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We introduce phantom curves, a novel music-theoretical concept based on the
discrete Fourier transform (DFT), and document the creative process that led
to their discovery. In particular, we emphasize the importance of interactive
web applications for music visualization and analysis. This is demonstrated
using the example of the application midiVERTO which affords interactions
with the pitch-class content of musical pieces encoded in MIDI format with-
out requiring in-depth understanding of the underlying mathematics. We
illustrate the analytical value of studying families of phantom curves by
applying the concept to music from a Broadway musical, a video game, and
a Hollywood movie. This process of discovery thus testifies to the fact that
digital tools can bridge disciplinary boundaries between music theory and
mathematics, and this interaction can generate new scientific knowledge.
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1 INTRODUCTION

Scientific discovery can arise by many means. Results can be ob-
tained from meticulous methodological rigor and carefully planned-
through experiments, but oftentimes insights are also gained through
spontaneous associations of previously unrelated facts or exploratory
work. In particular for the latter mode of discovery, a stimulating en-
vironment is quintessential in order to allow creativity to flow [4, 9].
Collaborative inter- and transdisciplinary research for which knowl-
edge and expertise from different fields is brought into interaction,
is especially likely to provide such environments. Interdisciplinary
work can, however, be impeded by specialized expert knowledge
that is difficult to communicate to researchers with different back-
grounds. In such situations, appropriately designed tools may help
to build bridges between different research traditions and provide
interfaces to otherwise restricted knowledge.

Here, we report an instance of scientific discovery made possible
through interactive exploration using an online interface for music
visualization. We document how the discovery of phantom curves,
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Fig. 1. Hierarchy of all possible timeline segments, viewed through a
particular coefficient of the discrete Fourier transform (DFT), also called
wavescape [16]. All segments with identical width w lie on a phantom curve
®,,, shown as dashed lines. Each point ®,,(¢) on this curve corresponds to
a particular segment [s, s + w] with starting point s and pitch-class content
P(s, w); see Section 3 for details. Two example segments [s1, s; + wy | and
[s2,s2 + wy ] with corresponding phantom curves ®,,, and ®,,, are shown.

a new concept for music analysis, was enabled through the web
application midiVERTO! for analyzing and visualizing tonal struc-
tures in pieces of music [5]. The dynamic nature of the application
enables the exploration and comparison of different analyses by
changing the parameters through a visual interface. This yields mul-
tiple views on tonal structures in a musical piece that can inform
and augment further analysis. In our analyses below we show a
selection of particularly insightful viewpoints.

In this study, we showcase how synergies can be obtained by
combining knowledge from mathematics, and music theory, as well
as web development and user interface design. We first briefly de-
scribe the capabilities of midiVERTO and document the creative
process leading to the discovery of phantom curves. Then, we pro-
vide the mathematical details of phantom curves and demonstrate
the usefulness of this concept for music analysis drawing on three
examples from different music styles, namely the main theme of the
musical The Phantom of the Opera by Andrew Lloyd Webber (1986),

The application can be accessed at https://dcmlab.github.io/midiVERTO/. It is open
source and its code is hosted at https://github.com/DCMLab/midiVERTO/.
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the music of the Phantom Forest from the PlayStation video game
Final Fantasy VI by Nobuo Uematsu (1994), and the film score Duel
of the Fates from Star Wars Episode I: The Phantom Menace by John
Williams (1999). We conclude our contribution by outlining which
potential future avenues can be taken to further develop the concept
of phantom curves, in particular in relation to Music Information
Retrieval (MIR) techniques.

2 DOCUMENTING A CREATIVE PROCESS

We now describe the process as well as some favorable factors that
led to the discovery of phantom curves. Reconstructing creative
processes a posteriori is difficult since it relies mainly on introspec-
tion, but we believe that reflections on how knowledge is generated
may provide valuable experiences for others. While the concept of
phantom curves has merit in itself, we emphasize in this section
three factors that facilitated its discovery. First, the interdisciplinary
work in the intersection of music theory and mathematics provided
the initial impetus. Second, we were able to draw on prior work,
most importantly recent work in mathematical music theory on
the application of the discrete Fourier transform to pitch-class sets
[1] and the combination of this line of research with hierarchical
representations of tonal structure [7, 12] that culminated in the
development of a visualization method called wavescapes [16]. The
colored triangle in Figure 1 is an example for such a wavescape.
While wavescapes provide a novel, intuitive way to grasp large-
scale tonal structures in compositions, the impact of this method
might be somewhat constrained because, in order to use wavescapes
in one’s own work, certain programming skills are required. We thus
decided to develop an interactive version where users, in particular
musicologists and music theorists with little programming affinity,
would be able to interactively engage with wavescapes. Thus, the
affordances of this tool are the third and final factor leading to the
discovery of phantom curves. A web application was the natural
choice for realizing this project, because it grants widest-possible
accessibility, while reducing hardware and software requirements
on the user’s end.

