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Abstract

Invariance under time translation (or stationarity) is probably one of the most important
assumptions made when investigating electromagnetic phenomena. Breaking this assumption is
expected to open up novel possibilities and result in exceeding conventional limitations. However,
to explore the field of time-varying electromagnetic structures, we primarily need to contemplate
the fundamental principles and concepts from a nonstationarity perspective. Here, we revisit one
of those key concepts: the polarizability of a small particle, assuming that its properties vary in
time. We describe the creation of induced dipole moment by external fields in a nonstationary,
causal way, and introduce a complex-valued function, called temporal complex polarizability, for
elucidating a nonstationary Hertzian dipole under time-harmonic illumination. This approach can
be extended to any subwavelength particle exhibiting electric response. In addition, we also study
the classical model of the polarizability of an oscillating electron using the equation of motion
whose damping coefficient and natural frequency are changing in time. Next, we theoretically
derive the effective permittivity corresponding to time-varying media (comprising free or bound
electrons, or dipolar meta-atoms) and explicitly show the differences with the conventional
macroscopic Drude—Lorentz model. This paper will hopefully pave the road towards better
understanding of nonstationary scattering from small particles and homogenization of
time-varying materials, metamaterials, and metasurfaces.

1. Introduction

Temporal modulation [1] in electromagnetic systems (e.g., references [2—11]) is an efficient technique to
achieve exotic wave phenomena and intriguing functionalities. Nonreciprocity and isolation [12-18],
frequency conversion and generation of higher-order frequency harmonics [19-21], wavefront engineering
[21-23], one-way beam splitting [24], extreme accumulation of energy [25], parametric amplification
(2, 3, 26, 27], and wideband impedance matching [28] are some of those functionalities that have been
reported in the past. One possibility that time modulation can provide is to instantaneously control the
radiation from subwavelength particles [29, 30]. This is due to the fact that electric and magnetic dipole
moments, p(¢) and m(#), induced in a particle under illumination, can be temporally engineered in a
desired fashion. In general, both the geometry of the particle and the optical properties of the material from
which the particle is made can be properly modulated in time by an external force.

From the stationary perspective, it is assumed that the particle is static, and its characteristics do not
vary in time. As a consequence, the induced dipole moments are conventionally described in the frequency
domain simply through the complex dyadic electric and magnetic polarizabilities [31]:
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pP= Eee(w) ‘E+ Eem(w) : ﬁ,
m = Ome(w) - E"'Emm(w) -H.

Here, E and H are the Fourier transforms of the external electric and magnetic fields, respectively.
However, the above equations cannot be generally applied for a dynamic particle, because the very
definition of frequency-domain parameters is based on the assumption that the particle is stationary. In
fact, concerning a time-varying particle, we need to return to the time domain, and, subsequently, revisit
the description of the instantaneously induced dipole moments in terms of the dyadic polarizabilities
model. An appropriate description should explicitly indicate the nonstationary characteristic of the
problem, along with the linearity and memory (frequency dispersion). The importance of this study is not
limited only to the understanding and engineering of instantaneous radiation, but it is also important for
the proper characterization and realistic implementation of time-varying metamaterials and metasurfaces
[32, 33], because they are formed by time-varying meta-atoms. Therefore, having a clear picture about the
polarizability of meta-atoms paves the road towards homogenization models [34, 35] taking into account
nonstationarity, and its interplay with dispersion phenomena.

In this paper, we thoroughly scrutinize the concept of polarizability associated with a particle which is
varying in time. For simplicity, we assume that the particle has only isotropic electric response. We
analytically study how to determine the polarizability of such a particle when it is located in free space. For
this study, we employ the Hertzian dipole model which is a conventional model to describe a stationary
resonant particle with electric response. Determining the polarizability, we also explain the interaction of
nonstationary dipoles with waves in terms of the particle polarizability. Furthermore, we move forward and
consider the particle as a constituent of a time-varying material. Regarding this scenario, we focus on the
classical bound electron (as the particle under study) and derive the corresponding polarizability by
assuming a time-dependent damping coefficient and natural frequency in the equation of motion.
Accordingly, we obtain the nonstationary Drude—Lorentz model for an effective medium and show how
fundamentally different this new model is from the conventional model written for a stationary medium.

The paper—as a foundational step towards understanding of nonstationary scattering from small
particles and time-varying (artificial) media—is organized as follows: in section 2, we give a fundamental
description of polarization of an arbitrary time-varying dipolar particle as a response to the excitation field
by using the concept of electric polarizability. Since this description (initially inspired by the analysis and
synthesis of linear time-varying systems in communications and control engineering [36, 37]) is not well
covered in the literature and is missing in the classical electrodynamics textbooks [38—40], it helps the
reader to obtain a proper perspective and is essential for understanding of the other sections of the paper. In
the same section, we additionally discuss causal models of effective material parameters of time-varying
media, following the same principles as for a single time-varying particle. Next, in sections 3 and 4, under
nonstationary conditions, we treat small particles and classical electrons based on their corresponding
polarizabilities. Section 4 is also devoted to effective material models of nonstationary media. Finally,
section 5 concludes the paper.

2. Basic concepts

2.1. Polarizability kernel

For a linear and stationary subwavelength particle with electric response, there is a temporally nonlocal
connection between the instantaneous electric dipole moment p(t) and the exciting electric field E(#). This
connection is described by a convolution integral as

moz/‘meu—wm, (1)
0

where a(7) is a time-dependent function called electric polarizability kernel (here, we assume that the
dipole and the field are parallel and there is no bianisotropy). The above equation illustrates two notable
characteristics. The first is that if the electric field is temporally shifted by t,, the dipole moment will be
also shifted by the same time t;, due to the stationarity of the particle. In other words,

pU—sz/‘MwEU—V—@M% )
0

The second characteristic, associated with causality, states that the instantaneous dipole moment at a certain
time depends on the field at that time and the evolutionary progress over past times.
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The situation is very different if the particle under study is changing in time. Causality is certainly a
fundamental concept in nature which should be scrutinised carefully. However, the first characteristic,
having to do with invariance with respect to translations in time, is not true anymore. For interactions of
nonstationary particles with fields, a temporal shift of the electric field does not result in an equivalent
temporal shift of the induced dipole moment. We should use a more general linear and causal relation
between the induced dipole moment and the exciting field, which is written as

+oo
p(t) = / (1 DE(t — 7)dy, 3)
0

(e.g., reference [37]). Here, in contrast to equation (1), the polarizability kernel « is not only a function of
the delay time between the action and reaction (), but it also depends on the observation time (). In other
words, this formula means that at every moment of time f, we deal with a different particle and with a
different frequency dispersion rule (defined by the integral kernel as a function of 7). As a consequence of
that, the instantaneous value of the dipole moment depends not only on the past and present values of the
exciting field, but also on the whole history of evolution of the particle properties.

