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Abstract
Tuning the mechanical properties of metals, including strength, through adjusting the type

and/or concentration of added solute elements, has been recognized as an effective way to

design and produce materials with desired or optimized mechanical properties. Developing

predictive models that connect the material properties at atomic level to the macroscopic

strength is thus crucial for theory-guided design of new materials with superior mechanical

performance.

Solute strengthening refers to the additional strength which arises from the totality of the

interaction energies between the solutes and an individual dislocation. Prevailing theories for

strengthening in body-centered cubic (BCC) alloys consider only solute interactions in the core

of the screw dislocation while computations suggest longer-range interactions. In this work,

we define the proper solute/screw interaction energy parameter relevant for strengthening of

screw dislocations in random bcc alloys from dilute binary alloys to high-entropy alloys.

Solutes could be added in small amounts to the pure base metal to form substitutional dilute

alloys. It is well-established that the plastic deformation in dilute BCC alloys is controlled

by motion of screw dislocations through thermally-activated double-kink nucleation and

migration processes. However, the effect of solutes on these processes is not well-established.

Here, we develop theoretical models to predict the barrier associated with each of these

processes which ultimately enable us to compute the strength of the alloy without any fitting

parameters.

High-entropy alloys (HEAs) are a new class of random multi-component alloys with impressive

mechanical properties. Recent theory suggested that the underlying mechanisms involving

the screw dislocation motion in BCC non-dilute and HEAs differs fundamentally from that

of dilute alloys and is controlled by a combination of Peierls-like motion, kink migration,

and cross-kink failure. Existing kink migration models, in spite of successes in capturing

some experiments, are based on several invalid assumptions. Here, a new theory for the kink

migration in HEAs is developed based on our recent understanding in dilute alloys, leading to

a fully derived analytical model for the kink migration energy barrier.

The BCC refractory HEAs composed of the family of Mo-W-V-Nb-Ta are of particular interest

due to their high-temperature strength retention. Very recent theoretical and experimental

studies have proposed that yield strength in these and other BCC HEAs is controlled by edge

dislocation. In this study, the very high energy barriers hindering the edge dislocation is

analyzed using atomistic simulations, leading to high strengths and high strength retention at

elevated temperatures.
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Introduction

Many BCC refractory HEAs show a distinct plateau in strength versus temperature at interme-

diate temperatures. In the last part of this thesis, we examine one possible mechanism for the

intermediate-T strength plateau: the dynamic strain aging (DSA) process of solute diffusion

immediately across the core of an edge dislocation. An analytic model is developed which

captures the major dependencies in terms of underlying material properties, and can thus be

applied to other alloys.

The predictive theoretical models developed in this thesis pave the way for theory-guided

design of novel high-performance materials with excellent or even unprecedented mechanical

properties.

Keywords: BCC alloys, high entropy alloys, dilute alloys, solute strengthening, screw disloca-

tion, edge dislocation, double-kink nucleation, kink migration, dynamic strain aging,cross-

core diffusion, NEB, atomistic simulations
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Zusammenfassung
Die Anpassung der mechanischen Eigenschaften von Metallen, einschließlich ihrer Festigkeit,

durch Abstimmung der Art und/oder Konzentration zugesetzter Lösungsatome ist allgemein

als effektive Methode zum Design und zur Herstellung von Materialien mit gewünschten oder

optimalen mechanischen Eigenschaften anerkannt. Die Entwicklung von Vorhersagemod-

ellen, die eine Verbindung zwischen den Materialeigenschaften auf atomarer Ebene und der

makroskopischen Festigkeit herstellen, ist daher von entscheidender Bedeutung für die theo-

riegeleitete Entwicklung neuer Materialien mit überlegenen mechanischen Eigenschaften.

Mischkristallhärtung bedeutet die zusätzliche Festigkeit, die sich aus der Gesamtheit der Wech-

selwirkungsenergien zwischen den Lösungsatomen und einer einzelnen Versetzung ergibt.

Die vorherrschenden Theorien zur Verfestigung in krz-Legierungen berücksichtigen nur Wech-

selwirkungen mit Lösungsatomen im Kern der Schraubenversetzung, obwohl Berechnungen

Wechselwirkungen mit größerer Reichweite nahelegen. In dieser Arbeit haben wir den für die

Verfestigung von Schraubenversetzungen in krz-Mischkristallen, von verdünnten Lösungen

bis hin zu Hochentropie-Legierungen, maßgeblichen Parameter der Wechselwirkungsenergie

zwischen Lösungsatomen und Versetzungen definiert.

Lösungsatome können dem reinen Metall in kleinen Mengen zugesetzt werden, um verdün-

nte Mischkristalle bilden. Es ist bekannt, dass die plastische Verformung in verdünnten

krz-Legierungen durch die Bewegung von Schraubenversetzungen, über Nukleation von

Doppelkinken und Migrationsprozesse, gesteuert wird. Hier haben wir theoretische Modelle

zur Vorhersage der mit jedem dieser Prozesse verbundenen Barriere entwickelt, die es uns

letztendlich ermöglichen, die Festigkeit der Legierung ohne jegliche Fitting-Parameter zu

berechnen.

Hochentropie-Legierungen (High Entropy Alloys, HEAs) sind eine neue Klasse von Mehrkomponenten-

Legierungen mit beeindruckenden mechanischen Eigenschaften. Jüngste Theorien deuten

darauf hin, dass sich die zugrundeliegenden Mechanismen der Bewegung von Schrauben-

versetzungen in nicht verdünnten krz- und HEA-Legierungen grundlegend von jenen in

verdünnten Legierungen unterscheiden und durch eine Kombination aus Peierls-artiger Bewe-

gung, Migration von Kinken und Zerfall von Kreuz-Kinken kontrolliert werden. Wenn sie auch

einige Experimente erfolgreich beschreiben, so basieren bestehende Experimente doch auf

verschiedenen ungültigen Annahmen. Hier wird, ausgehend von unseren jüngsten Erkenntnis-

sen im Bereich der verdünnten Legierungen, eine neue Theorie der Kinkenmigration in HEAs

entwickelt, die zu einem vollständig hergeleiteten analytischen Modell der Energiebarriere für

Kinkenmigration führt.
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Zusammenfassung

Die hochtemperaturbeständigen krz-HEAs aus der Mo-W-V-Nb-Ta-Familie sind von beson-

derem Interesse, weil sie ihre Festigkeit bei hohen Temperaturen beibehalten. Jüngste the-

oretische und experimentelle Studien haben ergeben, dass die Streckgrenze in diesen und

anderen krz-HEAs durch Stufenversetzungen kontrolliert wird. In dieser Studie haben wir die

sehr hohen Energiebarrieren analysiert, die die Stufenversetzung behindern und zu hohen

Festigkeiten und hoher Beibehaltung der Festigkeit bei erhöhten Temperaturen führen.

Viele hochtemperaturbeständige krz-HEAs weisen im Festigkeits-Temperatur-Diagram bei

mittleren Temperaturen ein deutliches Plateau auf. Im letzten Teil dieser Arbeit wird ein

möglicher Mechanismus für das Festigkeitsplateau bei mittleren Temperaturen untersucht:

der Prozess der dynamischen Reckalterung (Dynamic Strain Aging, DSA), bei dem Lösungsatome

unmittelbar durch den Kern einer Stufenversetzung diffundieren. Es wird ein analytisches

Modell entwickelt, das die wichtigsten Abhängigkeiten von den zugrundeliegenden Materi-

aleigenschaften erfasst und somit auf andere Legierungen angewendet werden kann.

Die in dieser Arbeit entwickelten theoretischen Vorhersagemodelle ebnen den Weg für die

theoriegeleitete Entwicklung neuartiger Hochleistungswerkstoffe mit exzellenten oder sogar

noch nie dagewesenen mechanischen Eigenschaften.

