
Stability of time-sensitive networks: strategies for
partial regulation.

Project report, by Nicolò Dal Fabbro*
Advisor: Ludovic Thomas

Professor: Jean-Yves Le Boudec

Abstract—In time-sensitive networks, regulators can be
used to reshape traffic, and their usage may be neces-
sary to guarantee stability by providing worst-case delay
bounds. In this project, I study partial regulation of time-
sensitive networks with cyclic dependencies, focusing on
performance analysis. Using recently developed Network
Calculus tools, such as TFA (Total Flow Analysis), TFA++,
FP-TFA (Fixed Point Total Flow Analysis) I study how
delay bounds can be improved by varying position and
number of per-flow regulators (PFRs) in a FIFO-per-
class network. The problem is non-trivial because in very
complex networks the number of possible combinations of
positions becomes huge.
I find that the choice of position and number of regulators
can bring to significant improvements in the computed
delay bounds.
The main part of the analysis is done on a synthetic use-
case network. The results of the analysis are discussed and
some heuristics for the general case are inferred.
I apply the work done to a realistic network by proposing
an algorithm that aims to jointly find good positions and
number of regulators in a general topology through a
parametric analysis. In the realistic case, I find significant
correspondences with the synthetic use-case results and
considerations.

I. INTRODUCTION

In time-sensitive networks with cyclic dependencies,
the full deployment of regulators allows the computation
of worst-case delay bounds without the need of solv-
ing fixed-point problems. In certain cases, with fixed-
point methods is not even possible to provide a delay
bound, and in that case the deployment of regulators
may become necessary to guarantee the stability of a
network with cyclic dependencies. The deployment of
regulators can either be a full deployment, in which at
each node a regulator is placed, or a partial deployment,
in which regulators are placed only at some nodes.

*Exchange student at EPFL, Section of Communication Sys-
tems. Home University: Università degli studi di Padova: ni-
colo.dalfabbro@studenti.unipd.it

The problem of placing the lowest possible number of
regulators to break all cyclic dependencies is faced and
solved in [1], where the algorithm Low-Cost Acyclic
Network (LCAN) is proposed. With LCAN we can find
the optimum number of regulators both for per-flow
regulators (PFRs) and interleaved regulators (IRs). While
the focus of [1] is in breaking all the cyclic dependen-
cies guaranteeing the feed-forward computability of the
worst-case delay bounds of the network, in this project I
focus on the possibility of deploying partial regulation,
specifically of PFRs, with the purpose of improving the
delay bounds. To do this, I start by analyzing a use-case
academic network, studying how by changing position
and number of regulators we can improve performances,
i.e., get better delay bounds. After the analysis of the
academic network is concluded, I do some heuristic
considerations to generalize the analysis done to more
complex and realistic networks. To conclude, applying
the work done, I build a procedure that, by using an
algorithm that returns positions and number of regulators
in a network, allows to look for good combinations
of these variables through a parametric analysis. The
algorithm is based on the bottlenecks of the network, and
on the idea of an optimal fraction of flows to be regulated
w.r.t. the bottlenecks. The algorithm, furthermore, makes
use of LCAN for its first step. In the realistic network
analysis, I get results that have strong correspondences
with the heuristics proposed. In terms of delay bounds,
for high utilization and a class of flows that takes all the
capacity, through the presented procedure is possible to
get a partial deployment configuration that has the same
performances of the full deployment by using much
more less regulators. In section II, the synthetic network
is presented in details, together with the parameters
adopted and the methods used to compute delay bounds.
In Section III is detailed the analysis of the academic
network performances when the variable is the position
of a single PFR. In Section IV I show what are the
best bounds achievable in the network if we can use



any number of regulators, from a single one to full
deployment, placing them in the optimal positions. In
Section V there are considerations for general heuristics
that is possible to infer from the previous analysis.
In Section VI, I illustrate the simple algorithm that
selects the places where add regulators. A quick note
on the software used for the measurement campaigns
is shown in Appendix. Mathematical details on the
delay computations are omitted, the methods used to
compute delay bounds through Network Calculus tools
are the same presented in [1]. The needed background
to understand the work is also in Appendix.

II. SYSTEM DESCRIPTION

The main work of this project consists of the analysis
of an academic use-case network, shown in Figure 1.
The network shown in the figure is a a convergent
network forming an asymmetric ring with a cyclic
dependency. The notion of cyclic dependency will be
used in all the project report, so the same definition
reported in [1] is quoted here:

Definition. For a given network, consider its underlying
directed graph G = (V,E) defined by: V , the set of
vertexes, is the set of output ports in the network.
For a, b two output ports in V , (a, b) is a directed
edge in E if at least one flow crosses output port a
and just after output port b. A cyclic dependency in
the network is defined as a cycle in its underlying graph.