Based on equation (3), let us discuss the physical meaning of the polarizability of a nonstationary
particle. If the electric field is chosen to be the Dirac delta function E(#) = 6(¢t — #p)u (u is a unit vector),
the dipole moment equals

p(t) = alt — to, t)u. (4)

In other words, the polarizability « is the impulse response of the dipole. As we see, in the nonstationary
situation, the impulse response depends, as in usual stationary linear systems, on how much time has
passed since the pulse excitation was applied, but also on time explicitly. This property clearly manifests the
fact that the particle responds differently at different moments of time.

Beside using equation (3), it is sometimes convenient to apply an alternative integral form to describe
the dipole moment (for example, see sections 3 and 4). Let us consider the following independent variable:
T = t — . By changing variable in equation (3) and defining

h(t> T) - Oé(% t)|",:t7‘r) (5)

we can equivalently write

p(t) = /t h(t, 7)E(T)dT. (6)

In this alternative representation of causal linear relations, the 7 variable has the meaning of time moments
in the past, and the chosen integration limits ensure that the induced dipole does not depend on the field
values in the future. Also, in this form, assuming delta-function excitation E(7) = §(7 — t;)u, we find the
impulse response in general form p(#) = h(t, t,)u. Notice that in the stationary scenario, the function

h(t, 7)is dependent only on the time difference between the observation time and a time moment in the
past: h(t, 7) = h(t — 7). Consequently, the integral expressed by equation (6) becomes simply a
convolution, and the dependency of the polarizability kernel on the observation time ¢ vanishes, i.e., the
polarizability kernel is only written in terms of the variable v: a(~, t) = h(t, t — ) = h(7y). Accordingly, we
obtain equation (1) which was explained in the beginning of this section.

At this point, where the functions a(~, f) and h(t, 7) and the corresponding relation between them have
been discussed, it is better to build a general consensus that we refer only to the function a.(~, ) as the
polarizability kernel. This agreement will help us to avoid any confusion throughout the paper. Therefore,
when working with equation (6) and the function h(f, 7), remember that we need to do a simple algebraic
manipulation and determine «.(7, t) in order to present the polarizability kernel.

2.2. Temporal complex polarizability

2.2.1. Definition

Let us consider a time-harmonic excitation by a given electric field E(t) = R [EO exp( jwt)] . Here, E,
denotes the complex amplitude, w is the angular frequency, and R means the real part of the expression
inside the brackets. The reason for choosing the time-harmonic excitation is the fact that we want to
concentrate on understanding the effects of time variations of the particle itself, and it is convenient to use
the simplest possible exciting fields. Since the particle is linear, response to arbitrary excitation can be found
using the Fourier expansion of the incident field. Therefore, it is logical to create a model for
time-harmonic excitation.
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(@ p(t) = f aly, E(t —y)dy
0

1 [t _
p@t) = ﬂf_ ar (w, )E(w) exp(jwt) dw

1 +oo

p() = ar (w,Q — w)E(w)dw

=2n o

(b)

AN~

p(t) = Re[ar(w, t)Eq exp(jwt)]
1
plw,Q) = 3 [Eoar(w, Q — w) + Ejar(w, —Q — w)]

Figure 1. Schematic view of wave scattering by a time-varying spherical particle. We assume that, for example, the optical
properties of the particle are changing in time. (a) The particle under arbitrary illumination. We use the general concept of the
polarizability kernel (7, t) in order to study this scattering problem. However, we can also employ the concept of temporal
complex polarizability ar(w, t) and its Fourier transform @ (w, §2). (b) The particle under time-harmonic illumination. Here, we
simply use the temporal complex polarizability and its Fourier transform for calculating the dipole moment.

Since from the beginning we have assumed that the field and the dipole moment are parallel, the
polarizability kernel is a scalar value. Substituting the electric field into equation (3), we find that

p(t) =% [aT(w, t)-Eg exp(jwt)] , (7)

where

“+o00
ar(ort) = / Ay, £) exp(—jery)d. (8)
0

The instantaneous electric dipole moment is the real part of a complex-valued function which is multiplied
by the complex amplitude of the time-harmonic electric field Ey exp(jwt). This is in clear analogy with the
conventional stationary case in which the instantaneous dipole moment is the real part of the
complex-valued, frequency-domain electric polarizability multiplied by the electric field amplitude and the
time-harmonic exponential factor. However, here, the complex function ot depends on the time variable .
Thus, we name such function as ‘temporal complex polarizability’. The index “T’, reminding ‘temporal’,
distinguishes the function arp from the polarizability kernel a.

Recall that the above definition is for the case of time-harmonic excitation (which is also indicated in
figure 1). As one can realize in accordance with equation (7), by using this definition, the complexity of the
problem dramatically reduces, and the induced dipole moment is simply described based on the temporal
complex polarizability cer(w, t). The result of such simplicity is clear, for example, in the next
section—section 3.1—where we discuss the interaction of the point electric dipole with time-harmonic
incident electric fields. We will see how the instantaneous power received by the dipole and the
instantaneous power scattered from the dipole are elegantly written in terms of the temporal complex
polarizability (without making any integration). Furthermore, the importance and advantage of the
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aforementioned simplicity can be also understood in more complicated problems such as homogenization
of time-varying artificial media (metamaterials), in which the effective macroscopic parameters should be
derived, and, subsequently, the corresponding dispersion relations need to be calculated. Regarding those
problems, therefore, it is quite reasonable to employ the concept of the temporal complex polarizability
ar(w, t) instead of the polarizability kernel (7, f) in the time domain. We emphasize that due to the
linearity, the temporal complex polarizability can be used for nonharmonic excitations as well by applying
the Fourier expansion (see figure 1).

