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Escola Tècnica d’Enginyeria de Telecomunicació de Barcelona
Universitat Politècnica de Catalunya

by

Guillermo Aguirre Rodrigo

In partial fulfillment
of the requirements for the master in

TELECOMMUNICATIONS ENGINEERING

Advisor: Prof. Jean-Yves Le Boudec, Ludovic Thomas and Prof. Xavier Hesselbach Serra
Barcelona, Date 01/07/2020



Abstract
Regulators are used in time-sensitive networks in order to reshape traffic reducing the burstiness
generated by the aggregation systems within the network. Regulators, in terms of the IEEE
TSN group are defined as Asynchronous Traffic Shaping or what in the literature is known
as interleaved regulators. These regulators are placed before a multiplexing stage, shaping the
outgoing traffic and cancelling the increased burstiness, allowing calculations of the worst-case
delay to be performed. One of the main properties studied for regulators implies that they
do not increase the worst-case delay in the network. So far, all the studies were performed
assuming ideal clocks within the network. However, a recently published paper underlines
the importance of taking into account non-ideal clocks while studying interleaved regulators
properties, providing a theoretical proof that under certain circumstances, interleaved regulators
can lead to system instability due to the unbounded delay through them. This thesis intends to
continue with this study, providing a simulation proof that shows instability when interleaved
regulators are simulated assuming non-ideal clocks. This is carried out in the network simulator
ns-3. Along with the different developed modules, two are highlighted: local time and ATS
modules. The former introduces the notion of local times in ns-3, whereas the latter implements
regulators functionality in ns-3, following the implementation proposed by the IEEE TSN.
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Chapter 1

Introduction

Over the last decade, Time Sensitive Networks (TSN) have gained a relevant importance in
the network communication field, and researches have been conducted by the academic and
industry fields. Real-time applications and distributed safety-critical applications in industries,
such as automotive [25], manufacturing [32] and avionics, have underlined the relevance of
deterministic communications. Even the 5G technology aims to integrate TSN within Industry
4.0 [12]. Driven by the industry needs, efforts to standardize real-time communications over
Ethernet have been made, resulting in the IEEE 802.1 Time-sensitive Networking (TSN) Task
Group (TG). Time-sensitive networks, according to IEEE organization, is a set of standards
which attempt to guarantee packet transport, low packet loss and bounded low latency, providing
new levels of connectivity, optimization and cost saving with seamless reconfiguration and
redundancy.

A general problem in networks is that aggregate buffering and scheduling increases the
burstiness of the flows that share the same system resources. Imagine different flows perfectly
shaped with different rates and burst sizes, this is, the interval time between packets is perfectly
defined. All these flows share the same output port of a router and the output bandwidth of the
link is much bigger that the total rate of the input flows. Even in this situation, sudden build-up
of packets at the output port, due to some of the flows arriving at the same time, can drastically
increase the jitter of some flows, resulting in the decrease of the interval time between packets
of the same flow and the increase of the so-called burstiness. The problem can be exacerbated
if an already bursty traffic shares again another aggregation system, increasing even more the
burstiness of the traffic as studied in [3][8]. Burstiness of every flow increases at every hop as
a function of other flows burstiness, leading to the burstiness cascade problem. The creation of
bursts within the network makes the computation of upper bounds for the latency difficult, and
sometimes can lead to system instability with unbounded delays.

To cope with this problem, TSN propose to reshape traffic by means of regulators. Regulators
are hardware elements placed at the output ports of network devices that reshape traffic,
forcing flows to have specific burst sizes. They remove the burstiness created by the aggregate
scheduling systems, bringing back the original burst size of the flows. Regulators come in two
types; per-flow regulators and interleaved regulators. Within this project, we stay focused in the
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1.1. THESIS CONTRIBUTION CHAPTER 1. INTRODUCTION

Interleaved Regulator (IR), which can also be called Asynchronous Traffic Shaping (ATS).

Interleaved regulators have been widely studied in different papers, like [6] and [5], and their
properties and functions are well known. However, the majority of the studies conducted in
this field have been done assuming ideal clocks within the networks. Nothing could be further
from the truth, network devices use local clocks, which are imperfect clocks. In order to deal
with clock deviations, TSN propose two types of networks, synchronized and non-synchronized
networks. In synchronized networks, clocks deviations are kept within some bounds, using
a synchronization protocol, such as Network Time Protocol (NTP) [22] or Precicion Time
Protocol (PTP) [11]. The degree at which synchronized networks keep bounds classifies
them into two levels, ”tightly” synchronized and ”loosely” synchronized. In non-synchronized
networks, clocks run independently one from each other.

The research carried out by Ludovic Thomas and Jean-Yves Le Boudec in [20], studies
regulators under different time synchronization issues and non-ideal clocks. Among the various
conclusions achieved, one acquires a greater importance, concerning interleaved regulators
within synchronized networks and non-ideal clocks. A theoretical proof is presented, showing
that the interleaved regulator, under a particular time model and network conditions, leads to
system instability and unbounded delay.

In this project, a natural step from the theory to the simulation is proposed. We continue the
research carried out in [20], and more precisely, what concerns interleaved regulators and
synchronized networks, providing a simulation proof that confirms the theoretical proof.

The project has been carried out in the network simulator ns-3. As an intermediate step to
achieve the final simulation, time notions have been introduced in the simulator. The simulation
of different clocks in the network simulator is an important progress and interesting feature for
ns-3. Because of that, a design of an independent module that includes the basic functionalities
to implement local clocks in ns-3, is considered. The subsequently upload of the clock module
to the ns-3 source code has been established as another important goal of the thesis.

1.1 Thesis contribution
The main contributions of this thesis are:

• The concept of different time notions and clocks is introduced in ns-3. As it stands, ns-3
does not support the simulation of different clocks within the nodes of the simulation. A
clear and open interface that allows to introduce clocks in the already existing code of
the simulator is presented. We believe that this new feature extends the capabilities of the
simulator, allowing a large variety of new scenarios.

• A simulation framework for interleaved regulators and, with minimum changes, for
per-fow regulators in ns-3 is provided.

• By the use of interleaved regulators and clock notions in ns-3, a simulation proof that
confirms the theoretical studies carried out with interleaved regulators and synchronized
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1.2. THESIS OUTLINE CHAPTER 1. INTRODUCTION

networks is provided, verifying the system instability and unbounded delay.

• An extension of the proof is proposed, both mathematically and by simulation, making
the proof more meaningful and suitable for a wider variety of networks.

1.2 Thesis outline
The master thesis is structured as follows:

• Chapter 1 Introduces the general topic of the thesis, as well as the objectives proposed.

• Chapter 2 Provides the necessary background to understand and follow the main topics
of the thesis, as well as the explanation of the theoretical proof that is simulated.

• Chapter 3 Describes the main modules developed in ns-3 to achieve the final simulation.
The chapter includes, the explanation of the module developed to introduce the notion of
local times in ns-3, the ATS module that allows to simulate interleaved regulators in ns-3
and finally the scenario model proposed for the simulation.

• Chapter 4 Presents the main results of the simulation, as well as the extension proposed
for the proof.

• Chapter 5 Presents the conclusion and future development.

• Chapter 6 Explains the budget of the thesis.

1.3 Gantt Diagram

Figure 1.1: Gantt Diagram

13



Chapter 2

State of the art

This chapter introduces the background information needed to understand the main parts of
the project, as well as the state of the art of the used technologies. Section 2.1 provides a brief
and intuitive explanation of the main concepts of network calculus, in order to better understand
how delay bounds are computed in a network. Section 2.2, introduces the concepts of regulators
and their main properties. Also, the state of the art is explained in section 2.2.1 in terms of
implementation of interleaved regulators. Section 2.3, introduces the main results of the research
[20], concerning regulators and time synchronization issues under non-ideal clocks. Finally,
section 2.4, explains the main concepts behind the ns-3 simulator.

2.1 Network calculus basic concepts
In order to better understand some of the concepts used along the thesis and how delays bounds
are calculated in networks, an intuitive explanation is given with the main concepts of network
calculus. Network calculus is a mathematical framework that allows to analyse performance
guarantees in computer networks. It’s a ”system theory” based on Min-Plus algebra and
maintains some similarities with the traditional system theory applied to circuits and signals,
such as the convolution operation. Networks calculus provides a framework to model flows and
network nodes.

To provide warranty services within the network we need to constrain the flows, to this aim
arrival curves are proposed. In the case of flows shaped by a token bucket, the rate r and burst
size b are constrained by γr,b(t) = rt +b. This arrival curve upper-bounds the traffic that source
sends by sending at once b bits but constraining to r b/s the output of the source, as seen in
figure 2.1a.

As well as flows are upper-bounded, the service provided by network nodes need to be
modelled. The network nodes are also called schedulers, the FIFO system being the most
common and used scheduler. The service provided is modelled using the concept of services
curves. Imagine a network node that provides a FIFO queue for all the flows of the network,
each FIFO system serves packets at a rate R and time T (e.g. with T due to a processing delay
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or another fixed delay introduced by the FIFO). The service curve can be modelled by βR,T ,
graphically shown in figure 2.1b.

(a) Arrival curve (b) Service curve

Figure 2.1: Arrival and service curves

Network calculus studies the different arrival curves and services curves allowing to calculate
different bounds within the network. In this section we focus on three bounds that can be easily
derived using figure 2.2. In this example, the buffer size of the FIFO queue, the max delay
for any frame in the FIFO system, as well as the output bounds of the incoming flow can be
established. As it can be seen in figure 2.2, the buffer required for the FIFO system is equal to the
vertical distance between the time T and the intersection with the arrival curve. The maximum
delay in the FIFO system, which corresponds to the horizontal distance between the burst b and
the intersection with the service curve, is equal to b/R if R ≥ r, if not is infinitive. Moreover,
the burstiness increase of the output flow can be computed. The new arrival curve of the output
flow, represented by the green line, has an increased burstiness equal to b′ = b+ rT .

This model can be extended to other flow patterns and services curves in a network with more
nodes. In this section basic concepts are explained in order to have an intuitive knowledge of
how bounds are calculated. As I stated before, when speaking about TSN we want to provide
upper bounds of the delay that the traffic will have along the network. However, as we can see,
if the traffic burstiness increases along the network in each hop, the calculation tends to be more
difficult and, in some cases, leads to an unbounded delay and therefore to system instability.
As we will seen in the next section, regulators remove the burstiness created by the aggregation
systems, such as the FIFO queue.

15
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Figure 2.2: Bounds on the buffer and the maximum delay

2.2 Regulators
Regulators are hardware elements placed at the output ports of network devices. Their aim is to
remove the burstiness created by the iterations of different flows reshaping the traffic, as seen in
figure 2.3, allowing the calculation for delay bounds.

Figure 2.3: Bursty traffic reshaped by the regulator

Traffic regulators come in two flavors, per-flow regulators (PFR) and interleaved regulators (IR).
IR are called Asynchronous Traffic Shaping (ATS) too, as stated in 802.1Qcr draft [4]. Per flow
regulators (figure 2.4b), process each flow individually and require one FIFO queue per flow,
whereas the interleaved regulators (figure 2.4a), process flow aggregates and require one FIFO
queue per input output port and traffic class.

In both types of regulators, shaping parameters are established based on flows. This is, each
flow is shaped with its own parameters. Normally, the shaping is done using a token bucket
machine with a burst b and rate r parameters. This token bucket machine is comparable to the
Linux Token Bucket Filter [17]. The regulator forces a policy on the flow, packets that violate
the contract are delayed. Applying the token bucket concepts, no more than b+ rt bits can be
released in a time t. If properly tuned, flows at the output of the regulators will have the same
burtiness than the original flows. However, the shaping mechanism used is not bounded to a
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2.2. REGULATORS CHAPTER 2. STATE OF THE ART

token bucket shaping algorithm, opening up the possibility for different implementations. Due to
the state information needed per flow, which can increase to thousands of flows, other solutions
such as Regulating Schedulers [13] or Linear Quadratic Algorithms (LQR) are proposed.