In all the report, a graph node will be identified
as a tuple (network node, output port). In the network
in the figure, each network node is associated with
an output port, and in an equivalent way it could
be associated to the scheduler representing the FIFO
system preceding the output port. Since each network
node is associated with only one output port, in the
network of the figure is straightforward to derive the
underlying graph. Each (network node, output port)
tuple has the same structure as the one shown in Figure
2. In the nodes of Figure 1, the packetizer block is
omitted, while the curved grey shapes inside the node
represent the places where a per-flow regulator (PFR)
could be put. In Figure 1 there are N = 6 nodes
numbered from 0 to N − 1. With the exception of node
N − 1, where two flows are generated, one flow is
generated at each node. Flows are numbered from 0 to
N . Each flow fk is supposed to be generated inside the
corresponding node nk, with the exception of flow fN ,
generated inside node nN−1. Since node nN−1 is the

Fig. 1: Use-case network with N = 6 nodes. Flow f6 is drawn
with a dotted line to distinguish its path from the others. The curved
grey shapes inside nodes are the positions where a regulator could
be placed in.

Fig. 2: Device model. Regulator is in parentheses because it may
or may not be placed depending on the design choice.

node crossed by more flows, it will be referred to as
the bottleneck of the network. Each flow is supposed
to have the same initial arrival curve αr,b, that is a
leaky-bucket arrival curve of rate r and initial burst b.
To each (network node, output port) tuple is associated
a FIFO system with rate-latency service curve βR,T of
rate R and latency T . I will always consider one single
class at a time. A PFR, by definition, will regenerate
the initial arrival curve αr,b for each single flow it is
regulating, before these flows are given in input to the
FIFO system that the PFR is preceding. The cyclic
dependency in the network is caused by flow fN that
is closing the ring, hence generating a cycle in the
network graph.

2



A. Delay computation

To compute the end-to-end (ETE) delay bounds, total-
flow analysis (TFA) is used, with some improvements
that will always be used, such as the line shaping
improvement (presented in [2]), the results on pack-
etization of [1], Mohammadpour et al. improvement
shown in [3]. Since the network is cyclic, we can not
directly do a feed-forward computation of the ETE delay
bounds if no regulator is placed. On the other hand, one
PFR placed in any of the possible positions breaks the
cyclic dependency so that a feed-forward computation
of the ETE delay bounds is possible. To compute the
ETE delay bounds of the flows, three possibilities are
considered: either we break the cyclic dependency by
placing one or more regulators in some of the graph
nodes (partial deployment), either we place a regulator
in every graph node (full deployment), or we apply FP-
TFA, presented in [1], a technique that uses a fixed point
method to compute ETE delay bounds in networks with
cyclic dependencies.

B. Parameters and metrics

All the measurement of the project are done with the
same set of parameters, with some of them been varied
for analysis purposes, so the parameters are all listed in
this section.
The packets have all the same size that is l = 12E3bits,
the transmission line coefficient is c = 1E9bits/s, the
initial burst b = 12E3bits, the arrival rate of the flows,
denoted as r, depends on the utilization factor, denoted
as ρ. The analysis of the considered networks is done
considering two different values of the utilization factor,
representing low and high utilization of the network, that
is ρ = 0.3 and ρ = 0.8, respectively. Furthermore, I
also consider two possible values for the ratio between
the transmission rate c and the service rate R, that is
c/R = 1 and c/R = 2, values that are also considered in
[1]. The former configuration represents a case in which
the service rate of the considered class takes all the
available capacity, and is therefore likely a high priority
class; the latter case is more general, and includes more
possibilities common in industrial networks. In the case
c/R = 1 the effect of line shaping will be evident, while
when c/R = 2 the same effect will be strongly reduced
in place of other factors, as will be clear in the next
section.
To evaluate performances, the metric that has been
adopted as the most suited to be considered is the
delay bound per hop. This metric was suggested by the
asymmetry in terms of hops that the flows cross in the

Fig. 3: Worst delay bound per hop vs index of the node where the
regulator is placed, for the network of Figure 1 with N = 20 nodes,
load factor ρ = 0.3, c/R = 1. Other parameters detailed in Section
II-B. The flow suffering the delay is indicated close to the point as
fk. When omitted, the flow does not change w.r.t. the previous point
(previous to the left along the x-axis.)

use-case network. To obtain the measure of the delay
bound per hop associated to a flow, I compute its ETE
delay bound and divide it by the number of nodes that
the flow crosses.
In the analysis I will focus on the worst delay bound
per hop that is computed for a given configuration.
Sometimes also the average of the computed delay
bounds per hop will be shown.