2.2.2. Properties

Let us describe some features which are inferred from equations (7) and (8). By contemplating

equation (8), we firstly see that the temporal complex polarizability is the Fourier transform of the
polarizability kernel with respect to the temporal variable 7. Secondly, because the functions p(#), E(t), and
a(7, t) are real-valued, based on equation (8) and for real angular frequencies, we deduce that

aj(w, t) = ar(—w, ), 9)

in which * represents the complex conjugate. Furthermore, similar to the stationary scenario, in
equation (8), the integration is over the positive half-axis of -, which reflects causality of the system and
indicates that the temporal complex polarizability obeys Kramers—Kronig relations [38].

About equation (7), it explicitly confirms the expectations that the dipole moment induced by
time-harmonic fields is not necessarily time-harmonic. In reference [29], the authors have recently
discussed this fact without studying the polarizability. Importantly, the temporal variations of the dipole
moment can be in principle fully engineered (while the excitation field is time-harmonic) only by choosing
the proper temporal variation of the particle modulation. Beside this property, it is instructive to take the
Fourier transform of equation (7). For that, this equation can be rewritten as

p(t) = % [anT(w, t) exp(jwt) + Egat(w, t) exp(—jwt)] . (10)

Now, by defining the usual Fourier transform of an arbitrary temporal function g(t) as
g(Q) = f C>zog(t) exp(—jQt)dr and applying this operation to equation (10), we obtain

Ejar(w,Q? —w) + Ejar(w, —Q — w)

P(w,€)) = 5

(11)

The first argument of the Fourier transform of p(#) indicates that this expression is derived for excitation by
a time-harmonic electric field at frequency w. For excitations at other frequencies, the time dependence of
the induced dipole moment p(#) will be different. The dependence on two frequency variables is intriguing:
the first frequency argument, w, corresponds to the Fourier transform with respect to the variable v, and
the second angular frequency, €2, is due to the Fourier transform with respect to the variable t. Notice that
since the dipole moment p(t) is real-valued, we have p*(w, 2) = p(w, —€?). This relation can be readily
proved by using equation (11). It is worth noting that aer(w, t) does not obey this relation, because ar(w, t)
is not necessarily a real-valued function. Therefore, in general,

ar(w, Q) # ar(w, —0). (12)

2.2.3. Temporal complex susceptibility and permittivity

Before moving to the next section, it is worth noting that in analogy with the dipole moments, a similar
time-domain description should be used for the electric and magnetic flux densities D(#) and B(¢) as linear
and causal functions of E(#) and H(#). If a medium is stationary, we readily write [31]

&=
Byl

(w) -

(w)-E+7w) - H,

+ &(w) - H,

ol

D=
(13)

os]
]

in which &, 71, E, Z are the frequency-domain material parameters. However, for a medium which is not
stationary and its properties are time-variant, we need to express the constitutive relations which
concurrently respect nonstationarity and memory. In the literature, assuming a time-varying dielectric

isotropic medium (77 = £ = ¢ = 0), that constitutive relation is often given by (e.g., references [41-43])

D(t) = e()E(t). (14)
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This model of a time-varying dielectric medium is based on a very dramatic approximation of
instantaneous response of matter, which is not consistent with the temporal dispersion naturally present in
materials. Therefore, more complete and rigorous definitions need to be introduced and applied. Indeed,
for any point in space we should write (for an isotropic time-varying dielectric medium)

“+o0
D(1) = coE(t) + / eox(3 DE(t = 7)d, (15)
0

in which x (7, ) is the electric susceptibility kernel (which may depend also on spatial coordinates). In
general, time-varying fields can be expressed as an inverse Fourier transform

+o0
E@t) = %/ E(w)exp(jwt)dw. (16)

Substituting the above expression in equation (15), we deduce that

+oo
D(t) = zijr / er(w, HE(w) exp(jwi)dw, (17)

where the temporal complex relative permittivity equals

er(w, 1) = 1+ xr(w, 1) (18)
with

—+o0
(@) = / X 1) exp(—jar)d. (19)
0

This is similar to the definition used by Stepanov in reference [44] for describing macroscopic susceptibility
of time-varying plasma. Here, the indices “I” are used to discern the temporal complex functions, er(w, t)
and xr(w, ), from the relative permittivity and susceptibility kernels, respectively (index “T” refers to
‘temporal’). Based on the above derivations and explanations, what we unequivocally perceive is the fact
that the temporal complex susceptibility and relative permittivity are general concepts which are valid and
useful even if the field is nonharmonic. Later, in the last part of section 4, we employ these important
equations and definitions, equations (15)—(19), to calculate the effective macroscopic parameters of
time-varying materials.

In the end of this discussion, we should mention that in analogue to equation (11), we can take the
Fourier transform of the electric flux density given by equation (17). This operation significantly helps,
allowing us to study and solve the Maxwell equations in the frequency domain ({2 domain). Keeping in
mind that er(w, 2) is the Fourier transform of er(w, t) with respect to the time variable ¢, we simply
conclude that

— € +°O_ —

D) = —/ er(w, ? —w)E(w)dw. (20)

27 o

To appraise this relation, we carefully look at two particular instances. The first one is if the medium is
immutable and stationary, but dispersive. Thus, the relative permittivity kernel depends on only one time
variable and is given by €(y, t) = €(y). Consequently, the temporal complex function and its Fourier
transform are expressed as er(w, t) = €(w) and ér(w, ) = 2me(w)d(€2), respectively, in which §(€2) is the
one-dimensional Dirac delta function. By plugging this result in equation (20) and using the property that
f fx)d(x — x)dx = f(x0), we obtain D(Q) = ¢e(Q)E(Q) which is the conventional expression for
modeling dispersive time-invariant media. For the second case, we assume that the medium possesses
instantaneous response and varies in time. As we wrote earlier, this is what a multitude of research works
have assumed in their studies of interactions of waves with time-varying media. Regarding this case, the
relative permittivity kernel is €(7y, f) = J(7v)er(t) which results in er(w, t) = €/(t) and er(w, ) = €(2). The
initial observation, based on equation (17), is that D(t) = €pe1(#)E(2), and the next observation, in
accordance with equation (20), explains the fact that D(2) is the convolution of £(£2) and the field E(£2).
Both these two observations are quite expected for the nondispersive model of time-varying media.