As it’s been mentioned before, the main difference between the per-flow regulator and
interleaved regulator is that the former uses one FIFO queue system per flow whereas the later
uses one FIFO system for all the aggregated flows. Interleaved regulator examines the packets
at the head of its FIFO system and it is released as soon as it does not violate the regulation
constrains of the flow. Packets that are not at the head of the queue are not considered, therefore
a packet could be delayed because of regulation constrains of the flow, or because the packet at
the head of the queue is delayed. When computing delay bounds, this introduced delay has to
be taken into account.

(a) Shaping for free in IR (b) Shaping for free in PFR

Figure 2.4: Shaping for free property, from [20]

One of the key properties of regulators that allows to calculate bounded delay, is what can be
called ”shaping for free property”. This property, widely studied in [6], shows that any regulator
placed at the output of any arbitrary system that is FIFO for the flow of interest or FIFO for the
aggregate flows, does not increase the worst-case delay of the flow, as seen in figures 2.4a
and 2.4b . In both cases, we have flows entering the FIFO system that are characterized by
the parameters rate and burst (r f ,n,b f ,n). The flows at the output of the FIFO system have an
increased burtiness (b′f ,n). Regulators reshape the flows to the original parameters (r f ,n,b f ,n)
if they have been tuned properly. If this holds, the shaping property holds. The worst-case
delay of the FIFO system is characterized by D1. Shaping for free states that D2, which is the
worst-case delay at the output of the regulator, is equal to D1. This means that any packet that
gets delayed excessively in the FIFO queue (worst-case delay), will be immediately released,
without introducing any extra delay. This is inherent to both types of regulators.

Appendixes D.1 and D.3, provide some intuitive graphs about the general functioning of IR or
ATS. These appendices explain the validation process for the IR introduced in ns-3. However,
some intuitive explanations that could help to understand the performance of regulators are
given.

2.2.1 Asynchronous traffic shaping (ATS)
In TSN, interleaved regulators are preferred over per-flow regulators. TSN propose class-based
networks, where flows are classified within some classes and processes in a FIFO manner.
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2.2. REGULATORS CHAPTER 2. STATE OF THE ART

Each class contains one FIFO, therefore the behavioural model corresponds to the interleaved
regulator where one IR is placed in each class.

Currently, the specific implementation of an interleaved regulator in a bridge is still an open
discussion. The basic requirements are outlined in the draft 802-1Qcr [4], which is in the D2.3
version. It gathers all the procedures and managed objects for bridges and end station to perform
asynchronous traffic shaping over full duplex links and constant bit rates. The asynchronous
terms indicate that interleaved regulators do not need to be synchronized within the network
(i.e. clocks in different devices do not need to be synchronized), in contrast with the time-aware
shapers [2] that need a tight synchronization.

The second phase of the project was fully used to implement an asynchronous traffic shaping
model or IR model in ns-3. Therefore, the draft 802-1Qcr has been used as a model to map the
requirements of ATS into the ns-3 architecture. In this section, main characteristics of the draft
802-1Qcr used for the project are explained.

2.2.1.1 Forwarding process

We focus only on the model that supports ATS implementation, as depicted in figure 2.5. The
figure represents the forwarding process on the output port of a bridge. It represents the TSN
proposal in terms of per-class queuing, scheduling and shaping. Outgoing frames are classified
by the stream filters depending on a set of parameters (i.e. priority level, stream handle value,
etc). Each frame is associated with one stream filter and some policies can be applied to each
frame. Each stream filter has one stream gate and one ATS scheduler attached to it. The stream
gate basically discards frames whose reception time contradicts a given time schedule. As it can
be seen, the policing action are taken by the stream filters and stream gates, whereas the shaping
functionality is done by the ATS scheduler.

ATS schedulers assign eligibility times in non-decreasing order to frames, which are then
used for traffic regulation by the ATS transmission selection algorithm. Eligibility times
are computed based on slightly modified token bucket state machine. Parameters, such as
Committed Burst Size (CBS) and Committed Information Rate (CIR), which are the parameters
rate r and burst b for each flow, are used for shaping, in such a way that different flows can be
shaped with different parameters. For a given queue that supports ATS transmission selection,
the ATS transmission algorithm would determine the frames eligible to be transmitted. A
frame is eligible for transmission if its eligibility time is equal or less than the current time
shown by the local clock of the device. As it can be appreciated, the ATS scheduler performs
the computation part of the shaping, however, the complete shaping operation is done by the
combination with the ATS transmission algorithm.

ATS schedulers at the same time, are organized into ATS scheduler groups. There is one ATS
scheduler group per input port and traffic class. ATS schedulers that perform operations for
the same input port and traffic class, belong to the same ATS scheduler group. This allows to
assign eligibility times in a non-decreasing order for ATS schedulers that belong to the same
group, queuing frames of the same group in a FIFO manner. Thus, this shaping mechanism
approaches to the one commented in section 2.2 for IR. All the flows that belong to the same
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input port, traffic class and output port share the same FIFO system, in this case, forced by the
group eligibility time.

The forwarding process provides one or more queues for each bridge port, each of them attached
to a different traffic class. The queue system in general is a FIFO system, however, the draft
is not appended to a specific queue. A queue in this context is a set of frames awaiting to
be transmitted on a given bridge port. As we can see in the in figure 2.5, it’s not the ATS
transmission algorithm who sends the frames, it just determines which frames are available
to be transmitted. Other transmission algorithms, such as fixed priority queue or a credit-base
shaper retrieve the frames from each class.

Figure 2.5: ATS bridge architecture and forwarding process

As a part of this project, we are not interested in all the building blocks that take part on the
forwarding process of an ATS bridge. Components where policies are applied, such as stream
filters and stream gates are not taken into account for the development and the purpose of the
project. Nevertheless, the implementation of ATS in ns-3 has been done modular, opening up
the possibility to include these features. The specific implementation of ATS in ns-3 is detailed
in section 3.2.

2.3 System instability study
Burstiness and the so called burstiness cascade problem, arise only under certain traffic patterns
conditions and network topologies. However, the existence of a proof that showed an unbounded
delay, forced to introduce the concept of regulators. The certification process for TSN network
equipment required a strong validation process due to the safety critical nature of TSN
applications. The evidence of an adversarial case that can trigger instability on the system is
enough to reconsider some aspects of the technology. It is in this context, where the importance
of the proofs presented by Ludovic Thomas and Jean-Yves Le Boudec in [20] resides. This
paper presents a theory for adding clock non-idealities into network calculus and apply them
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to time-sensitive networks with regulators, achieving meaningful results in terms of systems
instability for regulators.

In this section, the main results of [20] are highlighted. Also, in section 2.3.1 some of the main
concepts related with the time model used in the proof are explained. Finally, section 2.3.2
contains the proof proposition for non-adapted IRs in synchronized networks.

To bring some context, a simple example that could lead to instability in synchronized and
non-synchronized networks is proposed in [20, Section 1]. Consider a flow with a rate r and
a burst b. When a packet is enqueued (e.g. FIFO system), the flow can become more bursty if
other flows are in the queue. To reinforce the b again, an interleaved regulator (IR) is placed.
This IR reinforces the flow burst b, and allows to bound the delay. However, imagine that the
clock of the IR runs slower than the clock at the source. The true value of r implemented at the
IR is less that the one in the source. This would lead to and additional delay introduce by the IR,
that could generate the system instability and preclude the calculation of the worst-case delay.
This simple example shows that if a regulator clock suffers non-idealities, the delay could be
unbounded and lead to system instability.

Regulator studies have been done assuming ideal clocks. Basic properties, such as “shaping for
free property”, have been studied assuming perfect clocks. Nonetheless, clocks implemented
in real networks are non-ideal. They suffer from non-idealities related to the oscillators,
temperature and many other variants gathered in [10]. The study [20] introduces a new
set of tools to add clock non-idealitites in the framework of network calculus, allowing
them to study theoretically the behaviour of regulators under different conditions. The study
considers per-flow regulators and interleaved regulator or ATS, under synchronized networks
and non-synchronized networks, taking into account clock non-idealities. The main conclusion
achieved by [20] is as follows:

• Under ”loosely” synchronized and non-synchronized networks, per-flow regulators, as
well as interleaved regulators, show system instability if clocks are non-adapted. Not
adapted refers to the fact that parameters r, b configured in the regulator for each flow, do
not account for possible clock deviations.

• Under ”tightly” synchronized networks, per-flow regulators do not show any system
instability. However, interleaved regulators show instability if non-adapted.

The study concludes that interleaved regulators under any degree of synchronization show
instability. The result obtained in non-synchronized networks is expected and actually the
ongoing draft 802.1Qcr [4] takes into account these possible variations. However, the
surprisingly result comes when IR are studied within synchronized networks. It does not matter
which degree of synchronization is used, the IR show instability and an unbounded delay.

The simulation in ns-3 focuses on this last statement, IR under synchronized networks,
moving from the theoretical proof towards a simulation proof. The underlying principle of the
simulation is based on [20, Section 7.2-Appendix 10]. In order to better understand the proof
and the simulation, the following section gives a brief explanation of the essential concepts.
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2.3.1 Time model
This section introduces the clock model that will be later used in the simulation. [20, Section
4] introduces a general time model that captures clock non-idealities in synchronized and
non-synchronized networks. In this section, we introduce the basic characteristics of the time
model used for synchronized networks in order to understand the values used for the simulation.

Clocks are modelled using a relative time-function between a pair of clocks Hi and H j,
denoted as d j→i(t). This is the value that clock Hi would have when clock H j shows t, if both
have infinite precision, as shown in figure 2.6. The dotted line represents the perfect relative
time-function between both clocks, where both show the same value at time t. The continuous
and strictly increasing function represents a more natural relative time-function betweenHi and
H j. Due to the stochastic behaviour of clocks, the model focuses on bounding the evolution of
the time relative time-function, however, it is impossible to provide perfect bounded values.

d(t
) =

t

Slop
e ρ

s

d(s)

∆

η

t observed withHg

d(t) observed withHi

Figure 2.6: Evolution and envelope of d(t) from [20, Section 4.2]

To bound the relative time-function in synchronized networks we focus on three main
parameters:

• η is value that bound the peak-to-peak jitter due to a high frequency noise signal in the
clock.

• ρ value denotes the upper bounding of frequency offset between clocks and already takes
into account the temperature variable.

• ∆ value denotes the synchronization protocol precision.

[20, Section 4] states that any evolution of a relative time-function between two clocks within a
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synchronized network can be bounded by the following two equations:

∀t,s 1
ρ
(t− s−η)≤ d(t)−d(s)≤ ρ(t− s)+η (2.1)

∀t, |d(t)− t| ≤ ∆ (2.2)

Equation 2.1 describes the evolution of the bounded relative time-function, where d(t) =
dg→i(t). This bounded evolution can be applied to clocks within synchronized networks, but
also to clocks within non-synchronized networks. Because we have to take into consideration
that the clocks are within synchronized networks, we define the time-error bound, which is
described by the equation 2.2. The time-error bound, defined as dg→i(t)− t is bounded by the
precision of the protocol used for synchronization, denoted as ∆. ∆ values, can be varied from
∆= 1µs for tightly synchronized networks[1, Anex B.3] to ∆= 100ms for loosely synchronized
networks using the NTP protocol [22].

Using these three parameters we can create a bounded envelope for the relative time-function as
shown in 2.6. The future evolution of any relative time-function between a pair of clocks must
remain in the envelope.

2.3.2 Proof proposition
The following table of notation is presented in order to facilitate the proof understanding.

Table 2.1: Table of Notation

H j , Clock of a source
HIR , Clock of the IR

HFIFO , Clock of the FIFO system
dIR→ j(t) , Relative time-function betweenHIR andH j

t , The measure of a time instant
f j , Flow output by source j
s1 , Frequency offset variation betweenHIR andH j

I , Interval time between packets of the same flow in the same
period

τ , Period duration
k , Period number

d j(x j)+ kτ , Instant of time at which source j send the first packet in
period k in local time

x j + kτ , Instant of time at which source j send the first packet in
period k in global time

Ai
j,k , Arrival time to the IR of packet i source j period k

Di
j,k , Departure time from the IR of packet i source j period k
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In this section the proof that shows instability in synchronized networks with interleaved and
clock non-idealitites is presented, as explained in [20, Proposition 10].

