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Abstract

The drastic shift towards digital communication in our mediasphere has caused a profound
change in the production and consumption of information, which in turn has substantial im-
plications on the social and political landscape. Misinformation, as a side effect of mass in-
formation diffusion, has become a fundamental problem for governments, platforms, and the
general public in light of critical events such as elections, pandemics, and wars.

In this thesis, we focus on the problem of online scientific misinformation. As a starting
point, we survey the evolution of misinformation and present the main characteristics and ap-
proaches against it, framing the high-level positioning of this thesis with respect to related lit-
erature. Then, we discuss three major scientific contributions of this thesis: our methods for
combating claim-based, article-based, and source-based scientific misinformation.

For combating claim-based scientific misinformation, we introduce SciClops, a method for
detecting and contextualizing scientific claims for assisting manual fact-checking. Our method
involves three steps: (1) extracting scientific claims using a domain-specific, fine-tuned trans-
former model, (2) clustering similar claims together with related scientific literature using a
method that exploits their content and the connections among them, and (3) highlighting
check-worthy claims broadcasted by popular yet unreliable sources. Our experiments show
that SciClops effectively assists non-expert fact-checkers in verifying complex scientific claims,
facilitating them to outperform commercial fact-checking systems.

For combating article-based scientific misinformation, we introduce SciLens, a method for
evaluating the quality of scientific news articles. Our method involves a series of quality indica-
tors for news articles that derive from: (1) their content, including the use of attributed quotes,
(2) their scientific context, including their semantic similarity and web proximity to the scien-
tific literature, and (3) their social context, including their social media reach and stance. Our
experiments show that these indicators help non-experts evaluate the quality of articles more
accurately compared to non-experts that do not have access to these indicators. Moreover,
SciLens can also produce completely automated quality scores for articles, which agree more
with expert evaluators than manual evaluations done by non-experts.

For combating source-based scientific misinformation, we introduce SciLander, a method
for learning representations of news sources reporting on scientific topics. Our method in-
volves heterogeneous source indicators that capture: (1) the copying of news stories between
sources, (2) the semantic shift of terms across sources, (3) the usage of jargon, and (4) the
stance towards specific citations. SciLander uses these indicators as signals of source agree-
ment to train unsupervised source embeddings. Our experiments show that the learned source
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representations outperform state-of-the-art baselines on the task of news veracity classifica-
tion while encoding information about the reliability, political leaning, and partisanship bias of
these sources.

In the last part of this thesis, we introduce NewsTeller, a real-time news analytics platform
that runs operationally, handling daily thousands of news articles, social media reactions, and
references.

Keywords: Misinformation, Scientific Misinformation, COVID-19 Misinformation, Fact-
Checking, Computational Journalism, Scientific Journalism, Science Communication, Scientific
News.
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Résumé

La numérisation de notre sphère médiatique a provoqué un profond changement dans la pro-
duction et la consommation de l’information qui a d’importantes conséquences sur le paysage
social et politique. La désinformation, qui représente l’un des effets néfastes de la diffusion
massive d’informations, est devenue un problème fondamental pour les gouvernements, les
plateformes et le grand public, à la lumière d’événements critiques tels que les élections, les
pandémies et les guerres.

Dans cette thèse, nous nous concentrons sur le problème de la désinformation scientifique
en ligne. Pour commencer, nous examinons l’évolution du phénomène et présentons les prin-
cipales caractéristiques et les approches de la lutte contre la désinformation en définissant le
positionnement de cette thèse par rapport à la littérature connexe. Ensuite, nous discutons les
contributions scientifiques principales de cette thèse : trois méthodes de lutte contre la dés-
information scientifique, la première basée sur les allégations, la seconde sur les articles et la
dernière sur les sources.

Pour combattre la désinformation scientifique basée sur les allégations, nous présentons
SciClops, une méthode de détection et de contextualisation des allégations scientifiques pour
aider à la vérification manuelle des faits. Notre méthode comporte trois étapes : (1) l’extrac-
tion d’affirmations scientifiques à l’aide d’un modèle d’apprentissage automatique spécifique
au domaine et est finement ajusté, (2) le regroupement d’affirmations similaires avec la litté-
rature scientifique à l’aide d’une méthode qui exploite leurs contenu et les connexions entre
elles, et (3) la mise en évidence d’affirmations diffusées par des sources populaires mais non
fiables nécessitant une vérification. Nos expériences montrent que SciClops aide efficacement
les vérificateurs non experts à éprouver des affirmations scientifiques complexes, ce qui leur
permet de surpasser les systèmes commerciaux de vérification des faits.

Pour combattre la désinformation scientifique basée sur des articles, nous présentons Sci-
Lens, une méthode d’évaluation de qualité des articles d’actualité scientifique. Notre méthode
comprend une série d’indicateurs de qualité des articles qui découlent de : (1) leur contenu, y
compris l’utilisation de citations attribuées, (2) leur contexte scientifique, y compris leurs si-
milarités sémantiques et leurs proximité avec la littérature scientifique, et (3) leur contexte so-
cial, y compris leur portée et leur position dans les médias sociaux. Nos expériences montrent
que ces indicateurs aident les non-experts à évaluer la qualité des articles avec plus de préci-
sion que les non-experts qui n’ont pas accès à ces indicateurs. En outre, SciLens peut égale-
ment produire, pour les articles, des scores de qualité entièrement automatisés qui s’accordent
d’avantage avec des évaluations d’experts qu’avec des évaluations de non-experts.
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Pour combattre la désinformation scientifique basée sur les sources, nous présentons Sci-
Lander, une méthode d’apprentissage automatique générant une représentation des sources
d’information traitant de sujets scientifiques. Notre méthode fait appel à des indicateurs de
sources hétérogènes qui capturent : (1) la copie d’articles d’actualité entre les sources, (2) le
changement sémantique de termes entre les sources, (3) l’utilisation du jargon et (4) la position
à l’égard de citations spécifiques. SciLander utilise ces indicateurs pour générer une représen-
tation vectorielle des sources de façon non supervisée. Nos expériences montrent que cette
représentation est plus prédictive que les méthodes existantes dans des tâches de classification
de la véracité d’articles d’actualité. De plus, cette représentation encode des informations sur
la fiabilité, l’orientation politique et le parti pris de ces sources.

Dans la dernière partie de cette thèse, nous présentons NewsTeller, une plateforme d’ana-
lyse d’actualité en temps réel pleinement opérationnelle, traitant quotidiennement des milliers
d’articles d’actualité, de réactions sur les réseaux sociaux et de références.
Keywords : Désinformation, Désinformation Scientifique, Désinformation COVID-19, Vérifi-

cation des Faits, Journalisme Informatique, Journalisme Scientifique, Communication Scienti-
fique, Actualité Scientifique.
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Chapter 1

Introduction

According to one of the most prevalent theories in physical cosmology, the space in the early
stages of the universe expanded exponentially and faster than the speed of light; a phenomenon
called cosmic inflation. Similarly to the cosmic inflation, the singularity moment for the infor-
mation sphere arrived with the rise of web technologies, which enabled most individuals in
technologically-developed countries to instantly diffuse information (particles), but also mis-
information (antiparticles), to large audiences with little-to-no regulation or quality control.
This evolution of the means of communication led to an information inflation, giving online
media an unprecedented role in influencing political, economic, and social ecosystems [137].

1.1 News Media in the Digital Era

The digital era changed the news industry radically; news consumers shifted from traditional
offline and passive media (e.g., newspapers, TV) to online and interactive media (e.g., news
portals) (Figure 1.1). Hence, traditional publishers lost part of their power due to emerging in-
dependent publishers, which often provide alternative but sometimes also controversial views
compared to the mainstream media. As most news consumers focus on the news stories rather
than the sources, these alternative hubs of information gain more and more power [146].

Three cognitive effects of online media differentiate them from offline media: non-linearity,
continuous-availability, and crowd-involvement [132, 151]. Online media are non-linear in the
sense that the temporal nature of narratives is customized in a way that the users have control
over it. Furthermore, online media create expectations for fresh content that is always available
for on-demand consumption. Finally, in many cases, formerly passive news consumers are able
to actively produce or correct already published news.

The digital shift presents benefits to both the media industry and the consumers. In particu-
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Figure 1.1: A 2020 survey on the news medium preference of US adults. Digital platforms (in-
cluding news portals and podcasts) are preferred by 52% of the population, in contrast with
print publications preferred only by 5% of the population. Data from Pew Research Center [43].

lar, digitalization reduces the cost of publishing, builds new bridges between media outlets and
their audiences, supports the pluralism of public opinions, and generally facilitates informa-
tion accessibility. However, these opportunities come at a price: digital information diffusion
tends to amplify misinformation and polarization phenomena [66], making it hard to distin-
guish credible information from misleading content. This change has already led multiple dis-
ciplines to re-examine the notions of “truth” and “trust” online [153].

1.2 News Media in the Social Media Era

After digitalization, the news industry changed radically for a second time with the growth of
social media (Figure 1.2). The majority of people using social media platforms started to ac-
tively generate, republish, interact, and comment on the news [147, 185]. In crisis events, such
as the COVID-19 pandemic, governments and decision-makers utilize this power of social me-
dia to properly communicate crucial information and protect the public from falsehoods [25].
Nonetheless, the same social and news media work as a catalyst for the so-called infodemic,
allowing misinformation to be dispersed on a large scale, regardless of the significant effort to
hinder its spread [131].

On this occasion, traditional media companies and professional journalists are at a cross-
roads. The ephemeral, fast-paced nature of social media, the brevity of the messages circu-
lating on them, the short attention span of their users, their preference for multimedia rather
than textual content, and in general, the fierce competition for attention is forcing journalists
to adapt in order to survive in the attention economy [142]. As a consequence, news outlets
are increasingly using catchy headlines, as well as outlandish and out-of-context claims that
perform well in terms of attracting eyeballs and clicks [174].
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Figure 1.2: A 2021 survey on the frequency of news consumption of US adults in social media.
Almost 50% of the population uses social media at least sometimes to consume news. Data
from Pew Research Center [128].

On the other hand, social media platforms allow, if not amplify, this flood of fake or low-
quality information. In such platforms, the curation of news flows is undertaken not only
by conventional newsmakers but also by other factors such as online social contacts, recom-
mendation algorithms, and individual preferences [199]. All these factors create a uniquely-
personalized news repertoire, which increases the engagement on the platforms since their
users prefer it over the generic editorial curation [200]. However, this personalization seems to
amplify pre-existing biases by increasing the ideological segregation of the users and creating
so-called echo-chambers [55], or what Negroponte et al. [145] describe as “The Daily Me”.

1.3 Science Communication via News Media

Scientific literacy is broadly defined as a knowledge of basic scientific facts and methods.
Deficits in scientific literacy are endemic in many societies [71], which is why understand-
ing, measuring, and furthering the public understanding of science is essential to many sci-
entists [11]. Mass media can be a potential ally in fighting scientific illiteracy. Reading scientific
content has been shown to help align public knowledge of scientific topics with the scientific
consensus, although, in highly politicized topics, it can also reinforce pre-existing biases [82].

Scientific journalism, as practiced by professional journalists as well as science communi-
cators and bloggers from various backgrounds, can be seen as a translation from a discourse
inside scientific institutions (i.e., highly specialized findings reported in scientific reports, jour-
nals, and books) to a discourse understandable to a non-specialized, broad audience [149].
By necessity, this process involves negotiating several trade-offs between desirable goals that
sometimes enter into conflict, including appealing to the public and using accessible language,
while accurately representing research findings, methods, and limitations [152].
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However, there are many nuances that make this process much more than a simple trans-
lation. For instance, Myers [141], among others, notes that i) in many cases the gulf between
experts and the public is not as large as it may seem, as many people may have some infor-
mation on the topic; ii) there is a continuum of popularization through different genres, i.e.,
science popularization is a matter of degree; and iii) the scientific discourse is intertwined with
other discourses, including the discussion of political and economic issues.

Producing high-quality news material presenting scientific findings to the general public is
unquestionably a challenging task, and often there is much to criticize about the outcome. In
the process of writing an article, “information not only changes textual form, but is simplified,
distorted, hyped up, and dumbed down” [141], while the scientific evidence that may support
or refute it remains absent or locked behind pay-walled journals [178]. Misrepresentation of
scientific knowledge by journalists has been attributed to several factors, including “a tendency
to sensationalize news, a lack of analysis and perspective when handling scientific issues, ex-
cessive reliance on certain professional journals for the selection of news, lack of criticism of
powerful sources, and lack of criteria for evaluating information” [37].

In many cases, these issues can be traced to journalists adhering to journalistic rather than
scientific norms. According to Dunwoody [40], this includes i) a tendency to favor conflict,
novelty, and similar news values; ii) a compromise of accuracy by lack of details that might be
relevant to scientists, but that journalists consider uninteresting or hard to understand for the
public; and iii) a pursuit of “balance” that mistakenly gives similar coverage to consensus view-
points and fringe theories. Journalists tend to focus on events or episodic developments rather
than long-term processes, which results in preferential coverage to initial findings even if they
are later contradicted, and little coverage if results are disconfirmed or shown to be wrong [39].
Furthermore, news articles typically do not include caveat/hedging/tentative language, i.e.,
they tend to report scientific findings using a language expressing certainty, which may have
the opposite effect from what is sought, as tentative language makes scientific reporting more
credible to readers [97].

1.4 Scientific Misinformation

Misinformation, in the form of propaganda, was a well-known political weapon used exten-
sively in World War I and II [114]. Particularly the term “Fake News” came to prominence after
the presidential elections in the United States in 2016, when the former United States president
started a rhetorical war on established media outlets by labeling them as fake news media [50].
Following this paradigm, there were countless narratives expressing skepticism and decline of
trust in previously dependable sources. According to these narratives, scientific evidence is no
longer trusted, medical evidence is sidestepped, and patients search for their own truth online.
Under this threat, the traditional keepers of truth, such as editors, journalists, and public in-
tellectuals, have lost their monopoly on public issues, while malicious actors and misinformed
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Figure 1.3: Relative search interest of two drugs presented as “safe alternatives” to the vaccines
against COVID-19. As the debunking of Hydroxychloroquine was more viral than the debunk-
ing of Ivermectin, we observe two different behaviors after the initial attention shift of the au-
dience. Data from Google Trends.

citizens continue spreading their own hate, propaganda, and fake information on a previously
unseen scale. Thus, the current era has been characterized as a “Post-Truth Era”, in which truth
and reason have been replaced by alternative facts and individual gut feelings [51].

Throughout the pandemic, there were numerous viral news stories on possible treatments
against COVID-19, which are still presented as “safe alternatives” to the vaccines (Figure 1.3).
Hydroxychloroquine and chloroquine were the two most popular such drugs in the early stages
of the pandemic, with the US Food and Drug Administration (FDA) cautioning against the us-
age outside of a hospital setting [52]. Recently, there was a new rumor regarding Ivermectin, a
drug used to treat parasites in humans and livestock. Indeed, pharmacies in many countries
ran out of the drug, despite the lack of evidence of its effectiveness in treating COVID-19, with
the FDA again warning against its usage for that purpose [53]. As Carey et al. [24] note and we
can see in Figure 1.3, reductions in COVID-19 misperception beliefs do not persist over time;
thus, fact-checks and misinformation evidence has to be constantly reinforced to the people.

Scientific misinformation, especially in an emerging topic with constant updates on the sci-
entific consensus, is affecting not only scientifically-illiterate people but also high-profile stake-
holders and decision-makers. For instance, on March 11th, 2020, an article in The Lancet Respi-
ratory Medicine theorized that nonsteroidal anti-inflammatory drugs such as Ibuprofen could
worsen COVID-19 symptoms [49]. Without referencing explicitly to this article, but motivated
by it, the Minister of Health of France posted on Twitter, advising people to avoid Ibuprofen
when possible.1 His message was re-posted nearly 43K times and liked nearly 40K times. In
contrast, a World Health Organization’s message posted four days later, which insisted Ibupro-
fen was safe, was re-posted only 7.5K times and liked only 8.5K times.2

1https://twitter.com/olivierveran/status/1238776545398923264
2https://twitter.com/WHO/status/1240409217997189128
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1.5 Misinformation Taxonomy

Misinformation as a research problem can be sliced and diced in multiple ways, which com-
plies with the multifaceted nature of the problem. The proposed taxonomy overlaps with re-
lated taxonomies proposed by two surveys conducted by Kumar et al. [112] and Zannettou et al.
[223]. However, since misinformation has been studied in the context of different disciplines,
from computer and social science to psychology and journalism, in this thesis, we cover a sub-
set of all the aspects of misinformation studied in the scientific literature.

1.5.1 Characteristics

The main superficial characteristics that we discuss in this thesis are the modalities (formats)
and topics in which misinformation emerges, the main actors and their intent when spreading
misinformation, and the textual granularity levels in which we can identify misinformation.

Modalities

The digital shift of information led misinformation to appear in all the available digital for-
mats [3]. Initially, false information appeared in textual form in social media platforms [27,
133], online encyclopedias [113], and instant messaging apps [169]. As multimedia formats
are becoming more prevalent and easier to consume, misinformation appears in other formats
such as audio [127], images [16, 77], and videos [204].

However, research efforts remain heavily concentrated on detecting and mitigating the ef-
fect of textual misinformation for two main reasons. First, most ground-truth knowledge bases
as well as debunking sources are in textual format (e.g., Wikipedia, which is used by almost 40%

of its readers for fact look-ups [190], and dedicated fact-checking portals such as Snopes.com).
Furthermore, in many cases, we can detect misinformation in other formats using text-based
techniques by introducing an intermediate “translation” step that decouples joint modalities
(e.g., audio-to-text [126] and video-to-text [92] transcription).

Topics

Misinformation spans almost every topic for which there exists news, from politics and science
to history and sports. Indeed, these topics are not exclusively disjoint; e.g., misinformation
regarding COVID-19 can be both political and scientific. Since, in fact-checking platforms, the
debunking process involves discovering viral potentially-false stories, a proxy to quantify the
misinformation per topic is to quantify the respective debunking effort per topic.

6
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Figure 1.4: Distribution of topics in Snopes.com. Even after more than two years in a pandemic,
fact-checks related to politics are almost six times more than fact-checks related to science.
Data crawled from Snopes (February 2022 snapshot).

According to Snopes.com, one of the most well-known fact-checking portals with more than
10 million monthly visitors, the most prevalent topic is Politics with almost six times more fact-
checks than Science and more than two times more fact-checks than all the other topics com-
bined. Figure 1.4 confirms that, even after more than two years in a pandemic, the attention
of the fact-checking community and the effort to debunk possibly misleading information is
mainly focused on political news.

Actors

There are various actors that produce or help on the diffusion of misinformation. Essentially,
all the actors that can create news-worthy content can potentially act as channels of false infor-
mation. These actors can be:

• Authorities responsible for informing the public, i.e., politicians, stakeholders, experts;

• News Industry Practitioners, i.e., professional journalists or independent bloggers;

• Bots and Sockpuppet Accounts, i.e., instrumented accounts that often ignite but mainly
amplify already spread misinformation;

• Individuals, i.e., social media and private messaging users, who, as we see next, can either
maliciously or unwittingly share or interact with false information.

7
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Intent

Intentional misinformation, often called disinformation, is fake information spread maliciously
with the intent to deceive [162]. The most prominent types of intentional misinformation are:

• Propaganda, which usually has political motives [102];

• Hoaxes and Rumors, which usually target politicians and in general public figures [160];

• Satire, which usually consists of fabricated or fictional stories described with a clear sense
of irony and humor [213].

On the other hand, unintentional misinformation emerges after the misinterpretation of
accurate information due to lack of attention or due to an attempt of simplification or lack of
knowledge on a complex topic [88]. The boundaries between intentional and unintentional
misinformation are often blurry, as their only distinguishable characteristics are mainly hidden
in auxiliary metadata such as the type of the distributing medium [90].

Granularity

Online misinformation appears at three distinct granularity levels with respect to the verbosity
of the text containing it: at the level of claims, the level of articles, and the level of sources [20]:

• Claims. At the most granular level, we find claims, i.e., short passages containing check-
worthy information such as messages exchanged on social media and messaging apps or
sentence-wise fragments of news articles;

• Articles. At the middle level, we find articles in news outlets and personal blogs, which are
longer passages that contain one or more claims and typically provide more contextual
information to support, dispute, or satirize these claims;

• Sources. At the more abstract level, we find news sources, e.g., broadcasting syndications,
news portals, or independent journalists, that regularly produce news-worthy content.

1.5.2 Approaches

As misinformation has been studied from multiple disciplines, the solutions to mitigate the
problem are also multifaceted. The consensus in the scientific community is that there is no
“silver bullet” to combat misinformation; thus, all the solutions listed below must be developed
and combined to reduce or at least diminish the impact of misinformation in the world.
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Education & Media Literacy

There are many initiatives against media illiteracy, either coming from educators and non-
governmental organizations or from social and news platforms. From the side of the educa-
tors, there are attempts to empower schoolchildren and their teachers by “equipping school
communities to fact-check online content, understand news media, make informed choices
and resist peer pressure as they assemble their worldview” [103]. Indeed, according to their ex-
perience, technology currently plays a limited role in increasing media literacy; however, young
people nowadays are more acutely aware of the danger of misinformation because of COVID-
19 [154]. Similarly, video platforms organize internet safety workshops for teenagers, [222] and
social media providers [134], news outlets [212], and fact-checking organizations [47] inform
their customers on ways to identify misinformation.

Fact-Checking

Fact-Checking Portals can be divided into general-purpose (Snopes.com), political (Politi-
Fact.com), or scientific (ScienceFeedback.co) portals, working closely with domain experts and
scientists to debunk misinformation and bring nuance to potentially misleading news. These
portals employ specialized journalists who manually: i) detect suspicious claims and articles
that “go viral” on social and news media, ii) investigate whether these claims and articles (or
variants of both) have also been published by other sources, and iii) find the appropriate prism,
consisting of diverse and reliable sources, under which they assess their credibility. However,
the described process remains a labor-intensive and time-consuming task, and, despite all the
efforts, it is incapable of scaling with the abundance of misinformation [84].

Platform Interventions

With the rise of high-profile cases of the negative real-world impact of misinformation, social
media providers and search engines have significantly increased their efforts in debunking false
or inaccurate information. Indeed, in collaboration with the academic community, they have
proposed both automatic and human-in-the-loop methods for platform interventions to miti-
gate the problem of misinformation.

On automatic interventions, platforms algorithmically interfere to prevent the spread of
misinformation, e.g., by tweaking the underlying, typically black-boxed, recommendation al-
gorithms [23]. On human-in-the-loop interventions, authorities, fact-checking agencies as well
as the audience of social media platforms contribute to mitigating misinformation by:

• moderating public discussions and applying strict rules for content removal [129];

• rating and flagging misleading or offensive content [69, 139];
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• highlighting and promoting expert opinions [109].

However, unregulated interventions on social media are often regarded as a form of censorship
imposed by private companies, governments, and other stakeholders [186].

Automated & Semi-automated Methods

Despite the fact that misinformation circulating online exceeding the capacity of manual effort,
traditional news outlets are skeptical towards adopting fully-automated methods for detecting
misinformation [192]. Their main concern is that such methods: i) provide poorly-interpretable
evidence (according to the journalistic standards), ii) are non-generalizable to arbitrary news
topics, and iii) can reinforce potential algorithmic biases and false judgments, leading to a
downfall of the reputation of the outlet. As discussed above, this lack of transparency could
lead to (unintended) censorship, amplification of extremist views, and silencing of “alterna-
tive” views, directly threatening democracy and contributing to political turmoil. Indeed, even
big tech companies were forced to suspend automated fact-checking features due to similar
criticism from news outlets [62]. Hence, the consensus on the usage of automation in journal-
ism is that it should assist but not replace journalists and individuals when they validate the
veracity of news, enabling the movement onward the era of citizen journalism [144].

Below we describe the main categories of automated and semi-automated methods; a de-
tailed review of the related work, also discussing in what direction our methods advance the
state-of-the art, is provided in Chapter 2.