3. Individual time-varying particle in free space

Based on the fundamental notions introduced and discussed above, we can address an important question
on how to determine the polarizability kernel a(+y, t) and the temporal complex polarizability arr(w, t) for a
single time-varying particle located in free space. To answer this central question, first, we need to write a
linear differential equation which describes the polarization dynamics of time-varying particles. Studying
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this equation and using the fundamentals explained before, we will develop a systematic method to find the
particle polarizability.

Here, let us focus on the canonical example of a nonstationary Hertzian dipole. The understanding of
this basic scatterer can be extended to small time-varying inclusions which have electric response. We model
a Hertzian dipole as a short wire antenna of length /, assuming that the current is uniform along the wire.
The antenna parameters are its effective inductance L, capacitance C, and a resistive load R (that accounts
for dissipation losses). Parameters L and C measure the magnetic and electric energies stored in the reactive
fields around the dipole. Accordingly, for such a Hertzian dipole, a third-order differential equation for the
oscillating charge Q is expressed as

—Z- 4L >+R >+ _Q=IE (21)

This is the ‘Riidenberg equation’ which was initially written in 1907 for elucidating the Hertzian dipole
antenna in the receiving regime [45]. On the right side, E denotes the incident electric field at the dipole
location, parallel to the dipole. Notice that the first term in the above equation on the left side, which is
proportional to the third time derivative of the electric charge, is associated with the radiation of the dipole
and is linked with the radiation reaction (see, e.g., reference [30]). The parameter Z = P Lo/ (67¢C)
determines what Riidenberg calls ‘Strahlungswiderstand’ or radiation resistance (here, 1, is the free-space
permeability, and ¢ denotes the speed of light). Including this first term in equation (21), we see that the
Ridenberg equation is in fact analogous to the Abraham—Lorentz equation [46] that also includes the
radiation reaction term. Since the electric dipole moment is the multiplication of the electric charge and the
dipole length, therefore, we readily modify the authentic version of Riiddenberg equation and write

d’p Ldp Rdp 1
L e ] (22)
é6rcd? 1 de2  1dr IC
Till this point, we have assumed that the Hertzian dipole is stationary and the resistance, inductance, and
the capacitance are immutable and constant in time. To realize a nonstationary Hertzian dipole, it is
sufficient to make those parameters time-dependent in the differential equation. For instance, suppose that
we add a time-varying capacitance as an extra load which is connected in series with a dynamic load
resistance R(#). For such time-varying dipoles, the differential equation, equation (22), is rewritten as

P, dp  d*p  R(t)dp 1 P

Lemcde a2 L dt e 1T (23)

Note that C(¢) is the total capacitance which contains both the effective capacitance due to the stored
electric energy around the dipole and the time-modulated load capacitance. Also, note that in

equation (23), if the first term (the radiation term) on the left side is neglected [by assuming that it is much
smaller than the last term (the restoring-force term)], we achieve the differential equation that is utterly
similar to the equation of motion for bound electrons in matter, discussed in the next section (see

equation (37)). Here, however, we study a dipole in free space and keep the radiation term.

Equation (23) relates the instantaneous dipole moment and the excitation field. On the other hand, in
section 2, we related the instantaneous dipole moment and the field in terms of the polarizability kernel.
Therefore, by bringing these two models together, we can find the polarizability kernel (and the temporal
complex polarizability) in terms of the time-varying resistance and capacitance. We start from equation (6),
which is an alternative integral form to describe the dipole moment p of a time-varying particle excited by
an external electric field E: p(t) = fiooh(t, 7)E(7)dT. Next, we need to replace this description in
equation (23). For replacing, however, we have to calculate the first, second, and third time derivatives of
the dipole moment. To find these derivatives, we use the chain rule and the Leibniz integral rule which say
that for any integrable function f(x, y), we can write

d [ i ) "
a/u(ad (6 y)dy = fx b(x)) d(;) — flx, a(x)) z(;) + 9

,y)dy, 24

o O f(x,y)dy (24)
where a(x) and b(x) denote the lower and upper limits, respectively. By employing equation (24) and doing
careful algebraic manipulations, the first, second, and third derivatives of the dipole moment are written in
terms of h(t, 7) and the corresponding partial derivatives of h(t, 7) as

dp © Oh(t,T)
o h(t,7)|T:,E+[m 5 E(r)dr,

dzp_ Oh(t, 1) Oh(t, T)
dtz_[z o =t ey

(25)

dE /’ azh(t’T)E(T)dT

T—t:| E + h(t)7)|r:ta + OOT
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and , , , ,
d’p 0°h(t, 1) O“h(t,7)  O*h(t,T)
— =13 3 E
dr [ o2 T aer T om L_, o6
26
Oh(t, ) Oh(t, ) dE d’E " Oh(t,T)
2 1. b) T= E :
+ {3 % ti g ]T_t o h(t, )= i /_OO 9 (T)dr
Ultimately, by substituting the results of equations (25) and (26) into equation (23), we derive four
expressions (one characteristic equation and three initial conditions) which define the function h(t, 7).
These four expressions read
Ph(t,7)  O?h(t,7) R Oh(t,T) 1
1 R - > = 5
(1) or? + o2 L Ot + LC(t)h(t T =0
O*h(t,T) O*h(t,T) O*h(t,T) oh(t, 1) oh(t, 1) P
2 R——F—— T= R———F+— T= R T= 2 T= T=t — 7>
@) 3R et R b R e 2y e e =
Oh(t, ) Oh(t,T) o
(3) 352D, 422D =,
(4) h(t) T)|T:t =0,
(27)

in which R = —(?/L)(j10/67c). At this point, one may ask what will happen if the dipole is loaded with a
time-varying inductance rather than a time-varying capacitance. How do the above expressions change?
This is a valid and intriguing question. We briefly discuss it in the supplementary material
(https://stacks.iop.org/NJP/24/063004/mmedia).

