (i.e., n the number of workers or servers) and the gradient

dimension (i.e., d).

Vanilla frameworks, e.g., TensorFlow, average gradients at the parameter server. So, we also

include the evaluation of Average, which has been implemented as a part of the GARFIELD

library. Average is our baseline in this experiment.

For a fair comparison, we set f , the number of Byzantine inputs, to
⌊n−3

4

⌋
(which is the bound

for the strongest GAR we use, i.e., Bulyan [72]) for all Byzantine-resilient GARs and hence, the

smallest possible n is 7. We set d = 107 in Figure 3.3a and n = 17 in Figure 3.3b. The metric for

this microbenchmark is the aggregation time: it includes the aggregation of n input vectors

33

Chapter 3. System Support for Byzantine Learning

0 250 500 750 1000 1250 1500 1750 2000
Training iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y TensorFlow
Crash-tolerant
SSMW
MSMW
Decentralized Learning
AggregaThor

(a) Convergence with CifarNet

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76
Training epochs

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

A
cc

ur
ac

y

PyTorch
Crash-tolerant
SSMW
MSMW
Decentralized Learning

(b) Convergence with ResNet50 (1 epoch = 200 iterations)

Figure 3.4: Convergence of GARFIELD applications with respect to other baselines using two
models.

(all resident in GPU memory) and the transfer of the resulting vector back to main memory.

Each point is the average of 21 runs, for which we observed a standard deviation two orders

of magnitude below the observed average. We ran this microbenchmark on an Intel Core

i7-8700K CPU and two Nvidia GeForce 1080 Ti GPUs.

Theoretically, the asymptotic complexities of MDA, Multi–Krum, Bulyan, and Average are

respectively O
((n

f

)+n2d
)

[72], O
(
n2d

)
[32], O

(
n2d

)
[72] and O (nd). Our implementation of

Median has a best case complexity of O (nd) and worst case of O
(
n2d

)
. In practice, for a

fixed d (Figure 3.3a), we observe these asymptotic behaviors for Multi–Krum and Bulyan:

quadratic in n. Median shows good scalability with n, maintaining a consistent performance

that is very close to Average. Although the asymptotic complexity of MDA is exponential,

our implementation achieves only a quadratic growth with n. The values of n and f used in

these experiments are merely too low to expose such a behavior, i.e., the exponential growth

with n. Average aggregation time remains roughly constant for a fixed d and n < 15, with an

aggregation time of ∼8 ms, and then grows linearly. For a fixed n (Figure 3.3b), we observe a

linear time increases with respect to d for each one of the studied GARs.

3.6.4 Convergence Comparison

We inspect the convergence of GARFIELD and the baselines with training iterations. Figure 3.4

shows the results of two experiments: the first one (Figure 3.4a) trains CifarNet on TensorFlow–

based systems (including AGGREGATHOR) using CPUs, where the second one (Figure 3.4b)

trains ResNet50 on PyTorch–based systems using GPUs. Both experiments use CIFAR-10

as a dataset. The first experiment puts GARFIELD in a head–to–head comparison with the

state–of–the–art Byzantine ML system, i.e., AGGREGATHOR. The second experiment is an

instance of deployment of GARFIELD while training a bigger model using GPUs.

Figure 3.4a shows that all the systems achieve almost the same final accuracy (except AGGRE-

GATHOR). Some of the Byzantine–resilient deployments converge a bit slower than those using

averaging during training, yet reach the same accuracy eventually, i.e., after doing enough

34

3.6 Performance Evaluation

2 4 6 8 10 12 14 16 18
Training epochs

0.1

0.2

0.3

0.4

A
cc

ur
ac

y PyTorch
Crash-tolerant
MSMW

(a) Random vectors

2 4 6 8 10 12 14 16 18
Training epochs

0.1

0.2

0.3

0.4

A
cc

ur
ac

y PyTorch
Crash-tolerant
MSMW

(b) Reversed vectors

Figure 3.5: GARFIELD tolerance to two Byzantine attacks.

iterations. Interestingly, we can notice that Byzantine–resilient applications do not add much

overhead compared to the crash–tolerant one in terms of the number of iterations till con-

vergence (less than 1%). Surprisingly, GARFIELD applications achieve better final accuracy

than AGGREGATHOR. We speculate that the reason is the fact that AGGREGATHOR relies on

an old version of TensorFlow compared to GARFIELD (1.10 vs. 2.3)10. Another related reason

is the fact that the latest version of TensorFlow is also integrated with the highly–optimized

Keras library, which we also use. Figure 3.4b shows that Byzantine–resilient applications fail

to reach the same final accuracy as vanilla PyTorch, with up to 10% final accuracy loss. This

accuracy loss, although not clear in Figure 3.4a, is expected as a direct byproduct of using

Byzantine–resilient GARs to aggregate workers’ gradients and also due to having diverging

servers (in some cases). Note that such GARs inevitably introduce accuracy loss as these robust

aggregation protocols guarantee the convergence only to a ball around a local minimum [32].

The inability to optimize the model beyond this ball explains the observed accuracy loss.

Notably, this behavior is seen after the stabilization of the accuracy (i.e., after convergence),

and hence even if we let any of the Byzantine–resilient deployments run for more iterations,

the accuracy will not likely jump up to the vanilla (i.e., non-Byzantine) deployment. Moreover,

we notice that combining network asynchrony with decentralization leads to the biggest accu-

racy loss. Asynchrony essentially leads to the aggregation of outdated models and gradients,

slowing down convergence and reducing the final accuracy. Interestingly, the crash–tolerant

deployment does not experience such a loss compared to the vanilla case.

3.6.5 Tolerating Byzantine Failures

As a sanity check to our implementation, we conduct experiments with real adversarial behav-

ior, where we apply attacks on the vanilla baseline (PyTorch in this experiment), a GARFIELD–

based application (MSMW in this experiment), and the crash–tolerant protocol. Figure 3.5

10It might look unfair to use different versions of TensorFlow for comparison. Yet, note that almost all of the
code base of AGGREGATHOR (which has thousands of LoC, written for V1.10) requires updating (to be compatible
with V2.3). We chose to test with the latest publicly available code as-is while highlighting the different versions
issue to make the context of our results clear to the reader.

35

Chapter 3. System Support for Byzantine Learning

MNIST_CNN CifarNet Inception Resnet-50 Resnet-200 VGG0

2

4

6

8

10

12

Sl
ow

do
w

n

Crash-tolerant
SSMW
MSMW
Decentralized Learning

(a) CPU

MNIST_CNN CifarNet Inception Resnet-50 Resnet-200 VGG0

1

2

3

4

5

Sl
ow

do
w

n

Crash-tolerant
SSMW
MSMW
Decentralized Learning

(b) GPU

Figure 3.6: Slowdown of fault–tolerant systems normalized to the vanilla baseline (i.e., Tensor-
Flow) throughput.

shows 2 attacks on both servers and workers. In the first attack (Figure 3.5a), the Byzantine

node replaces its reply with random values, whereas, in the second attack (Figure 3.5b), such a

reply is reversed and amplified (multiplied by -100). We train CifarNet with 11 workers and 3

servers (in the case of fault-tolerant algorithms) with 1 Byzantine node from each party. We

run the training for 20 epochs. On the one hand, both the vanilla deployment and the crash–

tolerant deployment fail to learn under both attacks. On the other hand, MSMW manages to

train the model safely and converges to normal, high accuracy.

3.6.6 The Cost of Byzantine Resilience

We show here the computation and the communication costs of Byzantine resilience. We

quantify the overhead of employing GARFIELD–based applications compared to the other

baselines by measuring the throughput while training several models. Essentially, our goal is

to understand the main factors that drive the cost of Byzantine resilience.11 In this section and

without loss of generality, we use ResNet50 as our model (unless otherwise stated). We do not

employ any Byzantine behavior in these experiments as we want to quantify the overhead of

Byzantine resilience in a normal, optimistic environment. Thus, we denote here the number

of declared Byzantine nodes with the number of Byzantine nodes (i.e., fw and fps).

Model dimension. Figure 3.6 depicts the cost of Byzantine resilience in terms of slowdown,

which we define as the throughput of the fault-tolerant systems, normalized to that of the

vanilla baseline in each case. The overhead of crash tolerance ranges from 83% to 537%

on CPUs (7%–286% on GPUs), that of SSMW ranges from 69% to 492% on CPUs (5%–219%

on GPUs), that of MSMW ranges from 88% to 544% on CPUs (14%–292% on GPUs), and

that of decentralized learning ranges from 161% to 1135% on CPUs (24%–429% on GPUs)

compared to the vanilla deployments. More interestingly, compared to the crash–tolerant

deployment, MSMW overhead ranges from 1% to 42% on CPUs (0.1%–22% on GPUs) and

11Note that AGGREGATHOR’s architecture is the same as SSMW. We have only included the results of the latter for
better readability.

36

3.6 Performance Evaluation

TF Crash Tolerant SSMW MSMW Dec. Learn.0

5

10

15

20

La
te

nc
y

pe
r

ite
ra

tio
n

(s
ec

) Computation
Communication
Aggregation

Figure 3.7: GARFIELD’s overhead breakdown.

decentralized learning overhead ranges from 41% to 154% on CPUs (16%–61% on GPUs). It is

evident that CPU–based deployments show higher slowdowns than that of the GPU–based

ones. We attribute that behavior to two reasons: (1) we test with more machines in the first

case, inducing higher communication overhead, and (2) GARs overhead is bigger with CPUs

than with GPUs.

We extract several observations from Figure 3.6. First, the cost of Byzantine resilience, com-

pared to vanilla baselines, is significant (reaches ∼ 12× in the worst case). However, such a cost

is expected (and might be even considered reasonable), noticing the cost of weaker alternatives

(e.g., crash tolerance). Interestingly, the cost of workers’ Byzantine resilience (using SSMW) is

always less than that of crash tolerance (more clear with big models). Second, ML training,

especially on GPUs, is network–bound: applications that require more communication have

bigger slowdowns. Essentially, communication constitutes more than 75% of the overhead,

whereas robust aggregation accounts for less than 11% (see Figure 3.7). Third, increasing the

model dimension increases the overhead of Byzantine resilience, yet only until a certain point;

after that point, the overhead remains roughly constant even with bigger models. The reason

for that lies in the factors driving such an overhead. With small models, the cost of robust

aggregation is visible (i.e., constitutes a non-negligible chunk of the overhead). Yet, with bigger

models, the communication overhead prevails, which is in O (d) for all deployments.

Overhead breakdown. We pick one instance and take a closer look at all the deployments to

understand the factors affecting their performance. Concretely, we run the same experiment

while training ResNet50, breaking the average latency per iteration for each deployment.

Figure 3.7 depicts the breakdown of the systems overhead when deployed on the CPU–based

cluster. It is hard to decompose communication and the computation time for TensorFlow.

Thus, the blue-and-orange bar denotes the time spent in both of them combined.

We can observe in the figure that the computation time is roughly the same for all applications

(∼ 1.6s). Yet, the communication cost dominates the overhead (ranges from 75% to 86%).

37

Chapter 3. System Support for Byzantine Learning

This makes (1) crash tolerance costly more than Byzantine workers’ tolerance (22% extra

communication), and (2) Byzantine servers’ tolerance costly more than only workers’ tolerance

(42% more communication). Furthermore, we note that the aggregation time in decentralized

learning is two times bigger than that of SSMW due to the extra model aggregation step done

by the former application.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
nw

20
40
60
80

100
120
140
160
180

T
hr

ou
gh

pu
t

(b
at

ch
es

/s
ec

)

TensorFlow
Crash-tolerant
SSMW
MSMW
Decentralized Learning
AggregaThor

(a) CPU TF-version

5 7 9 11 13
nw

200

400

600

800

1000

1200

T
hr

ou
gh

pu
t

(b
at

ch
es

/s
ec

)

PyTorch
Crash-tolerant
SSMW
MSMW
Decentralized Learning

(b) GPU PT-version

Figure 3.8: The scalability of GARFIELD with increasing nw .

3.6.7 Scalability of GARFIELD

In this section, we analyze the scalability of multiple training applications with a different

number of workers, Byzantine workers, and Byzantine servers.

Number of workers. Increasing the number of workers (nw), and hence increasing the ef-

fective batch size, is crucial for scaling distributed ML applications. Figure 3.8 depicts the

scalability of GARFIELD–based applications while training CifarNet on CPUs (Figure 3.8a) and

ResNet50 on GPUs (Figure 3.8b). In this figure, throughput is measured in batches/sec rather

than updates/sec since employing more workers allows for increasing the number of batches

processed per iteration.

Figure 3.8a shows that SSMW outperforms AGGREGATHOR. This happens arguably due to the

optimizations we include in GARFIELD in addition to using a newer version of TensorFlow.

We draw three main observations from Figure 3.8. First, all systems scale by employing more

workers (except the decentralized learning application), with around one order of magnitude

higher throughput with GPUs compared to CPUs. Second, the throughput gap between the

vanilla deployments and the fault-tolerant deployments increases with increasing nw , keeping

the slowdown introduced by SSMW, MSMW , and crash–tolerant almost constant. Third, the

scalability of MSMW is almost as good as that of the crash–tolerant deployment and the

difference in throughput with increasing nw is almost constant. This shows that complete

Byzantine resilience does not harm scalability compared to crash resilience.

To understand why decentralized learning does not scale, we focus on its communication

overhead with different number of nodes (n) and model dimension (d). Figure 3.9 shows

38

3.6 Performance Evaluation

2 3 4 5 6
n - Number of nodes

0.02

0.04

0.06

0.08

C
om

m
un

ic
at

io
n

tim
e

(s
ec

.)
Decentralized Learning
PyTorch

(a) Number of Inputs

104 105 106 107 108

d - Model dimension

10−2

10−1

100

C
om

m
un

ic
at

io
n

tim
e

(s
ec

.)

Decentralized Learning
PyTorch

(b) Input dimension

Figure 3.9: Communication time of decentralized learning and vanilla baseline (deployed on
GPUs) with n and d .

the communication latency of decentralized learning and vanilla baseline (PyTorch in this

experiment) with different values of n (with d = 106) and d (with n = 6). It is evident that

increasing d saturates the bandwidth quickly and increase the communication time linearly

for both systems (Figure 3.9b). Yet, the scalability issue of decentralized learning appears

in Figure 3.9a, where the communication time increases drastically (i.e., quadratically) for

decentralized learning while only linearly with the vanilla competitor. Basically, decentralized

learning requires O (n2) messages per round while the vanilla deployments require only O (n)

messages per round. Note that the all-to-all communication in decentralized learning is

crucial to achieve Byzantine resilience.

0 1 2 3
fw

0.060
0.065
0.070
0.075
0.080
0.085
0.090
0.095
0.100

T
hr

ou
gh

pu
t

(u
pd

at
es

/s
ec

)

PyTorch
TensorFlow

(a) Number of Byzantine workers

0 1 2 3
fps

0.030
0.035
0.040
0.045
0.050
0.055
0.060
0.065

T
hr

ou
gh

pu
t

(u
pd

at
es

/s
ec

)

PyTorch
TensorFlow

(b) Number of Byzantine servers

Figure 3.10: The scalability of GARFIELD with fw and fps .

Number of Byzantine workers. In general, practitioners deploy multiple workers to distribute

the heavy load of training to multiple machines (rather than for fault tolerance). In this sense,

increasing the number of Byzantine workers (fw) does not call for increasing the total number

of workers (nw), as long as the inequality relates fw to nw (according to the used Byzantine-

resilient algorithm) holds. In this experiment (in Figure 3.10a), we fix nw and hence, fixing

the effective batch size in all cases. Fixing nw results in a fixed communication cost in all

cases, making the throughput almost the same even with increasing fw . The same results are

39

Chapter 3. System Support for Byzantine Learning

confirmed with both frameworks, with a slight superiority of PyTorch to TensorFlow.

Number of Byzantine servers. We replicate the server in the first place to tolerate Byzantine

servers. Therefore, increasing the number of Byzantine servers (fps) calls for increasing the

number of server replicas (nps) so as to satisfy the Byzantine resilience condition: nps ≥ 3 fps+1.

Thus, increasing fps introduces new communication links, leading to a throughput drop as

shown in Figure 3.10b. Such a drop is confirmed in the state machine replication (SMR)

literature [114, 3], where the amount of drop (less than 50%) is not significant compared to

what was reported before in the literature [57]. The assumption of 1 faulty parameter server

introduces an overhead of 33% to achieve Byzantine resilience. An interesting fact here is that

increasing fps does not increase the number of iterations required for convergence since the

selected number of gradients with which GARFIELD does the update is constant anyway.

3.7 Related Work

To the best of our knowledge, AGGREGATHOR [60] is the only implementation of a Byzantine

ML system that is prior to our work. AGGREGATHOR relies on two components: the aggregation

layer, which uses Multi–Krum to robustly aggregate workers’ gradients, and the communica-

tion layer, which enables experimenting with lossy networks. Though AGGREGATHOR follows

the shared graph design, it disallows workers to change such a graph to combat any possible

Byzantine behavior.

The design of GARFIELD is fundamentally different from that of AGGREGATHOR: while the latter

is merely a layer on top of TensorFlow, GARFIELD is a standalone library that can be plugged

into different frameworks. Indeed, AGGREGATHOR supports only one architecture, namely

using a single, trusted server with multiple workers in synchronous environments. From those

perspectives, it is not very robust. GARFIELD, on the other hand, can flexibly adapt to different

scenarios, e.g., with multiple server replicas and asynchronous environments.

On the theoretical side, several Byzantine-resilient ML algorithms have been proposed; all

try to mathematically bound the deviation of the aggregated gradient from the correct ones.

Krum [32] employs a median-like aggregation rule. Multi-Krum [60] generalizes the idea by

averaging more gradients to benefit from additional workers. Bulyan [72] addresses an attack

that can trick some Byzantine-resilient algorithms by having them converge to a stable yet

faulty state. Different variants of robust mean-based algorithms under different assump-

tions and scenarios were considered in [252, 270]. Kardam [61] uses filtering mechanisms to

achieve Byzantine resilience in an asynchronous training setup. Zeno [253] and Zeno++ [258]

achieve Byzantine resilience using a performance-based ranking approach in synchronous

and asynchronous settings respectively. Draco [47] uses a coding scheme to restore correct

gradients using redundant computations. Detox [207] extends this idea by combining coding

schemes with robust aggregation to hit the sweet spot in the resilience–optimality spectrum.

ByzSGD [70, 71] shows how to combine robust GARs to tolerate Byzantine servers too. In

40

3.8 Concluding Remarks

particular, it replicates the parameter server on multiple machines while letting them com-

municate to limit the divergence among their model states. ByRDiE [268] and BRIDGE [267]

combine robust aggregation with performance-based ranking to achieve Byzantine resilience

in the decentralized settings.

While such proposals shaped the literature of Byzantine-resilient ML, they only remain theoret-

ical (i.e., without a deeper look at the very practical costs of such solutions). GARFIELD closes

this gap by providing a tool to practically build these solutions. GARFIELD uses robust aggrega-

tion and already implements many of the mentioned GARs. GARFIELD can straightforwardly

include the other ones with minimal coding effort.

The problem of tolerating benign (i.e., crash) failures of parameter vectors was also addressed

in the literature. Qiao et al. [202] leverage the self-correcting behavior of SGD to tolerate

such failures. Other proposals addressed the problem of making the parameter server crash-

resilient [158, 51] using Paxos [149]. Others rely on checkpoints or live replication [1] of the

parameter server. However, we believe that extending those tools to the Byzantine context

would be prohibitive.

3.8 Concluding Remarks

This chapter presented GARFIELD, a library to build Byzantine machine learning (ML) ap-

plications on top of popular frameworks such as TensorFlow and PyTorch while achieving

transparency: applications developed with either framework do not need to change their

interfaces to be made Byzantine-resilient. GARFIELD supports multiple statistically-robust

gradient aggregation rules (GARs), which can be combined in various ways for different re-

silience properties. In some situations, GARs fail to ensure Byzantine resilience when the

underlying assumption on a bounded variance is not satisfied [25]. Yet, several techniques

were proposed for variance reduction, e.g., [243, 12, 192], which help restore the resilience

guarantees of such GARs. Such techniques can be added seamlessly to GARFIELD without

affecting its throughput performance. In the same vein, we believe GARFIELD could be also

used to implement applications that combine privacy and security properties with Byzan-

tine resilience as in [106, 181]. Indeed, any protocol that relies on exchanging replies and

aggregating them in some robust manner, e.g., [77], can be implemented with GARFIELD.

Our code is open-sourced and available at [96]. Our evaluation of GARFIELD (using three

Byzantine ML applications) showed that Byzantine resilience, unlike crash resilience, induces

an inherent loss in the final accuracy and that the throughput overhead of Byzantine resilience

is moderate compared to crash resilience. Furthermore, we showed that (1) the Byzantine

resilience overhead comes more from communication than from aggregation and that (2)

the overhead of tolerating Byzantine servers is much more than that of tolerating Byzantine

workers.

41

Part IIIPractical Tips for Efficient Training

43

4 Elasticity is All You Need

In this chapter, we consider training in a datacenter, where typically, we have various train-

ing tasks (with heterogeneous workloads) that need to run on a shared cluster of limited

resources. We resolve the fierce resource contention with elasticity: giving training tasks differ-

ent amounts of resources throughout their lifetime. We present an Elastic Resource Allocator

(ERA) for optimizing resource utilization on shared deep learning clusters. ERA is elastic in

two dimensions: (1) it scales jobs up and down, i.e., by adding or removing resources to or from

the running jobs, and (2) it dynamically changes the per–GPU batch size, at will, to control

the GPU utilization. The goal of ERA is to (a) maximize the number of concurrently running

jobs and (b) to achieve good job–level and cluster–level performance, such as maximizing the

average throughput and minimizing the average job completion time.

4.1 Introduction

We consider the training of deep learning (DL) applications in a datacenter. Training DL tasks

(also called jobs) demands a significant amount of computing, memory, storage, and network

resources [88, 125]. Nowadays, datacenters serve these tasks, including long-running training

tasks [123], on shared clusters of a limited number of resources.

In the past few years, the research community has explored different strategies for resource

allocation, aiming for high cluster utilization [251], fairness [90], and overall users’ happi-

ness [196]. Such proposals assume that the requested resources are fixed throughout the

training. This rigid approach is a road-blocker against optimal performance and resource

utilization. On the one hand, having many users’ requests leads to longer queuing delays.

On the other hand, having a few of them leads to resource underutilization. For machine

learning practitioners, it is not always easy to anticipate the optimal number of machines

and the best batch size [26]. In addition, the best parameters for resource utilization typically

depend on the allocated hardware in the cluster, which the users do not know in advance.

To capture this problem, we conduct the following experiment (see Figure 4.1). We measure

the cluster utilization (i.e., the percentage of active GPUs to the total number of available

45

Chapter 4. Elasticity is All You Need

0 2000 4000 6000 8000
Time (sec.)

0

10

20

30

40

C
lu

st
er

 U
til

iz
at

io
n(

%
) Static

(a) Cluster utilization

0 2000 4000 6000 8000
Time (sec.)

35

40

45

50

55

60

A
vg

. G
PU

 M
em

. U
til

.(%
)

Static

(b) GPU memory utilization

Figure 4.1: Cluster and resource utilization with a non–elastic solution. We submit 15 training
tasks to a 64–GPU cluster with a mean arrival time of 4 minutes, following the Poisson distri-
bution.

GPUs in the cluster) and the average GPU memory utilization (as reported by nvidia-smi1)

while submitting 15 training tasks to a 64–GPU cluster. Tasks submission schedule follows the

Poisson distribution with a mean arrival time of 4 minutes. Figure 4.1a shows that the cluster

utilization is upper–bounded by 45%, and Figure 4.1b shows that the average GPU memory

utilization peak is only 60%.

Our key to resolving this underutilization is to allow DL training jobs to be elastic, i.e., assign a

different number of machines to training tasks throughout training time. Such elasticity of

DL training has been recently examined, e.g., in [190, 115]. Though these approaches achieve

some gains, they are limited in a few aspects. For example, Autoscaler [190] focuses only

on scaling a single job without looking at cluster utilization or maximizing the number of

concurrently running jobs. AFS-L and AFS-P (described in [115]) ignore the utilization level of

the individual GPUs when making scaling decisions. Moreover, AFS-L assumes the knowledge

of the remaining time for job completion, which might not be practical in some cases. Further-

more, all these approaches apply only horizontal scaling, ignoring scaling the per–machine

batch size (also called local batch size), which we found crucial for optimal performance.

We present ERA: an Elastic Resource Allocator for multi-tenant DL clusters. ERA provides

elasticity in two dimensions: the number of machines (also called workers) contributing to

training and the per-machine batch size, hereafter, batch size. ERA scales up jobs that benefit

from having more resources and scales down jobs to maximize the number of concurrently

running jobs on the cluster while being fair to all jobs. Interestingly, ERA does not require any

prior information on the workload or the remaining time for jobs to terminate. Furthermore,

ERA detects the underutilization of GPU processing cycles and memory and scales the batch

size accordingly. Thus, a user does not need to adjust their training script based on the target

hardware as ERA takes care of that seamlessly. Our insight here is that scaling the batch

size improves the computation efficiency (by maximizing the utilization of the GPUs) and

1https://developer.nvidia.com/nvidia-system-management-interface

46

https://developer.nvidia.com/nvidia-system-management-interface

4.1 Introduction

hence, mitigates the communication overhead resulting from scaling; this opens the door

for even more rewarding horizontal scaling and hence, improved performance. Notably,

changing the batch size might alter the convergence behavior [271]. This fact forced some

elastic solutions to keep the global batch size fixed while scaling [22]. To mitigate this, we take

two design decisions. First, we allow users to specify a maximum global batch size that ERA

can use for their jobs. Second, we scale the learning rate linearly should the global batch size

(i.e., the aggregate batch size used by all workers) change to preserve the noise scale and the

convergence behavior [226, 219]. ERA takes decisions dynamically in the middle of training,

i.e., not at fixed events such as job arrival or departure.

ERA works as follows. ERA periodically polls the running jobs for the latest application–level

and cluster–level measurements. Meanwhile, ERA monitors the incoming requests that need

to be scheduled on the cluster. Given these inputs, ERA finds the optimal share for each

job. Specifically, ERA solves an integer non-linear optimization problem (INLP), seeking the

optimal resource allocation plan. ERA aims at maximizing (a) the number of parallel running

jobs, (b) the average throughput of all jobs, and (c) the cluster utilization (i.e., minimizing

the number of idle machines) while minimizing the overhead of frequent scaling (to avoid

thrashing [251]). We address this non-linear problem using a substitution trick: we introduce

an auxiliary decision variable and two additional constraints to address the non-linearity of

the problem. In addition, ERA follows a thresholding technique to increase the batch size

should it detect an individual GPU underutilization. ERA also detects out-of-memory (OOM)

errors and adapts the batch size accordingly in this case.

We implemented ERA as a Kubernetes (K8s) operator [277] to be seamlessly compatible with

K8s [41], a widely-used container orchestration platform. We use elasticJob [200] to encapsu-

late users’ requests, which should be written with PyTorch [193]. We use PyTorch-elastic [199]

and its K8s controller to apply the elasticity decisions of ERA. We use ConfigMaps [144] as a

side-channel between ERA and the running jobs to communicate the batch size change events.

We evaluate ERA on a shared 64–GPU cluster. Our training tasks span two domains: image

classification and language modeling. In the first domain, we train various models with

ImageNet [66] while we fine-tune BERT [132] in the second one. We compare ERA to a vanilla

baseline with no elasticity (denoted as Static) in addition to two state-of-the-art systems that

use elasticity: Autoscaler and AFS-P.

We show that ERA reduces the average job completion time (JCT) by 2.5×, 2.1×, and 2×
compared to Static, Autoscaler, and AFS-P, respectively, with up to 60 jobs. In the same vein,

ERA reduces the makespan by 1.9×, 1.56×, and 1.76× compared to Static, Autoscaler, and

AFS-P baselines, respectively. In terms of throughput, jobs managed by ERA can process, on

average, around 3000 samples/second, whereas AFS-P, Autoscaler, and Static can process only

1500, 600, and 500 samples/second, respectively. ERA also boosts the average GPU compute

and memory utilization by up to 25%. Finally, we show that the scaling decisions of ERA do

not affect the convergence behavior compared to Static: jobs managed by ERA can converge,

47

Chapter 4. Elasticity is All You Need

to the same accuracy, faster than Static.

Our experiments also give further interesting observations on elasticity. For example, we

observe that elastic systems can converge to the same JCT regardless of the initial number of

starting workers (i.e., if the user is not an expert, elastic systems can choose the best number of

machines to use for them). Furthermore, we noticed that horizontal scaling alone might lead to

worse GPU utilization (even compared to Static) because the communication overhead (results

from scaling up) could outweigh the benefit of the scaling. Notably, our two-dimensional (2D)

scaling does not fall into this trap.

To summarize, our contribution is three-fold. 1. We design ERA, a 2D scaling algorithm

through which we show that scaling the batch size is crucial for optimal performance. 2. We

integrate ERA with K8s, a state-of-the-art container orchestration platform. 3. We show, using

real-world scenarios, that ERA outperforms the state-of-the-art elastic systems.

4.2 Background

4.2.1 Elastic Distributed Learning

As given in Section 2.3, data distribution, as well as training, is either orchestrated by a central

server [156] or in a decentralized manner [195]. We use the latter approach, in which case

the algorithm works as follows. Each machine contributing to training (also called a worker)

possesses a local model copy and partial data. Each worker first estimates a gradient using

a data batch, which is then used to update the model. As we consider synchronous training,

workers synchronize their models after each iteration. Essentially, workers aggregate their

updated models (from each other), typically by averaging them, to obtain the new model.

The summation of the sizes of the batches used by all workers is called the global batch

size. Increasing the number of workers decreases the processing load for each of them. The

question now is: should the global batch size change with changing the number of workers?

On the one hand, fixing the global batch size (by changing the local batch size linearly) ensures

the same convergence behavior regardless of the number of workers and thus, promotes

reproducibility [22]. On the other hand, changing the global batch size (by fixing the local

batch size) preserves resource utilization but might affect the convergence behavior [219].

To mitigate this probable change in convergence, some approaches suggested scaling the

learning rate with the batch size [226, 129].

4.2.2 Deep Learning Scheduling

There has been increasing attention recently to scheduling strategies for DL workloads in

shared clusters. The problem statement is as follows. Consider a fixed set of resources and

multiple training requests. The goal is to assign the resources to the requests while minimizing

the average job competition time (JCT). Previous approaches examined different strategies

48

4.3 The ERA Design

such as prioritizing short jobs [218], prioritizing efficient jobs [115], or prioritizing jobs with

the lowest memory fragmentation [279]. Scheduling techniques also included time-slicing of

resources [251], task migration [90], packing tasks on GPUs [279], and load balancing [196].

4.2.3 PyTorch–elastic and ElasticJob

PyTorch–elastic [199], an engine offered by PyTorch [193], is elastic in the sense that it allows

distributed applications to use a varying number of workers throughout training. It also

helps tolerate worker crashes and network omissions. PyTorch–elastic stores the state of the

running jobs in a persistent key-value store, e.g., etcd. Before starting training, workers elect

a master for the job. The master address is then stored in etcd so that it can be found later

by other workers joining the job. Workers then try to connect to each other. If this step fails

within a pre-defined time window, workers elect another master and start over. This process is

called rendezvous. In the case of failure or scaling (up or down), workers restart and initiate a

new rendezvous. It is then the responsibility of the training script to checkpoint the training

progress regularly to avoid losing it in the event of failure or scaling.

ElasticJob [200] is a Kubernetes custom resource2 for elasticity. Users can use elasticJob to

describe their training task and then adjust the resources allocated to it. Precisely, elasticJob

provides an interface for users to define the main elasticity characteristics of their job such as

a range (mi n,max) on the number of workers. ElasticJob also exposes replicaSpecs, which

describes the specifications of each worker encapsulated in a container. For instance, within

replicaSpecs, the user can define limits on the number of CPU cores and the memory required

for their job and can also pass custom environment variables to the training task.

4.3 The ERA Design

4.3.1 Overview

ERA dynamically allocates resources to DL tasks in shared clusters. Due to its wide adoption in

DL training platforms, we integrate ERA with Kubernetes (K8s) [41], a container orchestration

platform that can efficiently manage multiple applications in shared clusters. We envision

that the cluster operator would run ERA with the goal of improving the cluster utilization and

the users’ experience (by allowing their workloads to run faster).

In this chapter, we only consider GPUs while solving the resource allocation problem. The

main ideas of ERA can also be applied to other resources such as CPU cores and memory. For

simplicity, we assume homogeneous clusters: all GPUs in the cluster have the same specifica-

tions, and the network latency is also homogeneous for all machines. In addition, we focus on

synchronous training. ERA does not require any prior information about the workloads (i.e.,

datasets and models used), the convergence behavior, or the training hyperparameters. ERA

2https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

49

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

Chapter 4. Elasticity is All You Need

Figure 4.2: The resource allocation architecture. The ERA component, highlighted in green, is
our main contribution.

also does not require an estimation of the remaining time for job completion.

ERA controls jobs by adjusting their specifications dynamically while respecting the minimum

and maximum values provided by the users. ERA communicates with each job through a

K8s ConfigMap, initially created by the user. Each ConfigMap includes the batch size, the

maximum allowed batch size, and a timestamp of the latest modification to the batch size

event. Each worker then has to mount a ConfigMap to its volume.

4.3.2 Architecture

Figure 4.2 depicts the architecture of our resource allocation system. At a high level, users

submit their requests by creating elasticJobs, which eventually run on one or more pods.3 In

this section, we explain the main components shown in Figure 4.2.

Kube API server. The Kube API server is the entry point to any request submitted to the K8s

cluster. In addition to serving users’ requests, the API server also serves in-cluster requests,

which we describe later. The server typically receives an elasticJob request, parses it, and

stores a job entry in an etcd server. When requested, the API server sends the stored job entry

to the elasticJob controller to be deployed. The API server also replies to ERA’s requests about

the cluster state, the number of waiting jobs to be scheduled, jobs’ metadata, and jobs’ states

3A pod is a unit of computation in Kubernetes. In our case, 1 pod is equivalent to 1 GPU. Furthermore, 1 worker
is 1 GPU.