User Modeling. This category includes models typically oriented for social media users.
These models estimate the likelihood of a user being a certain type of malicious actor spreading
misinformation. Hence, there are methods for detecting:

• recurring patterns and orchestrated behaviors, typically observed in Social Media Bots
and Sockpuppet Accounts [44, 184];

• social media users that are prone to share certain types of low-quality information (e.g.,
health misinformation [67], spam and content promotion [13]);

• groups of users with certain characteristics that are vulnerable to misinformation (e.g.,
polarized communities, also known as “echo chambers” [65]).

The common element among these models is that they combine user-related features derived
from: i) the structure of the social network (e.g., node degrees, PageRank), ii) the content gener-
ated by the users (e.g., writing style, sentiment), iii) the interactions among the users (e.g., their
re-posting or friendship network).
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Propagation Modeling. This category includes methods for modeling information propaga-
tion in social networks. Interestingly, properly-adapted epidemic models that were designed to
reduce the rapid spread of diseases are also able to predict misinformation diffusion patterns,
justifying the usage of the well-known term infodemic [196]. Such models are able to detect
the key users that need to be “healed” (i.e., to be corrected regarding some false beliefs about a
controversial topic) to limit the spread of misinformation [22].

Content Classification. The following categories focus more on a content-wise analysis of
misinformation. There are several groups of classification problems for which the academic
community has designed appropriate shared tasks and released benchmark datasets. These
problems include, among others, news classification [148], rumor evaluation [70], and claim
verification [10]. The typical supervised learning models proposed in such tasks are:

• Deep Linguistic Models, which are dedicated models designed specifically for narrow do-
mains (e.g., for COVID-19 [106]);

• Shallow Linguistic Models, which focus more on generic textual characteristics that often
correlate with the diffusion of misinformation (e.g., writing style, sentiment [90, 168]).

Content Retrieval. This category of methods utilizes the knowledge derived from fact-
checking portals and ground-truth knowledge bases to detect recycled or repurposed, already-
debunked information. Specifically, the task of these methods is to perform semantic textual
matches between fact-checking repositories and information published in news and social me-
dia [85, 163]. Indeed, models in this category are neither fine-tuned nor tightly coupled with
particular topics, and their coverage evolves together with the respective coverage of the fact-
checking portals. However, this semantic textual matching, that combines the semantic simi-
larity and the entity matching between two pieces of text, has been repeatedly criticized for its
robustness in commercial real-world systems [62].

Content Understanding. The last category of methods goes beyond the detection misinfor-
mation to a deeper decomposition and contextualization of its components. Instead of com-
puting boolean flags and reducing the credibility of a piece of information into a single dimen-
sion, these models decompose credibility to multidimensional and heterogeneous indicators
[225]. Given a certain topic, means of communication, and users profile, such indicators may
or may not correlate with the overall credibility of the underlying information.

These indicators occurred as a means of communication between journalists, fact-checking
groups, research labs, and social and annotation platforms. Indeed, these bodies formed a
broader alliance called Credibility Coalition3 which drafted over 100 indicator suggestions that
were later grouped into 12 major categories, including reader behavior, revenue models, publi-
cation metadata, and inbound and outbound references. Methods exploiting this methodology

3https://credibilitycoalition.org
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operationalize these indicators using state-of-the-art language models and information extrac-
tion techniques to automatically detect them in news pieces [194].

1.6 Thesis Position & Contributions

In this thesis, we tackle several slices of the taxonomy defined above. We visualize these slices
in Figure 1.5 and discuss them below.

Modalities. The primary focus of this thesis is misinformation in textual form. As we explain
above: i) textual is nonetheless the most prevalent form of misinformation despite the uprising
popularity of multimedia formats; and ii) text is the most wildly-used format for ground-truth
information, used in online knowledge bases and fact-checking portals. Hence, the common
element among all the contributions of this thesis is the deep content-based analysis on news
as well as on social media postings sharing news and scientific references cited by news.

Topics. As we show in Figure 1.4, even after more than two years in a pandemic, science
remains a rather unpopular topic in fact-checking portals with evidence that may support or
refute scientific news often locked behind pay-walled journals and hardly-accessible academic
repositories. Furthermore, as we explain above, this “translation” that scientific journalists per-
form, from a discourse inside scientific institutions to a discourse understandable to a non-
specialized broad audience, often introduces linguistic complications that lead to misinterpre-
tation or amplification of scientific findings.

In this thesis, we focus on science-related misinformation. We tackle the problems of the
sparsity of ground-truth and the usage of specialized terminology in scientific news: i) by con-
sidering the referenced scientific literature as a potential ground-truth knowledge base for sci-
entific news, and ii) by fine-tuning specialized language models and defining specialized vo-
cabularies that are suitable for interconnecting news and science (e.g., SciNewsBERT §4.2.2).

Actors. Since we perform a content-based analysis of misinformation, it is out of our scope
to analyze actor-specific characteristics and behaviors that make them prone to diffuse mis-
information. However, we showcase that the outcomes of our analysis can help non-expert
news consumers accurately evaluate the quality of news material in highly specialized scien-
tific domains (e.g., the gene-editing technique CRISPR (Table 5.3), or the effects of therapeutic
cannabis in Post-Traumatic Stress Disorder (Table 4.5)).

Intent. As we explain above, in terms of content, intentional misinformation is frequently
indistinguishable from unintentional misinformation, with minor differences hidden in auxil-
iary metadata. Hence, in the context of this thesis, we treat both types of intent identically.

Granularity. We propose methods for all three aforementioned granularity levels:
claims (§4), articles (§5), and sources (§6). We propose dedicated models that deal with the
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Figure 1.5: Thesis Position: We propose a Content Understanding approach for Textual, Scien-
tific, Intentional and Unintentional misinformation which aims to help Individuals evaluate
the quality of news, at the level of Claims, Articles, and Sources.

peculiarities of each level in terms of verbosity and redundancy of information. Particularly we
propose models: i) for discovering claims and connecting them with related scientific litera-
ture; ii) for extracting quality indicators from the content and the social and scientific context
of articles; and iii) for clustering sources based on their writing style and citation behavior.

Approach. As we explain above, for content-based analysis there are three categories of
approaches: Content Classification, Content Retrieval, and Content Understanding. Below we
explain why the first two categories are insufficient for the case of scientific misinformation and
why we propose a Content Understanding approach.

Our approach is by design not a Content Classification approach, i.e., we do not propose
a “fake news classifier”, adapted for the case of scientific news. The reason is that such ap-
proaches introduce either Deep Linguistic Models, which are dedicated classifiers, fine-tuned
for specific topics, or Shallow Linguistic Models, which are generic-featured classifiers, scratch-
ing the surface of the problem without truly understanding it. Indicatively, the most common
feature used from such Shallow Linguistic Models is the number of misspelled words in a news
piece. This feature, as well as other stylistic and grammatical features, may often correlate with
the credibility of the classified news piece; nonetheless, it is not the actual signal of misinfor-
mation. Hence, recent approaches are moving from Content Classification to Content Under-
standing by proposing models with more interpretable features that are able to encode genuine
signals of misinformation without being over-engineered for niche domains.

Our approach is also by design not a Content Retrieval approach, i.e., we do not search and
retrieve debunking information from fact-checking portals and ground-truth knowledge bases.
The justification behind this choice is two-fold:
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• Retrieval and matching of debunked claims and articles has been shown to be a chal-
lenging task that state-of-the-art techniques cannot robustly tackle, forcing big tech com-
panies to remove related functionality from commercial platforms [62]. The nature of
scientific news, e.g., the usage of highly-specialized vocabulary and the sensitivity to mi-
nor details that determine the overall credibility, makes this task more convoluted and
existing natural language processing techniques incapable of tackling it.

• As we explain above, the topic of science is relatively underrepresented in fact-checking
portals and knowledge bases; thus, in most cases, debunking information does not even
exist. In fact, this hypothesis is confirmed in our experimental evaluation, where debunk-
ing information for controversial scientific claims is only available in related scientific
literature, not accessible even to commercial automated fact-checking systems (§4.5.3).

As derived from the above, we propose a Content Understanding approach. Since the sci-
entific community and media practitioners have moved from the concept of boolean flagging
and single-dimensional ranking [159], our approach breaks down the credibility of a news piece
into multiple heterogeneous indicators that derive both from its content and its related context.
Hence, our approach takes a step toward Content Understanding, proposing interpretable in-
dicators that both experts and laypeople, as well as automated classifiers, can understand. As
these indicators are more upstream than typical “features”, they can be used in different tasks,
including retrieval (§4), classification (§5), and high-level modeling (§6).

Indicatively, one such indicator is the clickbaitness of titles, which, as we show in our ex-
perimental evaluation, in the context of scientific news, does not correlate with the quality of
news articles, in contrast with the indicator of the stance of social media postings (Figure 5.5).
Furthermore, we showcase that these indicators indeed encode misinformation since they are
able to cluster together reliable and unreliable sources with similar writing styles and citation
behavior and, additionally, distinguish between different types of conspiracy theories that are
based on Covid-19 misinformation (§6.5.5).

Thesis Statement

Online scientific misinformation is a crucial problem, especially in the times of a pandemic,
where different disciplines have to cooperate in combating it. Among other approaches, existing

content-based methods propose classification models which are either poorly interpretable or
optimized for narrow domains. In this thesis, we propose methods for extracting explainable

indicators from the content as well as the social and scientific context of news that: i) help
non-experienced laypeople evaluate news similarly to proficient fact-checkers, and ii) reveal

deep misinformation patterns among news sources.
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Summary & Future Directions
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Figure 1.6: Thesis Roadmap: In Chapter 1, we present a survey on misinformation, in Chap-
ter 2, we provide the related work for this thesis, in Chapter 3, we describe our news collection
process, in Chapters 4, 5, and 6, we present our methods for combating misinformation at dif-
ferent granularity levels, in Chapter 7, we describe a system that implements these methods,
and in Chapter 8, we conclude this thesis.

Thesis Contributions

The technical contributions as well as the roadmap of this thesis are summarized below and
highlighted in Figure 1.6.

Chapter 1: Survey on Misinformation Evolution, Characteristics, and Approaches
Discussed in MEDIATE ’20 ’21 ’22 [42, 153, 154]

In this chapter, we survey the evolution of misinformation and describe its main characteristics
and categories of approaches. This chapter is partially inspired by the endeavors of the Special
Interest Group: Media in the Digital Age4 (among others, the three renditions of the workshop
MEDIATE) to bring together media practitioners and technologists to discuss new opportuni-
ties and obstacles that arise in the modern era of information diffusion.

Chapter 2: Related Work

In this chapter, we analyze the related work and describe how this thesis advances the state-of-
the-art on combating claim-based, article-based, and source-based scientific misinformation.

4https://digitalmediasig.github.io
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Chapter 3: Contextual News Collection

In this chapter, we describe our contextual news collection process to obtain related social me-
dia postings, news articles, and scientific papers.

Chapter 4: Combating Claim-Based Scientific Misinformation (SciClops)
Originally published in the Proceedings of CIKM’21 [193]

In this chapter, we introduce SciClops, a method for detecting and contextualizing scientific
claims for assisting manual fact-checking. SciClops involves three steps to process scientific
claims found in news articles and social media postings: extraction, clustering, and contextual-
ization. The technical contributions that we achieve with SciClops are summarized as follows:

• We pretrain and fine-tune a domain-specific transformer model (BERT) to facilitate the
extraction of scientific claims;

• We cluster claims extracted from heterogeneous sources together with related scientific
literature using a method that exploits their content and the connections among them;

• We highlight check-worthy claims, broadcasted by popular yet unreliable sources, to-
gether with an enhanced fact-checking context that includes related verified claims, news
articles, and scientific papers.

In our experimental evaluation, we show that SciClops tackles sufficiently these three steps
and effectively assists non-expert fact-checkers in the verification of complex scientific claims,
facilitating them to outperform commercial fact-checking systems.

Chapter 5: Combating Article-Based Scientific Misinformation (SciLens)
Originally published in the Proceedings of WWW’19 [194]

In this chapter, we introduce SciLens, a method for evaluating the quality of scientific news
articles using heterogeneous indicators. These indicators derive from the content of articles
as well as their social and scientific context. The technical contributions that we achieve with
SciLens are summarized as follows:

• We compute quality indicators from the content of articles such as clickbaitness, senti-
ment, and readability, and distinguish between attributed and unattributed quotes;

• We compute quality indicators from the scientific context of articles, measuring the se-
mantic textual similarity and the web-graph proximity to related scientific literature;
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• We compute quality indicators from the social context of articles, measuring the reach
and the stance of their social media audience.

In our experimental evaluation, we show that these indicators help non-expert individuals eval-
uate the quality of a scientific news article more accurately than non-expert individuals who do
not have access to these indicators. Furthermore, we show that we can use SciLens to produce
a completely automated quality score for an article, which agrees more with expert evaluators
than manual evaluations done by non-experts.

Chapter 6: Combating Source-Based Scientific Misinformation (SciLander)
Originally published in the Proceedings of ICWSM’23 [76]

In this chapter we introduce SciLander, a method for mapping the scientific news sources land-
scape. With SciLander, we learn unsupervised representations of scientific news sources by
extracting and combining writing-style and citation-behavior indicators. The technical contri-
butions that we achieve with SciLander are summarized as follows:

• We extract two writing-style indicators that capture (1) the copying of news stories be-
tween sources, and (2) the usage of the same terms to mean different things (i.e., the se-
mantic shift of terms);

• We extract two citation-behavior indicators that capture (1) the usage of jargon, and (2)
the stance towards specific references;

• We use these indicators as signals of source agreement, sampling pairs of positive (simi-
lar) and negative (dissimilar) samples, and combine them in a unified framework to train
unsupervised news source embeddings with a triplet margin loss objective.

In our experimental evaluation, we show that the features learned by our model outperform
state-of-the-art baseline methods on the task of news veracity classification. Furthermore, our
clustering analysis suggests that the learned representations encode information about the re-
liability, political leaning, and partisanship bias of these sources.

Chapter 7: Real-Time News Analytics Platform (NewsTeller)
Originally presented in TTO ’19 ’20

Use Cases published in the Proceedings of VLDB ’20 and WWW ’21 [172, 173]

In this chapter, we introduce NewsTeller, a real-time news analytics platform. NewsTeller pro-
vides a wide variety of tools for mapping the media landscape, monitoring the reach of news
consumers, and providing quality indicators for millions of news articles collected in real-time.
The technical contributions that we achieve with NewsTeller are summarized as follows:
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• We retrieve, process, store, and index a wide range of multilingual news articles, social
media reactions, and references in real-time;

• We create an enhanced context for news articles combining heterogeneous content, so-
cial, and source indicators;

• We provide a multidimensional fact-checking environment for news articles to foster and
highlight expert evaluation.

Our platform is intended for three types of audiences: i) the general public, for which we pro-
vide access to news with improved context, ii) media practitioners, for which we provide tools to
monitor reactions and trends in real-time, and iii) researchers, for which we provide historical
access to news data. A live version of NewsTeller is publicly available here: https://newsteller.io.

Chapter 8: Conclusions

Finally, in the last chapter, we summarize the contributions of this thesis, discuss its limitations,
and propose future research directions.
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Chapter 2

Related Work

In this chapter, we analyze the related work and describe how this thesis advances the state-of-
the-art on combating scientific misinformation. Specifically, we present related claim-based
(§2.1), article-based (§2.2), and source-based (§2.3) approaches.

2.1 Claim-Based Approaches

As described in §1.5.2, fact-checking portals employ specialized journalists who manually:
i) detect suspicious claims (extraction), ii) discover variants of these claims published in so-
cial and news media (clustering), and iii) find the appropriate prism under which they assess
their credibility (contextualization). We summarize some automated methods tackling these
steps in Table 2.1 and discuss them below.

2.1.1 Claim Extraction

In the related literature, we find extraction techniques based on text segmentation. Particularly,
these techniques, depending on the use-case, are able to detect quotes, arguments, rumors, or
claims within documents. We observe that all these four types of text segments have simi-
lar syntactic structures; thus, we can train models and transfer knowledge across them (e.g., a
model trained on an argument corpus can also be fine-tuned to detect claims). Below, we cat-
egorize techniques based on the learning scheme they use and not necessarily on the type of
segment they are able to detect.

On weakly supervised models, Pavllo et al. [157] and Smeros et al. [194] generate complex
rule-based heuristics to extract quotes from, respectively, general and scientific news articles.
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Table 2.1: Approaches for Extraction, Clustering, and Contextualization in selected references
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SciClops

Extraction
Weak Supervision 3 7 7 7 7 3 7 7 7 3 3 7 7 7 7 7 7 - - - - - - - - - - - 3

Traditional ML Model 7 3 3 7 7 7 3 3 3 7 7 3 3 3 3 7 7 - - - - - - - - - - - 3

Neural ML Model 7 7 7 3 3 3 7 7 7 7 7 7 7 7 7 3 3 - - - - - - - - - - - 3

Clustering
Text Modality 3 3 7 7 7 7 7 7 3 - - - - - - - 3 3 3 3 7 7 - - - - - - 3

Graph Modality 7 7 7 7 7 7 3 7 3 - - - - - - - 7 3 3 3 3 3 - - - - - - 3

Bipartite Clusters 7 7 7 7 7 7 7 7 7 - - - - - - - 7 7 7 7 7 3 - - - - - - 3

Contextualization
Ground-Truth KBs 3 3 3 7 3 7 3 3 7 - - - - - - - - - - - - - 3 3 3 3 3 3 3

Priority Ranking 7 7 7 3 3 3 7 3 7 - - - - - - - - - - - - - 7 7 7 3 7 7 3

Scientific Context 3 7 7 7 7 7 7 7 3 - - - - - - - - - - - - - 7 7 7 7 7 7 3

On traditional ML models, Levy et al. [116] and Stab et al. [195] propose learning models
for claim detection and argument mining and introduce publicly available datasets, which we
utilize to train our extraction models (details in §4.5.1). Hassan et al. [85] and Popat et al. [163]
propose claim classification models that use the aforementioned fact-checking portals to verify
political claims, while Patwari et al. [156] and Lippi et al. [121] propose, respectively, an ensem-
ble and a context-independent model for claim extraction. Finally, Zlatkova et al. [229] propose
a claim extraction model for images, Karagiannis et al. [105] propose a framework for statistical
claims verification, and Pinto et al. [161] propose a method for identifying pairwise relation-
ships between scientific entities.

On neural ML models, Jaradat et al. [96] and Shaar et al. [182] detect and rank previously
fact-checked claims using deep neural models, while Hansen et al. [81] also train a neural rank-
ing model for check-worthy claims using weak supervision. Furthermore, Jiang et al. [98] use
contextualized embeddings to factor fact-checked claims, while Reimers et al. [167] use also
contextualized embeddings for claim extraction and clustering. Finally, CheckThat! Lab [10]
features claim extraction and check-worthiness tasks which are oriented towards political de-
bates in social media platforms.

While the other approaches cover the cases of political, statistical, and visual claims, our
approach provides the first dedicated solution for scientific claims. Given the complex na-
ture of the scientific claims in terms of structure and vocabulary, our approach is based on
advanced language models with contextualized embeddings that are fine-tuned with domain-
specific knowledge. Furthermore, our approach works with arbitrary input text, e.g., from social
media postings, blog posts, or news articles.
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2.1.2 Claim-Paper Clustering

Since our news collection contains multimodal information (the textual representation of
claims and papers and the interconnections between them), we present multimodal cluster-
ing approaches that combine text and graph data modalities.

Yao et al. [220] propose a unified convolutional network of terms and documents which is
used for document classification, while Zhou et al. [228] use weighted graphs that encode the
attribute similarity of the clustered nodes. Hamilton et al. [79] introduce a methodology for
jointly training embeddings based on text and graph information, while Reimers et al. [167]
apply a numerical clustering on top of such embeddings. Finally, Wang et al. [210] propose
a technique for training network embeddings that preserves the communities (clusters) of a
graph, while Duong et al. [41] provide interpretable such embeddings.

In our approach, we jointly cluster scientific claims and referenced papers, using both con-
tent and graph information. To the best of our knowledge, this is the first approach that deals
with heterogeneous passages in terms of length and vocabulary type, which are also intercon-
nected through a bipartite graph.

2.1.3 Claim Contextualization

In addition to the extraction methods described above, the majority of which also provide con-
textualization/verification techniques (details in Table 2.1). Kochkina et al. [107] and Shao et
al. [183] propose methods for automatic rumor verification using well-known fact-checking
portals. Ciampaglia et al. [33], Nadeem et al. [143], and Chen et al. [29] use Wikipedia for
fact-validation, while Gad-Elrab et al. [63] use custom knowledge graphs for generating inter-
pretable explanations for candidate facts.

While other approaches describe this step as “verification”, since essentially they lookup a
claim in a ground-truth knowledge base, we consider the general case in which claims rarely
appear in such knowledge bases. As we observe in §4.5.3, this is a pragmatic assumption since
the majority of the fact-checking effort targets non-scientific topics. As the verification of sci-
entific claims is typically more demanding than other types of claims (e.g., ScienceFeedback.co
has built an entire peer-reviewing system for this purpose), we propose a methodology that
contextualizes claims based on related scientific literature and ranks them based on the preva-
lence and the reliability of the broadcasting medium.
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2.2 Article-Based Approaches

Our method of evaluating the quality of news articles relies on a series of indicators, computed
automatically, and intersects previous literature describing related indicators. In this section,
we summarize previous work on manual, automatic, and semi-automatic news evaluation (de-
tails in Table 2.2) as well as related methods to extract quality indicators from news articles.

2.2.1 Manual News Article Evaluation

The simplest approach for evaluating news article quality relies on the manual work of domain
experts. This is a highly subjective task, given that quality aspects such as credibility are to a
large extent perceived qualities, made of many dimensions [57]. In the health domain, eval-
uations of news article quality have been undertaken for both general health topics [177] and
specific health topics such as Pancreatic Cancer [197].

As described in §1.5.2, fact-checking portals perform manual content verification by em-
ploying a mixture of professional and volunteer staff. They cover news articles on general top-
ics (e.g., Snopes.com) or specific topics such as politics (e.g., PolitiFact.com). In the case of
science news, ClimateFeedback.org is maintained by a team of experts on climate change with
the explicit goal of helping non-expert readers evaluate the quality of news articles reporting on
climate change. Each evaluated article is accompanied by a brief review and an overall quality
score. Reviews and credibility scores from fact-checking portals have been recently integrated
with search results [110] and social media posts [124] to help people find accurate informa-
tion. Furthermore, they are frequently used as ground-truth to build systems for rumor track-
ing [183], claim assessment [163], and fake multimedia detection [15, 205]. Articles consid-
ered by fact-checking portals as misinformation have been used as “seeds” for diffusion-based
methods studying the spread of misinformation [196].

Our approach differs from previous work because it is entirely automated and does not need
to be initialized with labels from expert- or crowd-curated knowledge bases.

2.2.2 Automatic and Semi-Automatic News Article Evaluation

Recent work has demonstrated methods to automate the extraction of signals or indicators of
article quality. These indicators are either expressed at a conceptual level [201] (e.g., balance
of view points, respect of personal rights) or operationalized as features that can be computed
from an article [225] (e.g., expert quotes or citations). Shu et al. [187] describe an approach for
detecting fake news on social media based on social and content indicators. Kumar et al. [113]
describe a framework for finding hoax Wikipedia pages mainly based on the author’s behavior
and social circle, while Ciampaglia et al. [33] use Wikipedia as ground-truth for testing the valid-
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Table 2.2: Summary of selected references describing techniques for evaluating news articles
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Automatic assessment 7 3 3 3 3 3 3 7 7 3 3 7 7 3 3 3 3

No ground-truth needed 3 7 7 7 7 7 7 3 3 7 3 3 3 3 7 7 3

Uses article content 3 7 7 3 3 7 3 3 3 3 3 3 3 7 3 3 3

Uses reactions from social media 7 3 3 7 3 3 7 7 3 3 7 7 7 3 7 7 3

Uses referenced scientific literature 3 7 7 7 7 7 7 7 3 7 7 3 3 7 7 7 3

Domain-agnostic 3 3 3 3 3 3 7 3 3 3 3 7 7 3 3 3 3

Web-scale 7 3 3 3 3 3 3 7 7 3 3 7 7 3 3 3 3

ity of dubious claims. Baly et al. [8] describe site-level indicators that evaluate an entire website
instead of individual pages, while Yang et al. [218] propose a probabilistic model based on so-
cial media indicators. Finally, Horne et al. [90] and Reis et al. [168] use stylistic and grammatical
content indicators to detect low-credible news articles.