The above theory, which we developed for determining the polarizability kernel, will be complemented
by deriving another partial differential equation that ‘directly’ describes the temporal complex polarizability
when the incident electric field is time-harmonic. Similar to what we did for the polarizability kernel in
equation (23), it is sufficient to supersede the dipole moment by its definition in terms of a(w, t) (i.e.,

p(t) =R [aT(w, 1) - Eg exp( jwt)]) in order to derive such a partial differential equation. After doing
simplifications, we write that

Par(w,t)
ot

O ar(w,t)
ot?

Oarr(w, t)

R ot

R
+ (1 +j3wR) + (f + j2w — 3w2R>

) (28)

1 , .. R 1
+<LC(t) w+]wL ]wR>aT(w,t)—L.

Notice that here we assumed that the nonstationary dipole is loaded by a time-varying capacitance.
However, one can repeat the same procedure when the dipole load is a time-varying inductance (see the
first equation in supplementary material).

3.1. Dipole interaction with incident waves

The analytical approach for determining the polarizability kernel (7, f) and the temporal complex
polarizability arr(w, t) of nonstationary dipoles was explained in the previous part of this section. At the
following step, we scrutinize classical interactions of nonstationary dipoles with external fields based on the
notion of polarizability, and study instantaneous powers received and radiated by the dipole under
illumination.

3.1.1. Instantaneous power received by dipole

Let us assume that a Hertzian dipole is located at the origin of the Cartesian coordinate system, directed
along the z axis, and illuminated by a time-harmonic electric field. Also, let us assume that the
nonstationary characteristic of the dipole can be realized, for example, by loading the dipole with a
time-varying lumped element [29] or varying the dipole length in time. For the first case, in which the
effective length of the Hertzian dipole is fixed and the dipole is loaded by a time-varying lumped element,
we can simply employ the concept of induced electromotive force and calculate the total instantaneous
power received by the dipole. From the basics, we know that the electric dipole moment is the
multiplication of the electric charge Q(#) and the dipole length I: p(t) = IQ(#). Since the time derivative of
the electric charge is identical with the electric current, as a result, the time derivative of the dipole moment
becomes equal to the length of the dipole  multiplied by the electric current i(¢) carried by the dipole:
dp(t)/dt = 1-i(t). We stress that in this simple calculation, the length of the dipole is not changing in time,
and the temporal variation of the dipole moment is only due to the temporal variation in the electric
charge. On the other hand, the induced electromotive force corresponding to effective length [ is expressed
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as v(t) = I - E(t), in which E(#) is the component of the excitation field parallel to the Hertzian dipole. Using
the above two equations, representing the induced electromotive force and the time derivative of the dipole
moment, the instantaneous power is obtained from S(¢) = v(#) - i(¢), which finally gives

st = £y - 2 (29)
dt

(notice that in classical electrodynamics, power is usually denoted by ‘P’, and the power flux density or the
Poynting vector is denoted by ‘S’. However, in this paper, in order to avoid confusion with the dipole
moment or the polarization density, we use ‘S’ to represent the power). Regarding the second case, where
the length of the dipole is also changing in time, and, therefore, the temporal variation of the dipole
moment is not only due to the electric charge Q(t), but it is also due to the length variations I(¢), it may
initially seem to be complicated to find the instantaneous power. However, in general, the electric current
density corresponding to the Hertzian dipole is written as J(r, t) = %53 (r), and the instantaneous power
S(t) is expressed as

S(t) = / J - Ed°r, (30)
14

where V denotes the volume occupied by the dipole. Based on equation (30) and by substituting the electric
current density, we explicitly achieve the same expression as given by equation (29). Therefore, we conclude
that equation (29) is valid even for the case when the dipole length is changing in time. Notice that
equation (29) is also true for any time variation of the dipole moment, including the stationary scenario.

According to equation (7), the dipole moment p(t) is described in terms of the temporal complex
polarizability arr(w, t). Therefore, this equation can be substituted into equation (29) in order to present the
power S(t) based on the polarizability arr(w, t). Before we proceed and do the substitution, let us note that
due to the single-frequency excitation, for brevity, we can drop the first argument of ar(w, t) (i.e. the
angular frequency of the incident field). In addition, for simplicity, we also define the following

complex-valued function:

B 1 dar(r)

(31)

which is associated with the temporal complex polarizability and its time derivative. Now, by substituting
the temporal complex polarizability and using this auxiliary function definition, equation (31), the
extracted power is simplified to

S(t) = E(t) - R [ij(t) - E exp(jwt)] . (32)

Writing the real part as R[x] = (1/2)(x + x*), finally, the extracted power reduces to
w , w ) .
S(t) = —53 [C(8)] |Eo|* — Ej [C(1)E] exp(j2wt)], (33)

in which J[ ] denotes the imaginary part.

Let us check this equation for the special case of a stationary dipole. In this case the time derivative of
ar(t) vanishes, and ¢ becomes a complex constant which is equal to ar. As a consequence, the
time-averaged value of the second term in the above equation becomes zero and the time-averaged power
extracted by the dipole from the incident field is simply Sstationary — —£73[(]|Eo|* = —<T[arr]|Eo|*, which is
the same relation as we know from the literature (see e.g. reference [47]). Here, we stress that for stationary
dipoles the expression in equation (33) is also valid in the time domain.

Another special case is the case when ((#) = 0. From equation (33) we see that if ((¢) = 0, the extracted
power S(t) is zero meaning that the dipole does not interact with the incident field. According to
equation (31), the condition () = 0 corresponds to ar(t) = A e ™' where A is a constant coefficient.
Substituting this result into equation (7), we see that the dipole moment is constant over time. In other
words, we have a static dipole moment whose time derivative is zero. Consequently, there should not be any
interaction with the incident field.

