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Abstract: Unlike water and sanitation infrastructures or socio-economic indicators, landscape features
are seldomly considered as predictors of diarrhoea. In contexts of rapid urbanisation and changes in
the physical environment, urban planners and public health managers could benefit from a deeper
understanding of the relationship between landscape patterns and health outcomes. We conducted
an ecological analysis based on a large ensemble of open-access data to identify specific landscape
features associated with diarrhoea. Designed as a proof-of-concept study, our research focused on
Côte d’Ivoire. This analysis aimed to (i) build a framework strictly based on open-access data and
open-source software to investigate diarrhoea risk factors originating from the physical environment
and (ii) understand whether different types and forms of urban settlements are associated with
different prevalence rates of diarrhoea. We advanced landscape patterns as variables of exposure
and tested their association with the prevalence of diarrhoea among children under the age of
five years through multiple regression models. A specific urban landscape pattern was significantly
associated with diarrhoea. We conclude that, while the improvement of water, sanitation, and hygiene
infrastructures is crucial to prevent diarrhoeal diseases, the health benefits of such improvements
may be hampered if the overall physical environment remains precarious.

Keywords: African cities; Cote d’Ivoire; diarrhoea; landscape ecology; open-source software;
urban planning

1. Introduction

Diarrhoeal diseases still pose a considerable public health problem. Although diar-
rhoea is preventable and treatable, it remains one of the main causes of death worldwide,
especially among young children and the elderly in sub-Saharan Africa [1]. With over
800,000 deaths attributed to inadequate water, sanitation and hygiene (WASH) in 2016,
diarrhoea is the main component of the disease burden from unsafe WASH [2].

It is widely acknowledged that safe access to well-managed WASH services is key
to interrupting the transmission pathways of pathogens causing diarrhoeal diseases [3–5].
Nonetheless, important research gaps remain, notably regarding potential risk factors
related to the physical environment. For example, although previous studies have ex-
plained the relevance of understanding spatial patterns of diarrhoea [6,7], little is known
about the impact of landscape patterns—i.e., the form and composition of the physi-
cal environment—on the occurrence of diarrhoeal diseases. Besides socio-economic and
biological factors, the physical environment can also be considered as a key health de-
terminant [8,9]. Moreover, understanding the relationship between diarrhoea and the
spatial characteristics of human settlements becomes even more relevant in the case of
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child health, considering that the main exposure pathway for toddlers is hand-to-mouth
contamination [10], which relates directly to the living environment.

In this study, we adopted a landscape ecology perspective [11] to deepen the current
knowledge on risk factors for diarrhoea, by advancing “urban landscapes” as the key
exposures. We purposively refer to urban landscapes in the plural, positing that they
result from specific, local socio-spatial arrangements that come to bear in different forms.
Indeed, cities are “patchy” ecosystems [12], formed by different types of land use and
occupation that materialize into extremely diverse urban habitats—arguably, with some of
these habitats being more healthy than others. In this sense, landscape ecology methods
are instrumental to analyse the form and composition of urban habitats, by addressing
landscape as spatial mosaic of discrete land use/land cover “patches” [11,13,14].

Thanks to advances in geospatial technologies and access to georeferenced health
data, spatial patterns of disease have been extensively studied [7,15], while mathematical
models have been developed to analyse and predict the spatiotemporal spread of infectious
diseases [16]. However, most studies conducted at large geographic scales (e.g., national,
or metropolitan scales) focus only on disease clustering, and inadequately address space
as an abstract, homogenous entity. In fact, variables related to the physical environment
(e.g., entropy levels of the built environment, density or land-use) are rarely integrated in
large-scale studies—exceptions occur when both health and settlement data are available
at a high spatial resolution, or are collected directly by the investigators [17,18].

The lack of high-resolution data systematically collected over large areas constitutes a
barrier to ecological studies that aim to explore risk factors derived from the physical envi-
ronment [19], especially in low- and middle-income countries [20]. Such research barriers
are being overcome with rapidly growing open-access data portals (e.g., OpenStreetMap
and Humanitarian Data Exchange) and the increased contribution of open science projects
that freely share their data. There is a high potential to combine these openly accessible
datasets to deepen the understanding of how the physical environment relates to health.
Yet, there is a paucity of studies that use open-access data to investigate this relationship at
a large geographic scale. Such analyses could provide a useful framework, given their low
cost and high reproducibility.

Moreover, understanding how the physical environment affects health is key for
decision-making, notably in contexts marked by high levels of socio-spatial segregation
that lead to disparate health outcomes [9]. Indeed, in cities characterised by inequitable
spatial development, the spatial dimension of disease must be addressed to properly
identify priorities and to tailor targeted interventions. In sub-Saharan Africa, given the
dynamics and intensity of recent urbanisation trends [21], decision makers would benefit
from a deeper understanding of the relations between urban landscape patterns and
diarrhoeal diseases.

The purpose of this study was to explore the possible relations between urban land-
scapes and diarrhoea, addressing the hypothesis that specific, spatial patterns of urban
settlements can be associated with the prevalence of diarrhoea. In this way, the spatial
characteristics of the physical environment were defined as key variables of exposure. At
the same time, our study put forward an analytical framework that was strictly based on
open-access data and open-source software. We focused on Côte d’Ivoire, a West African
country that faces considerable challenges related to rapid urbanisation and has a high
burden of diarrhoeal diseases, which are among the country’s top 10 causes of death [22].
In addition, Ivorian cities are marked by contrasting landscapes, as economic growth has
failed to keep pace with the rapid urban and demographic growths [23], while transposed
town planning models have failed to address local socio-economic needs [24]. Notably,
access to water and sanitation services remain a great challenge. Between 2000 and 2020,
access to basic water services in Ivorian cities decreased from 91 to 85%, while 52% of the
urban population still lacked access to basic sanitation in 2020 [25]. The concentration
of demographic growth around a few cities (“urban primacy”) has certainly exacerbated
the issues related to the lack of basic services, as these cities have become saturated and
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witnessed the emergence of precarious, informal settlements [23]. In 2014, over half of the
urban population in Côte d’Ivoire lived in slums [26], i.e., deprived settlements where the
physical environment itself exacerbates the risk of several illnesses, including diarrhoeal
diseases [9,27].