Our work differs from these by being, to the best of our knowledge, the first work that an-
alyzes the quality of a news article on the web, combining its own content with context that
includes social media reactions and referenced scientific literature. We provide a method that
is generally applicable to any technical or scientific context at any granularity (from a broad
topic such as “health and nutrition” to more specific topics such as “gene-editing techniques”).

2.2.3 Quote Extraction and Attribution

The most basic approach to quote extraction is to consider that a quote is a “block of text within
a paragraph falling between quotation marks” [45, 164]. Simple regular expressions for detect-
ing quotes can be constructed [150, 176]. Pavllo et al. [157] leverages the redundancy of popular
quotes in large news corpora (e.g., highly controversial statements from politicians that are in-
tensely discussed in the press) for building unsupervised bootstrapping models, while Pareti et
al. [155] and Muzny et al. [140] train supervised machine learning models using corpora of po-
litical and literary quotes (e.g., Quotebank [203] is such a corpus that contains general quotes).

Our work does not rely on simple regular expressions, such as syntactic patterns combined
with quotations marks, which in our preliminary experiments performed poorly in quote ex-
traction from science news; instead, we use regular expressions based on classes of words. We
also do not use a supervised approach as there is currently no annotated corpus for scientific
quote extraction. In the context of this thesis, we built an information extraction model specif-
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ically for scientific quotes from scratch, i.e., a “bootstrapping” model, which is based on word
embeddings. This is a commonly used technique for information extraction when there is no
training data, and we can manually define a few high-precision extraction patterns [99].

2.2.4 Semantic Textual Similarity

One of the quality indicators that we use is the extent to which the content of a news article
represents the scientific paper(s) it is reporting about. The Semantic Textual Similarity task in
Natural Language Processing determines the extent to which two pieces of text are semanti-
cally equivalent. Three approaches that are part of many proposed methods over the last few
years include: i) surface-level similarity (e.g., similarity between sets or sequences of words or
named entities in the two documents); ii) context similarity (e.g., similarity between document
representations); and iii) topical similarity [80, 120].

In our work, we adopt these three types of similarity, which we compute at the document,
paragraph, and sentence level. The results we present suggest that the combination of different
similarity metrics at different granularities results in notable improvements over using only one
metric or only one granularity.

2.2.5 Social Media Stance Classification

Our analysis of social media postings to obtain quality indicators considers their stance, i.e., the
way in which posting authors position themselves with respect to the article they are posting
about. Stance can be binary (“for” or “against”), or be described by more fine-grained types
(supporting, contradicting, questioning, or commenting) [83], which is what we employ in our
work. Stance classification of social media postings has been studied mainly in the context of
online marketing [108] and political discourse, and rumors [230].

In our work, we build a new stance classifier based on textual and contextual features of
social media postings and replies, annotated by crowdsourcing workers. To the best of our
knowledge, there is no currently available corpus covering the scientific domain. As part of our
work, we release such corpus.

2.3 Source-Based Approaches

Source-based approaches are holistic approaches that evaluate the quality of a news source as
a whole, without focusing on individual claims or articles extracted from it. Below, we describe
some of these approaches as well as our proposal.
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Baly et al. [8, 9] and Li et al. [118] highlight the importance of features beyond text to eval-
uate the veracity of news sources, such as the presence in social media and the existence of a
Wikipedia page about a source. Furthermore, Shu et al. [188] explore the interactions between
users, authors, and sources, while Gruppi et al. [75] observe content sharing trends among news
publishers. Finally, Bourgeois et al. [17] and Rappaz et al. [166] study the selection bias in the
topic coverage of news sources by exploring the co-references of these sources to the same news
events, while Ribeiro et al. [171] infer the biases of news sources by utilizing their advertiser in-
sights into the demographics of their social media audience.

Both claim- and article-level veracity assessments require data labeling at a very large scale
(e.g., individual claims or articles labeled as reliable or unreliable) and heavily rely on text-
specific features these short pieces of text provide. Our approach is, to the best of our knowl-
edge, the first approach that aggregates information about the writing style and citation behav-
ior of news sources to learn unsupervised source representations, that is aware of the science-
related content published by them.

Furthermore, as our methodology is applied to a COVID-19 themed dataset, we observe
that recently, there has been a significant interdisciplinary effort on detecting and mitigating
the effects of misinformation related to the pandemic in social media [4, 28, 68, 191, 202, 217,
227]. Our approach complements the aforementioned approaches by providing a methodology
for detecting source-based misinformation patterns.
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Chapter 3

Contextual News Collection

The contextual news collection in our work seeks to capture all relevant content for evaluat-
ing news quality, including referenced scientific papers and reactions in social media. This
methodology can be applied to any specialized or technical domain covered in the news, as
long as: i) media coverage in the domain involves “translating” from primary technical sources,
ii) such technical sources can be characterized by known domain names on the web, and iii) so-
cial media reactions can be characterized by the presence of certain technical terms. Examples
where this type of contextual news collection could be applied beyond scientific news include
news coverage of specialized topics such as law or finance.

Below, we present a “bottom-up” and a “middle-up” variant of our news collection. In the
bottom-up collection, our starting point is a set of seed keywords that we use to retrieve related
social media postings, then shared news articles, and finally, referenced scientific papers. On
the other hand, in the middle-up collection, our starting point is an already established news
collection, which we contextualize with the related scientific literature.

3.1 Bottom-Up Collection

Social media postings containing scientific claims are usually motivated by scientific news ar-
ticles or scientific papers; thus, we use these postings as our starting point (Figure 3.1). We
harvest social media postings from DataStreamer.io (formerly known as Spinn3r.com), cover-
ing a 5-year period from June 2013 through June 2018, using a set of seed keywords that we
describe below. Additionally to the text of each posting, we collect the number of interactions
the posting has received, i.e., other users re-postings and likes. Finally, we discard postings
without outgoing URLs or with spam/unreachable URLs.

In the second step, we use a standard crawling method in which we visit, download, and
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Figure 3.1: Contextual data collection, including social media postings, which reference a series
of news articles, which cite one or more scientific papers. In our diffusion graph, paths that do
not end up in a scientific paper or paths that contain unparsable nodes (e.g., malformed HTML
pages) are pruned, and articles with the same content in two different outlets (e.g., produced
by the same news agency) are merged.

parse the pages pointed by the URLs found in the social media postings. The majority of these
pages comes from mainstream news outlets (e.g., theguardian.com or popsci.com), as well
as from alternative blogging platforms (e.g., mercola.com or foodbabe.com). In the following
chapters, we will refer to this middle-layer of our data collection simply as news articles.

In the last step of our procedure, we search within the news articles for references to scien-
tific papers. The scientific papers are peer-reviewed or gray literature1 papers hosted at univer-
sities, academic publishers, or scientific repositories. We use a large list of academic sources
consisting of: i) the top-1000 universities in the world (retrieved from CWUR.org), and ii) about
150 academic databases (retrieved from Wikipedia2), including Scopus, PubMed, and JSTOR,
among many others. For these scientific papers, we extract their title and full content. Finally,
we discard from our data collection unparsable and pay-walled scientific papers, as well as
news articles that do not contain any reference to scientific papers.

Seed Keywords. The procedure we described is domain-agnostic. The theme and the language
of our data collection depend only on the selection of the seed keywords. In the context of this
thesis, we choose English keywords from the vocabulary of CDC A-Z Index3, which includes
health terms used by laypeople and professionals such as names of food families, nutrients,
conditions, and diseases.

Final Collection. Our data collection forms a directed graph, from social media postings to
news articles to scientific papers, where edges denote a hyperlink connection. For the narrow

1https://en.wikipedia.org/wiki/Grey_literature
2https://en.wikipedia.org/wiki/List_of_academic_databases_and_search_engines
3https://www.cdc.gov/az
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domain of health and nutrition and before the outbreak of COVID-19 (in late 2019), we ac-
quired ~49K social media postings, referencing ~12K news articles from ~3.5K news outlets,
referencing ~24K scientific papers.

Subsets of this data collection are used to evaluate our methods for combating claim-based
and article-based scientific misinformation (§4 & §5). Furthermore, this methodology has
evolved and operationalized in our real-time news analytics platform (§7).

3.2 Middle-Up Collection

The following news collection is used to evaluate our method for combating source-based sci-
entific misinformation (§6). More specifically, in this collection, we use a corpus of news articles
targeted on the emerging topic of COVID-19 and a corpus of scientific references also targeted
on COVID-19. We summarize the basic statistics of both corpora in Table 3.1.

NELA-GT-2020. The collection of news articles contains a total of 1.78 million articles pub-
lished by 519 sources [74]. Each article in the dataset contains a title, full text, name of the
publishing source, and publication timestamp. We use a subset containing only articles related
to COVID-19, resulting in 991,116 news articles from 493 sources, published over 18 months,
between January 1st 2020 and July 1st 2021. We obtain this subset by applying keyword-based
filtering using the COVID-19 terminology from Shugars et al. [189], selecting articles that con-
tain at least one COVID-related keyword in the title or body text.

Media Bias/Fact Check Labels. We retrieve labels for sources in the corpus from the news as-
sessment agency Media Bias/Fact Check4. We obtain the political leaning of news sources,
represented by direction (left or right) and magnitude (mild, moderate, extreme). These are en-
coded as integer numbers in [−3, 3], negative values indicate left-bias, positive values indicate
right bias, and 0 represent center sources. Furthermore, we obtain a conspiracy-theory label,
a binary indicator denoting whether a source publishes conspiracy theories or pseudoscience
content. These are often highly unreliable sources and may or may not exhibit political lean-
ing. Finally, we obtain factual reporting, an integer score from 0 to 5 assigned to each source,
where 0 indicates the least credible score and 5 is the most credible score. A source that con-
stantly publishes misleading content, fails to fact-check its publications, and does not disclose
an editorial board tends to be associated with a lower factual reporting score.

Based on the factual reporting score, we divide news sources into two reliability classes,
namely the Reliable News Sources and the Uneliable News Sources. The rules defining each
class are described as follows:

• Reliable News Sources: sources whose factual reporting score is greater than 2.
4https://mediabiasfactcheck.com
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Table 3.1: Summary of the used corpora. We see that more than half of the articles in NELA-
GT-2020 are related to the topic of COVID-19. The labels for reliable, unreliable, and partisan
sources are obtained from Media Bias/Fact Check.

NELA-GT-2020

Total Articles ~1.8M
COVID-19 Articles ~1M
Total Sources 493
Labeled Sources 316
Reliable Sources 122
Unreliable Sources 194
Partisan Sources 162

Scientific References

COVID-19 Papers (CORD-19) ~300K
Scientific Domains (SciLens) ~1K
References in NELA-GT-2020 ~200K

• Unreliable News Sources: sources flagged as conspiracy-theory news producers or sources
whose factual reporting score is less than or equal to 2.

Scientific References. We enhance the news collection described above by extracting the exter-
nal scientific references of news articles, i.e., the outgoing hyperlinks from the main body of the
news articles. We also extract the context of each reference, i.e., the passage of the news article
that surrounds this reference. We consider the following two repositories of references:

• One of the most prominent collection of papers related to COVID-19, consisting of peer-
reviewed papers as well as preprints and other historical coronavirus research, is CORD-
19 [208]. We use the 2021-06-14 release of CORD-19, containing a total of 310,833 papers.

• The second source of scientific references is the list of academic sources described
above. This list consists of the top-1000 university domains (as indicated by CWUR.org),
enhanced with a manually curated list of open-access publishers and grey literature
databases. Indeed, these scientific references are more prevalent in news than the CORD-
19 papers because their writing style and terminology used is typically more oriented to-
wards a non-expert audience.
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Chapter 4

Combating Claim-Based Scientific
Misinformation

This chapter describes SciClops, a method to help combat online scientific misinformation.
Although automated fact-checking methods have gained significant attention recently, they re-
quire pre-existing ground-truth evidence, which, in the scientific context, is sparse and scat-
tered across a constantly-evolving scientific literature. Existing methods do not exploit this
literature, which can effectively contextualize and combat science-related fallacies. Further-
more, these methods rarely require human intervention, which is essential for the convoluted
and critical domain of scientific misinformation.

SciClops involves three main steps to process scientific claims found in online news articles
and social media postings: extraction, clustering, and contextualization. First, the extraction of
scientific claims takes place using a domain-specific, fine-tuned transformer model. Second,
similar claims extracted from heterogeneous sources are clustered together with related sci-
entific literature using a method that exploits their content and the connections among them.
Third, check-worthy claims, broadcasted by popular yet unreliable sources, are highlighted to-
gether with an enhanced fact-checking context that includes related verified claims, news arti-
cles, and scientific papers. Extensive experiments show that SciClops tackles sufficiently these
three steps, and effectively assists non-expert fact-checkers in the verification of complex sci-
entific claims, facilitating them to outperform commercial fact-checking systems.

4.1 Introduction

Although the amount of news at our disposal seems to be ever-expanding, traditional media
companies and professional journalists remain the key to the production and communication
of news. The way in which news is disseminated has become more intricate than in the past,
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Figure 4.1: Overview of SciClops including the three methods for extraction (§4.2), clustering
(§4.3), and contextualization (§4.4) of scientific claims.

with social media playing a fundamental role [128]. The ephemeral, fast-paced nature of social
media, the brevity of the messages circulating on them, the short attention span of their users,
their preference for multimedia rather than textual content, and in general the fierce compe-
tition for attention, has forced journalists to adapt in order to survive in the attention econ-
omy [142]. As a consequence, news outlets are increasingly using catchy headlines, as well as
outlandish and out-of-context claims that perform well in attracting eyeballs and clicks [174].

When mainstream news media communicate scientific content to the public, the situation
is by no means different. Oversimplified scientific claims are rapidly shared in social media,
while the scientific evidence that may support or refute them remains absent or locked behind
pay-walled journals [178].

Fact-checking portals such as ScienceFeedback.co, among others, work closely with do-
main experts and scientists to debunk misinformation and bring nuance to potentially mis-
leading claims. This remains, however, a labor-intensive and time-consuming task [84]. On
the other hand, despite misinformation circulating online exceeding the capacity of manual
fact-checking, traditional news outlets are skeptical towards adopting fully-automated meth-
ods [192]. Their main concern is that such tools provide poorly-interpretable evidence (accord-
ing to the journalistic standards), and any false judgment can lead to a downfall of the outlet’s
reputation. Indeed, even big tech companies were forced to suspend automated fact-checking
features due to similar criticism from news outlets [62]. Hence, the consensus regarding the
usage of automation in journalism is that it should assist but not replace journalists and news
consumers when they validate the veracity of news, enabling the movement onward the era of
citizen journalism [144].
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Our work focuses on scientific claims in news articles and social media postings. As sci-
entific claims, we consider sentence-level segments that involve one or more scientific entities
and are eligible for fact-checking. For example, the sentence “Ibuprofen can worsen COVID-19
symptoms” is a scientific claim because it involves two scientific entities (Ibuprofen and COVID-
19) and implies a causal relation between them. To increase the coverage of our definition,
we bound neither the number of entities nor the type of relation between them. Such non-
deterministic definition makes the detection of scientific claims a challenging task, even for
human annotators (details in §4.5.1). To address this task and enable the discovery of complex-
structured claims, there is a need for advanced language models which are fine-tuned with
domain-specific knowledge.

Once we identify candidate scientific claims, we seek evidence that proves or contradicts
them via contextualization, i.e., via building an enhanced context of trustworthy information.
In the scientific domain, the appropriate context consists of related scientific papers. Grouping
similar claims and linking them to related scientific literature is a complex task, to a large extent
because of the different nature of the items that we are seeking to connect (i.e., social media
postings, news articles, and scientific papers). These contain key passages that determine such
connections, but are fundamentally different in terms of: i) verbosity, ranging from character-
limited postings to extended scientific papers, and ii) complexity, ranging from a “social media
friendly” style of writing to the more formal registry of journalism and academic writing.

Finally, since there is a plethora of controversial claims (especially in the times of a pan-
demic), there is a need for a check-worthiness ranking that considers the prevalence and the
reliability of the broadcasting medium. Providing a scientific context enables non-expert fact-
checkers to verify claims with more precision than commercial fact-checking systems, and
more confidence since the provided context is fully-interpretable (details in §4.5.3).

Our Contribution. In this chapter we describe SciClops (Figure 4.1), a method to assist manual
verification of dubious claims, in scientific fields with open-access literature and limited fact-
checking coverage. The technical contributions we introduce are the following:

• pretrained and fine-tuned transformer-based models for scientific claim extraction from
news and social media (§4.2);

• multimodal, joint clustering models for claims and papers that utilize both content and
graph information (§4.3);

• methods for ranking check-worthy claims using a custom knowledge graph, and methods
for creating enhanced scientific contexts to assist manual fact-checking (§4.4);

• extensive experiments involving expert and non-expert users, strong baselines and com-
mercial fact-checking systems (§4.5).
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4.2 Claim Extraction

We address claim extraction as a classification problem at the sentence level, i.e., we want to
distinguish between claim-containing and non-containing sentences. Below, we present the
baseline and the advanced extractors that we evaluate in §4.5.1.

4.2.1 Baseline Extractors

We implement several baseline extractors that cover most of the related work on claim extrac-
tion described in §2.1: i) two complex heuristics which are used by state-of-the-art weakly su-
pervised models [157, 194]; ii) an off-the-shelf classifier trained with standard textual features
which is used by state-of-the-art traditional ML models [85, 121]; and iii) a transformer model
which is used by state-of-the-art neural ML models [167, 182].

Grammar-Based Heuristic

The usage of reporting verbs such as “say,” “claim,” or “report,” is a typical element of pattern-
matching heuristics for finding claims. Another element is the usage of domain-specific vocab-
ulary; in the scientific context, common verbs in claims include “prove” and “analyze.” Thus,
we compile a seed set of such verbs, which we extend with synonyms from WordNet [136]. In
the following, we refer to this set of reporting verbs as RV .

Scientific claims fundamentally refer to scientific studies, scientists or, more generally, sci-
entific notions. Thus, we employ a shortlist of nouns related to studies and scientists (including
“survey” or “researcher”). In the following, we refer to this set of nouns, together with the set of
Person and Organization entities, as E.

Finally, to capture the syntactic structure of claims, we obtain part-of-speech tags from the
candidate claim-containing sentences. Using this information, we construct a series of com-
plex expressions over classes of words such as the following:

(root(s) ∈ RV ) ∧ ((nsubj (s) ∈ E) ∨ (dobj (s) ∈ E)) =⇒ (s ∈ Claims)

where s is a sentence, root(.) returns the root verb of the syntactic tree of a sentence, nsubj(.)
returns the nominal subject, and dobj(.) the direct object of a sentence.
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Context-Based Heuristic

This heuristic is based on a frequent non-syntactic pattern, which is quite evident in our data:
if an article is posted on social media, then its central claim is typically re-stated or minimally
paraphrased in the postings. We investigate pairs (s,p) of candidate sentences s, extracted from
news articles, and postings p, referencing these news articles. Our heuristic has the form:

(∃p : sim(s, p) · pop(p) ≥ threshold) =⇒ (s ∈ Claims)

where sim(s, p) denotes the cosine similarity between the embeddings representations of s and
p, and pop(p) denotes the normalized popularity of p, i.e., the raw popularity of p over the sum of
the popularity of all the p’s that refer to s. As popularity, we consider the sum of the re-postings
and likes. Finally, threshold is a hyper-parameter of our heuristic, which in our implementation
is fixed to 0.9, yielding a good compromise of precision and recall. We note that this is the only
proposed extractor that is not purely content-based as it also requires contextual information.

Random Forest Classifier

To train this classifier, we apply a standard text-preprocessing pipeline, including stop-words
removal and part-of-speech tagging. Then, we transform the candidate claim-containing sen-
tences into embeddings by averaging the word embeddings provided by GloVe [158]. As we see
in our evaluation (§4.5.1), this classifier performs better than the aforementioned baselines; we
also note that, compared to the complex transformer models, it is substantially less intensive
in terms of computational resources and training time needed.

BERT Model

One of the most successful state-of-the-art approaches to several NLP tasks, including classi-
fication, is the transformer model [38]. In our implementation we use the well-known model
BERT and particularly its version named bert-base-uncased [215]. The configuration parame-
ters of the model are those suggested in a widely used software release of this model.1

As the last layer of the transformer architecture of BERT (and the variants we introduce
next), we add a standard binary classification layer with two output neurons, which we train
using the datasets described in §4.5.1. During the training, we keep the rest of the layers of the
model frozen at their initial parameters.

1https://huggingface.co/bert-base-uncased
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4.2.2 Fine-Tuned Transformer Extractors

Since BERT is originally trained on the generic corpus of Wikipedia, the word representations it
generates are also generic. However, scientific claim extraction is a downstream task, where the
model has to recognize patterns of a more narrow domain. Thus, we introduce three variants
of BERT with domain-specific fine-tuning namely, SciBERT, NewsBERT and SciNewsBERT :

• SciBERT is pretrained on top of BERT with a corpus acquired from Semantic Scholar con-
taining ~1M papers [12]. SciBERT has a modified vocabulary, compared to the basic vo-
cabulary of BERT, that is built to best match the scientific domain.

• NewsBERT is a new model that we introduce, built on top of BERT and pretrained on a
corpus of ~1M headlines published by the Australian Broadcasting Corporation [111].

• SciNewsBERT is also a new model that is pretrained like NewsBERT, albeit, it is built on
top of SciBERT instead of BERT.

For training NewsBERT and SciNewsBERT we employ the standard tasks for training BERT -like
models: i) Masked Language Modeling, where the model has to predict the randomly masked
words in a sequence of text, and ii) Next Word Prediction, where the model has to predict the
next word, given a set of preceding words. The hyper-parameters used for training the models
are the default proposed by the software release referenced above. Since both NewsBERT and
SciNewsBERT need substantial computational power and training time, we make them publicly
available for research purposes.

4.3 Claim-Paper Clustering

Contextualizing scientific claims requires to connect them with related scientific papers. To
achieve this, our approach employs a clustering methodology. The clusters, composed of a
mixture of claims and papers, must have high semantic coherence and ideally maintain the
connections that exist between some of these claims and papers. These implicit connections
are hyperlinks starting from news articles and social media postings containing these claims
and ending on referenced papers, forming a sparse bipartite graph.

The clustering methods that we employ are: i) Content-Based methods on top of either the
raw text or an embeddings representation of the passages, ii) Graph-Based methods on top
of the bipartite graph between the claims and the papers, or iii) Hybrid methods that com-
bine the Content-Based and the Graph-Based methods. Furthermore, we consider both soft
(overlapping) clustering (i.e., passages can belong to more than one cluster), and hard (non-
overlapping) clustering (i.e., passages must belong to exactly one cluster). The notation used in
this section is summarized in Table 4.1.
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Table 4.1: Clustering notation. The embeddings dimension (dim) of our models is 300. Matrix
L has a 1 in position (c, p), iff a news article or a social media posting containing claim c has a
hyperlink to paper p. Each row of the clustering matrices (C′ and P′) contains the probability
of a claim or a paper to belong to a cluster; for hard clustering it is “one-hot”, i.e., it has a single
non-zero element, and for soft clustering it is a general probability distribution.

Symbol Description

C ∈ R| claims | × dim initial claims matrix
P ∈ R| papers | × dim initial papers matrix
L ∈ {0, 1}| claims | × | papers | interconnection matrix
C′ ∈ [0, 1]| claims | × | clusters | final claims clustering matrix
P′ ∈ [0, 1]| papers | × | clusters | final papers clustering matrix
fC : C→ C′ non-linear neural transformation
fP : P→ P′ non-linear neural transformation
‖.‖F Frobenius Norm

4.3.1 Content-Based Clustering

Our baseline is content-based (topic) clustering. According to this approach, we assume that
claims and papers are represented in the same latent space, in which we compute topical joint
clusters. This approach does not consider the interconnections (i.e., the bipartite graph) be-
tween the claims and the papers.