Considering equation (33), it is intriguing to assume a periodic function ((#). This is because periodicity
allows us to employ simple time averaging. Based on the Fourier series written for a periodic function,
depending on the period and the complex Fourier coefficients, the time-averaged value associated with the
second term in equation (33) is not zero, and it can significantly contribute to the time-averaged total
power. For example, it is clearly seen that if the period is equal to the excitation period T = 27 /w, the
second-order term in the Fourier series n = 2 can produce a nonzero averaged value (in contrast with the
stationary case, in which the average is zero).
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3.1.2. Instantaneous power radiated by dipole

Some part of the extracted power is re-radiated to the background medium (here, free space). The
instantaneous power which is re-radiated by the dipole is proportional to the first and the third time
derivatives of the dipole moment [29, 30]:

1 ) o)

. 34
6mc dt de? (34)

Srad(t) = -

Similarly to what we did for S(#), we substitute the temporal complex polarizability in the above equation
for the re-radiated power. In accordance with equations (7) and (31), the first and the third time derivatives
of the dipole moment are given by

dp(t . )
% =R []wC(t) - Ey exp(]wt)] ,
(35)
&’p(t) (d¥¢ dC ,
P R {]w (dt2 —|—]2w C) - Ey exp(]wt)} .
Subsequently, by using these equations and after doing some algebraic manipulations, we find the
re-radiated power (in equation (34)) as
. pot e [ (L, 240 B
Sra(t) = 27TC|EO‘ R [C ( 2 de? +i w dt |Eo|? exp(j2et)
(36)

1 g 2de\”

If the dipole is stationary, all the time derivatives in the above equation become zero, and the time-averaged

scattered power is simplified to S ™Y = ‘fg;’c IC]*|Eo|* = ‘fg;’c |cer|?| Eo|*, which can be conveniently found
in the literature (e.g. reference [47]).

To summarize, for a nonstationary electric dipole under illumination, we first derived the corresponding
differential equations (with the corresponding initial conditions) for obtaining the polarizability.
Afterwards, we utilized the introduced notion of the temporal complex polarizability to find the total
instantaneous extracted power and the instantaneous scattered power, which are not necessarily equal to
each other (see supplementary material for more information).

4. Nonstationary particle as a constituent of a time-varying material

In contrast to the previous section, where the time-varying particle is located in free space, in this section,
we assume that the particle is a constituent of a time-varying material, and, accordingly, we investigate the
polarizability of such a particle. This investigation is important for understanding the effective macroscopic
parameters such as susceptibility and permittivity of dynamic materials. To determine the polarizability
kernel and the temporal complex polarizability, we need to study the corresponding differential equation.
Since the particle is immersed in a time-varying material composed of many identical particles, the radiated
power is compensated by the power received from other particles. Therefore, in this case, the radiation
reaction term that was proportional to the third derivative of the dipole moment vanishes, and the
third-order differential equation is reduced to a second-order differential equation. We study this equation
in the next part of this section.

4.1. Differential equations for the dipole moment and the polarizability kernel

Let us concentrate on the classical model of a bound electron as our particle under study. In this case, the
differential equation needed for description of the electric dipole moment is given by the classical equation
of motion. Based upon this equation, we model external time modulations of the system by assuming that
the damping coefficient I'p and the natural frequency w, are varying in time. Therefore, the second-order
differential equation describing the electron motion is expressed as di;;g” + I'p(H) 5 dx( ’) + WA (Hx(t) = ¢ < E(t),
in which m denotes the electron mass, e represents the electron charge, and x(¢) is the displacement. Smce
the dipole moment is the multiplication of the electron charge and the displacement, we can consequently
write

& 2
°P FD(t)— +wi(tp = CE. (37)
d? m

Here, it is worth noting that one can entitle equation (37) as the Lorentz equation which results in the
Lorentz model for the effective macroscopic parameters of dielectric materials. This model reduces to the
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Drude model in the limit of vanishing natural frequency (w, = 0), which means that there is no restoring
force and the electron is not bound. Therefore, in general, we use the term ‘Drude—Lorentz’ to entitle
equation (37). By employing equations (6) and (24), we already derived the first and second time
derivatives of the electric dipole moment and demonstrated them based on the function h(t, 7) and its
partial derivatives. Thus, by inserting those derivations (written in equation (25)) into equation (37) (the
Drude—Lorentz equation), we arrive to three crucial expressions which determine the polarizability:

O*h(t,T) Oh(t,T)
Oh(t, ) Oh(t, ) B & (38)
(2) 2 at |T:t + 87' |T:t - ;)

(3) h(t,7)|,= = 0.

We stress that the function h(t, 7) is not the polarizability kernel. Indeed, the polarizability kernel that we
introduced above is (v, t) = h(t, 7) when 7 = t — . As a consequence, T = ¢ in the second and third
expressions refers to v = 0, and equation (38) defines two initial conditions at v = 0 for a(+, t). Depending
on the temporal functions of the damping coefficient and the natural frequency, these three expressions in
equation (38) give a specific function for the polarizability.

As a check, let us examine the results by considering first the stationary scenario, assuming that the
damping coefficient and the natural frequency are not varying in time. By remembering that
h(t, 7) = h(t — 7) in this scenario and solving equation (38), the polarizability kernel is derived as

2 r I's
a(y,t) = h(t,t — ) = S S exp ——Dv sin w2 — =2y, (39)
. 1} 2 4
my\/wy — e

Notice that the full derivation is explained in the supplementary material of the paper. In the above
equation, as it is explicitly seen, the polarizability kernel depends on only one time parameter, . Therefore,
its Fourier transform is only a function of the frequency and gives the known Drude—Lorentz dispersion in
the frequency domain (e.g., [40]).

Regarding the nonstationary scenario, in which the damping coefficient or the natural frequency
depends on time, we will give a complete example in the last part of this section, comprehensively
calculating the polarizability kernel (see equations (47) and (48) and the corresponding explanations). Also,
subsequently, we will compare the obtained results with the ones known for the conventional stationary
scenario. In this example, we will assume that the damping coefficient is temporally modulated as
Ip(f) = 2T /(1 + Tt) (where T'y corresponds to the damping coefficient at = 0) and the natural
frequency is zero.

Prior to studying the temporal complex polarizability in the next part, it would be interesting and useful
to discuss causality of time-modulated particles. However, in order to keep the paper succinct, this
discussion is given in the supplementary material.

4.2. Differential equation for finding the temporal complex polarizability

We have hitherto discussed how to derive the polarizability kernel of the electron based on the classical
model. Here, our aim is to introduce a linear differential equation whose solution gives the temporal
complex polarizability. We already know that, for time-harmonic excitation, the induced electric dipole
moment is expressed in terms of arr(w, ) (see equation (7)). Ergo, by substituting that expression into the
Drude-Lorentz equation (see equation (37)), we come to the desired differential equation for the temporal
complex polarizability, which is written as

O*ar(w, t)
or?