III. SINGLE REGULATOR ANALYSIS WITH N = 20

In this section, I analyze in detail how the perfor-
mances of the network in terms of computed delay
bounds per hop change with respect to the positioning
of one single regulator in the use-case network of Figure
1, introduced in section II, when the number of nodes
is N = 20. In each of the plots that will follow, three
cases are shown and compared: the no-deployment case
(delay bounds computed with FP-TFA), the single PFR
case, and the full deployment of PFRs case. When one
or more PFRs are placed in the network, as stated before,
the cyclic dependency is broken and then it is possible to
compute the delay bounds through a simple feed-forward
computation. In all the plots of this section: on the x-
axis is put the index of the node nk where the regulator
is placed, on the y-axis the worst delay bound per hop
computed; close to the plotted point is also indicated
which is the flow suffering that delay, fk. When non
specified, the flow suffering the delay of a plotted point
is to be found as the previous specified flow (previous
means: going to the left along the x-axis).

3



A. Case c/R = 1

When considering c/R = 1, the line shaping effect
has an important role. This is clear from Figure 3,
where delay bounds are computed at low utilization
(ρ = 0.3). I first focus on the single regulator plot: as
the single regulator placed in the network approaches
the bottleneck (i.e. node n19, in the case N = 20), the
delay bound gets worst, especially as we get closer than
a certain position, that in the specific case is node n12,
to the bottleneck. This is related to the line shaping
effect. Since we consider a set of convergent flows,
we originally expect, if non giving much importance
to the line shaping effect, to see an improvement in
the delay bounds as we approach the bottleneck with
the regulator. This because the PFR will regenerate the
original bursts for all the flows, consequently canceling
the burst propagation effect due to the several FIFO
systems crossed by the flows previously. The key point
to be considered here is that the regulator also eliminates
the line shaping effect for all the flows it regulates
before the FIFO system it is preceding. The fact that
this regenerative property of the PFR is causing the
increasing of the delay bound is also suggested by
the information shown in Figure 3 about which flow
suffers the worst delay bound: in the considered case,
after position k = 12, it is always the flow generated
inside the same node where the regulator is placed.
For example, for the PFR placed in node n13 the flow
suffering the worst delay bound is f13, and this holds for
all the positions nk with k ≥ 13. In this configuration
there is not a strong unique optimal position for the
single regulator.
The full deployment is the configuration giving the worst
possible delay bound per hop. This delay is equal to
the one corresponding with the worst position of the
single regulator, and the flow affected by this delay is
again f19 as for the case of the single regulator put in
position n19. It is meaningful to be noticed that the full
deployment bad delay computed does not depend on
nothing but the final node n19 and the corresponding
regulator: the flow suffering is f19 generated in the
node itself, and what this flow faces is the set of all
the flows of the network whose bursts are regenerated
exactly before f19 enters in the system. The bad delay
of the full deployment is due then to the very specific
topology considered, and cannot therefore be considered
a result with general validity. What is worth noting is,
instead, the importance of the line shaping effect in this
configuration and how the burst regeneration property

Fig. 4: Same as Figure 5, but for ρ = 0.8

of the regulator can have a negative impact on the delay
bounds. The no-deployment case, as also was shown in
the analysis done in [1], results to be equal or better, at
low utilization and c/R = 1, both than partial and full
deployment. In Figure 4 are shown the same measures
that were shown in Figure 3 but now the utilization
factor is ρ = 0.8. In the high utilization case, there is an
optimal position corresponding to the regulator placed
in node n17. In this configuration, due to the higher
rate, we see how the regulator brings an advantage with
respect to both full deployment and no deployment. The
regulator brings an advantage if placed closer to the
bottleneck, shaping, in particular, 17 flows out of 21:
at that point, in the convergent network, the overall
propagated burst is pretty high, and the line shaping
effect, even if c = R, is giving a weaker advantage
with respect to the regeneration of the original bursts
for all the flows. The improvement we get both with
respect to no-deployment and to a position like node
n0, in terms of delay bound per hop, is of around 40µs.
In relative terms, the delay bound per hop is improved
of roughly 20% with respect to no deployment. With
respect to the worst positioning of node n19, and so
also of full deployment, the improvement is of around
100µs, with a relative improvement of almost 40%.