For topic modeling, we use Latent Dirichlet Allocation (LDA), an unsupervised statistical
model that computes a soft topic clustering of a given set of passages [14]. We also use Gibbs
Sampling Dirichlet Mixture Model (GSDMM ), which assumes a hard topic clustering and is
more appropriate for small passages such as claims [119]. When the passages are projected
in an embeddings space, we use either the generic Gaussian Mixture Model (GMM ), which
computes a soft clustering by combining multivariate Gaussian distributions [170], or K-Means
[122], which computes a hard clustering. Finally, we test these methods with and without re-
ducing the embeddings dimensions using Principal Component Analysis (PCA) [48].

4.3.2 Graph-Based Clustering

Since our data is multimodal, an alternative to pure Content-Based clustering is pure Graph-
Based clustering. We define this problem as an optimization problem, introducing an appro-
priate loss function that we want to minimize. Our goal is to compute the optimal clusters C′

and P′, and our evaluation criterion is the extent to which C′ and P′ fit with the interconnection
matrix L. Hence, we propose the following loss function:

loss =
∥∥C′ − LP′

∥∥
F
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This loss function is also known as the Reconstruction Error and is commonly used in Linear
Algebra for factorization and approximation problems. By applying this loss function, we force
C′ and P′ to be aligned with L: the claims that appear in a news article should belong to the
same cluster as the papers referenced by this article.

A degenerate solution to the problem, if we use only this loss function, is a uniform cluster-
ing for both claims and papers. The loss is minimized, but the clustering is useless, because the
probability of any claim and any paper to belong to any cluster is uniform. To overcome this
problem, we exploit the following technique that is widely used in image processing [115].

In row-stochastic matrices (i.e., matrices that each row sums to 1), a uniform soft clustering
has lower Frobenius Norm than a non-uniform clustering. Consequently, any hard clustering
has the maximum possible Frobenius Norm. Thus, we introduce a regularizer that imposes
non-uniformity on the clusters by penalizing low Frobenius Norms for C′ and P′:

regularizer =


−β
(∥∥C′

∥∥
F

+ ‖P′‖F
)

C′,P′ ∈ V
−β ‖P′‖F C′ /∈ V
−β
∥∥C′
∥∥
F

P′ /∈ V

where V is the set of optimizable variables of our model, and β a hyper-parameter that in our
experiments defaults to β = 0.3. We use a different regularizer in each alternative version of
the model that we describe below. These alternative versions have varying flexibility, i.e., either
both C′ and P′ are optimizable variables (C′,P′ ∈ V), or one of them is fixed, thus not optimiz-
able (C′ /∈ V or P′ /∈ V). If both of them are fixed (C′,P′ /∈ V) then the model has no optimizable
variables (V = ∅). Below we present the alternative versions of the model.

Graph-Based Adaptation

In this alternative (entitled GBA-CP), we start with arbitrary cluster assignments for C′ and P′,
which we both optimize based on the loss function. This approach completely ignores the se-
mantic information of C and P and adapts arbitrarily the clusters to the interconnection matrix
L. This behavior of GBA-CP is confirmed in our experiments (§4.5.2).

In a less aggressive approach, we fix either C′ or P′ using one of the Content-Based algo-
rithms explained above, and optimize only one clustering (the non-fixed) based on the loss
function. We entitle these alternatives GBA-C for optimizing C′, and GBA-P for optimizing P′.

Graph-Based Transformation

In this alternative (entitled GBT-CP), instead of optimizing directly C′ and P′, we optimize the
weights of the non-linear neural transformations fC and fP. The architecture of fC and fP consists
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of a hidden layer of neurons with a rectified linear unit (ReLU ), and a linear Softmax classifier
that computes the overall cluster-membership distribution. We use the same loss function as
above where C′ = fC(C) and P′ = fP(P).

Similarly as above, in a less aggressive approach, we fix C′ or P′ using a Content-Based algo-
rithm, and optimize only the weights of one transformation (fC or fP). We entitle these alterna-
tives as GBT-C for optimizing fC, and GBT-P for optimizing fP.

4.3.3 Hybrid Clustering

The last clustering model that we propose is a Hybrid model that combines a Content-Based
and a Graph-Based model. As we point out in our experimental evaluation (§4.5.2), there is a
trade-off between these two approaches in terms of the semantic and interconnection coher-
ence of the computed clusters. Thus, we introduce a tunable model that controls this trade-off.

Our model initializes the clusters C′init and P′init using a Content-Based model. Then, it uses
an Alternate Optimization (AO) approach to jointly compute the final C′ and P′ that adjust best
to L. More specifically, it iteratively freezes one of the two clusters and adjusts the other, until
they both converge to an optimal state. The loss function of this model is the following:

loss =

{
γ
∥∥C′ − LP′

∥∥
F

+ (1− γ)
∥∥C′ − C′init

∥∥
F

C′-optim.
γ
∥∥C′ − LP′

∥∥
F

+ (1− γ) ‖P′ − P′init‖F P′-optim.

where γ is a hyper-parameter that controls the trade-off between Content-Based and Graph-
Based clustering. In our experiments for brevity we present results for three values: AO-Content
for γ = 0.1, AO-Balanced for γ = 0.5, and AO-Graph for γ = 0.9.

4.4 Claim Contextualization

In the previous section, we explain how we construct claim-paper clusterings in an unsuper-
vised fashion. These clusterings give already an initial context for claims since they relate them
with relevant scientific literature. In this section, we describe how we rank claims within clus-
ters based on their check-worthiness and how we complement their fact-checking context by
discovering (when available) previously verified related scientific claims.

4.4.1 Check-Worthy Claim Ranking

The check-worthiness of a scientific claim depends on its intent (e.g., whether it implies a
causal relation or describes a particular aspect of an entity) and its prevalence (e.g., in news
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and social media). We construct a custom in-cluster knowledge graph in which we encode the
intent of the claims into the topology of the graph and the prevalence of the claims into the
weighting of the graph.

In-Cluster Knowledge Graph

We construct a knowledge graph by using terms from a domain-specific vocabulary as nodes.
The edges of the graph denote the co-occurrence of two terms in the same claim (e.g., the claim
“Ibuprofen can worsen COVID-19 symptoms” contributes the edge (Ibuprofen – COVID-19)).

Since the dataset we use in our evaluation is health-related (details in §4.5), we use the vo-
cabulary of CDC A-Z Index2 that includes health terms used by laypeople and professionals. We
note that the rest of the methodology is independent of the domain of the dataset, and can be
simply adapted by selecting an appropriate vocabulary.

Graph Topology

From all the possible graph topologies, we particularly focus on the following two types:

• Causality-Based topologies which contain nodes from distinct classes such as: i) “Diseases
and Disorders” (e.g., Depression, Influenza, and Cancer), and ii) “Conditions, Symptoms,
Medications, and Nutrients” (e.g., Pregnancy, Fever, and Red Meat). A directed edge be-
tween two nodes of a different class denotes, to a certain degree, a causal relation between
these nodes in the underlying claims [31].

• Aspect-Based topologies which focus on the “ego-network” for one particular node (e.g.,
“COVID-19”) and the different aspects regarding this node (e.g., “Origin”, “Mortality Rate”
or “Common Symptoms”) [125].

We note that these two types characterize only the topologies and not the underlying claims;
thus, they only help us conceptually choose the appropriate graph ranking metric for detecting
check-worthy claims without eliminating claims that do not fall under these two types.

Graph Weighting

The weighting scheme that we employ combines two check-worthiness criteria, namely the
popularity and the reputation of the primary sources (i.e., the social media postings and the
news articles) from which the claims were extracted.

2https://www.cdc.gov/az
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The popularity of a posting is computed as the sum of the number of re-postings and likes.
If multiple postings share the same claim, then their popularity is aggregated. Then, Box-Cox
transformation (λ = 0) [18], to diminish the effect of the long-tail distribution, and Min-Max
normalization in the interval [0, 1] are applied.

On the other hand, the reputation of a news article is entailed from the reputation of the
news outlet that publishes the article. In the context of our work, we use the outlet scores com-
piled by the American Council on Science and Health (ACSH ) [5], which we also normalize in
the interval [0, 1]. News outlets that are not on ACSH ’s list (i.e., “long-tail” outlets hosting only
13.5% of the total articles in our collection) are assigned a neutral score (0.5).

Since we want to discover claims that are popular and come from low-reputable sources, we
linearly combine the two metrics for each edge e, using a tuning parameter θ as follows:

weight(e) = θ popularity(e) + (1− θ) (1− reputation(e))

In our implementation, we slightly favorite low reputation over popularity; thus, we use θ = 0.4.

Claim Ranking

We rank the edges, and consequently the claims, of the Causality-Based topologies using the
Betweenness Centrality metric [19], and the Aspect-Based topologies using the in-Degree met-
ric. Examples of check-worthy claims in our data include the term pairs: (Autism – Vaccines),
(Breast Cancer – Abortion), and (Chemotherapy – Cannabis) (details in §4.5.3).

4.4.2 Enhanced Fact-Checking Context

The final step for contextualizing the claims is to relate them (when available) with previously
verified claims. To retrieve such claims, we use ClaimsKG [198], a knowledge graph that ag-
gregates claims and reviews published using ClaimReview3. After filtering out, based on the
mentioned entities, claims with non-scientific content (i.e., 62.3% of the total claims), we end
up with a final set of ~4K scientific claims, out of which 79.8% has been determined to be False,
and 20.2% has been determined to be True. We relate claims by computing their Semantic Tex-
tual Similarity [120] and setting an appropriate threshold (0.9 in our experiments).

Our final fact-checking context for scientific claims consists of related scientific papers and
news articles from the same cluster, and, if available, related verified claims. As we see in our ex-
periments (§4.5.3), this enhanced context improves the verification accuracy and confidence of
non-expert fact-checkers, facilitating them to outperform commercial fact-checking systems.

3https://www.claimreviewproject.com
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4.5 Experimental Evaluation

In this section we evaluate the methods for extraction (§4.5.1), clustering (§4.5.2), and contex-
tualization (§4.5.3) of scientific claims.

Raw Dataset. The main dataset that we use in our evaluation is the dataset we introduced in §3,
built with the “bottom-up” methodology. This dataset has the form of a directed graph, from
social media postings to news articles to scientific papers, where edges denote a hyperlink con-
nection. The ~50K social media postings of the dataset include the text of the postings as well as
popularity indicators such as the number of re-postings and likes. The ~12K news articles of the
dataset include articles from mainstream news outlets (e.g., theguardian.com or popsci.com),
as well as from alternative blogging platforms (e.g., mercola.com or foodbabe.com). Finally, the
~24K scientific papers of the dataset include peer-reviewed or gray literature papers hosted at
universities, academic publishers, or scientific repositories (e.g., Scopus, PubMed, JSTOR, and
CDC). We note that the overall volume of the dataset simulates the typical news coverage on
health-related topics for a period of four months.

4.5.1 Evaluation of Claim Extraction

The evaluation of the extractors is two-fold; first, we validate their accuracy using a widely-used
clean and labeled dataset, and then, we use them in a real-world scenario where we apply them
on the raw dataset described above, and evaluate them via crowdsourcing.

Training

Since there is no specific training dataset for the task of scientific claim extraction, we use two
datasets mainly used for argumentation mining, namely UKP [195] and IBM [116]. The UKP
dataset includes sentences from controversial search engine results with three labels (non-
argument/supporting argument/opposing argument); for the purposes of our task, we con-
sider non-argument sentences and negative examples of claims, and supporting/opposing ar-
gument sentences as positive examples of claims. The IBM dataset includes context-dependent
claims from controversial Wikipedia articles, which, for the purposes of our task, we consider
as positive examples of claims.

We train our classifiers using the balanced union of the two datasets (~11K positive and neg-
ative samples). In the following, we refer to this dataset as the Generic Dataset of claims. We also
train our classifiers with a “science-flavored” dataset derived from the UKP and IBM datasets.
Specifically, in this dataset, we oversample claims regarding, e.g., “abortion” and downsam-
ple claims regarding, e.g., “school uniforms”. We apply this data augmentation by manually
processing based on the “general topic” field that exists in both UKP and IBM datasets. The
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Table 4.2: Cross validation of scientific claim extractors. Since, as we explain in §4.5.1, both
datasets are balanced, the evaluation metric that we use is Accuracy (ACC).

Generic Dataset Scientific Dataset
ACC ACC

B
as

el
in

e Grammar-Based 50.4% 52.3%
Context-Based 49.5% 50.2%
Random Forest 74.7% 75.6%
BERT 82.2% 81.0%

Sc
iC

lo
p

s SciBERT 81.5% 80.6%

NewsBERT 82.0% 80.0%

SciNewsBERT 81.1% 81.2%

described dataset is also balanced, containing ~16K positive and negative samples, and in the
following, we refer to it as the Scientific Dataset of claims.

Cross Validation

We perform a 5-fold cross validation over the datasets described above; the results are shown
in Table 4.2. We observe that the Heuristic-Based extractors perform poorly for this task, which
confirms that it is a demanding task with many corner cases. Remarkably, the Context-Based
heuristic, which is domain-agnostic, achieves identical accuracy with the Grammar-Based
heuristic, which contains manually curated grammar rules. We also observe that the Random
Forest classifier does not perform extremely worse than the Transformer-Based models, while
being more eco-friendly in terms of resources and training time needed.

The performance of the transformer-based models confirms the fact that they are state-of-
the-art in most NLP tasks. However, from this task, we do not see the benefits of the domain-
specific pretraining. On the Generic Dataset, BERT, which is pretrained on a generic corpus,
performs better, while on the Scientific Dataset, SciNewsBERT, which is pretrained on a scien-
tific and a news corpus, performs better; nonetheless, their difference is negligible. The real
difference among these models is shown in the next experiment.

Crowd Evaluation

We collect boolean labels for 700 sentences extracted from the raw dataset described above by
asking the crowd workers a simple classification question (i.e., whether a given sentence con-
tains a scientific claim or not). We use the platform Mechanical Turk, asking input from three
independent crowd workers per sentence (57 in total). To ensure high-quality annotations, we
employ what the platform calls Master Workers, i.e., the most experienced workers with ap-
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Table 4.3: Crowd Evaluation of scientific claim extraction. Results reported for weak (2 out of
3) annotator agreement (125 claims - 174 non-claims) and strong (3 out of 3) annotator agree-
ment (82 claims - 242 non-claims). Since, especially the second set is highly unbalanced, the
evaluation metrics that we use are Precision (P), Recall (R), and F1 Score (F1).

Weak Agreement Strong Agreement
P R F1 P R F1

B
as

el
in

e

Grammar-Based 51.8% 70.4% 59.9% 40.4% 28.0% 33.1%
Context-Based 44.6% 49.6% 47.0% 24.5% 45.1% 31.8%
Random Forest-gen 52.1% 70.4% 59.9% 43.7% 80.5% 56.7%
Random Forest-sci 56.7% 54.4% 55.5% 43.3% 44.8% 44.1%
BERT-gen 50.8% 50.4% 50.6% 33.5% 68.3% 45.0%
BERT-sci 78.7% 38.4% 51.6% 79.2% 51.2% 62.2%

Sc
iC

lo
p

s

NewsBERT-gen 55.0% 48.8% 51.7% 38.9% 62.2% 47.9%
NewsBERT-sci 76.9% 40.0% 52.6% 74.2% 56.1% 63.9%
SciBERT-gen 48.8% 66.4% 56.3% 32.8% 72.0% 45.0%
SciBERT-sci 48.8% 66.4% 56.2% 86.5% 39.1% 53.8%
SciNewsBERT-gen 49.8% 80.0% 61.3% 38.8% 78.0% 51.8%
SciNewsBERT-sci 84.4% 30.4% 44.7% 82.7% 52.4% 64.2%

proval rate greater than 80%. Finally, we consider Strong Agreement among crowd-workers, the
3 out of 3 agreement, and Weak Agreement the 2 out of 3 agreement.

We note that there are 77 out of the 700 sentences for which the majority of the annotators
answered N/A, because they could not distinguish whether these sentences contain a claim or
not. For example, interrogative sentences like “What? Ibuprofen Can Make You Deaf?” con-
fused the annotators, while similar affirmative sentences like “Tylenol PM Causes Brain Dam-
age” were easily identified as scientific claims. The remaining 623 sentences are divided into
two subsets; i) sentences having Strong Agreement among annotators, with 82 claims (positive
examples) and 242 non-claims (negative examples), and ii) sentences having Weak Agreement
among annotators, with 125 claims and 174 non-claims.

We observe that especially the subset with Strong Agreement is highly unbalanced, which is
indeed a realistic scenario considering the ratio of claim and non-claim containing sentences in
typical news articles. Furthermore, annotators fully agree that a sentence contains a scientific
claim for less than 12% of total the sentences, which confirms it is a highly confusing task.

Results

The overall results of the comparison of the extraction models are summarized in Table 4.3. For
all the models, we use the following naming convention: the suffix -gen is used to denote that
models are trained on the Generic Dataset explained in §4.5.1, while suffix -sci is used to denote
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that models are trained on the Scientific Dataset also explained in §4.5.1. This convention does
not apply to heuristic models that do not require training.

We observe that all the -gen models have better or equally good recall as the respective -sci
models. This happens because -gen models have been trained equally towards all the labeled
claims and have learned to better recognize the structure of a claim. After analyzing the er-
rors of the models, we noticed that claims with simple structure like “Repetitive behaviors in
autism show sex bias early in life” were identified more from -gen than from -sci models. On the
other hand, -sci models, which have been optimized for the narrow scientific domain, are more
selective, hence they show in general better precision than the respective -gen models.

Focusing more on the variants of BERT, we observe that task-specific pretraining boosts the
performance of the model, which is not visible in the first experiment. Specifically, we see that
pretraining on both scientific and news domain gives the best results. One illuminative exam-
ple is the claim “Galactosides Treat Urinary Tract Infections Without Antibiotics”, where Galac-
tosides is a word that does not appear in the basic vocabulary of BERT 4, however, it appears in
the extended vocabulary of SciBERT 5 and SciNewsBERT.

Finally, it is noteworthy that the Random Forest model provides quite comparable results to
the transformer-based models, while being a much lighter and faster-to-train model.

4.5.2 Evaluation of Claim-Paper Clustering

Since we construct a bimodal clustering of claims and papers, we evaluate its quality with re-
spect to two axes; a good-quality clustering must contain clusters of semantically related claims
and papers (Semantic Coherence), and adhere to the implicit connections between these claims
and papers (Interconnection Coherence).

Semantic Coherence

To measure the semantic coherence of a clustering, we compute a modified version of the Aver-
age Silhouette Width (ASW ) [175]. The first modification is that the distance used is not a metric
distance (e.g., Euclidean distance) but a semantic distance (Semantic Textual Similarity (STS)).
The second modification is that we generalize the metric for two (or more) joint clusterings.
The original metric computes the average distance between the centroid of each cluster and its
elements. In our case, since we have two joint clusterings for claims and papers, we compute
the metric for all the combinations of centroids (c̄) and elements (e) of each cluster. Thus, the
modified ASW is computed as follows:

4https://cdn.huggingface.co/bert-base-uncased-vocab.txt
5https://cdn.huggingface.co/allenai/scibert_scivocab_uncased/vocab.txt
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ASW(cluster) = 1
| centroids |·| cluster |

∑
e∈cluster

c̄∈centroids

STS(e, c̄)

where centroids consists of the claims centroid and the papers centroid of each cluster. Finally,
we report the mean ASW across all clusters. This cross-computation of the metric allows cap-
turing the semantic coherence of the clusters both individually and jointly.

Interconnection Coherence

To measure the interconnection coherence of the clusterings (i.e., the adaptivity of the clus-
terings towards the interconnection matrix L), we use ideas from link-based recommendation.
First, we compute a hard clustering for claims and papers:

C′comp = argmaxx(C′)
P′comp = argmaxx(P′)

Since, as we explain in Table 4.1, each row of C′ and P′ contains the probability of a claim or a
paper to belong to a cluster, when we compute argmax over rows we obtain a hard clustering,
while when we compute argmax over columns we obtain the cluster centroids. For example,
given a single claim c and three clusters cl0, cl1, cl2:

c′ = [0.1, 0.8, 0, 1]⇒ c′comp = cl1

Next, we use one clustering (e.g., of claims) to recommend possible instances of the other
clustering (e.g., of papers). The recommendation is content-agnostic and exploits only the in-
terconnection matrix L. Formally:

C′rec = argsortx(sumy(L� P′))
P′rec = argsortx(sumy(LT � C′))

where� is the Hadamard (element-wise) product. For the same claim c, papers p1 and p2, and
clusters cl0, cl1, cl2 we have:

c
↗p1[0.5,0.1,0.4]

↘p2[0.1,0.8,0.1]
⇒ c′rec = argsortx(0.6, 0.9, 0.5) = [cl1, cl0, cl2]

To compute the recommendation quality, we utilize the metric of Recall@k (R@k), which
measures the ratio in which the correct cluster is recommended among the top-k results. We
report the mean of the R@k for the claims and the papers clustering.

45



Table 4.4: Clustering Evaluation. Semantic Coherence is measured using the Average Silhouette
Width (ASW ), and Interconnections Coherence is measured using Recall@3 (R@3).

clusters=10 clusters=50 clusters=100
ASW R@3 ASW R@3 ASW R@3

C
o

n
te

n
t-

B
as

edLDA 44.5% 86.8% 63.2% 69.4% 66.6% 69.5%
GSDMM 42.1% 98.9% 48.5% 86.2% 48.7% 72.4%
GMM 55.5% 68.9% 67.7% 52.4% 72.8% 45.2%
PCA/GMM 51.3% 90.0% 66.6% 34.2% 71.7% 28.4%
K-Means 53.2% 97.9% 68.9% 83.4% 73.2% 74.2%
PCA/K-Means 52.0% 97.6% 66.8% 87.8% 71.2% 75.1%

G
ra

p
h

-B
as

ed

GBA-CP 38.2% 100.0% 40.9% 100.0% 44.5% 99.5%
GBA-C 38.1% 96.7% 44.5% 93.2% 48.7% 92.0%
GBA-P 40.0% 96.5% 43.0% 93.6% 47.3% 92.3%
GBT-CP 26.5% 99.6% 27.1% 98.9% 32.1% 71.8%
GBT-C 37.9% 92.5% 45.0% 59.8% 47.2% 53.8%
GBT-P 36.4% 88.4% 42.3% 62.4% 43.7% 65.9%

H
yb

ri
dAO-Content 54.8% 96.7% 67.9% 90.0% 73.3% 92.1%

AO-Balanced 56.0% 99.8% 67.6% 99.6% 72.1% 99.5%
AO-Graph 55.6% 99.8% 67.3% 100.0% 71.8% 99.8%

Results

The results of the evaluation are shown in Table 4.4. As we observe, the Content-Based (base-
line) clustering techniques that use a textual representation of claims and papers (i.e., LDA
and GSDMM ), generate clusters with lower Semantic Coherence than the ones that use an em-
beddings representation (i.e., GMM and K-Means). This is partially explained by a vocabulary
mismatch: the language used in papers is more complex and contains more scientific terms
than the one used in social and news media (where the claims derive from). Thus, embed-
dings representations have the advantage of capturing the semantic proximity of topics, even
if these topics occur from two heterogeneous vocabularies. Furthermore, we observe that soft
clustering techniques (i.e., LDA and GMM ) generate, in general, clusters with higher Semantic
Coherence than the respective hard clustering techniques (i.e., GSDMM and K-Means), indicat-
ing that the theme of claims and papers is usually multifaceted. Finally, we observe that the
dimensionality reduction, performed by PCA, is not helpful in the context of this task.

Regarding the Graph-Based techniques, we see that they construct clusters with high Inter-
connections Coherence but the lowest Semantic Coherence. Not surprisingly, GBA-CP achieves
the maximum Interconnections Coherence since, as we explain in §4.3.2, it arbitrarily adapts the
clusters to the interconnection matrix L.