When implementing the wavescapes and the corresponding Fou-
rier coefficients (see below), we quickly realized that wavescapes
incorporate two different notions of time, namely temporal location
(starting point of a segment) and temporal extent (segment width).
These are given by the horizontal and vertical components of a
point in a wavescape, respectively. Moreover, we realized that these
two components are not sufficiently explored in a static manner,
and that the dynamic rendering in midiVERTO could provide new
visualization benefits. In interaction with this tool, we observed
that increasing window sizes directly corresponds to different ‘cuts’
through a wavescape. Moreover, seeing that these cuts ‘shrink” with
increasing segment width and that the corresponding points on the
Fourier coefficients moved closer to one another, formed smoother
and smoother curves, and finally contracted into a single point made
us realize that we could conceptualize this as a family of curves
(see mathematical details in Section 3). Coincidentally, the example
piece we were looking at was the main theme of the musical The
Phantom of the Opera, and combined with the fact that the curves
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relate to the latent long-term tonal structure hidden in pieces of
music, naming the curves phantom curves was obvious.

3 PHANTOM CURVES

The way how pitches of a piece of music are organized — the piece’s
harmonic structure — can be studied at multiple hierarchical levels
by considering the set of pitch-class distributions for all possible
segments (i.e., all possible, potentially overlapping time intervals)
of the piece [7, 11, 16]. Let T denote the total duration of a piece,
measured in beats, quarter notes, or seconds, for example. Any of
the piece’s segments is uniquely specified by its starting time point
s € [0,T] and its segment width w € (0, T], the segment’s time
duration. The pitch-class content of any such segment is obtained
by counting and summing up all its pitch classes into a vector
P(s,w) € ]RLZO, where the total count of pitch class j equals the j-th
vector entry P(s, w)[j]. These counts can also be weighted by the
duration of the respective notes, and the formalization with P is
generic to this choice. Here, we consider pitch-class distributions
and thus normalize the pitch-class vectors P(s, w) to sum up to one,
P(s,a) = P(s,a)/ 2 P(s,a)[j].

In recent years it became increasingly popular among music
theorists to study pitch-class sets and distributions via the discrete
Fourier transform [1, 8, 15, 17]. Since the DFT can be applied to music
in symbolic formats (e.g., MIDI) without prior interpretation of the
musical material by a music theorist, it is well suited for distant-
reading approaches in corpus studies, such as the comparison of
different pieces’ tonal organization at a high level of abstraction.

Definition 3.1 (Discrete Fourier Transform). The discrete Fourier
transform (DFT) of any pitch-class vector x (i.e., any choice of x =
P(s, w)) corresponds to the mapping

11

Flk] = Y x[jle?%,

j=0
and F(x)[k] is called the k-th Fourier coefficient of x.

F:RY) - C"?,

The application of this transformation to pitch-class distributions
relates to music theory in particular through the association of its
coefficients to fundamental concepts: chromaticity (1st coefficient),
dyadicity (2nd coefficient), triadicity (3rd coefficient), presence of
seventh chords (4th coefficient), diatonicity (5th coefficient), and
similarity to whole-tone scales (6th coefficient). Each one of the re-
maining coefficients is equivalent to one of the first six coefficients
by symmetry [16]. The DFT has been combined with keyscapes [11]
to define wavescapes [16], a method for visualizing pitch-class distri-
butions hierarchically through the DFT. Figure 1 shows a particular
wavescape, a triangle in which each cell shows the Fourier coeffi-
cient of a segment as a color value.