Stichworte: krz-Legierungen, Hochentropie-Legierungen, verdünnte Legierungen, Mischkristall-

härtung, Schraubenversetzung, Stufenversetzung, Kreuzkinkennukleation, Kreuzkinkenmigra-

tion, dynamische Reckalterung, Versetzungskerndiffusion, NEB, atomistische Simulationen
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1 Introduction and Background

1.1 Strength of materials

From a mechanical and materials engineering point of view, the strength of a material can

be defined as its ability to resist an applied load without failure or plastic deformation. The

strength of the material plays a key role in designing structural materials (e.g. bridges, turbine

blades, etc.) and thus exploring and designing different ways to enhance the materials strength

has been an active area of research for over a century. The strength of metals can be measured

by applying tensile or compressive forces to the test specimens at a specified strain rate ε̇, and

temperature T, until failure of the material. The outcome of the test is a stress-strain curve,

from which the mechanical properties of the material can be extracted. An example of this

curve is shown in Figure 1.1 for Mo single crystals. The important mechanical properties which

can be extracted from the stress-strain curves include the yield stress, the ultimate stress and

the fracture strain. The yield stress (strength) is a material property on the stress-strain curve

where the material begins to deform plastically. Since dislocations are well-understood to be

responsible for plasticity in crystalline materials, the strength of materials indicates the stress

at which dislocations move. A dislocation is a type of defect in crystalline materials which

significantly influences its mechanical performance, to include strength as will be discussed

further in Section 1.2. In this thesis, we are merely interested in the yield stress of the materials.

The atoms in metallic materials are typically divided into three common crystal structures,

namely body-centered cubic (BCC), face-centered cubic (FCC), and hexagonal close-packed

(HCP). The variation of strength for various BCC materials versus the temperature and strain

rate is shown in Figure 1.2. Generally, the strength of crystalline materials having a BCC

structure (e.g. Fe, Mo, W, Nb, Ta, V) are much higher while showing increased low-temperature-

dependency compared to those having a FCC structure (e.g. Al, Ni, Cu, Ag). Magnesium, which

is known as the lightest structural material has a HCP crystal structure.

A group of BCC metals including Niobium, Molybdenum, Tantalum and Tungsten that possess

extraordinary resistance to heat and wear are referred to as refractory metals. Refractory metals

have attracted a lot of attention, over the past decades, due to their remarkable properties,
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Figure 1.1 – Tensile stress-strain curves of Mo single crystals at various temperatures. Ex-
periments performed at a tensile strain rate of ε̇= 7×10−6s−1. From Ref. [5].

Figure 1.2 – Yield stress versus temperature and strain rate for six pure BCC metals. Experi-
mental yield stress versus temperature for pure W [14], Mo [12], Nb [12], Ta [66], V [105], and
Cr [180] BCC metals. Adapted from Ref. [43]

especially at high temperatures. The shared key properties between these elements include a

melting point above 2000◦C, high hardness at room temperature, high mass density, and very

high strength at extreme temperatures. These significant properties make refractory metals

a very good candidate for applications such as rocket nozzles, weapon projectiles, turbine

engines, nuclear power plants, and casting molds. However, one of the shortcomings of

refractory metals is their weak low-temperature mechanical behavior in their elemental form.

Therefore, different approaches have been proposed in order to enhance their mechanical

performance.

A metallurgical practice to improve the performance of the elemental metals is by alloying
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Figure 1.3 – Application of Niobium in aerospace industry. The dark rocket nozzle of Apollo
command and service module is made from niobium-titanium alloy. From Ref. [62].

through adding dilute concentrations of alloying elements. Alloying is a classical approach

that has been used by humans since the Bronze Age to enhance the properties of pure metals.

Bronze, formed by adding tin to copper, is known as the oldest alloy, which has been used

extensively by ancient civilizations for making sculptures and utensils. The bronze age was

followed by the iron age, marked by the advent of steel, an alloy of iron and carbon that is

stronger and more durable than bronze. As human civilization has progressed, alloying has

been used extensively to produce structural materials with superior mechanical properties

such as higher strength and toughness relative to those of the principal pure element.

Alloying was traditionally accomplished by adding relatively small amounts of a secondary

element (solutes) to a primary element (host); e.g. Rhenium to Tungsten, Silicon to Iron,

Tungsten to Niobium, etc. Solutes enter the host material as substitutionals or interstitials

and alter its mechanical properties. In the former, the solutes sit on the lattice sites of the host

material, while in the latter the solutes occupy interstitial voids. Figure 1.4(a) and (b) shows

the variation of yield stress versus temperature for two substitutional Fe-Si and Nb-Mo BCC

binary alloys, respectively. The effect of interstitial oxygen on the yield stress of Nb is also

shown in Figure 1.4(c).

The design of metal alloys has recently undergone a paradigm shift with the proposition of

a fundamentally new alloying concept, termed high-entropy alloys (HEAs). HEAs are a new

class of metal alloys with multiple principal components combined, in relatively high, roughly

equiatomic concentrations. HEAs show enhanced mechanical properties that can far exceed

those of the constitutive pure elements. Although these alloys have complex compositions,

they typically form a single FCC or BCC phase without precipitates. Given that these alloys do

not contain a single primary element, as opposed to traditional dilute alloys, all of the atoms

can be regarded as solutes within an average matrix serving as the host. In the past few years,

refractory HEAs mainly comprised of refractory elements (W, Nb, Mo, Ta) have gained the

interest of researchers due to their interesting mechanical properties, e.g. high strength at
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a b c

Figure 1.4 – Temperature-dependent experimental flow stress in BCC pure metal and dilute
alloys. (a) Variation of experimental yield stress versus temperature in (a) Fe-Si substitutional
alloys [78], (b) Nb-Mo substitutional alloys ([152]). (c) Yield stress versus interstitial oxygen
concentration in Nb-O alloys at variaous temperatures [125]. Adapted from Refs. [18, 152, 125].

room temperature and exceptional strength retention at elevated temperatures. The plot of

the temperature-dependence of yield stress for two NbMoTaW and VNbMoTaW refractory

HEAs is shown in Figure 1.5. In addition to very high strength retention of the two refractory

HEAs, experimental results exhibit a plateau of strength in the intermediate temperature range

of 600◦C to 1000◦C. In addition, the strength in BCC NbMoTaW and VNbMoTaW refractory

HEAs show a smaller temperature dependency as compared to the pure BCC metals.

Figure 1.5 – Yield stress versus temperature for various BCC multicomponent alloys. The
yield stress versus normalized temperature T/Tm is shown for several refractory HEAs [29, 137]
, where Tm denotes the melting point. For comparison, results for pure BCC metals (Ta,Mo,W)
in either recrystallized (RX) or rolled condition (sheet) [9, 133] as well as the commercial dilute
alloys, C-103 (a Nb-based alloy) and TZM (a Mo-based alloy, Mo-Ti-Zr), are also included.
Adapted from Ref. [181].

The rest of this chapter is organized as follows. First, we provide an overview of screw dislo-
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cations in BCC crystalline materials starting with a brief definition of dislocation in Section

1.2. An introduction to existing theories for solute strengthening in BCC dilute to high entropy

alloys is given in Section 1.3. We then present the scope and general structure of this thesis in

Section 1.4.

1.2 Dislocations in BCC materials

Dislocations are a line defect within a crystalline material which was first introduced in 1934

as a way of explaining the discrepancy between the theoretical estimate and experimentally

observed strength of crystalline materials [166, 110, 115] . Dislocations were later directly

observed in a crystal in 1956 [65] after the invention of the transmission electron microscope

(TEM). The plastic properties of metals and other crystalline materials is primarily controlled

by the motion and evolution of these dislocations. Dislocations mark the boundary between

the slipped and unslipped parts of the crystalline material, as shown in Figure 1.6. The

dislocations can be identified by a line direction ξ and a Burgers vector b. The Burgers vector

indicates the displacement in the crystal caused by the movement of the dislocation. Each

crystalline material has its own characteristic Burgers vectors for a given glide plane.