Overall, we observe that the most robust technique in terms of balance between Semantic
and Interconnections Coherence is the Hybrid technique (AO-Balanced), which computes a soft
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clustering based on an embeddings representation and considers both the text and the graph
modality of the dataset equally.

4.5.3 Evaluation of Claim Contextualization

The overall evaluation of our method is performed with an experiment that involves expert and
non-expert fact-checkers as well as two state-of-the-art commercial systems. In this experi-
ment, we evaluate the ability of SciClops to contextualize controversial claims in order to facil-
itate their verification by non-expert fact-checkers. Hence, given the ground-truth provided by
experts, we compare the accuracy of non-expert fact-checkers that have or do not have access
to the context provided by SciClops as well as the accuracy of the commercial systems.

Claim Processing

Using SciClops, we extract, cluster, and finally select the top-40 check-worthy scientific claims
in the data collection. The topics of the claims are heterogeneous, covering controversial online
discussions such as the usage of therapeutic cannabis in modern medicine, the consumption
of small amounts of alcohol during pregnancy, and the effect of vaccines in disorders such as
autism. We notice that in some of the claims, redundant information that could confuse the
fact-checkers is mentioned (e.g., we find the claim “Donald Trump has said vaccines cause
autism,” in which the scientific question is whether “vaccines cause autism” and not whether
Donald Trump made this statement). Thus, to avoid misinterpretations and to mitigate pre-
existing biases for or against public figures, we replace from these claims all the Person and
Organization entities with indefinite pronouns.

Non-Experts

We employ crowdsourcing workers using the same setup described in §4.5.1, and ask them
to evaluate the Validity of each claim in a Likert Scale [100] (from “Highly Invalid” to “Highly
Valid”). We also ask them to rate their Effort to find evidence and their Confidence that the
evidence they found is correct.

We divide non-experts into a control group of Non-Experts Without Context, and two exper-
imental groups of Non-Experts With Partial Context and Non-Experts With Enhanced Context :

• Non-Experts Without Context are shown a bare scientific claim with no additional infor-
mation, as they would read it online in, e.g., a messaging app or a social media posting.

• Non-Experts With Partial Context are shown a scientific claim and its source news article,
i.e., the news article from which the claim was extracted.
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• Non-Experts With Enhanced Context are shown a scientific claim, its source news article,
and: i) the top-k news articles where similar claims were found, ii) the top-k most relevant
papers, and, if available, iii) the top-k most similar, previously verified claims. To avoid
overwhelming this experimental group with redundant information, we set k = 3.

Experts

We ask two independent experts with health (a senior Pediatrician) and biology (a Postdoctoral
researcher in Microbiology) backgrounds to evaluate the validity of the claims. Each expert
evaluated all 40 claims independently, and was given the chance to cross-check the ratings by
the other expert and revise their own ratings, if deemed appropriate. Overall, we use the average
of the two expert ratings as ground-truth.

Commercial Systems

Finally, for the verification of the same scientific claims, we use two commercial systems for
fact-checking, namely ClaimBuster [85] and Google Fact Check Explorer6:

• ClaimBuster is a system used massively by journalists which initially aimed at detecting
important factual claims in political discourses; however, its current architecture allows
for investigating any kind of check-worthy claims (details in §2.1).

• Google Fact Check Explorer is also an exploration tool used by journalists to verify claims
published using the tagging system of ClaimReview; we note that ClaimReview is also
exploited in the contextualization step of SciClops (details in §4.4.2).

To homogenize the scores of these systems with the scores of the fact-checkers, we quantize
them to the aforementioned Likert Scale.

Results

Results are summarized in Table 4.5. Given the ground-truth provided by the experts, we mea-
sure the accuracy of the three aforementioned groups of non-experts and the two commercial
systems using the Root Mean Square Error (RMSE).

We observe that ClaimBuster performs better than our control group of Non-Experts With-
out Context while providing a solution without human intervention. Furthermore, we ob-
serve that Google Fact Check Explorer performs poorly, mainly because only 20% of the queried

6https://toolbox.google.com/factcheck/explorer
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Table 4.5: Left: Root Mean Square Error (RMSE) between the scores provided by the Experts
(ground-truth) and the scores provided by Non-Experts and Commercial Systems; the last row
shows the RMSE across Experts (lower is better).
Right: Verification of two contradictory claims from CNN and MensJournal by Non-Experts and
Commercial Systems; the last row shows the ground-truth provided by the Experts.

RMSE CNN Claim MensJournal Claim

Non-Experts
Without Context 1.91 Borderline Borderline
With Partial Context 1.73 Valid Valid
With Enhanced Context (SciClops) 1.54 Valid Highly Invalid

Commercial Systems
ClaimBuster 1.74 Valid Borderline
Google Fact Check Explorer 2.79 N/A N/A

Experts 1.02 Highly Valid Highly Invalid

claims were present in the fact-checking portals it monitors (e.g., the claim “Vaccines cause
Autism” is present in the fact-checking section of USA Today [207], while the Contradictory
Claims described next are absent from all the fact-checking portals).

Finally, regarding the non-expert human fact-checkers, we observe that the more contex-
tual information is available, the more accurately they rate the claims. Indicatively, the RMSE of
Non-Experts With Enhanced Context is only 50% greater than the RMSE across Experts. Over-
all, we see that, when the under-verification claims derive from a narrow scientific domain,
non-expert human fact-checkers, provided with the proper fact-checking context, may out-
perform state-of-the-art commercial systems.

Case Study: Contradictory Claims

Within the set of under-verification claims, we noticed two contradictory claims. The first claim
opposes the use of therapeutic cannabis for treating Post-Traumatic Stress Disorder (PTSD) and
comes from a mainstream news outlet (CNN ).7 The second claim supports the use of cannabis
for treating PTSD and comes from a popular health blog (MensJournal).8 Current scientific un-
derstanding supports the first claim (from CNN ), but not the second one (from MensJournal),
as evidenced by a paper of the Journal of Clinical Psychiatry [214].

As we show in Table 4.5, ClaimBuster and all the groups of Non-Experts mostly support the
claim from CNN as valid. Moreover, as discussed above, Google Fact Check Explorer provides no
answer for these two claims since they are not present in the monitored fact-checking portals.

7CNN : “Marijuana does not treat chronic pain or post-traumatic stress disorder.” [181]
8MensJournal: “Marijuana can help battle depression, anxiety, post-traumatic stress disorder, and even addictions

to alcohol and painkillers.” [104]
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Figure 4.2: Kernel Density Estimation (KDE) of Confidence (left) and estimated Effort (right),
and Average Work Time (bottom), of Non-Experts verifying claims. Best seen in color.

Indeed, only Non-Experts With Enhanced Context are able to indicate that the claim from Men-
sJournal is invalid, mainly because SciClops provides a fact-checking context that includes a
paper from the Journal of Clinical Psychiatry which debunks the claim even in its title.9

Case Study: Confidence & Effort

As we observe in Figure 4.2, Non-Experts that were shown the Enhanced Context of claims
were more confident in their verification, additionally to being more accurate than the other
two groups of users, which is partially explained by the fact that the provided context is fully-
interpretable (as explained above), thus more trustworthy. However, the same users’ self-
assessment of their effort as well as their actual work time was higher than the other two groups
of users, which is explained by the fact that they had to visit more potential verification sources.

9Journal of Clinical Psychiatry: “Marijuana use is associated with worse outcomes in symptom severity and violent
behavior in patients with posttraumatic stress disorder.” [214]
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4.6 Summary

In this chapter, we have described an effective method for assisting non-experts in the ver-
ification of scientific claims. We have shown that transformer models are indeed the state-
of-the-art on scientific claim detection, however, they require domain-specific fine-tuning to
perform better than other baselines. We have also shown that, by exploiting the text of a
claim and its connections to scientific papers, we effectively cluster topically-related claims
and papers, as well as that, by building an in-cluster knowledge graph, we enable the detec-
tion of check-worthy claims. Overall, we have shown that SciClops can build the appropriate
fact-checking context to help non-expert fact-checkers verify complex scientific claims, out-
performing commercial systems. We believe that our method complements these systems in
domains with sparse or non-existing ground-truth evidence, such as the critical domains of
science and health.
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Chapter 5

Combating Article-Based Scientific
Misinformation

This chapter describes SciLens, a method for evaluating the quality of scientific news articles.
The starting point for our work is structured methodologies that define a series of quality as-
pects for manually evaluating news. Based on these aspects, we describe a series of news qual-
ity indicators, which derive from both the content and the context of articles, where context
is provided by (1) explicit and implicit references on the article to scientific literature, and (2)
reactions in social media referencing the article. SciLens introduces models for extracting such
indicators, including models for quote extraction and attribution, semantic similarity between
news articles and scientific papers, and social media stance classification. According to our
experiments, these indicators help non-experts evaluate the quality of a scientific news article
more accurately compared to non-experts that do not have access to these indicators. Fur-
thermore, SciLens can also produce a completely automated quality score for an article, which
agrees more with expert evaluators than manual evaluations done by non-experts.

5.1 Introduction

Scientific literacy is broadly defined as knowledge of basic scientific facts and methods. Deficits
in scientific literacy are endemic in many societies, which is why understanding, measuring,
and furthering the public understanding of science is essential to many scientists [11].

Mass media can be a potential ally in fighting scientific illiteracy. Reading scientific content
has been shown to help align public knowledge of scientific topics with the scientific consensus,
although, in highly politicized topics, it can also reinforce pre-existing biases [82]. There are
many ways in which mass media approaches science, and even within the journalistic practice,
there are several sub-genres. Scientific news portals include most of the categories of articles
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Figure 5.1: Overview of SciLens, including quality indicators from the content of articles and
from their referencing social media postings and referenced scientific literature.

appearing traditionally in newspapers, such as editorial and op-ed [58]. However, the main
category of articles is scientific news articles, where journalists describe scientific advances.

Scientific news articles have many common characteristics with other classes of news arti-
cles; for instance, they follow the well-known inverted pyramid1 style, where the most relevant
elements are presented at the beginning of the text. However, they also differ in important
ways. Scientific news is often based on findings reported in scientific journals, books, and
talks, which are highly specialized. The task of the journalist is then to translate these find-
ings to make them understandable to a non-specialized, broad audience. By necessity, this
involves negotiating several trade-offs between desirable goals that sometimes enter into con-
flict, including appealing to the public and using accessible language, while at the same time
accurately representing research findings, methods, and limitations [152].

The resulting portrayal of science in news varies widely in quality. For example, the website
“Kill or Cure?”2 has reviewed over 1, 200 news stories published by The Daily Mail (a UK-based
tabloid), finding headlines pointing to 140 substances or factors that cause cancer (including
obesity, but also Worcestershire sauce), 113 that prevent it (including garlic and green tea), and
56 that both cause and prevent cancer (including rice). Evidently, news coverage of cancer re-
search that merely seeks to classify every inanimate object into something that either causes or
prevents cancer does not help to communicate effectively scientific knowledge on this subject.

The goal of SciLens is to help evaluate the quality of scientific news articles. Thus, we com-
pute a series of quality indicators from the content of articles and from their referencing social
media postings and referenced scientific literature (Figure 5.1).

1https://en.wikipedia.org/wiki/Inverted_pyramid_(journalism)
2http://kill-or-cure.herokuapp.com
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Regarding the content of the articles, we begin by computing several baseline features de-
scribed by previous work. Next, we perform an analysis of quotes in articles, which are quite
prevalent in the case of scientific news. Given that attributed quotes are more telling of high
quality than unattributed or “weasel” quotes, we also carefully seek to attribute each quote to a
named entity which is often a scientist but can also be an institution.

Regarding the scientific literature, we would like to know the strength of the connection
of articles to scientific papers. For this, we consider two groups of indicators: text-based and
graph-based. Text-based indicators are built upon various metrics of text similarity between
the content of an article and the content of scientific papers, considering that the technical
vocabulary is unlikely to be preserved as-is in articles written for the general public. Graph-
based indicators are based on a diffusion graph in which scientific papers and web pages in
academic portals are nodes connected by links. High-quality articles are expected to be con-
nected through many short paths to academic sources in this graph.

Regarding social media postings, we measure two aspects: reach and stance. Reach is mea-
sured through various proxies for attention that seek to quantify the impact that an article has
on social media. The stance is the positioning of posting authors with respect to an article,
which can be positive (supporting or commenting on an article without expressing doubts) or
negative (questioning an article or directly contradicting what the article is saying).

We evaluate the extent to which the indicators computed in SciLens help determine the
quality of a scientific news article. We consider that these indicators can be helpful in two
ways. First, in a semi-automatic setting, we show the indicators to end-users and ask them to
evaluate the quality of a scientific news article; if users who see these indicators are better at
this task than users who do not see them, we claim that the indicators are useful. Second, in a
fully automatic setting, we train a model based on all the computed indicators. In both cases,
the ground-truth for evaluation is provided by experts in communication and science.

Our contribution. In this chapter, we describe SciLens, a method for evaluating the quality of
scientific news articles. The technical contributions we introduce are the following:

• a series of automatically-computed quality indicators (Table 5.1) describing:

– the content of a news article, where we introduce a method to use quotes appearing
on it as quality indicators (§5.2);

– the relationship of a news article with the scientific literature, where we introduce
text-based and graph-based similarity methods (§5.3);

– the social media reactions to the article, where we introduce a method to interpret
stance as quality signal (§5.4);

• an experimental evaluation of our methods involving experts and non-experts (§5.5).
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5.2 Content Indicators

In this section, we introduce our content indicators, i.e., the indicators which are based on the
textual content of a news article. These indicators consider the writing style of an article as well
as the usage of attributed or unattributed quotes.

5.2.1 Writing-Style (Baseline) Indicators

As a starting point, we adopt a set of content-based quality indicators described by previous
work. These indicators are described below:

• Title Deceptiveness and Sentiment : we consider if the title is “clickbait” that oversells the
contents of an article in order to pique interest [130, 211];

• Article Readability: we consider the level of education someone would need to easily read
and understand the article [56];

• Article Length and presence of Author Byline: we consider the verbosity of an article and
whether author details are available to the readers [225].

5.2.2 Quote-Based Indicators

Quotes are a common and essential element of many scientific news articles. While selected by
journalists, they provide an opportunity for experts to directly present their viewpoints in their
own words [34]. However, identifying quotes, in general, is challenging, as noted by previous
work (§2.2.3). In the specific case of our corpus, we observe that they are seldom contained
in quotation marks in contrast to other kinds of quotes (e.g., political quotes [164]). We also
note that each expert quoted tends to be quoted once, which makes the problem of attribut-
ing a quote challenging as well. An illustrative example of our extraction and the attribution
procedure is shown in Figure 5.2.

Quote Extraction Model

To extract quotes, we start by addressing a classification problem at the level of a sentence, i.e.,
we want to distinguish between quote-containing and non-containing sentences. To achieve
this, we first select a random sample from our dataset, then manually identify quote patterns,
and finally, we generalize automatically these patterns to cover the entire dataset. As we de-
scribe in the related work section (§2.2.3), this is known as a “bootstrapping” model oriented to
detect high-precision patterns.

55



Figure 5.2: Example of quote extraction & attribution (quotee anonymized). Best seen in color.

The usage of reporting verbs is a typical element of quote extraction models [155]. Along
with common verbs that are used to quote others (e.g., “say,” “claim”), we used verbs that are
common in scientific contexts, such as “prove” or “analyze.” First, we manually create a seed set
of such verbs. Next, we extend it with their nearest neighbors in a word embedding space; the
word embeddings we use are the GloVe embeddings, which are trained on a corpus of Wikipedia
articles [158]. We follow a similar approach for nouns related to studies (e.g., “survey,” “anal-
ysis”) and nouns related to scientists (e.g., “researcher,” “analyst”). Syntactically, quotes are
usually expressed using indirect speech. Thus, we also obtain part-of-speech tags from the
candidate quote-containing sentences.

Using this information, we construct a series of regular expressions over classes of words
(“reporting verbs,” “study-related noun,” and part-of-speech tags) which we evaluate in §5.5.1.

Quote Attribution

To evaluate article quality, it is essential to know not only that an article has quotes, but also
their provenance: who or what is quoted. After extracting all the candidate quote-containing
sentences, we categorize them according to the information available about their quotee.

A quotee can be an unnamed scientist or an unnamed study if the person or article being
quoted is not disclosed (e.g., “researchers believe,” “most scientists think” and other so-called
“weasel” words). Sources that are not explicitly attributed, such as these ones, are, as a general
rule, considered less credible than sources in which the quotee is named [225].

A quotee can also be a named entity identifying a specific person or organization. In this
case, we apply several heuristics for quote attribution. If the quotee is a named person, if they
are referred with their last or first name, we search within the article for the full name. When the
full name is not present in the article, we map the partial name to the most common full name
that contains it within our corpus of news articles. We also locate sentences within the article
that mention this person together with a named organization. This search is performed from
the beginning of the article as we assume they follow an inverted pyramid style. In case there
are several, the most co-mentioned organization is considered as the affiliation of the quotee.
An example of a detected quotee and quotee affiliation is shown in Figure 5.2.
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If the quotee is an organization, then it can be either mentioned in full or using an acronym.
We map acronyms to full names of organizations when possible (e.g., we map “WHO” to “World
Health Organization”). If the full name is not present in an article, we follow a similar procedure
as the one used to determine the affiliation of a researcher, scanning all the articles for co-
mentions of the acronym and a named organization.

Scientific Mentions

News articles tend to follow journalistic conventions rather than scientific ones [40]; regarding
citation practices, this implies they seldom include formal references in the manner in which
one would find them in a scientific paper. Often there is no explicit link: journalists may con-
sider that the primary source is too complex or inaccessible to readers to be of any value, or
may find that the scientific paper is located in a “pay-walled” repository. However, even when
there is no explicit link to the paper(s) on which an article is based, good journalistic practices
still require identifying the information source (institution, laboratory, or researcher).

Mentions of academic sources are partially obtained during the quote extraction process
(§5.2.2), and complemented with a second pass that specifically looks for them. During the
second pass, we use the list of universities and scientific portals that we used during our con-
textual news collection (§3) to identify them as potential quotees in the article.

5.3 Scientific Literature Indicators

In this section, we describe text- and graph-based indicators measuring how articles are related
to the scientific literature. Specifically, these indicators measure the semantic adherence and
the web proximity to the primary scientific sources of the articles.

5.3.1 Source Adherence Indicator

When there is an explicit link from a news article to a scientific paper, we can measure the extent
to which these two documents convey the same information. This is essentially a computation
of the Semantic Textual Similarity between the news article and its source.

Supervised Learning for Semantic Textual Similarity

We construct a model using supervised learning; the features that we use as input to the model
consist of the following text similarity metrics:
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Figure 5.3: A news article (left) and a scientific paper (right) with Semantic Textual Similarity of
87.9%. Indicatively, two passages from these documents, whose conceptual similarity is cap-
tured by our method, are presented. We can see the effort of the journalist in translating from
an academic to a less formal language without misrepresenting the results of the paper.

• the Jaccard similarity between the sets of named entities (persons and organizations),
dates, numbers, and percentages of the two texts;

• the cosine similarity between the GloVe embeddings of the two texts;

• the Hellinger similarity [87] between the LDA topic vectors [14] of the two texts;

• the relative difference between the length in words of the two texts.

Each of the similarities is computed three times: i) considering the entire contents of the article
and the paper; ii) considering one paragraph at a time, and then computing the average simi-
larity between a paragraph in one document and a paragraph in the other; and iii) considering
one sentence at a time, and then computing the average similarity between a sentence in one
document and a sentence in the other. In other words, in (ii) and (iii), we compute the average
of each similarity between the Cartesian product of the passages.

The training data that we use is automatically created from pairs of documents consisting of
a news article and a scientific paper. Whenever a news article has exactly one link to a scientific
paper, we add the article and the paper to training data in the positive class. For the negative
class, we sample random pairs of news articles and papers. Details regarding the evaluation
of these schemes are provided in §5.5.1. An example of a highly related pair of documents, as
determined by this method, is shown in Figure 5.3.

Handling Multi-Sourced Articles

When an article has a single link to a scientific paper, we use the Semantic Textual Similarity
of them as an indicator of the article quality. When an article has multiple links to scientific
papers, we select the one that has the maximum score according to the model we just described.
We remark that this is just an indicator of article quality, and we do not expect that by itself it
is enough to appraise the quality of the article. Deviations from the content of the scientific
paper are not always wrong, and indeed a good journalist might consult multiple sources and
summarize them in a way that re-phrases content from the papers used as sources.
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5.3.2 Diffusion Graph Indicators

We also consider that referencing scientific sources, or referencing pages that reference scien-
tific sources, are good quality indicators. Figure 3.1 showing a graph from scientific papers to
articles, and from articles to social media postings and from them to their reactions, suggests
this can be done using graph-based indicators. We consider the following:

• personalized PageRank [86] on the graph having scientific articles and universities as root
nodes and news articles as leaf nodes;

• betweenness and degree on the full diffusion graph [59, 60].

Additionally, we consider the traffic score computed by Alexa.com for the website in which each
article is hosted, which estimates the total number of visitors to a website.

5.4 Social Media Indicators

We extract signals describing the quantity and characteristics of social media postings refer-
encing each article. Quantifying the amount of reactions in various ways might give us signals
about the interest in different articles (§5.4.1). However, this might be insufficient or even mis-
leading, if we consider that false news may reach a larger audience and propagate faster than
actual news [206]. Hence, we also need to analyze the content of these postings (§5.4.2).

5.4.1 Social Media Reach

Not every social media user posting the URL of a scientific news article agrees with the content
of the article, and not all users have sufficient expertise to appraise its contents properly. In-
deed, sharing articles and reading articles are often driven by different mechanisms [1]. How-
ever, and similarly to citation analysis and to link-based ranking, the volume of social media
reactions to an article might be a signal of its quality, although the same caveats apply.

Given that we do not have access to the number of times a social media posting is shown
to users, we extract several proxies of the reach of such postings. First, we consider the total
number of postings including a URL, and the number of times those postings are “liked” in
their platform. Second, we consider the number of followers and followees of posting users in
the social graph. Third, we consider a proxy for international news coverage, which we oper-
ationalize as the number of different countries (declared by the users themselves) from which
users posted about an article.
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This Breaking Story – Don’t Let 
This Go Unshared!
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that is just a clickbait to sell her 
stuff. Do you have a more reliable 
source?

Food Babe

Figure 5.4: Example in which the stance of social media replies (bottom row) indicates the poor
quality of an article promoted through a series of postings (top row).

Additionally, we assume that a level of attention that is sustained can be translated to a
larger exposure and may indicate long-standing interest in a topic. Hence, we consider the
temporal coverage, i.e., the length of the time window during which postings in social media
are observed. To exclude outliers, we compute this period for 90% of the postings, which is also
known in the literature as the “shelf life” of the article [26].

5.4.2 Social Media Stance

We consider the stance of social media postings with respect to the article they link to, as well
as the stance of the responses (replies) to those postings. According to what we observe in
this corpus, repliers sometimes ask for (additional) sources, express doubts about the quality
of an article, and in some cases post links to fact-checking portals that contradict the claims of
the article. These repliers are, indeed, acting as “social media fact-checkers,” as the example
in Figure 5.4 shows. Following a classification used for analyzing ideological debates [83], we
consider four possible stances: supporting, commenting, contradicting, and questioning.

Retrieving Replies

Twitter’s API does not provide a programmatic method to retrieve all the replies to a tweet.
Thus, we use a web scraper that retrieves the text of the replies of a tweet from the page in
which each tweet is shown on the web. The design of this web scraper is straightforward and
allows us to retrieve all the first-level replies of a tweet.