50

4.3 The ERA Design

(i.e., running, succeeded, or failed). In addition, when ERA takes a scaling decision, it sends a

request to the API server, which serves such a request, passing it to the appropriate entity.

ElasticJob controller. We use a K8s controller that is provided by PyTorch–elastic [200], which

is responsible for managing the elasticJobs that are running in the cluster. This entails creating

a K8s pod for each worker, which in turn hosts a container with the corresponding specifica-

tions requested by the user. In the case of a scaling request, the controller communicates the

new setup to the elastic engine in order to apply the requested scaling decision. For instance,

in the case of scaling up, the controller creates a new pod (with the requested specifications)

and makes it available to the elastic engine to add the new worker. The controller also monitors

the state of the running pods and changes such a state when applicable.

ERA. This component is the main contribution of our system. ERA is responsible for two main

things: (1) monitoring the running jobs for application-level and cluster-level measurements,

and (2) scaling jobs in two dimensions: the number of running workers (i.e., horizontal scaling)

and the per–worker batch size. Scaling in both dimensions is orthogonal, i.e., one job can

scale horizontally without scaling the batch size and vice versa. Note that scaling in either

dimension scales the global batch size, unlike recent approaches, e.g., [22]. To keep the same

convergence behavior expected by the user, ERA scales the learning rate with either scaling

type. We show in Section 4.5 that this reaction practically preserves convergence, following

the theoretical guarantees [226] given by that approach as well.

Regarding the first task, ERA periodically monitors (a) the cluster for cluster-specific measure-

ments such as the number of active and idle GPUs and (b) the pods associated with each job

for application-specific measurements such as training throughput or the number of executed

training steps. Each application-specific measurement is averaged4 over all the pods associ-

ated with the job. ERA uses these measurements to take scaling decisions, as we describe later.

Notably, ERA does not run a synchronized clock for all jobs. Hence, the measurement time

could differ from one job to another. For fairness, the period between measurements (i.e., the

frequency of taking measurements) is fixed to a constant across all jobs.

For its second task (i.e., taking scaling decisions), ERA comprises two components, one for

each dimension of scaling. The first one is the horizontal scaler. ERA scales the number of

workers based on three inputs: throughput, cluster utilization, and scaling overhead. To take

these factors into account and to find the optimal allocation plan, ERA solves the following

optimization problem:

4Median would be more robust in heterogeneous clusters.

51

Chapter 4. Elasticity is All You Need

max
∑

j∈J

e j (n j)×∆ j −γ j ×
∣∣∆ j

∣∣
s.t. ∀ j∈J mi n j ≤ n j +∆ j ≤ max j∑

j∈J

n j +∆ j = min

(
Gtot al ,

∑
j∈J

max j

)
∀ j∈J ∆ j ∈Z,

(4.1)

where J is the set of all running jobs, e j is the scaling efficiency score (see Equation 4.2 below)

of job j ,∆ j is the change in the number of pods (i.e., the decision variables of the optimization

problem), γ j is the penalty for scaling job j (up or down), typically to reduce the scaling

overhead, mi n j and max j are the minimum and the maximum number of workers requested

by the user for their job j , n j is the current number of pods assigned to job j , and Gtot al is the

total number of GPUs available in the cluster.

The scaling efficiency term (e j (n j)) describes how well a job would benefit from additional

resources. It is defined as follows:

e j (n j) = t j (n j)

n j × t j (1)
, (4.2)

where t j (n j) is the expected throughput of job j with n j workers. It is important to note that

the function t j differs from one job to another. In other words, the scaling efficiency in our

design is a job–specific metric, where each job has its own function for scaling efficiency. To

get a robust throughput measurement, ERA takes the previous measurements into account to

compute the function t j . Precisely, ERA builds a linear model using the history of throughput

measurements and then uses that model to estimate throughput with any value for n j . Notably,

our model takes all previous throughput measurements, even without excluding the old

measurements. Our experiments show that this linear scaling approach, though simple, is very

accurate practically for throughput estimation. Note that ERA prioritizes efficient jobs, which

might come at the expense of fairness. Typically, inefficient jobs are given fewer resources than

the efficient ones, according to Equation 4.1. Yet, this decision promotes cluster utilization

and overall performance in terms of throughput and job completion time. Our rationale is

that training workloads are not similar in their characteristics, and hence giving a fair share to

each job would lead to suboptimal performance.

Scaling jobs too often can lead to thrashing [251, 115], in which a job cannot readily progress

due to frequent stopping for scaling. To reduce the probability of facing this issue, we penalize

each job with the term γ j in the objective function. Not surprisingly, γ j is a function of the

number of times of scaling j (up or down) so far, which we denote by s j . To put this number

in context, we compare it to the total number of scaling rounds that took place (denoted by s).

Precisely, we have γ j = s j

s .

Our optimization problem (Equation 4.1) is non-linear due to the absolute value in the ob-

52

4.3 The ERA Design

jective function. This non-linearity makes the problem intractable. We follow a substitution

trick to make it tractable. Specifically, we replace
∣∣∆ j

∣∣ with a new variable y j in the objective

function, and we add the following constraints:

∀ j∈J y j ≥∆ j ,

∀ j∈J y j ≥−∆ j .
(4.3)

Both constraints ensure that y j =
∣∣∆ j

∣∣. We use the PuLP [178] to solve this linear problem.

The solution to the optimization problem results in the optimal values for ∆ j , which denote

the optimal changes in the number of workers for each job j . To apply the changes, ERA sends

an allocation update to the API server, which in turn asks the elasticJob controller to update

the cluster state. Note that ERA solves this optimization problem periodically. The operator

determines the period between decisions. In our experiments, we solve this optimization

problem (and hence take a scaling decision) every 4 minutes.

The second scaling component of ERA is the batch size scaler. Scaling in this dimension

is performed independently for each job because there is no competition between jobs on

resources.5 To take a scheduling decision, ERA compares the individual resource utilization

(i.e., the GPU utilization and the GPU memory utilization) to pre-defined thresholds. If the

utilization is less than the threshold, ERA scales up the batch size (specifically by doubling

it), passing the new value to the application through the corresponding ConfigMap. If the

new batch size leads to an out-of-memory (OOM) error, the application reduces the allowed

maximum batch size and notifies ERA to prevent that situation from happening again. Given

our algorithm, the minimum batch size that can be used is the one requested by the user in

the original configuration.

Notably, choosing the thresholds is a crucial step in our algorithm. Such choices should

depend on the expected workloads and the hardware. Hence, we envision these thresholds to

be chosen by the operator. In our experiments, we chose the threshold values based on some

experiments to strike a tradeoff between resource utilization and scaling efficiency (given

that there are some workloads that will never be able to hit 100% utilization even with the

maximum possible batch size).

Using the correct ranges for the batch size and the number of workers is crucial. Users set these

ranges based on the application’s nature and behavior (like typical ML hyperparameters). If a

user chooses excessively high or low values for the batch size, the model might get stuck into a

bad local minimum or might take a very long time to converge. Similarly, if a user chooses a

very high value for the minimum number of workers, the application might get stuck in the

queue due to the scarcity of resources. Based on that, these parameters should not affect the

5Note that ERA currently does not support packing multiple jobs on the same GPU. In the future, if this option
is allowed, scaling the batch size of one job can affect the performance of another job (if both jobs run on the same
GPU).

53

Chapter 4. Elasticity is All You Need

benefits of ERA as long as the user chooses reasonable ranges (i.e., not adversarial ranges). In

such a case, ERA can then dynamically set the optimal parameters for the user’s job to achieve

the best benefit.

The elastic engine (PyTorch–elastic). When ERA decides to scale a job, it notifies the elastic

engine (passing by the Kube API server and the elasticJob controller) of the change to take

appropriate steps to implement it. For simplicity, we discuss only a scale-up event; similar

steps are taken in scale-down events. In a scale-up event, the engine first reads the current

state of the job from the etcd server and then adds the additional pods (prepared previously by

the controller) to the set of pods assigned to that job. The updated set of workers (hosted on

the pods) then initiates a rendezvous to find each other (see Section 4.2.3). After concluding

successfully, the engine commits the new state to etcd.

Applications. To benefit from ERA, users should include three key components in their

training scripts. First, they have to periodically checkpoint their progress to avoid losing it

during scaling events. The checkpointing frequency controls a resilience-overhead tradeoff:

increasing it improves the tolerance to failures yet also increases the overhead. Second,

applications have to take periodic measurements and make them available to ERA. The

frequency of logging is left to the user to decide. Third, applications should periodically read

the latest batch size from their ConfigMaps and change it accordingly. We allow users to set an

upper bound for the batch size to ensure specific convergence behavior.

4.4 The ERA Implementation

In this section, we give some details about our implementation of ERA. As we use PyTorch–

elastic and its K8s controller [200], we consider applications written in PyTorch.

4.4.1 The Operator

We implemented ERA as a K8s operator [277]. The operator comprises (a) two listeners for

jobs creation and deletion, (b) a background daemon for jobs monitoring, and (c) two handlers

for initialization and cleaning up. When the operator starts, it loads the cluster configuration

and initiates a background thread to take scaling decisions.

When a job starts, ERA collects the necessary state of that job, as we discuss in Section 4.4.2.

On deletion, ERA removes the job from its internal state so as not to be considered in the

upcoming scaling events. In both events, ERA updates the state of the cluster, noting down

the number of idle GPUs. Furthermore, ERA periodically checks for finished jobs, in which

case it releases them from its state.

ERA monitors jobs via separate asyncio events in a daemon. We do this asynchronously for scal-

54

4.4 The ERA Implementation

ability. ERA periodically polls the pods assigned to each job to read the latest measurements.

Two notes here. First, to read the pod logs, ERA sends a request to the API server, which serves

the request and reads the logs. Second, ERA stores the time of the last measurement to avoid

redundant readings in subsequent iterations, reducing the reading overhead significantly.

4.4.2 State Management

We describe here the state that ERA saves to help take scaling decisions. At a high level, ERA

stores the total number of available GPUs, the number of idle GPUs, and some information

about the running and the incoming not–yet–scheduled jobs. For each job, ERA stores its

specifications, its measurements, and previous scaling decisions. This latter metric is crucial

for computing the scaling overhead, which we consider in our optimization problem, i.e.,

Equation 4.1.

ERA optimizes the storage of measurements as follows. For each job, ERA averages6 the mea-

surements of pods assigned to it. In particular, ERA stores the throughput, training progress,

GPU utilization, and GPU memory utilization. ERA keeps only the freshest measurement for

each reported global batch size. This is crucial to get an up-to-date throughput expectation,

as we discuss later.

In order to save memory and to be able to predict throughput (see Equation 4.2), ERA builds

a model using the throughput measurement history. Essentially, if ERA detects that only

the number of workers has changed so far, it builds a linear model7 with one independent

variable (i.e., the number of workers). If the batch size has also changed, ERA fits a linear

model with two variables instead. Using either model, ERA can compute the scaling efficiency

(Equation 4.2) and generally predict throughput with any number of workers.

4.4.3 Garbage Collection

Some jobs might end up in Error state or partial Error state, i.e., with some pods failing while

the rest are running. Such jobs are considered “Running” by Kubernetes; this might trick ERA

to give pods to these failing jobs while they are not running, wasting the cluster resources.

To mitigate this issue, ERA runs periodic garbage collection to look for such jobs. If a job is in

an Error state, ERA deletes it from its internal state, reclaiming its resources. If the job partially

fails, ERA checks if the number of active workers (up and running) is more than the minimum

number of workers specified by the user. In this case, ERA scales down this job to that number,

forcing the active workers to initiate a new rendezvous and continue training. Otherwise, ERA

considers the job failing and reclaims its resources.

6Note that in the case of the presence of stragglers, averaging will be vulnerable to outliers. As we assume a
homogeneous network and GPUs, we leave this issue to future extensions of our work.

7The relation between the global batch size and the throughput is sometimes not completely linear [219]. Yet,
our experiments showed the linear model is sufficient for most cases.

55

Chapter 4. Elasticity is All You Need

4.4.4 Batch Size Synchronization

ERA communicates the scaled batch size to the applications through their ConfigMaps (see

Section 4.3.2). Each worker (hosted on a pod) should then read the new batch size and apply

the change accordingly. We found that K8s does not update the ConfigMaps of all pods syn-

chronously, i.e., different workers might read different values for the batch size simultaneously;

this might lead to an unexpected convergence behavior or long lags in other cases.

To resolve this issue, ERA annotates the batch size change event with a timestamp, which

workers can then read while getting the new batch size. When workers read a new value for

the batch size, they communicate the latest timestamp they read to each other. The worker

with the latest timestamp then broadcasts the up-to-date value of the batch size, restoring the

synchrony of the batch size among all workers.

4.5 Performance Evaluation

We discuss in this section the results of our empirical evaluation of ERA. First, we describe our

testbed, our setup and metrics, and the baselines. Then, we explain the results in detail.

4.5.1 Methodology

Testbed. We use a Kubernetes–managed 64–GPU cluster. Each worker has a dedicated GPU, 5

CPU cores, 64 GiB RAM, and 2×40 Gbps Ethernet.

Metrics. We use the following metrics for evaluation.

1. Average throughput. The average number of processed samples per second over all running

jobs in the cluster.

2. GPU utilization & GPU memory utilization. The average GPU–related metrics for all active

GPUs in the cluster. We use nvidia-smi to measure these metrics, and we set it to read the

average value over the last 5 seconds.

3. Cluster utilization. The ratio of the number of used GPUs to the total number of GPUs in

the cluster.

4. Makespan. The time required to finish all jobs.

5. Average job completion time (JCT). The average time required for one job to finish.

6. Average queuing delay. The average time a job would wait in the queue before running on

the cluster.

Applications. We use 2 DL applications for our evaluation: (a) image classification, training 12

different models, including AlexNet [142], ResNet18 [104], VGG19 [224], and DenseNet121 [111],

using ImageNet [66], and (b) language modeling, fine-tuning BERT [132] using the Wikipedia

dataset. We choose these applications for their wide use in academic and industry settings.

56

4.5 Performance Evaluation

On each job scheduling event (see below our job schedulers), we randomly choose one appli-

cation from this pool. By default, we use a batch size of 64 for the first application and 8 for

the second one. Unless otherwise stated, we do not set an upper bound for the batch size, and

we use a fixed learning rate throughout the training. We start training with 2 workers and set

the minimum and the maximum number of workers to 1 and 16, respectively. We run training

for a fixed number of epochs. Each worker logs a measurement every 10 iterations.

ERA configuration. The correct settings of ERA are cluster and workload dependent. Using

trial and error, we chose the following setup. ERA monitors jobs every 2 minutes, takes a

decision every 4 minutes, and collects garbage every 4 minutes. We set the GPU compute and

memory utilization thresholds to 85% and 80%, respectively.

Job schedules. We experiment with 3 schedules for each we submit n jobs in total. The

first, denoted by Poisson, submits a job every 4 minutes on average, according to the Poisson

distribution. This job schedule is our proxy to a realistic setup where jobs from different

business teams arrive regularly following a popular distribution. The second, denoted by

All_at_once, submits n jobs once at the beginning. This schedule simulates the submission

of a batch of jobs at once, for example, for hyperparameter tuning or similar tasks. The

third, denoted by Fixed, submits 1 job every 2 minutes. This schedule simulates periodic job

submissions for A/B testing, for instance.

4.5.2 Baselines

We compare ERA to the following baselines.

Static (no elasticity). This is status quo: resource scheduling follows a First-Come-First-

Served policy, and the amount of resources allocated to a job remains fixed throughout

training. If a job arrives and there are no available resources, the job queues until some

resources are freed. Comparing ERA to this baseline highlights the benefits of both horizontal

scaling and batch size scaling.

Autoscaler [190]. Autoscaler scales jobs horizontally based on the expected throughput gain.

It uses a fixed increment per decision. After scaling up, Autoscaler measures throughput. If

throughput has increased, it can further scale up this job in the next round. Autoscaler applies

the same criteria in the case of scaling down: only throughput is taken into consideration.

Note that the value of the fixed increment (or decrement) controls an efficiency–concurrency

tradeoff. Using a large increment (though helps improve throughput) reduces concurrency

(i.e., less number of concurrent tenants can use the cluster), leading to higher makespan and

job completion time. The main influence behind this behavior is the fact that Autoscaler does

not scale down existing jobs to accommodate for waiting jobs in the queue (i.e., it scales down

57

Chapter 4. Elasticity is All You Need

0 1000 2000 3000 4000 5000
Time (sec.)

0
2
4
6
8

10
12
14
16

N
um

. o
f A

ct
iv

e
G

PU
s ERA (ours)

Autoscaler
AFS-P
Static

(a) Number of used GPUs

0 1000 2000 3000 4000 5000
Time (sec.)

1000
2000
3000
4000
5000
6000
7000

A
vg

er
ag

e
T

P(
sa

m
pl

es
/s

ec
)

ERA (ours)
Autoscaler
AFS-P
Static

(b) Throughput

0 1000 2000 3000 4000 5000
Time (sec.)

40

50

60

70

80

90

100

A
vg

. G
PU

 U
til

.(%
) ERA (ours)

Autoscaler
AFS-P
Static

(c) GPU utilization

0 1000 2000 3000 4000 5000
Time (sec.)

20

30

40

50

A
vg

. G
PU

 M
em

. U
til

.(%
)

ERA (ours)
Autoscaler
AFS-P
Static

(d) GPU memory utilization

Figure 4.3: Microbenchmark experiment: we submit a single job, training ResNet18 using
ImageNet.

a job only if its throughput is degraded). Using a small increment allows for more concurrent

users to use the cluster but also reduces the average throughput of the training jobs. In our

experiments, we set the increment to 4 workers.8

As Autoscaler is not open-sourced, we implemented our version of it. We use PyTorch–elastic as

an elastic engine rather than the elasticity methods described in the original paper. Essentially,

we opt for unifying the underlying elastic engine for a fair comparison. We apply scaling

decisions using the same schedule we use for ERA (i.e., every 4 minutes).

AFS-P [115]. AFS-P also focuses on horizontal scaling, yet unlike Autoscaler, it addresses the

multi-tenant case.9 AFS-P first assigns 1 GPU to each job, which then competes for the rest

of the GPUs (if any). For each additional GPU, AFS-P selects the job with the highest priority

to get it. AFS-P gives priorities to jobs based on their throughput gain in the case of adding

1 GPU. Note that AFS-P does not scale the per-GPU batch size. We have also implemented

AFS-P as it is not open-sourced.

8The original paper has also used an increment of 4 workers.
9[115] also proposed AFS-L, which assumes prior knowledge of the required time to finish a job. As we do not

assume this in ERA, we exclude AFS-L from our baseline set.

58

4.5 Performance Evaluation

1 2 4 8 16
Number of starting workers

0
2
4
6
8

10
12
14

N
um

be
r

of
 A

ct
iv

e
G

PU
s ERA (ours)

Autoscaler
AFS-P
Static

(a) Average number of used GPUs

1 2 4 8 16
Number of starting workers

0

1000

2000

3000

4000

5000

A
ve

ra
ge

 J
C

T
(s

ec
.)

ERA (ours)
Autoscaler
AFS-P
Static

(b) Job completion time (JCT)

Figure 4.4: The effect of choosing a different number of starting workers, with only 1 job,
training ResNet18 using ImageNet. Based on our configuration, no scaling can happen beyond
16 workers.

4.5.3 Microbenchmark

We start with a microbenchmark experiment, whose results are shown in Figure 4.3. We submit

a single job, training ResNet18 using the ImageNet dataset to the cluster.

Figure 4.3a shows the number of GPUs used throughout the training. Static does the whole

training using 2 GPUs, Autoscaler increases the number of GPUs by 4 in all scaling decisions

(indicating that the job would benefit from more GPUs, up to 16 in total), where both ERA and

AFS-P jump from 2 GPUs to 16 in the first scaling decision. Both systems decide to use 16 GPUs

after 4 minutes, whereas Autoscaler reaches this optimal value after 16 minutes. This delayed

decision is reflected in the average throughput of Autoscaler (see Figure 4.3b): while ERA and

AFS-P can reach more than 6000 samples/second after only a few minutes, Autoscaler lags

behind, reaching slightly less than this value after around 28 minutes. Figure 4.3b shows as

well the poor performance of Static throughout the whole training, which stresses the need for

elasticity during training.

The main benefit of ERA manifests in Figures 4.3c and 4.3d, which show the GPU utilization

and the GPU memory utilization. The main factor that controls both metrics is the batch

size. Figure 4.3c shows that scaling the batch size leads to almost 100% GPU utilization while

the other baselines cannot achieve more than 70%. Figure 4.3d shows up to 60% memory

utilization for ERA, where the other baselines are upper bounded by 20% utilization. This

shows that the two–dimensional scaling of ERA is beneficial in such a case.

Initial number of workers. Our second microbenchmark (Figure 4.4) shows the effect of

choosing different numbers of starting workers. Figure 4.4a shows the average number of

GPUs used throughout the training. Static uses a fixed number of GPUs (equal to the number

of starting workers). The other systems scale this job up, using a larger number of GPUs. As

ERA and AFS-P scale quickly, they report a higher average for the number of active GPUs

than Autoscaler.

59

Chapter 4. Elasticity is All You Need

0 5000 10000 15000 20000 25000
Time (sec.)

1000

2000

3000

4000

5000

A
vg

er
ag

e
T

P(
sa

m
pl

es
/s

ec
)

ERA (ours)
Autoscaler
AFS-P
Static

(a) Average throughput

0 5000 10000 15000 20000 25000
Time (sec.)

0
5000

10000
15000
20000
25000
30000
35000

A
gg

re
ga

te
 T

P(
sa

m
pl

es
/s

ec
)

ERA (ours)
Autoscaler
AFS-P
Static

(b) Aggregate throughput

0 5000 10000 15000 20000 25000
Time (sec.)

40

50

60

70

80

90

A
vg

. G
PU

 U
til

.(%
)

ERA (ours)
Autoscaler
AFS-P
Static

(c) GPU utilization

0 5000 10000 15000 20000 25000
Time (sec.)

10

20

30

40

50

60

A
vg

. G
PU

 M
em

. U
til

.(%
)

ERA (ours)
Autoscaler
AFS-P
Static

(d) GPU memory utilization

Figure 4.5: End-to-end real–life scenario with 100 submitted jobs.

The enhanced cluster utilization benefit is shown in Figure 4.4b, which shows the average

JCT, the defacto standard metric of scheduling efficiency in literature, e.g., in [251, 274, 190].

All systems, except Static, manage to achieve comparable completion times regardless of the

starting number of workers. This is an interesting result because it shows that elastic systems

can converge to the best number of workers even if the starting number (specified by the user)

is sub-optimal. Another takeaway from this figure is that ERA behaves slightly worse than

the other elastic baselines in some cases (including achieving higher job completion time in

Figure 4.3). The main reason is the overhead of batch size scaling. Although such an overhead

is very little (as it only entails re-creating the in-memory data loader), it manifests clearly in

such a small experiment. This overhead is negligible in large–scale experiments, as we show in

Section 4.5.4.

4.5.4 End-to-end Large Experiment

Figure 4.5 shows the results of an end-to-end experiment with 100 jobs submitted to the

cluster according to the Poisson schedule. For a fair comparison, we run each system for a

fixed period: 7 hours. We pose this experiment as a proxy to real scenarios with many requests

(of various workloads) to be served by one shared cluster.

Figure 4.5a shows the average throughput over time. Most of the time, ERA achieves the best

average throughput, followed by AFS-P, then Autoscaler, and finally, Static. ERA’s throughput

60

4.5 Performance Evaluation

0 2000 4000 6000 8000
Time (sec.)

0
2
4
6
8

10
12
14

N
um

. o
f C

om
pl

et
ed

 J
ob

s

ERA (ours)
Autoscaler
AFS-P
Static

(a) Number of completed jobs

0 2000 4000 6000 8000
Time (sec.)

0
2
4
6
8

10
12
14

N
um

. o
f R

un
ni

ng
 J

ob
s ERA (ours)

Autoscaler
AFS-P
Static

(b) Number of running jobs

Figure 4.6: The actual effect of improving raw performance metrics (e.g., throughput and GPU
utilization) on the rate of finishing jobs.

is the highest because it uses all the available resources, horizontally and vertically, where the

other baselines fail to do so. AFS-P has an advantage over Autoscaler because the former is

designed for multi-tenant clusters, unlike the latter, which looks only at scaling one job.

The average throughput could be misleading in some cases because it might favor a system

that runs 1 job quite well over another system that can accommodate multiple jobs, each

behaving slightly worse. Figure 4.5b depicts the aggregate throughput: the summation of all

running jobs throughput. ERA remains on top of the other baselines. But, both Autoscaler

and Static show more competitive performance than looking only at the average throughput.

We infer then that both systems do a good job in accommodating multiple parallel jobs. The

reason for this behavior is that (1) Static does not scale jobs, leaving the maximum room for

incoming jobs, whereas (2) Autoscaler applies scaling slowly, leaving enough time for the other

jobs to join the cluster without waiting in the queue.

Figure 4.5c shows the average GPU utilization throughout the training. ERA utilizes the GPUs

slightly more (on average) than the other baselines. Notably, we run various jobs with different

workloads, where some jobs utilize the GPU better than others; this leads to fluctuations in

the reported results. Another interesting observation is that AFS-P behaves worse than the

other baselines. When AFS-P increases the number of workers, it increases consequently the

communication overhead. Without scaling up the batch size simultaneously, that overhead

prevails, reducing the GPU utilization. Essentially, since training is synchronous, GPUs wait

for each other to finish their execution before moving to the next training iteration. This result

shows the necessity of scaling the batch size to reap all the benefits of horizontal scaling.

Figure 4.5d shows the average GPU memory occupancy throughout the training. This metric

is largely controlled by the batch size. As ERA is the only system that scales the batch size, it

outperforms the other baselines in almost all cases, maximizing the GPU memory utilization.

61

Chapter 4. Elasticity is All You Need

10 20 30 40 50 60
Number of jobs

0
250
500
750

1000
1250
1500
1750
2000

A
vg

er
ag

e
T

P(
sa

m
pl

es
/s

ec
)

ERA (ours)
Autoscaler
AFS-P
Static

(a) Average throughput

10 20 30 40 50 60
Number of jobs

0

1000

2000

3000

4000

A
ve

ra
ge

 J
C

T
(s

ec
.)

ERA (ours)
Autoscaler
AFS-P
Static

(b) Job completion time (JCT)

10 20 30 40 50 60
Number of jobs

0

2000

4000

6000

8000

10000

M
ak

es
pa

n(
se

c.
)

ERA (ours)
Autoscaler
AFS-P
Static

(c) Makespan

10 20 30 40 50 60
Number of jobs

0
250
500
750

1000
1250
1500
1750
2000

A
vg

. Q
ue

ui
ng

 D
el

ay
(s

ec
.) ERA (ours)

Autoscaler
AFS-P
Static

(d) Queuing delay

Figure 4.7: Scalability with a different number of submitted jobs to the cluster. All jobs start at
once at the beginning of the experiment.

A closer look. We take a closer look at the actual benefits of improving the raw performance

metrics like throughput and GPU utilization. We consider the same experiment but with only

15 jobs (see Figure 4.6). We focus on two specific metrics: the number of completed jobs

(Figure 4.6a) and the number of parallel running jobs (Figure 4.6b), both over time.

Figure 4.6a shows that ERA has a higher rate of finishing jobs, which shows, practically, the

benefit of having high throughput and high GPU utilization. Essentially, jobs run faster and

hence, finish first. Figure 4.6b confirms this behavior. Although ERA is the best system to

parallelize jobs, it has the lowest peak in the number of parallel jobs; this happens because

jobs finish faster, even before the other jobs start.

4.5.5 Scalability of ERA

Figure 4.7 conveys the scalability with different numbers of submitted jobs to the cluster. With

64 GPUs available in the cluster, at most 32 jobs can run in parallel (each starting with 2 GPUs);

the remaining jobs should queue until some resources are freed.

Figure 4.7a shows the throughput, averaged over both time and jobs. In general, the elastic

systems behave better than Static in almost all cases. Essentially, they use the idle resources

once they are available, improving their throughput. In the very congested case (with 60 jobs),

there is no clear benefit for elasticity, except with ERA, which achieves roughly double the

62

4.5 Performance Evaluation

throughput of the other systems. The main reason for this behavior is the batch size scaling,

which enables ERA to improve its throughput further.

Figure 4.7b shows that ERA achieves the lowest average JCT in all cases. With less than 32 jobs,

ERA behaves significantly better because more resources are available in this case. With many

jobs, the benefits of ERA start to fade because resources are consumed even before scaling.

Even in this case, scaling the batch size gives ERA an additional advantage compared to the

other baselines.

Similarly, ERA has the lowest makespan in all cases (Figure 4.7c). Increasing the number of

jobs from 20 to 30 significantly increases the makespan of ERA as, in this case, there are not

many free resources to be used. With more than 30 jobs, ERA still scales better than the other

baselines (noting the rate of increase in makespan with the number of jobs).

Figure 4.7d shows an interesting result, which can be arguably viewed as one downside of

elasticity. It shows that systems that apply aggressive scaling, namely ERA and AFS-P, suffer

from higher queuing delays, especially with a few jobs to serve. As both systems try to use

all the resources in the cluster, the upcoming not-yet-scheduled jobs do not usually find

resources. Although this situation is typically resolved at the next scaling round, arriving

jobs have to queue until that time comes. This effect diminishes with high contention on

resources because jobs have to queue anyway in this case. Furthermore, since the scaling-

aggressive systems can finish jobs faster (see Figure 4.7b), they can quickly free resources for

the queued jobs.

4.5.6 Fixed Job Schedule

Figure 4.8 depicts the results of running 20 jobs following the Fixed schedule, with one job

submitted every 2 minutes. This can be seen as a proxy to cases where the number of jobs

submitted to the cluster spikes, e.g., as in [123]. Figure 4.8a shows that ERA has the highest

rate of finishing jobs with a makespan of about 5000 seconds. The second best is Autoscaler,

which finishes in around 7300 seconds.

Three factors are instrumental in achieving this result. First, ERA maximizes the number of

parallel running jobs. Figure 4.8b highlights this fact: ERA allows the number of running

jobs to jump faster than the other baselines. For instance, ERA increases the number of

running jobs from 5 to 11 in one scaling decision. This parallelization ensures fairness and

improves the JCT and the makespan. Second, the second constraint in its optimization

function (Equation 4.1) guarantees that all the resources in the cluster are always utilized.

Third, ERA maximizes the utilization of the individual GPUs memory, which typically reduces

the time taken to finish jobs. Figure 4.8c depicts this fact, where it shows that by the time the

number of parallel running jobs increases, the average GPU memory utilization also increases,

exceeding 70% in the best case. AFS-P achieves the second-best utilization, which is upper

bounded by 60%. This double scaling (i.e., in two dimensions) gives a significant boost in

63

Chapter 4. Elasticity is All You Need

0 1000 2000 3000 4000 5000 6000 7000 8000
Time (sec.)

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

N
um

. o
f C

om
pl

et
ed

 J
ob

s

ERA (ours)
Autoscaler
AFS-P
Static

(a) Number of completed jobs

0 1000 2000 3000 4000 5000 6000 7000 8000
Time (sec.)

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

N
um

. o
f R

un
ni

ng
 J

ob
s ERA (ours)

Autoscaler
AFS-P
Static

(b) Number of running jobs

0 1000 2000 3000 4000 5000 6000 7000 8000
Time (sec.)

10
20
30
40
50
60
70

A
vg

. G
PU

 M
em

. U
til

.(%
)

ERA (ours)
Autoscaler
AFS-P
Static

(c) GPU memory utilization

0 1000 2000 3000 4000 5000 6000 7000 8000
Time (sec.)

0

1000

2000

3000

4000

5000

A
vg

er
ag

e
T

P(
sa

m
pl

es
/s

ec
)

ERA (ours)
Autoscaler
AFS-P
Static

(d) Average Throughput

Figure 4.8: Fixed schedule results: we submit 1 job every 2 minutes.

throughput, as shown in Figure 4.8d.

An interesting observation is the simultaneous drop in throughput (Figure 4.8d) and the GPU

memory utilization (Figure 4.8c) during scaling up (see Figure 4.8b). This happens because

scaling up entails stopping some pods, creating new ones, and letting the pods assigned to the

same job meet to restart training. This process is costly and has a high overhead, which is tied

to PyTorch–elastic (our elastic engine). We speculate that using another elastic engine might

reduce this overhead.

4.5.7 Convergence Comparison

We experiment the effectiveness of ERA’s approach to preserve convergence while scaling.

We submit 1 job, training ResNet18 using ImageNet. We start with 8 workers, a local batch

size of 64, and a learning rate of 0.08. We experiment with 2 bounds for the local batch size:

256 and 1024. The first bound is known to be optimal for training ImageNet [88], whereas

the second bound is intentionally high to show a case of sub-optimal settings. We scale the

learning rate linearly with the batch size, and we use our batch size synchronization technique

(Section 4.4.4). We run training for 80 epochs, and we show the Top-1 accuracy (Figure 4.9a)

and Top-5 accuracy (Figure 4.9b). Note that AFS-P and Autoscaler do not employ specific

techniques to preserve convergence, and they have not reported training accuracy results in

their papers. For this reason, we have excluded them from the baseline set for this experiment.

64

4.6 Related Work

0 1000 2000 3000 4000
Time (sec.)

10
20
30
40
50
60
70

To
p-

1
Ac

cu
ra

cy
 (%

)

ERA - B=256
ERA - B=1024
Static

(a) Top-1 Accuracy

0 1000 2000 3000 4000
Time (sec.)

20
30
40
50
60
70
80
90

To
p-

5
Ac

cu
ra

cy
 (%

)

ERA - B=256
ERA - B=1024
Static

(b) Top-5 Accuracy

Figure 4.9: The convergence of ERA (with 2 maximum batch sizes) compared to Static while
training ResNet18 with ImageNet.