Figure 1.6 – Schematic of screw and edge dislocations gliding on a slip plane of a crystalline
material.. (a) edge and (b) screw dislocation. A dislocation is characterize by its dislocation
line ξ and Burgers vector b. In an edge dislocation ξ and b are perpendicular to each other,
while these two vectors are parallel or anti-parallel in the case of screw dislocation. From Ref.
[1].

In general, there are three types of dislocations: screw, edge, and mixed, depending on

the angle between the line direction and the Burgers vector. In a screw dislocation, the

Burgers vector and line direction are parallel to each other; in an edge dislocation the Burgers

vector is perpendicular to the line direction; other intermediate cases are classified as mixed

dislocations. The glide plane of a crystal is the plane that contains both vectors ξ and b.

Dislocation motion along its glide plane is the most common type of dislocation motion

which merely requires relative slip between atoms on both sides of the glide plane. Non-screw

dislocations are constrained to glide on one plane, since their burgers vector and line direction

form a unique glide plane. On the other hand, screw dislocations can glide from one plane
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to another, through a process called cross-slip. Cross-slip is a result of the fact that the glide

plane is not unique for screw dislocation motion, making it possible for the screw dislocation

to change slip planes in response to the applied stress or overcome a barrier caused by an

obstacle such as solutes.

In a crystalline material, the combination of slip plane and slip direction define the slip system.

The slip system in BCC metals is more complex than metals with FCC structure. Slip is favored

on close-packed planes, since lower shear stress for atomic displacement is required. However,

unlike FCC, there are no truly close-packed planes in the BCC crystal structure. In BCC crystals,

the atoms are closest to each other along the 〈111〉 direction and thus any plane in the BCC

crystal that contains this direction is a suitable slip plane. Experiments have shown that slip

in BCC metals occurs in the closed pack 〈111〉 direction and the Burgers vector is a0/2〈111〉
where a0 is the lattice constant [24, 22, 165, 58, 186]. Moreover, the most commonly observed

glide plane in BCC metals is the {110} plane. Figure 1.7(a) shows the [111] direction in the (11̄0)

glide plane. There exists six {110} type planes in BCC structure. As shown in Figure 1.7(b), each

{110} plane has two 〈111〉 type direction, which consequently gives rise to 12 slip systems of

this type in a BCC crystal structure.

[111]
(110)

<111>a b

Figure 1.7 – Schematic illustration of the preferential glide plane and glide direction in BCC
crystal. (a) Schematic of the [111] direction in the (11̄0) glide plane. (b) Each {110} plane has
two 〈111〉 type direction.

In the light of above, in this study the Burgers vector and glide plane of both the edge and

screw dislocations considered is b = a0/2[111] and {110}-plane respectively. Consequently, the

dislocation line is aligned with 〈112〉 and 〈111〉 directions for the edge and screw dislocations,

respectively.

The strain and stress fields induced by line defects at regions far from the dislocation line, can

be accurately described within the framework of the linear theory of elasticity. However, at

regions in the vicinity of the dislocation line elastic theory does not hold, predicting unphysical

stress and strain fields. This region around the dislocation line where elasticity cannot be

applied is termed the dislocation core and requires special theoretical treatment or atomistic

simulations.
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1.3 Solute strengthening theories for BCC materials

Depending on the deformation mechanisms dominating the plasticity in BCC materials,

the solute strengthening theories can be broadly classified into three categories; (I) screw

strengthening theories in dilute alloys, (II) screw strengthening theories in BCC non-dilute and

high entropy alloys, and (III) strengthening theories in high entropy alloys where the motion

is cotrolled by edge dislocations. In the following of this section, the overall picture of the

dislocation mechanisms in BCC dilute and high entropy alloys along with a brief introduction

of the existing solute strengthening theories is presented.

It is well known that in BCC metals and dilute substitutional alloys, the plastic deformation

is controlled by the thermally activated two-step motion of the screw dislocations. The

first step is the nucleation of a pair of kinks somewhere along an initial long straight screw

dislocation, as shown schematically in Fig. 1.8a. The second step is the migration of these

kinks along the screw that ultimately advances the entire screw dislocation forward by one

Peierls valley (Fig. 1.8b). This motion of screw dislocations by double-kink nucleation and

propagation is consistent with the TEM observations of long dislocations in BCC metals and

alloys [24, 7, 163, 44].

Figure 1.8 – Plastic deformation in BCC pure metal and dilute alloys by thermally-activated
double-kink nucleation and kink propagation processes. (a) A pair of kinks is first nucleated
somewhere along the straight dislocation line. (b) The kinks formed in (a) are then migrated
away from each other to finally advance the dislocation to the next Peierls valley.

Plasticity in BCC metals and alloys via double-kink nucleation and kink propagation is ther-

mally activated, i.e. it is temperature-dependent. For instance, as shown in Figure 1.4, the

experimentally observed flow stress of pure Fe and Fe-Si alloys [78] as well as Nb and Nb-Mo

[152] alloys decrease with increased temperature.

In pure BCC metals, the double-kink nucleation always control the dislocation motion, since

there is a negligible barrier against the kink migration. However, when the solutes are added to

the pure metal, both the double-kink nucleation and kink migration barriers will be affected by
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the interactions between solutes and the screw dislocation. The general understanding is that

in BCC dilute alloys, the double-kink nucleation controls the motion at low temperatures, while

at higher temperatures the dislocation motion is controlled by kink migration. Furthermore,

with increasing solute concentration, the double-kink nucleation barrier is steadily reduced

while the kink migration is more inhibited. Therefore, there is a cross-over from double-

kink nucleation controlled to kink migration controlled motion which is temperature- and

solute-dependent.

From the above, it can be seen that alloying has a significant effect on the strength of the

materials which is the stress required to move a dislocation. Therefore, the term "solute

strengthening" refers to the increased stress required to move a dislocation in dilute or complex

alloys . Solute strengthening arises from the totality of the interaction energies between the

solutes and an individual dislocation. Over the past few decades, a great deal of effort has

been put into developing theoretical models that predict the strength of alloys as a function of

alloying elements and temperature.

One of the main theories rationalizing the strengthening in dilute binary BCC alloys is the

Suzuki’s theory [158, 15, 61] which accounts for the effects of solutes on double-kink nucle-

ation, kink migration, and cross kink/jog/dipole formation. For a long time, Suzuki’s solid

strengthening theory has been considered as the only theory applicable to BCC substitutional

alloys. The dominant strengthening in the Suzuki model is the inhibition of kink glide along

the screw dislocation line due to solutes. Despite its success in predicting the strength of

some dilute alloys, Suzuki’s theory suffers from some rudimentary approximations on the

interaction energy between the solutes and the dislocation. More details of Suzuki’s theory

with a focus on its elementary approximations are given in Section 3.

The mobility of screw dislocations in BCC alloys have been modeled using kinetic Monte Carlo

(KMC) models. KMC models are mesoscale type of models providing time and length scales

more suitable for experiments, as compared to molecular dynamics. The KMC models were

originally developed for pure and dilute BCC systems [157, 202, 199, 147], and have recently

extended to multi-component alloys [204, 205]. Although, the KMC models have been able

to predict the softening-to-hardening transition in dilute alloys such as W-Re [202] and Fe-Si

[147], they have failed to capture the experimental results, especially at low temperatures.

These failures are, however, not due to the flaw in the KMC model itself but rather in the

assumed parameters for the barrier and Peierls stress that are based on DFT [202] or EAM

potential [147], which have shown to be not realistic.

The impressive mechanical properties of single phase BCC multi-component alloys, including

medium and high entropy alloys, has renewed interest in understanding the mechanisms

controlling strength in BCC alloys. While the deformation mechanisms of BCC metals and

their alloys are relatively well understood, theories that explain the behavior observed in BCC

refractory medium entropy alloys have only recently begun to be developed [204]. Retaining

the classical view that screw strengthening is the dominant factor, Rao et al. [119, 120, 123]
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adapted the Suzuki model to the HEA case. Recent KMC simulations [204] suggest that the

strength in Nb-V-Ta BCC alloy is controlled by double-kink nucleation and migration at low

temperatures, while the high-temperature strength is contolled by the cross-kinks. The cross-

kinks form due to the collision of kinks gliding on different glide planes, as schematically

shown in Figure 1.9. The breaking of cross-kinks requires the creation of high-energy-cost

point defects, which create high energy barriers to flow.