Classifying Replies

To train our stance classifier, we use: i) a general-purpose dataset provided in the context of Se-
mEval 2016 [138], and ii) a set of 300 tweets from our corpus, which were annotated by crowd-
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Table 5.1: Summary of all the quality indicators provided by SciLens

Context Type Indicator

Article
Baseline Title [Clickbait, Subjectivity, Polarity], Article Readability, Article Word Count, Article Bylined
Quote-Based #Total Quotes, #Person Quotes, #Scientific Mentions, #Weasel Quotes

Sci. literature
Source Adherence Semantic Textual Similarity
Diffusion Graph Personalized PageRank, Betweenness, [In, Out] Degree, Alexa Rank

Social media
Reach #Likes, #Retweets, #Replies, #Followers, #Followees, [International News, Temporal] Coverage
Stance Tweets/Replies [Stance, Subjectivity, Polarity]

sourcing workers. From the first dataset, we discard tweets that are not relevant to our corpus
(e.g., debates on Atheism); thus, we keep only debates on Abortion and Climate Change. The
second set of annotated tweets is divided into 97 contradicting, 42 questioning, 80 comment-
ing, and 71 supporting tweets. We also have 10 tweets that were marked as “not-related” by
the annotators, and thus we exclude them from our training process. The combined dataset
contains 1, 140 annotated tweets. The learning scheme we use is a Random Forest classifier
based on features including the number of: i) total words, ii) positive/negative words (using the
Opinion Lexicon [93]), iii) negation words, iv) URLs, and v) question/exclamation marks. We
also computed the similarity between the replies and the tweet being replied to (using cosine
similarity on GloVe vectors [158]) and the sentiment of the reply and the original tweet [123].
Details regarding the evaluation are provided in § 5.5.1.

5.5 Experimental Evaluation

In our experimental evaluation we use our “bottom-up” news collection (details in §3). We
begin the evaluation by studying the performance of the methods we have described to extract
quality indicators (§5.5.1). Then, we evaluate if these indicators correlate with scientific news
quality. First, we determine if publications that have a good (bad) reputation or track record of
rigor in scientific news reporting have higher (lower) scores according to our indicators (§5.5.2).
Second, we use labels from experts (§5.5.3) to compare quality evaluations done by non-experts
with and without access to our indicators (§5.5.4).

5.5.1 Evaluation of Indicator Extraction Methods

In this section, we evaluate individually the models introduced for quote extraction and attri-
bution, source adherence, and social media stance.
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Quote Extraction and Attribution

The evaluation of our quote extraction and attribution method (§5.2.2) is based on a manually-
annotated sample of articles from our corpus. A native English speaker performed an annota-
tion finding 104 quotes (37 quotes attributed to persons, 33 scientific mentions, and 34 “weasel”
or unattributed quotes) in a random sample of 20 articles.

We compare three algorithms: i) a baseline approach based on regular expressions search-
ing for content enclosed in quote marks, which is usually the baseline for this type of task; ii) our
quote extraction method without the quote attribution phase, and iii) the quote extraction and
attribution method, where we consider a quote as correctly extracted if there is no ambiguity
regarding the quotee (e.g., if we extract only the last name, we consider it as incorrect).

Although the baseline approach has the optimal precision, it is unable to deal with cases
where quotes are not within quote marks, which are the majority (100% precision, 8.3% recall).
Thus, our approach, without the quote attribution phase, improves significantly in terms of
recall (81.8% precision, 45.0% recall). Remarkably, the heuristics we use for quote attribution
work well in practice and increase both precision and recall (90.9% precision, 50.0% recall).

Source Adherence

We use the supervised learning method described on §5.3.1 to measure Semantic Textual Sim-
ilarity. We test three different learning models: Support Vector Machine, Random Forest, and
Neural Network (double-layer, fully-connected perceptron). The three classifiers use similari-
ties computed at the document, sentence, and paragraph level and combine all features from
the three levels. Overall, the best accuracy (93.5%) was achieved by using a Random Forest
classifier and all the features from the three levels of granularity, combined.

Social Media Stance

We evaluate the stance classifier described in §5.4.2 by performing 5-fold cross-validation over
our dataset. When we consider all four possible categories for the stance (supporting, com-
menting, contradicting, and questioning), the accuracy of the classifier is 59.42%. This is
mainly due to confusion between postings expressing mild support for the article and post-
ings just commenting on the article, which also tend to elicit disagreement between annota-
tors. Hence, we merge these categories into a “supporting or commenting” category compris-
ing postings that do not express doubts about an article. Similarly, we consider “contradicting
or questioning” as a category of postings expressing doubts about an article; previous work
has observed that indeed false information in social media tends to be questioned more often
(e.g., [27]). The problem is then reduced to binary classification.
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Figure 5.5: Kernel Density Estimation (KDE) of a traditional quality indicator (Title Clickbait-
ness on the left) and our proposal quality indicator (Replies Stance on the right). We observe
that for both high and low quality articles, the distribution of Title Clickbaitness is similar; thus,
the indicator is non-informative. However, most of the high quality articles have Replies Stance
close to 1.0, which represents the Supporting/Commenting class of replies, whereas low quality
articles span a broader spectrum of values and often have smaller or negative values represent-
ing the Contradicting/Questioning class of replies. Best seen in color.

To aggregate the stance of different postings that may refer to the same article, we compute
their weighted average stance considering supporting or commenting as +1 (positive stance)
and contradicting or questioning as−1 (negative stance). As weights, we consider the popular-
ity indicators of the postings (i.e., the number of likes and retweets). This is essentially a text
quantification task [64], and the usage of a classification approach for a quantification task is
justified because our classifier has nearly identical pairs of true positive/negative rates (80.65%
and 80.49% respectively), and false positive/negative rates (19.51% and 19.35% respectively).

5.5.2 Correlation of Indicators among Portals of Diverse Reputability

We use two lists that classify news portals into different categories by reputability. The first
list, by the American Council on Science and Health [5] comprises 50 websites sorted along
two axes: whether they produce evidence-based or ideologically-based reporting and whether
their science content is compelling. The second list, by Climate Feedback [46], comprises 20
websites hosting 25 highly-shared stories on climate change, categorized into five groups by
scientific credibility, from very high to very low.
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Table 5.2: Top five discriminating indicators for articles sampled from pairs of outlets having
different levels of reputability (p-value: < 0.005 ***, < 0.01 **, < 0.05 *)

The Atlantic vs. Daily Mail NY Times vs. Daily Mail
(very high vs. very low) (medium vs. very low)

Alexa Rank*** Alexa Rank***
#Scientific Mentions*** Article Bylined***
Article Readability** #Scientific Mentions***
#Total Quotes* Article Readability***
Title Polarity #Total Quotes**

The Atlantic vs. NY Times All Outlets
(very high vs. medium) (from very high to very low)

Alexa Rank*** Alexa Rank***
Article Bylined*** Article Bylined***
Article Word Count* Article Word Count***
#Replies* #Scientific Mentions***
#Followers Article Readability***

We sample a few sources according to reputability scores among the sources given con-
sistent scores in both lists: high reputability (The Atlantic), medium reputability (New York
Times), and low reputability (The Daily Mail). Next, we compare all of our indicators in the sets
of articles in our collection belonging to these sources. Two example features are compared
in Figure 5.5. We perform ANOVA [54] tests to select discriminating features. The results are
shown in Table 5.2. Traffic rankings by Alexa.com, scientific mentions, and quotes are among
some of the most discriminating features.

5.5.3 Expert Evaluation

We ask a set of four external experts to evaluate the quality of a set of articles. The experts in-
clude three people who work in communication of science in an academic context and one
biologist. Two of them evaluated a random sample of 20 articles about the gene-editing tech-
nique CRISPR, a specialized topic discussed recently in mass media. The other two experts
evaluated a random sample of 20 articles on the effects of Alcohol, Tobacco, and Caffeine (the
“ATC” set in the following), which are frequently discussed in science news.

Experts read each article and gave it a score in a Likert Scale, from very low quality to very
high quality. Each expert annotated the 20 articles independently and was given afterward a
chance to cross-check the ratings by the other expert and revise their own ratings if deemed
appropriate. The agreement between experts is distributed as follows:

• Strong Agreement, when the expert rates are the same (7/20 in ATC, 6/20 in CRISPR);
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Figure 5.6: Evaluation of two sets of 20 scientific articles. The line corresponds to expert eval-
uation, while the bars indicate fully automatic evaluation (red), assisted evaluation by non-
experts (light blue), and manual evaluation by non-experts (dark blue). Best seen in color.

• Weak Agreement, when the rates differ by one point (12/20 in ATC, 10/20 in CRISPR);

• Disagreement, when the rates differ by two or more points (1/20 in ATC, 4/20 in CRISPR).

5.5.4 Expert vs. Non-Expert Evaluation

We perform a comparison of quality evaluations by experts and non-experts. Non-experts are
workers in a crowdsourcing platform. We ask for five non-expert labels per article and employ
what our crowdsourcing provider, Figure Eight, calls tier-3 workers, which are the most expe-
rienced and accurate. As a further quality assurance method, we use the agreement among
workers to disregard annotators producing consistently annotations that are significantly dif-
ferent from the rest of the crowd. This is done at the worker level, and as a result, we remove on
average about one outlier judgment per article.

We consider two experimental conditions. On the first condition, entitled Non-Expert (No
Indicators), non-experts are shown the exact same evaluation interface as experts. On the sec-
ond condition, entitled Non-Expert (Indicators), non-experts are shown 7 of the quality indica-
tors we produced, which are selected according to Table 5.2. Each indicator (except the last two)
is shown with stars, with89999 indicating that the article is in the lowest quintile according
to that metric, and 88888 indicating the article is in the highest quintile. The following leg-
end is provided to non-experts to interpret the indicators:
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Table 5.3: Differences among expert evaluations, evaluations provided by non-experts, and
fully automated evaluations provided by SciLens, measured using RMSE (lower is better). ATC
and CRISPR are two sets of 20 articles each. Strong agreement indicates cases where experts
fully agree, weak agreement when they differed by one point, and disagreement when they dif-
fered by two or more points. No-Ind. is the first experimental condition for non-experts, in
which no indicators are shown. Ind. is the second condition, in which indicators are shown.

Experts Non-Experts Fully
by agreement # No ind. Ind. Automated

A
T

C

Strong agreement 7 0.80 0.45 1.41
Weak agreement 12 1.28 1.18 0.76
Disagreement 1 0.40 1.30 0.00

All articles 20 1.10 1.00 1.00

C
R

IS
P

R

Strong agreement 6 1.40 1.17 1.00
Weak agreement 10 0.86 0.76 0.67
Disagreement 4 0.96 1.22 1.03

All articles 20 1.96 0.96 0.85

Visitors per day of this news website (more visitors = more stars)
Mentions of universities and scientific portals (more mentions = more stars)
Length of the article (longer article = more stars)
Number of quotes in the article (more quotes = more stars)
Number of replies to tweets about this article) (more replies = more stars)
Article bylined by its author (!= bylined,%= not bylined)
Sentiment of the article’s title (,,= most positive, //= most negative)

Results of comparing the evaluation of experts and non-experts in the two conditions we have
described are summarized in Figure 5.6. In the figure, the 20 articles in each set are sorted by
increasing expert rating; assessments by non-experts differ from expert ratings, but this differ-
ence tends to be reduced when non-experts have access to quality indicators.

In Table ,5.3 we show how displaying indicators leads to a decrease in these differences,
meaning that non-expert evaluations become closer to the average evaluation of experts, par-
ticularly when experts agree. In the ATC set, the improvement is small, but in CRISPR, it is large,
bringing non-expert scores about 1 point (out of 5) closer to expert scores.

Table 5.3 and Figure 5.6 also include a fully automated quality evaluation built using a
weakly supervised classifier over all the features we extracted. As weak supervision, we used
the lists of sites in different tiers of reputability (§5.5.2) and considered that all articles on each
site had the same quality score as the reputation of the site. Then, we used this classifier to
annotate the 20 articles in each of the two sets. Results show that this classifier achieves the
lowest error with respect to expert annotations.
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5.6 Summary

In this chapter we have described a method for evaluating the quality of scientific news articles.
We have introduced new quality indicators that consider quotes in the articles, the similarity
and relationship of articles with the scientific literature, and the volume and stance of social
media reactions. The approach is general and can be applied to any specialized domain where
there are primary sources in technical language that are “translated” by journalists and bloggers
into accessible language.

In the course of this work, we developed several quality indicators that can be computed
automatically, and demonstrated their suitability for this task through multiple experiments.
First, we showed several of them are applicable at the site level, to distinguish among different
tiers of quality with respect to scientific news. Second, we showed that they can be used by non-
experts to improve their evaluations of quality of scientific articles, bringing them more in line
with expert evaluations. Third, we showed how these indicators can be combined to produce
fully automated scores using weak supervision, namely data annotated at the site level.
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Chapter 6

Combating Source-Based Scientific
Misinformation

This chapter describes SciLander, a method for learning representations of news sources re-
porting on science-based topics. The COVID-19 pandemic has fueled the spread of misinfor-
mation on social media and the Web as a whole. The phenomenon dubbed ‘infodemic’ has
taken the challenges of information veracity and trust to new heights by massively introducing
seemingly scientific and technical elements into misleading content. Despite the existing body
of work on modeling and predicting misinformation, the coverage of very complex scientific
topics with inherent uncertainty and an evolving set of findings, such as COVID-19, provides
many new challenges that are not easily solved by existing tools.

SciLander introduces four heterogeneous indicators for the news sources; two generic indi-
cators that capture (1) the copying of news stories between sources, and (2) the use of the same
terms to mean different things (i.e., the semantic shift of terms), and two scientific indicators
that capture (1) the usage of jargon and (2) the stance towards specific citations. We use these
indicators as signals of source agreement, sampling pairs of positive (similar) and negative (dis-
similar) samples, and combine them in a unified framework to train unsupervised news source
embeddings with a triplet margin loss objective. We evaluate our method on a novel COVID-19
dataset containing nearly 1M news articles from 500 sources spanning a period of 18 months
since the beginning of the pandemic in 2020. Our results show that the features learned by our
model outperform state-of-the-art baseline methods on the task of news veracity classification.
Furthermore, a clustering analysis suggests that the learned representations encode informa-
tion about the reliability, political leaning, and partisanship bias of these sources.

68



Figure 6.1: Overview of SciLander, including agreement indicator extraction (§6.2 & §6.3),
triplet sampling and unsupervised source embeddings training (§6.4), and evaluation on the
downstream tasks of classification and clustering (§6.5).

6.1 Introduction

The COVID-19 pandemic has resulted in a significant increase in information production and
consumption at the same time. With this came a large increase in unreliable information,
dubbed ‘infodemic’ [21]. This increase was also coupled with the growing scrutiny of media
sources and purposeful amplification of any errors they made. As the readers sought correct,
timely, and trustworthy information, many news and media sources worked hard to discredit
others and create confusion [202].

Governments and public health agencies have the responsibility to respond to the crisis and
protect the public from misinformation by utilizing the power of social and news media [25].
Yet, the same social and news media work as a catalyst for the infodemic, allowing disinforma-
tion to be widely dispersed, regardless of the significant effort to hinder its spread [131].

Despite the existing body of work on modeling and predicting misinformation, coverage
of a complex scientific topic with inherent uncertainty and evolving set of findings, such as
COVID-19, provides many new challenges that are not easily solved by existing tools [224]. On
the article level, the evaluation of news stories may be challenging as they may contain infor-
mation that cannot be easily verified. Moreover, many sources may not have the necessary
staffing for the proper communication of scientific topics; they may be known to publish in-
correct information, this information may change over time, or the source may correct it.

Often, language-based methods fail in such a task because different sources may use the
same terms to mean different things. Furthermore, many sources may use scientific references
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to back up their claims; however, the validity of these references is not easily verifiable. Being
able to map out the consequential and systematic patterns of behavior of such sources in terms
of both content and references would be particularly useful in such scenarios [32]. It would
allow sources to be compared to other known sources in terms of their coverage, and develop
explanations to the aspects in which they are similar to or different from each other.

To address these challenges, we introduce a novel method called SciLander. SciLander
builds on a set of novel features, based on the deep processing of news articles published by
a set of sources, producing a vector representation of these news sources. To build this, we
incorporate measures of similarity and difference between the sources based on their citation
behavior, the republishing of articles from each other, and their general language usage. In
particular, we use the coverage of COVID-19 to show that this embedding has many desirable
features that can help multiple downstream tasks.

Our Contribution. The technical contributions we introduce are the following:

• We propose four news agreement indicators for sources: i) the shared content or repub-
lished articles, ii) the semantic shift of terms in the common vocabulary, iii) the usage of
scientific jargon, and iv) the citation stance of the news sources (§6.2 & §6.3);

• We combine these indicators in a unified framework for training unsupervised news
source embeddings (§6.4);

• We evaluate our method using a dataset of news publications related to COVID-19.
Sources in this dataset are labeled with respect to reliability and political leaning;

• We compare our method to strong baselines on the problem of veracity classification of
news sources and show a significant gain in performance when combining the indicators
proposed in our work;

• We test the applicability of our method in an online learning experiment, showing that it
can be used to learn features from sources even if little data is available or if new coming
sources are presented in the landscape;

• We show that the learned features encode information about the reliability level, partisan-
ship bias, and political leaning of news sources through a clustering analysis experiment.

6.2 Content Indicators

In this section, we introduce two content-based indicators that we use to align news sources.
Particularly, we introduce an indicator regarding the shared content and an indicator regarding
the semantic shift of terms between sources.
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Figure 6.2: Example of a subgraph of the Content Sharing Network where nodes, representing
sources, are connected by directed edges denoting the direction of the copied content between
sources. Node color indicates the reliability class of the source (green for Reliable, purple for
Unreliable), and edge width indicates the amount of content copied.

6.2.1 Copy Indicator

Content Sharing Network is a model of content replication by sources in the news landscape.
The sharing of news articles has been shown to be a common factor between news sources
that adopt similar narratives around certain topics, which also correlates with the credibility of
these sources [91]. Figure 6.2 illustrates how sources are related in a Content Sharing Network,
where articles are copied from source to source.

Content Sharing Network is modeled as a directed graph where nodes represent news
sources and edges indicate sources that copy articles verbatim from one another. Edges weights
are proportional to the amount of content copied between the connected sources. The adja-
cency matrix C of such network represents the affinity between the news sources. We obtain
this matrix using the method proposed by Horne et al. [91] which consists of computing doc-
ument vector representations for news articles using a TF-IDF bag-of-words representation.
Articles are considered verbatim copies of each other if the cosine similarity between their vec-
tors is greater than a threshold of 0.85, and the direction of the copying is determined by the
publication date of the article. The similarity threshold is defined following the recommenda-
tions from Horne et al. [91].

The final adjacency matrix is obtained by aggregating all copied articles at the source level.
Thus, a directed edge from node i to j exists if source j copies articles from source i. The com-
plement of the degree of relatedness distance between sources i and j, is given as a function of
the weight of the edge (i, j) and is defined as:

dcpy(i, j) = 1− |Ai ∩Aj |
|Aj |

whereAi andAj are articles published by sources i and j; thus, their intersection should contain
articles from source i copied by source j.
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Table 6.1: Semantic shift of the term “antiviral”. We observe a contextual shift of the word. In
the top two cases, the term is used to describe alternative medicine with herbs, while in the
bottom two cases, the term is used with its ordinary (scientific) connotation.

Source Usage

Modern Alternative Mama {...} these specific herbs have strong antiviral actions,
including against other strains of coronavirus.

Healthy Holistic Living {...} Garlic is known to have potent antibacterial, antivi-
ral, antifungal and antiprotozoal abilities.

The Guardian {...} overwhelming emergency departments and causing
governments to overspend on antiviral medications.

The Washington Post {...} although the antiviral drug remdesivir has been
shown to help some patients {...}

6.2.2 Shift Indicator

We analyze how specific technical terms are used differently between news sources. Different
uses of a certain term in two pieces of text can occur if that same term is used in a different
context in each of the texts. Semantic shift is the process through which the usage of a given
word drifts when compared across different sources. Specifically, we consider the lexical se-
mantic shift, which posits the semantics of a word to be defined by its contextual relationships
to other lexicons [35]. We argue that significant contextual shifts of topic-related words may
serve as a signal of source disagreement, i.e., two sources using a certain target word in sig-
nificantly different contexts may indicate that they use such words with different intents. An
illustrative example is shown in Table 6.1. We note that, in both examples, the word antiviral
is still used to indicate “something that is effective against viruses”; however, the contexts give
different connotations to what the antiviral product is.

Semantic shift has been used extensively in computational linguistics studies of language
evolution [78] and, more recently, in studies quantifying the linguistic differences across do-
mains [179, 221]. In our method, we use semantic shift as an indicator of agreement among
sources as it helps to uncover unique narratives created by unreliable sources, especially those
based on conspiracy theories, deviating significantly from the narratives from reliable media.

The semantic shift between two sources i and j is measured by the deviation in the usage of
words they have in common. Specifically, we define semantic shift as the aggregated distance
between word embeddings for terms in the common vocabulary of sources i and j. However,
because the word embeddings are trained independently from each other, they cannot be di-
rectly compared. For example, suppose that va and vb denote word vectors for the word virus
learned from the sources The Washington Post and Global Research, respectively. The cosine
distance dcos(va, vb) is not meaningful unless we first create a mapping between the embedding
spaces of each source. This mapping can be achieved by applying an orthogonal transforma-
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tion to one of the embedding spaces to minimize the sum of the pairwise Euclidean distances
between word vectors of the common vocabulary. Being orthogonal means that this trans-
formation preserves the inner product of the embeddings in the transformed space; for that
reason, this mapping is also called embedding alignment [78, 101].

Finding the best alignment of two embedding spaces is not a trivial task. Learning a trans-
formation from all the words in the common vocabulary is often undesired, as the objective of
the mapping is to minimize the distance between every pair of word vectors, hence minimizing
the distance between words that are potentially semantically distinct [221]. To learn alignments
between word embeddings, we employ the state-of-the-art self-supervised semantic shift (S4)
method [73], which is designed to select the best words for generating a mapping between two
embeddings. This procedure is applied to embeddings trained using Word2Vec [135].

Once we train and align the embeddings, we compute the semantic distance between
sources i and j as the average cosine distance between the top 10% most frequent words in i

and j (stop words excluded). Thus, the distance between sources i and j is defined as:

dsem(i, j) =

∑
v∈Vi∩Vj

cos(embi(v), embj(v))

|Vi ∩ Vj |

where Vi and Vj are the vocabularies of sources i and j, embi(v) and embj(v) compute the em-
beddings representation of word v, and cos computes the cosine distance between the embed-
dings. Additionally, Vi and Vj may be replaced with subsets of the common vocabulary to avoid
using every word in the analysis (e.g., filter for the most frequent words).

6.3 Reference Indicators

In this section, we introduce the reference indicators that we used to align news sources. Partic-
ularly, we introduce two dedicated scientific indicators, namely, the usage of scientific jargon
and the citation stance. These indicators are reference indicators, i.e., they define a distance
among sources given a common (scientific) reference.

6.3.1 Reference Context Extraction

To compute the reference indicators, we need the textual context of the references, i.e., the para-
graph in which these references are cited. To extract this context, we: i) locate the references
by parsing the raw HTML page of each news article of our data collection, and ii) traverse the
structural tree of the page to discover the most fine-grained text passage that contains the ref-
erence. Currently, we do not support end-notes within articles, i.e., anchors at the bottom of
articles where all the scientific references are listed, because it is a journalistic practice rarely
appearing in our corpus.
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Table 6.2: Usage of scientific jargon when citing a report by CDC [36]. We highlight that the
citation context of TheNewYorker is semantically closer to the referenced CDC report than the
citation context of RedState.

Source Reference Context

TheNewYorker In June, just three months into a historic health crisis, a survey by the
Center for Disease Control and Prevention found that forty per cent of
Americans were already struggling with at least one mental-health issue.

RedState It is no wonder that many Americans have lost their faith throughout
2020. Too many leaders have been inconsistent in their actions minus
their continued breaches of the public trust.

Reference Title

CDC Mental Health, Substance Use, and Suicidal Ideation During the COVID-
19 Pandemic — United States, June 24–30, 2020.