In terms of time, although all systems run for a fixed number of epochs, ERA finishes first as it

can execute training epochs faster thanks to its elasticity. In terms of accuracy, both figures

show that ERA (with B=256) and Static achieve similar convergence behavior, which confirms

that using the correct settings, scaling the learning rate with the batch size can effectively

preserve the target convergence behavior. However, ERA (with B=1024) fails to converge to

the best accuracy, demonstrating that setting an ill-suited maximum batch size can degrade

convergence. Indeed, with a maximum batch size of 1024, training got stuck in a bad local

minimum, and no matter how long the model trains, it does not reach a better value, i.e.,

Figure 4.9 shows the final accuracy at which training converges.

4.6 Related Work

Elastic schedulers. A few papers explored elasticity in running deep learning (DL) work-

loads. Or et al. [190] proposed Autoscaler to scale independent jobs dynamically based on

their throughput. The authors also presented an algorithm to detect and remove stragglers,

which further improves throughput. Hwang et al. [115] proposed AFS-L and AFS-P to improve

the overall throughput of all the jobs in a cluster. The main idea is to prioritize efficient

jobs to short jobs during resource allocation. The authors demonstrated that AFS-L outper-

forms AFS-P, yet the former requires the knowledge of the remaining time for jobs to finish,

unlike the latter. Saxena et al. [217] proposed an autoscaling system tailored for IBM Ffdl

platform [122]. It considers multiple batch sizes (in a range given by the user) for optimal

throughput. Autoscaling scaling decisions are taken only with job completion events (rather

than periodically). Recently, Athlur et al. [22] proposed Varuna, an elastic system to train

massive deep learning models on commodity GPUs and networking using a combination of

data and model parallelism. Varuna’s goal is different from the other schedulers as it aims

at running huge workloads on inexpensive hardware. It does that by running training on

spot VMs and adapting the local batch size to the available memory. Yet, Varuna keeps the

global batch size constant despite the number of machines running training. In summary,

65

Chapter 4. Elasticity is All You Need

ERA differs from these works in 3 aspects: (a) it improves the individual GPU utilization (by

scaling the batch size), (b) it maximizes the number of parallel running jobs (by scaling down

the running jobs and making room for the waiting no-yet-scheduled jobs), and (c) it does not

require knowledge on the workload nor the remaining time for jobs’ completion.

Non-elastic schedulers. DL scheduling was extensively studied in the past few years. Xiao et

el. [251] proposed Gandiva, whose main idea is to utilize the intra-job predictability to (a) time-

slice GPUs and (b) migrate jobs to better-fit GPUs for better cluster efficiency. Peng et al. [196]

presented Optimus, which uses online resource-performance models to predict convergence

during training. Using such predictions, Optimus allocates resources to DL tasks to minimize

JCT. Gu et al. [90] proposed Tiresias, which relies on two algorithms for job scheduling and

placement to reduce JCT. Tiresias also uses prior from previous jobs to predict the training

time of running jobs. HiveD [279] focuses on a different aspect of the problem: sharing GPUs

safely and efficiently. HiveD proposed a hierarchical logical structure of the cluster. The

authors showed this minimizes fragmentation and queuing delays and maximizes resource

utilization. Salus [274] presented two primitives, job switching and memory sharing, which

achieve low memory fragmentation, high average throughput, and low JCT. The authors used

such primitives to build different sharing policies. Themis [169] uses a two-level scheduling

architecture in which training tasks contribute to an auction, run by a central arbiter, to

compete for the resources. It explores the tradeoff between fairness and efficiency: it promises

efficiency in the short term but fairness among all tasks in the long run. All these proposals are

orthogonal to ERA, whose goal is to explore the benefits of elasticity in solving the resource

allocation problem.

System support for elasticity. We now discuss papers that provide system support for elastic-

ity, i.e., to apply actual scaling of jobs on the ground. Qiao et al. [201] proposed Litz to support

elasticity in the parameter server architecture. Litz relies on three principles: stateful workers,

model scheduling, and relaxed consistency. The authors showed that Litz scales jobs efficiently

and with minimal overhead. Mai et al. [170] proposed KungFu, a general approach to scale

learning in different aspects. KungFu provides APIs to monitor and adapt hyperparameters,

including the batch size, the learning rate, and the number of workers. KungFu achieves this

by defining adaptation policies (APs), which can be embedded inside the dataflow graph of the

training task. Xie et al. [259] proposed Elan, which relies on multiple techniques that promote

elasticity efficiency, such as concurrent IO-free replication, faster communication with RDMA,

and topology-aware communication. Like ERA, Elan scales the learning rate linearly with the

batch size for preserved convergence. Wu et al. [249] proposed EDL, a leader–based system

that provides elasticity APIs for popular ML frameworks like TensorFlow [1] and PyTorch. EDL

incorporates techniques to reduce scaling overhead like stop-free scaling and dynamic data

pipeline. ERA uses PyTorch–elastic [199] as its underlying engine, and ERA can be integrated

with any of these elastic engines.

66

4.7 Concluding Remarks

Scaling the batch size. Few papers looked at the benefits of scaling up the global batch size

(which could be seen as equivalent to scaling up the number of workers) to distributed training.

Such papers looked at theoretical guarantees and practical benefits of increasing the batch

size on convergence. In [226, 227], Smith et al. explained how the batch size affects noise

scale, which in turn affects the trained model accuracy. The main conclusion of these works

is that increasing the batch size is equivalent to (in terms of accuracy) decaying the learning

rate, which is a successful common practice in many algorithms. In addition, the authors

showed that increasing the batch size is more desirable as it achieves faster convergence (w.r.t.

time) compared to decaying the learning rate. Shallue et al. systematically and empirically

explored the benefits of increasing the batch size on convergence [219]. They showed there

is no one-size-fits-all rule for such an issue and that such behavior is workload and hyper-

parameters dependent. In general, they showed that increasing the batch size can lead to

faster convergence, but only to some limit, after which the benefits of increasing the batch

size diminish. We used this insight while designing ERA essentially by allowing the user to

choose an upper bound on the batch size to be used for training.

Scaling the learning rate. Some papers studied how to change the learning rate by scaling the

batch size. Lin et al. [164] proposed a simple linear scaling for the effective learning rate, which

captures both the learning rate and the momentum coefficient. The authors showed how their

scaling rule improves both training and validation accuracy, especially in the case of abruptly

changing the batch size in the middle of training. Johnson et al. proposed AdaScale [129],

which scales the learning rate based on the variance reduction that accompanies the increase

in the batch size. The authors showed that in some cases, this scaling rule is more beneficial

than the simplistic linear scaling. In a related line of research, Jin et al. proposed AutoLRS [128],

an optimization method to automatically tune the learning rate in the middle of training to

minimize the validation loss. AutoLRS periodically uses Bayesian optimization to predict the

best learning rate for the next group of learning iterations. ERA can use this approach to

achieve the best accuracy despite scaling the batch size. Although ERA uses linear scaling

of the learning rate, its design allows for replacing that approach with a more complex one,

incurring only a little engineering overhead.

4.7 Concluding Remarks

In this chapter, we presented ERA, an Elastic Resource Allocator for multi-tenant deep learn-

ing clusters, which are typically used in today’s datacenters. Essentially, ERA scales in two

dimensions: the number of workers contributing to training and the per-worker batch size.

ERA is dynamic: it scales jobs in the middle of training while not requiring any prior informa-

tion on the workloads nor their convergence behavior. We integrated ERA with Kubernetes

and PyTorch–elastic, and we evaluated ERA with a 64–GPU cluster. We showed that ERA

improves throughput and resource utilization while minimizing the average job completion

time compared to two state-of-the-art baselines.

67

5 Cloud Object Stores for Faster Trans-
fer Learning

In this chapter, we consider training in the cloud, where there are typically two independent

tiers: cloud object store (COS) and compute. Traditionally, the COS’s job is only to store

data while all the computation happens on the compute tier. Nowadays, the computational

capabilities of the COS are significantly increasing. Yet, fundamental constraints remain:

the cloud network to the compute tier remains a bottleneck, and the COS computational

resources remain at a premium, despite the upgrade because they only complement the

compute tier and not replace it.

We identify transfer learning (TL) as an important class of applications that can naturally

fit today’s augmented COS. TL comprises two phases: pre-training and fine-tuning. We

consider the latter phase in this chapter, and we refer to it as TL. We show how to leverage the

unique structure of TL, a combination of feature extraction and training, to flexibly bypass

the aforementioned constraints and improve both client and operator-centric metrics. The

key to both is to mitigate the network bottleneck by carefully splitting the TL application

such that feature extraction is, partially or entirely, executed next to storage. Such splitting

additionally decouples the requirements of the two computational phases, enabling increased

concurrency inside the COS while avoiding out-of-memory errors via storage-side batch

size adaptation. Guided by these insights, we present HAPI, a processing system for TL that

spans the compute and the COS tiers, enabling significant improvements while remaining

transparent to the user.

5.1 Introduction

Disaggregated cloud object stores (COS) have become fundamental to the cloud’s scalability

and cost-effectiveness. All major cloud providers offer this popular service (e.g., Amazon

S3 [13], Google Cloud Storage [86], Azure Blob Storage [43]). For several years, COS have also

included limited computational capabilities. For example, since 2017, users can run a limited

subset of SQL queries next to storage via Amazon S3 Select [266, 275]. Such compute pushdown

can significantly improve performance by reducing the amount of data sent between the COS

69

Chapter 5. Cloud Object Stores for Faster Transfer Learning

and the compute tier.

Current and future capabilities of the COS. Very recently, the COS’s computational capa-

bilities have seen considerable upgrades. Amazon S3 Lambda [15] can now run user-defined

functions next to storage, significantly expanding the scope of the computations that can be

pushed down. In addition, users can perform more complex tasks such as image processing

inside the COS [56]. Augmenting the COS with GPUs is the natural next step because GPU

bandwidth has long exceeded storage and network bandwidth [155]. Concerned about the stor-

age/network bottleneck, Nvidia is actively expanding its AI stack to include high-performance

storage. Nvidia acquired Excelero1 (creators of NVMesh, which shares NVMe drives across

networks) and SwiftStack2 (OpenStack Swift [189] maintainer) and developed GPUDirect Stor-

age [117, 187] (direct data path between local/remote storage and GPU). Furthermore, cloud

providers are even starting to include GPUs inside the COS [116]. Nevertheless, the same

fundamental constraints remain: the network between the COS and the compute tier is the

bottleneck [137, 198], and the computational resources inside the COS remain limited, despite

the upgrade because they are only expected to complement the compute tier rather than

replace it. Notably, this new trend does not contrast with resource disaggregation because

it does not remove the barrier between the storage and the compute, i.e., we expect to have

independent computing resources to do the main computations.

In light of this trend and constraints, it is important to identify the applications that can most

benefit from today’s augmented COS to improve client-perceived metrics. Equally important

is to identify opportunities for the cloud operator to navigate the compounded operational

challenges to improve operator-level performance metrics like application throughput and

resource utilization. Following the theme of this thesis, we tackle this challenge with a focus on

machine learning (ML) applications. Larger and larger ML datasets are stored in the COS [21],

making ML applications a logical target to try to run next to storage.

We identify transfer learning (TL)3 as a natural fit for today’s augmented COS. TL is an in-

creasingly important area of ML that allows knowledge in one task to be reused in a different

but related task [246]. The importance of TL is evidenced by the growing support from cloud

giants [203, 14, 85]. McKinsey [9] ranks TL as the most used ML technique, surpassing deep

learning and reinforcement learning. The key to this natural fit lies in the unique structure

of TL: a combination of feature extraction and training phases using a deep neural network

(DNN). We show how this structure can be leveraged to make the most of the augmented COS

while flexibly bypassing the disaggregated cloud’s constraints to ultimately enable improve-

ments in both client and operator-level metrics of interest.

Our main idea is to carefully split the TL application such that the feature extraction phase is,

partially or entirely, executed in the COS. The client in the compute tier executes the training

1https://www.excelero.com/press/excelero-launches-nvmesh-on-azure/
2https://www.anandtech.com/show/15605/nvidia-acquires-swiftstack-an-object-storage-company
3To be precise, we mean here the fine-tuning part of TL.

70

https://www.excelero.com/press/excelero-launches-nvmesh-on-azure/
https://www.anandtech.com/show/15605/nvidia-acquires-swiftstack-an-object-storage-company

5.1 Introduction

phase and potentially the later part of the feature extraction phase. Our approach for choosing

the split point navigates two potentially opposing insights. On the one hand, it is best to

minimize the amount of data sent over the bottleneck network. On the other hand, one should

efficiently use the limited computational capabilities of the COS by avoiding unnecessary

pushdowns. Both insights may conflict because, in general, the first layers of DNNs have the

largest output sizes. Guided by our per-layer measurement study (Section 5.3.2), we use the

insight that layer output sizes decrease non-monotonically, so it is often possible to split early

at a layer with a comparatively smaller output size.

The key to improving operator-centric metrics, such as resource usage (we focus on GPU

memory) and compute throughput, is noticing that splitting also enables decoupling the

requirements of the feature extraction and the training phases. The main insight is that

the batch size (i.e., the computation granularity) only affects the model accuracy during

the training phase. This allows for flexibility during feature extraction, where a dynamic

batch size adaptation approach can help increase concurrency inside the COS while avoiding

out-of-memory (OOM) errors that plague ML practitioners.

We combine our splitting and batch adaptation algorithms into HAPI,4 our processing system

for TL that spans both the COS and the compute tiers. HAPI is completely transparent to the

user, uses internally only very inexpensive profiling runs and enables even low-end CPU-only

users to contribute.

Specifically, the contributions of this chapter are:

1. The identification of TL as a natural fit for today’s augmented COS.

2. A per-layer measurement study of TL applications’ runtime, per-layer output size, and

GPU memory usage.

3. A splitting algorithm that divides the feature extraction phase between the COS and the

compute tiers, improving application runtime by reducing data transfers over the cloud

network.

4. A batch adaptation algorithm that decouples the requirements of the training and fea-

ture extraction phases, enabling increased computation throughput and GPU memory

utilization via increased concurrency in the COS.

Our evaluation of HAPI with state-of-the-art models shows up to 11× improvement in applica-

tion runtime and up to 8.3× reduction in data transferred between the COS and the compute

tier compared to running TL entirely in the compute tier while enabling 100% use of GPU

memory. Compared to running TL entirely in the COS, HAPI improves throughput by 4.9×
while serving 10 requests. Interestingly, we show that HAPI enables low-end CPU-only users

to run TL up to 7.83× faster compared to running computation solely in the compute tier.

4https://en.wikipedia.org/wiki/Hapi_(Nile_god)

71

https://en.wikipedia.org/wiki/Hapi_(Nile_god)

Chapter 5. Cloud Object Stores for Faster Transfer Learning

5.2 Background

5.2.1 Cloud Object Stores

Cloud object stores (COS), such as Amazon S3 [13], Google Cloud Storage [86], and Azure Blob

Storage [43], have become a common way to store large-scale unstructured data because they

provide ease of use, high availability, high scalability, and durability at a low cost [161]. The

COS is connected to the compute tier by a network that, unfortunately, has shown to be a

bottleneck [140]. For example, studies [137, 198] report less than 100MBps read throughput per

connection from Amazon S3. In light of this, there has been a trend to push down computation

inside the COS, starting with a restricted subset of SQL (e.g., Amazon S3 Select) and recently

expanding to more complex computations such as image processing [56].

Despite the recent COS augmentation to enable more complex processing next to storage,

two challenges remain. First, the cloud network between the compute tier and the COS can

easily become the bottleneck. Second, the computational resources inside the COS come at

a premium because they are only meant to complement and not replace the compute tier.

Therefore, we have to use these resources efficiently.

In this work, we use OpenStack Swift [189], an open-source, highly-scalable object store. We

assume a Swift-like COS design with two components: proxy servers and storage nodes. A

proxy server interfaces with the client, receiving client requests with a REST API and reading

data from storage nodes. These storage nodes store data in the form of objects, which are

typically replicated across multiple disks for fault tolerance. Inspired by recent trends [116],

we assume that COS proxy servers are equipped with GPUs.

5.2.2 Hardware-accelerated pushdowns

Pushdowns were initially restricted to a subset of SQL, including filtering, projecting, and

aggregation (e.g., Amazon S3 Select [33]). The current, natural trend is to offer the benefits of

pushing down to a wider range of applications. Unfortunately, there are several reasons why

restricting pushdowns to CPUs leads to wasted resources and performance. First, for more

complex operations, CPUs can become a bottleneck. Studies show that even with 32 cores,

an SGD optimizer can bottleneck the CPU when using a 100Gbps network [127]. Second,

it is not sufficient for the CPU processing to be just faster than the network because the

output of a pushdown may be smaller than its input. For a pushdown to generate an output

at 12.5GBps (≈ 100Gbps), assuming an input/output ratio of 2, it needs to process input at

25GBps. Finally, the aggregate storage bandwidth of a storage server tends to increase faster

than the capabilities of CPUs [263].

As a result, the current trend is to allow pushdowns to use specialized hardware such as FPGAs

and GPUs. PolarDB uses mid-range low-cost FPGAs inside storage drives [44], Aquoman [263]

proposes to push down TPC-H queries on FPGAs, and the AWS Advanced Query Accelerator

72

5.3 Measurement Study

(AQUA) pushes down analytical queries on FPGA-based AWS Nitro chips [19]. Regarding GPUs,

several works [45, 97] have proposed to use them in storage systems to speed up erasure

coding. IBM is offering high-performance storage with NVIDIA GPUs [117, 116]. Finally, there

is a push to more-closely integrate storage with GPUs [187, 154], which further increases the

appeal of next-to-storage GPUs.

5.2.3 Transfer Learning

Transfer learning (TL) [283] is an increasingly popular ML technique with a wide range of

applications ranging from one-shot and multi-shot learning for language models [40, 244],

self-driving cars [53], healthcare [206], personalization of models (in the context of federated

learning) [172, 126] to transferring attacks and defenses from one domain to another [52, 48].

TL comprises two phases: pre-training and fine-tuning. The first phase is very similar to vanilla

training, where all the parameters/weights of the model are updated. Pre-training typically

targets a task with a large amount of training data. In the second phase, fine-tuning, TL adapts

the pre-trained model (to solve an initial task) to a similar task by transferring common model

features. We consider solely fine-tuning in this work. TL has been widely used in industry and

academia since it provides the advantages of reducing training time for a deep neural network

(DNN) and reducing the generalization error [83] while training with a new dataset.

In general, to solve a new task, TL first performs (i) feature extraction, to extract the features

from new input data using (partially or entirely) the pre-trained model, and then (ii) training,

to create a new classifier using the extracted features [83]. Typically, the first few layers of the

pre-trained model are frozen during the training process, i.e., the weights of these layers are

not updated with backpropagation. We call the last layer of the feature extraction phase: the

freeze index.

In this work, we show that the feature extraction phase can be pushed down to the COS

tier to reduce the training latency and the network traffic between the compute tier and the

COS tier while also maximizing the utilization of the COS computing resources such as the

GPU memory.

5.3 Measurement Study

We present a detailed measurement study of several TL applications using 4 vision DNNs

(AlexNet [142], ResNet18 [104], VGG11 [224], DenseNet121 [111]) and two datasets: synthetic

and ImageNet [66]. The synthetic dataset is simply a collection of random tensors with specific

shapes.5 We use it to understand the resource consumption of specific DNNs processing

without necessarily looking at how they perform on the optimization side. We characterize the

per-layer properties across three different dimensions: output size, computation time, and

5Since we focus on vision applications for this section, we use the standard 224×224×3 tensor shape.

73

Chapter 5. Cloud Object Stores for Faster Transfer Learning

Output

Compute Tier

Cloud Object Stores (COS)

. . .

Limited network bandwidth

Input dataset

(a) Status quo

Output

Compute Tier

Cloud Object Stores (COS)

Limited network bandwidth

Split layer

Input dataset

(b) Our splitting approach

Figure 5.1: Status quo architecture vs our splitting approach for TL computation.

Resn
et18

Resn
et50

Resn
et15

2
Vgg1

1
Vgg1

9
Alexn

et

Dens
ene

t12
1

Models

0
2000
4000
6000
8000

10000
12000

Ex
ec

ut
io

n
T

im
e

(s
ec

.)

Computation
Communication

(a) CPU

Resn
et18

Resn
et50

Resn
et15

2
Vgg1

1
Vgg1

9
Alexn

et

Dens
ene

t12
1

Models

0
50

100
150
200
250
300
350
400

Ex
ec

ut
io

n
T

im
e

(s
ec

.)

X X

Computation
Communication

(b) GPU

Bandwidth = 150 Mbps (rate limited)

Figure 5.2: Status quo: streaming images from the COS and doing ML training entirely in the
compute tier. Dataset: ImageNet. Batch size = 500. Bars marked by ‘X’ crashed with OOM
error.

maximum GPU memory used. Note that although we focus here on vision models only, our

study is extensible to other domains as well including speech recognition [98] and language

modelling [239]. The details of our methodology are in Section 5.6.1. The insights derived

from this study guide our design in Section 5.4.

5.3.1 Status Quo

We start by illustrating the limitations of the standard approach of running the ML com-

putation entirely in the compute tier while streaming the input images from the COS (see

Figure 5.1a). We run an experiment where we perform training with a batch size of 500 images.

For comparison, training is done on either CPU or GPU. To illustrate the impact of the limited

network bandwidth between the COS and the compute tier, we show an example where we

artificially rate-limit the network bandwidth to 150 Mbps. As it is standard, for performance

reasons, the computation of one batch is overlapped with the data transfer for the next batch.

74

5.3 Measurement Study

C
on

v2
D

R
el

u
M

ax
po

ol
2D

C
on

v2
D

R
el

u
M

ax
po

ol
2D

C
on

v2
D

R
el

u
C

on
v2

D
R

el
u

C
on

v2
D

R
el

u
M

ax
po

ol
2D

A
da

pt
iv

ea
vg

po
ol

2D
D

ro
po

ut
L
in

ea
r

R
el

u
D

ro
po

ut
L
in

ea
r

R
el

u
L
in

ea
r

Layers

0
200
400
600
800

1000
1200
1400
1600

O
ut

pu
t

Si
ze

 (
K

B
s)

Size of output data
Imagenet image size
iNatura image size
PlantLeaves image size

(a) AlexNet

C
on

v2
D

B
at

ch
no

rm
2D

R
el

u
M

ax
po

ol
2D

B
as

ic
bl

oc
k

B
as

ic
bl

oc
k

B
as

ic
bl

oc
k

B
as

ic
bl

oc
k

B
as

ic
bl

oc
k

B
as

ic
bl

oc
k

B
as

ic
bl

oc
k

B
as

ic
bl

oc
k

A
da

pt
iv

ea
vg

po
ol

2D
L
in

ea
r

Layers

0
500

1000
1500
2000
2500
3000

O
ut

pu
t

Si
ze

 (
K

B
s)

Size of output data
Imagenet image size
iNatura image size
PlantLeaves image size

(b) ResNet18

C
on

v2
D

R
el

u
M

ax
po

ol
2D

C
on

v2
D

R
el

u
M

ax
po

ol
2D

C
on

v2
D

R
el

u
C

on
v2

D
R

el
u

M
ax

po
ol

2D
C

on
v2

D
R

el
u

C
on

v2
D

R
el

u
M

ax
po

ol
2D

C
on

v2
D

R
el

u
C

on
v2

D
R

el
u

M
ax

po
ol

2D
A

da
pt

iv
ea

vg
po

ol
2D

L
in

ea
r

R
el

u
D

ro
po

ut
L
in

ea
r

R
el

u
D

ro
po

ut
L
in

ea
r

Layers

0
2000
4000
6000
8000

10000
12000

O
ut

pu
t

Si
ze

 (
K

B
s)

Size of output data
Imagenet image size
iNatura image size
PlantLeaves image size

(c) VGG11

C
on

v2
D

B
at

ch
no

rm
2D

R
el

u
M

ax
po

ol
2D

_
D

en
se

bl
oc

k
B

at
ch

no
rm

2D
R

el
u

C
on

v2
D

A
vg

po
ol

2D
_

D
en

se
bl

oc
k

B
at

ch
no

rm
2D

R
el

u
C

on
v2

D
A

vg
po

ol
2D

_
D

en
se

bl
oc

k
B

at
ch

no
rm

2D
R

el
u

C
on

v2
D

A
vg

po
ol

2D
_

D
en

se
bl

oc
k

B
at

ch
no

rm
2D

L
in

ea
r

Layers

0

500

1000

1500

2000

2500

3000
O

ut
pu

t
Si

ze
 (

K
B

s) Size of output data
Imagenet image size
iNatura image size
PlantLeaves image size

(d) DenseNet121

Figure 5.3: Per–layer output sizes for 4 state-of-the-art DNNs. Dataset: Synthetic. Batch
size = 1.

Figure 5.2 shows the communication-computation breakdown. There are several takeaways.

First, as expected, training on the CPU is much more time-consuming than on the GPU.

Second, the communication is the bottleneck when training with GPUs because the network

transfer rate is far lower than the speed at which the GPU can train. A corollary of that is

that the GPU is not efficiently utilized, remaining idle while waiting for data, despite having

communication and computation overlapped as much as possible. Finally, some of the

models crash with out-of-memory (OOM) errors on GPU. Unfortunately, to get around this,

practitioners can only choose between a set of sub-optimal solutions: use a smaller batch size

which could affect the accuracy, move to more expensive GPUs, or run with slow CPUs.

Based on these insights, we conclude that we need a solution that alleviates the network

bottleneck, improves GPU utilization, and enables fast ML computations even on CPUs. Our

main idea is to split the TL computation among the COS and the compute tiers, as depicted in

75

Chapter 5. Cloud Object Stores for Faster Transfer Learning

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Layer index

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Ex
ec

ut
io

n
Ti

m
e

(s
ec

.) CPU
GPU

(a) AlexNet

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Layer index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ex
ec

ut
io

n
Ti

m
e

(s
ec

.) CPU
GPU

(b) ResNet18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Layer index

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ex
ec

ut
io

n
Ti

m
e

(s
ec

.) CPU
GPU

(c) VGG11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Layer index

0
1
2
3
4
5
6

Ex
ec

ut
io

n
Ti

m
e

(s
ec

.) CPU
GPU

(d) DenseNet121

Figure 5.4: Computation time of the forward pass per layer for 4 state-of-the-art DNNs on
both CPU and GPU. Dataset: Synthetic. Batch size = 200.

Figure 5.1b.

5.3.2 Per-layer Output Size

Figure 5.3 compares the application input size of 3 datasets [66, 236, 223] (the horizontal lines)

with the output size of each layer (the bars). The figure shows a batch size of 1, essentially

representing one input image as it gets transformed through the DNN. One can accurately

extrapolate [148] from this result to any batch size by simply multiplying by the batch size.

Two main insights can be derived from the figure. First, the layer output size generally increases

in the beginning (typically with convolution layers) and then decreases (typically with pooling

layers). A corollary of that is, for all models, there exist several intermediate layers for which

layer output size is smaller than the application input size. Second, the decrease in the

intermediate layer output size is not always monotonic. Thus, we can find early on, in the DNN

structure, layers that have an output size smaller than the application input size. These layers

are good candidates for splitting the TL application between the COS and the compute tiers.

5.3.3 Per-layer Computation Time

Figure 5.4 shows the per-layer computation time for the forward pass on CPU and GPU. There

are several insights. For all models, earlier layers are more computationally expensive. The

76

5.3 Measurement Study

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Back
ward

Layer index

0.0

0.1

0.2

0.3

0.4
G

P
U

 M
em

or
y

(G
B

s) Batch = 50
Batch = 100
Batch = 200

(a) AlexNet

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Back
ward

Layer index

0.0

0.2

0.4

0.6

0.8

1.0

G
P
U

 M
em

or
y

(G
B

s) Batch = 50
Batch = 100
Batch = 200

(b) ResNet18

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829

Back
ward

Layer index

0
1
2
3
4
5
6

G
P
U

 M
em

or
y

(G
B

s) Batch = 50
Batch = 100
Batch = 200

(c) VGG11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Back
ward

Layer index

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

G
P
U

 M
em

or
y

(G
B

s) Batch = 50
Batch = 100
Batch = 200

(d) DenseNet121

Figure 5.5: Maximum GPU memory used for the forward pass per layer with 4 state-of-the-art
DNNs. For the backward pass, the maximum GPU memory is shown across all the layers
starting from the indexes in Table 5.2 until the end of the network. Dataset: Synthetic.

pattern of the variation is model-dependent. Second, as expected, the computation on the

CPU generally takes significantly more time. The important exception is the last few layers,

where there is very little difference between runtime on CPU and GPU. Even more, for some of

the later layers, executing on the CPU is more efficient. This suggests that even clients with a

low-end hardware configuration can contribute by executing the last part of the DNN.

5.3.4 Batch Size vs Per-layer Memory Usage

Figure 5.5 shows the maximum amount of utilized GPU memory per layer for the forward pass

over all layers in the deep network. It also shows (right side of each sub-figure) the maximum

amount of memory used across all the layers participating in the backward pass. For each

model, the backward phase ends at the corresponding freeze index listed in Table 5.2. For the

forward pass, the memory is mainly composed of the intermediate outputs. For the backward

phase, the results are aggregated because intermediate outputs from all participating layers

need to be kept in memory until the phase finishes. For the backward pass, the memory is

composed of intermediate outputs and the computed gradients [107].

There are three main insights. First, given the same batch size, the first layers generally use

more memory. Second and related, an increase in batch size causes a much larger increase in

77

Chapter 5. Cloud Object Stores for Faster Transfer Learning

1 2 3 4 5 6 7 8 9 10111213141516171819

Sta
tus

 qu
o

Split index

0

2

4

6

8

10

G
P
U

 M
em

or
y

(G
B

s) Before split
After split

(a) AlexNet

1 2 3 4 5 6 7 8 9 10 11 12 13

Sta
tus

quo

Split index

0

2

4

6

8

10

G
PU

 M
em

or
y

(G
Bs

)

Before split
After split

(b) ResNet18

121314151617181920212223242526272829

Sta
tus

 qu
o

Split index

0

5

10

15

20

25

30

G
P
U

 M
em

or
y

(G
B

s) Before split
After split

(c) VGG11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Sta
tus

quo

Split index

0
2
4
6
8

10
12
14

G
PU

 M
em

or
y

(G
Bs

)
Before split
After split

(d) DenseNet121

Figure 5.6: GPU memory breakdown with splitting the forward pass at different layers of 4
DNNs (x-axis). Before splitting (the blue bars), we use a batch size of 100 while after (the
orange bars), we use 1000. We compare this to a no-split case (i.e., status quo) in which we use
batch size of 1000. With VGG11, we experiment with split indexes whose output size is smaller
than the largest input shown in Figure 5.3. Dataset: ImageNet.

per-layer memory usage in the first layers suggesting these layers should be the focus if we

want to reduce overall memory consumption. Third, given different batch sizes, the first layers

can actually become cheaper (in terms of memory consumption) than the backward phase,

illustrating the potential benefits of adapting the batch size for the first layers. Figure 5.6 shows

an example. In this experiment, we split the forward pass into two parts: before the split index,

we use a batch size of 100, and after, we use a batch size of 1000. We measure the GPU memory

with different split indexes. The main takeaway from the figure is that combining a small batch

size before the split with a later split index can greatly reduce the total GPU memory usage,

sometimes below that of the status quo (Section 5.3.1), i.e., with no splitting.

78

5.4 The HAPI Design

User

Batch Size
Adaptation

Feature
Extraction

Model
Splitting TrainingComputation

AnalysisML code

Result

HAPI

Compute Tier

COS Tier
Limited network bandwidth

Figure 5.7: HAPI - System Overview.

5.4 The HAPI Design

5.4.1 Insights

Our measurement study (Section 5.3) shows that DNNs have a general structure that can be

leveraged to make the TL computation faster. We next present HAPI, our processing system

for TL. The design of HAPI relies on two main insights.

First, the feature extraction phase (i.e., the first few layers of the DNN) is typically more

demanding – in terms of (a) execution time, (b) GPU memory, and (c) output size – than the

training phase (the later layers of the DNN). Hence, pushing down, partially or entirely, feature

extraction next to the COS (while running training on the compute tier) reduces the amount

of data transferred over the network.

Second, splitting the TL computation enables decoupling the batch size of feature extraction

from the training batch size. This decoupling reduces the memory requirement of the TL

computation and helps manage more efficiently the scarce and expensive GPU memory of the

COS, allowing for concurrent users to better share the COS’s GPUs.

Limitations of pushing everything in the COS. One could envision pushing down both

phases of TL, feature extraction and training, next to storage. This solution, which we call

ALL_IN_COS, reduces the network traffic to the minimum possible, i.e., no data will be required

to transfer during training; only at the end, the user might want to download the trained model

from the COS. Yet, this solution fails to decouple the batch size of feature extraction from that

of training, leading to a choice between unsatisfactory options: limiting concurrency on the

COS, leading to poor throughput, or running the risk of OOM errors. We experiment with this

approach in Section 5.6.4, showing that it does not scale with multiple concurrent requests.

79

Chapter 5. Cloud Object Stores for Faster Transfer Learning

5.4.2 System Description

We next describe the high-level architecture of our system, HAPI, which is also depicted in

Figure 5.7.

Terminology. The DNN layer at which HAPI decides to split the DNN is called the split index.

The freeze index is the DNN layer that separates feature extraction from training, and it is

chosen by the user. The training batch size is the batch size specified by the user, and it is used

in the training phase. HAPI might decide to use a different batch size for computation on the

COS (Section 5.4.5); we call this the COS batch size. We use HTTP POST request to refer to

a request sent from the HAPI client to the HAPI server. We use storage request to refer to a

request sent by the HAPI server to the storage nodes.

At the high level. HAPI is composed of two main components: the HAPI client, which runs on

the compute tier, and the HAPI server, which runs in the COS. We assume a COS design similar

to that of open source systems like OpenStack Swift [189]. This design differentiates between

COS proxy and COS storage nodes. The HAPI server runs on the COS proxy. There is a fast

network between the COS proxy and the COS storage nodes, which host the DNNs and the

dataset. However, the network between the compute tier and the COS has limited bandwidth.