Figure 1.9 – Schematic of cross-kink formation as a result of the collision of kinks propagat-
ing on different glide planes.. Two pair of kinks are nucleated on two different {110} planes
along the [111] screw dislocation line of length L. The arrows indicate the direction of mo-
tion of kinks under an applied stress. A cross-kink, shown by dashed line, is formed at the
intersection point of two spreading kinks. From Ref. [157]

Recent theory and simulation of strengthening of screw dislocations in HEAs propose that

screw dislocations become spontaneously kinked along their length to lower the total energy

due to solute/screw interactions [94]. The screw dislocation motion is then controlled by a

combination of Peierls-like motion, lateral kink migration, and cross-kink failure. More details

of screw strengthening theory in HEAs will be presented in Section 6.

The BCC refractory HEAs composed of the family of Cr-Mo-W-V-Nb-Ta-Ti-Zr-Hf-Al are of

particular interest due to their high-temperature strength retention. Very recent experimental

and theoretical studies have proposed that yield strength in these and other BCC HEAs is

controlled by edge dislocation[93], rather than the classical view of strengthening controlled

by screw dislocations. The high energy barriers against the edge dislocation motion in BCC

HEAs will be analyzed in detail in Section 7 using atomistic simulations.

1.4 Scope and structure of the thesis

As described in the preceding sections, the strength of a material is related to the resistance of

an individual dislocation against motion. Solute strengthening then refers to the increased

strength required to move the dislocation caused by the solute/dislocation interactions. Solute
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strengthening theories are aimed to provide a theoretical framework for an accurate estimation

of the strength of the material. Developing robust theoretical statistical models for predicting

the strength in dilute and high-entropy BCC alloys is the main objective of this thesis. We will

approach the problem from an energy-based rather than a force-based perspective.

In order to validate our theoretical models, extensive atomistic simulations are performed in

this study. In chapter 2 we briefly review the fundamental principles of the computational

methods employed in this research including molecular statics and the nudged-elastic-band

(NEB) method. The EAM interatomic potentials, as well as concept of "Average atom" in-

teratomic potential are briefly introduced in this chapter. One of the main issues with the

atomistic simulations of screw dislocations is the non-physical behavior that EAM potentials

typically show. Therefore, it is crucial to use an EAM potential that is reliable and does not

exhibit unphysical behaviors in the atomistic simulations. More specifically, the EAM poten-

tials should be validated in terms of the correct prediction of the screw dislocation properties,

namely the core structure and Peierls barrier. As such, a close examination of the widely used

EAM potentials for the screw dislocation motion will be given in this chapter. Here an EAM

potential is shown to have all the key aspects for screw dislocation in Fe and will be used to

perform our atomistic simulations.

The fundamental quantity in every solute strengthening theory is the interaction energy be-

tween solutes and the dislocation. To have a proper description of solute interaction energies

effect on the dislocation mobility, a full statistical solute/screw interaction energy parameter

is introduced in Chapter 3. The parameter is valid for any number of constituent atoms and

at any concentrations, thus including the range from dilute binary alloys to high-entropy

alloys. This parameter is extensively examined in this chapter via atomistic simulations and

will be used in our subsequent developments of solute strengthening theories in dilute and

high-entropy BCC alloys.

The next two sections constitute the second part of this thesis and are devoted to the strength-

ening of screw dislocation in dilute BCC alloys. The energy barrier for thermally activated

double-kink nucleation and kink migration processes are influenced by random solutes in

dilute BCC alloys. The effect of solutes on the double-kink nucleation and migration barriers

are examined in Chapters 4 and 5 respectively. A predictive statistical model is developed

based on the energetics of solutes with the double-kink and single-kink structures which are

then extensively validated via simulations in model Fe-Si alloys. The theoretical models are

applied to real dilute alloys and good agreement is obtained with experiments over a range of

concentrations and temperatures with no fitting parameters.

In the third part of this thesis, we then turn our interest to strengthening mechanisms in HEAs

where the strength is screw-controlled (chapter 6) or can be controlled by edge dislocations

(Chapters 7 and 8). Chapter 6 presents a new theory for the kink migration in screw-controlled

HEAs based on our recent understanding in dilute alloys as described in Chapter 5, leading to

a fully derived analytical model for the kink migration energy barrier as a function of applied
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stress and kink spacing. A revised version of the Maresca-Curtin screw strengthening theory

that incorporates the new kink migration model is then compared to experiments on non-

dilute Fe-Si, Nb-Mo, and Nb-W alloys and shows broad agreement as a function of temperature

and composition, establishing the quantitative accuracy of the new theory.

In chapters 7 and 8 we focus on the strengthening mechanisms in HEAs where the strength

is controlled by edge dislocation motion. More specifically, in chapter 7, the energy barriers

for edge motion are computed for two model alloys, NbTaV and MoNbTaW as represented

by interatomic potentials, using the NEB method and compared to theoretical predictions. A

reduced analytic model based on solute misfit volumes is then applied to Hf-Mo-Nb-Ta-Ti-Zr

and Mo-Nb-Ta-Ti-V-W alloys, rationalizing the observed significant strength increases at room

temperature and 1000◦C upon addition of solutes with large misfit into a base alloy.

BCC refractory HEAs show high strength retention at elevated temperatures, including a

plateau in strength at the intermediate temperature regime. An example of the strength plateau

at intermediate temperatures for the two BCC refractory HEAs, MoNbTaW and VMoNbTaW

can be seen in Figure 1.5. In chapter 8, a model for dynamic strain aging via cross core

diffusion is presented. Cross-core diffusion occurs when the solute diffuse right at the core

of edge dislocation from higher to lower-energy sites, providing an additional barrier against

dislocation motion, increasing strength as a consequence. The model is able to predict the

additional time-dependent energy barrier and strength in random BCC HEAs. Results for a

model MoNbTaW alloy show the general observed behavior, but would require high vacancy

concentrations to reach quantitative agreement with experiments.

A summary of the main findings of this thesis is presented in Chapter 9, where several potential

directions for future research in the area of solute strengthening in BCC alloys is also discussed.
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2 Computational Methods

2.1 Molecular statics simulations

Materials are made of atoms interacting with each other. Consider a system consisting of N

interacting atoms represented in a 3N -dimensional "configurational space" with a position

R = (r1,r2, . . .rN ), where ri represents the position of the i th-atom. Any arbitraty configuration

R has its potential energy on this configurational space. Therefore, the configurational space

can be envisioned as a potential energy surface (PES) with some topography and described by

a potential energy function U (R). The potential energy function describes the interactions

between atoms solely in terms of interatomic distances. A schematic of this potential energy

surface is shown in Figure 2.1 comprising a number of valleys and mountains. The valleys

(darkest regions) represent the local minima which are the metastable states in the system. The

mountains (lightest regions) are the maxima, i.e the points with the highest potential energy.

The dashed lines divide the configurational space into regions, each of which corresponds to

the set of points yielding the same minimum. The saddle points, denoted by S, are the points

on the line connecting two maxima and will be discussed in Section 2.2. The deepest minima

in the energy landscape corresponds to defect-free system with crystalline arrangements of

the atoms. Defects will influence the energy states, giving rise to minima with somewhat

higher energies on the energy landscap, compared to defect-free states. As such, identifying

these energy minima are of great interest since they reflect the energetically metastable

configurations of the system.

Molecular statics (MS) simulations employ an energy minimization in order to find the atomic

configurations corresponsing to the local minima (the "relaxed" states) of the potential energy

surface. The relaxation of the system starts from an initial guess (the "unrelaxed" states) of

the equilibrium structure. Widely used minimization algorithms in MS simulations include

gradient methods (e.g. steepest descent, conjugate gradient) and damped dynamics methods

(e.g. FIRE [11]). Using these algorithms, the atomic positions are iteratively updated until the

force or energy of every atom is less than a specified force or energy tolerance. MS simulations

are extremely useful in computing the intrinsic zero temperate, T=0 K, material properties (e.g.