We call horizontal cuts through the wavescape of a particular
Fourier coefficient phantom curves. The idea of phantom curves is
that their shape indicates how a piece’s tonality unfolds in time.
Such curves can also be visualized on the unit disk in the complex
plane which we call a Fourier coefficient space. Figure 2 shows
both representations next to one another. Colors between these
two visualizations are matched, a detailed definition of the color
mapping can be found in [16].
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Definition 3.2 (Phantom Curve). For a segment length w € (0, T],
the phantom curve ®,, is defined as the continuous mapping

®y: [0T—w] > C2  ®y()=F (P(t, w)) .

For an intuitive explanation of phantom curves, consider a slid-
ing window of width w € (0, T] moving along the piece, from its
start to its end. At each position, the pitch-class distribution of the
segment covered by the sliding window is mapped to its Fourier
coeflicients, and the succession of these coefficients forms a curve
in the coeflicient space. Figure 1 shows two phantom curves for
different segment widths, represented by dashed horizontal lines
cutting horizontally through the wavescape. The sliding-window
segments are shown as bold lines at the bottom of the triangle and
the Fourier-coefficient values are plotted in the color domain. A
phantom-curve plot in a coefficient space is shown to the right in
Figure 2.

Phantom curves are based on the pitch-class content for segments
of arbitrary but fixed width w, and this allows to analyze a piece of
music from any level of detail. However, a single perspective is rarely
sufficient for a comprehensive analysis, and multiple viewpoints
may be more revealing. In our exploratory analyses, for example,
we determined widths that correspond to appropriately detailed
resolutions in dynamic interaction with the application midiVERTO.
Hence, we searched for particular instances in the family of all a
piece’s phantom curves.

Definition 3.3 (Phantom Curve Family). The family of phantom
curves for a given piece is

®: (0,T] — {[0,T - w] — C'?},

w Oy
where ®,, is defined as in Definition 3.2.

Note that each phantom-curve family can be understood as a
contraction in the sense that for increasing values of w, the phantom
curves ®,, shrink.? This contraction can be conveniently visualized
using the midiVERTO application. A special phantom curve is the
one over the entire piece (w = T) for which 77 is constant (r7(¢) = 0)
and the phantom curve ®,, contracts into a single point. This curve
can be considered the phantom singularity, which corresponds to
the point at the tip of the triangle in Figure 1.

4 A GALLERY OF UNCANNY EXAMPLES

We now illustrate the usefulness of phantom curves for music anal-
ysis by applying the concept to three pieces of music from 20th-
century popular music culture: the main theme of a Broadway musi-
cal, a video game, and a cinema movie These specific examples were
chosen because each of them alludes to the supernatural, in other
words: to phantoms. There is ample music-theoretical evidence that
composers writing in the late-Romantic idiom (and 20th-century
composers taking their inspirations from them), often draw on re-
markably similar techniques when it comes to expressing the eerie
and magical [2, 3, 6, 14]. These techniques are sometimes subsumed
under the notion of extended tonality [10, 13]. According to these
accounts, supernatural and eerie associations are often expressed
by drawing on major-third relations that can not be fully accounted

2Mathematically, the line integral of ®,, converges to 0 as w goes to T.
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Fig. 2. Phantom curve on the wavescape (left, dashed) and 3rd Fourier
coefficient space (right, dotted) for the main theme of The Phantom of the
Opera (time resolution: J’; segment width: 150 X d=1875x% o). The labels
shown to the right denote augmented triads (e.g., C+) and hexatonic scales
that result from joining adjacent augmented triads (e.g., Ho1 = C+U Cfi+;
the numbers 0 and 1 correspond to the pitch classes of C and CH).

for in a diatonic context (representing the natural world), and thus
perfectly embody the realm of the otherworldly.

It should be noted, however, that midiVERTO can be used to ana-
lyze any piece in MIDI format and is not restricted to any particular
style of music. Non-pitched instruments can, however, not be repre-
sented because the Fourier transform as presented here only takes
the pitches into account.

The Phantom of the Opera — Main Theme (1986). The main theme
of the musical The Phantom of the Opera by composer Andrew Lloyd
Webber expresses the musical’s overall narrative of a tortured soul
seeking redemption through love. The character development of
the main protagonist, the phantom, is foreshadowed by the essen-
tial harmonic progressions of the main theme. Figure 2 shows the
third Fourier coefficient space. The four large color regions in blue,
green, yellow, and pink correspond to the overall harmonic trajec-
tory D minor — G minor — E minor — F minor. The regularity of
this sequence becomes apparent when viewed through the lens of
the third Fourier coefficient, revealing the square-like shape of the
phantom curve. Because each of these key areas is locally diatonic,
the corners of this square are closer to hexatonic scales (i.e., the
union of two augmented triads; e.g., Ho; = C+ U Cfi+), than to a
single augmented triad (e.g., C+) [16].