2. Materials and Methods
2.1. Datasets

This cross-sectional, ecological study combined open-access data on health, land cover,
and basic infrastructures, readily obtained from different sources (Table 1). Geospatial data
on the occurrence of diarrhoea among children under the age of five years can be obtained
from the Demographic and Health Surveys (DHS) programme in vector format [28]. The
DHS provides anonymised survey data at the individual and household levels that include
cases of diarrhoea that had occurred in the 2 weeks preceding their survey. The DHS also
provides data on access to WASH facilities and education, which were relevant to the
current analysis. DHS data can be georeferenced by linking the observations to the point
locations of survey clusters. To ensure anonymity, these locations do not correspond to the
precise locations of participating households, but rather to the mean location of households
belonging to a same cluster—i.e., for every cluster of surveyed households, there is one
single GPS position that is attributed to all households belonging to the same cluster. For
the datasets used in this analysis [29–32], there are 351 clusters distributed across Côte
d’Ivoire, for a total of 9686 surveyed households. These clusters contain a median number
of 27 households, or 134 people. Models of weather conditions can be obtained from
Terraclimate in raster format, at a spatial resolution of ~4 × 4 km [33], and these data were
included in our study because climatic conditions can be associated with diarrhoea [34].
Night illumination was used as a proxy for the presence of urban infrastructures, and
can be obtained in raster format (500 × 500 m) from the National Aeronautics and Space
Administration’s (NASA) Earth Observatory [35]. Land cover data can be obtained in
raster format (300 × 300 m) from the European Space Agency’s Land Cover Climate
Change Initiative Project (ESA Land Cover CCI) [36]. Population estimates at high spatial
resolutions are provided by WorldPop [37], also in raster format (100 × 100 m). Finally,
vector data on mobility infrastructures can be obtained from OpenStreetMap.

Table 1. List of open-access datasets used to explore relations between landscape and diarrhoea in
Côte d’Ivoire.

Data Layer Source Description Available
Years

Spatial
Resolution Type

Geolocation of DHS cluster DHS Cluster location with a geographic blur of 2 to 5 km 1998/1999
2011/2012 2 to 5 km Vector

(shp 1)

Cases of diarrhoea DHS Cases of diarrhoea (under-5), geocoded to
cluster location

1998/1999
2011/2012 2 to 5 km Vector

(table)
Access to water and
sanitation DHS Type of facility used by household, geocoded to

cluster location
1998/1999
2011/2012 2 to 5 km Vector

(table)

Education attainment DHS Education attainment of women (15–49 years),
geocoded to cluster location

1998/1999
2011/2012 2 to 5 km Vector

(table)

Climatic conditions Terra-climate Accumulated precipitation and mean temperature 1958–2020 1/24th degr.
(~4 km) Raster

Illumination (night lights) NASA Intensity of night illumination 2012 & 2016 500 m Raster
Land use ESA Land Cover CCI Discrete categories of land cover 1992–2019 300 m Raster
Population density WorldPop Estimated demographic densities (WorldPop’s model) 2000–2020 100 m Raster
Roads OpenStreetMap Surveyed roads and pathways 2019 5 to 20 m Vector (shp 1)

1 shapefile.

2.2. Data Pre-Processing

Combining health and environmental data is often a challenge, considering the differ-
ences in terms of the spatial and temporal resolutions of openly available data [38]. In this
study, the areal units used to aggregate data were based on the geolocations of DHS clusters,
which had the coarsest spatial resolution. All data processing steps were done in Python lan-
guage, using the Jupyter computing environment. The following packages were used to pro-
cess and visualise the data: PyLandStats 2.3.0 [39], rasterstats 0.15.0 [40], rasterio 1.2.9 [41],
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earthpy 0.9.2 [42], Fiona 1.8.20 [43], pandas 1.3.4 [44], geopandas 0.9.0 [45], numpy 1.20.3 [46],
statsmodels 0.13.0 [47], pysal 2.5.0 [48], matplotlib 3.4.3 [49], and seaborn 0.11.2 [50].

The different data layers were harmonised spatially and temporally based on the
buffer areas generated from DHS clusters, hereinafter called “spatial units”. Based on
previous studies [51], we generated circular buffer zones originating from each cluster
centroid, with radii based on the geographic blur determined by the DHS data anonymi-
sation protocol: urban clusters had a buffer radius of 2 km, while rural clusters had a
buffer radius of 5 km (Figure 1). The different data layers were aggregated at the cluster
level: environmental data were aggregated based on the respective buffer areas, while DHS
survey data were aggregated based on the clusters’ unique identifiers. In this way, for each
spatial unit we obtained the following: (i) the prevalence of diarrhoea among children
under the age of five; (ii) the proportion of the cluster’s population with access to at least
“basic” water and sanitation, as defined by the World Health Organisation (WHO) and
the United Nations Children’s Fund (UNICEF) Joint Monitoring Programme [25]; (iii) the
proportion of the cluster’s female population who never attended school; (iv) local climatic
conditions; (v) a list of landscape metrics derived from remotely sensed data (NASA and
ESA Land Cover CCI), hybrid models (WorldPop), and volunteered geographic informa-
tion (OpenStreetMap). Table 2 shows the variables obtained from this pre-processing in
more detail.
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Figure 1. Buffer areas (red circles generated from DHS clusters’ centroids) were used as reference
areas to calculate landscape metrics. Elaborated by the authors with QGIS, from: DHS [28] and ESA
Land Cover CCI [36]. © ESA Climate Change Initiative—Land Cover led by UCLouvain (2017).

Landscape metrics have been widely used to quantify and describe spatial patterns of
“patches” of similar land cover categories [11,14,39], and thus are useful to analyse spatial
patterns of urban settlements. These metrics were key features to our study, allowing
us to relate the prevalence of diarrhoea (dependent variable) to indicators describing the
form and composition of urban settlements (independent variables). We used the Python
package PyLandStats [39] to calculate a series of landscape metrics for each land cover class
contained within each spatial unit’s perimeter (Table 2), based on the data provided by
ESA’s Land Cover Climate Change Initiative Project [36]. The metrics employed here—i.e.,
the proportion, edge and shape index of land cover patches—were based on previous
studies that referred to land cover data to analyse spatial patterns of urban settlements [14]
and environmental determinants of disease [18].
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Table 2. List of variables calculated for each spatial unit (variables aggregated by buffer area).

