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A calcium-based plasticity model for predicting
long-term potentiation and depression in the
neocortex
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Pyramidal cells (PCs) form the backbone of the layered structure of the neocortex, and
plasticity of their synapses is thought to underlie learning in the brain. However, such long-
term synaptic changes have been experimentally characterized between only a few types of
PCs, posing a significant barrier for studying neocortical learning mechanisms. Here we
introduce a model of synaptic plasticity based on data-constrained postsynaptic calcium
dynamics, and show in a neocortical microcircuit model that a single parameter set is suf-
ficient to unify the available experimental findings on long-term potentiation (LTP) and long-
term depression (LTD) of PC connections. In particular, we find that the diverse plasticity
outcomes across the different PC types can be explained by cell-type-specific synaptic
physiology, cell morphology and innervation patterns, without requiring type-specific plas-
ticity. Generalizing the model to in vivo extracellular calcium concentrations, we predict
qualitatively different plasticity dynamics from those observed in vitro. This work provides a
first comprehensive null model for LTP/LTD between neocortical PC types in vivo, and an
open framework for further developing models of cortical synaptic plasticity.
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ne of the most enigmatic features of the neocortex is the

stereotypical layered architecture, which is thought to

enable multiple interacting streams of information pro-
cessing and play an important role in learning. PCs account for
over 80% of the neurons in the neocortex and form the backbone
of this laminar structure. Depending on the layer of origin, the
extent of the dendritic tree, the axonal projections, and tran-
scriptomic information!, PCs can be subdivided into multiple
classes with different input-output properties!~©.

PCs interact with each other via a complex network of synaptic
connections, which undergo persistent changes as a function of
external stimuli and internal dynamics, thought to be the basis of
learning’. This process is known as synaptic plasticity, and can
manifest as LTP or LTD of synaptic efficacy3-10.

Four decades of in vitro experiments have characterized the
most important molecular pathways of LTP/LTD and found a
rich set of stimulation protocols to explore the variables con-
trolling plasticity induction (for a review see Malenka and
Bear!!). For example, spike-timing dependent plasticity (STDP) is
a form of persistent synaptic efficacy modification where the
direction and magnitude of synaptic changes are controlled by the
relative timing of pre- and post-synaptic spikes!2-14,

Many models have been proposed for LTP/LTD of PC con-
nections, ranging from phenomenological descriptions!>22 to
molecular level models of single synapses?>24 (for reviews
see Manninen et al.2> and Kotaleski and Blackwell2°). It is widely
accepted that postsynaptic calcium, entering dendritic spines via
N-methyl-D-aspartate receptors (NMDARs) and voltage-
dependent calcium channels (VDCCs), is the key signal driving
LTP/LTD?’-30. The postsynaptic calcium transients can subse-
quently trigger the expression of plasticity either presynaptically,
postsynaptically, or both31-33, The most common assumption on
how calcium dynamics are linked to changes of synaptic efficacy
is the so-called calcium-control hypothesis?’, whereby cal-
cium transients of large amplitude are postulated to induce LTP,
while prolonged calcium transients of moderate amplitude would
result in LTD, but other forms considering multiple calcium
sensors have been proposed!”-28:34,

Although the calcium-control hypothesis provides a strong
foundation for describing plasticity mechanisms, the experi-
mental coverage of LTP/LTD between PC connection types is still
sparse. This poses a major barrier to the study of learning
orchestration in the neocortex. Based on the currently available
evidence, it is possible that every PC connection type implements
a unique and specific “learning rule” within the context of the
neocortical learning algorithm3°. On the other hand, the in vitro
reports on location-dependent synaptic plasticity indicate that
connection-type specificity could be compatible with a uniform
plasticity mechanism which is shaped by the physiological
properties of the synaptic connection30-38,

Given the critical role of calcium for the induction of synaptic
plasticity, it is also important to consider that in vitro experi-
ments are usually performed at an elevated extracellular calcium
concentration. However, as synaptic plasticity depends crucially
on the dynamics of neurotransmitter release and post-synaptic
calcium influx, a non-physiological calcium concentration could
produce plastic changes that are not representative of the true
learning rules in vivo’®.

Here we use a modeling approach to evaluate the hypothesis
that PC type-specific variability in post-synaptic calcium
dynamics (driving plasticity) is sufficient to unify the available
experimental findings on the heterogeneity of plasticity between
PCs in the neocortex. First, we extended and calibrated a model of
neocortical circuit® to explicitly describe postsynaptic calcium
dynamics. Connected pairs of PCs were then sampled and
simulated to mimic in vitro experiments on synaptic plasticity in

paired recordings!436:40-44 These in silico experiments were used
to adapt and optimize a previously described calcium-based
model of LTP/LTD!?, which we then tested on held-out stimu-
lation protocols and PC connection types. Finally, we used the
model to predict plasticity outcomes under physiological extra-
cellular calcium conditions.

Results

Modeling synaptic plasticity of PC connections. To test our
hypothesis that calcium signaling diversity can explain plasticity
diversity, we introduced calcium-dependent synaptic plasticity
into a previously developed model of a neocortical
microcircuit>#> (Fig. 1a). The circuit model comprises 163271
compartmental neurons, based on morphological reconstructions
of 17 pyramidal cell types across 6 layers in the rat somatosensory
cortex, and has been extensively validated in terms of synapse
location on the dendrites, number of synapses per connection,
in vivo spontaneous and stimulus-evoked dynamics, and sto-
chasticity and multi-vesicular nature of neurotransmission>46-48,
We extracted and simulated pairs of connected PCs from the
circuit model to obtain a representative sample for each con-
nection type (i.e. 100 connections each). Importantly, sampling
connected pairs from a larger microcircuit model allowed us to
transparently account for the variability of morphologies, inner-
vation profiles and synaptic transmission parameters within each
connection type. All in silico models and simulations used in this
work are made publicly available at https://doi.org/10.5281/
zenodo.56547884°.

For PC connections, the interplay of pre- and postsynaptic
activity causes calcium influx into the spine head due to
NMDARs and VDCCs, driving the induction of synaptic
plasticity (Fig. 1b). We estimated the fractional calcium current
due to NMDARs by extending the approach of Jahr and
Stevens®), and fitting to recent data for the neocortex>12,
VDCCs were modeled as an inactivating population of R-type
channels in the Hodgkin-Huxley (HH) formalism and calibrated
to experimental data>3->4, Spine calcium dynamics were described
using a point current formalism with instantaneous
buffering®>°, resulting in a linear ordinary differential equation
(ODE) as follows:

d . 5 F n ([Ca2+]i - [CaH]gO))
a[Ca li = Uxmpar + Ivpee) OF-X 7

TCa
1

where [CaZ*]; is the free calcium concentration in the spine head,
Txvpagr i the calcium component of the NMDAR-mediated
current, Iypcc is the VDCC-mediated calcium current, # is the
fraction of free (non buffered) calcium, F is the Faraday constant,
X is the spine volume, [Ca2T],® is the intracellular calcium
concentration at rest, and 7, is the time constant of free calcium
clearance.

To accurately model the distribution of calcium transients, it is
important to consider the known correlation between spine
volume and calcium conductances, as can be inferred from
experiments®’—°, and assign large and small spine volumes to
high- and low-conductance synapses, respectively. Accounting for
this correlation has the effect of reducing calcium transient
variability across synapses. To this end, we used the total synaptic
conductance, as prescribed by constraints of the circuit model, to
determine the spine volume, X (see Methods). Spine volume is
then used to estimate the VDCC conductance, assuming a
spherical spine head and using surface density measurements
reported in literature4,
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Fig. 1 Modeling the role of postsynaptic calcium in LTP/LTD. a A 3-D rendering of a neocortical column in the circuit model used in this study. Neuronal
morphologies are colored according to their layer of origin (axons not shown). b Schematic of the main players and events contributing to LTP/LTD
induction at excitatory synapses (bottom) between pyramidal neurons (top). Pre-synaptic vesicle release and subsequent post-synaptic depolarization
results in calcium influx in dendritic spines via NMDARs and VDCCs. Calcium signaling activates independent biochemical pathways, leading to long-term
changes in AMPAR conductance (postsynaptic expression mechanisms) and/or vesicle release probability (presynaptic expression mechanisms).

¢ Calcium transients at a single synapse during repetitive firing of the presynaptic neuron at 10 Hz (upper three panels; Trial 1-3). Trial-to-trial variability is
governed by the rapid depletion of the number of vesicles available for release and the resulting drop in success rate (bottom; data shown as mean + STD,
n=10). d Calcium transients at a single synapse during repetitive firing of the postsynaptic neuron at 10 Hz. VDCCs respond with reliable calcium
transients to postsynaptic spikes. e Calcium transients at a single synapse during repetitive pairing of the pre- and post-synaptic neuron at 10 Hz.
Presynaptic spikes shortly preceding postsynaptic spikes (blue, +10 ms) cause nonlinear activation of the NMDARs and a large calcium influx. The inverse
timing relationship (post before pre, red, —10 ms) results in an almost linear summation of NMDAR- and VDCC-mediated calcium transients.

Within this formalism, pre- or post-synaptic spiking results in
a rich repertoire of calcium transients due to the complex
interactions between the calcium current sources described above
and the neurotransmission dynamics prescribed by the circuit
model>#8. Isolated presynaptic spikes primarily trigger NMDAR-
mediated calcium influx, but in a probabilistic manner governed
by the vesicle release probability. We compared the calcium
transients generated by our model for synaptic activation with
those obtained experimentally in vitro by Sabatini et al.>® and
found good agreement for the mean peaks (0.67 +0.44 uM in
silico, 0.7 0.4 uM in vitro; mean =+ STD) and the timecourse
(Supplementary Fig. A.la-c). It should be noted that, as the
timecourse of these calcium transients is determined by the slow
NMDAR current, minor quantitative differences between the
model and the in vitro data are expected, considering that the
latter experiments were performed in the hippocampus. Repeti-
tive activation of the presynaptic terminal, as commonly used to
induce plasticity in vitro, rapidly depletes the small readily-
releasable pool (RRP) of synaptic vesicles (Nggp = 248:60:61)
thereby reducing the probability of inducing a postsynaptic
calcium response (Fig. 1c). Conversely, isolated postsynaptic
spikes only activate VDCCs, inducing reliable calcium influx even
during repetitive firing (Fig. 1d). We compared the calcium
transients generated by our model by a single postsynaptic spike
with those obtained experimentally in vitro by Sabatini et al.>
and found good agreement for the mean peaks (1.4 £ 0.6 uM in
silico, 1.7+ 0.6 uM in vitro; mean + STD) and the timecourse

under reasonable assumptions of the path length sampling
distribution on which this quantity strongly depends (Supple-
mentary Fig. A.1d-i). Importantly, the combination of these two
calcium activation modalities can produce a cooperative non-
linear interaction due to the sensitivity of NMDARs to membrane
depolarization. That is, spiking-induced postsynaptic depolariza-
tion immediately following the activation of NMDARs (pre
before post; blue; Fig. 1e) causes larger calcium transients than the
opposite timing relationship (post before pre; red; Fig. le). The
timing dependence of this nonlinear effect is thought to be the
origin of STDP (for a review see Graupner and Brunel??), a well-
studied component of PC plasticity in the neocortex.