B. Case c/R = 2

When c/R = 2, the line shaping effect is strongly
reduced, and the burst propagation has a stronger impact
in the delay bounds w.r.t. the case c/R = 1. Is expected,
therefore, that the properties of the PFR will have a
more crucial impact. The delay bounds computed in this
configuration, with load factor ρ = 0.3 and ρ = 0.8 are
plotted, in the same framework of the previous case,
in Figure 5 and Figure 6. With this parameters config-
uration, the full deployment is not anymore providing

4



Fig. 5: Worst delay bound per hop vs index of the node where the
regulator is placed, for the network of Figure 1 with N = 20 nodes,
load factor ρ = 0.3, c/R = 2. Other parameters detailed in Section
II-B. The flow suffering the delay is indicated close to the point as
fk. When omitted, the flow does not change w.r.t. the previous point
(previous to the left along the x-axis.)

the worst bound, that is instead provided by the no-
deployment. With both high and low load, there is a
strong optimal position for the single regulator, that in
this case is given by node n17 for the low utilization case
and node n16 for the high utilization case. The reason
behind this result was not immediate to understand, since
as we know and see that the line shaping is not anymore
playing a key role we may expect that the best position
is as close to the bottleneck as possible. The reason
for which the optimal position is instead some node
before is easier to understand noticing which flows are
suffering the worst bound. As is possible to see from
both the figures, these flows are, as the node at which
the PFR is placed approaches too much the bottleneck,
those generated some hops before, e.g. flow f16 for the
regulator positioned in node n18. From this consideration
I can infer the reason for the increasing of the worst
delay bound per hop as the regulator approaches the
bottleneck to be the unbalance due to the non regulation
of all the convergent flows that come before. These
flows generate a burst propagation so big that, if non
regulated, produces the flows joining after a certain
position (but before the PFR) to accumulate very big
delay bounds, getting then the worst delay bound per
hop. The improvement in terms of delay bound per hop
that we get from choosing the optimal position instead
of the no deployment or the worst position is of around
500µs with a relative improvement of roughly 50%.
Interestingly, as shown in Figure 5, with low utilization,
the optimal position is such that the single regulator
provides a better improvement w.r.t. the full deployment.
The improvement, in particular, is of around 50µs, with

Fig. 6: Same as Figure 5, but for ρ = 0.8

a 10% relative improvement.
At high utilization, the improvement obtained by wisely
positioning the regulator or by using full deployment is
huge. The optimal position can improve the delay bound
per hop of up to 12.5ms w.r.t. the worst position, and
even more w.r.t. the no deployment. Of course, this huge
improvement is also due to the very specific topology
considered. The full deployment in this case provides
the best bound, even if the difference with the single
regulator in the optimal position is relatively small, if
compared with the other possibilities.
In the next section, I show how increasing the number
of regulators it is possible to improve the performances
for these last two cases.

IV. ARBITRARY NUMBER OF REGULATORS WITH

N = 20

In the previous section, the analysis on the possibility
of delay bounds improvement was done w.r.t. a single
placed regulator. As was shown, the choice of the single
regulator position can bring significant improvements in
the delay bounds of the considered use-case network.
In this Section, instead, I explore the possibility of
improving the delay bounds in the same network even
more by placing more than one regulator. I am not
anymore interested in the specific position that the PFRs
will be placed in, since the reasons behind the result
would be solely related to the specific topology, and
hardly generalizable. What I am really interested in is
what is achievable, to get some more general suggestions
easier to extend to a more general case. For this reason,
in the following, I show what is the better bound we can
achieve with a specific number of PFRs in the network,
without specifying their position. Obtaining the result for
this task was computationally demanding, more details
in Appendix. When c/R = 1, as suggested by the

5



Fig. 7: Worst and best delay bound per hop vs number of regulators.
To obtain the plotted delays, the regulators are positioned in the
worst and best positions, respectively. Results obtained with ρ = 0.3,
c/R = 2, details on the parameters in Section II-B