Variable Role in Analysis Aggregation Operation

Prevalence of diarrhoea, under −5 Dependent variable Ncases
Npop. under−5

% access to basic 1 water Control variable Npop. with basic w.
Ntotal pop.

% access to basic 1 sanitation Control variable Npop. with basic s.
Ntotal pop.

% women 2 with no education Control variable Npop. women no ed.
Npop. women

Edge of land cover patches 3 Independent variables Total length (m) of edges
of given land cover

Shape index of land cover patches 3 Independent variables ∑n
i Pareai×Pshp indexi

Ntotal patches

Proportion of land cover patches 3 Independent variables Npixels o f given land cover
Ntotal pixels

% dense urban areas Independent variable Nurb. pix. value>median urb. den.
Ntotal urban pixels

% precarious urban areas Independent variable Nprecarious urb. pixels
Ntotal urban pixels

Km of roads per urban area Independent variable Length Rdkm
Urban Areapixels

1 As defined by the WHO and UNICEF Joint Monitoring Programme. 2 Aged between 15 and 49 years. 3 Applied
to all land cover categories.

We added a level of detail to our landscape metrics by reclassifying patches originally
categorised as “urban”, based on the levels of night illumination and demographic density
(Figures 2 and 3). Our study used the intensity of night illumination as a proxy for the
presence of urban infrastructures—or, in other words, for the “quality” of urbanisation.
Moreover, the quality of illumination affects the use of WASH amenities, especially by
females [52], and thus may impact the risk of diarrhoea. We defined “precarious” and
“regular” urban areas, building on the hypothesis that, if basic infrastructures are present,
the level of illumination follows the level of demographic density. In this sense, urban
pixels were considered “precarious” if they presented a high demographic density but
a low (or relatively low) intensity of night illumination; on the other hand, “regular”
urban patches had night illumination levels that matched the demographic density. This
categorisation was done based on quantiles (Figure A1, Appendix A): for each urban pixel,
if its density value was situated in a higher quantile than its night illumination value, it
was considered “precarious”.

Another indicator of the quality of urbanisation was the presence of roads, for which
we calculated two indicators: road availability (km of roads per ha of built-up area) and
linearity (ratio between edge length and linear distance between the two vertices of the
same edge). The latter also served as an indicator of the urban form.

Finally, based on the literature, a selection of features that have been associated with
diarrhoea were included as control variables. Basic water and sanitation services are key
to prevent diarrhoea [2], and were therefore included. Access to these services was mea-
sured using the DHS household datasets [30]. Maternal education has been associated
with a lower risk of diarrhoea [53]; at the same time, it has been related with reporting
bias, as households with higher levels of maternal education have shown increased rates
of reported child diarrhoea [54]. A proxy variable of maternal education (i.e., women’s
educational attainment) was therefore added, based on individual DHS data [31]. Climatic
conditions also have been associated with diarrhoea [34], but here they showed no signifi-
cant correlation (see Table A3, Appendix D). Hence, these data were discarded (for more
details, see the computer code section at the end of this article).

To preserve some level of detail in the data, the variables resulting from the aggregation
at the cluster level consisted of proportions (percentage) rather than simple means or
medians. For example, demographic density in each spatial unit was given by the ratio
between the number of built-up pixels classified as “dense” (with a value higher than the
statistical series’ median) and the total number of built-up pixels contained in the respective
spatial unit.
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By the end of the pre-processing, we obtained a geo-dataset with 351 spatial units.
Each spatial unit had three control variables (water, sanitation, and women’s educational
attainment) and a total of 90 independent variables, i.e., the landscape metrics described in
Table 2 (the full list of variables is given in Table S1, see Supplementary Materials).
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2.3. Statistical Models and Feature Selection

We used four different regression models to assess the significance of the associations
between the calculated landscape metrics and diarrhoea, while accounting for the effects
of access to water, sanitation, and education, as well as spatial autocorrelation. The input
data were standardised with a min/max scaler function, so that the effects of the different
features could be compared through their coefficients.

We started by running a feature selection algorithm to identify the most important
variables to be included in the regression models. Given the high number of independent
variables that were derived from the landscape metrics (n = 90), a preliminary feature
selection was necessary to avoid multicollinearity and to clarify the scope of the analysis.
The feature selection algorithm was composed of two “filters”. The first filter was a stepwise
selection, which is a process that adds variables from a predefined list to the model, one-
by-one, rechecking at each step the importance of all previously included variables [55].
In other words, the stepwise process combines forward and backward feature selection
processes, consisting of iterative linear regressions allowing to identify the “best” features
based on predefined significance thresholds (maximum p-value was set to 0.1) and model
performance (residual sum of squares). The second and final filter was based on Spearman’s
rank correlations (ρ): we used the Python package statsmodels [47] to calculate bivariate
correlations between each feature selected with the stepwise method and the dependent
variable (i.e., prevalence of diarrhoea at cluster level); only features with a p-value smaller
than 0.1 were kept. We purposively opted for relative high thresholds of p-values because
of the exploratory nature of this study.

Once we concluded the feature selection, we ran both weighted and unweighted
regression models. First, we built an unweighted ordinary least squares (OLS) model
containing the dependent, control, and independent variables, as well as a constant. Then,
we built a weighted model with the same features using the cluster weights given by the
DHS. In fact, when conducting country-level analyses, the DHS suggests using cluster
weights to adjust for eventual biases resulting from their sampling method. Given the
infectious nature of diarrhoeal diseases, the analysis also needed to account for spatial
dependence [56]. To this end, we used the Python package pysal [48] to run two models
of spatial regression with the same features, spatial lag and spatial error, as explained
in Section 2.4.