Assume that the interleaved regulator is non-adapted: ∀( j, p),σHIR
f j,p

= α
H j
f j,p

. This is, the rate and
burst configured in the IR do not take into account clock deviations between devices, which is
the normal configuration assuming perfect clocks. Finally, assume that the clocks HIR,HFIFO
and each of the H j are synchronized complying with the bounded parameters stated before.
Also, assume that the service curve of the FIFO system is taken as infinitive, this is, the output
rate of the FIFO queue is infinitive. The proof states that for any n,ρ,η ,∆ with n ≥ 3,ρ >
1,η ≥ 0 and ∆ > 0, exist an adversarial clock for HIR,HFIFO and

{
H j
}

j , and an adversarial
traffic generation of the upstream flows, such that the flows have unbounded latency within the
IR, when observed with any clock of the network.

Figure 2.7: Proof scenario proposed in [20, Proposition 10]
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2.3.2.1 Numerical Values for the proof

In this section the numerical proof is explained in order to validate the theory state in the section
before. An adversarial clock model is proposed, meeting the constrains described before for
clock models, as well as the adversarial traffic that leads to the system instability. Taking into
account these requirements, the adversarial clock of figure 2.8 is proposed:

x j x j
+ I

s1

s 1

x j
+ I

s1
+I

1/s1

x j + τ

dIR→ j(x j)

dIR→ j(x j)
+I

dIR→ j(x j)
+τ

dIR→ j(x j)
+I + I

s1

∆/2

time observed withHIR

time observed withH j

Figure 2.8: Adversarial clock model proposed in [20, Appendix J]

Figure 2.8 shows the shape of the relative time-function between the clock running in the
interleaved regulator and the source. The HIR is taken as the true time, HIR = HTAI , the
international atomic time. Also, we consider that HIR = HFIFO and the service curve of the
FIFO system is infinite, this is the delay of the flows through the FIFO system is 0 when
observed withHIR. The relative time-function is periodic with period τ .

The parameters for the clock model are taken as follows:

• The slope ρ is defined such as the value meets the constraints of the equation 2.1, in our
case we select a s1 value, such as s1 ≤ min(1.5,

√
ρ).

• A time-error bound that meets the constrains of equation 2.2 is selected,
such as dIR→ j(t)− t ≤ ∆/2.

• The interval time is defined as I = ∆s1
s1−1 .
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• The period τ is defined as τ = nI/s1 +nε .

• The initial value x j is defined as x j = x1+( j−1)I/s1 +( j−1)ε ∀ j = 1...n.

• The epsilon value is defined as 0 < ε < I(1− 1
s1
).

The adversarial traffic is described in figure 2.9. Each source j is configure to send a packet
when the local clock of the source reaches d j(x j)+kτ and d j(x j)+kτ+ I. The traffic is periodic
with period τ .

time observed
withH jd j(x j)

+ kτ

d j(x j)

+ kτ + I
d j(x j)

+(k+1)τ

I
τ

Figure 2.9: Generation of packets observed withH j [20, Appendix J]

When observed with theHIR clock, the interval time is reduced to I/s1.

time observed
withHIRx j

+kτ

x j

+kτ +
I
s1

x j

+(k+1)τ

I/s1

τ

Figure 2.10: Generation of packets observed withHIR [20, Appendix J]

The x j value denotes the time, measure withHIR, at which sources send the first packet. Because
x j = x1+( j−1)I/s1+( j−1)ε ∀ j = 1...n, the interval between A2

j,k, which is the second packet
of source j in period k, and A1

j+1,k, which is the first packet of source j+1 in period k, is equal
to ε , when observed withHIR, as depicted in the figure 2.11.

Each source send packets within its constrains of burst and rate, measuring with the local clock
an interval time equal to I. However, that same interval of time when measured with the IR clock
is equal to I/s1, because HIR runs slower, as shown in the adversarial time model 2.8. When
A2

j,k arrives to the IR, the regulator will introduce a delay because the interval time measured by
its clock is lower than I and contradicts the regulation, as shown in figure 2.11. A1

j+1,k arrives to
the IR before A2

j,k is sent, because the ε value is below the delay introduces by the IR for A2
j,k.

Since it only exists one FIFO queue for all the flows, the IR only looks at the head of the line
packet, this is, the IR just observe the packet which is at the top of the queue. Thus, A1

j+1,k will
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be delayed a value equal to I(1− 1
s1
)−ε , even though it doesn’t contradict it’s own regulation. If

instead of a IR we place a per-flow regulator, we wouldn’t have this problem and A1
j+1,k would

be immediately released as soon as it arrives.

Arrival from j
observed withHIRA1

j,k A2
j,k

I/s1

Arrival from j+1
observed withHIRA1

j+1,k A2
j+1,k

ε I/s1

Output of the IR
observed withHIRD1

j,k D2
j,k
≤ D1

j+1,k

D2
j+1,k

I
I− I

s1
− ε

I

Figure 2.11: Released of packets observed withHIR [20, Appendix J]

D denotes the release time of each packet from the IR. As we can see A1
j+1,k gets block by A2

j,k
and it’s release at a time D2

j,k ≤D1
j+1,k. Introducing an extra delay that will also affect to A2

j+1,k.
If the results are extended to n≥ 3 and ∀k ∈ N, the study concludes that the introduce delay by
the IR for D1

j,k−A1
j,k in any period k is equal to:

D1
j,k−A1

j,k ≥ (k−1)n
(

I
(

1− 1
s1

)
− ε

)
(2.3)

As we can see, the delay introduce by the IR is completely unbounded and in each period
increases a value equal to nI(1− 1

s1
), leading to system instability.

In the present project we provide with a simulation proof the scenario presented in this section.
Also, we propose and extension considering different service curves for the FIFO system,
approaching to a more realistic scenario.
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2.4 Ns-3 network simulator
In the present section I will explain the main characteristics of the network simulator ns-3 used
for the project. Ns-3 is a discrete event simulator (DES) [23] written in C++ . It’s a widely used
open source simulator that was developed as an evolution of ns-2, due to its lack of scalability.

In this section some of the key abstractions used in ns-3 are explained. Moreover, a brief
explanation about simulator execution is detailed in section 2.4.2 that will be used the following
sections.

2.4.1 Key abstractions overview
Node

Node is the generic name used for a device that connects to a network. Basically, it is the basic
computing device of the simulator. Functionalities, such as applications, stack protocols and
network devices with their drivers can be added to the node to make useful simulations. In
terms of an internet network, a node resembles to a host, end systems, router, switch or any
other network element that is connected to the internet network. This abstraction is represented
by the class Node.

Application

In general terms, computer software is divided in two broad classes; system software and
applications. The former takes care of organizing the computer resources, such as the memory,
the processor, the network, etc. The later uses these resources to execute user programs that
achieve some goals. In ns-3 there is no concept of operating system, nevertheless, it can execute
applications. Ns-3 applications are pieces of software that run in the nodes to perform “real
word” simulations.

Channel

As in the real-world computers are connected by channels, in ns-3, nodes are also connected
by the abstraction called channel. The channel class provides methods for managing
communication sub-network devices. It allows to develop simple Ethernet channels to more
highly sophisticated wireless channels. Examples include channels as CSMA, Point-To-Point
or WIFI.

Net Device

In real networks, the connection between the hosts and the channels is done through network
interface cards (NICs) and software drivers. In ns-3, this connection is done using Net Devices.
Net Device abstractions cover both the software driver and the simulated hardware. Net Devices
are installed in the nodes in order to enable communications with other nodes. As in the real
world a node can connect to other nodes through more than one device, in ns-3 a node can have
different Net Devices. For example, a Switch will have one Net Device for each specific port.
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All the functionalities that ns-3 provides, are divided in different modules. A module is a set
of classes that aim to provide an specific functionality, in such a manner that the user only
needs to include the module in the simulation to simulate the functionalities desired. A module
for example is the CSMA module, which includes all the classes (e.g. Channel, NetDevice)
developed related CSMA devices. In this project two modules are created; LocalClock module
and ATS module.

2.4.2 Discrete Event Simulator (DES)
Ns-3 implements by default a DES. Theoretically, the simulator tracks all the events that are
scheduled by the system and execute them in their corresponding time. Events are kept sorted
in time in a list of events called scheduler. Events are dequeued from the scheduler at the proper
time of execution, as figure 2.12 shows. Once an event is executed, the simulator jumps directly
to the next event to be executed, moving the simulation time from the last event executing
time to the new event time. If for example one event is scheduled at time 50 and next event is
scheduled at time 100, once the event at time 50 is executed, the simulator will jump from time
50 to time 100. All the time references in the simulation follow a unique time base which is the
simulation time. This means that all the events in the simulation are scheduled following the
simulation clock.

Figure 2.12: Scheduler

NS-3 system uses few things in the core of the simulator. Among them we can count;

• A simulator class, which accessed the scheduled event and executes it. It extends from
the simulator interface.

• A scheduler, which inserts events in a queue sorted by their execution time.

• A notion of time, which is used to schedule events.

• An event, which is simply an action, i.e. send a packet.

Simulator Class provides a public interface for the system to schedule events. It provides 3
functions, Schedule(), ScheduleWithContext() and ScheduleNow() that allow to insert events in
the scheduler and execute them in their corresponding time. The simulator will run until no
more events are left in the scheduler or the simulator is stopped.

• ScheduleNow() function allows to execute events without introducing a delay, so events are
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executed at the present simulator time.

• In some cases, there is a need to introduce a delay between the time that the event wants to
be executed and the current simulator time. For example, an application could schedule a send
packet event that it is meant to be executed in 5 seconds. To deal with this, the simulator class
introduces two functions; Schedule() and ScheduleWithContext(), allowing to schedule events
to be executed at some point in the future.

Occasionally, as in the debugging framework, there is a need to track which node is executing
an event. This is basically the main difference between both functions. Schedule with context,
allows to specify which context (node-id) is associated with the event that wants to be executed.
To associate an event with a context, Schedule() and ScheduleNow() functions reuse the
context of the last executed event. However, this performance is undesirable when the expected
context of the reception event is that of the receiving node. For example, when there is packet
transmission between nodes, a function ”receive packet” has to be scheduled in the receiving
node. However, this function is schedule by the sending node, but is intended to the receiving
node, so the context must change. And this is basically what ScheduleWithContext() provides,
associate the node-id of the receiving node with the receive event.
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Chapter 3

System Description

In this chapter the main design decisions to accomplish the simulation in ns-3 are explained.
The chapter follows the natural steps taken throughout the project. First, section 3.1 explains
how local clocks have been implemented in ns-3. This first section represents the first goal of the
project, be able to simulate local clocks in ns-3. After the correct validation of this module, the
implementation of ATS in ns-3 was developed, as explain in section 3.2. Hereinafter, interleaved
regulators will be called Asynchronous Traffic Shaping (ATS) because is the name selected in
the ongoing draft [4] of TSN and the implementation in ns-3 is based on this document. Finally,
in section 3.3, as the last step, the final simulation scenario is presented .

3.1 Local clocks in ns-3
This section explains the main decision taken in the design, in order to implement the concept of
clocks in the ns-3 simulator. The design has played a prominent role throughout the project. As
an important goal, apart from the proof simulation, the designing of a clear and open interface
for clock modelling has been established, decoupling completely the design of this module
from the other modules created in order to perform the final simulation. This implies that any
future researcher could create its own clock model and introduce it in ns-3 through the interface
created in this project. Therefore, this also implies that the interface design has to coexist with
already exiting modules of ns-3. This is not a trivial issue, because a change in the core of the
simulator is proposed, without changing the exiting code of ns-3.

The idea of different time notions in ns-3 has been prowling for a long time. As a part of a
work in [29], a first approach was developed in order to implement a clock per node. In this
first approach, the node base class is rewritten to behave as a scheduler, in such a way, that each
node has its own simulator implementation. Conceptually, this implementation makes more
sense because it approaches more to the reality, where all the nodes in the network have their
own scheduler of events. This would probably have led to an efficient implementation but it
requires to change all the calls to the simulator by all the exiting ns-3 models. It represents a
huge amount of work in rewriting many ns-3 modules, in addition to changing the Node class
itself. We believe that the notion of local clocks should be enabled without changing any of the
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already existing ns-3 modules.

Another project that introduced the concept of local clocks was presented in [30]. According
to their paper, the authors focused on simulating IEEE 1588 synchronized networks, with very
little flexibility on the clock models or applications that benefit from the local-time mechanism.