To account for the frequency dependence of LTP!?, the
calcium control hypothesis implicitly presupposes supralinear
calcium accumulation in the spine during high-frequency
stimulation?’ (for a review, see Manninen et al.2%). Our calcium
model, which was constrained by experimental measurements of
calcium dynamics in spines, predicts that such accumulation is
not produced at cortical PCs by traditional high-frequency
stimulation protocols (Fig. 2a top). This can be attributed to the
stochasticity of vesicle release, the low number of vesicles in the
RRP of individual synapses?8, and the fast calcium clearance
mechanisms®®. Consistent with this, previous theoretical work
has identified the importance of introducing longer calcium
integration time constants to explain plasticity outcomes!”.
Following this work, we introduced a leaky calcium integrator,
c*, to capture the frequency dependence of LTP while
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Fig. 2 Plasticity model components and parameter optimization.

a Evolution of plasticity model state variables during coincident activation
of pre- and postsynaptic neurons at 2 Hz (left) and at 10 Hz (right). The
instantaneous calcium concentration (c; top) is integrated overtime to
produce a suitable readout (c*; middle) for plastic changes, expressed as an
increase of synaptic efficacy (p; bottom). Crossing the depression threshold
(64 green) causes a decrease in the synaptic efficacy whereas crossing the
potentiation threshold (@,; red) results in an increase. b Comparison of
calcium integrator peaks during LTD-inducing protocol (10 Hz, — 10 ms)
against LTP-inducing protocol (10 Hz, + 10 ms). Peaks are well clustered
by dendritic location (apical, orange; basal, blue) and on average slightly
larger during the LTP protocol then during the LTD protocol. Error bars
represent standard deviation and intersect at the mean value of the cluster.
Peaks were estimated from a single repetition of the stimulation protocol at
each synapse. ¢ Comparison of mean EPSP ratio between model (in silico,
blue) and experimental constraints (in vitro, orange) after model parameter
optimization. Experimental data (in vitro) from Markram et al.'2, Sjéstrom
and Hausser36 (see Table 1). Data reported as mean + SEM. Welch's
unequal variances two-sided t-test was n.s. for every protocol (p-value from
top to bottom: 0.78, 0.84, 0.67, 0.63, 0.69; n=100).

maintaining a simple thresholding plasticity mechanism, as
follows

*

d ,__¢ 2+ 2+1(0)
3¢ = (e - e, @

where 7, is the integration time constant. This mechanism
integrates calcium over longer timescales to drive plasticity, as
could arise from the interplay of fast and a slow buffers in the
spine head?4¢2, involving for example calmodulin®®. Function-
ally, it gives heavier weight to longer NMDAR-mediated over
shorter VDCC-mediated calcium events, and to calcium events
arriving in close proximity, such as during high frequency
stimulation (Fig. 2a middle).

Expression of synaptic plasticity takes the form of persistent
changes to synaptic parameters, which we assume here to be
driven by the integrated calcium, ¢*. To model these persistent
changes, we followed the approach of Graupner and Brunel!®. In
this formalism, the “synaptic efficacy” is a dynamic variable, p,
driven by the integrated calcium concentration, and exhibiting
bistable dynamics (see Fig. 2a bottom), according to the following
equation

d
2o = (=P = )05 = p) + 1,1 = PIOIE" — 6,1 = 3,00l — O,1) /.
3)

where 7 is the time constant of convergence of the synaptic
efficacy, p = 0.5 is the unstable fixed point separating the basins of
attraction of the two stable states (depressed at p=0 and
potentiated at p = 1), @ is the Heaviside function, 6, and 6, are
the depression and potentiation thresholds, and y,; and y, are the
depression and potentiation rates, respectively.

Plasticity of neocortical synapses between pyramidal cells has
been found to be expressed presynaptically as a persistent
increase/decrease of vesicle release probability31:03, and post-
synaptically as alpha-amino-3-hydroxy-5-methyl-4-isoxazole
propionate receptor (AMPAR) insertion/removal32. Furthermore,
the expression mechanisms are slower than induction mechan-
isms, as demonstrated by the slow buildup of LTP/LTD
commonly observed after plasticity-induction  protocols
in vitro!>14. To account for all these effects, the synaptic efficacy
p is dynamically converted into a release probability, Usg, and
AMPAR conductance, Gypar by low-pass filtering as follows

d, _Us-Ug
a7 1

change (4)
T d d
Use = UsE + p(0) (U(s’g - U(SE))

g G _ GAMPAR — GAMPAR
dt AMPAR —
Tchange (5)
- ~(d) ~(p) ~(d)
GAMPAR = GAMPAR + p(t) : (GAMPAR - (;AMPAR)7

~(d ~ ..
where U(S‘Q, U(SPE) > Ggg,ﬂ, AR> G(:;,[P AR are constants parameterizing a

linear conversion of the depressed (d) and potentiated (p) states
to release probability Usg and AMPAR conductance G ypar. For
simplicity we assumed that these two synaptic variables evolve
together by assigning the filtering time constants to be identical
(Tchange)- Moreover, by using p to drive both pre-synaptic and
post-synaptic changes, we implicitly assumed that these two
synaptic variables are correlated, a view supported by experi-
mental observations on the structural and functional relationships
between synaptic variables®/—>9:61.64,

While most parameters of the plasticity model can be extracted
from literature or fixed to reasonable values, the available
experimental data is insufficient to directly estimate the time
constant of the calcium integrator (7,), the depression and
potentiation thresholds (6 6,) and the depression and potentia-
tion rates (ya ). To determine these remaining parameters of
the plasticity model, we replicated previous in vitro experiments
using our chosen circuit model’, and used optimization
approaches to achieve a best match to the experimental data.

Specifically, we assumed that 7, y; and y, are shared across all
synapses, and hypothesized that the thresholds for the induction
of LTP/LTD are homeostatically regulated locally at each synapse
based on the calcium amplitude observed during normal network
activity (i.e. excitatory post-synaptic potentials (EPSPs) and
backpropagating action potentials (bAPs)). That is, the thresholds
were expressed as a linear combination of the calcium peak
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Table 1 Datasets and stimulation protocols from in vitro experiments.

Pre m-type Post m-type Area Species Age Freq. (H2) At (ms) Reference
L5-TTPC L5-TTPC SSC rat P14-P16 2, 57,10, 20, 30, 40 5 12
L5-TTPC L5-TTPC e rat P14-P16 10 107, —10" 12
L2/3-PC L2/3-PC SSC (barrel) rat P12-P14 20 10 4
L4-SSC L4-SSC SSC (barrel) rat P12-P14 1,10, 20, 50 10 41
L5-TTPC L5-TTPC VC rat P12-P21 0.1, 10, 20, 40, 50 10, =10 14
L5-TTPC L5-TTPC VC rat P12-P21 0.1, 20, 40, 50, 100 0 14
L5-TTPC L5-TTPC VC rat P12-P21 20 25, —25 14
L4-PC L2/3-PC SSC (barrel) mouse P9-P14 0.2 10, —15 42
L2/3-PC L2/3-PC SSC (barrel) mouse P12-P18 0.2 —15 43
L2/3-PC L2/3-PC vC rat P14-P21 0.2 10, =10 44
L2/3-PC L2/3-PC VC rat P14-P21 10 10 44
L2/3-PC L2/3-PC VC rat P14-P21 20 10, —10 44
L5-TTPC L5-TTPC VC rat P14-P21 50 10 36
L2/3-PC L5-TTPC vC rat P14-P21 50t 10 36
T Stimulation protocol used for model fitting.

during a single EPSP due to the release of all vesicles in the RRP,
Cpre> and the calcium peak during a single bAP, Co, generalizing
the approach taken in Graupner and Brunel!®. As these events
occur much more often than plasticity-inducing pairings,
frequently in isolation, and activate both NMDARs and VDCCs,
they are ideal candidates to provide a reference point for the
homeostatic regulation of the LTP/LTD thresholds. As calcium
transients span a large range of amplitudes and form two clusters
representing synapses on basal or apical dendrites (Fig. 2b), the
parameters of the linear combinations were assumed to be shared
between all basal and all apical synapses respectively, resulting in
8 threshold parameters to be optimized during model fitting (11
free parameters in total: the 8 threshold parameters, y,, y4 and
T,; see Methods).

For optimization targets and testing comparisons, we con-
sidered all available datasets from previously published plasticity
experiments for glutamatergic connections in the juvenile rodent
neocortex that used whole-cell paired recordings: layer 5 thick-
tufted pyramidal cell (L5-TTPC) to L5-TTPC!2!4, layer 2/3
pyramidal cell (L2/3-PC) to L5-TTPC3¢, 12/3-PC to L2/3-
PC#1:4344 layer 4 pyramidal cell (L4-PC) to L2/3-PC*2, layer 4
spiny-stellate cell (L4-SSC) to L4-SSC#! (see Table 1). Some of
these datasets are potentially incompatible with the cellular and
synaptic physiology of the circuit model presented here (rat
somatosensory cortex), but were included anyway for an
exhaustive comparison of all available rodent neocortical
plasticity datasets using whole-cell paired recordings. We did
not consider experiments performed in other brain regions,
species, or developmental stages to be consistent with the
underlying circuit model, which provides synaptic connectivity
and physiology on which plasticity outcomes depend.

We used only the L5-TTPC to L5-TTPC!? and 1L2/3-PC to L5-
TTPC3® datasets during model fitting (training set), holding out
the other datasets to subsequently assess the predictive power of
the model (test set). During model fitting, 200 pairs of connected
PCs were randomly sampled from the circuit model (100 for each
connection type, see Methods), and stimulated to pair the activity
of the pre- and postsynaptic neurons at frequencies and time
offsets matching the in vitro experiments. The mean EPSP
amplitude was assessed during the minutes preceding the
induction protocol and then monitored for 40 minutes after the
induction. The last 60 EPSPs were used to assess the amplitude
change with respect to baseline. We then used a multi-objective
evolutionary strategy®>% to optimize the 11 free plasticity model
parameters. Out of 10360 evaluated solutions, we found 83 valid
candidates (i.e. errors within one SEM from the in vitro target for

each stimulation protocol; see Supplementary Fig. A.2). The best
solution was then chosen as the one minimizing the maximum of
its errors across all stimulation protocols in the training set. That
is, a solution was considered as good as its largest error on the set
of training protocols. Interestingly, the parameter sets prescribed
by the valid candidates were clustered around the chosen best
solution and their performance gradually degraded towards the
perimeter of the cluster (Supplementary Fig. A.3). This result
suggests that the optimization algorithm converged to a smooth
local minimum and demonstrates a certain robustness of the best
solution, as small variations of its parameters do not cause a
catastrophic drop in performance on the training set. After
optimization, the model captured the in vitro results for L5-TTPC
to L5-TTPC and L2/3-PC to L5-TTPC plasticity (Fig. 2c;
differences between the model and in vitro experiments are n.s.;
Welch’s unequal variances t-test).

Taken together, these results indicate that we do not need to
optimize the free parameters for each synapse individually, but
rather we can model the observed plasticity mechanisms with a
shared set of free parameters. This suggests that the model could
generalize to novel protocols, and predict plasticity outcomes at
connections types that have not been experimentally character-
ized. We tested this hypothesis, first on novel protocols for the
optimized connection types (L5-TTPC to L5-TTPC and L2/3-PC
to L5-TTPC), and subsequently on novel connection types
without further parameter tuning, as described in the following
two sections.

Model validation and predictions on the optimized connection
types. We validated the model using novel stimulation protocols
within the same classes of neurons used for model optimization.
To ensure the plasticity model is not overfitting a specific sample
of in silico PC connections, validation was performed on a novel
set of connections drawn from the tissue model.