6.3.2 Jargon Indicator

This indicator quantifies the scientific nature of the context in which a reference is used. To
estimate this indicator, we need a lexicon of terms (jargon_terms in the following) that are con-
sidered jargon in the scientific domain of our corpus. Since, as we explain in §3.2, our corpus
contains news articles related to COVID-19, we use the vocabulary of CDC A-Z Index1, man-
ually enhanced with common COVID-19 terminology. After applying standard cleaning (e.g.,
punctuation removal), we compute the following distance:

djar(i, j) = |ctxr(i) ∩ ctxr(j) ∩ jargon_terms|

where ctxr(i) and ctxr(j) are the terms in the citation contexts of sources i and j for each com-
mon reference r.

We note that we do not aggregate for all common references between sources i and j; hence,
we do not limit to a single distance between these sources. In this way, we encode the co-
citation volume between sources i and j, which is useful for our triplet sampling strategy (de-
tails in 6.4.1). After computing djar(i, j), we apply Min-Max Normalization in the interval [0, 1]

to comply with the previously-defined distances. As we observe in Table 6.2, even such a sim-
plistic metric is able to capture cases in which news sources completely distort the scientific
message of the cited reference.

1https://www.cdc.gov/az
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Table 6.3: Stance of news sources when citing a webinar by CDC [6]. We highlight that The Truth
About Cancer uses more emotionally loaded words than FiveThirtyEight.

Source Reference Context

Five
Thirty
Eight

{...} But even as the guidelines were revised and the national death count —
which includes probable as well as confirmed cases — shot upward, experts
said that undercounting was still more likely than overcounting.

The
Truth
About
Cancer

Perhaps worst, the CDC has continued to lie about the death count by artifi-
cially inflating it. CDC guidelines for determining COVID-19 deaths include:
Anyone who tests positive, even if they died from other causes. Anyone who
had COVID-19 symptoms, even if they aren’t tested.

Reference Title

CDC Guidance for Certifying Deaths Due to Coronavirus Disease 2019 (COVID-19)

6.3.3 Stance Indicator

This indicator quantifies the sentiment charge of the context in which a reference is cited.
To measure this sentiment charge, we use the Multi-Genre Natural Language Inference model
BART for zero-shot classification [117]. This model2 computes the probability that we infer a
certain hypothesis given a premise. Thus, the model needs no explicit training on the down-
stream task of stance classification since the desired classes are provided implicitly in the hy-
pothesis. After experimenting with various templates for premise and hypothesis, we report the
ones that yield the most reliable results:

premise = reference context

hypothesis = “The stance of this example is negative”

The output of this model is a value in the interval [0, 1], denoting the probability a given premise
implies our hypothesis. We note that, by using this premise and hypothesis, we treat neutral
and positive stances similarly, i.e., as non-negative stances because we want to highlight ex-
tremely negative stances (Table 6.3). Using this model we compute the following distance:

dref (i, j) = |stance(ctxr(i)) − stance(ctxr(j))|

where stance(.) computes the stance of the citation contexts of sources i and j for each common
reference r.

2https://huggingface.co/facebook/bart-large-mnli
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6.4 Unsupervised Source Embeddings

In the previous section, we described the heterogeneous indicators that we extract from each
news source. In this section, we describe how we combine these indicators in a unified frame-
work capable of learning unsupervised representations of news sources. The triplets sampling
and embeddings training methods employed in this framework are well-established methods
[89] used mainly in learning-to-rank recommendation systems [30, 209].

6.4.1 Triplet Sampling

Our goal is, using the distances defined by the indicators, to discover pairs of similar sources
and pairs of dissimilar sources. By joining these two sets of pairs, we create triplets of the form
(anchor, positive, negative), where anchor is the common element of the pairs, positive is the
element similar to the anchor, and negative is the element dissimilar to the anchor. For sim-
plicity, in the following, we will refer to these triplets as (a, p, n).

We note that these triplets may not occur from the same indicator, i.e., the positive pair may
occur from an indicator that is more appropriate for capturing the affinity between sources,
and the negative pair may occur from an indicator that is more appropriate for capturing the
disparity between sources. In our experimental evaluation (§6.5.1), we evaluate each indicator
in its ability to produce good positive and negative pairs as well as full triplets.

Positive Pair Sampling

We use the distances computed for each indicator to generate pairs of similar sources. For all
indicators we introduce in §6.2 & §6.3, short distance denotes similarity. Given an indicator
f (copy, shift, jargon, or reference), we generate a positive pair of similar sources i, j with a
probability inversely proportional to the distance between i and j:

ppf (i, j) =
d−1
f (i, j)∑
k d
−1
f (i, k)

∀j 6= i

We draw l positives samples from this distribution for each indicator and each source in the
dataset, producing a total of l positive source pairs (a, p).

Negative Pair Sampling

For negative sampling, we employ two strategies. For some indicators (e.g., the stance indi-
cator), a large distance between sources denotes opposing sentiment, thus disagreement (e.g.,
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the sources in Table 6.3). Hence, we use the inverse distribution we used for generating positive
pairs to generate negative pairs:

npf (i, j) = 1− ppf (i, j) ∀j 6= i

Similarly as above, we draw l negative samples from this distribution for each indicator and
each source in the dataset, producing a total of l negative source pairs (a, n).

Nonetheless, there are indicators (e.g., the copy indicator) for which a large distance be-
tween sources does not necessarily denote disagreement; it only denotes the absence of agree-
ment. In these cases, we draw the negative pairs uniformly from the set of sources.

Finally, we employ a cleaning heuristic to increase the accuracy of our triplets (detailed ex-
periment in §6.5.1). Specifically, we make sure that we do not select a negative pair (a, n) which
we have already selected as positive pair (a, p):

(a, p) ∧ (a, n)⇒ p 6= n

6.4.2 Embeddings Training

Once we extract all the triplets, we use them for training a dense representation model for news
sources with the Triplet Margin Loss [7]. The learning objective of Triplet Margin Loss is to
minimize the distance between an anchor and a positive sample while maximizing the distance
between the anchor and the negative sample.

The procedure we employ is the following. First, we initialize the embeddings for all the
sources into a low-dimensional, dense vector space by randomly setting the weights in the em-
bedding layer following a normal distribution N(0, 1). Then, given the input triplets (a, p, n), we
train these embeddings by minimizing the loss function L:

L(a, p, n) = max{d(a, p)− d(a, n) +M, 0}

where d is the distance function, and M is the margin parameter that controls the gap between
positive and negative distances. The largerM is, the larger is the gap between d(a, p) and d(a, n).
We train the embeddings over several epochs until convergence and then use them as the rep-
resentation of the news sources.

The parameters of this method are the margin M , the distance function d, and the size of
the output vectors s. We release the optimal training parameters as well as the trained sources
embeddings in our code release.

77



6.5 Experimental Evaluation

Our experimental evaluation is three-fold; first, we evaluate the indicators individually, then
we evaluate the source embeddings on the downstream task of source reliability classification,
and finally, we perform an unsupervised clustering where we analyze the patterns in the news
sources captured by the learned features. In the following experiments, our “middle-up” news
collection is used (details in §3), word embeddings for the semantic shift are trained using
Word2Vec with dimension 100, context window of 10, and minimum word count of 20. The
parameters for SciLander are margin M = 1, vector size s = 50, and d is the cosine distance.

6.5.1 Indicator Coverage

In our first experiment, we measure the overlap of the introduced indicators in terms of source
and triplet coverage. We also measure the accuracy of the triplets computed by these indicators.
We define the source coverage (sc) and the triplet coverage (tc) between two indicators i, j as
follows:

sc(i, j) =
|src(i) ∩ src(j)|
|src(i)|

, tc(i, j) =
|trpl(i) ∩ trpl(j)|

|trpl(i)|

where src(.) and trpl(.) compute the distinct set of sources and triplets covered by a given in-
dicator. We note that the metrics sc and tc are non-symmetric; consequently, the source and
triplet coverage heatmaps in Figure 6.3 are also non-symmetric.

To measure the accuracy of the computed triplets, we use the metric Area Under the Receiver
Operating Characteristics (AUROC), which measures the True Positive Rate over the False Pos-
itive Rate. We also break down the AUROC of the triplets into i) the AUROCp of the positive
part of the triplets (a, p), ii) the AUROCn of the negative part of the triplets (a, n), and iii) the
AUROCf of the full triplets (a, p, n). Specifically, for each individual AUROC, we consider the
following as true positives:

AUROCp : {(a, p) s.t. label(a) = label(p)}
AUROCn : {(a, n) s.t. label(a) 6= label(n)}
AUROCf : {(a, p, n) s.t. label(a) = label(p) ∧ label(a) 6= label(n)}

As we observe in Figure 6.3, although the sources covered by some indicators heavily over-
lap, the contributed triplets are quite unique. Indicatively, the stance indicator covers 27.5% of
the sources, totally overlapping with the copy indicator. However, the contributed triplets of
the stance indicator are different from the contributed triplets of all the other indicators and
also more accurate. Indeed, we see that there is a trade-off between the source coverage of the
indicators and the AUROC. Hence, the more specific the indicator is (e.g., the stance indicator),
the better AUROC it has.
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Indicator AUROCp AUROCn AUROCf #sources

copy 72.7% 51.0% 36.3% 257
shift 61.9% 60.8% 41.8% 308
stance 89.7% 73.3% 68.3% 87
jargon 81.9% 51.0% 42.9% 126

overall 77.0% 69.7% 57.5% 316

Figure 6.3: Overlap of indicators in terms of source coverage (top left) and triplet coverage
(top right); AUROC of the positive part, negative part, and full triplets (bottom). Although the
sources covered by most indicators heavily overlap, their triplets are quite unique. Also, there is
a trade-off between the source coverage of the indicators and their AUROC.

Finally, we observe that the overall AUROC for positive and negative pairs (AUROCp and
AUROCn, respectively) are above the 50% baseline of a random positive (or negative) pair se-
lection is truly positive (or negative).

It should be noted that the AUROC for complete triplets (AUROCf ) is lower than 50%. This
happens because the choice of the final triplets involves two independent decisions: the choice
of the positive sample, and the choice of the negative sample. As noted above, each choice has
a chance of success of 50% if chosen at random. Thus, for a triplet to be correctly selected, the
random baseline is that a correct positive pair is chosen and a correct negative pair is chosen,
which results in a 0.5 × 0.5 = 0.25, or 25% baseline chance. As we see in the following exper-
iments, the model for training source embedding is robust to noisy triplets as it yields highly
accurate results in all the downstream tasks we use it.

6.5.2 Offline Source Classification

In this experiment, we evaluate the computed embeddings on a downstream classification task.
We assume that, for all sources in our corpus, we have (offline) access to a significant fraction
of their history of published articles.
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Baselines

For this task, we implement baselines using Stylistic Text Features, Contextualized Embeddings,
and Co-citation Embeddings, as well as combinations of the above.

Stylistic Text Features. We utilize stylistic text features from Horne et al. [90] aggregated at
the source level as representations. These features include, among others, the number of: part
of speech tags, punctuation symbols, and capitalized words, which are the features that are
typically used in news classifiers.

Contextualized Embeddings. We compute BERT [38] embeddings for a total of 32 tokens
from the title and the opening paragraph of the article, and average them for each source. Sim-
ilarly, we compute SciBERT [12] instead of BERT embeddings, which have been shown to lead
to better performance in tasks involving scientific text. The configuration parameters of both
BERT and SciBERT are those suggested in a widely used release of this model [215].

Co-Citation Embeddings. We compute a co-citation graph of sources based on their sci-
entific references. We weight this graph either uniformly for each common reference, or by
emphasizing the uniquely used references, using their TF-IDF score. In the overall graph, we
run node2vec [72] to extract source embeddings.

Joint Embeddings. The Contextualized Embeddings and the Co-Citation Embeddings cap-
ture two different modalities of news sources; their content and citation behavior. Thus, we
create a joint representation by concatenating the two embeddings. Since the dimensionality
of the joint embeddings is high, we apply Principal Component Analysis to reduce it.

Evaluation

We test the usefulness of the learned representations in the problem of source veracity classifi-
cation. We use the embeddings computed by i) SciLander trained on all indicators, ii) SciLander
trained only on content indicators (shift or copy), and iii) the aforementioned baseline models,
to train a Nearest Neighbors classifier in a 10-fold cross-validation setting. Figure 6.4 shows the
F1 score of each model for increasing values of k.

Relying uniquely on textual features limits classifiers to a restricted set of signals. Our frame-
work combines stylistic, semantic, and behavioral indicators to produce a representation that
improves the separation of reliable and unreliable sources. Thus, compared to traditional base-
lines such as stylistic features or features extracted by BERT, our embeddings show significant
performance improvement. Our method obtains the best F1 score (87%) for k = 37.
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Figure 6.4: F1 scores using k-nearest neighbors classifiers over the source embeddings repre-
sentations computed by SciLander and the various baselines described in §6.5.2. SciLander
obtains the best F1 score (87%) for k=37.

6.5.3 Online Source Classification

In this experiment, we assume that we have two types of sources: i) offline (known) sources,
for which we have access to a significant fraction of their publication history, and ii) online
(newcomer) sources, for which we have access to a limited fraction of their publication history.
As assessing articles from newcomer sources might be a time-consuming task, we inspect the
lowest fraction of articles that is needed to accurately classify these sources.

The procedure that we employ is the following: i) we train embeddings for the offline sources
(as explained in §6.4.2); ii) we freeze these embeddings for the offline sources; iii) we train em-
beddings for the online sources, in the already shaped by the offline sources embeddings space.

We conduct the experiment on a 10-fold cross-validation setting. In Figure 6.5, we report the
learning curve (F1 score) for increasing fractions of articles from newcomer sources in the same
classification task described in §6.5.2. We note that the temporal axis is not in chronological
order but sampled randomly from the entire corpus (e.g., we sample articles representing a 3-
month publishing activity of an online source from the entire publishing activity of that source).
In that way, each temporal interval is independent of external events (e.g., the development of
the vaccines), which affects the activity of most sources. As we observe in Figure 6.5, SciLander
is able to reliably classify sources, using only three months of their publishing activity.
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Figure 6.5: Learning curve (F1 score) for increasing fractions of articles from newcomer sources.
SciLander reliably (F1>85%) classifies sources using only 3 months of their publishing activity.

6.5.4 Source Clustering Analysis

We conduct an unsupervised clustering experiment to investigate potential trends revealed by
the features learned by SciLander. Using the same embeddings from the previous experiments
(50 dimensions, M = 1), we apply DBSCAN clustering to the source vectors with the cosine
distance as distance metric, minimum distance parameter ε = 0.1 and minimum cluster size
n = 1. The resulting clusters are shown in Figure 6.6(a); each of the 7 clusters is shown in
different color shades and labeled from A to G.

We characterize the clusters quantitatively with respect to the density of unreliable sources,
political leaning, and the level of partisanship bias aggregated across the news sources within
them. For each cluster, we compute the proportion of unreliable sources to the total number of
sources in the cluster. Figure 6.6(b) shows the density of unreliable sources within each cluster.
This result suggests that the source embeddings carry information about source credibility
when grouping them, even though credibility labels or related features were unknown to the
model during training.

Clusters C and E contain no unreliable sources and hold mostly mainstream news sources
such as The Washington Post, Vox, National Public Radio (NPR), and Chicago Tribune. The clus-
ters containing the largest proportions of unreliable sources are the clusters A, B, and G, and
most sources in these clusters are websites that propagate conspiracy theories and promote
pseudoscience. Details on the discovered clusters are shown in Table 6.4.

These results show that the SciLander embeddings are able to group sources based on sim-
ilar reliability. Multiple clusters of relatively high purity with respect to reliability are created,
some reliable (75%-100% reliable sources), some unreliable (0%-30% reliable sources).
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Figure 6.6: Density analysis of the clusters computed by SciLander. Components PC1 and PC2,
obtained from Principal Component Analysis on the source embeddings, are the components
with the highest explained variance ratio.

We also compute the overall political leaning of a cluster by averaging the political leaning
scores of the sources within that cluster. Partisanship bias is obtained by the absolute value
of leaning, scaled to a value in [0, 1], with 0 indicating that there is no partisanship bias in the
cluster, and 1 indicating the maximum partisanship bias, where all sources in the cluster exhibit
a strong political leaning. The partisanship bias describes the agreement between the political
leanings of sources within the cluster, and the magnitude of such leanings. The distribution
of political leanings and partisanship bias are shown in Figures 6.6(c) and 6.6(d). There is a
noticeable disparity between the partisanship bias found in the two biggest unreliable clusters
A and B. Sources in cluster A exhibit a strong bias, which is nearly absent in cluster B. We
explore the particularities of these clusters next.
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Table 6.4: Unreliability score (proportion of unreliable sources), average Partisanship score, and
core sources (nearest neighbors to the centroid) of the identified clusters.

Cl. Unreliability Partisanship Core Sources

A .70 .25 NewsWars, Veterans Today, The D.C. Clothesline
B .84 .03 Mercola, Healthy Holistic Living, Vaccine Reaction
C .00 .11 The Washington Post, Vox, NPR
D .25 .00 The American Conservative, Roll Call
E .00 .20 Chicago Tribune
F .12 .03 Washington Monthly, FiveThirtyEight, Atlantic
G .80 .00 Ice Age Now

6.5.5 Different Types of Conspiracy Theories

We observe two clusters with high density of unreliable sources (clusters A and B). Both clus-
ters include many unreliable news sources, and there exist qualitative differences between
them, which we describe in this section.

To uncover qualitative differences between sources in clusters A and B, we measure the
shift in context each of these clusters has when compared to the mainstream cluster C. Specif-
ically, we compute the semantic shift across clusters of sources by training Word2Vec models
EA, EB , and EC using articles from the core sources of each cluster and using the same hyper-
parameters as in the previous experiments. Then, we extract the words with the highest cosine
distance between pairs (EC , EA) and (EC , EB) to find the terms that most contribute to the
deviation in the news from sources in C to each of the unreliable clusters A and B.

Let SA and SB be the lists of the 100 words most shifted toC, fromA andB, respectively. We
find that there is only one word in common between the SA and SB : “natural”. To characterize
the words in both lists, we identify words that refer to people, entities and places, political is-
sues, and health and nutrition. Examples of these words are given below and listed on Table 6.5.

The largest group of words shifted in cluster A are related to individuals, entities, places
(25%), and political topics (12%). Almost all individuals found are political figures (with a few
exceptions). There are only 1.5% of terms related to health and nutrition. Many of these news
outlets are conspiracy theory websites such as NewsWars, Veterans Today, and InfoWars. Ac-
cording to a Media Bias/Fact Check analysis3, these sites often publish hate-speech-filled con-
tent in addition to misleading or false information.

In contrast, the largest group of shifted words was detected in cluster B (21.5%), with only
2% people and 1% related to political topics. We note that the only person found as shifted
in Cluster B is Bill Gates which does not appear as a top shifted word for Cluster A due to a
common set of conspiracy theories surrounding Bill Gates and the Gates Foundation claiming

3https://mediabiasfactcheck.com/veterans-today
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Table 6.5: List of words from clusters A and B that are most shifted from the mainstream cluster
C. People, Places, and Political Terms appear as the most shifted words in cluster A, suggesting
that its sources push politically-oriented misinformation, while sources in cluster B focus more
on alternative health solutions.

Cluster A Cluster B
People and Places Political Terms Health

Kamala Harris BLM (Black Lives Matter) Coronavirus
Bernie Sanders Patriot Food

Nancy Pelosi Voting Vaccines
Mike Pence Abortion Doctors
Alex Jones Partisan Mask

that he plotted to use the pandemic to seize power [61]. Two of the most prominent sources
of this cluster are Mercola and Healthy Holistic Living. According to Media Bias/Fact Check
journalists4, these sources promote alternative health notions, sell questionable products and
supplements, and promote anti-vaccination positions with pseudoscience-based arguments.

Based on this, we conclude that while cluster A is a cluster of mostly politically-unreliable
news sources covering COVID-19 stories mixed with other political topics, cluster B is much
more focused on covering alternative medicine-based misinformation with slight political
leaning, presumably to appeal to individuals with different political opinions. On these sites,
health-based information is often mixed with promotion and affiliate links to sites selling alter-
native medicine products and supplements. Our method is able to properly distinguish these
different types of COVID-19 misinformation, without explicitly training on related features.

6.6 Summary

In this chapter, we have described a method for learning a representation of news sources re-
porting science-related content. Our method uses a combination of signals to estimate the
similarity between news sources. We have shown that these signals complement each other,
capturing relationships between distinct sets of sources from a dataset of news articles related
to COVID-19. Furthermore, the features learned by our model demonstrated superior perfor-
mance to baselines for the task of source credibility detection, both in an offline and an online
setting, requiring as little as three months of publication activity to accurately classify news
sources. Lastly, we have shown that the learned source representations encode information
of credibility and political leaning, forming clusters of sources that show similar reliability and
political bias. In particular, we discovered two large clusters of unreliable sources to which dif-
ferent types of conspiracy news sources flock. One of them concentrates on alternative health
misinformation, and the other promotes hyper-partisan political conspiracies.

4https://mediabiasfactcheck.com/mercola
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Chapter 7

Real-Time News Analytics Platform

In this chapter, we present NewsTeller, a real-time news analytics platform. NewsTeller re-
trieves, processes, stores, and indexes a wide range of multilingual news articles, social me-
dia reactions, and references in real-time. Furthermore, our platform automatically extracts,
stores, and displays heterogeneous quality indicators which derive from: i) social media dis-
cussions regarding news articles, showcasing the reach and stance towards these articles, and
ii) their content and their referenced sources, showcasing the journalistic foundations of these
articles. Finally, NewsTeller provides a multidimensional fact-checking environment for news
articles to foster and highlight expert evaluation. Our platform is built in a distributed and ro-
bust fashion and runs operationally, handling daily thousands of news articles. In the following
sections, we present an overview of the system as well as three tangible use cases. A live version
of NewsTeller is publicly available here: https://newsteller.io.

7.1 System Overview

NewsTeller incorporates three modules for processing articles (§7.1.1), extracting quality indi-
cators from them (§7.1.2), and acquiring expert reviews for them (§7.1.3). The overall architec-
ture of the system is presented in §7.1.4.

7.1.1 Article Processing

The pipeline for article processing involves the steps of Text Extraction, Entity Extraction, Article
Classification, and Reactions Tracking [165]. First, the Text Extraction process downloads and
parses the title and the text of an article given its URL. This process is parallelized to deal with
the required throughput of around 1.2 articles per second. Second, the Entity Extraction pro-
cess extracts named entities from the text (e.g., names, organizations, and locations), and the
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Table 7.1: Monthly data collection of NewsTeller. Social Media reactions (i.e., Likes, Retweets,
Replies, and Quotes) are collected from the Twitter Streaming API.

Tracked Sources 913
Articles 1.3M / month
Likes 121M / month
Retweets 28M / month
Replies 16M / month
Quotes 9M / month
External References 6M / month

Article Classification process infers the article category (e.g., science or politics). Third, the Re-
actions Tracking process, implemented on top of the Twitter Streaming API, processes around
25 reactions per second. Statistics on the volume of data collected are shown in Table 7.1.

7.1.2 Quality Indicators

We compute three heterogeneous sets of quality indicators, namely, content, news context,
and social media indicators. Regarding the content of a news article, we consider various well-
established metrics for the quality of news, such as the clickbaitness of its title, the subjectivity
and readability of its body, and whether it is by-lined by its author.

As for the news context of an article, we investigate the strength of the connection between
this article and its primary sources of information. Thus, we consider three types of references:

• internal references within the same news outlet; many news outlets, in order to increase
their user engagement, introduce such references either in “see also” sections or in the
main body of their articles;

• external references to potential primary sources of information (e.g., references from
nation-wide news outlets to local news outlets);

• particularly for the case of scientific news, scientific references, i.e., references to a prede-
fined list of academic repositories, grey-literature, and peer-reviewed journals and institu-
tional websites; as we see in our first use-case (§7.1.3), articles from high-quality scientific
outlets are expected to have more references pointing to academic sources than articles
from low-quality scientific outlets.

Finally, regarding the social media context, we measure two aspects, specifically the reach
and stance towards a news article. Reach is measured through the proxy of social media popu-
larity, which quantifies the impact of an article on a social media platform. On the other hand,
stance is the positioning of social media platform users towards an article. Stance can be posi-
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tive (i.e., users support or comment on an article without expressing doubts), or negative (i.e.,
users question the quality of an article or directly contradict what the article is saying).