In the present project, we rely on both the ideas and the limitations of [29] and [30] and we
propose an open interface that:

• allows to introduce independent local clocks, one per Node.

• comes as an independent module and does not require any change in already-existing
modules.

• provides an interface for designing more complex clock behavioural models.

• provides an interface for updating the clock behavioural model during simulation time.
For example, in an IEEE 1588 node, when a synchronization message is received, the
synchronization function typically corrects the frequency of the node’s clock. In ns-3, this
can be simulated by having an IEEE 1588 Application that triggers an update of the clock
model (with the new frequency), using the interface that we provide. This interface is the
basis for analysing the interaction between local clocks and network events/mechanisms.

3.1.1 Proposed design
As the majority of network simulators, ns-3 only introduces the concept of global time. Events
in the simulator are only scheduled within one timeline, which is the same for all the nodes in
the network. However, for some kind of networks and simulations, there is a need of simulating
a local time different from the simulation time. In general, we refer to the local time as node
clock or local clock and global time as simulation time or true time.

A clock module design is proposed, which is composed by 2 classes and one interface, as
depicted in figure 3.1.

In order to better understand the functionality of the module, three study cases are proposed:

• How to enable clock module and already ns-3 existing modules to coexist.

• How to implement and model local clocks in ns-3.

• How to proceed when a clock update is triggered during the simulation.

3.1.1.1 Integration of modules

The first question to answer is how to integrate modules. As explained in section 2.4.2, all
the processes in ns-3 (e.g. an application), call to the same three functions to schedule events;
Schedule(), ScheduleWithContext() and ScheduleNow(). When a call is made to schedule an
event, the call is forwarded to the simulator implementation attached to each simulation.
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Figure 3.1: UML design

This forces all the nodes within the simulation to schedule events in the same simulator
implementation. In order to be able to implement our clock model within the existing ns-3
models, we need to keep a unique simulator implementation to where all the existing calls must
be forwarded. If we want to implement local times in ns-3, the scheduled events should be
executed in a time that depends on the local clock of the node to which the event belongs. As it
stands, the default simulator implementation provided by ns-3 schedules all the events without
taking into account this consideration. We propose to design a new simulator implementation
class, called LocalTimeSimulatorImpl, extending from the simulator interface, as shown in
figure 3.1. LocalTimeSimulatorImpl allows to schedule events, taking into account different
time notions. Minimal changes need to be done in order to change from the default simulator
implemented in ns-3 to LocalTimeSimulatorImpl. In such a way that, if well configured, all
the calls to schedule events that already exists in ns-3 modules will be executed by the
LocalTimeSimulatorImpl class. The idea behind LocalTimeSimulatorImpl class is that events
are scheduled depending on the local clock of the node to which the events belong. To this
effect, we need two things, how to attach clocks to nodes and how to model clocks.

3.1.1.2 Implementation and modelling of clocks

A LocalClock object is created and aggregated to every Node using the ns-3 aggregation system,
as figure 3.1 shows. It represents the interface between the clock model and the node and
contains as a main attribute a pointer to the clock model implementation, which is the object that
behaves as the real clock. The aggregation system is one of the most powerful characteristics
of ns-3. It allows to overcome the weak base class problem. In our case, the class Node was
designed without any concern about local clocks. This problem could be solved by extending
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the base class to a NodeClock class. However, this would imply to developed a new whole class,
which would be very similar to the base class in addition to change all the node objects of all the
ns-3 modules. To overcome this problem, ns-3 rises the concept of aggregation. Objects with
no inter-dependency between them can be aggregated, in such a way that from one object you
can access the other object and vice versa. This allows to add new capabilities to base classes
without modifying them.

In our case, this functionality is very useful, it allows to aggregate a LocalClock object to
the Node object, in such a way that each node has a clock attached to it. Each time an
event is scheduled, LocalTimeSimulatorImpl is able to retrieve the Node object to which
the event belongs. In this manner, LocalTimeSimulatorImpl class accesses the LocalClock
object through the node, while keeping the Node class untouched. The communication
between LocalTimeSimulatorImpl and node is only possible using the context, which is
the node-id to which the event belongs. Figure 3.2 explains the main steps taken by the
LocalTimeSimulatorImpl when scheduling events.

Figure 3.2: Simulator steps when Schedule() or ScheduleNow() are called

In order to introduce the notion of local time in ns-3, the clock model must provide a mapping
function between the local time and the simulator time. We introduce in ns-3 the concept of
time-relative functions, as explained in 2.3.1. The relative time-function maps two different
time domains, capturing clock non-idealities between both clocks. This appears to be a good
way to model clocks in ns-3. As stated in [10, Annex C] clock deviations are computed based
on a pair of oscillators. The minimum set of functions that any clock model implementation
should have, is defined by ClockModel interface. Any clock model implementation must extend
from this interface, as shown in figure 3.1.

In order to provide with this mapping capabilities to LocalTimeSimulatorImpl, Schedule() and
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ScheduleNow() functions are modified. The only difference between both functions is that when
ScheduleNow() is called, the call is redirected to Schedule() function with a time equal to 0.
The main steps of LocalTimeSimulatorImpl when Schedule() and ScheduleNow() are called, are
gathered as follows:

• Event registration: An event, which is a function and the time at which that function has
to be executed, is registered in the simulator. The time is the delay, measured by the local
clock, between the registration time and the execution time of the function.

• Clock retrieval: After the registration, the clock associated to the event must be retrieved.
For that, the context of the event is used. The context allows to associated the event with
the node that registered the event. Once the node object is retrieved, the LocalClock object
is obtained using the aggregation system.

• Time conversion: Once the LocalClock object is obtained, the methods that translated
between time domains can be accessed, allowing to translate between the event local
time, measured by the local clock, and the global time. Also, it notifies to the LocalClock
object that the event has been finally scheduled. The explanation of this last step will be
understood in the following section.

• Schedule event: Finally, the event is inserted in the scheduler for subsequently execution.

Most of the ScheduleWithContext() calls in today’s ns-3 modules are related to a packet
transmission within a channel. The delay is normally the channel propagation time, which does
not depend on the node clock. Because of that reason, when calling ScheduleWithContext() no
mapping between times happens.

Consider the following example shown in figure 3.3, with one node. Node1 runs a local clock
which is slower than the global clock. It schedules events E1 and E2 at init time. The events
are meant to be executed at some point in the future. The delay between the Init time and
execution time is measured by the local clock of the node. To be introduced in the simulator,
the delay needs to be translated into a global delay. Because node1 clock runs slower, the final
delay introduced in global time is bigger than the local delay. The event is finally executed at
a more distant time than the one measured by the local clock. All the events of the simulation
are scheduled in the same timeline, which is the global time. However, events can be scheduled
shifted in time depending on the deviations between local and global clocks.
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Figure 3.3: Example of event scheduling

3.1.1.3 Clock update

In this case, we suppose that a clock update is triggered during the simulation. The clock update
can be triggered due to the reception of a clock synchronization message that force to change
the clock model implemented in the node. Nodes within the simulation may schedule lots of
events to be executed in the future. If the node clock changes, all the events that have been
already scheduled should change their global time at which are supposed to be executed. The
mapping between local and global time is no longer valid and a new time has to be recomputed
using the new clock. This problem arises a number of questions gathered as follows:

• How to control all the scheduled events that need to be rescheduled by a node. The
scheduler in the simulator is the same for all the nodes.

• How to recompute the times.

• How to reschedule the events.

In order to cope with the different issues that arise with the rescheduling functions, all the
logic is implemented in the LocalClock object of the node, decoupling all the rescheduling
algorithm from the simulator and reducing the complexity of the system. The node maintains
an updated list of the events that have been scheduled by it. When the local clock is updated,
the LocalClock object of the node is in charge of triggering all the actions. The different steps
taken by the LocalClock object are as shown in figure 3.4 and gathered as follows:

• Events retrieval: When a clock update is triggered in the node, the LocalClock object
attach to the node retrieves the events that need to be updated. This list of events has been
filled by the LocalTimeSimulatorImpl object when scheduling events.

• Time re-computation and event registration: In this step the LocalClock computes the
remaining time in local time and registers a new event with the new time updated. Also, it
removes from the simulator the events that do not want to be executed because their time
is not valid anymore.
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• Schedule the event in the simulator: Now the simulator will retrieve the new clock from
the node and will perform the same operations explained in the last section.

Figure 3.4: Clock Update steps

Following the same example as before, a clock update is triggered before E2 is executed.
Therefore, E2 needs to be updated by the node as shown in figure 3.5. In this case, the new
clock runs even slower than the old clock, which means that the new event E

′
2 has to be delayed

even more. A new event E
′
2 is scheduled and E2 is removed.

Appendix A shows the validation example used for the module. A basic configuration of a clock
model is presented, as well as the process to attach the clock to the node. The main results are
also discussed. Also, the performance evaluation and the limitations of the module are discussed
in appendix B. The code of the module can be found in the repository [7] in V1-Clock brunch,
as well as a detailed document about the module in [19], used for the merge request to the ns-3
project. The merge request discussion can be followed in [28].
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Figure 3.5: Example of clock updating

3.2 ATS in ns-3
In this section, the main underlying design concepts behind the ATS module are explained.
ATS implementation in a bridge, as explained in the draft [4], has lots of features, such as
stream gating, policing, etc. Some of the features explained in the ongoing draft of ATS are not
implemented in the present project, we focus the deployment on the main characteristics of the
shaping functionality. Nevertheless, the ATS design introduced in ns-3 is completely modular
and flexible, which means that anyone could create new features for the ATS bridge and append
them to the code created in this project, without the need of rewriting it.

ATS theoretical performance has been studied widely. However, few papers are related with the
simulation performance. For instance, the paper [27] studies the design of relatively accurate
models for ATS, measuring the performance in a simulation scenario. A software modeler is
used for the simulation, nevertheless, clocks within the simulator are assumed to be perfect.

In this section, an ATS design in ns-3 is proposed, which:

• allows to reshape traffic at the output port of any network element (e.g. bridge) in ns-3.

• follows closely the implementation patterns dictated in 802.1Qcr for TSN networks [4].

• is modular and provides flexibility to extend the system.

3.2.1 Traffic Control Layer
In order to implement the shaping functionality in the output ports of network devices, the
already existing Traffic Control Layer (TCL) module of ns-3 is used. This module, which is
similar to the Traffic Control Layer of Linux [18], supports the operations needed to provide a
quality of service (QoS), including policing, scheduling, shaping, etc. It provides a set of queues
and mechanisms by which packets can be treated, applying a QoS before being transmitted
trough the output port. The TCL module of ns-3 already provides all the interconnection points
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between the output port and the traffic control object, allowing to enqueue the outgoing packets
in a queue discipline and preform multiple actions on them, as seen in figure 3.6.

Figure 3.6: Traffic Control Layer structure in a bridge

The traffic control layer is divided in three fundamental groups:

• Queue Disc: is the scheduler. Every output needs a scheduler of any kind and the simplest
scheduler is a FIFO queue.

• Classes: can contain either multiple children classes or a single queue disc.

• Filters: allow to classify the traffic within the classes and apply policies on the outgoing
traffic.

Traffic control layer allows complex structures with more than one queue disc or class, building
tree structures, as seen in figure 3.7. A tree structure can be built with a root queue disc and
an undefined number of queue classes and filters attached to it. This functionality allows to
build hierarchical structures where different schedulers can be placed in different branches of
the structure.

Figure 3.7: Traffic Control Layer structure

The TCL structure adapts well with the concept of class-based queuing adopted in time-sensitive
networks with ATS. All outgoing frames of a bridge are classified into several classes and
shaped by an ATS, as shown in figure 3.8. Remark that a traffic class can have different flows
and each flow is treated with a different ATS scheduler. Classes can be also further classified
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into more classes, as proposed by the traffic control layer, building more complex structures. In
figure 3.8 the root queue disc is represented by the scheduler. In the TCL structure, all outgoing
frames enter first the root queue disc discipline. This root queue disc discipline does not apply
any operation in the packet, it just forwards the packet for further classification by the filter.
Finally, the frame is enqueued in one of the queue disc of the classes. However, when dequeuing
frames, it’s the root queue disc who selects a class from where the frame must be dequeued. The
root queue disc and the scheduler could be, for example, a fixed priority queue discipline [14]
or a Round Robin scheduler [16]. However, it’s not the purpose of this project to implement
these schedulers, we only focus on the design of the ATS implementation but we open up the
possibility to build more complex structures.