2.4. Addressing Spatial Dependence

Spatial dependence, or spatial autocorrelation, is the phenomenon by which values
of observations are associated with each other through geographic distance (e.g., high
values close to other high values) [57]. Accounting for spatial dependence is essential
because linear regressions assume a normal, random distribution of error terms and the
absence of spatial autocorrelation in the dependent variable. We estimated the probability
of spatial autocorrelation in the dependent variable by calculating the global Moran’s I,
which indicated whether the observed values of prevalence of diarrhoea were clustered, or
randomly distributed, in space. As for the error terms in the OLS regression, we detected
the probability of spatial dependence through the Lagrange multiplier test for spatial error.

Contrary to an OLS model, spatial regressions can account for the spatial autocorre-
lation of the dependent variable (spatial lag dependence) and of the error term (spatial
error dependence) [58]. The spatial lag model used in this study incorporates the spatial
autocorrelation of the dependent variable by introducing the average values of neighbours
as an additional variable into the regression specification (Equation (1)):

y = α + ρWy + Xβ + ε (1)

where y is an N × 1 vector of observations on a dependent variable taken at each of N
locations, α is the intercept, ρ is a scalar spatial lag parameter, W is an N × N matrix of
weights indicating the spatial framework of neighbourhood effects among the dependent
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variable, X is an N × k matrix of explanatory variables, β is a k × 1 vector of parameters,
and ε is an N × 1 vector of error terms. Similarly, the spatial error model used in this study
also incorporates spatial autocorrelation by introducing the average values of neighbours
as an additional variable into the regression specification, but this time using the values of
the error terms (Equation (2)):

y = α + Xβ + u, u = λWu + ε (2)

where u is the vector of spatially autocorrelated residuals with constant variance and
covariance terms, specified by an N × N matrix of weights indicating the spatial framework
of neighbourhood effects among the error terms (W) and a spatial error coefficient (λ).

2.5. Inclusion Criteria and Stratification of Analysis

The unit of analysis was the buffer area generated from each DHS cluster’s centroid
(spatial unit). Out of the 351 spatial units, 10 were excluded as they did not have valid
geographic coordinates. Furthermore, because our analysis focused on human settlements,
we opted to keep only those spatial units with at least 1 “urban” pixel (300 × 300 m). Hence,
we excluded 74 spatial units where no human occupation was detected—including units
with settlements not sufficiently large to be detected at the spatial resolution used here. In
the end, 267 spatial units (out of 351) were included in our regression analyses. Details
about the discarded units are given in Table A1 (Appendix B).

To determine whether the size and proportion of urban areas affected the association
between landscape features and diarrhoea, the processes described in Section 2.3 were
stratified into two levels. First, we conducted the regression analyses with all the 267 spatial
units that met our inclusion criteria. Then, we conducted the same analyses with an “urban”
subset, which contained 105 spatial units. The criterion for a spatial unit to be classified as
“urban” was to have a proportion of urbanised area (ratio between the surface of “urban”
pixels and the spatial unit’s total area) that was above the average of the retained 267 spatial
units. Figure 4 shows the location of the 267 spatial units included in the analysis, specified
by subset.
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3. Results
3.1. Overall Clustering of Data and Need for Spatial Regressions

The tests for spatial dependence confirmed the need for spatial regression models
when processing the data of the full dataset (n = 267). The global Moran’s I statistics for
the spatial distribution of the dependent variable showed a significant, positive spatial
autocorrelation of the prevalence of diarrhoea (Moran’s I = 0.11, p = 0.002). Regarding
the distribution of error terms in the OLS regression, a significant spatial dependence was
detected by the Lagrange multiplier test (p = 0.002). For the urban subset (n = 105), however,
no spatial dependence was detected. Nevertheless, we also ran spatial regressions with
this subset, for the sake of comparison with the full dataset analysis, and overall coherence
in the analysis.

3.2. Significant Landscape Feature: Dense, Precarious Urban Areas

One feature passed our selection filter and, hence, was retained as an independent
variable: the proportion of urban patches (ratio between patch area and buffer area) that
were characterised as being very dense (demographic density values situated within the
last decile of the series) and with low-to-medium night illumination levels (values above
the median but below the last decile of the series, see Figure A1, Appendix A). Following
the rationale explained in Section 2.2, these patches correspond to “precarious” urban
areas, as the level of density is higher than the illumination level. A total of 44 spatial units
(all located around Abidjan and San Pédro, two large cities) had at least one urban pixel
with these characteristics. We denominated this type of urban patch as “dense, precarious
urban areas”.

Tables 3 and 4 summarise the results of the different regression models used, following
the stratification explained in Section 2.5. The proportion of dense, precarious urban areas
was included as single independent variable (as it was the only significant landscape
metric), while indicators of access to water, sanitation, and education were included as
control variables.

For the full dataset (n = 267 spatial units), the weighted OLS regression and the
spatial lag model performed better than the other two, based on their R2 and Akaike
information criterion (AIC) values. Two features consistently showed significant coefficients
(p < 0.05): (i) proportion of the cluster population with access to basic sanitation facilities;
and (ii) proportion of dense, precarious urban areas. In the four models, basic sanitation
was negatively associated with diarrhoea, while dense, precarious urban areas showed
a positive association and had the strongest beta coefficients. The proportion of women
without any education showed significant coefficients in the weighted OLS regression
model and, globally, was negatively associated with the prevalence of diarrhoea. There
was no significant association between access to basic water facilities and diarrhoea. We
observed that neither the directions nor the levels of association between diarrhoea and
the tested variables changed significantly between the different models. Also, although
spatial dependence was detected, the spatial lag model only improved the coefficient of
determination when compared to the OLS model, while it was the weighted model using
DHS cluster weights that explained most of the variance of diarrhoea.

For the urban subset (n = 105 spatial units), there was considerably less variation
in the models’ R2 and AIC values. In terms of the explained variance of the dependent
variable, the models performed better with the urban subset than the full dataset. In
this subset, however, the only feature that consistently showed significant coefficients
was the proportion of dense, precarious urban areas—having once again the strongest
beta coefficients. Except for sanitation, the control variables showed poor coefficients for
the urban subset. As in the full dataset analysis, neither the directions nor the levels of
association between diarrhoea and the tested variables changed significantly between the
different models. Similarly, the model that explained most of the variance of diarrhoea was
the weighted OLS model (with DHS cluster weights).
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Table 3. Regression results of four models for the full dataset (n = 267 spatial units), by model type.