First, we validated the L5-TTPC to L5-TTPC connection type
(see Supplementary Fig. A.23 for distributions of synaptic
parameters). We extended the set of experimental protocols
in Markram et al.!2 (Fig. 3a, b) to obtain a dense map of LTP/
LTD dynamics for this connection type, as a function of
stimulation frequency and time delay between the spike trains
of the pre- and post-synaptic neurons (Fig. 3c). The cross-
sections of this map allow the comparison of the in vitro
observations!2 with the predictions of the in silico model. The
model correctly reproduces the experimental LTP-frequency
dependence, even though frequencies above 10 Hz were not
included in the training set (Fig. 3d). Similar results were also

| (2022)13:3038 | https://doi.org/10.1038/s41467-022-30214-w | www.nature.com/naturecommunications 5


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

a b c
0.5mV
pre 1.4
post
Frequency = 40 Hz 20ms 1.3
At=5ms I~
s Z 128
£ > &
- e 115
. 10 S &
presynaptic cell = > 1.0 &
t: t ] o 5}
e 8 e
o 05 long term ( 0.8
@ induction
oo L . . . , . . | Qo7
-10 0 10 20 30 40 25 50
Time (min) At (ms)
d e f
At=5ms At=—-10ms Frequency = 10 Hz
1.6 in silico L in silico in silico
o 1.4 N L .
in vitro in vitro 1.2 in vitro
o 1.4 k] 211F
8 120 g LA
o o o 10 |
L (7] I
g 1.2 ¢ ¢ g 10 ) £ Y
: Y 0.9t
10wy 08k 0.8F
1 1 1 1 1 1 L 1 1 1
0 20 40 0 20 40 -50 -25 0 25 50
Frequency (Hz) Frequency (Hz) At (ms)
9 h i
) 0.5 mV
pre A 1.4
post
Frequency = 50 Hz 20 ms 1.3
At=10ms ~
%‘ < 122
>
= 1.0 g 11 n!:
[}
) ES 3 109
presynaptic cell 5 K w
postsynaptic cell £05 baseline i 0.9
synapses D“j long term ‘ 0.8
1% induction |
fin , L . . . . . | 907
-10 0 10 20 30 40 25 50
Time (min)
At=10ms At=—-10ms Frequency =50 Hz At=10ms
131 in silico in silico 5r in silico
in vitro (L23) 121 L in vitro
12t 4
o i} i}
8 g g3r
o r q 10 o
%] %] [
o o a2r
w 1.0 w [i]
ﬁ 0.8 1
0.9
L L L L L L (0] =N L L L
0 20 40 0 20 40 0 5 10 15
Frequency (Hz) Frequency (Hz) EPSP rise time (ms)

Fig. 3 Comparison of in vitro and in silico LTP/LTD outcomes for two distinct populations of synapses onto L5-TTPC. a 3-D rendering of a
representative pair of connected L5-TTPCs in the in silico model. Inset shows a magnified view of some of the synapses mediating the connection (yellow
spheres). b Evolution over time of simulated EPSP amplitude (bottom) during a typical plasticity induction protocol (top left; one burst shown out of 10).
Mean EPSP amplitudes (top right) are shown before (baseline; blue) and after (long term; orange) the induction protocol. ¢ Timing and frequency
dependence of LTP/LTD in silico for the protocol described in b (n=100). Simulated configurations shown as black markers, with cubic interpolation
elsewhere. d Comparison of in vitro and in silico frequency dependence of synaptic changes at At =+5 ms. Welch's unequal variances two-sided t-test
was n.s. for every protocol (p-value from low to high stimulation frequency: 0.988, 0.399, 0.550, 0.821, 0.940, 0.586; n=100). e As in d for At = —10 ms.
Welch's unequal variances two-sided t-test was n.s. (p-value: 0.103; n =100). f Comparison of in silico and in vitro STDP at a frequency of 10 Hz. Welch's
unequal variances two-sided t-test was n.s. for every protocol (p-value from negative to positive stimulation timing: 0.103, 0.550, 0.299; n=100).
Experimental data (in vitro) from Markram et al.12. Panels g-k as in a-e for L2/3-PC to L5-TTPC connections. For j, Welch's unequal variances two-sided t-
test was n.s. (p-value: 0.245; n =100). | Dependence of LTP/LTD on dendritic location. EPSP rise time is used as a correlate of the average contact distance
from soma for comparison with Sjostrém and Hausser3® (in vitro; includes also connections between L5-TTPCs and those acquired via extracellular
presynaptic stimulation). Circles represent individual experiments, while solid lines are power-law fits to the data (in silico, blue, f(x) = 1.22x~932; in vitro,
orange, f(x) = 1.61x~0-41), All panels report EPSP ratio data as mean + SEM. Black arrows indicate stimulation protocols used to optimize model parameters.
For the full distribution of in silico experiment outcomes see Supplementary Fig. A.10 (L5-TTPC to L5-TTPC) and Supplementary Fig. A.11 (L2/3-PC to L5-

TTPO).

observed in the visual cortex using a comparable experimental depressed and potentiated states. That is, the maximum
protocol!4, and were reproduced by our model (Supplementary magnitude of LTP/LTD obtainable in our model is constrained
Fig. A.4a). The observed quantitative match between in vitro and by the initial state of all synapses (i.e potentiated or depressed)
in silico data at higher frequencies is compatible with our and by how much each synapse can change. For example, a pool
assumptions on the initial ratio of potentiated over depressed of connections having all synapses initialized in the potentiated
synapses, and the conductance and release probabilities of the state will not produce LTP for any stimulation protocol, as there
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are no synapses to potentiate. Similarly, if on average the
conductance (release probability) of the potentiated state is only
marginally larger than the one of the depressed state, even
potentiating every synapse might not be enough to match the
target in vitro experiments. These parameters were estimated
before fitting, based on the available experimental evidence and
theoretical considerations.

Next, we considered LTD-inducing protocols. The model
correctly reproduces the experimental data (Fig. 3e), although a
slightly better performance was obtained during training (see
Fig. 2¢), indicating the onset of neuron-sampling specific
overfitting. Over the range of frequencies considered, we observed
the emergence of LTD-frequency dependence, consistent with
experiments in visual cortical slices'# (Supplementary Fig. A.4b, c).
Specifically, LTD is abolished at high-frequency stimulation for
this connection type (see Fig. 3c). Interestingly, in our model the
switch from LTD to LTP occurs at a lower stimulation frequency
compared to in vitro data from visual cortex!# (e.g. approx. 20 Hz
vs approx. 40 Hz for At = —10 ms; see Supplementary Fig. A.4b).
Since LTD in visual cortex also has a larger magnitude across
protocols when compared to both our model and the in vitro
datal?, these findings could indicate a tendency for greater
depression in visual cortex compared to somatosensory cortex.

Our model assumes a single synaptic efficacy variable p, which
is then expressed as pre- and post-synaptic changes. This
assumption seems to contradict previous reports that the high-
frequency stimulation protocols reproduced in this work can also
induce pre- and post-synaptic changes of opposite directions (i.e.
presynaptic LTD and postsynaptic LTP)32. However, the analysis
approach to determine the locus of expression of synaptic
plasticity only considers the net EPSP change measured at the
soma, whereas the underlying local plastic changes across the
multiple individual synapses mediating a given connection could
have diverse and even contrasting directions and magnitudes. In
this scenario, each of the multiple synaptic contacts might still
undergo matching pre- and post-synaptic plasticity (as assumed
here), and yet we could observe divergent pre- and post-synaptic
LTP/LTD of the somatic EPSP. To test this hypothesis, we applied
somatic analysis of the locus of expression, as in Sjostrom et al.32,
to our simulation results and found that presynaptic LTD and
postsynaptic LTP of the whole connection could still coexist in
our model under the assumption of matched pre and post
changes of individual synapses (Supplementary Fig. A.5a; data
points in red shaded area). This indicates that reports of divergent
pre- and post-synaptic LTP/LTD at the level of whole connec-
tions do not exclude a priori our assumption of a single synaptic
efficacy variable. However, Sjostrom et al.3? also reported a lack of
postsynaptic LTD in their experiments, which our model cannot
account for (Fig. A.5b, c).

Finally, our model shows a clear STDP window at 10 Hz
(Fig. 3f), also qualitatively consistent with experiments in visual
cortical slices'* (Supplementary Fig. A.4ad-h). Here we restricted
our analysis to relative spike timings in the range of —50 to
-+50 ms, as traditionally considered in vitro, although our model
could support longer integration windows due to the large time
constant of the calcium integrator. Similar to what was observed
for the LTD frequency dependence, STDP in our model is most
evident at lower frequencies than reported in the visual cortex
and completely abolished above 20 Hz. Furthermore, our model
predicts a flip from LTP to LTD around At=+50ms, a
configuration where the pre- and post-synaptic spike trains are
perfectly interleaved (i.e. the inter-spike intervals (ISIs) of the pre-
and post-synaptic spike trains are 2 x Af). This finding is in
agreement with experiments in the visual cortex, where a flip
from LTP to LTD was observed for At = 4-25 ms for a stimulation
frequency of 20 Hz!4, a configuration where the pre- and post-

synaptic spike trains are also perfectly interleaved (Supplemen-
tary Fig. A.4f, orange).

Taken together, these results indicate quantitative agreement of
the model with L5-TTPC to L5-TTPC plasticity dynamics in the
somatosensory cortex and qualitative agreement with those in the
visual cortex. Considering that our circuit model is specific for the
somatosensory cortex, it might be possible that the same plasticity
model parameterization determined here would provide a
quantitative agreement for the visual cortex, given an accurate
circuit model of that region. However, we cannot rule out the
possibility of a region-specific parameterization being required.

We next validated the L2/3-PC to L5-TTPC connection type
(Fig. 3g-i, see Supplementary Fig. A.24 for synaptic parameters
distributions). Sjostrém and Hausser3® showed that a stimulation
protocol causing large LTP in L5-TTPC to L5-TTPC connections
would not potentiate L2/3-PC to L5-TTPC connections, and
often produce depression instead. This effect is due to the distal
location of L2/3-PC to L5-TTPCs synapses and the consequent
attenuation of the bAPs involved in plasticity induction3®. Our
model reproduced this result (Fig. 3j), although a slightly better
performance was obtained during training (see Fig. 1f), again
indicating the onset of neuron-sampling specific overfitting.
Considering a larger set of stimulation frequencies than is
available from in vitro recordings revealed a form of frequency-
dependent LTP/LTD for this connection type (Fig. 3j-k). In
contrast to what was observed for L5-TTPC to L5-TTPC
connections (see Fig. 3d, e), strong to moderate LTD was always
present between 5 and 10 Hz. Furthermore, our model
qualitatively reproduces distance-dependent plasticity (Fig. 31),
even though no requirements on distance-dependent effects were
imposed during model fitting. Quantitative differences between in
silico and in vitro data (KDE test, p-value < 0.001) could be due to
the heterogeneity of the in vitro dataset (which includes
extracellular recordings and L5-TTPC to L5-TTPC connections)
or to cortical region discrepancies (somatosensory for in silico,
visual for in vitro). However, power-law fits (y = b - x%) revealed
statistically indistinguishable exponents (a=—0.32+0.13 in
silico, a=—0.41+0.04 in vitro), suggesting that the two
distributions exhibit an equivalent distance dependence up to a
scaling factor (b =1.22 +0.06 in silico, b = 1.61 £ 0.04 in vitro).

Model testing and predictions on novel connection types. We
evaluated the generalization of the model using two additional
classes of PCs not used during parameter optimization: L2/3-PC
to 1L2/3-PC (Fig. 4) and L4-PC to L2/3-PC (Fig. 5).