15



Chapter 2. Computational Methods

Figure 2.1 – Schematic illustration of a 3N -dimensional potential energy surface. Each
point on this surface corresponds to a particular configuration R with a specific potential
energy given by the potential energy function U (R). Minima and maxima are the darkest
and lightest regions, having the lowest and the highest potential energy, respectively, and "s"
denote the saddle points. Solid lines represent contours of constant potential energy. From
Ref. [161].

lattice parameter, elastic constants, generalized stacking fault curves, etc.) and identifying the

configuration and energetics of dislocations and other crystalline defects. MS simulations can

also be used to find transition paths and saddle points in the energy landscape. The transition

path is the trajectory connecting two minima with the lowest energies and the saddle point

is the point with the maximum energy along the transition path which will be described in

Section 2.2.

The critical component in molecular statics simulations is the interatomic potential function

U (r1,r2, . . . ,rN ). The accuracy of the atomistic simulations is controlled by the interatomic

potentials. Although, first principle methods, such as Density Functional Theory (DFT),

could, in theory, be employed to accurately determine the potential energy of any atomistic

configurations, such calculations require an enormous amount of computational resources,

even for a small number of atoms, and thus cannot be feasibly used. This is especially true for

simulations of dislocation motion in BCC metals and alloys which require simulating tens of

thousands of atoms. For instance, a typical configuration for studying the screw dislocation

motion in BCC metals consists of at least 4×104 atoms which is far beyond the current capacity

of DFT calculations. Due to the limitations of first principle calculations, a large effort in the

computational research community is devoted to the development of empirical interatomic

potentials. These interatomic potentials are essentially functions that map the configuration

of atom positions to a corresponding energy. An emperical potential usually takes on a fixed

functional form containing several free parameters. These free parameters are obtained by

fitting to experiments and/or first-principle calculations such that specific material properties,

e.g. lattice or elastic constants, are reproduced in simulation. The embedded atom method
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(EAM) is one of the widely used frameworks of empirical potentials to describe metals in MS

simulations. We present the details of EAM potentials in the next Section 2.1.1.

As it was alluded to above, the solute strengthening in multi-component alloys is due to the

underlying interactions between the solutes and an individual dislocation. Therefore, it is of

particular importance for alloy development to understand how solutes interact with such

defects. Atomistic simulations can provide us with the means to quantify such solute/dislo-

cation interactions. Typical HEAs have many elemental components at high concentrations

and with local structural/compositional disorder. From an atomistic point of view, two ap-

proaches can be implemented in order to model these multicomponent random alloys. A

straightforward method is to randomly assign an atom type to each atomic site with a proba-

bility proportional to the desired atomic concentration and then use the EAM potentials as

described above. However, high fluctuations in local atomic chemical environments make the

analysis of solute/dislocation interactions in such random systems, difficult and ill-defined.

Average-atom approximation is the second approach which can be used to study the complex

random alloys. This method has emerged as a powerful way to compute material properties

and, more importantly, solute-dislocation interaction energies. In this method, instead of

occupying the atomic sites with true random solutes, a fictitious “average” atom (A-atom) type

is used to generate an effective "average alloy" which has the same average properties as the

true random alloy. In order to model an "average alloy" medium, a corresponding A-atom

EAM potential needs to be developed as discussed in Section 2.1.2.

In this research work, all the molecular statics simulations are conducted with the open-source

Large-scale Atomic-Molecular Parallel Simulator (LAMMPS) [114]. Depending on the problem

under consideration, EAM or A-atom EAM potentials were used to compute the total potential

energy of the metallic atomistic system. In addition, the visualization and post-processing of

the resulting atomic configurations are performed using the Open Visualization Tool (OVITO)

[155]. In particular, the Common Neighbor Analysis (CNA) functionality of OVITO is utilized

to identify the dislocations in crystal structures.

2.1.1 Embedded atom method

The embedded-atom method (EAM) potential is the most widely used type of interatomic

potential in MS simulations to describe BCC metals and alloys. In an EAM representation of

a given material, the total energy is computed as follows. Consider an alloy with NT distinct

atom types and a total number of N atoms, with average concentration cX of each alloying

element X , with
∑NT

X=1 = 1. A configuration of this alloy consists of a set of atomic sites

i ∈ 1, . . . , N occupied by individual atoms. Let sX
i denote site occupation variable, where si = 1

if a type-X atom sits in i site and 0 otherwise. Within the Embedded Atom Method (EAM) [11],
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the total energy of a given configuration is

E({sX
i }) =

N∑
i

NT∑
X

sX
i F X (ρi )+ 1

2

N∑
i , j 6=i

NT∑
X ,Y

sX
i sY

j V X Y (ri j ) (2.1)

with

ρi =
N∑

j 6=i

NT∑
X

sX
j ρ

X (ri j ) (2.2)

Here X ,Y indicate the different individual atom types and ri j denotes the distance between

sites i and j . Moreover, V X Y (ri j ) is the pairwise interaction between atoms X and Y , F X (ρi ) is

the embedding energy for atom X at site i , ρi is the total electron density at site i , and ρX (ri j )

is the contribution of an X -atom at site j to ρi . It is worth mentioning that all VX Y (ri j ) and

ρX (ri j ) are radially symmetric. Therefore, the EAM represents a reasonable approximation for

materials without preferred angles, such as FCC and BCC metals.

Given that the functional form representing the EAM potential has a limited number of

adjustable parameters, the fitting process involves heuristic decisions as to which properties

are most desirable. Consequently, each EAM potential may be suitable for specific types of

problems and may lead to unphysical results for other problems. For instance for an EAM

potetential which has been developed by fitting the parameters to such material properties

as lattice constant, elastic constants, and stacking fault energies, it may not be suited for

studying the mechanisms involved in the dislocation motion. The EAM potentials are even

more problematic when applied to simulations concerning plasticity in BCC materials, where

the motion is controlled by screw dislocations. For instance, most of the widely-used EAM

potentials for BCC metals and/or alloys produce unphysical screw core structures despite

good predictions for other material and defect properties. The problematic features of the

EAM potentials for BCC metals with a special focus on the screw dislocation core structure

properties will be discussed in Section 2.4.

2.1.2 Average-atom approximation of random alloys

As explained above, the core idea in the A-atom method is to replace the true atom types with

a single fictitous "average" atom type (A-atom) which, to a good approximation, yields the

same average energy. The A-atom medium can be modeled by a corresponding A-atom EAM

potential which was derived by Smith et al. [149] and Vervenne et al. [173]. The corresponding

"average alloy" is shown to possess all of the important average properties of the true random

alloy: lattice constant, elastic constants, and stable/unstable stacking fault energies. It should

be noted that the A-atom method, in contrast to true random alloy, is free from fluctuatiuons.

As such, the A-atom cannot predict properties that are controlled by solute fluctuations, e.g.

the Peierls stress.