Request flow. Figure 5.8 depicts an example of the flow of one request. To initiate a TL

computation, users provide their application to the HAPI client, which extracts the application

configuration (i.e., the model type, the dataset, the freeze index, etc.) and splits (Section 5.4.4)

the DNN (Step (1)) into 2 parts: one to be executed on the COS and the other to be executed

on the compute tier. This splitting decision happens once per TL computation before its start.

Subsequently, for each training iteration (i.e., the processing of a training batch size of data),

the HAPI client sends to the HAPI server HTTP POST requests (Step (2)) containing the

necessary information: split index, model type, and the name of the object that stores the

corresponding data batch. Several such POST requests may be sent during one iteration

because one POST request is needed for each object on storage. Therefore, the number of

POST requests depends on the ratio between training batch size and the size of the objects on

storage (we assume fixed-sized objects).

When the HAPI server receives a request, it first reads the object that holds the training data

and the specified DNN by sending a storage request to the COS storage nodes (Step (3)) and

then executes the feature extraction part up to the split index. Note that the HAPI server

chooses, at will, the COS batch size to be used for feature extraction (Section 5.4.5) depending

on the availability of its GPU memory and the concurrent (or to-be-shortly-served) POST

requests (Step (4)).

After finishing the feature extraction portion assigned to it, the HAPI server sends back the

outputs of the split index layer to the HAPI client, which then uses these outputs to continue

the TL computation on the compute tier. Note that the client uses the training batch size for

80

5.4 The HAPI Design

Figure 5.8: HAPI request flow. A TL application is split at index 10. This shows a training
iteration with training batch size 3000. This results in 3 requests being sent to the HAPI server.
On the COS, for each of the 3 requests, feature extraction is performed with a COS batch size
of 200.

its entire computation even while executing the last part of feature extraction (if any).

Observations. First, HAPI only executes feature extraction next to storage in the COS. Con-

sequently, the split index will be always smaller than or equal to the freeze index (i.e., the

split is always before the training phase). Second, the COS batch size is upper bounded by

the training batch size as the latter defines the value requested by the user, which we cannot

exceed. Nonetheless, the client can pre-fetch more data (via concurrent POST requests) than

the training batch size to improve training performance. Third, scaling down the COS batch

size does not affect the convergence of TL as it is used only for feature extraction rather than

training. Fourth, since we limit the size of the POST request, these requests are lightweight

and can be executed fast on the COS’s GPUs.

Reasoning behind the design. Our lightweight POST request design contributes to system

scalability and avoids head-of-line blocking situations where lightweight requests are stuck

behind expensive ones. The HAPI server is stateless: different POST requests, even those

coming from the same TL computation, are treated independently. Effectively, the HAPI

server does not keep a history of executed computations, and it does not keep DNNs, which

were used in previous computations, in memory. Although this decision adds the overhead of

loading DNNs multiple times to the GPU memory, it makes the server’s fault tolerance easier

and makes distributing requests to multiple proxy nodes straightforward. Scaling the system

would merely require adding or removing independent HAPI servers on the COS proxy nodes.

Finally, we note that feature extraction is a standard process that is typically deterministic

81

Chapter 5. Cloud Object Stores for Faster Transfer Learning

and predictable in terms of memory consumption and computation time. These properties

allow the operator to accurately predict the computation behavior, a desirable property for

any computation pushed down in the COS [222].

5.4.3 Efficient Client-side Profiling

The HAPI server and client rely on a profile of per-layer output sizes. In addition, the server

relies on a profile of the per-layer memory consumption. In HAPI, the profiling is performed

at the client, once per application, before execution starts.

The memory profile is composed of: (1) model weights, (2) input data, and (3) intermediate

layer outputs generated during the computation. The last two grow proportionally with the

batch size, unlike (1), which remains constant.

For profiling, the HAPI client runs a forward pass with a synthesized data sample (i.e., with the

same dimensions as input data), using the training model and keeping track of the per-layer

memory consumption and the size of the intermediate output. Crucially, only one data sample

(i.e., batch size of 1) is sufficient, and hence, this step is very lightweight both in terms of time

(few ms) and memory (few MBs). The HAPI client sends the profiling results to the HAPI

server in the specifications of the workload inside every POST request.

The HAPI server estimates the memory necessary for its partition of the computation by

multiplying the profiled values by the COS batch size, which it will calculate (Section 5.4.5).

Multiplication is an accurate strategy in most cases, as can be inferred from Figure 5.5. We

also show that this approach effectively captures the actual required memory (and therefore

prevents OOM errors) in Section 5.6.

The benefit of our strategy is three-fold. First, it is cheap and lightweight. Second, it is agnostic

to the training model as well as to the DNN layers. Third, it does not rely on pre-computed

models, which might be based on specific models of hardware or software versions and

hence, inaccurate.

5.4.4 Splitting Algorithm

The HAPI client runs the splitting algorithm (shown in Algorithm 2) once per application. The

algorithm comprises two phases. The first is the candidate selection, which is guided purely by

model properties. The second phase, the winner selection, selects one of the candidate layers

and is guided by properties of the environment, namely the network bandwidth to the COS.

The first phase works as follows. Based on the intermediate output sizes estimation step

(Section 5.4.3), the HAPI client chooses layers whose output size is smaller than the input size

(scaled by the batch size). The rationale is simple: the main goal is to reduce network traffic

compared to sending the entire application input to the client.

82

5.4 The HAPI Design

Algorithm 2 Choose the split index

1: procedure PROFILE_MODEL(model, input_size)
2: one_point=random_tensor(input_size)
3: intermediate_sizes = forward(model, one_point)
4: model_size = get_size(model)
5: return intermediate_sizes, model_size
6: end procedure

1: procedure CHOOSE_SPLIT_IDX(model, input)
2: input_size = size(input)/len(input)
3: intermediate_sizes, model_size=profile_model(model, input_size)
4: // candidate selection phase
5: potential_layers = model.where(intermediate_sizes < input_size)
6: // winner selection phase
7: C = read_network_bandwidth()
8: for each layer l in potential_layers do
9: if intermediate_sizes[l] < C then

10: winner = intermediate_sizes[l]
11: break
12: end if
13: end for
14: if no winner then
15: winner = freeze_idx
16: end if
17: return winner
18: end procedure

The second phase, winner selection, is a dynamic approach that navigates the trade-off

between two potentially opposing needs: (1) to push down as few layers as possible to save

COS resource while (2) reducing the time spent in network communication to improve user-

perceived latency. The key to the success of the algorithm is our insight from Section 5.3.2,

namely that the layer output size decreases in general but non-monotonically. Hence, it is

possible to find layers early in the DNN with comparatively small output sizes. To best navigate

this trade-off, the algorithm chooses the earliest candidate layer with an output size lower

than C, where C is a function of the network bandwidth, essentially trading off an optimal

splitting point, with respect to network transfers, for reduced pushdown to the COS. In our

experiments, we found that a good value for C is network bandwidth times 1s.

To better understand the dynamicity of the algorithm, consider that if the network bandwidth

is abundant, the algorithm tends to choose an earlier split point with a comparatively larger

output. With limited bandwidth, the split index moves towards later layers. The training batch

size has a similar influence. The larger the batch size, the larger the layer output sizes. In this

case, the algorithm tends to choose a later split index to compensate since later layers tend to

have comparatively smaller output sizes. In all cases, the split index layer is upper bounded by

the freeze index layer as we do not push down any part of the training phase to the COS.

83

Chapter 5. Cloud Object Stores for Faster Transfer Learning

5.4.5 Batch Adaptation Algorithm

This algorithm repeatedly runs at the HAPI server. A new run of the algorithm is triggered when

two conditions hold: (1) there is available GPU memory for new requests, and (2) there exists

at least one queued request that has not yet been accounted for in the previous runs of the

algorithm. Because of the HAPI client’s design, the HAPI server likely receives several requests

in quick succession. Thus, the HAPI server waits for new requests for a small amount of time,

a small fraction of the time needed to serve one request. This approach navigates the following

trade-off. If the server delays the start of the algorithm too long, this might unnecessarily delay

requests. However, if the server does not wait enough, arriving requests might have to wait

for the current batch to finish processing (when there is insufficient memory). The algorithm

takes into account the already-running requests (i.e., at the time of applying the algorithm) but

not the future requests. The goal of the algorithm is to maximize the GPU memory utilization

over the existing requests while fitting as many of them inside the GPU memory. The output

of the algorithm is the batch size to be used for each request, i.e., the COS batch size. Note

that it is safe to change the batch size on the server side (i.e., on storage) since processing

on this side includes feature extraction (partially or fully) only. This processing entails only

a forward pass with no actual training, and hence this processing is deterministic. Based on

that, changing the batch size at this stage does not affect the convergence of training.

To choose the batch size for each request, the HAPI server solves the following optimization

problem:
max

∑
r∈R

br ×Mr (data)+Mr (model)

s.t. ∀r∈R brmi n ≤ br ≤ brmax ,∑
r∈R

br ×Mr (data)+Mr (model)

≤Mtotal −M (occupied),

(5.1)

where R is the set of requests in the queue, br is the batch size to be used for request r (i.e., the

decision variables of the optimization problem), Mr (data) is the amount of memory occupied

by both the input and the intermediate outputs of the DNN model for request r , Mr (model)

is the amount of memory occupied by the DNN model weights for request r , Mtotal is the

total amount of the GPU memory, M (occupied) is the amount of memory occupied by other

already-running requests in addition to estimation for the reserved memory for Cuda and the

ML framework,6 and brmi n and brmax are the minimum and maximum bounds allowed for the

batch size. Note that brmax is set by the HAPI client (typically, same as the training batch size)

while sending the request, whereas brmi n is set by the operator. In our experiments, we set

brmi n to 25 as we observe that using a smaller batch size would lead to unnecessary overhead.

We now make a few notes about our algorithm. First, the HAPI server distributes requests

evenly on the existing GPUs. The batch adaptation algorithm runs separately for each GPU on

the COS. Second, since all requests look independent to the server (even if they are coming

6Note that this amount of memory is estimated by the operator apriori, i.e., before starting the server

84

5.5 The HAPI Implementation

from the same user), requests from the same user might be assigned different COS batch sizes.

Our experiments show that in such small-scale ML computation (i.e., only forward pass with a

limited amount of data), the batch size does not have a visible effect on the total execution

time. Finally, if the server cannot find an optimal solution for the optimization problem, it

removes one request from the list and tries again. The server keeps doing the same until

a solution is found. The removed requests contribute to the next batch assignment round,

typically after some of the existing requests finish their computation.

5.5 The HAPI Implementation

We next give details on HAPI’s implementation. We use OpenStack Swift [189] as our COS,

and we use PyTorch [193] for ML computation on both client and server sides.

The HAPI server. We have built HAPI’s server inside the Swift’s proxy server. In particular,

in addition to the batch adaptation algorithm, we implemented functions to do the ML

computation. When a POST request is received, the server checks first if it is an ML request.

In that case, it reads the object that holds the training data from the storage nodes and then

passes it to the appropriate ML function. On the ML side, we created custom DNN models

that can run the forward pass between arbitrary start and end layers. Using these models, we

are able to split computation at any arbitrary layer.

Concurrency limitations in Swift. Our first implementation of the server works well with

one request, but we observe that completion time suffers greatly with concurrent requests.

The reason for this lies in a key design of Swift. Essentially, Swift uses a green threading model,

which allows for concurrency only at the user level. Hence, from the OS’s point of view, each

Swift process runs in a single thread. Since the number of processes spawned by Swift to

serve users’ requests is very limited, this design limits the number of TL requests that can run

simultaneously, limiting the system scalability.

To overcome this issue, our final implementation decouples the HAPI server from the Swift

proxy server (yet both run on the same machine). The HAPI server still reads the training

data from Swift’s storage nodes. The main advantage of this implementation is that it enables

higher concurrency levels. Table 5.1 shows the execution time of the TL computation with 4

DNNs with both implementations. We find that the decoupled implementation improves the

application runtime. Lastly, the decoupled implementation has the advantage of not being

bound to a specific COS design. In our evaluation (Section 5.6), we use the decoupled version.

Model ResNet18 ResNet50 Alex DN121
In Proxy 348 384 308 487
Decoupled 331 324 307 411

Table 5.1: The execution time (in seconds) of one request with 4 DNNs using both versions of
HAPI’s server implementation: (1) inside Swift’s proxy and (2) decoupled from it.

85

Chapter 5. Cloud Object Stores for Faster Transfer Learning

The HAPI client. Apart from choosing the split index, the HAPI client runs the user’s TL code.

We identify two parts of the vanilla training code that needs to be changed to be compatible

with HAPI. First, we use our custom models to enable starting computation from an arbitrary

layer instead of the default first layer. Second, we stream the intermediate outputs (of the last

layer executed on the COS) using HTTP POST requests instead of streaming the raw training

data (typically with HTTP GET requests). Users provide the exact same training parameters in

both cases, with status quo and HAPI, and hence, the whole process is transparent to them.

5.6 Performance Evaluation

We evaluate HAPI with multiple state-of-the-art DNNs using ImageNet as a dataset. We first

give our methodology and then present the results in detail.

5.6.1 Methodology

Hardware setup. We use two identical GPU-accelerated machines from a public cloud: one

runs the compute tier and the HAPI client, and the other hosts the COS and the HAPI server.

Each machine has an Intel Xeon Gold 6278C CPU with 16 cores, 64 GBs RAM, 2 Tesla T4 GPUs

(with 16 GB RAM each), and a 300GB SSD. Both machines run Ubuntu 20.04 server 64bit with

Tesla Driver 460.73.01 and CUDA 11.2. The network bandwidth between both machines is

around 12 Gbps, as measured by iperf3.

Model Freeze Layer Number of Layers
AlexNet 17 22
ResNet18 11 14
ResNet50 20 22
VGG11 25 28
VGG19 36 45
DenseNet121 20 22

Table 5.2: Models used in our evaluation of HAPI. Note that we count only layers at which
splitting would make sense. For example, ResNets are structured as a sequence of blocks
(Figure 5.3b); we count each block as one layer.

Applications. We use image classification as our DL application due to its wide use in

academia and industry. We train various model families of different sizes, including AlexNet [142],

ResNet [104], VGG [224], and DenseNet [111]. The complete list, along with the default freeze

layer, is shown in Table 5.2. We use ImageNet [66] as our dataset. Unless otherwise stated, we

use AlexNet as our default training model.

Metrics. We use the following metrics for evaluation.

1. Execution Time. The end-to-end latency of executing one epoch of training. Our computa-

tion shows that running training for multiple epochs only multiplies this value by a factor.

86

5.6 Performance Evaluation

2. Transferred Data. The average amount of data transferred over the network (i.e., between

the COS and the compute tier) per training iteration. Note that one iteration might comprise

multiple POST requests to the COS. In addition, one epoch usually comprises multiple itera-

tions.

3. GPU Memory Consumption. The maximum amount of GPU memory occupied during the

execution. We measure this metric periodically using nvidia-smi.

COS configuration. We use OpenStack Swift as our COS. We configure it to run one proxy

server with 3 replicated disks. The number of workers (i.e., the number of green threads

accepting requests) is set to auto, so it maps to the number of cores in the system, which is 16.

HAPI configuration. We divide our dataset into equal-sized chunks of 1000 images, each

chunk being stored as one object in the COS. We choose this object size following recom-

mendations [137] that suggest avoiding small requests to maximize COS throughput. We set

the POST request size to 1000. This has 2 implications: (1) the smallest training batch size

we experiment with is 1000, and (2) the number of parallel requests sent by the HAPI client

to the COS is equal to the training batch size divided by 1000. Unless otherwise stated, the

default COS batch size is 200. Our batch adaptation algorithm may decide to change this

value. We set the minimum COS batch size to 25 because on our hardware, smaller batch

sizes add unnecessary overhead. Unless otherwise stated, we limit the bandwidth between

the HAPI client and the COS to 1 Gbps. Such value reflects the average bandwidth one can

get from today’s COS [137, 198]. Nevertheless, we analyze the impact of changing the network

bandwidth in Section 5.6.3.

Baseline. To the best of our knowledge, HAPI is the first system to split ML computation

between the compute tier and the COS. We compare HAPI to a BASELINE that runs solely on

the compute tier by streaming first as many images as the training batch size from the COS

and then applying the whole training locally. We pipeline streaming data with computation.

Summary of the findings:

1. HAPI improves the execution time compared to BASELINE on both GPUs and CPUs

(Section 5.6.2).

2. HAPI shows benefits across a range of network bandwidths, alleviating the network

bottleneck and allowing for faster computation (Section 5.6.3).

3. HAPI scales well with up to 10 requests, achieving considerable throughput gain com-

pared to executing the computation entirely on the COS (Section 5.6.4).

4. HAPI reduces the data transferred over the network, upper bounding it even with

excessively large training batch sizes (Section 5.6.5).

87

Chapter 5. Cloud Object Stores for Faster Transfer Learning

Resn
et18

Resn
et50 Vgg1

1
Vgg1

9
Alexn

et

Dens
ene

t12
1

Models

0
100
200
300
400
500
600

E
xe

cu
tio

n
T

im
e

(s
ec

.)

X X XX X X X X

Baseline, B=2000
HAPI, B=2000
Baseline, B=8000
HAPI, B=8000

(a) GPU

Resn
et18

Resn
et50 Vgg1

1
Vgg1

9
Alexn

et

Dens
ene

t12
1

Models

0
500

1000
1500
2000
2500

E
xe

cu
tio

n
T

im
e

(s
ec

.)

X XX X X X X

Baseline, B=2000
HAPI, B=2000
Baseline, B=8000
HAPI, B=8000

(b) CPU

Figure 5.9: Execution time of BASELINE compared to HAPI with different DNNs. Bars marked
by ‘X’ crashed with OOM error.

5. The batch adaptation algorithm of HAPI is able to utilize 100% of the GPU memory of

the COS while preventing effectively OOM errors (Section 5.6.6).

5.6.2 End-to-end Experiment

Figure 5.9 shows the end-to-end execution time of HAPI and BASELINE with 2 training batch

sizes and with different models. We experiment with a strong client (i.e., equipped with 2

GPUs) and a weak client that has access only to a CPU.

The first observation is that BASELINE fails to complete the execution in many cases due to

out-of-memory (OOM) errors. Even with 64 GBs of memory, BASELINE fails to run even the

smallest version of VGG networks with a batch size of 2000 (see Figure 5.9b). With a batch

size of 8000 (which is the batch size required to train ImageNet for the best accuracy [88]),

BASELINE manages to run only AlexNet. This does not happen with HAPI for 2 reasons: (1) the

batch adaptation algorithm on the COS reduces the batch size for feature extraction when it

realizes the computation will not fit in the available memory. (2) The actual training part (that

happens in the compute tier) requires very little memory, and hence no matter how big the

training batch size is, the memory used never reaches the upper limit.

Using the same batch size, HAPI outperforms BASELINE in all cases. Precisely, HAPI achieves

an average execution time speedup of 2.24× (on GPU) and 3.91× (on CPU) and up to 3.13× (on

GPU) and 7.83× (on CPU) over BASELINE. Interestingly, in some cases, a weak client that runs

HAPI can outperform a strong client that runs BASELINE, a direct benefit of HAPI’s splitting

algorithm. For example, training ResNet18, with batch size 2000, on CPU with HAPI takes

352s, whereas on GPU with BASELINE it takes 448s.

Since HAPI is compute-bound, an additional execution time speedup can be seen with

increasing the batch size. For example, the execution time of HAPI drops from 307s to 148s

with increasing the batch size from 2000 to 8000 while training AlexNet on GPU. Interestingly,

88

5.6 Performance Evaluation

0.05 0.1 0.5 1 2 3 5 10 15
Bandwidth (Gbps)

0

200

400

600

800

1000

1200
Ex

ec
ut

io
n

Ti
m

e
(s

ec
.) Baseline

HAPI

(a) Execution Time

0.05 0.1 0.5 1 2 3 5 10 15
Bandwidth (Gbps)

0

50

100

150

200

250

T
ra

ns
fe

rr
ed

 D
at

a
(M

B
s) Baseline

HAPI

(b) Transferred Data

Figure 5.10: The effect of varying bandwidth on HAPI.

Bandwidth (Gbps) 0.05 0.1 0.5 1 2 3 5 10 15
Split Index 17 17 16 13 13 5 5 5 5

Table 5.3: The chosen split index by HAPI with different values for the bandwidth (see Figure
5.10).

we cannot make the same observation for BASELINE. Indeed, increasing the batch size has

seemingly no effect on the execution time. The reason for this lies in the fact that the bottleneck

for BASELINE is the network, and hence speeding up the computation (by increasing the batch

size) does not help improve the end-to-end execution time.

5.6.3 Impact of Network Bandwidth

Figure 5.10 depicts the execution time and the amount of data transferred with different

values of network bandwidth between the compute tier and the COS. Figure 5.10a shows that

HAPI outperforms BASELINE in all cases, even with abundant bandwidth (1.5× faster). HAPI

performs even better (2.8× faster) in extreme cases where the bandwidth is as little as 50 Mbps.

HAPI manages to have almost a flat curve along with different values for the bandwidth.

The key to this behavior lies in controlling the amount of data transferred in each case, which

is shown in Figure 5.10b. Up to 2 Gbps, HAPI chooses to transfer less than 100 MBs per

iteration, where BASELINE transfers more than 250 MBs per iteration in all cases. With enough

bandwidth (3 Gbps or more), HAPI adapts and transfers almost the same amount of data as

BASELINE. The main knob in such an adaptation is the split index. Note that, in the case of

HAPI, the transferred data are the output of the last layer executed in the COS. The size of

such outputs changes dramatically from one layer to another, as shown in Section 5.3.2. HAPI

carefully chooses the split index depending on the available bandwidth as shown in Table 5.3.

In fact, HAPI chooses the split index to be equal to the freeze layer index (i.e., layer 17) when

the bandwidth is limited, whereas it chooses layer 5 (whose output is still smaller than the raw

input images) with abundant bandwidth.

89

Chapter 5. Cloud Object Stores for Faster Transfer Learning

2 3 4 5 6 7 8 9 10
Number of Tenants

1000
2000
3000
4000
5000
6000
7000
8000

E
xe

cu
tio

n
T

im
e

(s
ec

.) HAPI - Makespan
HAPI - Average
Linear
ALL_IN_COS - Makespan
ALL_IN_COS - Average

Figure 5.11: Scalability of HAPI with multi-tenants (i.e., multiple concurrent requests) com-
pared to an ALL_IN_COS solution that pushes down the entire computation next to storage.

5.6.4 Scalability on the COS

Figure 5.11 shows how HAPI scales with multiple tenants (up to 10). We found that 10

concurrent tenants (i.e., requests) are sufficient to saturate both GPUs of the COS. In this

experiment, each tenant submits one request to train a model from Table 5.2. The model

is chosen in a round-robin fashion. All requests use a training batch size of 1000 and are

submitted at once at the beginning of the experiment. Since the goal of this experiment is to

overload the COS, we do not run an actual computation on the client side. Figure 5.11 shows

both the makespan (the time it takes to finish all requests) and the average job completion time

(JCT). In addition, we compare against the ALL_IN_COS solution discussed in Section 5.4.1, in

which the entire TL computation is pushed to the COS.

The figure shows that the server can run up to 6 tenants concurrently, finishing all of them

almost at the same time. This is noted from the very small difference between the makespan

and average JCT. Yet, the scalability of HAPI is not perfect, as sharing the GPUs on the COS side

has an inevitable overhead. Precisely, running concurrently 6 tenants increases the average

JCT by 1.7× compared to the case of 2 tenants.

When the COS serves more than 6 tenants, the GPU memory becomes insufficient to fit all of

the requests, and therefore, some requests wait in the queue for other requests to finish first,

i.e., the optimization problem is not solved from the first trial. Consequently, some tenants

finish their computation faster than others. For example, the difference between makespan

and the average JCT with 10 tenants is 280s.

Although the ALL_IN_COS solution achieves comparable (if not better) performance to HAPI

with a few tenants, it fails to scale with increasing the number of tenants. Compared to the

ALL_IN_COS solution, we find HAPI to achieve 2.2× improvement on average in throughput

(based on the average JCT) and up to 4.9× improvement with 10 tenants.

90

5.6 Performance Evaluation

1000 2000 3000 4000 6000 8000
Batch Size

0

200

400

600

800

1000

T
ra

ns
fe

rr
ed

 D
at

a
(M

B
s)

Baseline
HAPI

Figure 5.12: Transferred data with HAPI, compared to BASELINE, with different batch sizes.
The y-axis shows the average data size transferred in one iteration.

Training batch size (× 1000) 1 2 3 4 6 7 8
% of requests whose COS batch size is reduced 0 0 0 0 1.88 15.38 30
Average reduction in COS batch size 0 0 0 0 1.78 14.51 25.13

Table 5.4: The behavior of HAPI’s batch adaptation in the experiment in Figure 5.13.

5.6.5 Reduction in Transferred Data

Figure 5.12 shows the average data size transferred from the COS to the client per training

iteration with different training batch sizes. As the training batch size increases, BASELINE

streams more data per iteration, and hence, we observe a linear increase in the data transferred

with the batch size. This, in turn, increases the execution time linearly, especially when the

bandwidth is limited.

On the other hand, HAPI manages to keep the amount of data transferred almost flat with any

batch size. The key to this behavior is the adaptive choice of the split index. To give a concrete

example, notice the decrease in the amount of data transferred despite increasing the batch

size from 3000 to 4000. In fact, with a batch size of 3000, HAPI chooses 13 to be the split index,

transferring on average 105.6 MBs per iteration. With a batch size of 4000, it chooses 16 to be

the split index, transferring 62.6 MBs per iteration. The logic is that with a larger batch size,

more data is expected to be transferred from the COS in each training iteration, assuming

the same split index and network bandwidth. HAPI adapts by choosing a later split index for

the increased batch size to try to keep the amount of time spent in network communication

comparable. This adaptive behavior alleviates the network bottleneck and makes the whole

operation compute-bound.

91

Chapter 5. Cloud Object Stores for Faster Transfer Learning

1000 2000 3000 4000 6000 7000 8000
Batch Size

0

200

400

600

800

E
xe

cu
ti
on

 T
im

e
(s

ec
.)

X X

Without BA
With BA

(a) Execution Time

1000 2000 3000 4000 6000 7000 8000
Batch Size

0

5

10

15

20

25

G
PU

 M
em

or
y

(G
Bs

)

X X

Without BA
With BA

(b) GPU Mem. Consumption

Figure 5.13: The benefits of batch adaptation (BA).

5.6.6 Batch Adaptation

We next discuss the benefits of our batch adaptation algorithm. We run two versions of HAPI:

one with batch adaptation (BA) and one without BA. We experiment with several training

batch sizes up to 8000. Note that increasing the batch size increases the number of parallel

POST requests sent to the COS since we fix the size of each POST request to 1000. For example,

using a training batch size of 6000 results in sending 6 parallel POST requests to the COS. In

addition, to overload the GPU memory of the COS, we set the COS batch size to 1000. The

results of this experiment are shown in Figure 5.13. Table 5.4 complements Figure 5.13 with:

(1) the percentage of requests whose batch size is reduced by our algorithm and (2) the average

reduction in the batch size.

Figure 5.13a shows the execution time, which generally decreases with increasing the batch

size. The reason is that the number of training iterations decreases with increased batch size,

enabling faster epochs. Up to 6 requests, HAPI achieves the same execution time in both

cases, indicating that the overhead of our BA algorithm is insignificant in the case when there

is sufficient memory. For more than 6 requests, the memory becomes insufficient, so our BA

algorithm starts reducing the batch size, successfully preventing OOM crashes. The overhead

of the BA algorithm remains very small in these cases, which is visible in the fact that the

execution time remains small with big batch sizes. Precisely, the server takes around 25ms to

execute the BA algorithm.

Figure 5.13b shows the memory usage in each case. On the one hand, when we do not use

BA, the GPU memory consumption increases linearly with the batch size until the crashing

point due to the lack of resources (OOM error). On the other hand, our fully-fledged HAPI

adapts the batch size to fit into the existing memory showing a plateau in memory usage with

increasing the batch size. Note that the best memory occupancy we could see is around 28

GBs for both GPUs combined. This constitutes a 100% utilization of the GPU memory, despite

knowing that one GPU memory size is, theoretically, 16 GBs. The remaining unutilized part of

the memory is reserved by CUDA and PyTorch.

Figure 5.13 and Table 5.4 show the importance of scaling down the COS batch size to avoid

92

5.6 Performance Evaluation

2000 4000 6000 8000 10000 12000
Batch Size

0

5

10

15

20

25

30
G

PU
 M

em
or

y
(G

Bs
)

X

Baseline
HAPI COS
HAPI Client

(a) COS batch size = 1000

2000 4000 6000 8000 10000 12000
Batch Size

0

5

10

15

20

25

30

G
PU

 M
em

or
y

(G
Bs

)

X

Baseline
HAPI COS
HAPI Client

(b) COS batch size = 200

Figure 5.14: Total GPU memory consumption with HAPI compared to BASELINE.

OOM errors. For example, with a training batch size of 8000, HAPI decided to scale down

2-3 requests on average, where the average reduction of the COS batch size is around 25%.

Put differently, if the COS batch sizes were 25% less on average (i.e., 750 instead of 1000),

all requests would have fit (theoretically) with no need to adapt the COS batch size. Such

information is usually obscure and hard to get for the users, leaving them susceptible to

choosing a large batch size and crashing the training procedure.

5.6.7 Breakdown of Memory

Figure 5.14 shows the GPU memory consumption by HAPI (including both the compute tier

and the COS tier), with 2 COS batch sizes, compared to BASELINE, and using different training

batch sizes. Note that the memory consumption of BASELINE and the client side of HAPI is

identical in Figures 5.14a and 5.14b; only the memory of the COS changes.

Figure 5.14a highlights the interesting fact that splitting computation could not only fully

utilize the GPU memory of the COS but also give the abstraction of extra memory to the user.

Precisely, the aggregate GPU memory can exceed 30 GBs in some cases, which is beyond the

capabilities of the user in this experiment (as shown in the case of using a batch size of 12000).

This allows the user to train their model with arbitrarily large batch sizes. This figure also

highlights another source of overhead that appears with sending many parallel requests. In

particular, there is a slight decrease in the GPU memory allocated on the COS with more than

8 requests (i.e., with batch size > 8000). The reason for this decrease is the overhead of having

independent requests running on the same GPU. Since each request is served by a separate

process, there is an independent chunk of memory reserved for each one. Hence, having many

requests leaves less room for actual data to be allocated on the GPUs. Our memory modeling

however manages to capture this overhead, making the best use of the available memory

without crashing. Note that this result shows that HAPI is useful not only to improve the

execution time, but also to improve the GPU memory utilization. Following this, we believe

HAPI can be beneficial even in the cases where the network is not the bottleneck [180], i.e., to

improve the memory utilization.

93

Chapter 5. Cloud Object Stores for Faster Transfer Learning

In Figure 5.14b, the COS batch size is small (only 200). Here, we can see that the aggregate

memory consumption could be even less than BASELINE. This shows how much the COS

batch size knob can control memory consumption.

5.7 Related Work

HAPI contains a unique combination of context (COS), workload (TL), and design decisions

(splitting a DNN between cloud tiers, batch adaptation). While related work exists in these

directions, HAPI is the first to combine them in a single cohesive system.

Batch adaptation in ML. Several projects [216, 225, 272] proposed to dynamically adapt the

training batch size as training proceeds, leading to shorter training times without loss in

accuracy. These ideas are complementary to HAPI’s batch adaptation because they can be

applied in HAPI’s training phase. Instead, the key insight of batch adaptation in HAPI is

that during the same iteration, it is useful to use different batch sizes for training and feature

extraction.

Splitting compute between edge and cloud. Neurosurgeon [131] splits ML inference between

the cloud and edge devices to achieve low latency, low energy consumption, and high data

center throughput. The partitioning is automatic and adapts to dynamics in server load

and network bandwidth. Compared to Neurosurgeon, besides considering more complex

application (i.e., TL), HAPI dynamically manages the concurrency on the storage-side via

batch adaptation. MAUI [58] performs fine-grained (function-level) energy-aware offload of

mobile code to the infrastructure, via runtime decisions driven by the goal to save energy.

MAUI’s approach to splitting cannot be directly used in HAPI because it requires programmer

annotations, and it transfers all program state including variables. Odessa [204] offloads stages

in perception applications but without analyzing the global impact on the application perfor-

mance.

Offloading compute to storage nodes. Rhea [82] uses static analysis of Java bytecode to gener-

ate stateless best-effort storage-side filters for Hadoop applications that read unstructured and

semi-structured data. Rhea shares the goal of mitigating the network bottleneck to storage but

targets a different workload, does not split an application and does not optimize the resource

utilization in the storage layer. Pyxis [49] uses static analysis and dynamic runtime informa-

tion to automatically partition a database application between application and storage nodes.

Pyxis automatically generates database-side stored procedures to minimize overall latency

subject to CPU constraints. For this, it minimizes the number of control transfers as well as

amount of data sent during each control transfer. Pyxis differs in the application, context, and

concerns (i.e., control transfers are specific to database applications).

Computation pushdown in COS. Work on pushing down computation in the COS mainly fo-

cuses on how to best leverage the limited subset of SQL supported by Amazon S3 Select-like sys-

94

5.8 Concluding Remarks

tems since 2017. PushdownDB [275] analyzes which DBMS primitives can be cost-effectively

moved into S3 and on how more complex operations (e.g., joins) can be re-implemented to

take advantage of S3 Select. FlexPushdownDB [266] combines the benefits of caching and

computation pushdown by introducing a separable operator.

Systems challenges for TL. Cartel [59] provides collaborative TL at the edge by transferring

knowledge across geographically distributed edge clouds while minimizing the amount of data

sent over the backhaul network. Cartel is different because it focuses on challenges in learning

at the edge, e.g., detecting similarities between edge clouds and performing the knowledge

transfer.