Final Fantasy VI — Phantom Forest (1994). In Final Fantasy VI, a
cataclysmic event occurs midway through the game, and transforms
the peaceful World of Balance into the World of Ruins. The music
for the Phantom Forest by composer Nobuo Uematsu belongs to
the first part and reveals interesting aspect of the music’s tonal
structure through the third Fourier coefficient. Here, the phantom
curve exhibits a trident-like shape that results from the rondo-like
form, with the overarching key of A minor (pink-violet) and key
changes to Bb major (blueish), F major (violet), C major (orange),
and finally Eb major (greenish). Locally, the melody contains many
chromatic alterations and thus the ‘fingers’ of the trident seem
to target the augmented triads. It can also be seen that this basic
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Fig. 3. Phantom curve on the wavescape (left, dashed) and 3rd Fourier
coefficient space (right, dotted) for Final Fantasy VI — Phantom Forest (time
resolution: J’; segment width: 48xd = 6Xo). See Figure 2 for the explanation
of the labels.
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Fig. 4. Phantom curve on the wavescape (left, dashed) and 5th Fourier
coefficient space (right, dotted) for Duel of the Fates from Star Wars Episode |
— The Phantom Menace (time resolution: J’; segment width: 240 xd = 30 X o).
The labels shown to the right denote the circle of fifths for single pitch
classes (C, G, D, ...) and diatonic collections (i, , 24, ...).

structure is then repeated. Composing circular forms that allow
potentially infinite repetition is often found in game music.

Star Wars Episode I — The Phantom Menace (1999). In one of the
movie’s most epic battle scenes, accompanied with a film score
entitled Duel of the Fates by composer John Williams, the binary
opposition between the main protagonists Jedi Qui-Gon Jinn and
Obi-Wan Kenobi on one side and Sith apprentice Darth Maul on
the other is represented by the juxtaposition of two diatonically
unreconcilable keys: E minor and G minor. The minor-third distance
of these keys leads to very different coloring, green and red, in the
fifth Fourier coefficient (Figure 4). Interestingly, the dramatic arc of
the conflict between the protagonists seems to be directly reflected
in how these keys are used: the phantom curve shows a transition
from the green E-minor area to the red G-minor area, with only a
brief interlude of balance between the two (shown in yellow).

The analytical sketches of the three pieces above are rather suc-
cinct and in no sense meant to represent comprehensive analyses of
their tonal and formal structure. Our goal is not to render complete
analyses of the pieces, but primarily to demonstrate how phantom
curves and midiVERTO can be used exploratively to generate and
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to interact with such analyses. Readers are invited to take up our
analytical outlines as starting points for deeper explorations of the
tonal structures of these pieces as well as others.

5 CONCLUSIONS

In this paper, we have introduced a novel concept for computa-
tional music analysis: phantom curves. We moreover documented
the process of how we conceived of this concept in interaction with
a freely-available interactive online tool, the web app midiVERTO,
thereby demonstrating the scientific and pedagogical value of de-
veloping and disseminating such tools. The new idea of phantom
curves was then applied to analyze three pieces of 20th-century
music from a varied range of genres: a musical theme, video-game
music, and the score of a central scene of a cinema blockbuster.

Several avenues present themselves to build upon our present
work in the future. In particular, more rigorous characterizations of
families of phantom curves seem to be a promising direction. For
instance, studying the smoothness and curvature of these families
might reveal interesting insights. Applying the concept not only to
singular pieces but entire corpora of compositions might moreover
reveal clusters of pieces with similar overall tonal plans and hence
similar families of phantom curves (up to transposition), a related
direction was explored in [7]. A naturally follow-up question would
be whether such similarities are effected by factors such as genre,
historical period, composer, or instrumentation. It would be more-
over interesting to investigate whether and to what degree different
analysts agree in their choice of phantom curves for a given piece
and arrive at similar conclusions. We would like to encourage read-
ers to explore the potential of midiVERTO, and to utilize it in order
to learn more about music, as well as to discover new ideas through
exploration and experimentation.
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