Included
Features

Variance
Inflation

Factor

Unweighted OLS
R2 = 0.06/AIC = −50.4
JB 2: 12.020 (p = 0.003)
BP 3: 4.880 (p = 0.300)

Weighted OLS
R2 = 0.129/AIC = 21.75
JB 2: 10.676 (p = 0.005)
BP 3: 2.881 (p = 0.578)

Spatial Lag
Pseudo R2 = 0.09/AIC = −56.3

JB 2: 11.407 (p = 0.003)
BP 3: 5.807 (p = 0.214)

Spatial Error
Pseudo R2 = 0.059/AIC = −58.2

JB 2: 11.859 (p = 0.003)
BP 3: 4.693 (p = 0.320)

Coef. SE Prob. Coef. SE Prob. Coef. SE Prob. Coef. SE Prob.

Constant - 0.426 0.070 0.000 0.460 0.066 0.000 0.297 0.076 0.000 0.366 0.073 0.000
% basic water 1.372 0.001 0.063 0.986 0.014 0.062 0.820 0.032 0.061 0.606 0.049 0.064 0.439

% basic sanitation 1.810 −0.186 0.069 0.007 −0.257 0.069 0.000 −0.181 0.067 0.007 −0.166 0.068 0.015
% women with no ed. 1.674 −0.141 0.075 0.061 −0.221 0.076 0.004 −0.123 0.073 0.092 −0.108 0.074 0.148
Dense, prec. areas 1 1.074 0.257 0.081 0.002 0.291 0.062 0.000 0.227 0.081 0.005 0.275 0.094 0.004

1 Selected landscape metric: proportion of dense, precarious urban areas (total patch area/buffer area). 2 Jarque-Bera test for normality of errors. 3 Breusch-Pagan test for heteroskedasticity.
Bold characters indicate that the association is significant (p < 0.05).

Table 4. Regression results of four models for the urban subset (n = 105 spatial units), by model type.

Included
Features

Variance
Inflation

Factor

Unweighted OLS
R2 = 0.141/AIC = −14.04

JB 2: 4.316 (p = 0.116)
BP 3: 4.444 (p = 0.349)

Weighted OLS
R2 = 0.196/AIC = 23.56
JB 2: 6.395 (p = 0.041)
BP 3: 7.101 (p = 0.131)

Spatial Lag
Pseudo R2 = 0.141/AIC = −12.05

JB 2: 4.364 (p = 0.113)
BP 3: 4.391 (p = 0.356)

Spatial Error
Pseudo R2 = 0.141/AIC = −14.09

JB 2: 4.285 (p = 0.117)
BP 3: 4.424 (p = 0.352)

Coef. SE Prob. Coef. SE Prob. Coef. SE Prob. Coef. SE Prob.

Constant - 0.282 0.137 0.042 0.325 0.157 0.040 0.290 0.143 0.043 0.275 0.134 0.041
% basic water 1.172 0.082 0.118 0.488 0.112 0.136 0.412 0.081 0.115 0.483 0.089 0.115 0.439

% basic sanitation 1.769 −0.168 0.107 0.119 −0.252 0.107 0.021 −0.167 0.105 0.111 −0.168 0.105 0.110
% women with no ed. 1.810 −0.013 0.127 0.917 −0.088 0.136 0.520 −0.012 0.124 0.925 −0.012 0.124 0.922
Dense, prec. areas 1 1.029 0.315 0.090 0.001 0.316 0.079 0.000 0.318 0.093 0.001 0.318 0.090 0.000

1 Selected landscape metric: proportion of dense, precarious urban areas (total patch area/buffer area). 2 Jarque-Bera test for normality of errors. 3 Breusch-Pagan test for heteroskedasticity.
Bold characters indicate that the association is significant (p < 0.05).
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3.3. Stages of Urbanisation and Landscape Patterns

Our stratified regression analyses showed that the proportion of urbanised area within
the spatial units affected the coefficients of the selected landscape metric, as well as those
of the control variables. Indeed, in the urban subset, the independent variable’s coefficients
became more important and significant, while the coefficients of the control variables
became much less significant than in the analyses with the full dataset.

In addition to the regression coefficients, urbanisation also affected the independent
variable’s rank correlation with the outcome of interest (Figure 5). For the full dataset
(n = 267), the Spearman’s correlation coefficient, which was calculated between dense,
precarious urban patches and the prevalence of diarrhoea, was +0.11 (p = 0.079), while for
the urban subset (n = 105; see orange dots in Figure 5) it increased to +0.24 (p = 0.013).
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The size of urbanised area (total “urban” pixels counted in each buffer area) was
positively correlated with the percentage of urban patches that were characterised as dense
and precarious (ρ = +0.50, p < 0.001). Put differently, as the extent of urbanised areas within
the spatial units (buffer areas) increased, the probability of urban areas being classified as
“dense and precarious” also increased. Moreover, the cumulated area covered by urban
patches was also significantly correlated to the percentage of women without any education
(ρ = −0.35, p < 0.001), access to basic water facilities (ρ = +0.53, p < 0.001), and to basic
sanitation (ρ = +0.50, p < 0.001).

The correlation between urbanisation and access to basic sanitation facilities is less
clear than with the other two control variables (Figures 6–8). Additionally, the correla-
tions changed according to the stage of urbanisation: we found higher significance levels
(p-values) for Spearman’s correlations among spatial units having low proportions of urban
areas, as compared to the urban subset. We found p = 0.002 for water (against 0.318 for
the urban subset); p ≈ 0.000 for sanitation (against 0.089); p = 0.002 for women’s education
(against 0.939).
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4. Discussion
4.1. Towards Spatial Predictors of Health Outcomes in Urban Areas

Spatial predictors of socio-economic indicators based on the morphology of the built
environment have already been studied [59,60]. At the same time, socioeconomic indicators
have been assessed as potential risk factors for diarrhoeal diseases [53]. However, to
our knowledge there are no studies that explore direct associations between the urban
landscape and diarrhoea. In this sense, our study advanced a selection of landscape metrics
as potential predictors of disease. One must note that this research for spatial predictors of
diarrhoea was facilitated by the availability of open-source software and open-access data
on human settlements and populations, which should be encouraged and valorised both
by scientists and planning authorities.