Model/pipeline parallelism. Splitting in HAPI is reminiscent of model and pipeline paral-

lelism, which aim to distributedly train large models. Model parallelism [50] splits a DNN

across workers. This is a form of intra-batch parallelism as all workers process the same

batch. Pipeline parallelism [184, 112] further improves the efficiency of model parallelism.

Pipedream [184] combines intra with inter-batch parallelism (multiple batches execute con-

currently) and mitigates staleness and consistency issues by keeping several versions of the

weights. GPipe [112] does not do inter-batch parallelism, but splits a single batch into micro-

batches and pipelines those.

HAPI differs in several ways. The high-level goal is different as HAPI aims to mitigate the

COS network bottleneck. The approach to splitting is different as the splitting point in HAPI

is dynamic but fixed in model/pipeline parallelism. The concerns are different as HAPI’s

server handles multiple clients concurrently. The challenges are different as there is no

backpropagation on HAPI’s server or between HAPI’s client and server.

Data ingestion pipelines. The feature extraction phase in HAPI is reminiscent of data in-

gestion/preparation pipelines [182, 280, 120] because of their goal (data preparation) and

the critical focus on efficiently delivering data for training. However, these pipelines are far

more general in nature (e.g., can even run user-defined functions [182]) and can be very large

(e.g., serve data at TB/s [280]), which makes them unsuitable for running inside the COS. In

HAPI, the main difference is that the feature extraction phase is part of the DNN which, while

limiting the knobs available, allows us to focus on accelerating each separate application.

5.8 Concluding Remarks

In this chapter, we proposed a solution to alleviate the network bottleneck while training

machine learning models in the cloud. Specifically, we identified transfer learning (TL) as a

natural fit to benefit from the recent evolution in the computational capabilities of disaggre-

gated cloud object stores. We show how to leverage the unique structure of TL to mitigate

the cloud network bottleneck and maximize the use of the scarce computational resources

inside the object store. The main insight is to carefully split the TL application during or

95

Chapter 5. Cloud Object Stores for Faster Transfer Learning

right after feature extraction. This can reduce network transfers and decouples the training

and feature extraction phases, facilitating the use of batch adaptation in the object store. We

combine these insights into HAPI, a processing system for TL that spans the compute and the

object store tiers while remaining transparent to the user. We show up to 11× improvement

in application runtime and up to 8.3× reduction in data transfers while utilizing 100% of the

GPU memory on the object store.

96

6 Federated Learning: The Case of Gen-
erative Adversarial Networks

In this chapter, we consider training in the federated learning (FL) setup. We tackle a challeng-

ing class of ML techniques: generative adversarial networks (GANs). The goal of a GAN is to

learn to generate new data with the same statistics as a training set. Existing approaches to

distribute GANs either (i) fail to scale, for they typically put the two components of a GAN (the

generator and the discriminator) on separate machines, inducing significant communication

overhead, or (ii) they face GAN training specific issues, exacerbated by distribution.

To address these issues, we present FEGAN, a system for distributing GANs over hundreds

of devices, addressing three main issues that face training GANs: mode collapse, vanishing

gradients, and learning divergence. Essentially, we co-locate a generator with a discriminator

on each device (addressing the scaling problem) and have a server aggregate the devices’

models using balanced sampling and Kullback-Leibler (KL) weighting mitigating training

issues and boosting convergence.

6.1 Introduction

GANs enable learning the statistical distribution of a target dataset and generating new sam-

ples from that dataset on demand. This feature can be used in a wide range of applica-

tions, such as generating pictures from text descriptions [209], producing videos from still

images [241], or increasing at will an image resolution [153]. Other applications, such as

DeepFakes generation [159], are as impressive as critical for society.

At the core of a GAN lie two deep neural networks: the generator and the discriminator. They

confront each other in a game: the generator aims at generating data that looks real (i.e.,

coming from the real data distribution) to feed the discriminator. The training stops when

the latter can no longer distinguish real data from the generated one. The generator has then

captured the data distribution and has reached the point where it can generate new samples.

Training GANs is resource and time consuming. For instance, it takes up to 48 hours to train

a GAN to learn the distribution of a 512x512 image dataset on Google TPUs v3 devices [39].

97

Chapter 6. Federated Learning: The Case of Generative Adversarial Networks

MNIST Fashion-MNIST CelebA ImageNet
Models

0.0

0.1

0.2

0.3

0.4

0.5

T
hr

ou
gh

pu
t

(e
po

ch
s/

se
c) Centralized

Distributed

(a)

10 20 40 60 80
Number of Devices

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
hr

ou
gh

pu
t

(e
po

ch
s/

se
c) Distributed GAN

(b)

Figure 6.1: (a) A Parameter server-based deployment [101] with one generator and distributed
discriminators (on 21 machines) outperforms the centralized approach. Yet, (b) it does not
scale due to communication bottlenecks.

Considering the number of potential applications, it is then of paramount importance to im-

prove this training time. One obvious way to scale a system is to distribute the computing load

on multiple devices. MD-GAN [101] has been recently proposed as a way to distribute GANs.

MD-GAN leverages a single generator (at a central location) and distributes the discriminator

across multiple devices. A similar architecture is also adopted by [273]. Such an architecture

follows the celebrated parameter server model [157], where the server is the generator, and the

workers are discriminators. Figure 6.1a illustrates the benefit of such an architecture with 21

machines on four datasets (MNIST [152] and Fashion-MNIST [276], often used as baselines,

and CelebA [166] and ImageNet [65], two state-of-the-art datasets for vision applications).

Clearly, distributing the training improves the system throughput, defined as the number of

epochs (the processing of all data samples in the dataset) the system handles per second. Yet,

due to the presence of a single centralized generator, this architecture does not scale, i.e.,

adding devices does not improve the throughput, as illustrated in Figure 6.1b. This scalability

bottleneck is due to the huge volumes of data to be transferred over the network, essentially to

synchronize the generator and the multiple discriminators, making the central generator a

bottleneck. Indeed, there is a huge room for improvement here.

Another architecture for distributed training is federated learning (FL) [176], in which training

happens on the edge devices that own private data, assisted by a central server. Combin-

ing GAN training with this architecture can yield impressive applications on edge devices,

including text-to-image translation and generating new human poses. Yet, approaches that fol-

lowed such an architecture for GAN training (e.g., running diagnostics [23] or for data privacy

goals [235]) also reported difficulties due to learning divergence, vanishing gradients, and

mode collapse problems: learning divergence happens when neither the generator nor the dis-

criminator reaches its goal, i.e., Nash equilibrium is not reached [20]. A second salient problem

is vanishing gradients, which occurs when the discriminator is much more powerful than the

generator, which, in this case, always fails to generate convincing samples for the discrimina-

tor, where the feedback from the discriminator does not help the generator to learn [185]. Last

but not least, the problem of mode collapse happens when the generator learns to generate

98

6.2 Background

only a few classes of data input rather than learning the true distribution of data [46]. Such

problems manifest clearly in the FL context. For instance, the server cannot communicate

with all devices in all rounds for scalability reasons; some form of device sampling is needed.

Yet, the sampling strategy should not be uniform because of the data distribution skewness

on the devices hosting the GAN model. Unfortunately, such data skewness can easily lead to

mode collapse. Thus, the mere application of the FL approach [265, 257, 254] to GANs training

is bound to failure [100] or underperformance, as we shall confirm empirically.

To overcome the aforementioned challenges, we introduce FEGAN, a distributed system that

enables GAN training to scale and cope with GAN-specific issues such as mode collapse,

vanishing gradients, and learning divergence. Our main contributions are three-fold.

1) We revisit the FL paradigm, traditionally dedicated to deep networks, to make it suitable

for GANs. Essentially, we fully distribute both the generator and the discriminator so that a

private GAN can be locally trained on each device. This distribution scheme helps scale the

system and prevent the vanishing gradients problem, as we show in Sections 6.5 and 6.6.

2) We design mechanisms to make FEGAN resilient to GAN-specific issues. In particular, we

devise two techniques to resist the mode collapse and the learning divergence problems in a

distributed setup. FEGAN prioritizes updates from some devices over others, using Kullback-

Leibler (KL) weighting scheme, and it carefully schedules the application of devices’ updates

on the global trained model, using the balanced sampling scheme. Both schemes not only

boost the learning quality but also help save compute time and communication resources.

FEGAN is tolerant to devices’ heterogeneity in terms of memory and computing power and

server and network failures through periodic checkpointing of the learning state.

3) We conduct an extensive experimental evaluation of FEGAN and compare it to a state–

of–the–art GAN distribution approach (MD-GAN), as well as with a centralized approach

and a baseline application of federated learning to GANs. Our code is publicly available

at https://github.com/LPD-EPFL/FeGAN.

6.2 Background

6.2.1 Generative Adversarial Networks

A GAN [84], made of a generator G and a discriminator D, targets the learning of a dataset

distribution in space X , where x ∈ X follows a distribution probability Pdata. Figure 6.2 depicts

a typical GAN architecture. The generator is modeled by the function Gw : Rℓ −→ X , where w

contains the parameters of its neural network Gw , and ℓ is fixed. Similarly, for the discriminator

Dθ : X −→ [0,1], where Dθ(x) is the probability that x is a data from the training dataset, and θ

contains the parameters of the discriminator Dθ. The objective consists in finding the parame-

ters w∗ for the generator: w∗ = argminw maxθ(Aθ+Bθ,w), with Aθ = Ex∼Pdata

[
logDθ (x)

]
and

Bθ,w = Ez∼N ℓ

[
log(1−Dθ (Gw (z))

]
, where z ∼N ℓ means that each entry of the ℓ-dimensional

99

https://github.com/LPD-EPFL/FeGAN

Chapter 6. Federated Learning: The Case of Generative Adversarial Networks

z ~ N(0,1)

Dataset

Generator

Discriminator

feedback

Real or
Fake?

Figure 6.2: A typical GAN architecture. The generator generates data (from a noisy signal) that
looks like real data. The discriminator tries to differentiate between real and generated data.
Both networks learn simultaneously from the feedback, typically using a backpropagation
algorithm [107].

random vector z follows a normal distribution with fixed parameters. In this equation, D

adjusts its parameters θ to maximize Aθ, i.e., the expected good classification on real data

and Bθ,w , the expected good classification on the generated data. G adjusts its parameters

w to minimize Bθ,w (w does not have impact on A), which means that it tries to minimize

the expected good classification of D on generated data. This competitive scheme ends, if

convergence occurs, to the learning of the dataset distribution Pdata.

6.2.2 Distributed GANs

One way to distribute GANs training is to follow the celebrated parameter server model (see

Section 2.3.1), as in, e.g., [273, 101]. This setup decouples the generator and the discrimina-

tor by having a single generator placed on the central server. Discriminators are, however,

dispatched on devices and access local data. This setup reduces the processing load on the

devices but also results in more network communication in order to maintain the generator-

discriminator game. To avoid the mode collapse problem [46], some approaches periodically

swap discriminators between devices in a peer-to-peer fashion, essentially to augment the

diversity of the data used by the discriminators. In this chapter, we take another route to

distribute GANs: we follow the federated learning model (see Section 2.3.3).

6.3 The FEGAN Design and Implementation

In this section, we first provide the system setup and an overview of FEGAN. Then, we focus

on our design choices, which make FEGAN scalable and resilient to GAN training issues, and

100

6.3 The FEGAN Design and Implementation

G
D

G
D

G
D

G
D

@ 1rst
round:

 data
skew

...

Central Server

Devices

Data

Aggregator

Sampler Load
Controller

Persistent
database

G D

@ 1rst
round:

 device
capabilities

checkpoint

Figure 6.3: FEGAN architecture: D and G are co-located on all devices. Dashed lines denote
the communication of metadata about devices’ datasets and specifications. Data across
devices might be unbalanced and skewed.

the system aspects of FEGAN.

6.3.1 Overview

FEGAN revisits the general federated learning (FL) paradigm [139], which consists of (1) a

central server (hereafter, server) hosting the up-to-date global model and (2) a set of computing

devices that can be mobile phones or arbitrary computing nodes (hereafter called devices).

Figure 6.3 depicts the FEGAN architecture. The training model contains two neural networks:

the generator G and the discriminator D. The server orchestrates the communication load by

selecting which devices should contribute to updating the model at a given round. In each

round, the server chooses a constant fraction C of all the devices. The server is also in charge

of aggregating the computation from devices to update the global model. Each group of local

iterations E (on devices), ending with a global model update, is called an FL round (or simply

round). Note that each worker uses a local batch size B in each of these local iterations. The

server may instruct weak workers to use less number of batches in order to avoid the stragglers’

problem, as discussed in Section 6.3.4. On top of this, we design training and system specifics

to reach our scalability and resilience goals, as we show later.

Each device owns a GAN locally, composed of a local generator and a local discriminator.

The input data to the global GAN is the aggregate of the data stored locally on each device.

We assume that the data stored on each device remains local: only the output of the local

computation is sent to the server. Given its local nature, data might be unbalanced and

possibly not identically nor independently distributed (non-iid) across devices. For this, we

allow the server to gather metadata from devices regarding the number of local samples per

class. To satisfy this step, we assume each device can label its data or at least can model

its data distribution, using generative or clustering schemes like Gaussian Mixture Models

(GMM) [247, 210] or K-means [75].

Devices only communicate with the server. As they do not communicate with each other, they

101

Chapter 6. Federated Learning: The Case of Generative Adversarial Networks

do not need to trust each other. Communication links between the devices and the server

could be unreliable and asymmetric with limited bandwidth [139]. The server can keep the

devices’ updates secure using off–the–shelf secure aggregation protocols [35].

G
D
G
D

Central
Server

Devices
10 10 0 0 10 0 0 0 0 0 10 0 0 5 0 5

G
D

<G,D> <G
,D>

(a) FL round 1 starts

G
D
G
D

Central
Server

Devices
10 10 0 0 10 0 0 0 0 0 10 0 0 5 0 5

G’
D’

<G 1
,D 1

> <G
3 ,D

3 >
G’=w1G1+w3G3
D’=w1D1+w3D3
w1=0.54, w3=0.46

(b) Server updates G and D

G
D
G
D

Central
Server

Devices
10 10 0 0 10 0 0 0 0 0 10 0 0 5 0 5

G’
D’

<G
’,D

’> <G’,D’>

(c) FL round 2 starts

G
D
G
D

Central
Server

Devices
10 10 0 0 10 0 0 0 0 0 10 0 0 5 0 5

G’’
D’’

<G
2,

D 2>

<G
4 ,D

4 >

G’’=w2G2+w4G4
D’’=w2D2+w4D4
w2=0.46, w4=0.54

(d) Server updates G and D

Figure 6.4: A running example of how FEGAN works. Assume a dataset of 50 samples in 4
classes, distributed on 4 devices with C = 0.5 (where C is the fraction of devices sampled by
the server in each round). Each device has an array of 4 entries depicting how many samples
this device has from each class. In the first round, the server chooses device 1 (with the highest
number of samples) and device 3 (with samples from a class not represented by device 1).
When the devices reply, the server updates the model, applying KL weighting to their replies.
In the second round, the server chooses the unsampled devices to maintain fairness among
devices.

6.3.2 The FEGAN Algorithm

In this section, we explain the high-level algorithm of FEGAN. Figure 6.4 depicts a running

example of FEGAN.

Initialization. Before starting the training process, each device informs the server of its local

data distribution (typically how many classes and how many samples per class it owns locally).

Such a step could be repeated should the dataset change during the training process. The

goal of collecting metadata from all devices is for the server to account for the data imbalance

across devices.

102

6.3 The FEGAN Design and Implementation

To this end, the server computes the Kullback–Leibler (KL) divergence [146, 145] scores, which

reflect the degree of divergence of the devices’ local data distribution from the global distribu-

tion. In particular, the KL divergence of device k is computed as follows:

DK L(Pk ||Q) = ∑
x∈X

Pk (x) log(
Pk (x)

Q(x)
), (6.1)

where Pk is the normalized vector of samples per class x at device k, Q is the normalized

vector of the total number of samples per class (in the global dataset), and X is the collection

of all classes. For instance, Pk (x) = nkx/nk , where nkx is the number of samples of class x at

device k, and nk is the total number of samples at device k. The server then assigns a score sk

to each device k as follows:

sk = nk

n
×DK L(Pk ||Q), (6.2)

where n is the total number of samples in the dataset.

All devices also send to the server their capabilities in terms of memory size and compute

power available for training. The server then uses this information to choose a training load (in

terms of batch size and local number of iterations) for each device. As for the current version

of FEGAN, the server follows a linear model to compute this load, which we assume fixed

throughout the training process. Finally, the server initializes the model, i.e., G and D and

selects an optimizer and a loss function to use.

Server operation. The server starts each FL round by choosing a group of devices, using

balanced sampling (Section 6.3.3), to update collectively the model state. The server then asks

the sampled devices to contribute to the current round and assigns the pre-computed training

load to each device. At the end of an FL round, the server collects the updates of the devices

and aggregates them using the KL weighting scheme (Section 6.3.3). The server also weighs

such updates by the devices’ respective assigned batch sizes (Section 6.3.4). The server repeats

this procedure till convergence.

Device operation. Devices remain idle until they are contacted by the server to participate in

one FL round. A device selected for a given round receives the updated model state (of D and

G) and the values for E , the number of local training iterations to be done by this device, and

B , the training batch size. After running E local training iterations, each device sends back the

updated model to the server.

6.3.3 FEGAN Design Choices

Co-locating networks. Training vanilla deep neural networks with backpropagation some-

times encounters the vanishing gradients problem. This problem happens when the computed

gradients are extremely small, hindering the update of the network’s parameters and hence,

103

Chapter 6. Federated Learning: The Case of Generative Adversarial Networks

stopping the learning. In the context of GANs, such a problem usually happens due to having

a very strong discriminator [185]. Given that training GANs is naturally formulated as a game

between two players/networks, a player gains strength with more experience (i.e., with more

training iterations). This strength then reflects how good the player is (either the generator or

the discriminator) in doing its task. In the situation of a powerful discriminator, the generator

fails to learn as it cannot get much information from the discriminator’s feedback. As a result,

the discriminator always wins in this case, i.e., the generator always fails to generate fake sam-

ples that can trick the discriminator. In the centralized setup, this problem can be mitigated

by choosing the correct set of hyperparameters and the loss functions [84, 168]. Yet, this is not

sufficient in the distributed setup; it is also crucial to balance the strength of both networks.

FEGAN solves this problem by co-locating the discriminator with the generator so that both

networks can be trained simultaneously, increasing their strength at the same time.

Importantly, networks co-location reduces the communication overhead compared to other

designs that centralize the generator in the server while distributing the discriminators on

the devices [101, 23]. In the latter case, the distributed discriminators should periodically

send their feedback, whose size is the same as that of the input space that is desired to be

learned (e.g., pixels of an image), to the centralized generator. By co-locating networks, FEGAN

drastically reduces such an overhead, as we show in Section 6.6.

Kullback-Leibler (KL) weighting. Data is more likely to follow different distributions on

different devices and hence, using vanilla averaging of devices’ local models might lead to

learning divergence [163]. Vanilla federated averaging (FedAvg) [176] is also not sufficient

for convergence in some cases [281] as it does not take data distribution discrepancies into

consideration while weighting the devices’ updates.

FEGAN mitigates learning divergence by relying on Kullback-Leibler (KL) weighting, which

is applied as follows. Upon the receipt of the updated models from the devices, the server

weighs them by applying the softmax function on the KL divergence score of each device. More

specifically, the model received from device k is given a weight wk as follows:

wk = exp−sk∑
i∈I exp−si

, (6.3)

where sk is the pre-computed KL score of device k (see Equation 6.2), and I is the set of

devices contributing to the current FL round. The softmax function acts as a normalization1

to the weights given to the devices’ updates so as to make these weights sum to 1. In other

words, the output of the softmax function (i.e., the weights) can be seen as the contribution

of each device to updating the global model state. The negative sign given to the score is to

penalize the devices with more divergence from the global data distribution as their updates

are less useful than the other devices’ updates. Such a design of a weighting scheme is crucial

1We experimented with other normalization schemes (e.g., linear averaging and step-wise averaging), and we
found that the softmax normalization gives the best results.

104

6.3 The FEGAN Design and Implementation

to learning the global distribution of data.

Balanced sampling. Mode collapse [46] is arguably the hardest problem that one can en-

counter while training a GAN. Such a problem happens when the generator learns only

partially the data distribution and hence, can only generate data from a limited number of

classes. In our distributed, uncontrolled environment, the situation could be exacerbated due

to the skewness of data distribution on the devices. Our balanced sampling scheme aims at

solving this problem.

At each FL round, the server samples C ×nd devices to do the training procedure, where C

denotes the fraction of devices doing the training in each round with C ∈]0,1], and nd is the

total number of devices. Note that unlike vanilla FL (which relies on random sampling [139]),

in FEGAN, the server samples devices with specific data distribution to avoid falling into mode

collapse. The novelty of FEGAN’s sampling is that it favors (1) devices with more samples,

(2) devices with a balanced dataset (i.e., almost equal number of samples per class), and

(3) unsampled devices in the previous rounds. Thus, our sampling technique always ensures a

balanced number of samples per class in the updates applied to the model (G and D). Such a

technique plays an important role in the robustness and the convergence speed, as we show

in our evaluation of FEGAN.

Technically, FEGAN applies balanced sampling as follows: (1) The server maintains a priority

queue with the number of accumulated samples per class from sampled devices (from previ-

ous rounds) stored in it. (2) At each round, the server picks the class with the least number of

accumulated samples and chooses a device that declares to have this class to include it in the

new round. (3) The server accounts for the samples from other classes that will be included

in the new round (due to including the chosen device) and updates the queue accordingly.

(4) The server repeats this procedure until it samples C ×nd devices. It then sends the updated

state of the model, i.e., D and G networks to the sampled devices.

6.3.4 FEGAN System Aspects

Handling heterogeneity. Devices in the wild are not equal in many respects, including their

hardware specifications (e.g., compute power and memory) and the available network band-

width. Tolerating device heterogeneity in an optimal manner is an open problem with many

heuristics [5, 163]. Because we are targeting GANs training, it is crucial to design a solution

that handles device heterogeneity without falling into GAN-specific problems. For instance, a

solution that prefers sampling strong devices over weak devices e.g., [186], can lead to mode

collapse if the weak devices own data classes that are not represented by the strong devices.

FEGAN handles this issue by controlling the training load given to the contributing devices

in one round. More specifically, the central server dictates the number of iterations and the

batch size used for local training on devices. The server chooses less number of iterations

105

Chapter 6. Federated Learning: The Case of Generative Adversarial Networks

and smaller data batches for weaker devices. This helps mitigate the straggler issue [157],

which happens with synchronous training systems when some devices are significantly slow,

degrading the whole system throughput. In the aggregation phase, devices’ updates are also

weighted based on the load given to each of them. Such weights are multiplied by the KL

weights (see Equation 6.3).

Fault tolerance. The central server represents a single point of failure: if it crashes, without

any fault tolerance technique, the whole learning stops, as devices do not communicate with

nor trust each other. FEGAN uses periodic checkpointing for the server’s fault tolerance.

Initially, FEGAN starts multiple servers, which number is configurable, yet, only one of them

acts as a primary, and the rest are backups. Only the primary communicates with the devices

while the other servers remain idle. After each FL round, the primary stores the learning state

in a persistent database. The learning state includes the weights of both networks, G and D,

the optimizer, the number of epochs passed, the data distribution on the devices, the devices’

capabilities, and the history of the chosen devices in all previous rounds.

In the case of the crash of the primary server, a backup server takes over. First, it loads the

latest learning state from the persistent database and announces to the devices that it is the

new primary. The new primary then starts a new round by choosing a new set of devices to do

the training.

Network failure is detected through a standard timeout mechanism. Such a failure could be

either due to slow communication, network partition, or a crashing device. In the event of a

failure, the server calls for completion or abortion of the current round. Such a decision relies

on the server configuration and the learning state. The server then records the actual devices

that participated in this round rather than the intended set of devices to participate.

Implementation. We implemented FEGAN on PyTorch [194]. We integrated our implementa-

tion with already-existing public implementations of different GAN architectures implemented

for training on one machine. We now describe the communication abstractions we imple-

mented to allow the distribution of GAN via FEGAN. Our source code is available at [93].

We rely on the notion of PyTorch distributed groups.2 Any invoked communication abstraction

takes as an input a group defining the set of devices that will be involved in this communication.

As we rely on a centralized architecture (see Figure 6.3), we allow only the centralized server to

create groups to avoid any conflicts with the devices and hence, achieve strong consistency on

the group formation.

We introduce two abstractions that can be used off–the–shelf by both the server and the

devices: multicast model and the average models. Multicast model is used by the server at the

beginning of any FL round to multicast the current state of the model to a group of devices

2https://pytorch.org/docs/stable/distributed.html

106

https://pytorch.org/docs/stable/distributed.html

6.4 Performance Evaluation Methodology

(similar to map in MapReduce notation [64]). To comply with PyTorch distributed runtime,

the chosen devices should also invoke this abstraction (i.e., multicast model) to receive the

models from the server. We use the NCCL backend of PyTorch [188] so that the models stored

on a GPU need not to be copied to the CPU memory before being sent back to the devices and

hence, saving time and memory.3

The second abstraction, average models, is used at the end of an FL round (similar to reduce in

MapReduce notation). Typically, this function is invoked by the server to aggregate devices’

updates. As we consider synchronous training, the server waits for all contributing devices

to send back their results before proceeding to the next round. If our weighting technique is

not activated, we use the reduce operation from the distributed backend with ReduceOp.SUM

as a reduce operator and then divide by the number of contributing devices to this round

to get the average of the updates. We use this operation as it is always faster than the other

operations. Otherwise, we use the gather operation to first collect all the updates from the

devices and then apply the weights calculated by the server. The main problem with the latter

operation is that it does not work on GPUs,4 and hence the updates need to be first copied to

the main memory before sending them to the server. At the other end, the server collects all

the updates, copies them to the GPU memory, and then calculates the weighted average to

get the new model. We could not overcome this inherent problem of the PyTorch distributed

backend as gather is the only appropriate abstraction we can use to implement our average

model abstraction while applying weighted averaging.

Finally, we report on the number of lines of code (LoC) required to port two publicly available5

GAN implementations to FEGAN. Factoring out the common code for dataset partitioning,

group initialization, and performance measurements (e.g., FID calculation), it takes less than

70 LoC (which constitutes around 5% of the whole code) to port a GAN implementation

to FEGAN.

6.4 Performance Evaluation Methodology

In this section, we describe our experimental setup, baselines, and the configurations we used

to evaluate FEGAN.

Testbed. We evaluate FEGAN on the Grid5000 platform [89], using machines from the same

cluster. Each machine has 1 CPU (Intel Xeon Gold 6126) with 2 cores, 16 GiB RAM and 2 Gbps

Ethernet, and one Nvidia Tesla P100 GPU. Unless stated otherwise, we run experiments on 80

devices. This number reaches up to 176 in some experiments.

3This is only true if the used abstraction is implemented by NCCL; otherwise, we use the GLOO [118] backend.
4https://pytorch.org/docs/stable/distributed.html.
5https://github.com/eriklindernoren/PyTorch-GAN.

107

https://pytorch.org/docs/stable/distributed.html
https://github.com/eriklindernoren/PyTorch-GAN

Chapter 6. Federated Learning: The Case of Generative Adversarial Networks

Evaluation metrics. Although evaluating GANs has been an issue for ML practitioners, requir-

ing human judgment to assess the quality of the generated data [37, 168, 173], robust metrics

are now commonly used to assess the performance of GANs [273, 101, 147] such as Frechet

Inception Distance (FID). We evaluate FEGAN observing two main metrics: FID to assess

the GAN convergence (or quality of the learned distribution) and throughput to measure

the system’s efficiency. We chose FID as it is one of the most stable, robust, and widely-used

metrics for GAN [37]; it was the one used by our predecessors [101, 273]. Besides, FID has an

official implementation in the popular ML frameworks, including TensorFlow and PyTorch.

1. FID is a metric that computes the distance between feature vectors of real images and

generated ones. The score reflects the statistical divergence between the generated images and

the raw images using the Inception-v3 model [232], primarily designed for image classification.

The lower the score, the better (e.g., a 0.0 score indicates that the two groups of images are

statistically identical).

2. Throughput defines the number of updates the server can process per second. Such a

metric reflects the scalability of the system and the efficiency of the communication.

Note that we observe training convergence with time, the number of training epochs, and

FL rounds. However, in our experiments, we maintain a one-to-one mapping between the

number of epochs and the number of FL rounds, so we always show only one of them. The

shown results are the average of 6 runs per experiment; we omit error bars for better readability.

Datasets. We evaluate FEGAN with three datasets: MNIST [152], Fashion-MNIST [276], and

ImageNet [65]. In our evaluation, we focus on image generation not only because it is very

challenging and resource-demanding but also due to its multiple applications in the real

world. MNIST and Fashion-MNIST both describe grey-scale images of 10 classes representing

handwritten digits and clothes, respectively. Each dataset has 28x28 60K training images and

10K testing images; we use the latter for computing the FID score. ImageNet [65] is a large

dataset with around 14M images of a 256x256 resolution, dispatched into more than 21K

classes. ImageNet classification challenges usually use a subset of this dataset [213, 230]. We

use a subset of ImageNet with 100K images, distributed among 200 classes with 500 samples

per class. Reducing the dataset only allows for faster convergence. Unless otherwise stated,

we use Fashion-MNIST as a default dataset throughout our evaluation.

Non-iidness. In all the considered datasets, the data is balanced: the average number of

samples per class is almost the same in all classes. To our knowledge, there is no publicly

available dataset with inherent non-iidness or imbalanced data. We designed a distribution

engine to emulate imbalanced and skewed distributions of data among devices.

Our engine accepts two input parameters: max_class and max_samples. The former defines

the maximum number of classes any device can have, and the latter defines the maximum

108

6.4 Performance Evaluation Methodology

number of samples per class on any device. For each device, the engine generates a random

number rc ∈ [1, max_class×i
n], where i is the index of the device, i.e., i ∈ [1,n] and n is the total

number of devices. rc defines the number of classes this device will have. Then, the engine

randomly samples rc classes from the dataset. Similarly, the engine (at each device) generates

a random number rs for each selected class with rs ∈ [1,min(i 2, max_samples×i
n)]. Finally, the

engine randomly samples rs samples for each selected class from the dataset. Note that the

engine generates a different value for rs per class. Note that all our random choices and

samplings follow the uniform distribution. Using this engine, we managed to emulate several

cases of data imbalance and non-iid distribution of data among devices, including the typical

non-iid workloads reported before in the literature [101, 215, 273, 176].

GAN architecture. Without loss of generality, we evaluate FEGAN with two popular GAN

architectures. Since FEGAN is GAN-internals agnostic, our work can be ported to any other

GAN architecture. The two experimented architectures are: Least Squares Generative Ad-

versarial Networks (LSGAN) [173] for the MNIST and Fashion-MNIST datasets and a Deep

Convolutional Generative Adversarial Network (DCGAN) [205] for the ImageNet dataset. Both

architectures are lightweight: they do not require more than 3 MBs of memory.

Hyperparameters. Unless otherwise stated, we use the following hyperparameter values in

our experiments. We set E , the local number of iterations per each device, to 30, C , the fraction

of devices chosen each round (by the server) for the training, to 0.025, B , the batch size, to

50, and FID batch size, the number of samples used to calculate the FID, to 10K. We discuss

the effect of changing the values of E and C in Section 6.6. We monitor the progress of FID

every 1000 training iterations (not to confuse with epochs nor with FL rounds). We use the

Adam optimizer [136] for both the generator and the discriminator with an initial learning

rate of 0.0002 and values for betas 0.5 and 0.999. As instructed in their original papers, we use

Mean Square Error (MSE) loss function with LSGAN [173] and Binary Cross-Entropy (BCE)

with DCGAN [205].

Baselines. We compare FEGAN to three competitors:

1. Centralized GAN. We use a centralized GAN as a baseline to be able to compare the resulting

FID with FEGAN as well as to illustrate the throughput gain of distributing the computation.

We train a GAN on a single machine with two GPUs. The hyperparameters are set to the same

value as FEGAN, including the batch size for fairness.

2. Parameter Server-based GAN. Existing approaches to distribute GANs rely on the parameter

server architecture [157] to handle the distributed training [101, 273]. Note that the evaluation

of such systems (in their original papers) has been conducted by emulation. Since none of

these systems is open-sourced yet and rely on the same architecture (with minor nuances),

we picked MD-GAN [101] as a representative of this class of systems. Like FEGAN, MD-GAN

109

Chapter 6. Federated Learning: The Case of Generative Adversarial Networks

assumes that data on devices is never shared with any other machine. We implemented

MD-GAN in our distributed framework using the same networking abstractions, models,

and datasets that we used in FEGAN. For fairness, we put tensors on GPUs and handle com-

munication using the same GPU-to-GPU abstractions. We also use the best values for the

hyperparameters as instructed by the authors in their original paper [101].

3. Federated Averaging (FL-VANILLA). We compare to a strawman FL setup, where discrim-

inators and generators remain on devices. Such devices send gradient updates to a central

server that hosts the up-to-date generator and discriminator. This constitutes the FL baseline,

inspired by the FedAvg algorithm [176], which we coin FL-VANILLA.

FEGAN configurations. We report on all the variants of our FEGAN system with all combina-

tions of balanced sampling and KL weighting techniques being used or not. We abbreviate

sampling with s and weighting with w in the figures with 0 means disabled and 1 means en-

abled. For example, s = 1, w = 0 denotes FEGAN deployment that uses our balanced sampling

scheme but not KL weighting. This is completely independent of the distribution of data

among devices. Note that setting s = 0, w = 0 is equivalent to employing FL-VANILLA.

6.5 Convergence Comparison

In this section, we show the quality of the data generated by FEGAN, measured by FID, as

well as the convergence behavior compared to other baselines in both iid and non-iid data

settings.

0 1000 2000 3000 4000 5000 6000
Time (sec.)