Fig. 8: Worst and best delay bound per hop vs number of regulators.
To obtain the plotted delays, the regulators are positioned in the
worst and best positions, respectively. Results obtained with ρ = 0.8,
c/R = 2, details on the parameters in Section II-B

analysis done in the previous section, the bad effect of
the regeneration property of the regulators w.r.t. the ad-
vantage given by the line shaping is such that using more
than one regulator does not bring any improvement. In
particular, with the number of regulators defined as K, in
the case of c/R = 1 and low utilization (the single PFR
analysis was shown in Figure 3), as expected from the
fact that no deployment provides a better result than both
full and single PFR deployment, having 1 < K < N
does not provide any advantage. For the other case, i.e.
still with c/R = 1 and ρ = 0.8, that was illustrated in
Figure 4, the best bound we can get with one PFR is
the same for 2 ≤ K ≤ N − 3 PFRs. This is related to
what was discussed in Section III-A: the full deployment
very bad delay bound is much related to the specific
topology and has not a meaningful general validity. The
case c/R = 2 brings more information, and therefore the

results obtained are shown in figures. The low utilization
case, illustrated in the previous section in Figure 5, had
the interesting result in which a single regulator provided
a better delay bound than the full deployment if put in
the optimal position. Surprisingly, by placing a number
of regulators 2 ≤ K ≤ N − 1 in the best possible
positions, we get a slight improvement with respect both
to the single optimal position and to the full deployment,
as is possible to see in Figure 7. At high utilization,
even when placing the PFR in the optimal position
the delay bound obtained with full deployment was not
achieved. The expectation for this case is that increasing
the number of PFRs the delay bound obtained with the
best positioning will approach the full deployment case.
As shown in Figure 8, this is exactly what happens. What
is interesting to note is that with K = 5 PFRs we already
reach the same bound provided by the full deployment,
that uses K = 20 PFRs. The other curves plotted in
Figures 7 and 8 are useful to show the importance of
the positioning of the PFRs: they show the worst delay
bound obtained with the same number of PFRs if these
are bad positioned. In the next section, the result of
Sections III, IV are summarized and discussed.

V. CONSIDERATIONS AND HEURISTICS

In Sections III, IV has been shown how for the
academic use-case network illustrated in Figure 1 the
best position and number of regulators can bring to a
significant improvement of the delay bounds per hop.
The question that this section and the remaining of the
report tries to answer is the following: is it possible,
based on the analysis done, to infer some heuristics valid
for a general topology? To answer this question, several
considerations have been done, and further analysis.
The considerations can be distinguished in two levels.
The first is more general and related to the parame-
ters, i.e., utilization factor, ρ, and the ratio c/R. What
emerged from the previous analysis can be summarized
in the following:

• ρ = 0.3, c/R = 1. No deployment and wise
partial deployment provide equivalently good delay
bounds. Depending on the topology, full deploy-
ment may provide less good bounds because of
the trade-off between line shaping and regenerative
property of regulators.

• ρ = 0.8, c/R = 1. Partial deployment provides a
better delay bound than no deployment and there
is an optimal positioning of regulators bringing to
significant improvements. Full deployment as in the
previous point.

6



• ρ = 0.3, c/R = 2. Full deployment provides good
delay bounds, but partial deployment can provide
equivalent or better bounds, if regulators are placed
in good positions. No deployment is not a good
option anymore.

• ρ = 0.8, c/R = 2. Full deployment provides
the best delay bounds, achievable also with partial
regulation choosing a minimum number of regu-
lators and placing them in a good position. No
deployment is not a good option anymore.

The above considerations are general, and they are
discussed again in the next section, where a realistic
network is analyzed.
The second level of heuristic considerations is now
explained, always starting from the analysis done pre-
viously on the use-case network illustrated in Figure 1.
The use-case network single regulator positioning has
some interesting properties. For example, when putting
a regulator on a certain node, with the exception of node
n0 and node nN−1, we are also specifying the number
of flows that we are regulating: for a PFR placed in
node nk, k + 1 flows are being regulated. When we
identify an optimal position of the single PFR, then, we
are also identify a specific number of flows regulated. In
particular, we are selecting a fraction of the flows that
cross the bottleneck. From this observation comes the
idea that is used in the next section to develop a simple
algorithm with the purpose of selecting good positions
and number of regulators. The idea is mainly that in a
network there may be a good value, like a threshold, for
the fraction of flows that go through a bottleneck that
we would like to regulate to get good performances. The
parameter related to the number of flows that we want
to regulate w.r.t. a bottleneck is the parameter that is
studied and tuned for a general topology.

VI. APPLICATION TO A REALISTIC NETWORK

In this section, the analysis done in the previous
sections and the heuristic considerations are applied to
a more general topology. In the first part of this section,
I propose a simple algorithm to place regulators in a
general topology according to a parameter. In the second
part, I apply the algorithm to a realistic network and
analyze the results.