2
% + (wrzl(t) —w? +ijD(t)) ar(w,t) = % (40)

+ (Ip(1) + j2w)
Equation (40) is a second-order differential equation with time-dependent coefficients which allows us to
find ar(w, t) for arbitrary time variations of the particle parameters. Certainly, this equation should be
complemented by initial conditions in order to give a proper description of the electric dipole moment.
These initial conditions are p(0) = 0 (initial value of displacement is zero) and dp(0)/d¢ = 0 (initial value
of velocity is zero).

In order to check equation (40), we first make I'p(#) and w,(#) time-invariant. Since ar(w, t) does not
depend on time in this case, the corresponding time derivatives in equation (40) become zero, and we

11
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Figure 2. The electric dipole moment with respect to time. The solid line corresponds to numerical results obtained using
Simulink software, and the dashed curve presents the analytical results based on equation (40). Here, only for simplicity, we
assume thatw = 1rads !,y = 1rads ™}, ¢?/m=1c* kg ',and [, =1 VmL

instantly see that the solution is the usual Lorentz dispersion rule:

3%

ar(w,t) = (41)

w2 —w? +jwlp’
As a second check, we consider a time-variant I'p(¢) or w,(#). For this, let us take the same example as in
the next subsection of the paper, where we will assume that the damping coefficient is

I'p(#) = 2T /(1 4 T'gt) and the natural frequency is zero. For this example, we apply equation (38) and
derive the polarizability kernel which is given by equation (48) in the next subsection. Therefore, since we
know a(~, t), we can obtain the temporal complex polarizability ar(w, t) by simply taking the Fourier
transform with respect to ~, see equation (8).

However, here we directly solve equation (40) and determine ap(w, t). We multiply this result by the
electric field, and, based on equation (7), we find the electric dipole moment as a function of time. On the
other hand, we employ the Simulink software and simulate the dynamic system modeled by equation (37).
By this way, we obtain the simulated instantaneous dipole moment. Figure 2 compares the theoretical and

simulated results. As it is seen, there is a very good agreement between them, which accordingly confirms
the validity of equation (40).

4.3. On the Drude-Lorentz model of time-varying dielectrics and plasma

Next, we use the above theoretical results to analyse approximate models of effective parameters of
Lorentzian dielectrics and electron plasma. The dipole moment of each electron is governed by

equation (37), where the parameters may depend on time due to changing environment where the charges
are located. However, apart from equation (37), the electron density (i.e. the number of electrons per unit
volume N(#)) can also depend on time. In consequence, in the following, we will consider two different
cases: a particular case in which only the electron density is time variant and the parameters in the equation
of motion (equation (37)) do not change in time, and a more general case in which those parameters are
also time dependent in addition to the electron density. Both aforementioned cases definitely result in
nonstationary models. The reason for having a discussion on the former case is that while the polarizability
kernel of the single electron should be the same as the one for the stationary scenario, because the damping
coefficient and the natural frequency are assumed to be time invariant, and, therefore, the polarizability
kernel is only a function of v (i.e. a(y,t) = a(7)), we will soon show that the corresponding effective
permittivity kernel becomes a function of both v and # (i.e. €(7, 1)).

Accordingly, let us start from the first case which is possibly the simplest case. Since I'p and w,, are
constant in time and only the density N(t) varies, we can see this as a low-density approximation where we
assume that the electrons interact very weakly and, as a result, the characteristics of movement of a single
electron do not depend on the electron density. Under these assumptions, the volume density of electric
dipole moment or polarization density is written as

—+o0

P(t) = N()p(t) = Ny, HE(t — v)dy
0

“+o00
- / cox (1 DE(t — ), (42)
0
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in which the electric susceptibility kernel equals

N(t N(t 2 r I
x(,t) = —( )a(% t) = ®) ¢ exp ——Dv sin w? — —Dy . (43)
€0 €0 2 2 2 4
my\/wi — =

Here, in equation (43), note that we take the polarizability kernel from equation (39). Before proceeding,
we draw the attention to equation (42) which describes the polarization density. In this equation, we simply
wrote P(#) as the multiplication of the electric dipole moment and the electron density. To do that, firstly,
we should assume that by varying the number of electrons (per unit volume) in time, the time-varying
material remains homogeneous meaning that the electric susceptibility (or permittivity) does not depend
on the position vector r: x(r,7,t) = x(7, t). Secondly, we should also suppose that the process of changing
the electron density in time does not affect the velocities of electrons. Within these assumptions,

equation (42) is valid, and, in fact, we can write P(#) = N(#)p(#). Now, by knowing the electric susceptibility
kernel from equation (43), we readily find the relative permittivity kernel of the effective medium as

N(t 2 I I
cnn=am+ € e (—Dv) sin { (/w2 = =27 |, (44)
€0 m wtzl _ F_D 2 4

where () is the one-dimensional Dirac delta function. Since we have the kernels from the above
equations, equations (43) and (44), we can apply the Fourier transform equation (19) and calculate the
temporal complex relative permittivity defined in equations (17) and (18). The result reads

() = 1 (") (45)
erlw, — + wrzl — wz —’—j]_—‘D(,d’
in which
2 e
we(t) = —N(1) (46)
[

is the time-dependent plasma frequency. The expression in equation (45) is complex-valued and explicitly
depends on time indicating the nonstationarity characteristic. Substituting w, = 0 (free-electron plasma)
we arrive to the conventionally used expression for the effective permittivity of plasma with varying electron
density, e.g. [48]. The only difference with the stationary case is that in the formula the plasma frequency
explicitly depends on time. The reason is due to the low-density approximation that we have made. Within
this approximation, the damping coefficient and the natural frequency are considered to be constant in
time. Therefore, the polarizability kernel is the same as the one written for the stationary scenario, and
consequently the same kind of dispersion is observed.