50

100

150

200

250

300

FI
D

Centralized
MD-GAN
FeGAN

(a) Time

0 300 600 900 1200 1500
Epochs

50

100

150

200

250

300

FI
D

Centralized
MD-GAN
FeGAN

(b) Training epochs

Figure 6.5: Convergence of FEGAN compared to the Centralized approach and MD-GAN. We
distributed the Fashion-MNIST dataset identically and independently (iid) on 80 devices for
the distributed deployments. FID metric: the lower, the better the generated samples.

6.5.1 Convergence in iid Settings

Comparison with competitors. We run a head-to-head comparison with a centralized GAN

and MD-GAN w.r.t. convergence performance over time and the number of training epochs.

110

6.5 Convergence Comparison

In this experiment, we distribute data identically and independently (iid) over devices in the

distributed deployments, namely MD-GAN and FEGAN. As we focus on the benefit obtained

from FEGAN architecture, namely the fact that both the generator and the discriminator are

distributed, we voluntarily disable the weighting and sampling schemes in this experiment (s =
0, w = 0). Indeed, distribution leads to communication overhead, which FEGAN minimizes (by

the co-location of the generator with the discriminator on all devices in addition to sampling

a limited number of devices for training in each round).

Results displayed in Figure 6.5 show that FEGAN significantly outperforms both competitors.

In both figures, we observe that FEGAN converges to an FID value of around 50, whereas

the other approaches converge to an FID value of around 100. Compared to the centralized

deployment, FEGAN achieves a better FID in less time (Figure 6.5a). At the first glance, this

result looks counter-intuitive. Yet, this is because, in FEGAN, the server aggregates updates

based on more data samples (i.e., collected from more devices), highlighting the advantage

of distributing the training process.6 The distribution also gives FEGAN a more diverse view

of the dataset and ensures better convergence than in the centralized case [282, 260]. This

result is consistent with the observations reported before in the literature [68, 108]. Since

MD-GAN relies on a single generator at the server, it fails to benefit from the data diversity

on multiple devices and hence achieves a performance similar to the centralized approach.

FEGAN achieves a much faster convergence because the server communicates only with a

fraction of devices in each round as opposed to MD-GAN, where it communicates with all of

them; this enables FEGAN to achieve faster iterations.

The results depicted in Figure 6.5b show that FEGAN consistently outperforms MD-GAN.

However, the centralized approach converges faster than the distributed approaches in the

first few hundreds of epochs. After that, FEGAN achieves a better FID value. The reason for

this behavior is that in the first few epochs, FEGAN contacts different devices per round, and

hence, the server aggregates updates from different data, trying to adapt both networks (the

generator and the discriminator) to this data, which leads to the observed slow start. In the

subsequent iterations, as the weights of both networks become more stable, FEGAN leads to

better-generated data (and hence, a better FID).

FEGAN configurations. We now assess the impact of the core mechanisms of FEGAN, namely

the impact of s and w in an iid setting.

Figure 6.6 displays the results of different FEGAN deployments with all combinations of

enabling and disabling the balanced sampling and the KL weighting schemes. We observe

that in terms of convergence speed (w.r.t. both time and training epochs), they perform

approximately the same. FEGAN (with s = 1, w = 1) performs slightly better and provides

quickly a smaller FID. Those results demonstrate that, while we aimed at sustaining non-iid

6Note that we could not arbitrarily increase the training batch size on the centralized setup, which is prone to
memory constraints.

111

Chapter 6. Federated Learning: The Case of Generative Adversarial Networks

0 1000 2000 3000 4000
Time (sec.)

50

100

150

200

250

300

FI
D

s=0,w=0 (FL-vanilla)
s=0,w=1
s=1,w=0
s=1,w=1 (FeGAN)

(a) Time

0 300 600 900 1200 1500
Epochs

50

100

150

200

250

300

FI
D

s=0,w=0 (FL-vanilla)
s=0,w=1
s=1,w=0
s=1,w=1 (FeGAN)

(b) Training epochs

Figure 6.6: Convergence of a few FEGAN configurations in a distributed setup with the Fashion-
MNIST dataset distributed identically and independently (iid) on 80 devices.

data when designing our system, FEGAN is equally good in iid setups. This makes FEGAN an

excellent system across data distributions.

0 400 800 1200 1600 2000
FL Rounds

30

60

90

120

150

FI
D

FL-vanilla
FeGAN

(a) Convergence with FL rounds

0 1000 2000 3000 4000
Time (sec.)

20
40
60
80

100
120
140
160

FI
D

FL-vanilla
FeGAN

(b) Convergence with time

max_class=20 - max_samples=3000

0 400 800 1200
FL Rounds

30

60

90

120

150

FI
D

FL-vanilla
FeGAN

(c) Convergence with FL rounds

0 1500 3000 4500 6000
Time (sec.)

30

60

90

120

150

FI
D

FL-vanilla
FeGAN

(d) Convergence with time

max_class=40 - max_samples=3000

Figure 6.7: Convergence of FEGAN in a distributed setup with MNIST; data is not distributed
identically and independently (non-iid) on devices.

112

6.5 Convergence Comparison

0 400 800 1200 1600
FL Rounds

60

90

120

150
FI

D
FL-vanilla
FeGAN

(a) Convergence with FL rounds

0 1000 2000 3000 4000
Time (sec.)

60

90

120

150

FI
D

FL-vanilla
FeGAN

(b) Convergence with time

max_class=10 - max_samples=2000

0 400 800 1200 1600 2000
FL Rounds

60

90

120

150

FI
D

FL-vanilla
FeGAN

(c) Convergence with FL rounds

0 1000 2000 3000 4000 5000 6000
Time (sec.)

60

90

120

150

FI
D

FL-vanilla
FeGAN

(d) Convergence with time

max_class=40 - max_samples=4000

Figure 6.8: Convergence of FEGAN in a distributed setup with Fashion-MNIST; data is not
distributed identically and independently (non-iid) on devices.

6.5.2 Convergence in Non-iid Settings

In this section, we extensively evaluate the performance of FEGAN in a non-iid setup. We

compare FEGAN in its fully-fledged version (with s = 1, w = 1) to the FEGAN version where the

sampling and the weighting schemes have been disabled (i.e., the FL-VANILLA competitor). We

run these experiments in three different datasets and different data distributions. We control

the data distribution (and hence, the degree of non-iidness and data imbalance) using the data

distribution engine described in Section 6.4. Figures 6.7, 6.8, and 6.9 show the results on the

MNIST, Fashion-MNIST, and ImageNet datasets, respectively, each in two settings where we

vary the maximum number of classes and samples per device. The first two datasets are used

to show the effectiveness of FEGAN on well-known baseline datasets, whereas the ImageNet

experiment shows the performance of FEGAN on a large-scale dataset. As the results show

similar behavior across datasets, we discuss the three figures collectively, highlighting the

main performance gains of FEGAN.

Faster model updates. Our first observation is that FEGAN runs epochs faster, i.e., leading

to a faster convergence than FL-VANILLA.7 The balanced sampling (as compared to random

7Note that we run both systems for the same amount of time per experiment; that is why the lines in all
sub-figures (b) are balanced, unlike sub-figures (a).

113

Chapter 6. Federated Learning: The Case of Generative Adversarial Networks

0 400 800 1200 1600 2000
FL Rounds

240

270

300

330

360

FI
D

FL-vanilla
FeGAN

(a) Convergence with FL rounds

0 2000 4000 6000 8000
Time (sec.)

240

270

300

330

360

FI
D

FL-vanilla
FeGAN

(b) Convergence with time

max_class=200 - max_samples=500

0 400 800 1200 1600 2000
FL Rounds

240

270

300

330

360

390

FI
D

FL-vanilla
FeGAN

(c) Convergence with FL rounds

0 2000 4000 6000 8000
Time (sec.)

240

270

300

330

360

390

FI
D

FL-vanilla
FeGAN

(d) Convergence with time

max_class=200 - max_samples=50

Figure 6.9: Convergence of FEGAN in a distributed setup with ImageNet; data is not distributed
identically and independently (non-iid) on devices.

sampling in FL-VANILLA) of FEGAN favors devices that were not visited in previous rounds,

and hence, it has a higher probability of sweeping over the whole dataset (distributed among

devices) faster than FL-VANILLA. We quantify this throughput gain to 1.27−1.8× with MNIST,

1.57−1.7× with Fashion-MNIST, and 1.9−2.13× with ImageNet. We discuss this observation

in detail in Section 6.6.

Better FID. Not only does FEGAN achieve faster epochs in all datasets, but we also observe

that it converges to a better FID value, compared to FL-VANILLA, after training for the same

number of epochs. This outperformance is enabled by our balanced sampling and KL weight-

ing schemes. The fact that the server adjusts the weight of each device depending on its data

distribution helps achieve a better generation of data (and hence, a lower value for FID), as

opposed to FL-VANILLA, which considers devices equal regardless of the number of classes

and the number of samples per class they hold. This, in turn, enables the server of FEGAN to

consider faster a diverse set of data with a higher probability, contributing to learning faster

the global data distribution.

Convergence gain. To demonstrate the superiority of FEGAN over FL-VANILLA, we compare

the time required to achieve a given FID value (usually the best value achieved by FL-VANILLA)

114

6.5 Convergence Comparison

0 1000 2000 3000 4000
Time (sec.)

60

90

120

150

FI
D

s=0,w=0 (FL-vanilla)
s=0,w=1
s=1,w=0
s=1,w=1 (FeGAN)

Figure 6.10: Convergence of FEGAN with non-iid Fashion-MNIST data distributed on 80
devices, showing all cases of enabling and disabling weighting and sampling schemes.

and call it convergence gain. Results show that the convergence gain of FEGAN over FL-

VANILLA is 1.27−1.57×, 1.71−3×, and 2.75−3.67× when training MNIST, Fashion-MNIST, and

ImageNet, respectively. Beyond the ultimate FID value that a system can achieve eventually,

the convergence gain is an important end–metric for ML practitioners. Such a metric com-

bines the system’s performance aspect (e.g., throughput or latency) and the ML algorithm

performance aspect (i.e., convergence over training epochs).

The less uniform, the more effective FEGAN is. When comparing the first and second rows of

Figures 6.7 and 6.8, we observe that the performance gap between FEGAN and FL-VANILLA is

larger for lower values of max_class. In other words, the effectiveness of FEGAN is even clearer

when each device owns only a few classes from the whole dataset. This result demonstrates

the ability of FEGAN to account for a higher degree of data imbalance over devices; we believe

the latter is a realistic scenario as we do not expect that all classes would be represented on

distributed devices. Figures 6.9c and 6.9d show a real-world scenario, where each device has at

most 50 samples from any of the 200 classes of ImageNet. Results from both figures show that

FEGAN converges faster than FL-VANILLA in terms of both the number of rounds and time.

6.5.3 FEGAN’s Tolerance to GAN-specific Problems

The contribution of sampling and weighting. We evaluate the relative impact of activating

each mechanism (i.e., sampling and weighting) in all datasets. The results for Fashion-MNIST

are depicted in Figure 6.10. Our general observation is that: while using only one mechanism

is enough for FEGAN to achieve a lower FID than FL-VANILLA (where using sampling alone is

slightly better than using weighting alone), using both mechanisms achieves the lowest FID.

115

Chapter 6. Federated Learning: The Case of Generative Adversarial Networks

0 50 100 150 200 250
FL Rounds

0.0

0.2

0.4

0.6

0.8

1.0

1.2

K
L

D
iv

er
ge

nc
e

Balanced Sampling
Random Sampling
IID

Figure 6.11: KL divergence of the real distribution from the distribution seen by the centralized
server. The smaller the KL divergence, the lower the probability of mode collapse.

0 750 1500 2250 3000
Time (sec.)

250

300

350

400

FI
D Dominant Discriminator

FeGAN

(a) Time

0 200 400 600 800 1000 1200
FL Rounds

250

300

350

400

FI
D Dominant Discriminator

FeGAN

(b) Training epochs

Figure 6.12: The co-location of both networks on all devices avoids yielding a powerful dis-
criminator (as in MD-GAN), preventing the problem of vanishing gradients.

Preventing mode collapse. Figure 6.11 shows the KL divergence of the data distribution seen

by the server (over FL rounds) compared to the real data distribution. We compare balanced

sampling (used by FEGAN) to random sampling (used by FL with FedAvg [139]), both with

non–iid data, and the iid case (when data is distributed identically on all devices). The latter

constitutes the optimal baseline in this experiment. On the one hand, the figure shows that

using random sampling with non–iid data will let the server see a diverging distribution

compared to the real distribution of data. On the other hand, balanced sampling of non–iid

data allows the server to see an almost–exact distribution of data (compared to the optimal

case, i.e., with iid data). As demonstrated by previous work [163], the smaller the KL divergence,

the less the probability of experiencing mode collapse. In that sense, FEGAN then shows

resilience to problems caused by non–iid data.

Preventing vanishing gradients. FEGAN co-locates the discriminator with the generator on

all devices so that the training of both networks can happen simultaneously in all training

iterations, allowing both networks to have the same power in confronting each other. To

116

6.6 FEGAN System Performance

24 25 26 27

Number of Devices
0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
hr

ou
gh

pu
t

(e
po

ch
s/

se
c) MD-GAN

FeGAN

Figure 6.13: Scalability of FEGAN with the number of devices.

demonstrate the efficiency of this approach, we run an experiment in which the discrimina-

tor is trained in all iterations, whereas the generator is trained only once each E iterations.

Such a design reflects the setup of having one generator in the central server and multiple

discriminators on the devices, which was proposed, e.g., in [235, 23]. Figure 6.12 shows that

the latter design creates a dominant discriminator that can always defeat the generator, i.e.,

hindering the generator from generating output data that looks real. Yet, the co-location of

both networks on all devices (applied by FEGAN) allows the generator to be powerful enough

to generate such data, as demonstrated by the lower FID values. FEGAN thus clearly avoids

that problem.

6.6 FEGAN System Performance

In this section, we report on the gains (throughput and bandwidth) achieved by FEGAN

compared to existing approaches. In addition, we convey FEGAN’s performance with hetero-

geneous devices and in the case of a server’s crash. The results being similar across datasets,

we only present the results obtained with the Fashion-MNIST dataset unless stated otherwise.

Throughput. We measure the system’s throughput as the number of epochs processed per

second. Figure 6.13 shows the scalability (in terms of throughput) of both MD-GAN and

FEGAN with the number of devices. We observe a stable throughput for MD-GAN, which is

almost non–sensitive to an increasing number of devices. This is because the single generator

on the server has bounded processing capacity regardless of the number of devices interacting

with it. Results show that FEGAN, however, exhibits better scalability: FEGAN’s throughput

increases linearly with the number of devices, fully leveraging the potential of distributing the

training. With 176 devices, FEGAN achieves a 5× throughput gain over MD-GAN. Notably,

this scalability behavior relies heavily on the values of E and C . For instance, we do not expect

FEGAN to scale with C = 1,E = 1 since it will incur the same amount of communication as

with MD-GAN in this case. Hence, the values of C and E largely control whether the bottleneck

117

Chapter 6. Federated Learning: The Case of Generative Adversarial Networks

C= 1
30 ,E=30 C= 1

30 ,E=60 C= 1
15 ,E=30 C= 1

15 ,E=60 C= 2
15 ,E=60 C= 2

15 ,E=90
0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
hr

ou
gh

pu
t

(e
po

ch
s/

se
c)

MD-GAN
FeGAN

Figure 6.14: The impact of the values of E and C (60 devices).

is the communication or the computation.

Figure 6.14 presents the throughput results obtained with different values of E , the local

number of iterations performed on each device in one FL round, and C , the fraction of devices

chosen by the server in each round, for FEGAN and MD-GAN (as a baseline) in a 60–device

configuration. We observe that the performances of FEGAN are significantly better in several

configurations and, in any case, at least as good as the ones of MD-GAN, but in the C = 2/15,

E = 60 configuration. We believe this latter issue is a pure implementation issue, which we

detail in the following. On the one hand, since the server in MD-GAN only averages the

devices’ updates, we use the reduce abstraction in PyTorch, which has an efficient GPU-to-

GPU NCCL [188] implementation. On the other hand, we use the gather abstraction with

FEGAN to enable KL weighting, i.e., the server first gathers the updates and then applies a

weighted sum to them. Such a communication abstraction is not supported on GPUs (to–date

in PyTorch), and hence, the models are copied to the CPU memory first, leading to slower

end-to-end communication.

From these results, we observe that lower values of C give a significant advantage to FEGAN,

with one configuration (C = 1/30, E = 60) even performing close to 4× faster than MD-GAN.

This behavior is explained by the communication overhead between the server and the de-

vices: the lower the value of C , the lower the number of devices chosen per round, and hence,

the lower the communication overhead. Since the communication overhead is the main

bottleneck in distributed machine learning applications [254, 110], reducing the communi-

cation drastically improves the system throughput without impacting the convergence, as

demonstrated in the previous section.

Figure 6.14 also shows a positive correlation between the value of E and the throughput.

The higher the value of E , the more local iterations per device per round, the lower the

communication between the server and the devices per unit time, and hence, the higher the

system’s throughput. Note that while studying the impact of the values of C and E gives us

some indication, choosing the best values for C and E remains data and model-dependent.

118

6.6 FEGAN System Performance

0 15 30 45 60 75 90 105
FL Rounds

0

100

200

300

400

500

A
vg

. N
um

. o
f S

am
pl

es
/c

la
ss

Balanced Sampling
Random Sampling

Figure 6.15: The average number of samples per class seen by the server, through devices’
updates, as a function of FL rounds. Here, the maximum number of samples at each device is
50. (ImageNet, 80 devices).

0 200 400 600 800 1000
Time (sec.)

0

1

2

3

4

5

D
at

a
T

ra
ns

fe
rr

ed
 (

M
B

s) Device 1

(a) MD-GAN

0 200 400 600 800 1000
Time (sec.)

0

1

2

3

4

5
D

at
a

T
ra

ns
fe

rr
ed

 (
M

B
s) Device 1

(b) FEGAN

Figure 6.16: Bandwidth consumption at one random device for both MD-GAN and FEGAN.
We observe the same distribution (as plotted) at different sampled devices. Using FEGAN,
each device is picked (by the server), on average, less than 10 times in a 200-second interval.

Setup 5 - 3000 10 - 2000 20 - 3000 40 - 4000
FL-VANILLA 3596.9s 3733.3s 4825.7s 3815.5s

FEGAN 2441.4s 2379.9s 3031.7s 2560.2s
Gain 1.47× 1.57× 1.59× 1.49×

Table 6.1: Time to finish 200 epochs by FEGAN and FL-VANILLA. We use balanced sampling
with the former and random sampling with the latter. The given two numbers in the first row
represent max_class and max_samples, respectively. The gain in time to finish one epoch can
be also viewed as a gain in consumed bandwidth over random sampling for not looking at
diverse data batches.

Network bandwidth. Figure 6.15 shows the impact of balanced sampling on the data diversity

(number of samples per class) observed by the server as a function of the number of FL rounds.

We observe that balanced sampling significantly impacts the training time: FEGAN takes 10

rounds to come across 500 samples against 10× this figure when random sampling is applied.

119

Chapter 6. Federated Learning: The Case of Generative Adversarial Networks

0 200 400 600 800 1000 1200 1400
FL Rounds

240

270

300

330

360

390

FI
D

10%
30%
50%
70%
90%

(a) Convergence with FL rounds

0 2000 4000 6000
Time (sec.)

240

270

300

330

360

390

FI
D

10%
30%
50%
70%
90%

(b) Convergence with time

Limited memory

0 200 400 600 800 1000 1200 1400
FL Rounds

240

270

300

330

360

390

FI
D

10%
30%
50%
70%
90%

(c) Convergence with FL rounds

0 2000 4000 6000
Time (sec.)

240

270

300

330

360

390

FI
D

10%
30%
50%
70%
90%

(d) Convergence with time

Limited processing power

Figure 6.17: Convergence of FEGAN in the presence of weak devices in terms of memory or
processing power. FEGAN is adaptive to heterogeneous devices. (ImageNet, 60 devices)

The effectiveness of balanced sampling directly translates into network bandwidth gain. Effec-

tively, random sampling has a higher probability to visit the same data batch twice, consuming

unnecessary bandwidth. Table 6.1 summarizes the gains in terms of time and communi-

cation. Such results confirm the results displayed in Figure 6.15. Based on these numbers,

random sampling requires roughly 1.5× more bandwidth compared to our balanced sampling

per epoch.

Moreover, as Figure 6.16 shows, devices in FEGAN consume less bandwidth than with MD-

GAN as each device is selected only once every few FL rounds as opposed to MD-GAN, in

which all devices train the model each round. In this figure, each device is sampled less than

10 times every 200 seconds.

Heterogeneous devices. Figure 6.17 shows an experiment with a set of devices, some of

which with limited memory or processing power (we denote those as weak devices). Based

on FEGAN’s design, such devices are assigned smaller batch sizes (to respect the memory

constraints) or less number of local iterations (to respect the limited processing power). In

this experiment, weak devices are assigned up to half of the batch size and half of the local

number of iterations. The figure also shows the effect of having different ratios of weak devices

compared to the total number of devices (in the range of 10–90%). All figures show that

120

6.7 Related Work

0 2000 4000 6000
Time (sec.)

60

90

120

150

180

210

FI
D

FeGAN
crash

Figure 6.18: FEGAN tolerates the server’s crash.

the presence of weak devices almost does not affect FEGAN’s convergence. This shows the

efficiency and the practicality of the adaptive methods included in the design of FEGAN.

Tolerating server’s crashes. As the central server failure is more critical than the devices’

failures, we focus here on the former case. Figure 6.18 shows an experiment in which we crash

the central server after 500 seconds from the beginning of the experiment. In such a case, a

backup server loads the latest stored checkpoint, announces to the devices that it is the new

primary, and continues the training normally from that checkpoint. The figure shows that

the server failure/crash does not cause troubles (e.g., big stalls) to the training process, which

continues normally after the crash.

6.7 Related Work

Few proposals suggested distributing GANs computation on multiple machines. MD-GAN [101]

aims at reducing the computation on workers by relying on a single generator, hosted on the

central server of the parameter server model. In this setup, every worker hosts a discriminator.

This architecture then breaks the usual generator–discriminator couple by setting up a 1-to-n

game. The discriminators perform local learning steps on their datasets (that are never shared

with other machines) and compute the error feedback on the generated samples they are given

by the server. Discriminators are periodically swapped between the workers in a peer-to-peer

fashion in order to avoid overfitting the local datasets. MD-GAN is built with scalability to a

few tens of workers in mind for targeting the within-datacenter learning scheme; it also only

targets the iid distribution of data.

A recent approach by Yonetani et al. [273] builds on the architecture of MD-GAN, with also one

single generator. They aim at tackling some distribution skew on worker nodes by proposing

two unsupervised learning approaches: F2U and F2A. F2U is designed to fool the most

forgiving discriminator for a given sample (i.e., the discriminator that judge the sample as

121

Chapter 6. Federated Learning: The Case of Generative Adversarial Networks

real and close to their data). F2A adaptively aggregates the feedback of discriminators by

emphasizing those from the more forgiving ones. Augenstein et al. [23] proposed a similar

federated GAN algorithm with one generator at the server and multiple discriminators at

the devices. Such an algorithm focuses on the privacy of users’ data on devices with the

goal of synthesizing data from similar distribution of real data for diagnosis. The scalability

of a single generator here is also at stake; we propose instead to have multiple generator-

discriminator couples.

Hardy et al. [100] proposed a fully decentralized, peer-to-peer architecture for distributing

GANs. The authors experimented with GANs being gossiped and averaged between inde-

pendent devices. While acceptable on small datasets, the performances are inferior to the

baselines we use to evaluate FEGAN with larger datasets.

6.8 Concluding Remarks

We evaluated FEGAN extensively, and here is our conclusion: (i) its careful design allows for

scaling the training of GANs. While MD-GAN provides better throughput at a small scale (up to

32 devices), FEGAN then largely prevails, achieving a linear improvement in throughput with

the number of devices (experimented with up to 176 devices) with even a lower bandwidth

consumption. This scaling does not come at the cost of learning quality; on the opposite,

we show lower FID values in both iid data and non–iid data contexts. (ii) We have shown

that the proposed components of FEGAN can circumvent GAN-specific issues that a vanilla

deployment of an FL-based scheme can encounter. In that respect, both the balanced sampling

and the KL weighting schemes are instrumental in the effectiveness of FEGAN. Although our

main ideas are designed to combat GAN-specific issues, they can be still used in vanilla

federated learning systems (for deep networks training). For instance, the weighting and the

sampling schemes can be used to ensure learning convergence while training deep networks.

Such components essentially utilize the skew information released by the devices at the

beginning of the learning with regard to their local data. The requirement for extra information

might constitute a privacy concern. Yet, recent work has shown how to employ differential

privacy with training vanilla federated GANs [261]. Exploring approaches that tolerate data

imbalance while ensuring the privacy of devices’ data is an avenue for future research.

122

Part IVConcluding Remarks

123

7 Conclusions and Future Work

We conclude this thesis by summarizing the presented results alongside their implications.

Finally, we discuss directions for future research.

7.1 Summary and Implications

This thesis tackles a few practical challenges facing distributed machine learning (ML) systems

in different environments, namely in datacenters, in the cloud, and on edge devices. We first

addressed the general problem of making distributed ML systems robust against arbitrary

(i.e., Byzantine) failures. Then, we presented practical insights that help improve the training

performance in each of the three environments we consider.

Chapter 3 presented GARFIELD, our one-size-fits-all library for Byzantine resilience. GARFIELD

allows ML practitioners to write their training applications from a system’s point of view rather

than from an algorithmic perspective. GARFIELD also provides access to various robust gradi-

ent aggregation rules (GARs), which have been shown effective against arbitrary failures. With

the ability to capture different architectures, network patterns, hardware capabilities, and data

distributions, we demonstrated how GARFIELD can achieve Byzantine resilience in multiple

setups. Essentially, GARFIELD helps quantify the benefits and the costs of Byzantine resilience

in practice. We have integrated GARFIELD with two popular ML frameworks: TensorFlow and

PyTorch. GARFIELD is an open-source project that has already been used multiple times in

different projects at EPFL. In addition, the center for digital trust (C4DT)1 has featured it as a

secure ML solution against arbitrary failures. A demo on GARFIELD (built by C4DT) can be

found at https://factory.c4dt.org/incubator/garfield/demo/.

Chapter 4 showed how elasticity can improve training time and resource utilization on data-

centers’ shared ML clusters. We demonstrated this with our elastic resource allocator (ERA),

using which we showed the benefits of dual scaling by dynamically adapting (a) the number

of workers and (b) the batch size. Our evaluation of ERA with a 64-GPU cluster shows that it

1https://show-new.c4dt.org/showcase/garfield/presentation

125

https://factory.c4dt.org/incubator/garfield/demo/
https://show-new.c4dt.org/showcase/garfield/presentation

Chapter 7. Conclusions and Future Work

improves the throughput of training jobs, minimizes the average job completion time, and

maximizes resource utilization, notably without hampering the training accuracy.

Chapter 5 showed how cloud object stores can contribute to ML computation and the implica-

tion of this contribution in alleviating the typical network bottleneck of training in the cloud.

Essentially, the idea is to partially offload the ML computation to the storage tier to reduce the

data transfer between storage and compute. We identified transfer learning (TL) as the killer

application for this setup. With HAPI, our TL processing system that splits the computation

between the storage and the compute tiers, we showed improvements in throughput, training

time, communication load, and scalability while being completely transparent to the user.

Chapter 6 showed how to robustly and efficiently train generative adversarial networks (GANs)

in the federated learning (FL) paradigm using FEGAN. The key to FEGAN’s efficiency is to

co-locate both components of the GAN (the generator and the discriminator) on all devices

contributing to training. FEGAN also relies on KL weighting and balanced sampling to cope

with heterogeneous devices and skewed datasets. We showed that FEGAN scales well with

hundreds of devices while also achieving better learning quality.

In summary, this thesis provides practical insights that advance the state of the art of robust

and efficient distributed ML systems in different environments. We have open-sourced the

code of GARFIELD and FEGAN, and both of them went through the Artifact Evaluation process

in their respective conferences and were awarded a couple of ACM badges2 accordingly. We

have seen some of our prototypes have already been extended further by the community.

7.2 Future Directions

While this thesis touched on crucial and practical problems for diverse settings of distributed

training, research in this area is young and more efforts are needed to extend it further. In this

section, we give some ideas to extend the work of this thesis.

Elastic training with cloud object stores. In Chapter 5, we show how we can use cloud object

stores to improve training time, and in Chapter 4, we demonstrate how elasticity can help

adapt training to existing resources, further expediting the training time. An interesting future

direction is to see the result of integrating these (seemingly-orthogonal) two ideas. First,

consider an extension to our HAPI framework (i.e., by processing the first part of a neural

network on the object store) that uses multiple workers on the compute tier. An interesting

question then is: how would that extension affect the splitting algorithm? Intuitively, this

extension will release the stress from the storage tier as the compute tier can handle more

computation with more workers. A second step would be to explore how elasticity affects the

optimal solution. Indeed, the server load can play a role in scaling decisions. For example, if

the server is serving many requests, it might decide to decrease its computation load and ask

2https://www.acm.org/publications/policies/artifact-review-badging

126

7.2 Future Directions

the elastic controller to increase the number of workers running training on the compute tier.

Exploring the tradeoffs in this setup is a promising research direction.

Elastic Byzantine resilience. So far, all the research on Byzantine-resilient ML assumes a

fixed set of participants throughout the training process. This assumption might not hold in

permission-less systems, e.g., if random devices on the Internet want to train a common model

collaboratively. Keeping such cases in mind and with the benefits of elasticity we have shown

in Chapter 4, we need to explore how our resilience guarantees change with elastic training.

For example, should workers keep a history of participants in previous rounds for better

Byzantine resilience guarantees? If we model the pattern of participation of Byzantine workers

(based on the elasticity decisions), can we design faster algorithms with the same resilience

guarantees? What would be the correct assumptions on the number of Byzantine participants

in that case? Achieving Byzantine resilience in permission-less settings is a plausible direction

for Byzantine ML research.

Byzantine-resilient federated GANs. In Chapter 3, we show how to use GARFIELD to achieve

Byzantine resilience in different settings. All these settings, though, focus only on deep

networks training. An important research question is: how can we extend this work to training

GANs, e.g., using FEGAN? Although we can straightforwardly apply the same approaches

of GARFIELD to FEGAN, the effects of the robust algorithms of GARFIELD on GAN-specific

problems (such as mode collapse and vanishing gradients) are not clear. Introducing Byzantine

resilience to training GANs (especially those trained in the federated learning setup like

FEGAN) is a crucial next research step.

Extending GARFIELD. While Chapter 3 shows how GARFIELD supports different environments

and architectures, Byzantine resilience is far from being practical in some cases. For instance,

data is typically not identical on workers contributing to training in the real world. Existing

solutions require a prohibitive number of communication messages to cope with that while

providing Byzantine resilience [69]. Coming up with better algorithms and baking them into

GARFIELD would be an interesting future direction. For example, one idea that improves the

communication complexity (in the case of training neural networks) is to pipeline communi-

cation with gradient computation [278, 102, 192]. This approach would decrease the idle time,

improving the throughput of the whole system. Yet, this improvement comes at the expense

of breaking transparency [121]. The same applies to traffic compression and sparsification

methods [214, 76, 262, 162]: while such methods would reduce the communication complex-

ity, it is not obvious how these methods change the resilience guarantees. Another direction is

to enhance GARFIELD with privacy-preserving techniques, e.g., [106]. While an EPFL project

has already started doing that,3 further research is still needed to make it fully practical.

3https://github.com/LPD-EPFL/Garfield/tree/Secure/tensorflow_impl/applications/Secure

127

https://github.com/LPD-EPFL/Garfield/tree/Secure/tensorflow_impl/applications/Secure

Chapter 7. Conclusions and Future Work

Extending ERA. In Chapter 4, we focused on specific aspects of ERA, namely the benefits

of our dual scaling in boosting training and cluster performance. We give three directions

to extend ERA. First, we can enhance other aspects of ERA using existing techniques in the

literature on ML jobs scheduling (see Section 4.6), including time-slicing of GPUs, packing

multiple jobs on the same GPU, and migrating jobs to specific GPUs. Moreover, we can

improve ERA by using new trends for multi-user support on GPUs (e.g., the MIG feature

from NVIDIA [54]) to better utilize the cluster resources and share cluster GPUs. Integrating

these techniques with ERA is not straightforward and can result in compelling contributions

on their own. Another limitation of ERA is that it relies on the stop-resume approach of

PyTorch-elastic (for scaling), which might not be the best technique for scaling [115]. Since

ERA’s design is orthogonal to the elastic engine choice, integrating it with other sophisticated

engines is a reasonable next step. Third, we consider a homogeneous cluster: we assume that

all GPUs are alike and network connections in the cluster are reliable and have the same speed.

This assumption might not hold in some cases. Assuming a heterogeneous cluster further

complicates the problem. In this case, ERA should utilize the locality of the GPUs and should

take more fine-grained measurements for the optimal allocation plan. Extending ERA to the

heterogeneous cluster case is also a natural research direction.

128

Bibliography

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A

system for large-scale machine learning. In OSDI, 2016.

[2] Martín Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal

Talwar, and Li Zhang. Deep learning with differential privacy. In SIGSAC, pages 308–318,

2016.

[3] Michael Abd-El-Malek, Gregory R Ganger, Garth R Goodson, Michael K Reiter, and Jay J

Wylie. Fault-scalable byzantine fault-tolerant services. ACM SIGOPS Operating Systems

Review, 39:59–74, 2005.

[4] Ahmed M Abdelmoniem, Chen-Yu Ho, Pantelis Papageorgiou, and Marco Canini. Em-

pirical analysis of federated learning in heterogeneous environments. In Proceedings of

the 2nd European Workshop on Machine Learning and Systems, pages 1–9, 2022.

[5] Ahmed M Abdelmoniem, Atal Narayan Sahu, Marco Canini, and Suhaib A Fahmy.

Resource-efficient federated learning. arXiv preprint arXiv:2111.01108, 2021.