We defined “dense, precarious areas” through demographic and night illumination
data. Although hypothetical, this initial assumption proved to be useful in identifying
potential vulnerabilities in terms of health. The coefficients of both linear regressions
and Spearman’s rank correlation consistently showed a positive, significant association
between “dense, precarious areas” and the prevalence of diarrhoea. Among the most
urbanised clusters (“urban” subset), the selected landscape metric was a better predictor of
the prevalence of diarrhoea than the “usual suspects”, such as access to basic water and
sanitation facilities, or women’s educational attainment. In fact, the proportion of dense,
precarious urban areas was the only feature to consistently show significant coefficients in
all regression models.
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These observations call for further investigations on predictors of diarrhoea that are
more related to global aspects of the urban habitat, and not strictly focused on household-
level indicators or facilities. Indeed, in the case of Côte d’Ivoire, we may argue that poor
urban development has led to environmental conditions that limit the potential benefits of
basic water and sanitation infrastructures. Without proper urban habitats, the sole presence
of these infrastructures may not be sufficient to prevent diarrhoeal diseases. If this is
confirmed, it would have policy implications, as decision-makers should aim to improve
the overall urban habitat—instead of punctually improving infrastructures, as it may be
the case in “slum upgrading” projects. Further research on this aspect could be useful to
shed light on recent controversies regarding the health impacts of WASH interventions,
which are not always so clear or significant as expected [61].

Although urbanisation in Côte d’Ivoire was correlated to key predictors of diarrhoea,
such as the access to basic sanitation and the proportion of dense, precarious areas, it was
not directly correlated with diarrhoea. In fact, neither the size nor the form of urban patches
showed significant coefficients. Generally, there was no apparent association between
city size and the prevalence of diarrhoea, based on aggregated cluster data (Table A2,
Appendix C). Nevertheless, the “quality” of urbanisation (indicated here by the extent of
“precarious” areas) was a significant feature.

4.2. Saturation of Urban Settlements and Health Inequities

Urbanisation has been associated with better aggregate indicators of social and health
outcomes [8,62,63]. In Côte d’Ivoire, our results raised some nuances to this assumption.
While access to basic water and sanitation, as well as access to education, were significantly
associated with urbanisation, the latter alone was not associated in any way with the health
outcome of interest—i.e., diarrhoea. On the contrary, depending on the urban landscape
characteristics (e.g., the proportion of dense, precarious areas), the risk of diarrhoeal
diseases appeared to be significantly higher.

Moreover, our results showed that the size of urban areas was positively associated
with the percentage of urban patches that were characterised as dense and precarious. This
suggests that infrastructures have failed to keep up with demographic growth, which visibly
poses considerable challenges to town planners. The concentration of demographic growth
in a few Ivorian cities, and their subsequent saturation, has been discussed previously [23].
As economic limitations hamper investment in infrastructures and access to adequate
housing [64], the urban habitat becomes a risk factor for disease. If spatial development is
not equitable, then urbanisation leads to health inequities that inflict a high burden on the
most deprived populations—notably those living in slums [9,19].

Our analysis also showed that, at early stages of urbanisation, access to basic services
significantly increases with urban growth; however, when the extent of urban areas reaches
a larger size, this correlation disappears. An explanation could be that it is easier to expand
infrastructures in smaller cities than in bigger cities; in the latter, demographic densities
would tend to increase without a corresponding increase in infrastructures. In fact, all
urban pixels reclassified as “dense, precarious urban areas” were concentrated in two of
Côte d’Ivoire’s largest cities, namely Abidjan and San Pédro.

Africa is characterised by the fastest urbanisation rate in the world, and most of
the future urbanisation is expected to occur on this continent [21]. Given the important
spatial and social transformations that this engenders, specific attention of researchers and
urban planners is needed to ensure that the urban environment becomes a catalyst for
social development, rather than a health hazard. To this end, early interventions are key
to prevent urban areas from becoming saturated and to ensure that basic infrastructures
and services keep up with demographic growth. In this sense, focusing on small- and
medium-sized cities would be crucial as they approach the “tipping point” (in terms of
size of urban area), where it becomes more challenging to expand infrastructures to follow
demographic (and spatial) growth.
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4.3. Study’s Limitations and Need for Further Research

Our study has several limitations that are offered for consideration and, possibly, point
towards paths for future research on spatial predictors of diarrhoea. First, the cross-sectional
design is susceptible to what is known as the ecological fallacy [65], i.e., limitations to causal
inference due to the use of aggregate data. Although precarious spatial development was
associated with diarrhoea, there are other features in the complex urban system that may
impact the prevalence of diarrhoea. We addressed these limitations by adding control
variables (to mitigate effects of confounders) and by reducing the number of independent
variables (which reduced multicollinearity in the statistical models).

Second, study design limitations impacted the prediction power of the regression
models, which had R2 values situated between 0.06 and 0.20. However, we note that low R2

values are expected in such ecological studies, given the “noise” of environmental variables
and the complexity of the studied ecosystems [66]. In this regard, our model focused
on the material aspects of the urban environment, while omitting social dynamics that
could be relevant to explain the prevalence of diarrhoea. For instance, mobility can be a
key variable to model diarrhoeal diseases, as pathogens may travel long distances with
humans [67], but this could not addressed here due to the lack of data. Third, although
the stepwise feature selection process is a powerful screening tool to identify contender
models, it is prone to statistical issues that merit acknowledgment. For instance, searching
through a large number of potential features and keeping only the ones that best fit the
sample data may lead to “overfitting” the model [55]. In addition, the multiple testing of
a large number of contender features makes such selection methods prone to the “false
discovery” of features that appear as significant, but in reality are not relevant to estimate
the dependent variable [68]. In this sense, the explanatory variable in this study could be
further assessed using datasets with a higher spatiotemporal resolution, based on a larger,
random populational sample.