Let us consider a more general case when the damping coefficient and the natural frequency also change
in time. In this case, er(w, t) can be dramatically different. Specific dependencies of the effective parameters
in (45) are determined by the plasma structure and can be set as empirical parameters. As a particular
example, here we assume that (¢, 7) is a product of two functions K(t) and L(7) which depend on single
independent variables t and 7, respectively. Since h(t, t) = 0, according to the initial condition in
equation (38), one also assumes a multiplier in form (¢ — 7)". Thus, we consider the time-varying
dispersion kernel in form

h(t,7) = (t — 7)"K(¢)L(T). (47)

Equation (38) should be used to find the proper values of n, K(¢), L(7), and, importantly, to achieve the
required functions of I'p(t) and w,(#) providing such a kernel given by equation (47). For the free-electron
model (w, = 0), the analysis presented in the supplementary material indicates that the damping coefficient
should vary homographically as I'p(#) = 2T'g/(1 + [gt), which ultimately results in the following electric

polarizability kernel:
62 Fo’}/
a(y,1) mv( 1+F0t> (48)

Having the polarizability kernel from equation (48), and after some algebraic manipulations, the relative

permittivity kernel is expressed as

- N(t) 62 Fo"}/
6(%1‘)—5(7)"'?%’7 (1— 1—|—I‘0t) . (49)
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Figure 3. The imaginary and real parts of the effective permittivity with respect to time. Here, we assume that wy, is fixed (e.g.,
wp = 10' rad s7'), and, also, w = wp/2. The solid and dashed lines correspond to the modified and conventional Drude models,
respectively. Two different cases have been considered: 'y = w, /30 and T’y = w,, /5.

As a sanity check, if 'y = 0 and N(t) is time-invariant, we obtain the conventional stationary lossless Drude

model:
2

e(y) =4d(v) + ﬁe—% (50)
€gp m

Let us again apply the Fourier transform (19) and find the temporal complex relative permittivity which
corresponds to kernel (49). In accordance with the properties of Fourier transform, since

/m(—' P exp(—jumndy = — (L (51)
G ependy= g o (o)
we find that 2 2T
Y t . pr Iy
er(w,H) =1 w? ]w3(1 +Tot)’
or (52)

er(w,t) =1 — I'p(1).

wp(t)  wi()
w? J

w3
The temporal permittivity has the imaginary part which is time-dependent, and is negative indicating that
the medium is lossy. Comparing the above expression with the conventional stationary Drude model

wz 1 OJZ T
- y_-»_ - _ i D
GDrude(w) =1 UJZ 1+ (I:TD)Z ]w3 1+ (I:TD)Z’ (53)

we explicitly observe how the effective permittivity of plasma with a time-varying damping coefficient
cannot be found by simply assuming that I'p, depends on time in the conventional Drude formula: time
variations of the damping coefficient I'p (#) modifies the real and imaginary parts of the relative permittivity
in a different way, as is seen from equation (52). To illustrate this fact, we plotted the real and imaginary
parts described by equation (52) and compared them with the ones given by equation (53). In this
equation, we consider the time-varying I'p. Based on figure 3, we indeed observe that there is a clear
difference between the modified model (equation (52)) and the conventional model (equation (53)),
especially if I'y is not very small compared to the plasma frequency that is assumed to be constant.

Finally, before finishing this section, we point out an issue about numerical simulations and
experiments. The time-invariant (stationary) frequency-dispersive media have been thoroughly studied, and
there are well developed time-domain full-wave electromagnetic simulation tools such as Ansys HFSS, CST
Microwave Studio, and COMSOL Multiphysics. However, up to our knowledge, there are no numerical
tools that could ‘properly’ simulate dispersive time-varying (nonstationary) media. We hope that this work
will help developing such numerical methods which would allow studying electromagnetic processes in
dispersive and time-varying media (including time-space modulated metamaterials). Also, let us discuss
possible experimental realizations of studied nonstationary objects. For instance, in the microwave
frequency range, a wire dipole antenna can be loaded by a time-varying resistance or capacitance, realized,
for example, using field-effect transistors or varactors. An array of such identical inclusions results in a
time-varying dispersive metamaterial or metasurface. Using proper electronic systems, the temporal
function of the load can be controlled. Notice that researchers have already worked in the microwave regime
and used nonstationary transmission lines that give a possibility to experimentally confirm the bandgap
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phenomenon (related to the wave number) appearing in the band structure of time-varying nondispersive
(or instantaneous) media [49, 50].

5. Conclusions

We have theoretically studied the fundamental principles related to the electric polarizability of arbitrary
dipolar linear particles whose characteristics are varying in time due to some external force. Since at every
moment of time the time-varying particle is different, the polarizability additionally depends on the
observation time (the one at which we measure the dipole moment). Importantly, this time-dependent
polarizability is not fully determined by the particle parameters at the observation moment, this
polarizability is a causal-response parameter which depends on the whole history of the particle. This is in
contrast with a stationary particle whose polarizability depends only on the delay time between the
excitation and observation moments.

For time-harmonic excitations, we demonstrated that the instantaneous dipole moment is found as the
real part of a complex-valued temporal function that is multiplied by the complex amplitude of the field
and the time-harmonic exponential factor. This temporal response function is the Fourier transform of the
polarizability kernel with respect to the delay time (v — w). We named this function as temporal complex
polarizability and explained some of its salient properties. Importantly, using the notion of temporal
complex polarizability, we introduced the second Fourier transform that is with respect to the observation
time (t — §2). By this way, we could describe the dipole moment completely in the frequency domain.

Next, we considered a nonstationary particle that is located in free space. By employing the Riidenberg
equation (the Hertzian dipole model), we presented a methodical approach to determine the polarizability
kernel and the temporal complex polarizability. Having the polarizability, we studied the classical
interaction of the dipole with the incident time-harmonic electromagnetic wave. Therefore, in terms of the
temporal complex polarizability, we contemplated the instantaneous powers that are extracted by the dipole
and scattered from the dipole.

Finally, we took one step forward and considered the dipole particle as a constituent of a time-varying
material. This time, we focused on the classical bound electron model and derived the corresponding
equations for finding the polarizability. To do that, we used the equation of motion (or the Drude—Lorentz
equation) and assumed that the damping coefficient and the natural frequency are varying in time.
Afterwards, we moved towards effective material parameters, and for particular example cases, we derived
the effective permittivity of the time-varying medium comprising bound or free electrons. It is observed
that this model for describing the effective permittivity is significantly different from the conventional
Drude-Lorentz formula with time-dependent parameters.
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