Figure 3.8: Per class-base queuing with ATS

In the present project, we make use of the traffic control layer of ns-3. It provides the modularity
that is needed, as well as the simplicity to fit different queuing discipline in a well-designed
module. The base classes for the queue disc and filter are already designed and we just need
to extend from those base classes to build our models. However, it forces some constrains that
limit the design, as we discuss in the next section. Appendix C presents the UML design carried
out for this module.

3.2.2 ATS architecture in ns-3
Figure 3.9 shows the main components of the ATS module in ns-3. It represents the structure
placed in each of the output ports of a bridge device. Following the structure of the traffic control
layer, an ATS Transmission Queueing discipline is placed as the root queue disc. This queuing
discipline has as a main scheduler a FIFO queue and it contains all the packets that are ready
to be transmitted by the output port, this is, the packets that have been selected by the ATS
transmission algorithm. Attached to this root queue disc, we find the classifier, also called the
stream filtering by the 802.1Qcr draft nomenclature. The classifier will classify the different
flows into the different ATS schedulers. Mention that for the purpose of this project, no stream
gates or stream filters are provided, as shown in figure 2.5. However, this could be easily solved
by adding to each class a stream gate or stream filter module. As it can be seen in figure 3.9,
this policing requirements are shown but are not implemented in the module, thus, flows are
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classified directly into the ATS schedulers. This ATS schedulers represent the leaf’s of the TCL
structure and perform the shaping functionalities of the ATS.

Figure 3.9: ATS design in ns-3

3.2.2.1 Forwarding process of the ATS structure

When frames arrive to the ATS structure, the classifier classifies them between the different
ATS schedulers. The classification can be done depending on a wide variety of parameters, as
explained in [4, Section 8.6.5.1]. However, in the case of this project, the flow classification is
done based on the source MAC and destination MAC of the frames. Nevertheless, this can be
easily changed by redesigning the filter. The ATS schedulers are the part of the ATS structure
that perform the shaping functionality. The eligibility time is calculated based on the algorithm
explained in the following section 3.2.2.2. For the time being, we only need to know that
the algorithm calculates an eligibility time for each frame that enters the ATS structure. The
eligibility time is the time at which the frame should be sent to the output port of the device.
Taking advantage of the fact that we are working on software, the frame is directly enqueued
in a FIFO system that belongs to the ATS scheduler. In order to dequeue the frame, an event
is scheduled in the simulator at the eligibility time calculated for the frame. In such a way,
that when the event is executed, the frame is dequeued from the ATS scheduler and enqueued
in the ATS transmission queuing discipline. Because the eligibility times are calculated in a
non-decreasing order, we still maintain the order when dequeuing frames. This is basically the
implementation of the ATS transmission algorithm. Recall that the ATS transmission algorithm
determines the frames eligible to be transmitted, and in this case, this mechanism is applied
when the event scheduled at the eligibility time of the frame is executed.

We can appreciate that this model contradicts the very first statement of ATS or interleaved
regulators (IR), where one FIFO queue is placed per input port, output port and traffic class. In
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proposed the model, there exists one FIFO queue per ATS scheduler, which truly appears to be
the behavioural model of per-flow regulators. This limitation is due to the base classes already
provided by the traffic control layer of ns-3. The base classes have been designed forcing to
implement a queuing system in each of the leafs of the structure. However, we force the group
eligibility time in all the ATS schedulers that belong to the same class. This allows to assign
eligibility times in a non-decreasing order for ATS schedulers that belong to the same group,
treating frames of the same class in a FIFO manner. Because we are in a simulator, we do not
care about placing one FIFO queue per flow, nevertheless, in reality, this implies to place much
more hardware resources, being this one of the drawbacks that exits for per-flow regulators.

3.2.2.2 ATS scheduler algorithm

All the ATS schedulers have their own shaping parameters CommittedInformationRate and
CommittedBurstSize, which are used to shape the flows. The ATS scheduler algorithm is a
modified version of the well-known Token Bucket Filter (TBF) of Linux [17]. Each time a
frame arrives, the frame is processed with the algorithm explained in algorithm 1, as explained
in [4].

Algorithm 1 ATS scheduler algorithm
1: procedure PROCESSFRAME( f rame)

2: lengthRecoveryDuration = length( f rame)
CommittedIn f ormationRate

3: emptyToFullDuration = CommittedBurstSize
CommittedIn f ormationRate

4: schedulerEligibilityTime = BucketEmptyTime
lengthRecoveryDuration

5: bucketFullTime = BucketEmptyTime
emptyToFullDuration

6: eligibilityTime=max(arrivalTime( f rame),GroupElibilityTime,schedulerEligibilityTime)

7: if eligibilityTime < arrivalTime( f rame)+MaxRecidenceTime/1.0e9 then

8: GroupElibilityTime = eligibilityTime

9:

10: if eligibilityTime < bucketFullTime then

11: BucketEmptyTime = schedulerEligibilityTime

12: else

13: BucketEmptyTime = schedulerEligibilityTime + eligibilityTime −
bucketFullTime

14: else

15: Discard( f rame)

The lengthRecoveryDuration is the duration that is required to accumulate a number of tokens
equal to the frame length in seconds.
The empyToFullDuration denotes the time that it takes to fill the token bucket at the committed
burst and rate.
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The bucketEmptyTime is a variable that contains the most recent instant of time at which the
token bucket of the ATS scheduler is empty. It is initialized with a time earlier than the division
between CBS and CBR in the past, which actually is the emptyToFullDuration.
The SchedulerEligibilityTime is the time at which the number of tokens in the bucket is equal
or bigger than the frame size.
The BucketFullTime denotes the time at which the bucket is full of tokens and equal to
CommittedBurstSize.
The final eligibilityTime is calculated as the maximum value between the arrival time of the
frame, the GroupEligibilityTime and the SchedulerEligibilityTime.

If a frame arrives with a time bigger than the times calculated by the SchedulerEligibilityTime
and GroupEligibilityTime, the frame will be immediately released. The GroupEligibilityTime
is the most recent eligibilityTime from the previous frame processed by any other shaper in
the same group, assigning times in a non-decreasing order for ATS schedulers that belong to
the same group, being the latter the main difference between ATS or Interleaved regulators
and per-flow regulators. In order to perform as a per-flow regulator, the GroupElibilityTime
can be deactivated. Once the eligibility time is calculated, the scheduler checks if the value
is below a maximum time delimited by the MaxResidenceTime. If the value is below, the
GroupElibilityTime is updated. In order to calculate the BucketEmptyTime, the algorithm checks
if the eligibility time is below the time that it takes to fill the bucket of tokens. If not, the next
frame would be directly affected because the BucketEmptyTime would have a bigger value than
the schedulerElibilityTime.

As it can be seen, the algorithm enforces a strong relationship between the previous frame size
and the arrival time of the actual frame. A frame can be delayed because of regulation constrains
tuned on the ATS scheduler, or because of the group eligibility time. On contrast, the frame is
directly sent, if the arrival time of the frame is bigger than the SchedulerEligibilityTime and the
GroupEligibilityTime, allowing to apply the shaping for free property.

In order to validate the well performance of the ATS module, the carried out tests are presented
in appendix D. The code related to the ATS module can be found in [7] in the ATS branch.
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3.3 Simulation implementation
Following the scenario model proposed for the the theoretical proof presented in chapter 2, the
scenario shown in figure 3.10 is proposed. The scenario model includes the modules explained
in this chapter. On the one hand, the clock module is used to attach a clock model to each node
of the scenario. On the other hand, the ATS module is attached to the output port of the bridge
implementing the shaping functionalities. We divide the scenario model in three different parts;
the sources and the consumer, the bridge with the FIFO system and finally the ATS bridge.

Figure 3.10: Scenario model

Sources and consumer
The consumer is the traffic sink that receives all the traffic from the sources and it’s placed only
with tracing purposes. From the point of view of the classifier of the ATS system, all the flows
created by each source belong to the same traffic class, sharing the same group eligibility time.
In order to create the specific traffic pattern described in chapter 2 section 2.3.2, an application
is designed in ns-3. The designed application can be tuned with the parameters that characterize
the traffic, such as the rate and burst, the time at which the application starts sending packets
and the period. Moreover, each source has its own implementation of a local clock. The clock
model implemented in each node has the same relative time-function shown in figure 3.11.
The difference between the source clocks resides in the initial value x j configured. The time
relative function maps between the global time or, in this case, the ATS time and each of the
clocks H1,H2,H3 attached to each source. In order to implement this clock model in ns-3, the
following function has been used, as proposed in [20]:

dATS→ j =



t−∆/2 if t ≤ x j

s1(t− x j)+ x j−∆/2 if x j < t ≤ x j + I/s1

1/s1(t− x j + I/s1)
+I + x j−∆/2

}
if x j +

I
s1

< t ≤ x j +
I
s1

+ I

t−∆/2 if x j +
I
s1

+ I < t ≤ x j + τ

τ +d j(t− τ) if x j + τ < t

(3.1)
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x j x j
+ I

s1

s 1

x j
+ I

s1
+I

1/s1

x j + τ

dATS→ j(x j)

dATS→ j(x j)
+I

dATS→ j(x j)
+τ

dATS→ j(x j)
+I + I

s1

∆/2

time observed with Global TimeHAT S

time observed with Local TimeH j

Figure 3.11: Adversarial clock, as proposed in [20]

Bridge with the FIFO system
In order to simulate the FIFO system placed after the sources, a bridge is needed in terms of
the ns-3 scenario model. This bridge is a layer 2 device which will forward frames based on the
MAC addresses. In the output port of the bridge we place a drop tail queue, which is a FIFO
system that will drop packets when the queue starts building-up. Due to the clock framework
being used, a local clock in the bridge is needed. In this sense, the local clock implemented
is the same as the ATS bridge clock, which at the same time is equal to the simulator clock,
this is, the clock runs perfectly synchronized with the simulator clock. In this first approach we
consider that the output rate of the bridge is infinite. Packets cannot be delayed in the FIFO
queue, so the only purpose of the FIFO system is to send through the same output port all the
flows, in such a way that all the flows build-up in the same queue system in the ATS, sharing the
same group eligibility time. Recall that in ATS or IR’s, the idea is to have one queue per input
port output port and traffic class.

ATS bridge
The ATS bridge is simply a switch that implements in the output port the ATS model developed
in the section before. The ATS module is configured with three ATS schedulers, one for each
flow. The parameters are non-adapted, σ

HAT S
f j,p

= α
H j
f j,p

, which means that rate an burst of the ATS
schedulers are equal to the rate and burst of the flows and they do not take clock deviations into
account. All the ATS schedulers belong to the same ATS group, forcing the group eligibility
time. As mentioned before, the clock in the ATS bridge runs perfectly synchronized with the
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simulator clock.

The code related to the application and the clock model can be found in [7], in the folder
src/applications/model/adversarial-generation.cc and src/clock/model/adversarial-clock.cc of
the ATS branch.
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Chapter 4

Simulation Results

The results of the simulation for the proof presented in Chapter 2 section 2.3 are presented
in this chapter. Along with the results, the parameters tuned for the simulation are explained.
Finally, an extension of the results is proposed, both mathematically and by simulation.

4.1 ATS instability
In this first simulation, the ATS instability is presented under the specific traffic and clock
models. The parameters chosen for the adversarial traffic generation, the clock model and the
ATS schedulers are shown in table 4.1. The values selected for this simulation do not have
any specific meaning. They are values within the bounds established by the proof but do not
correspond to any type of network. The ATS schedulers parameters slightly variate from the
traffic model parameters, due to the packet size when processed. The traffic packets are created
at the application layer, so when they are processed by the ATS scheduler, the UDP (8 bytes)
+IP (20 bytes) +Ethernet (18 bytes) headers must be added.