First, we considered LTP between L2/3-PC connections due to
pairing at 20Hz stimulation*! and found that our model
qualitatively reproduces the in vitro result (Fig. 4b-d; see
Supplementary Fig. A.26 for synaptic parameters distributions).
Note that in the analysis we excluded one outlier connection in
the in silico dataset, having a disproportionate skewing effect on
the average EPSP ratio due to its small baseline EPSP amplitude
(baseline mean EPSP amplitude = 0.004 mV, EPSP ratio = 57.7;
Fig. 4d). While such small EPSP amplitudes have not been
reported for this connection type®’, this could reflect a limitation
of paired recordings to detect weak connections given noise,
rather than a limitation in the circuit and plasticity models. The
model also partially reproduces the experimental results for a
pairing protocol at 0.2 Hz*3 (Fig. 4e-g). While for this stimulation
protocol we did not observe LTD as reported in vitro, we could
not find statistically significant differences between the in vitro
and in silico results. Note that again we excluded two outlier
connections from the analysis to avoid the skewing effects on the
average EPSP ratio from weak connections, as described above
(baseline mean EPSP amplitude <0.05 mV; Fig. 4g). Furthermore,
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Fig. 4 Testing plasticity model generalization on the L2/3-PC to L2/3-PC connection type. a 3-D rendering of a representative pair of connected layer 2/3
pyramidal cell (L2/3-PC) to L2/3-PC in the in silico model. Inset shows a magnified view of the synapses mediating the connection (yellow spheres).

b Evolution over time of simulated EPSP amplitude (bottom) during a typical plasticity induction protocol (top left; one burst shown out of 10). Mean EPSP
amplitudes (top right) are shown before (baseline; blue) and after (long term; orange) the induction protocol. € Comparison of in silico and in vitro synaptic
changes for pairings at 20 Hz and At =10 ms (n =99). Welch's unequal variances two-sided t-test showed a significant difference between in vitro and in
silico data (p-value = 0.002). Experimental data (in vitro) from Egger et al.4. d Change of EPSP ratio after plasticity induction as a function of initial EPSP
amplitude. Data fit by power law (dashed black line; f(x) =1.52x=0-49). e As in b for a different stimulation protocol (top left; one pairing shown out of
100). f Comparison of in silico and in vitro synaptic changes for pairings at 0.2 Hz and At = —15 ms (n =98). Welch's unequal variances two-sided t-test
showed no significant differences between in vitro and in silico data (p-value = 0.069). g Change of EPSP ratio after plasticity induction as a function of initial
EPSP amplitude. Data fit by power law (dashed black line; f(x) = 0.74x~0-26). Experimental data (in vitro, panels ¢, d) from Egger et al.4! and (in vitro panels
f-g) from Banerjee et al.#3. Population data reported as mean = SEM. For the full distribution of in silico experiment outcomes see Supplementary Fig. A.12

(data in panels ¢, d) and Supplementary Fig. A.13 (data in panels f, g).

the clear negative correlation between initial connection strength
and LTP (Fig. 4g) suggests that our model could be biased
towards LTP compared to in vitro reports, as in silico
experiments are not limited by noise in the recordings and so
weak connections are reliably detected. It should also be
considered that this last experiment was performed in mice,
while our circuit model® and training set is based on rat data.
Finally, we tested our model against an in vitro dataset from
visual cortex*4, featuring a set of stimulation protocols compar-
able with those considered so far for 12/3-PC to L2/3-PC
connections (Supplementary Fig. A.6). Our model does not
reproduce these results, as it showed a greater tendency towards
LTP (Supplementary Fig. A.6a, b). However, the plasticity
outcomes in this dataset are not entirely consistent with the
experimental reports for this connection type in the somatosen-
sory cortex. In particular, the 20 Hz stimulation protocol failed to
induce LTP in the visual cortex*, as was observed in the
somatosensory cortex*!. While the most obvious explanation for
this discrepancy would be that different brain areas behave
differently in terms of plasticity, we noticed that Zilberter et al.*4
remarked how connections with low release probability were
discarded from their experiments. We repeated the analysis of
EPSP ratio in our in silico experiments using progressively larger
release probability cut offs (i.e. connections whose mean release
probability is below a threshold were excluded; Supplementary
Fig. A.6¢). We found that for a sufficiently large cut off our model
could reproduce the experimental results in Zilberter et al.4.
Although the needed exclusion threshold seems too large to be
compatible with any reasonable definition of “weak connections",
this result shows how apparently minor differences in the
experimental procedures could greatly influence the final results.

Next, we considered in vitro experiments on STDP between
L4-PC to L2/3-PC connections*? (see Supplementary Fig. A.25
for synaptic parameters distributions). Again, we sampled 100 PC
connections and reproduced in silico the in vitro protocols*2
(Fig. 5a, b). We found that our model correctly reproduces the
experimental results at At = —10 ms (Fig. 5c, left). The in vitro
dataset for this connection type also includes pharmacological
manipulations testing the hypothesis that LTD at this connection
type requires presynaptic NMDARs. Specifically, the NMDAR
blocker MK-801 was applied presynaptically before plasticity
induction, and found to abolish LTD*2. We simulated this
manipulation by dropping the LTD-induction rate (y;=0),
which led to a quantitative agreement between the in vitro data
and the model (Fig. 5c¢, right), consistent with the notion that
presynaptic NMDARSs are required to evoke any form of LTD in
this connection type. It should be noted that this result may not
generalize to other connection types, as there are known
connection-type specific differences in expression of presynaptic
NMDARs®8 and their role in LTD. For example, 12/3-PC to L2/3-
PC connections are not mediated by presynaptic NMDARs®® and
their plasticity is not affected by presynaptic MK-80143.

Lastly, we considered a set of experiments assessing plasticity
between pairs of L4-SSCs in vitro*! (see Supplementary Fig. A.27
for synaptic parameter distributions). Pairing-induced plasticity
at this connection type has been shown to be non-NMDAR
dependent, in contrast to pyramidal connections. Consistent with
this observation, our model does not reproduce the reported data
(Fig. A.7), highlighting its specificity for describing NMDAR
dependent forms of plasticity between pyramidal cells.

Taken together, these results suggest that a single plasticity
model with shared parameters can capture the plasticity rules (i.e.
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Fig. 5 Testing plasticity model generalization on the L4-PC to L2/3-PC
connection type. a 3-D rendering of a representative pair of connected L4-
PC to L2/3-PC in the in silico model. Inset shows a magnified view of the
synapses mediating the connection (yellow spheres). b Evolution over time
of simulated EPSP amplitude during a typical plasticity induction protocol
(top left; one pairing shown out of 100). Mean EPSP amplitudes (top right)
are shown before (baseline; blue) and after (long term; orange) the
induction protocol. € Comparison of EPSP ratios in silico and in vitro for
positive and negative timings and with presynaptic NMDAR blocker
MK801. Experimental data and simulations without MK801 on the left
panel, with MK801 (in vitro) and y4= 0 (in silico) on the right panel.
Welch's unequal variances two-sided t-test was n.s. for every protocol
(p-value from negative to positive stimulation timing: 0.268, 0.209 MK801,
0.959 MK801; n=100). Experimental data (in vitro) from Rodriguez-
Moreno and Paulsen2. Population data reported as mean + SEM. For the
full distribution of in silico experiment outcomes see Supplementary

Fig. A.14 and Supplementary Fig. A.15.

outcomes of protocols) of novel PC connection types and
manipulations never seen during optimization, and predict
plasticity outcomes for all other connection types in the juvenile
rodent sensory cortex.

Connection-type specific STDP. The diversity of plasticity out-
comes in the neocortex could indicate the existence of
connection-type specific learning rules, which together form a
coordinated learning algorithm. Alternatively, and more trivially,
it could merely reflect the heterogeneity of in vitro protocols and
preparations reported in the literature, and simulated here. While
differential plasticity rules have been reported between at least
two PC connection types®, whether this is a general cortical
principle remains unclear when comparing experimental results
across the diverse PC connection types®®.

To investigate this, we generated a standardized in silico map
of STDP for the PC connection types considered in this work.
Our results show the existence of three qualitatively different
STDP curves for these connection types (Fig. 6). L5-TTPC to L5-
TTPC exhibited strong sensitivity to spike-timing at intermediate
stimulation frequencies (10 Hz), as expected from in vitro
results!? and already discussed in the previous section (see Fig. 3).
Plasticity of L4-PC to L2/3-PC and L2/3-PC to L2/3-PC connec-
tions was instead maximally affected by spike-timing at low
stimulation frequencies (2 and 5Hz). Finally, L2/3-PC to L5-
TTPC connections did not show any STDP window for the
stimulation protocols herein considered.

To dissect the origin of the observed connection-type
specificity, we analyzed the relationship between synaptic
parameters and plasticity outcomes for the 10 Hz, 10 ms STDP
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Fig. 6 Diversity of in silico STDP across stimulation frequencies and
connection-types. Plasticity at connections between L5-TTPC to L5-TTPC
(blue, n=100), L2/3-PC to L5-TTPC (orange, n=99, due to an excluded
outlier), L2/3-PC to L2/3-PC (green, n=100) and L4-PC to L2/3-PC (red,
n=100) was induced following stimulation protocols in Markram et al.40
to allow for a standardized comparison of STDP curves. Four different
pairing frequencies were considered: 2 Hz (top left), 5 Hz (top right), 10 Hz
(bottom left) and 20 Hz (bottom right). Data for L5-TTPC to L5-TTPC as in
Fig 2. All panels report EPSP ratio data as mean = SEM. For the full
distribution of in silico experiment outcomes see SI A.10 (L5-TTPC to L5-
TTPC), A16 (L2/3-PC to L5-TTPC), A.17 (L2/3-PC to L2/3-PC), A18 (L4-
PC to L2/3-PC).

protocol. As all PC types in this work share the same set of
parameters for the plasticity model, we hypothesized that these
different STDP outcomes could be explained by the specificity of
the innervation and synaptic transmission dynamics of each
connection type, as prescribed by the circuit model®. In
particular, the four connection types considered here differ
primarily in their apical ratio (the fraction of synapses on apical
dendrites over the total number of synapses in the connection),
and their NMDAR conductance (see Fig. A.8). Furthermore, we
found that apical ratio and NMDAR conductance are strongly
correlated with EPSP ratio and so are good candidates to explain
the observed connection-type specificity (Fig. A.8; bottom center,
bottom right).

Consistent with our hypothesis, we found that each of the three
unique STDP curves could be associated to different clusters of
these two parameters (see Fig. A.9). Connections between L4-PC to
L2/3-PCs and L2/3-PC to L2/3-PCs exhibit similar apical ratios and
NMDAR conductances, and have comparable plasticity outcomes.
Compared to these two connection types, connections between L5-
TTPCs have larger conductances. To explain how larger con-
ductances result in smaller levels of LTP, we must consider the
strong positive correlation between conductance, spine volume and
RRP size and how plasticity thresholds are calibrated in this model.
As previously explained, these thresholds are computed as linear
combinations of the calcium peak during a single EPSP assuming
all vesicles are released, C,, and the calcium peak during a single
bAP, Cpoq. Due to stochastic vesicle release, the probability of
obtaining a calcium transient as large as C,,. is proportional to
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induction protocol. ¢ Timing and frequency dependence of LTP/LTD in silico for the protocol described in b (n =100). Simulated configurations are shown as
black markers, with cubic interpolation elsewhere. d Comparison of frequency dependence of synaptic changes for high and low calcium at At =+5 ms.
Welch's unequal variances two-sided t-test showed significant differences for six out of seven protocols (p-value from low to high stimulation frequency:
0.260, 0.045, 0.007,<0.001,<0.001,<0.001,<0.001; n=100). e Comparison of frequency dependence of synaptic changes for high and low calcium at
At=—10 ms. Welch's unequal variances two-sided t-test showed significant differences for every protocols (p-value from low to high stimulation
frequency: < 0.001, < 0.001, 0.004, < 0.001,< 0.001, < 0.001, < 0.007; n=100). f Comparison of STDP for high and low calcium at a frequency of 40 Hz.
Welch's unequal variances two-sided t-test showed significant differences for every protocols (all p-values < 0.001; n =100). High calcium data as in Fig. 3a-f.
Population data reported as mean = SEM. For the full distribution of in silico experiment outcomes see SI A.10 and A.19.

UIS\%“‘P (i.e. p™ for a binomial model). Since 0 < Ugg, < 1 by definition,
it follows that larger synapses are less likely to reach plasticity
thresholds during normal activity than smaller ones.