A. Algorithm for a general topology

The algorithm that I propose here is based on the
use of a parameter, that could be defined as a threshold,
specifying a fraction of flows w.r.t. a bottleneck in a net-
work, to place regulators. The procedure, illustrated in

Algorithm 1, starts by using Low-Cost Acyclic Network
(LCAN) to have the minimum number and position of
PFRs to break all the cyclic dependencies of the network.
After that, the algorithm scans the bottlenecks of the
network, i.e. the graph nodes crossed by more flows.
The reason for which LCAN is used for the first step is
because the algorithm is designed for complex networks
with cyclic dependencies, where the number of cyclic
dependencies may be huge, and therefore the base point
of the positions that LCAN provides is needed. For each
bottleneck, the procedure looks for neighbors satisfying
a specific condition related to the input parameter, the
threshold. The condition is satisfied if the neighbor
shares with the bottleneck a fraction of flows bigger than
the threshold. If the condition is satisfied, a recursion
is done on the neighbors satisfying it, to look for
other nodes satisfying the condition w.r.t. the original
bottleneck.

Algorithm 1 Returns a set of edges for PFRs placing,
according to an input parameter th. The ”recursion”
operation is explained in VI-A
Input: (Network graph g, Threshold th)
Output: Set of edges where to put PFRs, P
P = ∅
// Sort (in decreasing order) the
nodes according to the number of
flows they are crossed by
bNodes = sort(nodes(g))
// Use LCAN to get the regulators to
break all the cyclic dependencies
P = P ∪ LCAN(g)

foreach node ∈ bNodes do
foreach n ∈ neighbors(node) do

if n satisfies threshold th then
chosen = recursion(n)
// chosen will be the edge
between n and node or between
n and a neighbor of n (or of
a neighbor of the neighbor,
etc...) satisfying the
threshold condition
P = P ∪ chosen

return P

A good position for a regulator is established as the
edge between the last node on which the condition
was satisfied in the recursion and the successor of that
node in the direction of the bottleneck. The procedure

7



explained adds some regulators to the minimum set of
regulators. Depending on the threshold parameter, the
number of regulators added will change. If the threshold
is small, I will add more regulators, and vice versa if
it is closer to 1. The algorithm, then, will return both
position and number of regulators to be placed. The
proposed algorithm allows a parametric analysis of a
given network, with the objective of finding a value
that would produce a configuration with improved delay
bounds. The algorithm and the proposed approach allow
to find interesting results when applied to a realistic
network, as will be shown in the next sub-section. An
extension of this algorithm may involve a parametric
analysis with more than one parameter, with an increas-
ing in complexity.

B. Application to Orion network

I apply the algorithm and the approach described
in the previous sub-section to Orion crew exploration
vehicule (CEV) network. Its architecture is detailed in
[4, p.328]. The physical topology illustrated in Figure
9. I adopt the same routing and analysis structure,
such as number of flows and their mapping, that was
adopted in [1]. So the number of flows is 119, and
the routing configuration brings to have 293912 cyclic
dependencies. The number of edges in the network graph
is 249, so the total number of possible combinations of
regulators placed in the network with partial deployment,
if one wanted to check all the possible combinations,
is of the order of ≈ 2249. Of course this would be an
impractical way of finding good positions. In Figure 10
are shown the results in terms of delay bounds per hop,
at high utilization, i.e. ρ = 0.8, and c/R = 1. As it
is possible to see from the figure, partial deployment,
for the value of the threshold equal to 0.275, allows to
reach the performances of the full deployment, both for
the worst delay bound per hop and for the average of the
delay bounds per hop. When the value of the threshold
is 0.275, the number of corresponding placed regulators
in the network is 35. So, with a partial deployment using
around 14% of the PFRs used by the full deployment,
we manage to get the same performances of the full
deployment. Compared with the result obtained by only
using LCAN, the improvement is of around 55µs in de-
lay bound per hop, relative improvement of around 30%
(the same that full deployment provides). Of course this
is not the true optimum positioning, but still the result
can be considered as good. To see if the positioning of
the regulators in the nodes specified by the algorithm is
really a good choice, I compared the result obtained with