According to a thorough experimental evaluation which is presented by Smeros et al. [194],
the aforementioned indicators help non-expert users evaluate more accurately the quality of
news articles, compared to non-experts that do not have access to these indicators.

7.1.3 Expert Reviews

Along with the set of automated quality indicators, the system allows experts to annotate any
article based on seven criteria: 1) Factual accuracy, 2) Scientific understanding, 3) Logic/Rea-
soning, 4) Precision/Clarity, 5) Sources quality, 6) Fairness, and 7) Clickbaitness on a Likert Scale
[100], from very low quality to very high quality. These are standard criteria used in state-of-the-
art fact-checking portals like ScienceFeedback.co.

Based on these evaluation scores, the system computes a weighted average and displays a
final score of the criteria for each article. Optionally, expert users can provide extensive free-text
reviews about the news articles, which are also displayed to non-expert users.

7.1.4 System Architecture

The architecture of NewsTeller (Figure 7.1) consists of three components which are responsible
for the collection, storage, and segmentation of data as well as for the models training and the
indicators serving to the web application.

Data Collection and Storage

NewsTeller uses a hybrid data storage scheme that supports both real-time computational op-
erations (with an RDBMS) and ad-hoc querying on historical data and efficient data warehous-
ing (with Distributed Storage). The main data entry point of the system is an outlet-based
streaming pipeline wrapped around the Twitter Streaming API. This subsystem acts as a mes-
saging queue and fetches, in real-time, postings from a specific set of social media accounts
along with their reactions. These incoming data streams are processed, and the correspond-
ing news articles are extracted. For these transformations, the system leverages the distributed
file system of Hadoop and the distributed computational framework Spark for parallel data
processing and storing. The data synchronization between the RDBMS and the Distributed
Storage is made through a daily data migration process.
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Figure 7.1: NewsTeller architecture. First, a streaming pipeline acts as the entry point of data
collection. Then, a data layer, comprised of an RDBMS and a Distributed Storage, stores the
incoming data. Lastly, the analytics layer manages the data, trains the models, and serves the
extracted indicators to the web application.

Data Management and Model Training

As we show in our first use case (§7.2.1), an essential aspect of our system is the computation
of analytics on top of particular segments of our data. These segments are combinations of
content-based supervised topics of news and quality-based categories of news outlets.

More specifically, regarding the content-based segmentation, the system performs a prob-
abilistic hierarchical clustering on the articles and assigns one or more topics to each one of
them. These topics can be generic (e.g., Health) or specific (e.g., COVID-19). On the other
hand, regarding the outlet quality-based segmentation, the system groups the articles by the
news outlet that they are published and then groups the outlets with similar quality. The qual-
ity of an outlet is either computed using expert reviews or imported from external sources (e.g.,
in §7.2.1 we use a ranking published by the American Council on Science and Health).

Finally, our system periodically trains models on top of the Distributed Storage, accessing
the entire history of our data collection. These models are used to extract the quality indicators
that we describe in §7.1.2.

Indicators API

The last core component of our system is the Indicators API, which is responsible for the real-
time article evaluation. Its architecture is based on micro-services, which are lightweight,
loosely coupled services that support parallel execution. The main functionality of this compo-
nent is to compute and serve quality indicators of articles to the web application.
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Figure 7.2: Enhanced article view of NewsTeller. A wide range of automatically extracted quality
indicators combined with manually-operated expert reviews.

7.2 Use Cases

In this section, we present three applications and case studies conducted using the infrastruc-
ture of NewsTeller. Specifically, we present an early-stage study on the news coverage of COVID-
19 (§7.2.1), a social bot to diversify the news consumption on Twitter (§7.2.2), and a reference
prediction task (§7.2.3).

7.2.1 Early-Stage Study on COVID-19 News Coverage

In the first use case, we conducted a trial study using NewsTeller on the early stages of the
COVID-19 pandemic. To prepare the data segment for the study, we used a shortlist, published
by the American Council on Science and Health, containing 45 news outlets accompanied by
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Figure 7.3: Mean percentage of daily posts referred to COVID-19 per rating category. Low-
quality outlets seem to be driven by the breaking news, whereas high-quality outlets are more
conservative on their publication rate.

their quality ranking, from very low to very high quality. The time frame of the data collection
covers the 60-day period from 2020-01-15 to 2020-03-15.

As COVID-19 is a topic with a highly trending nature, it triggers an abundance of news ar-
ticles and social media discussions. Given such a prominent topic, the task of discerning be-
tween low and high-quality articles becomes very challenging for non-experts in the fields of
medicine and epidemiology. On that end, we present how fused information retrieved from
our system allows end-users to i) assess the quality of individual news articles, and ii) obtain
aggregated insights for the topic of COVID-19.

Single Article Assessment

As we explain in §7.1, an end-user of the platform can explore, in real-time, a wide range of
automatically extracted quality indicators combined with manually-operated expert reviews. A
snapshot of this enhanced view of news articles is depicted in Figure 7.2. This functionality is
available for all the articles in our news collection.

Aggregated Insights

Apart from the single article assessment, a user can interact with aggregated insights regarding
a topic (in our case, COVID-19). The outlets published COVID-19 articles are evaluated based
on three axes, namely their newsroom activity, evidence seeking, and social engagement.

Newsroom Activity. To study the newsroom activity, the system computes the distribution
of daily posts for each outlet. Then, it groups all the media outlets by their quality ranking
and creates a time series of the mean percentage of daily posts per rating class. The results an
end-user can see are presented in Figure 7.3.

We observe that in the early stages of the discussion on the pandemic, both low and high-
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Figure 7.4: Kernel Density Estimation (KDE) of the number of Social Media Reactions (left) and
Scientific References Ratio (right). The low-quality outlets tend to have a wider distribution of
reactions but a lower number of scientific references, whereas the high-quality outlets tend to
have a narrower distribution of reactions but a higher number of scientific references.

quality outlets posted with the same frequency. However, by the end of the first month, low-
quality outlets started dedicating a larger percentage of their published articles on this topic.
The latter implies a trade-off between the quantity and the quality of the articles. Low-quality
outlets seem to be driven by the breaking news, whereas high-quality outlets are more conser-
vative on their publication rate; however, as we see next, they have better scientific foundations.

Social Engagement & Evidence Seeking. Moreover, the system provides the end-user with
insights regarding the social engagement (i.e., the number of social media reactions) and the
evidence seeking (i.e., in our use-case, the ratio of scientific references used) of the news outlets.
As shown in Figure 7.4, one can verify the assumption that low-quality outlets tend to publish
more and thus acquire a higher amount of social media reach than high-quality outlets. Con-
versely, high-quality outlets base their findings more on well-established scientific references.

7.2.2 Social Bot for News Diversification

The second application on top of NewsTeller is NewsDiversifier, a social bot for diversifying the
news consumption in social platforms. In our implementation, we focus on Twitter because
of the popularity of the platform and the intuitive way of creating bot accounts. NewsDiver-
sifier is comprised of an offline and an online component. The offline component is tasked
with fetching and preprocessing articles from NewsTeller. The online component processes
the input article, extracts articles from our database that are similar to this article, and runs a
diversification algorithm to select articles that represent the most diverse perspectives. News-
Diversifer is topic agnostic; however, we treat the COVID-19 topic separately. Users can provide
the bot with a particular input (the hashtag #covid), along with the input article, and instead of
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Figure 7.5: Examples of diversifying political (left) and scientific (right) news

receiving standard articles, receive scientific papers published in a constantly-updated COVID-
19 paper collection, namely the CORD-19 dataset [2].

Offline Fetching and Data Preprocessing

Every day, NewsDiversifier fetches articles and metadata (e.g., publication time, author) that
NewsTeller collects in real-time, keeping a sliding window of 7 days to reduce the search space
and keep our news recommendations fresh. To optimize the speed at which the NewsDiver-
sifier bot replies to user queries, our system performs heavy offline processing. Hence, the
most expensive operations, i.e., the data cleaning (e.g., removal of punctuation and stopwords,
lemmatization) and the computation of the article embeddings, are performed offline.

Similarity Calculation and Diversification

The similarity calculation component is tasked with discovering news articles that are the most
similar to the input article. Hence, it calculates the embedding of the input and computes the
similarity with the embeddings of the news collection, using the cosine similarity. Finally, it
extracts the five most similar articles and feeds them into the diversification algorithm.

Out of the five most similar articles, the diversification algorithm, inspired by the work of

93



Indyk et al. [95], selects the articles that are the furthest away from each other in the embed-
dings space. By taking all possible 3-combinations of embeddings and calculating the area of
the triangle that forms between them, the algorithm selects the triad with the biggest area.

Bot in Action

Users can tag @NewsDiversifier in a tweet thread, and the bot will automatically analyze the
content of any news article shared. Then, the bot will find the articles in the database that
cover the same topic and provide the most diverse perspectives. Finally, the bot will reply to the
user with links to the articles and information regarding the sources, such as their political bias
and reliability. Examples of diversifying political and scientific news are shown in Figure 7.5.

7.2.3 Reference Prediction Task

As a large number of scientific news articles do not explicitly cite the original references from
the scientific literature, we utilize their content as well as web-graph information in order to
predict missing links. We model the problem as a link prediction model where we want to
discover edges connecting news articles with relevant scientific papers.

In the third use case of NewsTeller, we extract news articles related to scientific topics such
as COVID-19, vaccination, healthcare, artificial intelligence, recycling. We filter these articles
by considering the ones with at least one reference to the scientific literature. The time frame
of the data collection covers the 4 month period from 2020-08-01 to 2020-11-31 containing 472

news articles and 1, 242 papers.

Methodology

To create graph representations for the news articles - scientific papers network, we implement
a baseline graph neural network for relational graphs (R-GCN) as proposed by Schlichtkrull
et al. [180]. For the link prediction task, R-GCN is comprised of a graph auto-encoder model.
The encoder creates contextual representations for each entity, and a DistMult [216] decoder
produces a score for every potential edge in the graph using these hidden node representations.
We implement the R-GCN encoder with a single embedding layer. The encoder is regularized
through edge dropout before normalization, with a dropout rate of 0.4. The model uses an
Adam optimizer, and it is trained using full-batch gradient descent.

We test this model by comparing it with two content-aware methods that leverage the at-
tention mechanism. The first method is a content-aware heterogeneous graph neural network
model (HetGNN), as proposed by Zhang et al. [226]. The produced model is comprised of two
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Table 7.2: Performance of different models on predicting connections between news articles
and scientific papers. According to both evaluation metrics, we observe that the content-aware
models (HetGNN and HGT) perform better than the content-agnostic model (R-GCN).

MRR Hits @
Model 1 3 10

R-GCN 0.388 0.239 0.288 0.544
HetGNN 0.412 0.317 0.422 0.546
HGT 0.408 0.311 0.426 0.589

modules: the first, extracts a content embedding for each node using a recurrent neural net-
work on the various attributes of the node, while the second, utilizes another recurrent neural
network to aggregate these embeddings for each neighboring node, and applies an attention
mechanism to measure the impact of heterogeneous node types, creating the final embedding.

The second content-aware model is a transformer-based model as proposed by Hu et al.
[94]. This model uses dedicated representations for each different type of nodes and edges and
produces a node- and edge-type dependent attention mechanism. Another contribution of
this model is that it tackles the temporal nature of the graph by capturing the dynamic struc-
tural dependency with arbitrary window sizes. For this model, we use the published date as an
additional feature of the news article entities.

Both content-aware models use an Adam optimizer and are trained using mini-batch gra-
dient descent. For a fair comparison, we set the embedding size to 128 for all the approaches.

Experimental Evaluation

As described above, we assess the aforementioned models on the downstream task of link pre-
diction, i.e., the task of filling the missing edges of a given network. We split the network edges
into a training and a test set with a ratio set to 5:1 for all experiments. We evaluate the models
in the test set with two commonly used metrics: Mean Reciprocal Rank (MRR) and Hits at n
(Hits@n). In order to meet the original implementations of the models, we report the filtered
MRR and the filtered Hits at 1, 3, and 10 positions.

For both content-aware models, we used as input features the titles of the scientific news
article and the paper. Thus, for each node, we used pretrained XLNet [219] to get the repre-
sentations of each word in its title. Next, we calculate the weighted average of words attention
to get the title representation for each paper and news article, as proposed by Hu et al. [94].
The results of this experiment are summarized in Table 7.2. According to both evaluation met-
rics, we observe that the content-aware models (HetGNN and HGT) perform better than the
content-agnostic model (R-GCN).
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7.3 Summary

In this chapter, we presented NewsTeller, a real-time news analytics platform. NewsTeller
builds a unique news collection consisting of a wide range of multilingual news articles, so-
cial media reactions, and references. Our platform is built in a distributed and robust fashion
and runs operationally, handling daily thousands of news articles, in real-time. Moreover, in
this chapter, we presented three applications and case studies conducted using the infrastruc-
ture of NewsTeller, namely, an early-stage study on the news coverage of COVID-19, a social
bot, to diversify the news consumption on Twitter, and a reference prediction task.
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Chapter 8

Conclusions

In this thesis, we have proposed methods for combating online scientific misinformation. As a
starting point, we have surveyed the evolution of misinformation, showing the effects of digital-
ization and social media on the amplification and propagation of its impact. Furthermore, we
have presented the main characteristics and approaches against misinformation and explained
the high-level positioning of this thesis with respect to related scientific literature.

With this thesis, we have achieved three major scientific contributions; proposing methods
for combating claim-based, article-based, and source-based scientific misinformation.

Regarding claim-based scientific misinformation, we have presented an effective method
for assisting non-experts in the verification of scientific claims. We have shown that trans-
former models are indeed state-of-the-art on scientific claim detection; however, they require
domain-specific fine-tuning to perform better than standard baselines. We have also shown
that, by exploiting the text of a claim and its connections to scientific papers, we effectively
cluster topically-related claims and papers, as well as that, by building an in-cluster knowl-
edge graph, we enable the detection of check-worthy claims. Overall, we have shown that our
method can build the appropriate fact-checking context to help non-expert fact-checkers verify
complex scientific claims, facilitating them to outperform commercial systems. We believe that
our method complements these systems in domains with sparse or non-existing ground-truth
evidence, such as the critical domains of science and health.

Regarding article-based scientific misinformation, we have presented a method for evalu-
ating the quality of scientific news articles. We have introduced new quality indicators that
consider the quotes in articles, the similarity and relationship of articles with the scientific lit-
erature, and the volume and stance of social media reactions. We have shown that these indica-
tors can distinguish among different tiers of quality with respect to scientific news. Moreover,
we have shown that they can be used by non-experts to improve their evaluations on scientific
news, bringing them more in line with expert evaluations. Finally, we have shown how these
indicators can be combined to produce fully automated scores using weak supervision.
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Regarding source-based scientific misinformation, we have presented a method for learn-
ing a representation of news sources reporting science-related content, using a combination
of writing-style and citation-behavior signals. We have shown that the features learned by our
model demonstrate superior performance to baselines for the task of source credibility detec-
tion, both in an offline and an online setting, requiring as little as three months of publica-
tion activity to accurately classify news sources. Furthermore, we have shown that the learned
source representations encode information of credibility and political leaning, forming clus-
ters of sources that show similar reliability and political bias, while distinguishing clusters with
different conspiratorial narratives.

The last contribution of this thesis is a real-time news analytics platform that runs oper-
ationally, handling daily thousands of news articles. Our platform builds a unique collection
consisting of a wide range of multilingual news articles, social media reactions, and references.

Overall, in this thesis, we have argued that the problem of scientific misinformation is a cru-
cial problem, especially in the times of a pandemic, where different disciplines have to cooper-
ate in combating it. We have proposed an approach for extracting explainable indicators from
the content as well as the social and scientific context of news that: i) help non-experienced
laypeople evaluate news similarly to proficient fact-checkers, and ii) reveal deep misinforma-
tion patterns among news sources.

8.1 Reproducibility

Our code uses the following Python libraries: i) Pandas and Spark for data management,
ii) NetworkX for graph processing, iii) scikit-learn and PyTorch for training machine learning
models, iv) Simple Transformers, SpaCy, Beautiful Soup, Newspaper, TextSTAT and TextBlob
for natural language processing, and seaborn for data visualization. All the data, code, mod-
els, as well as the expert and crowd annotations used in this thesis, are publicly available for
research purposes in http:// scilens.epfl.ch.

8.2 Discussion

In this section, we acknowledge the major limitations of this thesis and discuss potential
workarounds that would help us overcome these limitations.
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8.2.1 Ethics Statement

The methods proposed by this thesis, like most other AI/ML methods, are heavily data-driven;
they use indicators found in the content and context of news to infer the credibility of claims,
articles, and sources. The computation of these indicators can cause our methods to make
biased decisions, especially if the input data is biased towards/against societal groups, such as
underrepresented minorities and other vulnerable groups. Hence, we strongly suggest that all
our methods (i.e., SciClops, SciLens, and SciLander) are used in human-in-the-loop settings,
assisting but not replacing human decision-making.

8.2.2 Transparency and Explainability of Indicators

As we have already explained, our methods propose transparent and explainable indicators for
news pieces at different granularity levels. We acknowledge that these indicators are vulnerable
to adversarial attacks from predatory news portals that artificially construct seemingly credible
(according to the indicators) news pieces. Nonetheless, as we describe above, we strongly sug-
gest that all our methods are used in human-in-the-loop settings since human fact-checkers
could both detect such adversarial attacks and propose additional indicators that cover these
attacks. Transparency and explainability make our methods more robust and reliable rather
than more vulnerable, as long as these methods are used to assist human decision-making.

8.2.3 Beyond English

SciClops, SciLens, and SciLander are currently applicable only on English corpora; extending
these methods to other languages would require:

• SciClops: i) non-English training datasets for the claim classifier, ii) aligned, multilingual
embeddings for clustering non-English claims with English scientific papers (given that
most of the top-class scientific literature is in English), and iii) translation/adaptation of
the domain-specific lexicon used to construct the knowledge graph.

• SciLens: i) translation/adaptation of the domain-specific lexicon used for quote extrac-
tion and attribution, ii) non-English training datasets or pretrained multilingual models
for stance classification, and iii) aligned, multilingual embeddings for embedding non-
English news articles together with English scientific papers.

• SciLander : translation/adaptation of the domain-specific lexicon used to compute the
jargon indicator or simply skipping this indicator and training using the other three; all
the other indicators, as well as the introduced embedding model, are based either on
language-agnostic or already multilingual models.
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8.2.4 Beyond Scientific News

SciClops, SciLens, and SciLander are currently applicable only on scientific news; extending
these methods to other topics (e.g., to political news) would require: i) a general topic speci-
fied prior to the application of the methods; the chosen topic must include a set of keywords or
entities referred to by news sources (e.g., political figures in the political news domain), ii) pri-
mary sources of information that would replace scientific references in the information diffu-
sion graph; such sources might have a particular writing style, structure, or format, requiring
our methods to adapt appropriately.

8.2.5 Accessibility of Social Media

The starting point of our “Bottom-Up” Contextual News Collection (§3) is social media; thus,
news pieces not shared on social media are out of the scope of our collection. The latter is a
strong limitation that compensates with the strong credibility signals extracted from social me-
dia (e.g., the stance indicator §5.4.2). Alternatively, we also support a “Middle-Up” Contextual
News Collection (§3) in which we completely ignore the social media layer and process directly
the full publication activity of news sources, independently of whether they have or do not
have presence in social media (§6). We follow this two-fold approach because we have a lim-
ited bandwidth of requests to social media platforms. Ideally, we would be able to complement
every news piece in our collection with social media metadata; however, this procedure is not
feasible with the provided functionality from the platforms.

Regarding the social media platforms, we use a single API, namely the Twitter API. Twitter
is the only mainstream social media platform providing a free academic API, with full access to
real-time and historical data. One minor limitation of this API comes from the fact that we are
able to collect only first-level replies to social media postings and not nested replies-to-replies.

8.2.6 Accessibility of News Media

When we build our news collection, we consider a broad definition of “news”, covering main-
stream media as well as other portals and blogs that often correspond to fringe news media.
Under this assumption, we are able to collect not only high-quality news but also news con-
taining misinformation and conspiracy theories. Hence, our news collection is closer to a real-
world collection, with heterogeneous news sources of varying credibility.
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8.2.7 Accessibility of Scientific Literature

When we build our news collection, we also consider a broad definition of “scientific literature”,
covering peer-reviewed but also preprints and gray-literature papers. Under this assumption,
we extend our paper collection significantly, as almost 75% of the references to scientific liter-
ature consist of references to gray-literature papers. The latter mitigates the limitation of our
methods on accessing and processing pay-walled papers and papers in unparsable formats
(e.g., PDF) since, as we explain above, these papers are rarely referenced in news articles.

Furthermore, our methods support only explicit citations, i.e., direct outgoing links to sci-
entific papers, and not implicit mentions of science-related entities (e.g., universities) because
the latter design choice would introduce ambiguity and noise to our news collection.

8.3 Future Work

There are several future directions that could potentially be motivated by this thesis. Below we
list several research opportunities and briefly discuss their applicability.

8.3.1 Open-Access News Collection

Recently, we have observed an extensive interest from the scientific community in research
related to news and particularly phenomena such as misinformation. As we have explained
in this thesis, misinformation has played an unprecedented role in influencing political, eco-
nomic, and social ecosystems. However, there are not many public and open-access datasets
available for research purposes to the academic community.

As in the context of this thesis we have introduced a real-time news analytics platform, han-
dling millions of multilingual news articles, we plan to open access to our news collection for
all the members of the academic community. Our collection could facilitate not only computer
scientists (e.g., to analyze news and viewpoints related to particular events) but also social and
political scientists and journalists, fostering interdisciplinary research on the field.

Apart from releasing our news collection, there is also metadata that could be beneficial for
the community. Social media reactions to news are an important piece of auxiliary information
that is currently missing from state-of-the-art news collections. This unified view of social and
news media could support research on studying, e.g., the virality of news and its interplay with
the credibility of the underlying information.

Finally, deeper information could be extracted and be continuously updated from our news
collection, taking advantage of recent developments in language understanding models, such
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as news-based word embeddings, spatiotemporal representations of entities, and knowledge
graphs, enabling a series of related studies.

8.3.2 Multilingual News Analytics

As in this thesis we have focused mainly on research regarding English news, future direc-
tions could include studying the applicability of our methods in other languages, with par-
ticular interest in low-resource languages. Since science is itself a low-resource news topic,
in the sense that, as we have explained, most of the fact-checking effort is focused on news
related to politics, the sparsity of available debunking information increases drastically in low-
resource languages. Furthermore, as scientific news is a “translation” of scientific findings using
a more accessible-to-laypeople language, the further translation into a low-resource language
is a highly challenging process. Thus, semi-automated methods as the ones we have intro-
duced in this thesis could be developed, taking advantage of any knowledge transfer that can
be achieved from high-resource languages and particularly English.

8.3.3 Crowd-Sourced Fact-Checking

Currently, the fact-checking field faces two main challenges: i) the scale of information on the
web hinders the traditional editorial process of manually selecting and verifying information,
and ii) the demand from the public and the potential effects of fact-checking are currently ei-
ther unknown or partially explored (e.g., studies have explored the engagement of the public
only into flagging or reporting activities). As our platform has already been deployed with fact-
checking functionality, one potential research direction could be to perform a controlled field
study to investigate whether crowd-sourced fact-checking can tackle sufficiently these chal-
lenges and explore the limits of citizen journalism.

8.3.4 Applications in Other Domains

The methodology that we introduced in this thesis is not tightly coupled with the evaluation
of news. Indeed, we have observed similar quality signals in other formats (e.g., in campaigns
published in science-based crowdfunding platforms). Such campaigns have many similarities
with scientific news, such as: i) the abstracted technical terminology, ii) the appealing writing-
style, iii) the clickbait titles, and iv) the credibility of the authors that is inherited to their publi-
cations. Future research directions could include studies on elements that predict the success
or failure of such campaigns and how these elements correlate with the scientific soundness of
a campaign, focusing particularly on deprecated/fringe/pseudo science.
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