In figure 4.1 the delay introduced for the 10 first packets of each flow through the ATS is plotted.
The delay is equal to the subtraction between the released time from the ATS bridge, in other
words, the eligibility time and the time at which the packet enters the ATS, the arrival time. As
we can observe, the delay introduced by the ATS is completely unbounded and increases for
every packet leading to the system instability.
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Time model Source 1 Source 2 Source 3

∆ (µs) 1 1 1
s1 1.001 1.001 1.001

Interval I (ms) 10 10 10
ε (µs) 0.5 0.5 0.5

Period τ (ms) 29.97153 29.97153 29.97153
x j(ms) 5 14.990001 24.98002

Traffic model Flow 1 Flow 2 Flow 3

Peak Data Rate (KBPS) 51.2 51.2 51.2
Packet Size (bytes) 512 512 512

Traffic type UDP UDP UDP

ATS scheduler Flow 1 Flow 2 Flow 3

Data Rate (KBPS) 58.0 58.0 58.0
Burst Size (bytes) 558 558 558

Table 4.1: Simulation parameters

Figure 4.1: Delay per packet introduced by the ATS

At this point, we want to validate if the simulation follows the proof explained in section 2.3.1.
In order to help with the evaluation of the results, the delay for the first 4 packets of the graph
are represented in table 4.2, as well as a reminder of the traffic pattern in figure 4.2. Recall that
each source j outputs two packets each period k with a time interval equal to I when measured
by the source clock. The interval time between packets of different flows in the same period is
equal to ε .
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Packet No Flow 1 Flow 2 Flow 3

1 0 0.00949 0.01898
2 0.00999 0.01948 0.02897
3 0.02847 0.03796 0.04745
4 0.03846 0.04795 0.05744

Table 4.2: Introduced delay by the ATS in milliseconds for the first 4 packets of each flow

Arrival from j
observed withHGT =HAT SA1

j,k A2
j,k

I/s1

Arrival from j+1
observed withHGT =HAT SA1

j+1,k A2
j+1,k

ε I/s1

Output of the ATS
observed withHGT =HAT SD1

j,k D2
j,k
≤ D1

j+1,k

D2
j+1,k

I
I− I

s1
− ε

I

Figure 4.2: Delay introduced by the ATS when observed withHAT S, as proposed in [20]

First, we focus on the delay introduced by the ATS for packet A2
j,k shown in figure 4.2. No other

traffic exists before A1
j,k arrives, therefore, A1

j,k = D1
j,k. When packet A2

j,k arrives to the ATS, it
is too soon, because when measured by the clock of the ATS, the interval time is equal to I

s1
.

For this reason, the introduced delay by the ATS is equal to I− I
s1

. This first observation, allows
to confirm that the ATS is shaping the traffic. When comparing this value to the one obtained
for packet A2

j,k in the table 4.2, a delay of 0.00999 ms is obtained, which actually is equal to the
theoretical value I− 1

s1
. In reality, the values do not perfectly match because the simulator has a

resolution when performing operations, therefore, some of the results are truncated.

The packets between flows are sent with an ε interval between them, in such a way that the ε

value is upper-bounded by ε < I(1− 1
s1
). Because A2

j+1,k arrives before A1
j,k is sent, A2

j+1,k is
automatically delayed. This is due to the very basic property of ATS or interleaved regulators,
where we only have one FIFO queue for all the aggregated flows, in such a way that the ATS
only looks at the head of the line packets. In the case of our specific implementation this is
forced by the group eligibility time of the ATS. As we can see in table 4.2, the delay introduced
for D1

j+1,k−A1
j+1,k = 0.00949 ms is equal to I− I

s1
−ε . The value obtained proves that the group

eligibility time of the ATS has been taken into consideration.

Finally, we validate the equation 2.3 that shows the instability in the ATS. This equation states
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that delay suffered through the ATS by the first packet of the kth period of the first source
increases linearly in each period. For this purpose the first packet of the kth period of the first
source is isolated in figure 4.3:

Figure 4.3: Delay of the first packet in period k for flow 1

The simulation clearly proves that the delay increases linearly. Using the data obtained from the
simulation, we obtain a value of 28.47µs increase per period, which actually is the same as the
one obtained using the equation 2.3 for the first period. We can state, as shown in the figure 4.3,
that the delay diverges as k increases, therefore the delay though the ATS is unbounded when
seen fromHAT S perspective, which proves the instability.

Complementary simulations show that the instability of the ATS does not depend on the
synchronization accuracy. The delay through the ATS diverges at the same rate in ”loosely”
synchronized networks (∆ = 100ms) and ”tightly” synchronized networks (∆ = 1µs).

4.1.1 Different ε values
Recall that the ε value, as seen in figure 4.2, is the interval time between packets of different
sources in the same period. The proof states that an arbitrary value ε can be selected such that
0 < ε < I(1− 1

s1
). Figure 4.4 shows the delay suffered through the ATS by the first packet of the

kth period of the first source, when different ε values are selected. We show that the instability
is maintained if the ε values are within the bounds provided. The closer we get to ε = I(1− 1

s1
),

the slower is the rate at which the delay diverges. However, the instability maintains for values
of ε < I(1− 1

s1
).
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Figure 4.4: Delay of the first packet in period k for flow 1 with different ε

4.1.2 Different frequency offset values s1

Different values for the frequency offset are simulated. When modifying the value for s1, the
interval, the period and the x j values need also to be modified, as seen in figure 3.11.

When simulating for different values of s1, the introduced delay for the first packet of the kth
period of the first source just suffers an small deviation from the values obtained in the last
section. For example, the introduced delay per period in the case of simulating s1 with a value
of 1.1, is 28.5µs, in contrast for the case of s1 = 1.001 is 28.47µs. The results slightly vary and
graphically is almost impossible to appreciate the difference from figure 4.1. In order to show
more meaningful results, the divergence rate of the delay introduced by the ATS per second is
calculated. Theoretically, the divergence is given by the following equation:

div =
Increased delay per period

Period
=

3I
(

1− 1
s1

)
−3ε

3I
s1
+3ε

(4.1)

Figure 4.5 shows the results obtained in the simulations for different values of s1 for source 1.
The height of each step represents the divergence rate per second and the values are shown in
table 4.3. As we can observe the divergence rate of the delay introduced by the ATS in each
second for source 1, increases when s1 increases, obtaining bigger divergence rates with bigger
values of s1.

s1 = 1.001
ε = 0.5µs

s1 = 1.05
ε = 0.5µs

s1 = 1.1
ε = 0.5µs

s1 = 1.2
ε = 0.5µs

s1 = 1.2
ε = 5ns

Divergence
Rate (s)

0.000949901 0.047381546 0.094527363 0.18809901 0.19986001

Table 4.3: Divergence rate per second
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Figure 4.5: Divergence rate per second for flow 1 with different s1 values

Notice that the divergence rate also depends on the ε value, which is the interval time between
packets of different sources. The closer packets between sources are, the bigger the divergence
rate is. This is due to the reduced time interval between packets, achieving its maximum rate
when ε → 0. Theoretically, the largest divergence rate for each s1 value is, as shown in [20,
Proposition 10]:

lim
ε→0

div =
nI
(

1− 1
s1

)
nI
s1

= s1−1

(4.2)

The simulation shows that the divergence rate when a value s1 = 1.2 and an ε = 5ns are
considered, is bigger than the divergence rate for an s1 = 1.2 and ε = 5µs. With an ε = 5ns
the divergence rate is equal to div = 0.19986001, which is almost equal to the theoretical value
div = s1−1 = 0.2.

The simulation clearly proves that the divergence rate of the delay through the ATS increases
when s1 is bigger and ε lower, having a maximum value when ε → 0. The value for s1 has
been selected as s1 ≤

√
ρ , being ρ the frequency offset between the clock of source 1, H1, and

the clock of the ATS, HAT S. The worst-case delay per second in the network increases at most√
ρ−1 for each ρ value regardless the synchronization accuracy used for clock synchronization

in the network.
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4.2 Extension of the proof
One of the drawbacks of the scenario presented in the last section, is that it considers the FIFO
system as ideal, this is, it has an infinite service curve. This assumption does not resemble to the
case of a real network where we have different data rates at the output of the network elements.
Therefore, the question that should be answered now is if this proof still holds if we consider
different service curves in the FIFO system. The following scenario is proposed:

Figure 4.6: Scenario model with different service curves for the FIFO system

4.2.1 Mathematical reasoning
Appendix E gathers all the calculations performed for the extension proposal. In this section the
main results are presented.

The results obtained in appendix E are divided in three cases, depending on the values of the
transmission delay and always considering that the FIFO system is stable, as studied in the
appendix. The values for the delay suffered through the IR by the first packet of the kth period
of the first source are calculated. We assume that other packets exist in the network before A1

j,1,
thus, for k = 1 D1

j,1−A1
j,1 = 0 is considered in the 3 studied cases.

Case 1

• Considering T xD > ε and T xD > I(1− 1
s1
)

∀k 6= 1 ∈ N D1
1,k−A1

1,k ≥ (n(k−1)−1)(I(1−1/s1)− ε) (4.3)

Case 2

• Considering T xD > ε and T xD < I(1− 1
s1
)

∀k 6= 1 ∈ N D1
1,k−A1

1,k ≥ n(k−2)(I(1−1/s1)+ ε)−T xD− (n−1)ε +nI(1−1/s1) (4.4)

Case 3

• Considering T xD < ε

∀k 6= 1 ∈ N D1
j,k−A1

j,k ≥ (k−1)n
(

I
(

1− 1
s1

)
− ε

)
(4.5)
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Mathematical results show that the delay is completely unbounded and diverges as k increases
for all the cases. Furthermore, the delay is increased each period a value equal to I(1− s1)+ ε ,
which is the same as in the original proof. The obtained results prove that the instability is shown
with any data rate if the stability condition of the FIFO system is met. The results obtained in
the simulations are discussed in the following section.

4.2.2 Results of the simulation
4.2.2.1 Worst-case delay

Introducing a service curve in the FIFO system enables to study the worst-case delay of the
network, which in the case of the scenario model proposed, is equal to the worst-case delay of
the FIFO system. As explained in chapter 2, regulators are studied assuming the shaping for
free property. Recall that the shaping property states that the wort-case delay of the network is
never increased by the regulators. Therefore, the worst-case delay of the FIFO system should
never be increased by the ATS. In this section, the theoretical worst-case delay is computed and
by simulation the end-to-end delay is obtained, revealing that the shaping for free property does
not hold in this scenario.

To calculate the worst-case delay of the network, we rely on figure 4.8. We know consider that
each flow has two different and valid arrival curves, as seen in figure 4.7. On the one hand, the
red line represents the arrival curve configured in the ATS scheduler (always taking into account
the variation due to the header overhead). The arrival curve is characterized by a rate r = L/I
and a burst size b = L. On the other hand, the green line represents the long-term arrival curve
for the flow, which is also a valid arrival curve. Each source outputs two packets every period τ ,
which leads to an arrival curve with a lower rate r = 2L/τ but a higher burst b′ = 2L− rI. The
burst b′ is calculated considering that at time t = I, the number of packets output (2L) has to be
equal to 2L = b′+ Ir′.

Figure 4.7: Arrival curves of the flow

As explained in [31, Section 1.2], when considering two arrival curves with parameters (r,b),
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an arrival curve α(t) equal to the minimum of both of them can be obtained, which is

α(t) = min(M+ pt,b+ rt) (4.6)

where M = L is understood as the packet size, p = r as the peak rate, b = b′ as the burst size
and r = r′ as the sustainable rate, as seen in figure 4.8.

Following the results obtained in [31, Proposition 1.4.1], the maximum delay for the flow is
bounded by

Dmax =
M+ b−M

p−r (p−R)+

R
+T (4.7)

Figure 4.8: Computation of the delay bound

Consider the following simulation with the parameters shown in table 4.4 and R = 437.5 KBPS.
In order to obtained the arrival curve of the three flows, the arrival curve of each flow is added, as
seen in figure 4.8. Using equation 4.7 and 3M = 4548 (bytes), 3b = 6061.119899 (bytes), 3p =
454.8 KBPS and 3r = 303.4880101 KBPS, a worst-case delay equal to Dmax = 10.79085714ms
is obtained. The theoretical worst-case delay is a conservative value, however is still an upper
bound and no packet should violate that value.