Fig. 9: Physical topology of the Orion CEV network

Fig. 10: Delay bounds per hop for Orion network vs value of the
threshold parameter for which the algorithm returns certain regulators
positions. The number of PFRs used at threshold=0.275 is K=35.
Results obtained with ρ = 0.8, c/R = 1, details on the parameters
in Section II-B

that configuration with the result obtained by randomly
placing a number of regulators equal to the one of the
regulators added by the algorithm in the network. The
result obtained is shown in Figure 11. To obtain the
plot, 2000 random choices for the 26 PFRs added by the
algorithm have been done. As it is possible to notice, no
one of the random choice delay bound obtained is better
than the one obtained through the algorithm, and the
margin between the majority of the bounds obtained with
the random choice and the bound obtained through the
procedure is significant, of around 30µs in delay bound
per hop. For the other combinations of parameters that
were the objective of the considerations of Section V,
the results obtained with Orion bring confirmations and
similarities. At low utilization, for c/R = 1, as was
already seen in [1], the minimal number of PFRs to
break the cyclic dependencies, that is 9, allows to obtain
already better results w.r.t. full deployment. For the case

8



Fig. 11: Delay bounds per hop for Orion network vs number of
random chosen 26 PFRs experiment, explained in this Section VI.
The experiments have been ordered delay-wise. Results obtained with
ρ = 0.8, c/R = 1, details on the parameters in Section II-B

c/R = 2 the plots obtained, omitted, are similar to
the one of Figure 10, with the difference that at high
utilization the partial deployment, even if getting close,
does not reach the full deployment performances, so
non reaching exactly the result promised by the general
considerations of Section V.

VII. CONCLUSION

In the academic network example I have shown how
crucial the choice of the position of a regulator can
be in the delay bounds computation. The fact that
increasing the number and jointly choosing the best
position of regulators could bring further advantages
gave other hints on the potential of partial deployment
to improve performances. Analyzing the reasons that
brought to the improvements it has been possible to
infer some heuristics and to test a simple approach to
improve the performances of a complex network as the
Orion one, finding some confirmations on the previous
considerations.

VIII. ABOUT PROJECT DEVELOPMENT

In this section I provide notes on project develop-
ment, including the skills acquired, the report of the
major events of the project, the difficulties, and a self-
assessment.

A. Skills acquired

The work of the project started by getting familiar
with Network Calculus tools. I first studied from the
Network Calculus Tutorial [5], and then I consolidated
my learning by studying from the paper ”On cyclic
dependencies and regulators in time-sensitive networks”,
[1], from the paper on fundamentals of the line shaping

improvement, [2], and by checking weekly my learning
and understanding with my advisor. After this first phase,
I started to get familiar with the academic use-case
network proposed and with the software to analyze it.
In this phase, I compared results and computations done
on the network through the software and done by hand,
to ensure the correctness of the software added by me
for the specific case to be considered, and being sure
to have fully understood the mathematical procedures
through which delay bounds are computed in Network
Calculus, at least in the most basic cases. In the skills
acquired for the project then for sure there are the
fundamentals of deterministic networks, some insight
of the existing literature, and also practical methods to
compute measures used in the context of time-sensitive
networks, such as delay bounds, in big networks, through
the usage of software tools. Furthermore, this project
was an opportunity to work on an individual project for
three months, then collecting all the material developed
and putting it in a final report, that was of course
demanding but also instructive and satisfactory. Finally,
during this project I improved my capability of using
python object oriented programming.

B. Main events and difficulties

The first main event of the project was the first
software computation of delay bounds for the academic
network in the simplest configuration and with N = 4
nodes, together with the paper and pencil computation
of the same measure. From that, it followed the analysis
of the high priority low and high load computation and
plot vs the position of the single regulator, from which it
emerged the first optimum position found, that required
some time to be fully understood. After that, the main
events were the computation of the best delay bounds
with an arbitrary number of regulators and finally the
idea and work for the application to the realistic network.
The concluding moment of the project was the moment
in which was plotted the comparison between the delay
bounds obtained by randomly choosing the regulators
positions and the ones obtained by the configuration
returned by the algorithm. Getting familiar with the
Network Calculus tools required effort, especially at the
beginning, but did not present unexpected difficulties,
thanks to the material and the help from my advisor.
The work with python software did not present particular
difficulties for the majority of the time, except in some
cases where the usage of dictionaries made it difficult
some ordering operations and data processing. Some
technical aspects that took unexpected time were also

9



related to the will of getting some metrics from the
analysis that were not immediate to be provided by the
software, requiring some debugging. Extending the work
of the synthetic network to a general topology required
effort and presented some difficulties, but with the proper
amount of time also those were solved.