[6] Alim Al Ayub Ahmed, Ayman Aljabouh, Praveen Kumar Donepudi, and Myung Suh

Choi. Detecting fake news using machine learning: A systematic literature review. arXiv

preprint arXiv:2102.04458, 2021.

[7] Michael Ahn et al. Do as i can, not as i say: Grounding language in robotic affordances.

arXiv preprint arXiv:2204.01691, 2022.

[8] Monther Aldwairi and Ali Alwahedi. Detecting fake news in social media networks.

Procedia Computer Science, 141:215–222, 2018.

[9] Adlich Alex et al. Driving impact at scale from automation and AI. https://mck.co/

3IQIBVi, 2019. Last accessed: Apr, 2022.

[10] Alibaba. Alibaba OSS. https://www.alibabacloud.com/product/object-storage-service.

Last accessed: Dec, 2021.

[11] Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. Byzantine stochastic gradient descent. In

Neural Information Processing Systems, to appear, 2018.

129

https://mck.co/3IQIBVi
https://mck.co/3IQIBVi
https://www.alibabacloud.com/product/object-storage-service

Bibliography

[12] Zeyuan Allen-Zhu and Elad Hazan. Variance reduction for faster non-convex optimiza-

tion. In International conference on machine learning, pages 699–707, 2016.

[13] Amazon. Amazon S3. https://aws.amazon.com/s3/. Last accessed: Dec, 2021.

[14] Amazon. Amazon SageMaker JumpStart. https://docs.aws.amazon.com/sagemaker/

latest/dg/studio-jumpstart.html. Last accessed: Apr, 2022.

[15] Amazon. Introducing Amazon S3 Object Lambda – Use Your Code to Process

Data as It Is Being Retrieved from S3. https://aws.amazon.com/blogs/aws/

introducing-amazon-s3-object-lambda-use-your-code-to-process-data-as-it-is-being-retrieved-from-s3/.

Last accessed: Dec, 2021.

[16] AMD. Amd ai hardware. https://www.amd.com/en/graphics/

servers-instinct-deep-learning.

[17] Syed Muhammad Anwar, Muhammad Majid, Adnan Qayyum, Muhammad Awais, Majdi

Alnowami, and Muhammad Khurram Khan. Medical image analysis using convolutional

neural networks: a review. Journal of medical systems, 42(11):1–13, 2018.

[18] Apple. Apple unveils m1 ultra, the worlds most powerful chip for

a personal computer. https://www.apple.com/newsroom/2022/03/

apple-unveils-m1-ultra-the-worlds-most-powerful-chip-for-a-personal-computer/.

[19] Amazon AQUA. AWS Advanced Query Accelerator. https://aws.amazon.com/redshift/

features/aqua/.

[20] Martin Arjovsky and Léon Bottou. Towards principled methods for training generative

adversarial networks, 2017.

[21] Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu, Mukul Murthy,

Joseph Torres, Herman van Hovell, Adrian Ionescu, Alicja uszczak, et al. Delta lake:

high-performance acid table storage over cloud object stores. Proceedings of the VLDB

Endowment, 13(12):3411–3424, 2020.

[22] Sanjith Athlur, Nitika Saran, Muthian Sivathanu, Ramachandran Ramjee, and Nipun

Kwatra. Varuna: scalable, low-cost training of massive deep learning models. In Pro-

ceedings of the Seventeenth European Conference on Computer Systems, pages 472–487,

2022.

[23] Sean Augenstein, H Brendan McMahan, Daniel Ramage, Swaroop Ramaswamy, Peter

Kairouz, Mingqing Chen, Rajiv Mathews, et al. Generative models for effective ml on

private, decentralized datasets. arXiv preprint arXiv:1911.06679, 2019.

[24] Isaac Bankman. Handbook of medical image processing and analysis. Elsevier, 2008.

130

https://aws.amazon.com/s3/
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-jumpstart.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-jumpstart.html
https://aws.amazon.com/blogs/aws/introducing-amazon-s3-object-lambda-use-your-code-to-process-data-as-it-is-being-retrieved-from-s3/
https://aws.amazon.com/blogs/aws/introducing-amazon-s3-object-lambda-use-your-code-to-process-data-as-it-is-being-retrieved-from-s3/
https://www.amd.com/en/graphics/servers-instinct-deep-learning
https://www.amd.com/en/graphics/servers-instinct-deep-learning
https://www.apple.com/newsroom/2022/03/apple-unveils-m1-ultra-the-worlds-most-powerful-chip-for-a-personal-computer/
https://www.apple.com/newsroom/2022/03/apple-unveils-m1-ultra-the-worlds-most-powerful-chip-for-a-personal-computer/
https://aws.amazon.com/redshift/features/aqua/
https://aws.amazon.com/redshift/features/aqua/

Bibliography

[25] Gilad Baruch, Moran Baruch, and Yoav Goldberg. A little is enough: Circumventing

defenses for distributed learning. Advances in Neural Information Processing Systems,

32, 2019.

[26] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-

parameter optimization. Advances in neural information processing systems, 24, 2011.

[27] Jeremy Bernstein, Jiawei Zhao, Kamyar Azizzadenesheli, and Anima Anandkumar.

signSGD with majority vote is communication efficient and fault tolerant. In Inter-

national Conference on Learning Representations, 2018.

[28] Battista Biggio and Pavel Laskov. Poisoning attacks against support vector machines. In

ICML, 2012.

[29] Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adversarial

machine learning. Pattern Recognition, 84:317–331, 2018.

[30] Reuben Binns, Michael Veale, Max Van Kleek, and Nigel Shadbolt. Like trainer, like bot?

inheritance of bias in algorithmic content moderation. In International conference on

social informatics, pages 405–415. Springer, 2017.

[31] Chris M Bishop. Neural networks and their applications. Review of scientific instruments,

65(6):1803–1832, 1994.

[32] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine

learning with adversaries: Byzantine tolerant gradient descent. In Neural Information

Processing Systems, pages 118–128, 2017.

[33] AWS News Blog. S3 Select and Glacier Select – Retrieving Subsets of Objects. https:

//aws.amazon.com/blogs/aws/s3-glacier-select/. Last accessed: Apr, 2022.

[34] Cara Bloom, Joshua Tan, Javed Ramjohn, and Lujo Bauer. Self-driving cars and data

collection: Privacy perceptions of networked autonomous vehicles. In Thirteenth

Symposium on Usable Privacy and Security ({SOUPS} 2017), pages 357–375, 2017.

[35] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMa-

han, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure ag-

gregation for federated learning on user-held data. arXiv preprint arXiv:1611.04482,

2016.

[36] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMa-

han, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggrega-

tion for privacy-preserving machine learning. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, pages 1175–1191. ACM, 2017.

[37] Ali Borji. Pros and cons of gan evaluation measures. Computer Vision and Image

Understanding, 179:41–65, 2019.

131

https://aws.amazon.com/blogs/aws/s3-glacier-select/
https://aws.amazon.com/blogs/aws/s3-glacier-select/

Bibliography

[38] Amaury Bouchra Pilet, Davide Frey, and François Taïani. Simple, efficient and conve-

nient decentralized multi-task learning for neural networks. In International Symposium

on Intelligent Data Analysis, pages 37–49. Springer, 2021.

[39] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fi-

delity natural image synthesis. In International Conference on Learning Representations,

2019.

[40] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-

guage models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[41] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes. Borg,

omega, and kubernetes. Communications of the ACM, 59(5):50–57, 2016.

[42] Christian Cachin, Rachid Guerraoui, and Luís Rodrigues. Introduction to reliable and

secure distributed programming. Springer Science & Business Media, 2011.

[43] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam McK-

elvie, Yikang Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev Haridas,

Chakravarthy Uddaraju, Hemal Khatri, Andrew Edwards, Vaman Bedekar, Shane Mainali,

Rafay Abbasi, Arpit Agarwal, Mian Fahim ul Haq, Muhammad Ikram ul Haq, Deepali

Bhardwaj, Sowmya Dayanand, Anitha Adusumilli, Marvin McNett, Sriram Sankaran,

Kavitha Manivannan, and Leonidas Rigas. Windows azure storage: A highly available

cloud storage service with strong consistency. In Proceedings of the Twenty-Third ACM

Symposium on Operating Systems Principles, SOSP ’11, page 143–157, New York, NY,

USA, 2011. Association for Computing Machinery.

[44] Wei Cao, Yang Liu, Zhushi Cheng, Ning Zheng, Wei Li, Wenjie Wu, Linqiang Ouyang,

Peng Wang, Yijing Wang, Ray Kuan, et al. {POLARDB} meets computational storage:

Efficiently support analytical workloads in {Cloud-Native} relational database. In 18th

USENIX Conference on File and Storage Technologies (FAST), 2020.

[45] Chan Jung Chang, Jerry Chou, Yu-Ching Chou, and I-Hsin Chung. Ecs2: A fast erasure

coding library for gpu-accelerated storage systems with parallel & direct io. In 2020 IEEE

International Conference on Cluster Computing (CLUSTER), 2020.

[46] Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Bengio, and Wenjie Li. Mode regularized

generative adversarial networks. In ICLR, 2017.

[47] Lingjiao Chen, Hongyi Wang, Zachary Charles, and Dimitris Papailiopoulos. Draco:

Byzantine-resilient distributed training via redundant gradients. In International Con-

ference on Machine Learning, pages 902–911, 2018.

[48] Tianlong Chen, Sijia Liu, Shiyu Chang, Yu Cheng, Lisa Amini, and Zhangyang Wang.

Adversarial robustness: From self-supervised pre-training to fine-tuning. In Proceedings

132

Bibliography

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 699–708,

2020.

[49] Alvin Cheung, Owen Arden, Samuel Madden, and Andrew C Myers. Automatic parti-

tioning of database applications. Proceedings of the VLDB Endowment, 5(11), 2012.

[50] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman. Project

adam: Building an efficient and scalable deep learning training system. In 11th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 14), pages 571–582,

Broomfield, CO, October 2014. USENIX Association.

[51] Trishul M Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman. Project

adam: Building an efficient and scalable deep learning training system. In OSDI, vol-

ume 14, pages 571–582, 2014.

[52] Ting-Wu Chin, Cha Zhang, and Diana Marculescu. Renofeation: A simple transfer

learning method for improved adversarial robustness. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 3243–3252, 2021.

[53] Dooseop Choi, Taeg-Hyun An, Kyounghwan Ahn, and Jeongdan Choi. Driving ex-

perience transfer method for end-to-end control of self-driving cars. arXiv preprint

arXiv:1809.01822, 2018.

[54] Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and Ronny Krashinsky.

Nvidia a100 tensor core gpu: Performance and innovation. IEEE Micro, 41(2):29–35,

2021.

[55] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra,

Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann,

et al. Palm: Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311,

2022.

[56] Alibaba Cloud. Real-Time Image Processing by Object Storage Service . https://www.

alibabacloud.com/blog/real-time-image-processing-by-object-storage-service_

597996. Last accessed: Dec, 2021.

[57] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and Liuba Shrira. Hq

replication: A hybrid quorum protocol for byzantine fault tolerance. In Proceedings of

the 7th symposium on Operating systems design and implementation, pages 177–190.

USENIX Association, 2006.

[58] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan Saroiu,

Ranveer Chandra, and Paramvir Bahl. Maui: Making smartphones last longer with code

offload. In ACM MobiSys 2010, June 2010.

133

https://www.alibabacloud.com/blog/real-time-image-processing-by-object-storage-service_597996
https://www.alibabacloud.com/blog/real-time-image-processing-by-object-storage-service_597996
https://www.alibabacloud.com/blog/real-time-image-processing-by-object-storage-service_597996

Bibliography

[59] Harshit Daga, Patrick K. Nicholson, Ada Gavrilovska, and Diego Lugones. Cartel: A

system for collaborative transfer learning at the edge. In Proceedings of the ACM Sympo-

sium on Cloud Computing, SoCC ’19, page 25–37, New York, NY, USA, 2019. Association

for Computing Machinery.

[60] Georgios Damaskinos, El-Mahdi El-Mhamdi, Rachid Guerraoui, Arsany Guirguis, and

Sébastien Rouault. Aggregathor: Byzantine machine learning via robust gradient ag-

gregation. In Proceedings of Machine Learning and Systems, volume 1, pages 81–106,

2019.

[61] Georgios Damaskinos, El Mahdi El Mhamdi, Rachid Guerraoui, Rhicheek Patra, Mahsa

Taziki, et al. Asynchronous byzantine machine learning (the case of sgd). In ICML, pages

1153–1162, 2018.

[62] Georgios Damaskinos, Sébastien Rouault, and Arsany Guirguis. Aggregathor source

code. https://github.com/LPD-EPFL/AggregaThor.

[63] Jeff Dean. Designs, lessons and advice from building large distributed systems, 2009.

[64] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large

clusters. Communications of the ACM, 51(1):107–113, 2008.

[65] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale

Hierarchical Image Database. In CVPR09, 2009.

[66] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-

scale hierarchical image database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009.

[67] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Ankur Moitra, and Alistair

Stewart. Robustly learning a gaussian: Getting optimal error, efficiently. In Proceedings

of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2683–

2702. Society for Industrial and Applied Mathematics, 2018.

[68] Ishan Durugkar, Ian Gemp, and Sridhar Mahadevan. Generative multi-adversarial

networks. arXiv preprint arXiv:1611.01673, 2016.

[69] El Mahdi El-Mhamdi, Sadegh Farhadkhani, Rachid Guerraoui, Arsany Guirguis, Lê-

Nguyên Hoang, and Sébastien Rouault. Collaborative learning in the jungle (decentral-

ized, byzantine, heterogeneous, asynchronous and nonconvex learning). Advances in

Neural Information Processing Systems, 34, 2021.

[70] El-Mahdi El-Mhamdi, Rachid Guerraoui, Arsany Guirguis, Lê Nguyên Hoang, and

Sébastien Rouault. Genuinely distributed byzantine machine learning. In Proceed-

ings of the 39th Symposium on Principles of Distributed Computing, pages 355–364,

2020.

134

https://github.com/LPD-EPFL/AggregaThor

Bibliography

[71] El-Mahdi El-Mhamdi, Rachid Guerraoui, Arsany Guirguis, Lê-Nguyên Hoang, and

Sébastien Rouault. Genuinely distributed byzantine machine learning (extended ver-

sion). Distributed Computing, pages 1–27, 2022.

[72] El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. The hidden vulnera-

bility of distributed learning in Byzantium. In Jennifer Dy and Andreas Krause, editors,

Proceedings of the 35th International Conference on Machine Learning, volume 80 of

Proceedings of Machine Learning Research, pages 3521–3530, Stockholmsmässan, Stock-

holm Sweden, 10–15 Jul 2018. PMLR.

[73] El-Mahdi El-Mhamdi, Rachid Guerraoui, and Sébastien Rouault. Distributed momen-

tum for byzantine-resilient learning. arXiv preprint arXiv:2003.00010, 2020.

[74] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, Helen M Blau,

and Sebastian Thrun. Dermatologist-level classification of skin cancer with deep neural

networks. Nature, 542(7639):115, 2017.

[75] Vance Faber. Clustering and the continuous k-means algorithm. Los Alamos Science,

22(138144.21):67, 1994.

[76] Jiawei Fei, Chen-Yu Ho, Atal N Sahu, Marco Canini, and Amedeo Sapio. Efficient sparse

collective communication and its application to accelerate distributed deep learning.

In Proceedings of the 2021 ACM SIGCOMM 2021 Conference, pages 676–691, 2021.

[77] Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. The limitations of federated

learning in sybil settings. In 23rd International Symposium on Research in Attacks,

Intrusions and Defenses ({RAID} 2020), pages 301–316, 2020.

[78] Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu, Yu Cheng, and Jingjing Liu. Large-

scale adversarial training for vision-and-language representation learning. Advances in

Neural Information Processing Systems, 33:6616–6628, 2020.

[79] Amirmasoud Ghiassi, Taraneh Younesian, Zhilong Zhao, Robert Birke, Valerio Schiavoni,

and Lydia Y Chen. Robust (deep) learning framework against dirty labels and beyond.

In 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent

Systems and Applications (TPS-ISA), pages 236–244. IEEE, 2019.

[80] Tarleton Gillespie. Content moderation, ai, and the question of scale. Big Data & Society,

7(2):2053951720943234, 2020.

[81] Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S Schoenholz, Maithra Raghu, Martin

Wattenberg, and Ian Goodfellow. Adversarial spheres. arXiv preprint arXiv:1801.02774,

2018.

[82] Christos Gkantsidis, Dimitrios Vytiniotis, Orion Hodson, Dushyanth Narayanan, Florin

Dinu, and Ant Rowstron. Rhea: automatic filtering for unstructured cloud storage. In

10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13).

USENIX, April 2013.

135

Bibliography

[83] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[84] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahra-

mani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances

in Neural Information Processing Systems 27, pages 2672–2680. Curran Associates, Inc.,

2014.

[85] Google. Google Cloud AutoML. https://cloud.google.com/automl/. Last accessed: Apr,

2022.

[86] Google. Google Cloud Storage. https://cloud.google.com/storage. Last accessed: Dec,

2021.

[87] Google. Tensor processing units. https://cloud.google.com/tpu/docs/tpus.

[88] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo

Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd:

training imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[89] Grid5000. Grid5000. https://www.grid5000.fr/.

[90] Juncheng Gu, Mosharaf Chowdhury, Kang G Shin, Yibo Zhu, Myeongjae Jeon, Junjie

Qian, Hongqiang Liu, and Chuanxiong Guo. Tiresias: A {GPU} cluster manager for

distributed deep learning. In 16th {USENIX} Symposium on Networked Systems Design

and Implementation ({NSDI} 19), pages 485–500, 2019.

[91] Rachid Guerraoui, Arsany Guirguis, Anne-Marie Kermarrec, and Erwan Le Merrer. Fegan:

Scaling distributed gans. In Proceedings of the 21st International Middleware Conference,

pages 193–206, 2020.

[92] Rachid Guerraoui, Arsany Guirguis, Jérémy Plassmann, Anton Ragot, and Sébastien

Rouault. Garfield: System support for byzantine machine learning (regular paper).

In 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN), pages 39–51. IEEE, 2021.

[93] Arsany Guirguis. FEGANsource code. https://github.com/LPD-EPFL/FeGAN.

[94] Arsany Guirguis, Florin Dinu, Diana Petrescu, Do Le Quoc, Javier Picorel, and Rachid

Guerraoui. Accelerating transfer learning with cloud object stores. Under submission,

2022.

[95] Arsany Guirguis, Yitzchak Lockerman, Chengjian Zhheng, David Eis, and Rachid Guer-

raoui. Elastic resource allocation for multi-tenant deep learning clusters. Under sub-

mission, 2022.

[96] Arsany Guirguis, Jérémy Plassmann, Anton Ragot, and Sébastien Rouault. GARFIELD

source code. https://github.com/LPD-EPFL/Garfield.

136

https://cloud.google.com/automl/
https://cloud.google.com/storage
https://cloud.google.com/tpu/docs/tpus
https://www.grid5000.fr/
https://github.com/LPD-EPFL/Garfield

Bibliography

[97] Walker Haddock, Matthew L Curry, Purushotham V Bangalore, and Anthony Skjellum.

Gpu erasure coding for campaign storage. In International Conference on High Perfor-

mance Computing, 2017.

[98] Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen,

Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, et al. Deep speech:

Scaling up end-to-end speech recognition. arXiv preprint arXiv:1412.5567, 2014.

[99] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise Beau-

fays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ramage. Federated

learning for mobile keyboard prediction. arXiv preprint arXiv:1811.03604, 2018.

[100] Corentin Hardy, Erwan Le Merrer, and Bruno Sericola. Gossiping gans. In Proceedings of

the Second Workshop on Distributed Infrastructures for Deep Learning: DIDL, volume 22,

2018.

[101] Corentin Hardy, Erwan "Le Merrer", and Bruno Sericola. Md-gan: Multi-discriminator

generative adversarial networks for distributed datasets. In 2019 IEEE International

Parallel and Distributed Processing Symposium (IPDPS), pages 866–877. IEEE, 2019.

[102] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy H Campbell. Tictac: Accel-

erating distributed deep learning with communication scheduling. arXiv preprint

arXiv:1803.03288, 2018.

[103] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro Dzhul-

gakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al. Applied machine

learning at facebook: A datacenter infrastructure perspective. In 2018 IEEE Interna-

tional Symposium on High Performance Computer Architecture (HPCA), pages 620–629.

IEEE, 2018.

[104] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[105] Lie He, An Bian, and Martin Jaggi. Cola: Decentralized linear learning. In S. Bengio,

H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Ad-

vances in Neural Information Processing Systems 31, pages 4536–4546. Curran Associates,

Inc., 2018.

[106] Lie He, Sai Praneeth Karimireddy, and Martin Jaggi. Secure byzantine-robust machine

learning. arXiv preprint arXiv:2006.04747, 2020.

[107] Robert Hecht-Nielsen. Theory of the backpropagation neural network. In Neural

networks for perception, pages 65–93. Elsevier, 1992.

[108] Quan Hoang, Tu Dinh Nguyen, Trung Le, and Dinh Phung. Multi-generator generative

adversarial nets. arXiv preprint arXiv:1708.02556, 2017.

137

Bibliography

[109] Matthew B Hoy. Alexa, siri, cortana, and more: an introduction to voice assistants.

Medical reference services quarterly, 37(1):81–88, 2018.

[110] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis, Gregory R Ganger,

Phillip B Gibbons, and Onur Mutlu. Gaia: Geo-distributed machine learning approach-

ing lan speeds. In NSDI, pages 629–647, 2017.

[111] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely

connected convolutional networks. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4700–4708, 2017.

[112] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen,

HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training

of giant neural networks using pipeline parallelism. Advances in neural information

processing systems, 32, 2019.

[113] Huawei. Huawei launches ascend 910, the world’s most powerful ai processor, and

mindspore, an all-scenario ai computing framework. https://www.huawei.com/en/

news/2019/8/huawei-ascend-910-most-powerful-ai-processor.

[114] Patrick Hunt, Mahadev Konar, Flavio P Junqueira, and Benjamin Reed. {ZooKeeper}:

Wait-free coordination for internet-scale systems. In 2010 USENIX Annual Technical

Conference (USENIX ATC 10), 2010.

[115] Changho Hwang, Taehyun Kim, Sunghyun Kim, Jinwoo Shin, and KyoungSoo Park.

Elastic resource sharing for distributed deep learning. In 18th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 21), pages 721–739. USENIX

Association, April 2021.

[116] IBM. IBM Storage supports NVIDIA DGX A100 AI infrastructure. https://www.ibm.

com/blogs/systems/ibm-storage-supports-nvidia-dgx-a100-ai-infrastructure/. Last

accessed: Dec, 2021.

[117] IBM. Optimize running NVIDIA GPU-enabled AI workloads with data orches-

tration solution. https://community.ibm.com/community/user/storage/blogs/

pallavi-galgali1/2020/10/05/optimize-running-nvidia-gpu-enabled-ai-workloads-w?

CommunityKey=1142f81e-95e4-4381-95d0-7977f20d53fa&tab=

recentcommunityblogsdashboard. Last accessed: Apr, 2022.

[118] Facebook Incubator. Gloo. https://github.com/facebookincubator/gloo.

[119] Intel. Intel ai hardware. https://www.intel.com/content/www/us/en/

artificial-intelligence/hardware.html.

[120] Alexander Isenko, Ruben Mayer, Jeffrey Jedele, and Hans-Arno Jacobsen. Where is my

training bottleneck? hidden trade-offs in deep learning preprocessing pipelines. arXiv

preprint arXiv:2202.08679, 2022.

138

https://www.huawei.com/en/news/2019/8/huawei-ascend-910-most-powerful-ai-processor
https://www.huawei.com/en/news/2019/8/huawei-ascend-910-most-powerful-ai-processor
https://www.ibm.com/blogs/systems/ibm-storage-supports-nvidia-dgx-a100-ai-infrastructure/
https://www.ibm.com/blogs/systems/ibm-storage-supports-nvidia-dgx-a100-ai-infrastructure/
https://community.ibm.com/community/user/storage/blogs/pallavi-galgali1/2020/10/05/optimize-running-nvidia-gpu-enabled-ai-workloads-w?CommunityKey=1142f81e-95e4-4381-95d0-7977f20d53fa&tab=recentcommunityblogsdashboard
https://community.ibm.com/community/user/storage/blogs/pallavi-galgali1/2020/10/05/optimize-running-nvidia-gpu-enabled-ai-workloads-w?CommunityKey=1142f81e-95e4-4381-95d0-7977f20d53fa&tab=recentcommunityblogsdashboard
https://community.ibm.com/community/user/storage/blogs/pallavi-galgali1/2020/10/05/optimize-running-nvidia-gpu-enabled-ai-workloads-w?CommunityKey=1142f81e-95e4-4381-95d0-7977f20d53fa&tab=recentcommunityblogsdashboard
https://community.ibm.com/community/user/storage/blogs/pallavi-galgali1/2020/10/05/optimize-running-nvidia-gpu-enabled-ai-workloads-w?CommunityKey=1142f81e-95e4-4381-95d0-7977f20d53fa&tab=recentcommunityblogsdashboard
https://github.com/facebookincubator/gloo
https://www.intel.com/content/www/us/en/artificial-intelligence/hardware.html
https://www.intel.com/content/www/us/en/artificial-intelligence/hardware.html

Bibliography

[121] Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Vladimir Braverman, Ion Stoica, and

Raman Arora. Communication-efficient distributed sgd with sketching. arXiv preprint

arXiv:1903.04488, 2019.

[122] KR Jayaram, Vinod Muthusamy, Parijat Dube, Vatche Ishakian, Chen Wang, Benjamin

Herta, Scott Boag, Diana Arroyo, Asser Tantawi, Archit Verma, et al. Ffdl: A flexible multi-

tenant deep learning platform. In Proceedings of the 20th International Middleware

Conference, pages 82–95, 2019.

[123] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian, Wencong

Xiao, and Fan Yang. Analysis of large-scale multi-tenant {GPU} clusters for {DNN}

training workloads. In 2019 {USENIX} Annual Technical Conference ({USENIX}{ATC} 19),

pages 947–960, 2019.

[124] Myeongjae Jeon, Shivaram Venkataraman, Junjie Qian, Amar Phanishayee, Wencong

Xiao, and Fan Yang. Multi-tenant gpu clusters for deep learning workloads: Analysis

and implications. Technical report, Microsoft Research, 2018.

[125] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong, Feihu Zhou, Liqiang

Xie, Zhenyu Guo, Yuanzhou Yang, Liwei Yu, et al. Highly scalable deep learning train-

ing system with mixed-precision: Training imagenet in four minutes. arXiv preprint

arXiv:1807.11205, 2018.

[126] Yihan Jiang, Jakub Konečnỳ, Keith Rush, and Sreeram Kannan. Improving feder-

ated learning personalization via model agnostic meta learning. arXiv preprint

arXiv:1909.12488, 2019.

[127] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo. A unified

architecture for accelerating distributed DNN training in heterogeneous GPU/CPU

clusters. In 14th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 20), pages 463–479. USENIX Association, November 2020.

[128] Yuchen Jin, Tianyi Zhou, Liangyu Zhao, Yibo Zhu, Chuanxiong Guo, Marco Canini,

and Arvind Krishnamurthy. Autolrs: Automatic learning-rate schedule by bayesian

optimization on the fly. arXiv preprint arXiv:2105.10762, 2021.

[129] Tyler Johnson, Pulkit Agrawal, Haijie Gu, and Carlos Guestrin. Adascale sgd: A user-

friendly algorithm for distributed training. In International Conference on Machine

Learning, pages 4911–4920. PMLR, 2020.

[130] M. Kachelrieß. Branchless vectorized median filtering. In 2009 IEEE Nuclear Science

Symposium Conference Record (NSS/MIC), pages 4099–4105, Oct 2009.

[131] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason Mars,

and Lingjia Tang. Neurosurgeon: Collaborative intelligence between the cloud and

mobile edge. ACM SIGARCH Computer Architecture News, 45(1):615–629, 2017.

139

Bibliography

[132] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of

deep bidirectional transformers for language understanding. In Proceedings of NAACL-

HLT, pages 4171–4186, 2019.

[133] Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz

Khan, and Mubarak Shah. Transformers in vision: A survey. ACM Computing Surveys

(CSUR), 2021.

[134] Douwe Kiela, Hamed Firooz, Aravind Mohan, Vedanuj Goswami, Amanpreet Singh,

Pratik Ringshia, and Davide Testuggine. The hateful memes challenge: Detecting hate

speech in multimodal memes. Advances in Neural Information Processing Systems,

33:2611–2624, 2020.

[135] Larry Kim. How many ads does google serve in a day?, 2012.

[136] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[137] Ana Klimovic, Yawen Wang, Christos Kozyrakis, Patrick Stuedi, Jonas Pfefferle, and

Animesh Trivedi. Understanding ephemeral storage for serverless analytics. In 2018

USENIX Annual Technical Conference (USENIX ATC 18), 2018.

[138] Jakub Konečnỳ, Brendan McMahan, and Daniel Ramage. Federated optimization:

Distributed optimization beyond the datacenter. arXiv preprint arXiv:1511.03575, 2015.

[139] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha

Suresh, and Dave Bacon. Federated learning: Strategies for improving communication

efficiency. arXiv preprint arXiv:1610.05492, 2016.

[140] Gunjae Koo, Kiran Kumar Matam, Te I., H.V. Krishna Giri Narra, Jing Li, Hung-Wei Tseng,

Steven Swanson, and Murali Annavaram. Summarizer: Trading communication with

computing near storage. In 2017 50th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), 2017.

[141] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar dataset. https://www.cs.toronto.

edu/~kriz/cifar.html.

[142] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In Neural Information Processing Systems, pages

1097–1105, 2012.

[143] Ben Kröse, Ben Krose, Patrick Van der Smagt, and Patrick Smagt. An introduction to

neural networks, 1993.

[144] Kubernetes. Configmaps. https://kubernetes.io/docs/concepts/configuration/

configmap/.

[145] Solomon Kullback. Information theory and statistics. Courier Corporation, 1997.

140

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/configmap/

Bibliography

[146] Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of

mathematical statistics, 22(1):79–86, 1951.

[147] Karol Kurach, Mario Lučić, Xiaohua Zhai, Marcin Michalski, and Sylvain Gelly, editors.

A Large-Scale Study on Regularization and Normalization in GANs, 2019.

[148] San Francisco Laboratory of Cell Geometry, University of California. Pytorch model size

estimator. https://github.com/jacobkimmel/pytorch_modelsize.

[149] Leslie Lamport et al. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.

[150] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem.

TOPLAS, 4(3):382–401, 1982.

[151] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–

444, 2015.

[152] Yann Lecun, Corinna Cortes, and Christopher J.C. Burges. Mnist dataset. http://yann.

lecun.com/exdb/mnist/.

[153] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani,

J. Totz, Z. Wang, and W. Shi. Photo-Realistic Single Image Super-Resolution Using a

Generative Adversarial Network. CVPR, 2017.

[154] George Leopold. Nvidia buys object storage vendor swiftstack. https://www.enterpriseai.

news/2020/03/06/nvidia-buys-object-storage-vendor-swiftstack/.

[155] Jing Li, Hung-Wei Tseng, Chunbin Lin, Yannis Papakonstantinou, and Steven Swanson.

Hippogriffdb: Balancing i/o and gpu bandwidth in big data analytics. Proceedings of the

VLDB Endowment, 9(14):1647–1658, 2016.

[156] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja Josifovski,

James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed machine learning

with the parameter server. In OSDI, volume 1, page 3, 2014.

[157] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja Josi-

fovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling distributed machine

learning with the parameter server. In OSDI, 2014.

[158] Mu Li, Li Zhou, Zichao Yang, Aaron Li, Fei Xia, David G Andersen, and Alexander Smola.

Parameter server for distributed machine learning. In Big Learning NIPS Workshop,

volume 6, page 2, 2013.

[159] Yuezun Li and Siwei Lyu. Exposing deepfake videos by detecting face warping artifacts.

In IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),

2019.

141

https://github.com/jacobkimmel/pytorch_modelsize
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.enterpriseai.news/2020/03/06/nvidia-buys-object-storage-vendor-swiftstack/
https://www.enterpriseai.news/2020/03/06/nvidia-buys-object-storage-vendor-swiftstack/

Bibliography

[160] Ming Liang and Xiaolin Hu. Recurrent convolutional neural network for object recogni-

tion. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 3367–3375, 2015.

[161] Kunal Lillaney, Vasily Tarasov, David Pease, and Randal Burns. The case for dual-access

file systems over object storage. In 11th USENIX Workshop on Hot Topics in Storage and

File Systems (HotStorage 19), 2019.

[162] Hyeontaek Lim, David G Andersen, and Michael Kaminsky. 3lc: Lightweight

and effective traffic compression for distributed machine learning. arXiv preprint

arXiv:1802.07389, 2018.

[163] Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao Jiao, Ying-Chang

Liang, Qiang Yang, Dusit Niyato, and Chunyan Miao. Federated learning in mobile edge

networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 2020.

[164] Haibin Lin, Hang Zhang, Yifei Ma, Tong He, Zhi Zhang, Sheng Zha, and Mu Li. Dynamic

mini-batch sgd for elastic distributed training: Learning in the limbo of resources. arXiv

preprint arXiv:1904.12043, 2019.

[165] Bo Liu, Ming Ding, Sina Shaham, Wenny Rahayu, Farhad Farokhi, and Zihuai Lin. When

machine learning meets privacy: A survey and outlook. ACM Computing Surveys (CSUR),

54(2):1–36, 2021.

[166] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes

in the wild. In Proceedings of International Conference on Computer Vision (ICCV),

December 2015.

[167] Irene Lopatovska, Katrina Rink, Ian Knight, Kieran Raines, Kevin Cosenza, Harriet

Williams, Perachya Sorsche, David Hirsch, Qi Li, and Adrianna Martinez. Talk to me:

Exploring user interactions with the amazon alexa. Journal of Librarianship and Infor-

mation Science, 51(4):984–997, 2019.