The figure 4.9 shows the results obtained. The red line represents the theoretical worst-case
delay for flow 1 and the blue dots represent the end-to-end delay that each packet of flow 1
suffers. This figure shows clearly that under these conditions, the shaping for free property does
not hold and the worst-case delay is increased by the ATS.
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Time model Source 1 Source 2 Source 3

∆ (µs) 1 1 1
s1 1.001 1.001 1.001

Interval I (ms) 10 10 10
ε (µs) 0.5 0.5 0.5

Period τ (ms) 29.97153 29.97153 29.97153
x j(ms) 5 14.990001 24.98002

Traffic model Flow 1 Flow 2 Flow 3

Peak Data Rate (KBPS) 147 147 147
Packet Size (bytes) 1470 1470 1470

Traffic type UDP UDP UDP

ATS scheduler Flow 1 Flow 2 Flow 3

Data Rate (KBPS) 151.6 151.6 151.6
Burst Size (bytes) 1516 1516 1516

Table 4.4: Simulation parameters

Figure 4.9: End-to-end delay and worst-case delay

4.2.2.2 Different data rates

The second simulation carried out considers a wide variety of different data rates. The values
for the simulation are the same ones shown in table 4.1 and the results plotted in figure 4.10.
The figure shows the introduced delay by the ATS for the first 5 periods considering different
data rates of the FIFO system.

When 10 kbps are consider at the output rate of the FIFO system, the FIFO is completely
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unstable. Because of that, the introduced delay of the ATS is 0. However, the end-to-end delay
is completely unbounded. For rates between 100 kbps and 100 Mbps we are in the cases 1 and
2 of the mathematical proof. The introduced delay for the first period is a bit lower than the case
considering an infinite service curve. Nevertheless, the introduced delay per period is the same
and diverges at the same rate. Finally, for rates between 1 Gbps and 100 Gbps, the service curve
behaves as if it were an infinite service curve, obtaining the same results as with the original
proof. As we can see, the introduced delay per period is equal in all the cases, which means that
the divergence rate per second is equal to the case studied in the last section. Simulation shows
that if the FIFO system is stable, no matter which data rate is selected, the introduced delay by
the ATS is unbounded, which proves the instability.

Figure 4.10: Delay per period introduced by the ATS for flow 1 with different data rates

The simulation results corroborate with a theoretical proof proposed in [20] for ATS within
synchronized networks. Furthermore, the results extend the ones of the original proof. Lastly,
it allows to show that the different modules developed within the project can be assembled
together, performing a new wide variety of simulations that extend the capabilities of ns-3.
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Conclusion

The final simulations carried out along this thesis prove that ATS or IR can lead to system
instability when considering specific traffic and clock models. Time-Sensitive Networks aim
to provide bounded delays throughout the network. However, the existence of the adversarial
proof shows that the clock deviations between network elements can lead to an unbounded
delay. Furthermore, the extension of proof demonstrates that an arbitrary data rate can be
selected at the output of the FIFO system so that the instability is maintained in any case. This
result extends the original proof, making the results more meaningful. Due to the safety-critical
communications, strong certification levels are applied in time-sensitive networks. Therefore,
the existence of this adversarial proof highlights the need of finding solutions to this problem.

Aside from the final simulation, different modules have been developed within this thesis. The
local clock module developed in section 3.1 allows to introduce the concept of local times in
ns-3. It provides an open interface where different clock models can be attached. This new
feature extends the capabilities of ns-3, enabling a new wide variety of simulations, not only
suitable for Time-Sensitive Networks. The independent designed module co-exists with the
already existing modules of ns-3 and requires no change of the existing code of the simulator,
making it suitable for any user.

Furthermore, the ATS module proposed in section 3.2 introduces the concept of shaping in ns-3,
as proposed by the IEEE Time-Sensitive Networks 802.1 working group. The module built on
the top of the traffic control layer of ns-3 provides the flexibility and modularity needed in each
simulation. It can be attached to the output port of a bridge and can be configured with the
desired parameters. Also, it can be easily extended to implement more complex structures with
different kinds of schedulers.

Finally, many tests and examples have been developed in order to validate the modules, as
explained in appendix A and D. As well as the final simulation itself, which confirms the well
designed and correct iterations with other ns-3 modules and the achievement of the different
goals proposed for the thesis.
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5.1 Future work
The master thesis had the objective of simulating the proof proposed in chapter 2. This being
said, there is still a lot of margin to improve the simulation. Some fields of further study could
be:

• Simulate in ns-3 a real synchronized network. In this project each clock model is bounded
by the synchronization precision parameters. However, it does not exist a synchronization
protocol running between nodes. The clock module takes into account this possibility,
providing an interface for clock updates when synchronization messages arrive to the
nodes. A future implementation could develop a module including the IEEE 1588
synchronization protocol, as proposed by the IEEE TSN working group.

• Implement more realistic clock models. The clock module opens the possibility to attach
clock models to each node, nevertheless, the clock models need to be designed. This is
not an easy task due to the difficulty of modelling clocks. However, in the present project,
an interface to attach a clock model without the need of rewriting the exiting ns-3 code is
proposed, facilitating future implementations of clock models in ns-3.

• As mentioned before, due to the requirements of Time-Sensitive Networks, the instability
problem needs to be faced. In the present project, no solutions are proposed. However,
some solutions have emerged to cope with the unbounded delay problems in ATS. One of
the solutions proposes to manage the constrains of the ATS, adapting the committed data
rate of each shaper to the clock deviation. A natural step of the present project would be to
simulate the solution in the present scenario and evaluate the performance. Moreover, an
extension of the scenario proposed in this thesis could be simulated, having more network
elements within the network and achieving more meaningful results.

• Extend the capabilities of ns-3 in terms of Time-Sensitive Networks. TSN are gaining a lot
of importance in the field of critical communications, thus implementing and extending
the capabilities of the simulator in this field would help future researchers.
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Chapter 6

Budget

The total cost of the thesis accounts for the hardware cost and human resources cost. The human
resources cost has been established as the cost of a trainee engineer: 12e/h

Tool Cost e

Computer 1000

TOTAL 1000

Human resources Hours Cost e

Research 150 1800
Software development 400 4800

Test and analysis 250 3000

TOTAL 800 9600

Total cost for the thesis: 10600e.
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Appendix A

Local time simulator implementation
example

The Clock model validation has been done using both, examples and test. Unitary tests have
been written to verify the internals of LocalTimeSimulatorImpl and LocalClock classes using
PerfectClockModelImpl. They can be found in src/test/clock-test.cc. Here we present the main
characteristics of the two-clocks-simple.cc available in src/clock/example.

The scenario model is shown in figure A.1 and the simulation parameters in table A.1.

Figure A.1: Simulation Scenario

Scenario Settings Node 1 Node 2

Application UDPClient UDPEchoServer
Interval Time (s) 3
Net Device Point to Point Point to Point
Data Rate 5mbps 5mbps
Packet Size (bytes) 1024 1024
Propagation Delay 2ms 2ms
Simulation (s) Time 100 100
Clock Non-ideal Ideal

Table A.1: Validation scenario parameters
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APPENDIX A. LOCAL TIME SIMULATOR IMPLEMENTATION EXAMPLE

The scenario model uses two nodes connected by point to point Net Devices. UdpClient and
UdpEchoServer applications have been installed in the nodes to generate the traffic. The client
runs a non-ideal clock using the PerfectClockModelImpl class. This class allows to define the
time relative function between the global time and the local time. The time relative function,
shown in figure A.2, is defined by a set of affine functions with a frequency offset (the slope
of the function), as well as an initial offset (initial value when global time equals 0). When the
frequency offset is bigger than one, the local clock runs faster. On the other hand, when the
frequency offset is below one, the local clock runs slower. Likewise, when it is set to one, the
clock runs at the same speed as the global clock and it is considered to be a perfect clock.

In order to build the shape of the function, several clock updates are triggered. Each 20 seconds,
the clock update changes the frequency offset between clocks. In order to provide continuity in
each updated point, the initial offset of the function has to be re-calculated. The time relative
function could have been done using a single clock model, without the need of updating the
clock each time. As an example, we present the PeriodicClockModel, which can be found in
”src/model”. This model, represents a periodic clock, with different frequency offsets changing
every predefined interval of time. Conversely, the server node runs a perfect clock.

In order to make the clock model run in the example, few changes need to be done in the main
file. Remark that the clock module can run with the preexisting code of ns-3. Few changes need
to be done while coding the scenario model in the main file. The changes are as follows:

• First, the global variable SimulatoImplementationType needs to be changed, pointing to the
LocalSimualtorImpl.

GlobalValue::Bind ("SimulatorImplementationType", StringValue ("ns3::LocalTimeSimulatorImpl"));

• Second, The ClockModel implementation has to be created. In the case of the example, we
use the PerfectClockModelImpl.

Ptr<PerfectClockModelImpl> clockImpl = CreateObject <PerfectClockModelImpl> ();

clockImpl -> SetAttribute ("Frequency", DoubleValue (freq));

clockImpl -> SetAttribute ("Offset", TimeValue (init_offset));

• Third, create the LocalClock object, set the attribute m clock and aggregate it to the node.

Ptr<LocalClock> clock = CreateObject<LocalClock> ();

clock -> SetAttribute ("ClockModelImpl", PointerValue (clockImpl));

node -> AggregateObject (clock);

Figure A.3 shows the result obtained in the simulation. We represent the time at which the client
node sends packets. As it can be appreciated, the time at which packets are sent variate slightly
depending on the frequency offset between clocks. To compare the performance, we plot the
same simulation, but without using the clock module. We can see how the clock on the client
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Figure A.2: Ideal and Non-Ideal clock model

tends to go slower even though there are some intervals of times where it goes faster.

Between seconds 0 and 20, both clocks have the same frequency offset. However, after second
20, a clock update is triggered. This clock update modifies immediately the packets that are
scheduled. As it can be seen, straight after second 20, the slope starts moving downwards,
having the client clock running faster. The interval between packets changes from 3 to 2.7
seconds. Immediately after second 40 the slope moves upwards moving the interval from 2.7
to 6 seconds. As we can see, the frequency difference directly affects at which time nodes send
packets.

Figure A.3: Results obtained for Ideal and Non-Ideal clocks
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Appendix B

Performance evaluation and limitations of
clock module

For the purpose of evaluating the overhead added by the module, the computation time has
been taken into account. A flexible scenario has been considered, where the parameters, such
as the number of nodes and the clock models, can be tuned. Half of the nodes in the network
communicate with the other half through a switch. The application generates random data flows
within some intervals of time. Nodes can be tuned without clocks, with clocks and with clock
updates, in such a way that the three possible scenarios are tested. Mention that clock updates
affect all the nodes of the network. Simulations have been performed with 50 nodes B.1a, 100
nodes B.1b, 200 nodes B.1c and 500 nodes B.1d.

The PC used for this testing uses an Intel Core i5 6200U Processor with 8GB RAM and Ubuntu
20.04. Ten simulations for each scenario have been carried out in order to have an average value
of the computation time. In order to compute the values, Time linux command has been used.

As we could expect, the computation time increases with the number of nodes, as well as with
the different configurations of the clocks. Simulations show that in the case of using clocks,
the increment in time is between 3% and 9%, with respect to the simulation without clocks.
However, when using frequent clock updates, the simulation time skyrockets from 3% to 40%
for simulations with bigger number of nodes. As we can see, this increase in time can be
a drawback with big and complex scenarios that require constant clock updating and more
computing resources.
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MODULE

(a) Simulation with 50 nodes (b) Simulation with 100 nodes

(c) Simulation with 200 nodes (d) Simulation with 500 nodes

Figure B.1: Results on computation time
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Appendix C

ATS UML design

Figure C.1: ATS design UML
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Appendix D

ATS validation

The ATS module validation has been done using both examples and performing low level
tests. In this appendix, we present the example carried out and the main results obtained. The
following scenario model is presented:

Figure D.1: ATS validation scenario

The source node contains two applications that generate the traffic of the source. The application
used is the OnnOffApplication that ns-3 provides. This application generates constant packets
in every on period and stops sending packets in the off periods. In the case of the simulation
explained in this appendix, the off periods are tuned to zero, such that the application generates
all the time packets at a constant rate. In order to validate the ATS model, first we need to create
a bursty traffic, in such a way that the ATS shaping mechanism reshapes the traffic into the
original burst size. In order to create the bursty traffic we need to place an aggregate scheduler
shared by the different flows. The most common aggregate scheduler is the FIFO system. By
default, the NetDevice object of ns-3 provides a Drop-tail queue in the output port, which is a
FIFO that drops frames when the queue starts building-up. Each time the frame is transmitted
to the channel, the frame is enqueued in the FIFO system. Moreover, we use CSMA devices.
These devices enter in random back-offs each time the channel is busy, increasing the burtiness
at the output port.