C. Self-assessment

The work on the project through the semester was
done regularly, and I managed to use a significant
amount of time each week for the project, often achiev-
ing my week targets. From this point of view, I am
satisfied with the project work and with my learning
outcome. From the project results point of view, I
think that I managed to accomplish the objectives’ main
features that were specified in the project contract. I
consider to have succeeded in particular in the first aim,
that was understanding how network performances could
change by varying number and position of regulators in a
network with a cyclic dependency. For the second aim,
that concerned inferring heuristics for identifying best
position and/or number of regulators without the need of
computing delay bounds, I think I partially accomplished
it by analyzing the results obtained in the work done and
reasoning on the network configuration, and also testing
the heuristics on the realistic case, but still I was not able
to provide a completely strong set of rules. What instead
I provide is the parametric approach that followed by the
considerations done, and an example of its application.

REFERENCES

[1] L. Thomas, J.-Y. Le Boudec, and A. Mifdaoui, “On cyclic
dependencies and regulators in time-sensitive networks,” 2019
IEEE Real-Time Systems Symposium (RTSS). Proceedings, 2019.

[2] A. Mifdaoui and T. Leydier, “Beyond the accuracy-complexity
tradeoffs of compositional analyses using network calculus for
complex networks.,” 10th International Workshop on Composi-
tional Theory and Technology for Real-Time Embedded Systems
(co-located with RTSS 2017), Dec 2017.

[3] E. Mohammadpour, E. Stai, and J.-Y. Le Boudec, “Improved
delay bound for a service curve element with known transmission
rate,” IEEE Networking Letters, 2019.

[4] R. Obermaisser, “Time-triggered communication,” CRC Press,
Inc., 1st ed, 2011.

[5] J.-Y. Le Boudec, “An introduction to network calculus,” 2019.

IX. APPENDIX

In this appendix I add further information on the
project, as the background needed to understand the
work, information on the software used and measure-
ment campaigns, and some details on project events.

A. Background

To fully understand the project, it is sufficient to have
the fundamental notions on Network Calculus about the
topics listed in the following:

• Deterministic worst-case delay bounds.
• Arrival and service curves, in particular Leaky

Bucket Arrival Curves and Rate Latency Service
Curves. Computation of the delay bounds for these
curves. Computation of the output arrival curve for
a FIFO system (min-plus deconvolution).

• The TFA method.
• Line shaping effect, and how it is applied to im-

prove delays with TFA++ method [2].
• Packetization effect.
• Traffic shaping by means of regulators, in particular

per-flow regulators.
• The contents on partial regulation presented in the

paper ”On cyclic dependencies and regulators in
time-sensitive networks”, [1].

These topics can be retrieved in the Tutorial ”An Intro-
duction to Network Calculus” by Prof. Le Boudec [5],
and in the papers in Bibliography, [1], [2].

B. On software used and measurement campaigns

To do the analysis presented in the project I used
the python software that I had available from the lab,
in particular it was the code through which were done
also computations for the results of [1]. This code
uses object oriented programming, it is organized in
classes the source code of which I had access to. I
used and modify these classes, adding methods and
structures when needed for my purposes. I coded some
new functionalities and scripts for my measurement
campaigns. The plots are realized using the python
library matplotlib, the code to plot is integrated with the
scripts with the code to obtain the results. The values
obtained are usually put in lists that then are plotted.
All the code is available on the github space that was
made available for me by the lab.
The LCAN algorithm does not always return the same
set of edges where the regulator should be placed. For
this reason, repeated executions of the code and of the
algorithm proposed in Section VI may produce slight
different values of computed delay bounds. Furthermore,

10



also the number of added regulators may change. For
example, for the threshold parameter equal to 0.275,
sometimes we could get 30 regulators, sometimes 35.
Anyways, the difference in the results is never sub-
stantial, and it does not contradict the conclusion and
the considerations done. For example, for the threshold
equal to 0.275, partial regulation as shown in Figure
10 always reaches the performances of full deployment,
both in average and in worst bound.

C. Some insight on the project

To obtain the plots shown in Figure 7 and 8, for each
curve were necessary roughly 220 executions of TFA++
on the synthetic network. For each curve then several
hours of computation were needed, and this was the
most computationally demanding procedure. The code
that implements the algorithm for the general topology
the code was written starting from the cost function
computation of LCAN. What the code does is assigning
a cost to the edges between a node graph and a neighbor,
and when the cost reaches a value of zero, that will be
the place for a regulator. In this way the set of edges
where to put regulators is identified.

11