[168] Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bousquet. Are

gans created equal? a large-scale study. In Advances in neural information processing

systems, pages 700–709, 2018.

[169] Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram Venkataraman,

Aditya Akella, Amar Phanishayee, and Shuchi Chawla. Themis: Fair and efficient {GPU}

cluster scheduling. In 17th {USENIX} Symposium on Networked Systems Design and

Implementation ({NSDI} 20), pages 289–304, 2020.

[170] Luo Mai, Guo Li, Marcel Wagenländer, Konstantinos Fertakis, Andrei-Octavian Brabete,

and Peter Pietzuch. Kungfu: Making training in distributed machine learning adaptive.

In 14th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}

20), pages 937–954, 2020.

142

Bibliography

[171] Shervin Malmasi and Marcos Zampieri. Detecting hate speech in social media. arXiv

preprint arXiv:1712.06427, 2017.

[172] Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. Three ap-

proaches for personalization with applications to federated learning. arXiv preprint

arXiv:2002.10619, 2020.

[173] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smol-

ley. Least squares generative adversarial networks. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision, pages 2794–2802, 2017.

[174] Iacopo Masi, Yue Wu, Tal Hassner, and Prem Natarajan. Deep face recognition: A survey.

In 2018 31st SIBGRAPI conference on graphics, patterns and images (SIBGRAPI), pages

471–478. IEEE, 2018.

[175] H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner, Julian

Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, et al. Ad click predic-

tion: a view from the trenches. In Proceedings of the 19th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 1222–1230. ACM, 2013.

[176] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera

y Arcas. Communication-efficient learning of deep networks from decentralized data.

In AISTATS, 2017.

[177] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman,

Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, et al. Mllib: Machine

learning in apache spark. JMLR, 17(1):1235–1241, 2016.

[178] Stuart Mitchell, Anita Kean, Andrew Mason, Michael O’Sullivan, Antony Phillips, and

Franco Peschiera. Optimization with pulp. https://coin-or.github.io/pulp/.

[179] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-

preserving machine learning. In 2017 IEEE symposium on security and privacy (SP),

pages 19–38. IEEE, 2017.

[180] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhihao Jia, Andrew Tulloch, Srinivas

Sridharan, Xing Liu, Mustafa Ozdal, Jade Nie, Jongsoo Park, et al. Software-hardware

co-design for fast and scalable training of deep learning recommendation models. arXiv

preprint arXiv:2104.05158, 2021.

[181] Luis Muñoz-González, Kenneth T Co, and Emil C Lupu. Byzantine-robust federated

machine learning through adaptive model averaging. arXiv preprint arXiv:1909.05125,

2019.

[182] Derek G. Murray, Jiří Šimša, Ana Klimovic, and Ihor Indyk. Tf.data: A machine learning

data processing framework. Proc. VLDB Endow., 14(12):2945–2958, jul 2021.

143

https://coin-or.github.io/pulp/

Bibliography

[183] David R Musser. Introspective sorting and selection algorithms. Software: Practice and

Experience, 27(8):983–993, 1997.

[184] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur,

Gregory R. Ganger, Phillip B. Gibbons, and Matei Zaharia. Pipedream: Generalized

pipeline parallelism for dnn training. In Proceedings of the 27th ACM Symposium on

Operating Systems Principles, SOSP ’19, page 1–15, New York, NY, USA, 2019. Association

for Computing Machinery.

[185] Behnam Neyshabur, Srinadh Bhojanapalli, and Ayan Chakrabarti. Stabilizing gan train-

ing with multiple random projections. arXiv preprint arXiv:1705.07831, 2017.

[186] Takayuki Nishio and Ryo Yonetani. Client selection for federated learning with hetero-

geneous resources in mobile edge. In ICC 2019-2019 IEEE International Conference on

Communications (ICC), pages 1–7. IEEE, 2019.

[187] NVIDIA. GPUDirect Storage: A Direct Path Between Storage and GPU Memory. https:

//developer.nvidia.com/blog/gpudirect-storage/. Last accessed: Apr, 2022.

[188] NVIDIA. Nccl. https://developer.nvidia.com/nccl, 2017.

[189] Openstack. OpenStack Swift. https://docs.openstack.org/swift/latest/. Last accessed:

Dec, 2021.

[190] Andrew Or, Haoyu Zhang, and Michael Freedman. Resource elasticity in distributed

deep learning. Proceedings of Machine Learning and Systems, 2:400–411, 2020.

[191] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and

Ananthram Swami. Practical black-box attacks against machine learning. In Asia

Conference on Computer and Communications Security, pages 506–519, 2017.

[192] Jay H Park, Sunghwan Kim, Jinwon Lee, Myeongjae Jeon, and Sam H Noh. Accelerated

training for cnn distributed deep learning through automatic resource-aware layer

placement. arXiv preprint arXiv:1901.05803, 2019.

[193] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:

An imperative style, high-performance deep learning library. In Advances in neural

information processing systems, pages 8026–8037, 2019.

[194] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:

An imperative style, high-performance deep learning library. In Advances in Neural

Information Processing Systems, pages 8024–8035, 2019.

[195] Pitch Patarasuk and Xin Yuan. Bandwidth optimal all-reduce algorithms for clusters of

workstations. Journal of Parallel and Distributed Computing, 69(2):117–124, 2009.

144

https://developer.nvidia.com/blog/gpudirect-storage/
https://developer.nvidia.com/blog/gpudirect-storage/
https://developer.nvidia.com/nccl
https://docs.openstack.org/swift/latest/

Bibliography

[196] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo. Optimus: an

efficient dynamic resource scheduler for deep learning clusters. In Proceedings of the

Thirteenth EuroSys Conference, pages 1–14, 2018.

[197] Ivens Portugal, Paulo Alencar, and Donald Cowan. The use of machine learning algo-

rithms in recommender systems: A systematic review. Expert Systems with Applications,

97:205–227, 2018.

[198] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuffling, fast and slow: Scalable

analytics on serverless infrastructure. In 16th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 19), pages 193–206, Boston, MA, February 2019.

USENIX Association.

[199] PyTorch. Torch distributed elastic. https://pytorch.org/docs/stable/distributed.elastic.

html.

[200] PyTorch. Torchelastic controller for kubernetes. https://github.com/pytorch/elastic/

tree/master/kubernetes.

[201] Aurick Qiao, Abutalib Aghayev, Weiren Yu, Haoyang Chen, Qirong Ho, Garth A. Gibson,

and Eric P. Xing. Litz: Elastic framework for high-performance distributed machine

learning. In 2018 USENIX Annual Technical Conference (USENIX ATC 18), pages 631–644,

Boston, MA, July 2018. USENIX Association.

[202] Aurick Qiao, Bryon Aragam, Bingjing Zhang, and Eric Xing. Fault tolerance in iterative-

convergent machine learning. In International Conference on Machine Learning, pages

5220–5230, 2019.

[203] Minghui Qiu, Peng Li, Chengyu Wang, Haojie Pan, Ang Wang, Cen Chen, Xianyan Jia,

Yaliang Li, Jun Huang, Deng Cai, et al. Easytransfer: A simple and scalable deep transfer

learning platform for nlp applications. In Proceedings of the 30th ACM International

Conference on Information & Knowledge Management, pages 4075–4084, 2021.

[204] Moo-Ryong Ra, Anmol Sheth, Lily Mummert, Padmanabhan Pillai, David Wetherall, and

Ramesh Govindan. Odessa: Enabling interactive perception applications on mobile

devices. In Proceedings of the 9th International Conference on Mobile Systems, Applica-

tions, and Services, MobiSys ’11, page 43–56, New York, NY, USA, 2011. Association for

Computing Machinery.

[205] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation

learning with deep convolutional generative adversarial networks. arXiv preprint

arXiv:1511.06434, 2015.

[206] Maithra Raghu, Chiyuan Zhang, Jon Kleinberg, and Samy Bengio. Transfusion: Un-

derstanding transfer learning for medical imaging. In Advances in Neural Information

Processing Systems. Curran Associates, Inc., 2019.

145

https://pytorch.org/docs/stable/distributed.elastic.html
https://pytorch.org/docs/stable/distributed.elastic.html
https://github.com/pytorch/elastic/tree/master/kubernetes
https://github.com/pytorch/elastic/tree/master/kubernetes

Bibliography

[207] Shashank Rajput, Hongyi Wang, Zachary Charles, and Dimitris Papailiopoulos. Detox: A

redundancy-based framework for faster and more robust gradient aggregation. Advances

in Neural Information Processing Systems, 32, 2019.

[208] Qing Rao and Jelena Frtunikj. Deep learning for self-driving cars: chances and chal-

lenges. In 2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in

Autonomous Systems (SEFAIAS), pages 35–38. IEEE, 2018.

[209] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee. Generative Adversarial

Text to Image Synthesis. ArXiv e-prints, May 2016.

[210] Sylvia Richardson and Peter J Green. On bayesian analysis of mixtures with an unknown

number of components (with discussion). Journal of the Royal Statistical Society: series

B (statistical methodology), 59(4):731–792, 1997.

[211] Peter J Rousseeuw. Multivariate estimation with high breakdown point. Mathematical

statistics and applications, 8:283–297, 1985.

[212] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations

by back-propagating errors. nature, 323(6088):533–536, 1986.

[213] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg,

and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International

Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[214] Atal Sahu, Aritra Dutta, Ahmed M Abdelmoniem, Trambak Banerjee, Marco Canini, and

Panos Kalnis. Rethinking gradient sparsification as total error minimization. Advances

in Neural Information Processing Systems, 34, 2021.

[215] Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek. Robust and

communication-efficient federated learning from non-iid data. IEEE transactions on

neural networks and learning systems, 2019.

[216] V. Saxena, K. R. Jayaram, S. Basu, Y. Sabharwal, and A. Verma. Effective elastic scaling of

deep learning workloads. In 2020 28th International Symposium on Modeling, Analysis,

and Simulation of Computer and Telecommunication Systems (MASCOTS), pages 1–8,

Los Alamitos, CA, USA, nov 2020. IEEE Computer Society.

[217] Vaibhav Saxena, KR Jayaram, Saurav Basu, Yogish Sabharwal, and Ashish Verma. Effec-

tive elastic scaling of deep learning workloads. In 2020 28th International Symposium

on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems

(MASCOTS), pages 1–8. IEEE, 2020.

[218] Linus E Schrage and Louis W Miller. The queue m/g/1 with the shortest remaining

processing time discipline. Operations Research, 14(4):670–684, 1966.

146

Bibliography

[219] Christopher J Shallue, Jaehoon Lee, Joe Antognini, Jascha Sohl-Dickstein, Roy Frostig,

and George E Dahl. Measuring the effects of data parallelism on neural network training.

arXiv preprint arXiv:1811.03600, 2018.

[220] Yotam Shmargad and Samara Klar. Sorting the news: How ranking by popularity polar-

izes our politics. Political Communication, 37(3):423–446, 2020.

[221] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In SIGSAC, pages

1310–1321, 2015.

[222] David Shue, Michael J. Freedman, and Anees Shaikh. Performance isolation and fairness

for multi-tenant cloud storage. In 10th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 12), pages 349–362, Hollywood, CA, October 2012. USENIX

Association.

[223] Singh Chouhan Siddharth, Kaul Ajay, Pratap Singh Uday, and Jain Sanjeev. A database of

leaf images: Practice towards plant conservation with plant pathology. Mendeley Data,

2019.

[224] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[225] Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V. Le. Don’t decay the learning rate,

increase the batch size. In International Conference on Learning Representations, 2018.

[226] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t decay the

learning rate, increase the batch size. arXiv preprint arXiv:1711.00489, 2017.

[227] Samuel L Smith and Quoc V Le. A bayesian perspective on generalization and stochastic

gradient descent. arXiv preprint arXiv:1710.06451, 2017.

[228] Liuyihan Song, Pan Pan, Kang Zhao, Hao Yang, Yiming Chen, Yingya Zhang, Yinghui Xu,

and Rong Jin. Large-scale training system for 100-million classification at alibaba. In

Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining, pages 2909–2930, 2020.

[229] Lili Su and Shahin Shahrampour. Finite-time guarantees for byzantine-resilient dis-

tributed state estimation with noisy measurements. IEEE Transactions on Automatic

Control, 65(9):3758–3771, 2019.

[230] Ilya Sutskever, Geoffrey E Hinton, and A Krizhevsky. Imagenet classification with deep

convolutional neural networks. Advances in neural information processing systems,

pages 1097–1105, 2012.

[231] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. Inception-v4, inception-resnet

and the impact of residual connections on learning. CoRR, abs/1602.07261, 2016.

147

Bibliography

[232] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.

Rethinking the inception architecture for computer vision. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 2818–2826, 2016.

[233] Tesla. Tesla ai hardware. https://www.tesla.com/AI.

[234] Kjerstin Thorson, Kelley Cotter, Mel Medeiros, and Chankyung Pak. Algorithmic infer-

ence, political interest, and exposure to news and politics on facebook. Information,

Communication & Society, 24(2):183–200, 2021.

[235] Aleksei Triastcyn and Boi Faltings. Federated generative privacy. arXiv preprint

arXiv:1910.08385, 2019.

[236] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig

Adam, Pietro Perona, and Serge Belongie. The inaturalist species classification and

detection dataset. In The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2018.

[237] Paul Vanhaesebrouck, Aurélien Bellet, and Marc Tommasi. Decentralized collaborative

learning of personalized models over networks. In AISTATS, 2017.

[238] Kenton Varda. Protocol buffers. https://github.com/protocolbuffers/protobuf.

[239] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, ukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural

information processing systems, 30, 2017.

[240] Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen,

and Jan S Rellermeyer. A survey on distributed machine learning. ACM Computing

Surveys (CSUR), 53(2):1–33, 2020.

[241] C. Vondrick, H. Pirsiavash, and A. Torralba. Generating Videos with Scene Dynamics.

ArXiv e-prints, September 2016.

[242] Pooja Vyavahare, Lili Su, and Nitin H Vaidya. Distributed learning with adversarial

agents under relaxed network condition. arXiv preprint arXiv:1901.01943, 2019.

[243] Chong Wang, Xi Chen, Alexander J Smola, and Eric P Xing. Variance reduction for

stochastic gradient optimization. Advances in Neural Information Processing Systems,

26:181–189, 2013.

[244] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. Generalizing from a few

examples: A survey on few-shot learning. ACM Computing Surveys (CSUR), 53(3):1–34,

2020.

[245] William Warner and Julia Hirschberg. Detecting hate speech on the world wide web. In

Proceedings of the second workshop on language in social media, pages 19–26, 2012.

148

https://www.tesla.com/AI
https://github.com/protocolbuffers/protobuf

Bibliography

[246] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning.

Journal of Big data, 3(1):1–40, 2016.

[247] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for regression.

In Advances in neural information processing systems, pages 514–520, 1996.

[248] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. Quantized convo-

lutional neural networks for mobile devices. In CVPR, pages 4820–4828, 2016.

[249] Yidi Wu, Kaihao Ma, Xiao Yan, Zhi Liu, Zhenkun Cai, Yuzhen Huang, James Cheng, Han

Yuan, and Fan Yu. Elastic deep learning in multi-tenant gpu clusters. IEEE Transactions

on Parallel and Distributed Systems, 2021.

[250] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, and Fabio

Roli. Is feature selection secure against training data poisoning? In ICML, pages 1689–

1698, 2015.

[251] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu, Nipun

Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang, et al.

Gandiva: Introspective cluster scheduling for deep learning. In 13th {USENIX} Sym-

posium on Operating Systems Design and Implementation ({OSDI} 18), pages 595–610,

2018.

[252] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Generalized Byzantine-tolerant sgd.

arXiv preprint arXiv:1802.10116, 2018.

[253] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Zeno: Byzantine-suspicious stochas-

tic gradient descent. arXiv preprint arXiv:1805.10032, 2018.

[254] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Slsgd: Secure and efficient dis-

tributed on-device machine learning. In Joint European Conference on Machine Learn-

ing and Knowledge Discovery in Databases, pages 213–228. Springer, 2019.

[255] Cong Xie, Oluwasanmi O Koyejo, and Indranil Gupta. Faster distributed synchronous

sgd with weak synchronization. OpenReview, 2018.

[256] Cong Xie, Sanmi Koyejo, and Indranil Gupta. Fall of empires: Breaking byzantine-

tolerant sgd by inner product manipulation. arXiv preprint arXiv:1903.03936, 2019.

[257] Cong Xie, Sanmi Koyejo, and Indranil Gupta. Practical distributed learning: Se-

cure machine learning with communication-efficient local updates. arXiv preprint

arXiv:1903.06996, 2019.

[258] Cong Xie, Sanmi Koyejo, and Indranil Gupta. Zeno++: Robust fully asynchronous sgd.

arXiv preprint arXiv:1903.07020, 2019.

149

Bibliography

[259] Lei Xie, Jidong Zhai, Baodong Wu, Yuanbo Wang, Xingcheng Zhang, Peng Sun, and

Shengen Yan. Elan: Towards generic and efficient elastic training for deep learning. In

2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS),

pages 78–88. IEEE, 2020.

[260] Pengtao Xie. Diversity-promoting and Large-scale Machine Learning for Healthcare.

PhD thesis, University of Pittsburgh Medical Center, 2018.

[261] Bangzhou Xin, Wei Yang, Yangyang Geng, Sheng Chen, Shaowei Wang, and Liusheng

Huang. Private fl-gan: Differential privacy synthetic data generation based on federated

learning. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 2927–2931. IEEE, 2020.

[262] Hang Xu, Chen-Yu Ho, Ahmed M Abdelmoniem, Aritra Dutta, El Houcine Bergou,

Konstantinos Karatsenidis, Marco Canini, and Panos Kalnis. Grace: A compressed com-

munication framework for distributed machine learning. In 2021 IEEE 41st International

Conference on Distributed Computing Systems (ICDCS), pages 561–572. IEEE, 2021.

[263] Shuotao Xu, Thomas Bourgeat, Tianhao Huang, Hojun Kim, Sungjin Lee, and Arvind

Arvind. Aquoman: An analytic-query offloading machine. In 2020 53rd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 386–399.

IEEE, 2020.

[264] Mengjia Yan, Mengao Zhao, Zining Xu, Qian Zhang, Guoli Wang, and Zhizhong Su.

Vargfacenet: An efficient variable group convolutional neural network for lightweight

face recognition. In Proceedings of the IEEE/CVF International Conference on Computer

Vision Workshops, pages 0–0, 2019.

[265] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning:

Concept and applications. ACM Trans. Intell. Syst. Technol., 10(2):12:1–12:19, January

2019.

[266] Yifei Yang, Matt Youill, Matthew Woicik, Yizhou Liu, Xiangyao Yu, Marco Serafini, Ashraf

Aboulnaga, and Michael Stonebraker. Flexpushdowndb: hybrid pushdown and caching

in a cloud dbms. Proceedings of the VLDB Endowment, 2021.

[267] Zhixiong Yang and Waheed U Bajwa. Bridge: Byzantine-resilient decentralized gradient

descent. arXiv preprint arXiv:1908.08098, 2019.

[268] Zhixiong Yang and Waheed U Bajwa. Byrdie: Byzantine-resilient distributed coordi-

nate descent for decentralized learning. IEEE Transactions on Signal and Information

Processing over Networks, 5(4):611–627, 2019.

[269] Sarita Yardi, Daniel Romero, Grant Schoenebeck, et al. Detecting spam in a twitter

network. First monday, 2010.

150

Bibliography

[270] Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter Bartlett. Byzantine-robust

distributed learning: Towards optimal statistical rates. arXiv preprint arXiv:1803.01498,

2018.

[271] Peifeng Yin, Ping Luo, and Taiga Nakamura. Small batch or large batch? gaussian

walk with rebound can teach. In Proceedings of the 23rd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 1275–1284, 2017.

[272] Peifeng Yin, Ping Luo, and Taiga Nakamura. Small batch or large batch? gaussian

walk with rebound can teach. In Proceedings of the 23rd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’17, page 1275–1284, New

York, NY, USA, 2017. Association for Computing Machinery.

[273] Ryo Yonetani, Tomohiro Takahashi, Atsushi Hashimoto, and Yoshitaka Ushiku. De-

centralized learning of generative adversarial networks from multi-client non-iid data.

CoRR, abs/1905.09684, 2019.

[274] Peifeng Yu and Mosharaf Chowdhury. Salus: Fine-grained gpu sharing primitives for

deep learning applications. arXiv preprint arXiv:1902.04610, 2019.

[275] Xiangyao Yu, Matt Youill, Matthew Woicik, Abdurrahman Ghanem, Marco Serafini,

Ashraf Aboulnaga, and Michael Stonebraker. Pushdowndb: Accelerating a dbms using

s3 computation. In 2020 IEEE 36th International Conference on Data Engineering (ICDE),

pages 1802–1805. IEEE, 2020.

[276] Zalando. Fashion-mnist dataset. https://research.zalando.com/welcome/mission/

research-projects/fashion-mnist/.

[277] Zalando. Kopf: Kubernetes operators framework. https://kopf.readthedocs.io/en/

stable/.

[278] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan Liang, Zhiting Hu,

Jinliang Wei, Pengtao Xie, and Eric P. Xing. Poseidon: An efficient communication

architecture for distributed deep learning on GPU clusters. In USENIX ATC, pages

181–193, 2017.

[279] Hanyu Zhao, Zhenhua Han, Zhi Yang, Quanlu Zhang, Fan Yang, Lidong Zhou, Mao Yang,

Francis C.M. Lau, Yuqi Wang, Yifan Xiong, and Bin Wang. Hived: Sharing a GPU cluster

for deep learning with guarantees. In 14th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 20), pages 515–532. USENIX Association, November

2020.

[280] Mark Zhao, Niket Agarwal, Aarti Basant, Bugra Gedik, Satadru Pan, Mustafa Ozdal,

Rakesh Komuravelli, Jerry Pan, Tianshu Bao, Haowei Lu, et al. Understanding and co-

designing the data ingestion pipeline for industry-scale recsys training. arXiv preprint

arXiv:2108.09373, 2021.

151

https://research.zalando.com/welcome/mission/research-projects/fashion-mnist/
https://research.zalando.com/welcome/mission/research-projects/fashion-mnist/
https://kopf.readthedocs.io/en/stable/
https://kopf.readthedocs.io/en/stable/

Bibliography

[281] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra.

Federated learning with non-iid data. CoRR, abs/1806.00582, 2018.

[282] Tianyi Zhou, Shengjie Wang, and Jeff A Bilmes. Diverse ensemble evolution: Curriculum

data-model marriage. In Advances in Neural Information Processing Systems, pages

5905–5916, 2018.

[283] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu,

Hui Xiong, and Qing He. A comprehensive survey on transfer learning. CoRR,

abs/1911.02685, 2019.

152

Arsany Guirguis

Chemin de Veilloud 12,
1024 Ecublens Vd, Switzerland

(+41) 787325160
WWW: https://aguirguis.netlify.app
E-mail: arsany.guirguis91@gmail.com

EDUCATION Ph.D. candidate, September 2017 - Now
School of Computer and Communication Sciences,
EPFL, Switzerland.
Thesis: System Support for Robust Distributed Learning.
Adviser: Prof. Rachid Guerraoui.

M.Sc., Computer and Systems Engineering, September 2014 - February 2017
Alexandria University, Egypt.
GPA: 4.00/4.00.
Thesis: Cooperation-based Routing Protocol for Cognitive Radio Networks.
Adviser: Prof. Mustafa ElNainay.

B.Sc., Computer and Systems Engineering, September 2009 - June 2014
Alexandria University, Egypt.
Rank: First, Distinction with degree of honor.
GPA: 3.97/4.00.
Graduation Project: BARDI: A Real Interactive Board.
Adviser: Prof. Mohamed Hussein.

CONFERENCE
PAPERS

1. Arsany Guirguis, Yitzchak Lockerman, Chengjian Zheng, David Eis, Rachid
Guerraoui, “Elastic Resource Allocation for Multi-tenant Deep Learning” Clus-
ters, Under submission.

2. Arsany Guirguis, Florin Dinu, Diana Petrescu, Do Le Quoc, Javier Picorel,
Rachid Guerraoui, “Accelerating Transfer Learning with Cloud Object Stores”,
Under submission.

3. El Mahdi El Mhamdi∗, Sadegh Farhadkhani, Rachid Guerraoui, Arsany Guir-
guis, Lê Nguyên Hoang, and Sébastien Rouault, “Collaborative Learning in
the Jungle”, Thirty-fifth Conference on Neural Information Processing Systems
(NeurIPS) 2021.

4. Rachid Guerraoui∗, Arsany Guirguis, Jérémy Plassmann, Anton Ragot, and
Sebastien Rouault, “Garfield: System Support for Byzantine Machine Learn-
ing”, IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN) 2021. Acceptance rate 16.3%.

5. Rachid Guerraoui∗, Arsany Guirguis, Anne-Marie Kermarrec, and Erwan Le
Merrer, “FeGAN: Scaling Distributed GANs”, ACM/IFIP International Mid-
dleware Conference (Middleware) 2020.

6. El Mahdi El Mhamdi∗, Rachid Guerraoui, Arsany Guirguis, Lê Nguyên
Hoang, and Sébastien Rouault, “Genuinely Distributed Byzantine Machine
Learning”, ACM Symposium on Principles of Distributed Computing (PODC)
2020. [Invited to the International Journal Distributed Computing].

7. Georgios Damaskinos∗, El Mahdi El Mhamdi, Rachid Guerraoui, Arsany Guir-

∗Authors are listed alphabetically.

153

guis, and Sébastien Rouault, “AGGREGATHOR: Byzantine Machine Learning
via Robust Gradient Aggregation”, The Conference on Systems and Machine
Learning (MLSys/SysML) 2019. Acceptance rate 16.9%.

8. Arsany Guirguis, Mustafa El-Nainay, “Channel Selection Scheme for Coop-
erative Routing Protocols in Cognitive Radio Networks”, IEEE ICNC 2017.

9. Samer S. Hanna, Arsany Guirguis, Mahmoud A. Mahdi, Yaser A. El-Nakieb,
Mahmoud Alaa Eldin, Dina M. Saber, Moustafa Youssef, Mustafa Y. ElNainay,
Amr A. El-Sherif, and Karim G. Seddik, “CRC: Collaborative Research and
Teaching Testbed for Wireless Communications and Networks”, ACM WiN-
TECH 2016 in conjunction with ACM MobiCom 2016.

10. Arsany Guirguis, Mohamed Ibrahim, Karim Seddik, Khaled Harras, Fadel
Digham, and Moustafa Youssef, “Primary User Aware k -hop Routing for Cog-
nitive Radio Networks”, IEEE GLOBECOM 2015.

11. Arsany Guirguis, Raymond Guirguis, and Moustafa Youssef, “Primary User
Aware Network Coding for Multi-hop Cognitive Radio Networks”, IEEE GLOBE-
COM 2014.

JOURNAL
PAPERS

1. El Mahdi El Mhamdi∗, Rachid Guerraoui, Arsany Guirguis, Lê Nguyên
Hoang, and Sébastien Rouault, “Genuinely Distributed Byzantine Machine
Learning (extended version)”, Distributed Computing, 2022.

2. Arsany Guirguis, Fadel Digham, Karim Seddik, Mohamed Ibrahim, Khaled
Harras, and Moustafa Youssef, “Primary User-aware Optimal Discovery Rout-
ing for Cognitive Radio Networks”, IEEE Transactions on Mobile Computing
(TMC), 2018.

3. Arsany Guirguis, Mohammed Karmoose, Karim Habak, Mustafa ElNainay,
and Moustafa Youssef, “Cooperation-based Routing in Cognitive Radio Net-
works”, Elsevier Journal of Network and Computer Applications (JNCA), 2018.

4. Youssef Khazbak, Mostafa Izz, Tamer ElBatt, Abdulrahman Fahim, Arsany
Guirguis, and Moustafa Youssef, “Cost-Effective Data Transfer for Mobile
Healthcare”, IEEE Systems Journal, 2016.

INVITED TALKS 1. System Support for Robust Machine Learning, KAUST, June 2022. Saudi
Arabia.

2. Robust Machine Learning in the Jungle, Amazon ATS Tech Talk, March 2022.
Amazon, Luxembourg.

3. Byzantine Machine Learning, Workshop on Systems (WOS9), December 2019.
Inria Rennes.

EXPERIENCE Bloomberg LP, London, UK
Data Science Research Intern May 2021 - August 2021

• Designed and built an elastic resource allocator for multi-tenant deep learning
clusters.

Huawei Technologies Research Center, Munich, Germany
Ph.D. Visiting Researcher February 2021 - April 2021

• Explored the benefits of near data processing (NDP) for machine learning ap-
plications.

154

INRIA, Rennes, France
Visiting Scholar July 2019 - September 2019

• Designed and built a scalable system for distributed Generative Adversarial
Networks.

Alexandria University, Alexandria, Egypt
Research Assistant August 2014 - May 2017

• Designed and implemented open-access testbed for Cognitive Radio Networks
to be available for educational and research purposes.

• Designed and implemented new routing protocols for Cognitive Networks.

Egypt-Japan University of Science and Technology, Alexandria, Egypt
Undergraduate Research Assistant July 2013 - September 2013

• Designed and implemented a network coding flavored forwarding algorithm for
Cognitive Radio Networks. This work was published in GLOBECOM 2014.

Egypt-Japan University of Science and Technology, Alexandria, Egypt
Undergraduate Research Assistant July 2012 - September 2012

• Implemented a routing protocol (SEARCH) for Cognitive Radio Networks over
Click Modular Router. This work was a part of the CogFrame project.

HONORS AND
AWARDS

1. EPFL, Switzerland: EDIC fellowship, September 2017.

2. Alexandria University, Egypt: University fund winner to attend IEEE
ICNC 2017.

3. Alexandria University, Egypt: runner-up, outstanding teaching assistant
in Computer and Systems Engineering Department, April 2016.

4. Alexandria University, Egypt: Prof. Khalil award, August 2014 (for rank-
ing first on Computer and Systems Engineering Department).

5. Alexandria University, Egypt: Best Graduation Project award, July 2014.

6. Microsoft Research Advanced Technology Lab, Cairo, Egypt: Gradu-
ation Project fund winner, December 2013.

TECHNICAL
SKILLS

• Languages: Python, Java, C/C++, P4.

• Frameworks: PyTorch, TensorFlow, Kubernetes, OpenStack Swift.

PROFESSIONAL
SERVICES

• Reviewer for ICLR 2022 (Highlighted Reviewer), NeurIPS 2022.

• Artifact Evaluation Board member at the Journal of Systems Research 2021.

• Reviewer for IEEE Transactions on Parallel and Distributed Systems.

• Reviewer for IEEE Transactions on Dependable and Secure Computing.

• Reviewer for IEEE Systems Journal.

• Reviewer for Elsevier Computer Standards & Interfaces.

• Reviewer for IEEE Transactions on Vehicular Technology.

• Reviewer for IEEE International Wireless Communications and Mobile Com-
puting Conference.

• Reviewer for IEEE Communications Letters.

155

	Acknowledgements
	Preface
	Abstract (English/Français)
	Contents
	List of Figures
	List of Tables
	I Introduction and Background
	Introduction
	Thesis Context
	Motivation and Contributions
	Byzantine Failures
	The Datacenter Case
	The Cloud Case
	The Federated Learning Case

	Thesis Roadmap

	Background
	Neural Networks
	Stochastic Gradient Descent
	Distributed Machine Learning
	Parameter Server
	Decentralized Learning
	Federated Learning

	II Fault-Tolerant Machine Learning
	System Support for Byzantine Learning
	Introduction
	Background
	Byzantine Resilience

	The Garfield Design
	Statistically–Robust GARs
	System Components

	The Garfield Implementation
	Communication in TensorFlow
	Communication in PyTorch
	SIMT Median Function
	Memory Management

	Applications
	Single Server, Multiple Workers (SSMW)
	Multiple Server, Multiple Workers (MSMW)
	Decentralized Learning

	Performance Evaluation
	Methodology
	Baselines
	GARs Microbenchmark
	Convergence Comparison
	Tolerating Byzantine Failures
	The Cost of Byzantine Resilience
	Scalability of Garfield

	Related Work
	Concluding Remarks

	III Practical Tips for Efficient Training
	Elasticity is All You Need
	Introduction
	Background
	Elastic Distributed Learning
	Deep Learning Scheduling
	PyTorch–elastic and ElasticJob

	The ERA Design
	Overview
	Architecture

	The ERA Implementation
	The Operator
	State Management
	Garbage Collection
	Batch Size Synchronization

	Performance Evaluation
	Methodology
	Baselines
	Microbenchmark
	End-to-end Large Experiment
	Scalability of ERA
	Fixed Job Schedule
	Convergence Comparison

	Related Work
	Concluding Remarks

	Cloud Object Stores for Faster Transfer Learning
	Introduction
	Background
	Cloud Object Stores
	Hardware-accelerated pushdowns
	Transfer Learning

	Measurement Study
	Status Quo
	Per-layer Output Size
	Per-layer Computation Time
	Batch Size vs Per-layer Memory Usage

	The HAPI Design
	Insights
	System Description
	Efficient Client-side Profiling
	Splitting Algorithm
	Batch Adaptation Algorithm

	The HAPI Implementation
	Performance Evaluation
	Methodology
	End-to-end Experiment
	Impact of Network Bandwidth
	Scalability on the COS
	Reduction in Transferred Data
	Batch Adaptation
	Breakdown of Memory

	Related Work
	Concluding Remarks

	Federated Learning: The Case of Generative Adversarial Networks
	Introduction
	Background
	Generative Adversarial Networks
	Distributed GANs

	The FeGAN Design and Implementation
	Overview
	The FeGAN Algorithm
	FeGAN Design Choices
	FeGAN System Aspects

	Performance Evaluation Methodology
	Convergence Comparison
	Convergence in iid Settings
	Convergence in Non-iid Settings
	FeGAN's Tolerance to GAN-specific Problems

	FeGAN System Performance
	Related Work
	Concluding Remarks

	IV Concluding Remarks
	Conclusions and Future Work
	Summary and Implications
	Future Directions

	Bibliography
	Curriculum Vitae