Compared to the other three connection types, connections
between L2/3-PCs and L5-TTPCs, are mostly made by apical
synapses. Experimentally, these are more prone to depression
than basal synapses for the plasticity induction protocols
considered here. In our model, apical and basal synapses were
parameterized independently to reproduce this result. As a
consequence, such connections that are composed mostly of
apical synapses are biased towards depression. Note that spine
volume and RRP size in this model are strongly correlated with
the synaptic conductance, and so we only considered the latter
for this analysis. The existence of these distinct STDP classes
could provide the neocortex with a set of complementary
plasticity rules and support the implementation of complex
learning strategies.

Plasticity at physiological calcium conditions. Extracellular
calcium concentration is an important modulator of synaptic
transmission and calcium currents. Calcium levels in vivo are
significantly lower than the conditions of plasticity experiments
in vitro considered in this work to constrain and test the model
(in vivo: 1 to 1.3 mM; in vitro: 2mM or higher’?). Given the
central role of calcium for plasticity, it is important to take into
account the impact of physiological calcium concentration to
understand the learning rules which are operating in vivo.

However, plasticity remains largely unexplored under such
experimental conditions. To our knowledge no studies have been
reported on this issue in neocortex, and only one exists for the
hippocampus3’.

To quantify the impact of a physiological calcium concentra-
tion on plasticity induction protocols, we repeated the L5-TTPC
to L5-TTPC simulations correcting release probabilities, thresh-
olds, and calcium currents to 1.2mM calcium (Fig. 7a, b, see
Methods for in vivo correction details). Under these conditions,
we found that LTP/LTD magnitudes were significantly reduced
(Fig. 7¢) and plasticity required higher frequency stimulation to
be induced (30 Hz and above for LTP, Fig. 7d; 20 Hz for LTD,
Fig. 7e). Furthermore, at anti-causal temporal relationships
(At=—10ms), we found that potentiation at high frequencies
was abolished (Fig. 7e). Surprisingly, we found that bidirectional
STDP appears at 40 Hz and above, in contrast to high calcium
conditions where only LTP was observed at high frequency
stimulation (Fig. 7f).

Taken together, these predictions indicate that differences in
calcium concentration between in vitro and in vivo conditions
could have a dramatic effect on plasticity outcomes, yielding a
qualitatively different perspective on plasticity rules at play
in vivo.

Discussion
In this study we designed a calcium-based model of synaptic
plasticity capable of reproducing the results of LTP/LTD
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experiments on L5-TTPCs, and showed that this model could be
transplanted as-is to predict synaptic plasticity data for other PC
connections in the somatosensory cortex. Our formalism
accounts for the physiological heterogeneity of synaptic variables,
such as release probability and conductance, and provides a
quantitative description of the behavior of individual synapses
during plasticity of whole (multi-synaptic) connections. We used
our model to analyze the relationship between spike-timing,
frequency and synaptic plasticity at in vivo levels of calcium,
predicting important differences compared to typical in vitro
conditions. Our results suggest that postsynaptic calcium diver-
sity is sufficient to explain connection-type specificity of activity-
dependent synaptic plasticity between PCs in the neocortex. Our
proposed model and fitting procedure offer a method to estimate
plasticity outcomes for connections that have yet to be experi-
mentally explored, providing a candidate unifying theoretical
framework for studying cortical learning algorithms in silico.
Our predictions of plasticity at in vivo levels of calcium high-
lighted major qualitative differences with respect to in vitro
conditions, as also suggested by a recent experimental study in the
hippocampus3®. While we accounted for the effects of reducing
extracellular calcium on multiple components of the synapse
model (i.e. calcium driving force, plasticity thresholds and
NMDAR fractional calcium current), these results are mostly
due to the estimated five-fold decrease in synaptic release
probability’%. Under these conditions, successful pairing events
become rare, suggesting an important role for N-methyl-D-
aspartate (NMDA) spikes and other dendritic nonlinearities
for evoking sufficiently large calcium influxes to induce
plasticity”1-73. The proposed in silico framework could be used to
study these dynamics without major modifications, for example
by simulating the scenario where multiple presynaptic neurons
activate neighboring synapses. In this scenario, synapses could
cooperate through voltage nonlinearities to evoke calcium tran-
sients of sufficient magnitude to induce learning in a single trial
(one-shot learning’47°), circumventing the high failure rate.
Many other models of synaptic plasticity are available in the
literature and they could be in principle compatible with the
circuit model and the training data used in this work (for a review
see Manninen et al.2%). Here we focused on finding a solution to
the problem of parameterizing the large set of heterogeneous
synapses across the different PC connection types in neocortex,
given the sparse experimental constraints available, and with the
particular aim of generalizing to physiological levels of calcium.
The commonly used STDP models, although appealing for their
simplicity, are not an appropriate framework for our aim as they
would require individualized fitting for each connection type, for
which experimental data are lacking. For this reason, we decided
to adapt a previously published calcium-based model!® to match
the description level of our neural tissue model®. This approach
allowed us to take into account important aspects of synaptic
physiology often neglected in plasticity studies, such as stochastic
vesicle release, dendritic integration, and multi-synaptic connec-
tions, while limiting the free parameters to constrain to those
concerning the plasticity model. Furthermore, a direct depen-
dence on calcium dynamics allowed the extrapolation of the
plasticity model to physiological calcium concentrations without
refitting, based on biophysical considerations alone. Several
ingredients of the Graupner and Brunel!® model are based on
well-established ideas in the field. For example, the model takes
advantage of the full calcium time course, rather than just the
peaks, to identify plasticity-inducing events, as in Rubin et al.1”.
Here, we introduced a calcium integrator to associate synaptic
events beyond the duration of individual calcium transients, and
to compensate for the high synaptic failure rates. The original
model proposed by Graupner and Brunel!® lacks this term as the

same effect could be obtained by reliable vesicle release and/or a
longer calcium time constant. A similar approach was taken in
other studies!”2176, Compared to these other models, our
approach highlights the importance of considering the stochasti-
city of synaptic release, and its calcium dependence, to generalize
plasticity rules across different connection types and experimental
conditions.

However, our study has several limitations. We only consider
NMDAR-dependent forms of LTP/LTD at pyramidal cell con-
nections. Although this family includes the vast majority of
connections in the neocortex, other connection types (i.e. inhi-
bitory plasticity) are still likely to play a major role in learning
and memory processes. While it may be possible to generalize the
approach presented here to these other connections types, it was
beyond the scope of the present study. Our model describes the
early stages of LTP/LTD, but does not cover the mechanisms of
synaptic tagging and consolidation’’, when protein synthesis and
competition for molecular resources could potentially override
the initial outcome of plasticity induction’® (for a review
see Redondo and Morris’®). Accounting for these mechanisms
would require an extension of the model to include consolidation
dynamics on longer timescales (see e.g. Clopath et al.80). How-
ever, parameterizing such a model in a connection type-specific
manner would also presuppose the availability of connection
type-specific experimental data in the neocortex, which is cur-
rently lacking. Furthermore, we assumed a single synaptic efficacy
variable p, driving both pre- and post-synaptic changes at indi-
vidual synapses. While under this simplifying assumption the
model could reproduce in vitro results on the locus of expression
of LTP for whole connections, it could not reproduce
presynaptic-only LTD32, This could indicate either a transient or
long-term violation of the single efficacy assumption. The former
case would require a minor extension of our model to be cap-
tured, whereas the latter would require modeling separate pre-
and post-synaptic efficacies, as explored in a recent theoretical
study®!. It is worth noting that simply masking postsynaptic LTD
is not a viable solution, as postsynaptic LTD has been reported for
other induction paradigms32-8>. Our model also assumes that the
number of release sites at each synapse is fixed, and unaffected by
plasticity. This is consistent with the classical view of presynaptic
plasticity being primarily mediated by changes of release
probability®>8¢. However, a recent report on the nanoscale
organization of synapses has revealed the existence of synaptic
nanomodules, that is, a tight coupling of the pre- and post-
synaptic machinery responsible for synaptic transmission (i.e. the
presynaptic active zone (AZ) and postsynaptic receptors)8”. These
pre- and post-synaptic components have been shown to be added
in pairs as modules during LTP, and so proposed as atomic
building blocks of plasticity at the synaptic level®”. Extending our
model to account for these dynamics would require more detailed
experimental data on the relative contributions of AZ-plasticity
and release probability changes to LTP/LTD.

A key assumption of this work is the bistability of pre- and
postsynaptic plasticity. Studies at individual synapses in the
hippocampus show that postsynaptic (AMPAR-mediated) plas-
ticity is bistable and synapses jump between extreme states of
efficacy8®89. Plasticity of presynaptic changes, on the other hand,
has been shown in the hippocampus to support multiple stable
states, or evolve on a continuum?’. While we could have opted for
a different model to describe presynaptic stability of plastic
changes, we judged the available experimental evidence insuffi-
cient to justify a more complex model. Accounting for this dif-
ference could yield “overfitting” and would be inconsistent with
our previous simplifying assumption that pre- and postsynaptic
changes are matched on long time scales. Furthermore, this
bistability assumption, in contrast to a model based on a
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continuum of stable states, provides some protection against
sporadic plasticity threshold crossings, and thereby a mechanism
for long-term stability of learned configurations despite ongoing
spontaneous activity in networks. That is, in our model long-term
plasticity is induced either by accumulating changes over a short
period of time or in one-shot via extremely large calcium events,
such as a calcium spike. On the other hand, sparse and weak
threshold crossing events are quickly forgotten as they are not
sufficient to drive the synaptic efficacy p out of its current basin of
attraction, which is consistent with in vitro observations during
mild stimulation (see Fig. 3d, 2 and 5 Hz stimulation protocols).

We parameterized and tested our model using experimental
results reported in the literature. As our objective was to inves-
tigate type-specific plasticity using an in silico model of rat
somatosensory cortex®, we targeted experimental data from
juvenile rat S1 where pre- and post-synaptic neuron types were
identified. However, due to the sparsity of experimental sources,
we also included data from rat visual cortex for training purposes,
and from mouse visual and somatosensory cortices for testing.
Due to the quantitative nature of the present modeling study,
several prominent data sets from adult animals or non-
neocortical regions have been excluded. For example, Letzkus
et al.38 also reported a dependence of plasticity on dendritic
location which is qualitatively consistent with the dataset we
compared to here3®, but we didn’t pursue a quantitative com-
parison to this dataset because it was from older animals, and
plasticity induction is known to be significantly age dependent®!.

We do not claim that the available experimental data is suffi-
cient to completely constrain the model or validate its predictive
power. For example, apical synapses are mostly depressing in our
model under the protocols considered and the L2/3-PC to L5-
TTPC connection type, dominated by apical synapses, lacked a
clear STDP window. This could be a specific feature of apical
synapses, but more data would be required to support such a
conclusion. That is, we had experimental data for only one
connection type and protocol featuring mostly apical synapses,
and it was not from somatosensory cortex but rather the visual
cortex3, which could be more prone to LTD (cf. Egger et al.4!
and Zilberter et al.#4). Moreover, the data available for testing
model predictions is limited in terms of connection types and
protocols. However, the goal of this study was to provide a
candidate null model until more comprehensive experimental
characterization becomes available. We argue that such an inte-
grative approach maximizes the value of the few experimental
data points available, thereby helping to homogenize the results,
detect anomalies and extrapolate beyond them. Further experi-
ments would be valuable to test predictions of the model, and
refine its assumptions.