Averaging Eq. (2.1) over occupation variables sX
i , and under the assumption that the occupa-
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2.1. Molecular statics simulations

tions in sites i and j are uncorrelated in the random alloy, i.e., 〈sX
i sY

j 〉 = 〈sX
i 〉〈sY

j 〉, Varvenne et

al. [173] obtained the preliminary result for the average potential energy of the system

〈E〉 =
N∑
i

NT∑
X

cX 〈FX (ρi )〉+ 1

2

N∑
i= j 6=i

NT∑
X ,Y

cX cY V X Y (ri j ), (2.3)

where 〈sX
i 〉 = cX . Eq. (2.3) is simplified further by performing a Taylor expansion of the

embedding energy around the average electron density 〈ρi 〉, 〈F X (ρi )〉 = 〈F X (〈ρi 〉)〉+O (ρi −
〈ρi 〉)2, in which the first order term vanishes since 〈(ρi −〈ρi 〉)〉 = 0. Neglecting the second and

higher order terms, which is the only approximation, leads to the following expression for the

average energy

〈E〉 =
N∑
i

F A(〈ρi 〉)+ 1

2

N∑
i , j 6=i

V A A(ri j ), (2.4)

where

F A(〈ρi 〉) =
NT∑
X

cX FX (〈ρi 〉), V A A(ri j ) =
NT∑

X ,Y
cX cY V X Y (ri j ), 〈ρi 〉 =

N∑
j 6=i

NT∑
X

cXρX (ri j ), (2.5)

where A denotes an average-atom having embedding function, F A and self-pair-interaction,

V A A
i j . The A-atom interatomic potential of Eq. (2.4) has exactly the EAM form for the potential

energy of an elemental atom, Eq. (2.1) and the A-atom EAM potential functions are the

concentration-weighted averages of the corresponding pure element functions. Varvenne

et al. [173] showed that the A-atom accurately predicts average properties of true random

alloys at zero temperature such as the lattice parameter, the elastic constants, and the stacking

fault energy. Furthermore, it facilitates the calculation of solute-defect interaction energies,

which would be cumbersome using a direct approach based on true random alloys. Recently,

Nöhring and Curtin [107] verified the A-atom approach for finite temperature calculations.

The A-atom EAM potential can further be used in combination with the individual alloying

elements X in simulations. This is particulalry useful when computing the solute/dislocation

interaction energies. The average properties of a substitutional "solute" atom of type X0 in the

A-atom host matrix, where X0 is any of the constituent alloying elements can be computed

by A-atom potentials. These properties require computing the average energy change when

a solute X0 is added to the random alloy. Suppose for a random configuration described by

occupation variables, sX
i the atom at site k is replaced by a type X0-atom, then it can be shown

that the average energy change for such a replacement becomes [173]:

〈∆E〉 =
[

F X0 (〈ρk〉)+
∑
i 6=k

V X0 A
ki

]
−

[
F A(〈ρk〉)+

∑
i 6=k

V A A
ki

]
, with V X0 A

ki =∑
Y

cY V X0Y
ki , (2.6)

where V X0 A
ki is the pairwise interaction between X0 and A-atoms. Eq. (2.6) is identical to

the result obtained by introducing an atom X0 into site k of the A-atom material. Figure 2.2
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illustrates the use of A-atom EAM potentials in computing the interaction energy of a Nb

solute at various sites around the core of screw and edge dislocations in an average NbTaV alloy.

The map interaction energy change due to the movement of the screw dislocation by a and

edge dislocation by w is also shown in this figure. As will be seen in the forthcoming Chapters,

the key parameter entering the strengthening theories is the change in interaction energy as

the dislocation moves by specific distances, here a and w for screw and edge dislocations,

respectively.

U (xi,yj)
Nb

BCC Screw BCC Edge

Nb
Ta
V

-10 -5 0 105(meV) -30-60 0 30 60(meV)

a

c

e

g

d

b

f

h
wa

U (xi,yj)
Nb

Figure 2.2 – Average-alloy method for solute-dislocation interaction energy. (a,b) A screw
and an edge dislocation in a model NbTaV random BCC alloy. (c,d) The screw and edge
dislocations in the corresponding average-alloy effective mediums. The A-atom at site (xi , y j )
is replaced by a Nb solute to compute the interaction energy U Nb(xi , y j ). (e,f) The map of
solute/dislocation interaction energy at various sites around the dislocation core. (g,h) The
corresponding interaction energy change as the screw and edge dislocation move by a and w ,
respectively.
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2.2. Transition state theory

2.2 Transition state theory

This section provides a brief overview of the transition state theory utilized to compute the

rate of transition between two metastable states. Interested readers should refer to Refs.

[79, 116, 134, 135] for more details on the transition state theory, with an emphasis on thermally

activated dislocation mechanisms.

As it was alluded to above, the process of transformation of the system from one valley

(metastable state) to the next one occurs through a path, termed the minimum energy path

(MEP). MEP is the lowest energy trajectory connecting the two valleys through a saddle point

in between. The saddle point is the state with the maximum potential energy on the MEP

corresponding to the transition state. The rate (events/second) of transformation is then

controlled by the activation energy (energy barrier) defined as the energy difference between

the transition state and the initial metastable state.

Figure 2.3 – Schematic of a thermally activated process from an initial metastable state A to
final metastable state B in a potential energy surface through the transition state S. (a) The
metastable states and transition state are shown in a two-dimensional potential energy surface.
The dividing surface SD divides the potential surface into two regions corresponding to states
A and B. The yellow dashed line is the minimum energy path connecting the two metastable
states with a transition state located on the dividing surface. (b) A three-dimensional repre-
sentation of the potential energy surface. From Ref. [1].

Consider an N -atom system undergoing a transition from state A to state B , in a 3N -configuration

space, passing through the transition state S, with the help of thermal fluctuations, as shown

in Figure 2.3. Moreover, assume a (hyper)surface SD which passes through the transition

state P , lies perpendicular to the contour of potential energy and divides the PES into two

regions of the basins corresponding to A and B . Transition state theory (TST) [178, 40] uses

equilibrium statistical mechanics to determine the rate of transition between A and B . For an

NVT distribution of microstates, under the TST, the rate of transition from state A to state B
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happening at temperature T is expressed as [178]

νTST
A→B =

√
kB T

2πm

∫
SD e−U (R)/kB T dS∫

A e−U (R)/kB T dR
(2.7)

Here kB is the Boltzmann constant, m is the atomic mass, and U (R) is the potential energy of

the system in configuration R. In order to avoid the cumbersome evaluations of the integrals

in above eqution, a more tractable, simplified expression for the transition rate is obtained

based on the harmonic transition state theory (HTST) as

νHTST
A→B = Π3N

i=1ν
A
i

Π3N−1
i=1 νP

i

exp

(
−∆E

kT

)
(2.8)

where νA
i and νP

i are the normal frequency modes arised near states A and P , respectively,

and ∆E =U (RP )−U (RA) is the energy barrier of the transition. The computation of all the N

normal modes, however, becomes intractable as the system size N becomes large.

A further simplification is then followed by condesing the prefactor in Eq. 2.8 to a trial

frequency ν0, reducing the transition rate to the simple form of the Arrhenius equation [6, 82]

νA→B = ν0exp

(
−∆E

kT

)
(2.9)

Frequently, for thermally activated transitions in crystalline materials ν0 is taken to be the

Debey frequency which is in the order of 1013 s−1 [126, 174]. The Arrhenius equation above has

been sucessfully applied to investigate various thermally activated dislocation mechanisms

in materials with HCP [191, 190, 3, 2], FCC [38, 39, 182], and BCC [126, 94, 93] crystalline

structures. The main goal of this thesis is to find the relevant activation energies for various

thermally activated processes associated with screw dislocation motion in BCC alloys. Upon

substitution of such activation energies into the Arrhenius equation, Eq. (2.9), the rate of

transition for corresponding thermally activated proccesses can then be computed at specific

temperatures.

2.3 Nudged Elastic Band method

From Eq. (2.9), it can be clearly seen that the quantity which plays the crucial role in deter-

mining the transition rate of a thermally activated process is the energy barrier ∆E . Therefore,

calculating this energy barrier is of tremendous interest which, however, is not a trivial task.

We typically have access to the initial and final metastable states involved in the transition

and are curious about the MEP that connects them. The MEP is a trajectory connecting two

metastable states (energy minima) in a transition and the highest energy point along the

MEP is called the saddle point. The MEP thus allows us to identify the transition state, i.e.

saddle point, and, consequently, the energy barrier associated with it. In light of the above,

we need to find the MEP between two known metastable states on either side of an energy
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2.3. Nudged Elastic Band method

barrier. Several computational approaches have been proposed for finding the MEP, such as

the nudged elastic band (NEB) method [63, 64, 104, 92], doubly nudged elastic band method

[168], and the string [184] and simplified string [185] methods.