Lastly, the study material was strictly limited to open-access data, and hence, there
were limitations in terms of spatial accuracy. While settlement data can be found at
a fine spatial resolution, between 100 and 500 m (and potentially up to 0.5 m in the
case of very-high resolution satellite imagery), socio-demographic data are only available
at low spatial resolutions (in this case, 2 to 5 km). This is certainly due to the ethical
considerations regarding privacy. Indeed, researchers must preserve the anonymity of
their study participants, and hence, any georeferenced data must be transformed with
a geographic blur so that the specific locations of participating households cannot be
identified. In our study, this blur made it impossible to determine in which specific
type of landscape patch the study subjects lived—which is why we worked with buffer
areas and global landscape metrics. Moreover, we note that the socio-demographic data
aggregated by clusters came from samples that were not necessarily representative of that
same cluster’s population.

Further research is needed to verify to which extent the urban landscape effectively
impacts the risk of diarrhoea. Similar study designs could be implemented, but this time us-
ing high-resolution socio-demographic data—the latter would certainly need to be primary
data collected through household surveys. More generally, further research addressing
WASH interventions and diarrhoea from an ecological perspective—i.e., focusing not only
on household-level indicators, but also on features observed at community and urban
scales—could significantly contribute to fill in the knowledge gaps regarding the health
impacts (and efficiency) of different WASH solutions.

5. Conclusions

In this exploratory study, we addressed diarrhoeal diseases from a landscape ecology
perspective by considering the physical environment as a key explanatory variable. We
presented a framework strictly based on secondary, open-access data to assess whether
specific patterns of urban landscapes could be associated with diarrhoea. We combined
remotely sensed data from different sources to classify urban areas based on demographic
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density and the intensity of night illumination (used as a proxy for the presence of infras-
tructures). This allowed us to identify different types of “precarious” urban areas, and
to confront them, along with other landscape metrics, with the prevalence of diarrhoea
among children under the age of five years.

Based on the results of four different regression models, we found that patches of
dense, precarious urban areas were a statistically significant feature, consistently showing
a positive association with diarrhoea. This association was stronger in larger urban settle-
ments, where the selected landscape metric was a better predictor of the outcome of interest
than the control variables (water, sanitation, and education level). Given these results,
we may argue that poor urban development may lead to environmental conditions that
hamper the potential benefits of basic water and sanitation infrastructures—thus reducing
their ability to prevent diarrhoeal diseases. These observations raise the question of the
scope of urban interventions, which should focus on the overall quality of the landscape,
and not be limited to punctual infrastructural improvements.

We acknowledge the experimental nature of the framework put forward by this study.
There is a need for further research on how the urban environment may be associated
with diarrhoea, and how it may impact on potential benefits of water and sanitation
infrastructures. Urban planners and public health professionals will benefit from a better
understanding of how WASH services interact with their spatial and social contexts, which
certainly requires design adaptations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijerph19137677/s1, Table S1: Spearman correlation coefficients
between all environmental variables (n = 90) and the prevalence of diarrhoea, with the respective
p-value (for each variable, the table also indicates whether it was selected by the stepwise regression).

Author Contributions: Conceptualisation, V.P.C. and J.C.; methodology, V.P.C. and M.B.; software,
V.P.C. and M.B.; validation, V.P.C., J.C., B.K. and J.U.; formal analysis, V.P.C.; investigation, V.P.C.;
resources, J.C.; data curation, V.P.C.; writing—original draft preparation, V.P.C.; writing—review and
editing, J.U. and B.K.; visualisation, V.P.C.; supervision, J.C., B.K. and J.U.; project administration,
V.P.C.; funding acquisition, J.C. and J.U. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Swiss National Science Foundation, grant number CR-
SII5_183577, and the APC was funded by École Polytechnique Fédérale de Lausanne.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available in a publicly accessible repository are listed below.
Data presented in this study (processed by the authors, i.e., buffers with aggregated household and
landscape data) will openly available in Zenodo. Until the publication, they will be provisionally
available on Git Hub, with the computer code (see “Computer Code and Software”). DHS data:
restrictions apply to the availability of these data. Data was obtained from the Demographic and
Health Surveys Program and are available at https://dhsprogram.com/data/dataset/Cote-d-Ivoire_
Standard-DHS_2012.cfm?flag=0 (accessed on 11 May 2022) with the permission of the Demographic
and Health Surveys Program. ESA Land Cover CCI data: restrictions apply to the availability
of these data. Data was obtained from ESA Land Cover CCI and are available at https://maps.
elie.ucl.ac.be/CCI/viewer/download.php (accessed on 11 May 2022) with the permission of ESA
Land Cover CCI. NASA: publicly available datasets were analysed in this study. This data can
be found here: https://earthobservatory.nasa.gov/features/NightLights/page3.php (accessed on
11 May 2022). OpenStreetMap: publicly available datasets were analysed in this study. This data can
be found here: https://download.geofabrik.de/africa.html (accessed on 11 May 2022). Terraclimate:
publicly available datasets were analysed in this study. This data can be found here: https://www.
climatologylab.org/terraclimate.html (accessed on 11 May 2022). WorldPop: publicly available
datasets were analysed in this study. This data can be found here: https://www.worldpop.org/
project/categories?id=3 (accessed on 11 May 2022).

https://www.mdpi.com/article/10.3390/ijerph19137677/s1
https://www.mdpi.com/article/10.3390/ijerph19137677/s1
https://dhsprogram.com/data/dataset/Cote-d-Ivoire_Standard-DHS_2012.cfm?flag=0
https://dhsprogram.com/data/dataset/Cote-d-Ivoire_Standard-DHS_2012.cfm?flag=0
https://maps.elie.ucl.ac.be/CCI/viewer/download.php
https://maps.elie.ucl.ac.be/CCI/viewer/download.php
https://earthobservatory.nasa.gov/features/NightLights/page3.php
https://download.geofabrik.de/africa.html
https://www.climatologylab.org/terraclimate.html
https://www.climatologylab.org/terraclimate.html
https://www.worldpop.org/project/categories?id=3
https://www.worldpop.org/project/categories?id=3


Int. J. Environ. Res. Public Health 2022, 19, 7677 16 of 20

Acknowledgments: We are thankful to the kind support of Günther Fink (Swiss TPH) and Dominik
Dietler (Swiss TPH), who provided useful insights regarding the choice and processing of data used
in this study.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Computer Code and Software: A repository with the code materials used in this study is available
at https://github.com/ceat-epfl/landscape-diarrhoea-civ (accessed on 28 May 2022).