The extensive testing on data from the visual cortex highlighted
several quantitative differences between the model predictions
and in vitro experiments, possibly suggesting a strong regional
dependence of the plasticity model parameterization. While we
cannot rule out this possibility, we could also imagine a scenario
where synaptic physiology, cell morphology and innervation
profiles could quantitatively account for the observed inter-
regional differences, without the need for region-specific para-
meterization of the plasticity model. That is, as PC type-specific
plasticity in the somatosensory cortex could be explained by our
model using a non-type-specific set of parameters, similarly
region-type-specific plasticity could emerge from regional dif-
ferences other than plasticity itself. Considering the many ana-
tomical similarities between PCs in the different sensory cortices,
we hypothesize that adapting the synaptic transmission properties
of our in silico connections (e.g. the release probabilities, con-
ductances, depression and facilitation time constants) to region-
specific in vitro data could be sufficient to reconcile the observed

differences in plasticity outcomes. While testing this hypothesis is
beyond the scope of this work, given the sparsity of data, our
study still provides an initial candidate framework for general-
izing plasticity principles across cortical regions.

Optimizing the plasticity model is a computationally expensive
procedure, exceeding the capabilities of a typical workstation.
However, re-optimization should not be required for most
researchers wishing to make use of the plasticity model in their
own studies. We provide a set of parameters optimized for the
somatosensory cortex and, since generalization without re-fitting
is one of the main results of this work, it is possible that the model
and parameters provided here could be reused to describe plas-
ticity in other cortical areas and species. For cases where
researchers would want to re-optimize the model on their own
datasets (i.e. different brain regions, new plasticity experiments)
or undertake an extension of the model, we provide the plasticity
optimization source code. Furthermore, a few modifications and
approximations of our methods could potentially reduce the
computational cost. For example, the initial mean EPSP ampli-
tude for each in silico connection could be pre-computed and
cached, allowing the initial part of each simulation to be skipped.
Similarly, one might fit a function to approximate the relationship
between synaptic parameters and mean EPSP amplitude, and
simulate only the plasticity induction part of the experimental
protocol. Lastly, it could be possible to obtain a significant
speedup by running the optimization on a GPU using
CoreNEURON?2, a recent development of the NEURON
simulator.

The present work highlights the value of considering den-
drites and calcium dynamics explicitly when studying synaptic
plasticity. Using digital reconstructions of pyramidal neurons
was key to generalize the results of a few experiments to produce
a dense predictive map of plasticity between PCs in the soma-
tosensory cortex. Moreover, directly modeling the physiology of
postsynaptic calcium transients and their role in synaptic plas-
ticity provided a means to extrapolate the outcome of traditional
LTP/LTD induction protocols to more realistic in vivo condi-
tions from biophysical considerations. In particular, we showed
that reducing calcium from in vitro to physiological levels
profoundly alters LTP/LTD dynamics, predicting a vast unex-
plored experimental territory of plasticity in vivo. Furthermore,
while STDP-like pairing protocols are a very effective tool to
investigate the landscape of synaptic changes, they are restricted
to pre-post timing relationships. It is becoming increasingly
appreciated that NMDA spikes and other dendritic non-
linearities triggered by more complex spiking activity motifs
play an important role in learning and perception
in vivo’/1,728593-99 By providing a quantitative approach to
determine plasticity outcomes from calcium dynamics in a
model of cortical tissue, we offer a way to predict learning rules
between PCs which have yet to be characterized experimentally.
The result is an integrated modeling framework well suited to
explore the input/output conditions relevant for plasticity
in vivo and ultimately the biological algorithms of learning in
the neocortex.

Methods

The long-term potentiation (LTP)/long-term depression (LTD) model used in this
work extends the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate recep-
tor (AMPAR) / N-methyl-D-aspartate receptor (NMDAR) synapse described

in Markram et al.%. For the sake of completeness, we present in the following
sections all the components of the synapse model, including those previously
developed”. Unless otherwise indicated in the text, model parameters for each
connection type are those due to a 2018 internal release of the model available
online at: https://bbp.epfl.ch/nmc-portal/microcircuit. Part of the text in the fol-
lowing sections is adapted from the doctoral dissertation of the first

author Chindemi!?°.

12 | (2022)13:3038 | https://doi.org/10.1038/541467-022-30214-w | www.nature.com/naturecommunications


https://bbp.epfl.ch/nmc-portal/microcircuit
www.nature.com/naturecommunications

ARTICLE

AMPAR. The AMPARSs are described as a point current source using a double
exponential conductance profile>4>46:

Ianpar(®) = Ganpar(®) - (V(1) — Exnpar) (6)
Gawpar() = Gavpar(®) - (B(H) — A(1)) )
d 1 N,
—A=——A L8t
d[ T, + % ites ( rel) (8)
d 1 Ny
—B=—-—B L8t
e R ) ©
o= _e*tpsdk/fy + e*’peak/fu (1())
T,T,
tpeak = ( (11)

74— 1) log(t,/7,)’
where Iyypar is the current produced by the synaptic population of AMPARs;
Eampar is the reversal potential of the receptor; V is the membrane potential;
Gampar is the conductance of the receptor population, with peak G,ypar Which
evolves by plasticity as described below; A models the rising component of the
conductance, with time constant 7,; B models the decaying component of the
conductance, with time constant 7 t, is the time of a successful release event; N,
is the number of vesicles released at time f,. and Ny is the total number of release
sites (see section Neurotransmission); . is the time to peak of the conductance
and ¢ is a normalization factor such that Guypar (frel + tpear) = Ganpar- All the
parameters of the AMPAR model are prescribed in the neocortical tissue model,
with the exception of the peak AMPAR conductance G ypag, which is a dynamic
variable changing with synaptic plasticity as described below in section Coupling
long-term plasticity and synaptic transmission. Please notice that we dropped the
AMPAR subscript for A, B, ¢, tpears 7, and 7,4 to improve readability, but these
variables and parameters are independent from those of the NMDAR, described in
the next section.

NMDAR. The NMDARSs are described as a point current source using a double
exponential conductance profile and incorporating the voltage dependence due to
the magnesium block?4546:50;

Lavpar(H) = m - Gaypar(8) (V(f) - ENMDAR) (12)
m=— L 13
NG ()
Grwpar() = Grwpar - (B(H) — A1) (14)
d 1 Ny
—A=——A L8t
g =T A e d = ) (15)
d 1 Ny
—B=—-—B L8t
gB= B ) (16)
o= _e*tpsdk/fy + e*‘peak/fu (17)
e = 18
Pk = (7, — 1,)log(r,/7,) (18)

where Iympar is the current produced by the synaptic population of NMDARs;
Exmpar is the reversal potential of the receptor; V is the membrane potential; m is
the magnesium block gating variable®’; 6 is an appropriate scaling factor of the
extracellular magnesium concentration [Mg?*]; « is the slope of magnesium vol-
tage dependence; Gampar is the conductance of the receptor population, with peak
Grpar; A models the rising component of the conductance, with time constant ,;
B models the decaying component of the conductance, with time constant 7 t,¢ is
the time of a successful release event; N, is the number of vesicles released at time
tra and N is the total number of release sites (see section Neurotransmission);
tpeak is the time to peak of the conductance and ¢ is a normalization factor such
that Gyvpar (frel + fpeak) = Gaupar. Note that in this work we do not account for
plasticity of NMDARSs or for homeostatic maintenance of the AMPAR to NMDAR
ratio. Please notice that we dropped the NMDAR subscript for A, B, ¢, tpeal 7 and
7,4 to improve readability, but these variables and parameters are independent from
those of the AMPAR, described in the section above.

Equation (13) describes the dynamics of magnesium gating using the formalism
proposed in Jahr and Stevens®’. As the original values of the slope parameter 6 and
the scale parameter « reported in Jahr and Stevens® were fit to hippocampal data,
we re-estimated these parameters using recent data for the neocortex®!. In
particular, we computed 6 =0.072 and x = 2.552 by inspection from the steady

state fraction of unblocked conductance in Vargas-Caballero and Robinson®!,

described there in the Boltzmann formalism as
1
1+ exp(—(V — V5)z8F/RT)’

where V is the membrane voltage; Vo5 = —13 mV +2.45 is the voltage for half-
maximal block; z= 2 is the valence of magnesium ions; § = 0.96 +0.01 is the
fractional sensitivity of the block to membrane voltage; T'= 36 °Celsius is the
temperature; F and R have their usual thermodynamical meaning. Experiments
were carried on at 1 mM magnesium concentration and voltage traces were
corrected for liquid junction potential®l. It is interesting to notice that fitting m to
data recorded from neocortical neurons and correcting for liquid junction
potential®! actually produces a curve very similar to the one derived from
theoretical considerations by Rhodes!%! to facilitate the generation of N-methyl-D-
aspartate (NMDA)-spikes, which are known to be difficult to induce using the Jahr
and Stevens®® model (see Fig. A.29a).

To estimate calcium concentration at the synapse, we needed to determine
NMDAR-mediated calcium currents. In Schneggenburger et al.192, the fractional
calcium current through the NMDAR, Pj; was calculated from the
Goldman-Hodgkin-Katz (GHK) flux equation as follows

I 4[Ca*"],
lea+ 1y 4Ca*], + oML — &)

boo (V) = (19)

P (20)
where I, and I, are the currents due to calcium ions and due to all monovalent
ions, respectively; [Ca?"], is the extracellular calcium concentration; [M] is the
concentration of monovalent ions, assumed to be identical inside and outside the
cell membrane; pc, and py, are the permeabilities to calcium and monovalent ions,
respectively; V is the membrane voltage; T'= 36.85 °Celsius is the temperature; F is
the Faraday constant and R is the ideal gas constant (all parameter values as

in Schneggenburger et al.102).

However, equation (20) cannot be used directly to determine the calcium
current from the total NMDAR-mediated current (i.e. by multiplying Py and
Inmpar)s since Invpar = 0 around the reversal potential Exypar, and so the
resulting calcium current would be erroneously estimated to be zero for certain
voltages in our range of interest. To circumvent this issue, we modeled the calcium
influx through NMDARSs as a separate current mediated by an extracellular-
concentration-dependent fraction of the total conductance, resulting in a current of
the form

iNMDAR(t) = GNMDAR(t) : (V(f) - ENMDAR) (21)

Gyupar(®) = s([Ca*],) - Gappar (D), (22)

where V is the membrane potential; Exypar is the reversal potential of the current,
fixed here to 40 mV based on experimental observations in Schneggenburger

et al.192 and assumed for simplicity to be independent of extracellular calcium in
the range 1 — 2 mM; Gnmpar is the total NMDAR conductance given by equation
(14) and s([Ca®*],) represents the calcium fraction of the total conductance as a
function of extracellular calcium concentration. As we assumed s([Ca?"],) is
independent of membrane voltage, we modeled it as proportional to Pyevaluated at
large negative membrane potentials as follows '

247y . 24
s(Ca™]) =a- lim Py(Ca™],), (23)
where lim,_, _., P;([Ca*"],) is the fractional calcium current at very negative
potentials, and o = 0.6 is a scaling factor which was tuned to provide approximate
self-consistency between currents determined by this model and equation (20) (see
Fig. A.29).

Neurotransmission. The dynamics of synaptic vesicle release is described using a
stochastic version of the canonical Tsodyks-Markram (TM) model with multi-
vesicular release (MVR)>4>46:48.86_ Tt ig effectively analogous to a traditional
binomial model of vesicle release B(Nggp, U(t)), where Nggp is the number of
vesicles available at any given moment in the readily-releasable pool (RRP) (out of
Niites> the total number of release sites) and U(#) is the dynamical release probability
of the TM formalism which exhibits short-term facilitation dynamics described as
follows

U(t) = Ultyy) - e hon/Toe 4 Ugy - (1 = Ultyy) - e lon)l™ee) - (24)

syn

where Ugg is the stable fixed point of the release probability in the absence of
stimulation; £y, is the time of the last presynaptic spike; 7g, is the facilitation time
constant. Release of a vesicle decrements Nygrp, and increments Ny, which is the
number of vesicles awaiting recovery.
Vesicle recovery also follows a binomial model B(Ng, 1 — Py, (f)) with the
survival probability of the un-recovered state given by
Py (t) = &5/, (23)

where Tq.;, is the depression time constant. The total number of release sites, Niites>
was constrained extending the methods in Barros-Zulaica et al.# to the range of
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2-4 vesicles®!. All the parameters of the synaptic transmission model are prescribed
in the neocortical tissue model®, with the exception of the stable fixed point of the
release probability Usg, which is a dynamic variable changing with synaptic
plasticity as described below in section Coupling long-term plasticity and synaptic
transmission. Note that in this work we do not account for plasticity of Nies.