The switch node contains the switching logic, as well as the traffic control system. The traffic
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control system will implement the ATS functionalities, allowing to reshape the traffic before
sending it.

The consumer node has the functionally of a traffic sink, which allows to calculate end to end
delays in the scenario.

We propose three different variants of this scenario in order to validate the complete functioning
of ATS.

D.1 Case A
In case A, we propose to generate two different flows in order to create contention in the output
port of source node. Only flow 1 is sent to the consumer crossing the ATS, as shown in D.2. The
flow settings are shown in table D.1. The differences between the flow settings in the application
and in the ATS are due to the need to account for the headers inserted when processing the
frames at layer 2. Thus, in order to achieve the same burst size than the sources, the parameters
in the ATS must be modified.

Figure D.2: Case A scenario

Flow Settings Flow 1 Flow 2

Data Rate (KBPS) 10 10
Packet Size (Bytes) 512 512

Flow Settings in ATS Flow 1 Flow 2

Data Rate (KBPS) 10.8984375
Burst Size (Bytes) 558

Table D.1: Flows settings Case A

The obtained results are shown in figure D.3. The green line represents the output at the source
for flow 1. The traffic pattern is perfectly defined, the interval time between frames is maintained
constant throughout the time. The orange line represents the arrival time of flow 1 to the ATS.
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We can appreciate how the burstiness of the flow has increased, the interval time has changed
due to the FIFO system placed at the output of the source. The blue line is the eligibility time of
the frames, representing the time at which the frames are sent to the output port of the switch.
We suppose that it does not exist any other traffic that arrives to the ATS before the first frame
of flow 1, thus, the first frame is directly sent to the channel. As we can see, the ATS has shaped
perfectly flow 1, recovering the burst size of the original flow. Therefore, we can confirm that
the ATS is reshaping traffic depending of the data rate and burst size configured.

Figure D.3: Case A results

D.2 Case B
In this second case, we study the behaviour of the group eligibility time. This is a key property
that allows to implement the behavioural model of an ATS or interleaved regulator. For this
second case, we consider the scenario of figure D.4 and the parameters shown in table D.2.

Figure D.4: Case B scenario
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Flow Settings Flow 1 Flow 2

Data Rate (KBPS) 50 40
Packet Size (Bytes) 512 512

Flow Settings in ATS Flow 1 Flow 2

Data Rate (KBPS) 50 40
Burst Size (Bytes) 558 558

Table D.2: Flows settings Case B

During the setup of the parameters in the ATS, an error was made. The data rate is equal to
50KB and it’s lower than the value that it’s supposed to be. Therefore, the frames are delayed
more in the ATS. However, in this case we are not focused on that, what we want to see is if
the group eligibility time has been taken into account. For this purpose, we create two flows,
both belonging to the same traffic class. Flow 1 is faster and is initialized before flow 2. The
difference of data rates will allow flow 1 to insert more frames than flow 2, thus, flow 2 will
have to be aware of the group eligibility time constantly updated by flow 1. Result obtained are
shown in figure D.5.

Figure D.5: Case B results

The arrival times to the ATS and the eligibility time for both flows are represented. The graphs
show that flow 1 starts before flow 2. Because of the differences in the data rates, the arrival time
and the eligibility time for flow 1 diverges. However, the green line and the blue line should be
overlapped until the second 1.2, where second flow starts. At that time, the first frame of the

72



D.3. CASE C APPENDIX D. ATS VALIDATION

second flow arrives to the ATS. This frame should be directly sent to the channel because there
are no other frames belonging to flow 2 before it, and the eligibility time should be equal to the
arrival time of the frame. Nevertheless, the frame gets delayed because it’s taking into account
the group eligibility time set up by the flow 1. This pattern is repeated along the black line,
where we can see that the interval time between red dots is bigger than the delay it’s supposed
to be and this is a direct consequence of the group eligibility time.

D.3 Case C
In case C, we study the delay introduced by the ATS in the scenario D.4, with the only purpose
of verifying the shaping for free property. The ATS should never increase the worst-case delay
of the network, i.e. when a frame gets excessively delayed by the network (worst-case delay)
the ATS should never increase such delay, sending the frame directly to the output port. The
parameters used for the simulation are shown in table D.3.

Flow Settings Flow 1 Flow 2

Data Rate (KBPS) 80 80
Packet Size (Bytes) 512 512

Flow Settings in ATS Flow 1 Flow 2

Data Rate (KBPS) 84.375 84.375
Burst Size (Bytes) 558 558

Table D.3: Flows settings Case C

Figure D.6: Case C results

Figure D.6 shows the delay introduced by the ATS for each frame of the flow 1. This figure
gives an intuitive vision of how the ATS performs. Green crosses represent the delay that the
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frame has suffered before arriving to the ATS. In contrast, the purple crosses represent the delay
that the frame suffers after the ATS. Likewise, the difference between the purple cross and the
green cross is the delay introduced by the ATS. The first six frames arrive to the ATS without
contradicting the parameters previously set up for flow 1. Because they do not contradict the
constrains of the ATS, the frames are immediately released. However, the seventh frame suffers
a bigger delay due to the containment in the previous FIFO queue. Because the interval time
between the sixth frame and the seventh frame is even bigger than the regulation forced by the
ATS, the frame is immediately released and there is not an extra delay introduced. For the case
of the eighth frame, the delay before the ATS is reduced in comparison with frame number
seven. Therefore, if the ATS releases immediately the frame, the interval time between packets
would be reduced contradicting the constrains for the flow. To avoid this problem, the ATS
introduces a small delay, forcing the interval time between frames to conform with the ATS
parameters. The same happens for the next frames, where the ATS is forced to introduce some
delay. As we can see, the worst-case delay is never increased. However, a penalty in terms of
delay is paid.
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Mathematical calculus for the proof
extension

In this appendix, the mathematical proof for the extension proposed is explained.

For this analysis, we need to take into account the transmission delay due to the different service
curves of the bridge with the FIFO system.

First, we impose the constraint that the FIFO system has to be stable. This assumption is a
normal consideration when modeling the network, we select the output rate of the system such
that the delay in the FIFO queue is not unbounded. To obtain this first condition, we apply some
very basic concepts of network calculus. Each source is characterized by an arrival curve α(t)
that can be shaped by a rate r and a burst size b. If we consider a conservative approach, each
source outputs 2 packets every period. Therefore, the average rate of each source is equal to
r f j = 2L/τ , being L the packet size. The arrival curves of each source can be added obtaining
a general upper-bound on the rate, r = 2nL/τ . Using the definition of τ = nI/s1 + nε , we
obtain an r = 2L

I/s1+ε
. To fulfil the FIFO stability condition, the output rate of the FIFO needs

to be R > 2L
I/s1+ε

. The transmission delay (TxD) is defined as T xD = L/R, which imposes the
condition 2T xD < I/s1+ ε .

Three different cases are proposed depending on the value of the transmission delay.

Case 1

• T xD > ε , 2T xD < I
s1 + ε and T xD > I(1− 1

s1)

The traffic pattern is described relying in figure E.1. The time interval between A1
j,1 and A2

j,1
remains with a value equal to I

s1 . Because T xD < I
s1 , as soon as A2

j,1 arrives to the FIFO queue,
it is sent. However, packet A1

j+1,1 suffers a queuing delay because ε < T xD. In such a manner
that when A1

j+1,1 arrives to the ATS the time between packets is not anymore ε , it is T xD. This
will modify also the interval time between packets of the same flow j+ 1, which will change
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from I
s1 to I

s1 − (T xD− ε), maintaining this pattern throughout the next periods.

The arrival time of A1
j,k∀k 6= 1 ∈ N to the ATS will be:

A1
1,k ≥ A1

1,0 + I/s1+(n−1)(I/s1− (T xD− ε))+n(k−1)T xD+n(k−2)(I/s1− (T xD− ε)) =

= A1
1,1 +nI/s1+T xD(−(n−1)+n(k−1)−n(k−2))+(n−1)ε +n(k−1)(I/s1+ ε) =

= A1
1,1 +nI/s1+T xD+(n−1)ε +n(k−2)(I/s1+ ε)

Arrival to the FIFO from j
observed withHGT =HAT SA1

j,1 A2
j,1

I/s1

Arrival to the FIFO from j+1
observed withHGT =HAT SA1

j+1,1 A2
j+1,1

ε I/s1

Arrival at the ATS
observed withHGT =HAT SA1

j,1 A2
j,1

I/s1 T xDT xD

A1
j+1,1 A2

j+1,1

I/s1− (T xD− ε)

Figure E.1: Arrival time to the ATS when measured withHGT =HAT S

We compute now the time at which packets are released from the ATS, as shown in figure E.2.
Packet D2

j,1 is not blocked by the head of the line packet, because the T xD is bigger than the
delay inserted by the ATS for packet A2

j,1. For the remaining cases we observe that packets get
blocked.

Arrival at the ATS
observed withHGT =HAT SA1

j,1 A2
j,1

I/s1 T xDT xD

A1
j+1,1 A2

j+1,1

I/s1− (T xD− ε)

Departure from the ATS
observed withHGT =HAT S

T xD

D1
j,1 D2

j,1

T xD− (I−1/s1)

I

D1
j+1,1 D2

j+1,1

I

Figure E.2: Release time from the ATS when measured withHGT =HAT S

The departure time of D1
j,k∀k 6= 1 ∈ N from the ATS will be:

D1
1,k ≥ D1

1,1 +nI +T xD− I(1−1/s1)+nI(k−2)

The delay suffered through the IR by the first packet of the kth period, ∀k 6= 1 ∈ N, of the first
source is, when measured withHAT S =HGT :
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D1
1,k−A1

1,k ≥ D1
1,1 +nI +T xD− I(1−1/s1)+nI(k−2)−

−A1
1,1−nI/s1−T xD− (n−1)ε−n(k−2)(I/s1+ ε) =

= (n−1)I(1−1/s1)− (n−1)ε +n(k−2)(I(1−1/s1)− ε) =

= (n−1)(I(1−1/s1)− ε)+n(k−2)(I(1−1/s1)− ε) =

= (n(k−1)−1)(I(1−1/s1)− ε)

We consider that no other packets exist in the network before A1
j,1, so D2

j,1−A1
j,1 = 0.

Case 2

• T xD > ε , 2T xD < I
s1 + ε and T xD < I(1− 1

s1)

In this case, the arrival time of packets is the same as the studied in the case before. The
only change comes from the departure time of packets from the ATS. Because we select a
transmission delay such that T xD < I(1− 1

s1), the departure time of D1
j,k∀k 6= 1 ∈ N from the

ATS will be:

D1
1,k ≥ D1

1,1 +nI +n(k−2)I

The delay suffered through the IR by the first packet of the kth period, ∀k 6= 1 ∈ N, of the first
source is, when measured withHAT S =HGT :

D1
1,k−A1

1,k ≥ D1
1,1 +nI(k−1)−

−A1
1,1−nI/s1−T xD− (n−1)ε−n(k−2)(I/s1+ ε) =

= n(k−2)(I(1−1/s1)+ ε)−T xD− (n−1)ε +nI(1−1/s1)

We consider that no other packets exist in the network before A1
j,1, so D2

j,1−A1
j,1 = 0.

Case 3

• T xD < ε

This case is equal to the case considered with a FIFO system with infinitive service curve.
Because the ε value is bigger than the transmission delay, the interval time between packets
remain the same as in the original proof. The delay suffered through the IR by the first packet
of the kth period, ∀k ∈ N, of the first source is, when measured withHAT S =HGT :

D1
j,k−A1

j,k ≥ (k−1)n
(

I
(

1− 1
s1

)
− ε

)
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