The Nudged Elastic Band (NEB) and string methods are two widely-used computational

techniques for computing the MEP between known initial and final states. In this thesis, we

use the NEB method as implemented in the replica package in LAMMPS to find the MEP, and

hence the energy barrier, for the mechanisms involved in the dislocation motion in random

BCC alloys. Broadly, our dislocation problems of interest can be classified into two categories;

(a) the screw dislocation in random dilute alloys and (b) edge dislocation in random HEAs.

The details on constructing the initial and final configurations for the NEB simulations are

presented in Appendix A.3.

Here we briefly present the basics of NEB simulations following the work of Jonsson et al.

[75]. In an NEB simulation, by a linear interpolation between intial and final configurations,

the MEP is first discretized into a chain of intermediate states, termed replicas or images

and designated by Q. Let the MEP is discretized into M +2 replicas which are denoted by

positions R0,R1, . . .RM+1 in the configurational space. Consequently, R0 and RM+1 denote,

respectively, the first and last replicas which correspond to the initial (metastable state A) and

final (metastable B) states. The remaining M intermediate replicas, as initialized by some

iterpolation scheme, are connected to other replicas by inter-replica spring forces. In a NEB

simulation, the end replicas are kept fixed, while the intermediate intermediate replicas are

allowed to evolve towards the MEP under two combined forces. An attractive force due to

underlying potential energy tries to attract the replica towards the nearest metastable state

and can be expressed as

Fpot
i =−∇U (Ri ) (2.10)

and an inter-replica spring force which seeks to maintain equal seperation between replicas

and is given by

FS
i = k s

(
Ri+1 −Ri

)
−k s

(
Ri −Ri−1

)
(2.11)

where k s is the spring constant. The sum of the two forces above, give the force acting on each

intermediate replica as,

Fi = Fpot
i +FS

i , 1 ≤ i ≤ M (2.12)

However, the above representation of the force may not effectively lead to the MEP due to high

sensitivity of the chain of replicas on the spring constant k. The NEB method alleviates this

by using certain components of each force contribution and, instead of Eq. (2.12), writes the

force acting on replica i as

FNEB
i = F⊥

i +FS‖
i , 1 ≤ i ≤ M (2.13)
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where F⊥
i and FS‖

i are, respectively, the components of the potential force perpendicuar to

the path tangent and components of the spring force parallel to the local path tangent on i th

image, as schematically shown in Figure 2.4, which are expressed as

F⊥
i = Fpot

i −
(
Fpot

i · τ̂i

)
τ̂i ,

FS‖
i = (

FS
i · τ̂i

)
τ̂i

(2.14)

where

τ̂i = Ri+1 −Ri−1

|Ri+1 −Ri−1|
, 1 ≤ i ≤ M (2.15)

Finally, by using a force-based minimization algorithm, the replicas are minimized towards

the MEP of the transition until the convergence criteria is achieved. Only, a brief introduction

of the NEB method was presented here. For a more detailed and elaborate explanation of the

NEB method, the reader is referred to Refs. [63, 64, 104, 92].

Figure 2.4 – Schematic of force components involved in NEB calculation for the MEP be-
tween initial (A) and final (B) metastable states in a two dimensional potential energy sur-
face. The i th image has tangent τ̂i and the NEB force on it FNEB

i contains two components,

FS‖
i and F⊥

i , which are, respectively, the component of the potential force perpendicular to τ̂i

and the spring force parallel to τ̂i . From Ref. [146]

2.4 Atomistic simulations of screw dislocations

Atomistic simulations have emerged as a powerful and insightful too, providing insight about

dislocation behavior in crystalline materials. As it was mentioned before, due to the very
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large sizes required, the study of dislocation motion via DFT calculations is not possible.

Instead, interatomic EAM potentials have played an important role in exploring the dislocation

behavior in BCC materials at the atomic level. Although, there has been numerous potentials

developed for BCC pure elements, such as Fe and W, the interatomic potentials for BCC

alloys are still quite limited. Moreover, most of the existing EAM potentials do not provide a

good representation of screw dislocation properties in BCC metals when compared to DFT

calculations. These properties include the correct core structure and Peierls potential shape.

If the potentials are meant to be used to simulate the screw dislocation motion in BCC metals,

they should first be validated in order to ensure they do not lead to unphysical behaviors.

As such, this section aims to give a brief introduction on the dislocation properties and also

examine the widely used EAM potentials in the literature for BCC metals. An interatomic

potential satisfying the key features will be introduced which will be used in our atomistic

simulations of screw dislocation mobility.

2.4.1 Screw dislocation core sctructure

The screw dislocation mobility is highly influenced by the core structure of screw dislocation

in BCC metals and alloys. Therefore, it is imperative to gain a thorough understanding of

the various types of core structures and their effect on the mobility of screw dislocations. In

BCC crystals, the most common Burgers vector is b = a/2〈111〉 where a is the cubic lattice

parameter. When visualizing screw dislocations, the BCC crystals are commonly considered

as a collection of atomic rows along 〈111〉 direction as depicted in Figure 2.5.

[121]

[101]

Z = [111]

Z = 0

Z =b/3

Z =2b/3

Figure 2.5 – Pristine BCC crystal structure viewed as a collection of atomic rows along [111]
direction. Circles represent atomic positions. Colors identify atomic positions in the pristine
bcc crystal, for one periodic unit cell (length b) along the dislocation line direction Z , where
green atoms are taken as reference (Z = 0), red atoms are in position b/3 and blue in position
2b/3. The spacing between neighboring atoms in each row is b = a

p
3/2.

We now consider the case where a screw dislocation is inserted in the material. The screw

dislocation core is centered in between three 〈111〉 neighboring atomic rows. The screw

dislocations have been studied in different pure and alloyed metals using various atomistic

approaches such as EAM potentials[35, 21, 96, 121, 192, 52, 117], bond-order potentials [102,

101], density functional theory (DFT) [72, 188, 189, 45, 167, 130, 175, 85, 176, 194, 10, 25]
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and Gaussian approximation potential (GAP) [95]. By performing atomistic simulations, two

different core configurations can be obtained, ’easy’ and ’hard’. In an easy core configuration,

the three atomic rows in the vicinity of the dislocation core exhibit a reversed helicity compared

to the undeformed crystal, whereas in the hard core state the three rows are constrained to be

at the same height. All the atomistic simulations confirm that the easy core is the most stable

state, since it has much lower energy than the hard core configuration. In our study, we will

only consider stable easy core configurations.

Depending on the material and the interatomic potential used, the easy core of the BCC

screw dislocation can adopt two configurations, termed compact (symmetrical) and non-

compact (asymmetrical) cores. DFT simulations predict that the easy core structure will

be compact (symmetric) in pure metals [72, 188, 189, 45, 32, 26]. However, the majority of

existing EAM potentials predict a non-compact core structure in elemental metals. In order to

identify the type of easy core structure from atomistic simulations, differential displacement

maps (DDM) can be utilized [34, 179, 35]. DDMs also enable us to determine at which

position a dislocation is located. Figure 2.6 shows the DDMs for two compositions of TiZrNb

complex alloy as atomistically modeled by the average-alloy method using the EAM potentials

developed by Zhou et al. [203, 88]. The particular configurations shown for Ti0.3Zr0.3Nb0.4 and

Ti0.3Zr0.5Nb0.2 alloys correspond to compact and non-compact core structures, respectively.

Ti0.30Zr0.30Nb0.40 Ti0.30Zr0.50Nb0.20

Figure 2.6 – Differential displacement maps (DDMs) at the dislocation core for two compo-
sitions of TiZrNb ternary alloys. The arrows are normalized by b/3 with a length b/3 scaled to
connect neighboring atoms. Arrows represent the displacement of atoms along [111] direction
in the relaxed dislocated BCC structure, computed with respect to the pristine BCC atomic
positions.