VDCC. In this work, a simple inactivating population of R-type voltage-dependent
calcium channels (VDCCs) in spines was modeled as a point current in the
Hodgkin-Huxley (HH) formalism®3>* as follows

Iypec(®) = Gypee(®) - (VD) = Eypec) (26)
Gypce()) = Gypec - m*h (27)
X 3 2/3
Gypec = 418 (EX> (28)

d  my(V)—m
Zm= 7_['” (29)
d, h(V)—h
i (30)
1
14+¢e
th(V) = ViV (32)
1+e %

where Iypcc is the current produced by the channel population; V is the membrane
potential; Eypcc is the reversal potential for calcium; Gypcc is the conductance of
the population, with peak Gypcc, calculated assuming a spherical spine head;

g =0.0744nS/um? is the VDCC surface area density>»193%; X is the spine head
volume (see section Dendritic spines); m is the activation variable, with time
constant 7, = 1 ms (chosen to approximate the rising phase in Magee and
Johnston®3) and steady state m..; h is the inactivation variable, with time constant
7, =27 ms (Magee and Johnston3; corrected to 34 °Celsius) and steady state h..;
Vim = —5.9mV is the half-maximum activation voltageS3 and k,, = 9.5mV is the
slope factor®3; Vj,;,= —39 mV is the half-maximum inactivation voltage®> and
ky,=—9.2mV is the slope factor>3.

Dendritic spines. The vast majority of excitatory synapses are located on dendritic
spines. With respect to synaptic plasticity, spines are particularly important because
they act as biochemical compartments, encapsulating and localizing the molecular
machinery responsible for implementing synaptic changes. Furthermore, spine
volume is a key determinant of intracellular calcium concentration transients
arising from calcium currents. In this work we model spines as point processes
rather than explicitly modeling spine compartments for computational reasons, but
we do account for biochemical compartmentalization and volume-related effects
on calcium concentration. Specifically, we assume a spherical spine head, and
calcium ions are not allowed to diffuse into the parent dendrite. Estimates for the
spine head volume distribution have been obtained from intracellularly injected
basal dendrites of 44 layer 5 pyramidal cells of the hindlimb somatosensory cortex
of P14 rat, that were 3D reconstructed from high-resolution confocal image stacks.
At this age, dendrites show both spines and filopodia, which are long, thin pro-
trusions lacking a bulbous head (Fig. A.28a). Measurements of head volume, head
diameter and mean neck diameter were obtained from 8423 reconstructed single
dendritic protrusions using the software Imaris (Bitplane AG, Zurich, Switzerland)
and were corrected for medium shrinkage as in Toharia et al.!% and Rojo et al.10%,
Spine measurements are publicly available at http://cajalbbp.es/storage/P14%
20excels%20layers%20111%20and%20V. Evaluating the reconstructed data

(Fig. A.28a) and the head-to-neck diameter (HND) ratio (Fig. A.28b) revealed that
many dendritic protrusions did not exhibit a clear head. To exclude these potential
filopodia, only spines that had a head diameter that was larger than the respective
neck diameter were used for the analysis (Fig. A.28b, black line). The majority of
the excluded dendritic protrusions exhibited a small head volume < 0.05 pm3
(Fig. A.28c, green) while the remaining spines with marked head (Fig. A.28c, blue)
showed a head volume of 0.087 % 0.088 um? which could be best approximated by a
log-normal distribution (4 = —2.8 and 6= 0.87). In the neocortical circuit model,
we prescribed the spine volume distribution for each connection type as a function
of the prescribed synaptic conductance (Gypar + Gumpar) distribution so as to
be consistent with the experimentally observed head volume distribution. Specifi-
cally, we found that the experimentally observed spine head volume distribution
and the prescribed synaptic conductance distribution for spines on basal dendrites
of layer 5 thick-tufted pyramidal cells (L5-TTPCs) were related by a linear trans-
formation determined by the ratio of the means of the two distributions. We then
generalized this relationship to all connection types by assuming the same linear
transformation determined for spines on layer 5 basal dendrites. Experimentally
observed correlations between these two synaptic parameters were introduced at

sampling time as described in the section Correlation of synaptic parameters.
Furthermore, we determined VDCC conductances on the spine by assuming a
spherical spine head and a uniform density of channels on the membrane
according to previous estimates®®. This approach has the consequence that the
VDCC conductance is proportional to that of NMDAR for every synapse.

Postsynaptic calcium dynamics. We modeled postsynaptic calcium concentration
combining data from several experimental and theoretical sources®>°. Calcium
ions can enter the spine via two paths, namely NMDARs and VDCCs, and quickly
bind to endogenous buffers while only a small fraction remains free. Slower
mechanisms, such as calcium pumps and diffusion, re-establish the intracellular
calcium concentration. These dynamics for free calcium are modeled as a point
current, adapting previous work due to Destexhe et al.19, using a single ordinary
differential equation (ODE) as follows

(33)

dion _a (e
dt[ a™"}; = (Invpar + VDCC)ZF-X o ;
where Iyypag is the calcium component of the NMDAR-mediated current; Iypcc
is the VDCC-mediated current; 7 = 0.04 is the fraction of free (non buffered)
calcium as determined in Sabatini et al.>%; X is the spine volume; F is the Faraday
constant; [Ca“]fo) =70x107® mM is the intracellular calcium concentration at
rest>%; 7c, = 12 ms is the time constant of calcium transients as determined

in Sabatini et al.*.

We validated the calcium transients generated by the model by comparing to
those reported by Sabatini et al.’® under two experimental conditions: synaptic
stimulation and back-propagating AP (Supplementary Fig. A.1). We sampled a
pool of synapses from L5-TTPC to L5-TTPC connections in our circuit model®,
following the acceptance criteria in Sabatini et al.’. In brief, we only considered
synapses on basal dendrites with diameter <2 um, 2 < =branch order <=4, and
path length < 150 um. Mean spine calcium transients due to repeated presynaptic
activation at 0.2 Hz were found to quantitatively match the in vitro experiments
(Supplementary Fig. A.la, b). In contrast to synaptic calcium transients, we
observed that AP evoked calcium transients are strongly path length dependent
(Supplementary Fig. A.1c, f). As no sampling distributions are provided in Sabatini
et al.%%, we assumed their sampling of path length was more dense for proximal
synapses, as synaptic voltage transients at lengths beyond 100 pm are insufficient to
evoke VDCC calcium responses due to attenuation (Supplementary Fig. A.1f-h).
This was implemented by restricting the pool of synapses analysed to only consider
those with path length < 60 um (Supplementary Fig. A.1f-i). Under these
conditions, we found a good quantitative agreement for AP-evoked synaptic
calcium transients between our model and the in vitro experiments
(Supplementary Fig. A.1d, e).

The free calcium concentration described in equation (33) is filtered by a leaky
calcium integrator, ¢*, to produce a driving signal for synaptic plasticity as follows

d

X (34)

N c 0

¢ == (1] - ),
where T, is an appropriate time constant for calcium integration, fitted to match
experimental data on LTP/LTD (see section Model fitting).

Long-term plasticity. Synaptic plasticity was modeled following the calcium-based
formalism of Graupner and Brunel'®, which we integrated with the post-synaptic
calcium transients due to NMDAR and VDCC provided by the circuit model®. As
in Graupner and Brunel!”, the state variable p describes the dynamics of synaptic
efficacy as follows

d
2P = (—P(l =p)0.5=p)+y,(1 = p)O[c" — 6] — y,pO[c" — 9d])/r, (35)

where p = 0.5 delimits the basin of attraction of the two stable states; © is the
Heaviside function; 6; and 6, are the depression and potentiation thresholds,
respectively; y; and y, are the depression and potentiation rates, respectively; c* is
the calcium integrator described in section Postsynaptic calcium; 7=70s is an
appropriate time constant. The synaptic noise term, present in the origi-

nal Graupner and Brunel!® model, was removed here as we already account for the
stochastic aspect of synaptic transmission and membrane potential fluctuations in
the synapse and neuron models.

In our tissue model every synapse has a unique dendritic location and
physiology, as its parameters are randomly drawn from appropriate distributions®.
As a consequence, each synapse shows different calcium dynamics and no fixed
thresholds could apply to all of them, even within the same connection type. For
this reason, we assumed that plasticity thresholds 6, and 6, are expressed as linear
combinations of the calcium integrator peaks during isolated presynaptic
activation, C,,,, and isolated postsynaptic activation, Cpos as follows

(36)

ed =y Cprc + Ao Cposl

0, =010 Cpe a1 - Coogs (37)

where a;; are appropriate constants to be determined by the model fitting
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procedure (see section Model fitting). CPre and Cjos are determined for each
synapse numerically by running two short simulations for each connection: C,,, is
measured by a simulation where all synapses are fully activated at the same time,
while Cp,o5 by a simulation of induced post-synaptic spiking. We fit a separate set
of scaling parameters for apical (a;;) and basal (b;;) synapses, as calcium dynamics
and variability differed substantially between these two synapse populations. All
other parameters were identical for apical and basal synapses.

Coupling long-term plasticity and synaptic transmission models. The peak
AMPAR conductance G yp,g and the stable fixed point of the release probability
Usg are dynamically linked to the synaptic efficacy p of the long-term plasticity
model by low pass filter dynamics:

% Grnoan = GAMPA:C;HSAMPAR (38)
Gampar = GfAdlePAR +p() - (Gif;/[}’AR - GZIAPAR) (39)
4 Usg = Use = Use (40)

dt Tchange
Use = U +p(t)- (U - US), o)

_ ~ ~(d ”
where G\pap is the steady-state target value of Gypar, and G;A)AP Ar and fo:,u, AR
are the conductance values of the depressed and potentiated states, respectively;

Ugy is the steady-state target value of Usg, and Ug'é) and U(S’Q are the release
probabilities of the depressed and potentiated states, respectively. As the synaptic
efficacy, p, is bistable!?, 50 t00 are Gypag and Usg; to which G ypag and Ugg relax
with a time constant Tcpange = 100 s to approximate the typical expression time
course observed in vitro!214. The decision to make G,ypar and Usg dynamic
variables, as opposed to an instantaneous mapping as in Graupner and Brunel'?, is
motivated by the observation that the expression of synaptic plasticity is known to
be slow compared to its induction!?!4,

Long-term plasticity parameters initialization. We assigned the initial state of
the synapse py = p(t = 0) to the potentiated (py = 1) or depressed (p, = 0) state at
random, using the individual synapse release probability, Usg, prescribed in the
circuit model” as the probability of being in the potentiated state. This initialization
strategy reconciled the synaptic transmission and plasticity parameters, preventing
unreasonable configurations, such as fully potentiated connections with very small
release probabilities. As synaptic parameters are strongly correlated (see section
Correlation of synaptic parameters), this choice favours strong synapses to be
initialized in the potentiated state, and weaker synapses to be assigned to the
depressed state.