Appendix A

Figure A1 illustrates the rationale behind the reclassification of urban pixels (300 × 300 m),
based on the levels of demographic density and night illumination. Three thresholds were
established for these two statistical series, corresponding to: (i) first decile; (ii) median;
(iii) last decile. These thresholds allowed to classify each pixel into 4 classes of demographic
density and night illumination (1 to 4, with “4” corresponding to the highest values, i.e.,
within the last decile of the series). Urban pixels with a density class higher than its
illumination class were considered “precarious”.
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Appendix B

Table A1 shows the general characteristics of the excluded and retained spatial units,
based on the variables provided by the DHS surveys. The reader must note that it was
not in the scope of this study to analyse these differences. In fact, our analysis focused on
human settlements, which requires the presence of urban land cover “patches”—which
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is why we only included spatial units containing at least 1 pixel (300 × 300 m) classified
as “urban”.

Globally, the 84 units that did not meet the inclusion criteria (explained in Section 2.5)
showed similar prevalence rates of diarrhoea, as well as access to basic water facilities, to
the 267 units retained for the analysis. As for the levels of access to basic sanitation and
women’s education, the values were significantly different.

Table A1. General characteristics of the excluded and retained spatial units (obtained from DHS data).

Statistic

Prevalence of
Diarrhoea (%)

Access to Basic 1

Water (%)
Access to Basic 1

Sanitation (%)
Women who Never Went to

School (%)

Excluded
obs. (n = 84)

Retained
obs. (n = 267)

Excluded
obs. (n = 84)

Retained
obs. (n = 267)

Excluded
obs. (n = 84)

Retained
obs. (n = 267)

Excluded
obs. (n = 84)

Retained
obs. (n = 267)

Median value 16.7 16.7 67.1 87.4 3.7 18.5 83.0 50.0
Mean value 17.8 18.2 61.0 78.1 6.2 27.0 80.1 51.0
Standard deviation 10.9 12.6 27.7 24.9 7.9 26.1 15.4 22.2
Minimum value 0.0 0.0 0.0 0.0 0.0 0.0 34.8 4.2
Maximum value 42.9 56.3 100.0 100.0 33.3 100.0 100.0 100.0

1 Definitions of “basic” and “safe” WASH facilities based on the WHO & UNICEF Joint Monitoring Programme.

Appendix C

Table A2 shows aggregated DHS data for a selection of cities across Côte d’Ivoire.
These cities were selected based on their population sizes and, also, based on their role
as “connectors” within the urban system of Côte d’Ivoire [23]. The data was aggregated
spatially: the mean cluster-level prevalence of diarrhoea was calculated by selecting the
specific clusters that were located in each city. There was no apparent association between
city size (suggested here by the number of clusters comprised in each city) and the mean
prevalence of diarrhoea; although Abidjan showed the highest maximum value (54.5%),
small- and medium-sized towns such as Daloa and Douékoué showed much higher, mean
prevalence rates of diarrhoea (26.0 and 43.8%, respectively).

Table A2. Observed prevalence of diarrhoea among children under five in a selection of Ivoirian cities.

Location Size and Category 1 N◦ Clusters Mean Prevalence
of Diarrhoea 2

Standard Deviation
of Sample

Range (Min. and
Max. Values)

Abidjan Large (“global connector”) 48 21.4 13.8 0.0/54.5
Yamoussoukro Medium (“global connector”) 5 14.5 11.0 0.0/29.4

San Pédro Medium (“global connector”) 4 14.5 13.2 0.0/28.6
Bouaké Medium-large (“regional connector”) 16 12.1 9.4 0.0/33.3

Korhogo Medium (“regional connector”) 6 12.5 11.5 0.0/29.4
Daloa Medium (“regional connector”) 4 26.0 7.5 20.0/36.8

Katiola Small (“local connector”) 2 5.9 8.3 0.0/11.8
Douékoué Small (“local connector”) 1 43.8 - -

Divo Small (“local connector”) 1 15.4 - -

1 “Connector” categories based on the work by Fall and Coulibaly [23]. 2 Mean values resulting from aggregated
DHS data.

Appendix D

Table A3 shows the results of the weighted OLS regression done with a pre-selection
of control variables. The regression used the cluster weights provided by the DHS and
was run with the 267 spatial units included in the study. The pre-selection of control
variables was done based on the literature, including features that have been associated
with diarrhoeal diseases (as explained in Section 2.2). Considering the extremely poor
performance of variables related to climatic conditions and hygiene facilities, we opted
to exclude them from the analysis. Only the variables related to water, sanitation and
women’s education were retained as control variables.



Int. J. Environ. Res. Public Health 2022, 19, 7677 18 of 20

Table A3. Results of the weighted OLS regression models for the pre-selected control variables (full
dataset, n = 267 spatial units).

Pre-Selected Control Variables
Variance
Inflation

Factor

Weighted OLS (DHS Cluster Weights)
R2 = 0.059/AIC = 46.45

Jarque-Bera Test for Normality of Errors: 31.090 (p < 0.001)
Breusch-Pagan Test for Heteroskedasticity: 4.152 (p = 0.656)

Coef. SE Prob.

Constant - 0.448 0.079 0.000
% of the population with access to basic water facilities 1 1.468 0.074 0.067 0.270

% of the population with access to basic sanitation facilities 1 1.970 −0.254 0.076 0.001
% of the population with access to safe hygiene facilities 1 1.363 −0.034 0.054 0.535

% of the female population who never went to school 1.744 −0.261 0.079 0.001
Mean accumulated precipitation (monthly values) in 2012 1.260 0.049 0.063 0.436

Mean maximal temperature (monthly values) in 2012 1.165 0.0008 0.091 0.993

1 Definitions of “basic” and “safe” WASH facilities based on the WHO & UNICEF Joint Monitoring Programme.
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