We initialized the conductance values of the depressed and potentiated states as
follows

~(0)

- (d) Gampar  ifpp =0
Gampar = L A0 ) (42)
3Gampar  ifp =1
~(0) .
~(p) 2Gappar i py =0
Gampar = { . (0) . (43)
ampar P =1,

- (0 . - a -
where G;;AP g is the initial conductance value prescribed in the circuit model®. The
potentiation/depression ratio of the conductance is based on the observation in the

p ~(d
hippocampus that GX);APAR A ZG(A;,[P AR

We assumed an exponential relationship between the potentiated and depressed
state to account for release probability saturation:

)
vg = (vs). (44)

where v is an appropriate constant. From the work of Enoki et al.”% we estimated
the value of v to match the set of experiments where strong and repeated LTP/LTD
was induced. We found that v € (0.1,0.25) would provide a satisfactory
approximation and chose v=0.2 for simplicity. We then initialized U(S'Q and U(SI}?
at every synapse as follows

Uy ifp =0

UY =1 o (45)
Usg ifpy=1
U“’))” if p = 0

U(SI;:? _ ( SE Po (46)

U(S(;E) ifpy =1,

where U(;(Q is the initial release probability prescribed in the circuit model®.

Correlation of synaptic parameters. It is well established that several morpho-
logical and physiological variables of excitatory synapses are correlated. For
example, several studies have shown that postsynaptic density (PSD) area is
strongly correlated with pre- and post-synaptic variables, such as spine head
volume”~>?, bouton volume and number of vesicles®’. Such findings suggest that a
certain degree of parameter correlation is required to accurately model variability
in synaptic transmission and post-synaptic calcium dynamics.

Based on the available experimental evidence, we imposed the following
correlations to synaptic model variables. The relationship between the total number
of vesicles and PSD area or spine volume, X, was estimated in Harris and Stevens®”.
Assuming the total number of vesicles is proportional to the size of the RRP, Njjes»
as is the PSD area to conductance, we could impose the experimentally observed
correlation coefficients as follows

P(Ganpars Nies) = 0.9 (47)

P(X, Ne) = 0.92. (48)

sites.

We set the correlation between spine volume and synaptic conductance based on
equivalent measurements from Harris and Stevens®” (hippocampus) and Arellano
et al.> (neocortex) as follows

(X, Guypar) = 0.88. (49)

Accounting for this correlation is important because it allows us to predict spine
volumes, an unknown variable, from conductance, a parameter prescribed by the
tissue model® (see section Dendritic spines). Unfortunately, we are not aware of
any report explicitly quantifying the correlation between release probability and
synaptic conductance. As these two variables will evolve to become correlated due
to the synaptic plasticity model, we assumed also a high initial correlation as
follows

P(Usg, Gaypar) = 0.9. (50)

Based on the above prescribed correlation coefficients, we populated a
correlation matrix, and filled the missing entries using the simple algorithm
proposed by Kahl and Giinther!?7, obtaining the final correlation matrix M used in
this work for the vector of parameters P:

P=[Ug Nye Gawpar X] (51)
1 081 0.9 0.79
0.81 1 09 0.92

M= (52)
0.9 0.9 1 0.88

0.79 0.92 0.88 1

The synaptic parameters in P in the circuit model were then re-sampled from a
multi-variate normal distribution with covariance matrix M and remapped to the
corresponding marginal distributions prescribed in the circuit model. Note, after
determining X according to this method, Gypcc is calculated from X using
Equation (28). Parameters of individual synapses belonging to the same connection
are sampled independently of each other.

Simulations and data analysis. All in silico experiments were performed using
NEURON!08 and the Blue Brain Project (BBP) tissue model®. Analysis routines
were written in Python, and make use of standard scientific packages:
Matplotlib!9?, SciPy!10, NumPy!!l, Pandas!!2, Seaborn!13, Jupyter!!4. Neuron
models from the tissue model were modified to remove a calcium-activated
potassium conductance from the cell body and axon initial segment. This change
was required to eliminate extreme hyper-polarization during high frequency sti-
mulation which prevented plasticity model fitting, and is an artefact expected to be
corrected in future releases of the tissue model®. Since in NEURON synapses are
considered postsynaptic processes activated by a presynaptic trigger, we did not
need to simulate the presynaptic cell during our experiments and we would not
obtain any benefit in doing so. Rather we computed the desired spike timing and
fed it to the synaptic processes, hosted on the postsynaptic cell. To further reduce
the computational cost of each simulation, we fast-forwarded the convergence of
the LTP/LTD model variables after the induction. That is, after establishing whe-
ther stimulation was sufficient to cause a state change, we moved the interested
synaptic variables to their new fixed points rather than simulating their (slow)
convergence. This trick was used during model fitting to substantially reduce the
computational cost, but was disabled for experiments showing the full convergence
dynamics. Fast-forwarding the convergence dynamics does not affect plasticity
outcomes in any way, as long-term plasticity outcomes are defined here from
steady state values. Calcium thresholds cannot be crossed during the fast-forward
process by definition, as they are always higher than the transients generated by
sparse pre- and post-synaptic stimulation (see section Model fitting).

Statistics. Statistical analysis was performed using Python/SciPy (Welch’s unequal
variances t-test, two-sided) and R/ks!!> (kernel density estimate (KDE) test, see
also R/fasano.franceschini.test for an alternative implementation!16).
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Reproducing in vitro experiments in silico. To ensure comparability and cor-
respondence between experimental data and in silico simulations, we reproduced
also the typical biases of multi patch-clamp in vitro experiments. In particular,
neurons were randomly selected mimicking the tendency of experimenters to patch
nearby cells on the same focal plane (e.g. a 50 x 50 x 10 um volume for layer 5
thick-tufted pyramidal cell (TTPC) connections). This typical bias is motivated by
the desire to maximize connection probability in lab experiments and thereby slice
yield. The specifics of individual experiments for each connection type considered
in this work are described below.

L5-TTPC to L5-TTPC: Connections were selected from random volumes of
50x50x 10 um following the methods in Markram et al.!l?, Sjostrom
et al.l4, Sjostrom and Hiusser?®. Stimulation protocols and data analysis could
be reproduced as described.

L2/3-PC to L5-TTPC: Connections were selected from random volumes of
50 x 700 x 10 pm, following the methods in Sjostrdm and Hausser®°. Simulation
protocols and data analysis could be reproduced as described.

L4-PC to L2/3-PC: Connections were selected from random volumes of
50 x max x 10 pm, following the methods in Rodriguez-Moreno and Paulsen®2.
Stimulation protocols and data analysis could be reproduced as described. Note,
we computed excitatory post-synaptic potential (EPSP) slopes from the average
traces before and after, which may differ from the purported approach taken
in Rodriguez-Moreno and Paulsen*? of averaging the slope of individual
sweeps. We emulated the effects of MK801 by setting the LTD rate y;=0.
L2/3-PC to L2/3-PC: Connections were selected from random volumes of
50x 50 x 10 um, following the methods in Egger et al4l, Banerjee
et al®3, Zilberter et al*%. In the Egger et al*! experiments, the specific
somatosensory cortex region of the in vitro experiments was different from the
one of our tissue mode (barrel cortex in Egger et al.#!, non-barrel cortex
in Markram et al.%). In the Banerjee et al.*> experiments, the EPSP slope was
used to compute EPSP ratios. Data analysis was performed as described
in Egger et al.4!, Banerjee et al.43, Zilberter et al.#4, with the exception that the
Gaussian weighting method in Egger et al.*!, which could not be applied to our
data. This technique, used to reduce the error on the mean EPSP ratio estimate,
requires data to be normally distributed. This condition is not met for every
protocol in our data after plasticity induction.

L4-SSC to L4-SSC: Connections were selected from random volumes of
50 x 50 x 10 um, following the methods in Egger et al.4l. Data analysis was
performed with the same considerations as for L2/3-PC to L2/3-PC.

L5-TTPC to L5-TTPC in low calcium: Connections were selected from random
volumes of 50 x 50 x 10 um, following the methods in Markram et al.!2, Sjostrom
and Héusser3. We model the low calcium conditions in vivo by (a) reducing
the synaptic release probability to 15% of its in vitro value reflecting [Ca®*], =
1.2 mM as described in Markram et al.’; (b) adapting the calcium reversal
potential based on the Nernst equation; (c) recomputing the fractional
component of calcium current through the NMDARs using equation (23),
and (d) recomputing the calcium threshold scaling factors under the new
conditions, i.e. Cy;. and Cpos, Which are determined by isolated pre- and post-
synaptic activity, respectively.

Model fitting. To fit the 11 free parameters (8 threshold parameters, y;, ya, and 7,)
of the plasticity model, we reproduced in vitro experiments from Markram

et al.12, Sjostrom and Hausser3® using our in silico model of cortical tissue, as
described in section Reproducing in vitro experiments in silico. We then used a
multi-objective genetic algorithm (GA)®> to find model parameters that provide
the best match between in silico and in vitro mean EPSP ratios, respectively. The
GA was run for a total of 103 generations. After 25 generations of the GA, a
chimera solution, obtained by cloning and continuing the optimization for 76
generations using a surrogate evaluation function, was injected to the GA popu-
lation in an attempt to speed up convergence. The surrogate evaluation function
was obtained by fitting a boosted tree regression model!'!” which maps the model
parameters to the expected fitness. To minimize the computational cost, we con-
sidered only 5 stimulation protocols as targets for the optimization, as summarized
in Table 1. The best solution was taken as the individual over all generations in the
optimization history minimizing the aggregated error, defined as the maximum of
its errors across the protocols in the training set, and is reported in Table 2. The
error on each protocol is defined as follows

‘Rinsilico - R it
Standard Error (R

invitro |

error = (53)

invitro )

where Ry ico and Ry, are the mean EPSP ratios of the in silico experiments and
target in vitro experiments, respectively. The plasticity model was optimized using
the Blue Brain 5 supercomputer https://www.cscs.ch/computers/blue-brain-5,
hosted at the Centro Svizzero di Calcolo Scientifico (CSCS) in Lugano, Switzerland.
The optimization procedure employed checkpointing to provide fault tolerance and
facilitate the scheduling of work on the shared compute resource. For reference, a
single generation of the GA required approximately 20480 core-hours on Blue
Brain 5.

We assessed model generalization on a held-out out set of in vitro experiments
from Egger et al.*!, Rodriguez-Moreno and Paulsen??, Banerjee et al.*3, Zilberter

Table 2 Optimized parameters with respective boundaries

and best solution for the long term plasticity model.

Parameter Bounds Best Description

Ty (150,350) s 278.318 Time constant of calcium
integrator

oo a,10)f 1127 Core factor for 64 apical

aon 1,5) 2.456 Cpost factor for 6, apical

a0 (a,10)f 5.236 Cpre factor for 6, apical

ain 1,5 1.782 Cpost factor for 6, apical

boo .5 1.002 Cpre factor for 6, basal

bo a,5) 1.954 Cpost factor for 6,4 basal

bio .5 1159 Cpre factor for 6, basal

by ,5) 2.483 Cpost factor for 6, basal

Yd (1,300) 101.5 Depression rate

7o (1,300) 216.2 Potentiation rate

T Extended to (1, 15) after generation 25 of the optimization.

et al.44, Sjostrom et al.l4, i.e. data that were not previously used during the model
fitting process.

Visualization. The cortical column visualization in Fig. 1 was created with
Brayns!!8. The neuronal renderings in Figs. 3, 4, 5 and 7 were generated with
NeuroMorphoVis!1?.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The in silico EPSP measurements, plasticity ratios and optimization results are publicly
available on Zenodo at https://doi.org/10.5281/zenodo.56547884°.

Code availability

We made the synapse model, simulations and analysis code used in this work publicly
available on Zenodo at https://doi.org/10.5281/zenodo.56547884. Simulations can be
reproduced using EModelRunner https://github.com/BlueBrain/EModelRunner, a open
source Python package developed to run cell models provided by the Blue Brain Project
portals.
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