2.4.2 Peierls potential

Another important aspect of screw dislocation glide is the Peierls potential which shows

how the energy changes between two neighboring easy core positions. The Peierls potential

is the minimum energy path due to the rigid motion of the screw dislocation without kink

nucleation. Such a minimum energy path can be obtained by performing nudged-elastic-band

(NEB) simulations between two adjacent minimum energy configurations (Peierls valleys).

The Peierls potential has been extensively studied in pure BCC metals by various atomistic

approaches, such as EAM potentials [97], and DFT [31, 187, 176]. Fig. 2.7 shows the Peierls

potential for five BCC transition metals as obtained by DFT simulations [31]. Note that the
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2.4. Atomistic simulations of screw dislocations

DFT calculations reveal a single-hump shape in the Peierls potential for the selected BCC

metals, including Fe and W.

Figure 2.7 – Peierls potential for different BCC metals computed by DFT. Minimum energy
path per unit b for BCC (a) Fe, (b) V, Nb, Ta, and (c) Mo, W. Adapted from [31].

In cotrast to the DFT calculations, most of the existing EAM potentials exhibit a double-

humped (camle-humped) shape in Peierls potential with two saddle-points configurations

and an intermediate metastable configuration, including the widely used EAM potential

developed by Mendelev et al. [97]. An example of such double-humped Peierls potential

is shown in Fig. 2.8(a) for screw dislocation in α-Fe obtained using various EAM potential.

The EAM potentials which show double-humped shape in their Peierls potential, are not

consistent with the ab-inito simulaions and thus fail to provide a good representation of the

screw dislocation motion. The main issue with the EAM potentials showing double-humped

Peierls potential is that they lead to the so-called split core structure during glide or with kink

formation [55] which is not physical.

There has been some effort put into the development of EAM potentials for BCC metals that do

not display the unphysical properties associated with screw dislocations as described above.

The EAM potential developed by Proville et al. [117] is one of the potentials that correctly pre-

dicts all the key features for the screw dislocation in pure Fe, relative to DFT [73]. In particular,

the Proville Fe potential predicts the compact (non-degenerate) core structure, single hump

Peierls potential (see Figure 2.8(b)) and glide on 110 glide plane, all of which are consistent

with DFT simulations. Gaussian approximation potential is another type of empirical poten-

tials which have been shown to re-produce the key features of screw dislocation in Fe [95]

and W [159] BCC metals. However, aside from the very high computational cost of GAP, to our

knowledge, these potentials have only been developed for Fe and W pure BCC metals, and not

alloys.

Since the main objective of this thesis is to study the mechanisms involved in the dislocation

motion in the presense of solutes, it is essential to have a relialbe interatomic potential for

alloys. Recently, an EAM potential was devloped by Shinzato et al. [147] for Fe-Si. The Fe-Fe

interactions are based on the Proville Fe potential developed which, as discussed above, has
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a b

Figure 2.8 – Peierls potential for screw dislocation in pure Fe computed by EAM potentials
and DFT Minimum energy path per unit b computed by (a) various EAM potentials; M-II
developed in [97], all the rest developed in [56] and (b) EAM potentials; Gordan et al [56],
Mendelev et al [97], and MCM2011 [117] and DFT [175]. Adapted from [56] and [117]

all the underlying DFT-based features of screw dislocation in pure Fe. The Fe-Si EAM potential

will thus be used for our atomistic simulations of screw dislocation motion in random BCC

alloys.
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3 Solute/Screw Dislocation Interaction
Energy Parameter

This chapter is extracted from the following publication

Ghafarollahi, A., Maresca, F., and Curtin, W. A. (2019). Solute/screw dislocation interac-

tion energy parameter for strengthening in bcc dilute to high entropy alloys. Modelling

and Simulation in Materials Science and Engineering, 27(8), 085011.

The plastic deformation in BCC metals and dilute alloys, as discussed in Section 1.2, is well-

established to be mainly controlled by the motion of screw dislocations via thermally-activated

double-kink nucleation and kink migration mechanisms [127, 136, 33]. In pure BCC metals,

the rate-limiting step is the nucleation of a double-kink pair along an initial long straight

screw dislocation. The migration of the kinks to advance the entire screw dislocation by

one Peierls valley is then a relatively fast process. In dilute solid solution alloys, the solute

interactions with the screw dislocation can affect both the kink-pair nucleation and kink

migration [158]. Due to these interactions, the energy barriers for double-kink nucleation and

for kink migration are changed, and this can lead to softening or hardening depending on the

alloy and the solute concentration. These features are generally contained within the classical

screw strengthening model of Suzuki [158] and subsequent models [167, 68]. However, these

models make approximations about the nature of the solute-screw interaction energies, about

the statistical aspects relevant in a random solid solution, and are only applicable to dilute

binary alloys. With the emergence of BCC High Entropy Alloys that can show interesting

and impressive mechanical properties, existing theories must be adapted, or new theories

formulated, to handle such multicomponent non-dilute solid solution alloys.

The most important fundamental feature in solute strengthening theories of BCC alloys is

the interaction energy of a a/2[111] screw dislocation with an individual solute atom. In

existing theories, only the interaction energy of solutes within the first three [167] or six

[158] atomic rows of atoms (one or two sets of three atomic rows, each set of three identical

by symmetry) immediately surrounding the center of the compact screw core are deemed

relevant. This approximation emerged from Suzuki’s estimation of the interaction energy
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Chapter 3. Solute/Screw Dislocation Interaction Energy Parameter

using a rudimentary model, as shown in Fig. 3.1, where the solute-dislocation interaction

energy was computed to be high and nearly equal for the inner 6 atomic rows. All interactions

further from the core were neglected. The solute-dislocation interaction energies enter the

strengthening theories through the chang e in energy as the screw dislocation moves by one

Peierls barrier through the field of random solutes. The change in energy for a solute at each

possible position, as computed by Suzuki, is shown in Figure 3.1(b). In this special case,

the changes in energy are dominated by the six atomic rows immediately around the core,

reinforcing Suzuki’s concept that only these atomic sites are important.

(a) (b)

.075 .131 .151 .131 .076

.053 .133 .334 .334 .133 .054

.054 .068 .207 .207 .068 .053

.076 .133 .207 .207 .133 .075

.131 .334 1.641 .334 .131

.207 .334 .151.207.151 .334

.068 .131.133.131 .133

-.034 -.056 -.020 .020 .055

-.019 -.080 -.201 .000 .201 .079

-.013 -.014 -.139 1.434 .139-1.434 .015

-.030 -.057 -.074 .000 1.324-1.324 .074 .058

-.063 -.203 -1.307 -.106 1.307.106 .203

.127 -.127 .183.000-.066 -.183

.065 .002-.065-.046 -.002

1.641

1.641

1.535 1.535

1.535

Figure 3.1 – Suzuki’s estimation of the solute/screw interaction energy (a) Projected atomic
positions of a screw dislocation core, viewed parallel to the dislocation line direction. Values at
each atomic site indicate the interaction energy of the screw dislocation with a solute atom at
that site as estimated by Suzuki, in arbitrary units. (b) Change in solute/dislocation interaction
energy at each atomic site after movement of the core by one Peierls valley distance.

In contrast, examination of recent first-principles calculations of solute-screw interaction

energies shows a more subtle field of interaction energies that extends beyond the six atom

rows considered by Suzuki. Figure 3.2a shows the example of a Ti solute in W [70]. Here, the

interaction energies of the two sets of three atomic rows - those considered by Suzuki - are not

equal. Furthermore, there are significant additional interactions for solutes located at further

distances from the core, with the highest single value being at a fifth-neighbor distance. The

corresponding change in energy after screw glide by one Peierls valley is shown in Figure 3.2b.

Clearly, there is a wide spectrum of energy changes associated with any individual atomic row,

and non-negligible energies extend out well beyond the six atomic rows envisioned by Suzuki.

Similar results are found for other solutes in W, for other solutes in other BCC metals, and

in atomistic simulations using interatomic potentials. Figure 3.2c,d shows the case of Nb in

NbTaTiV computed using EAM interatomic potentials (see below). The features in Figure 3.2

are common, and so the historical assumptions are not generally valid.

Given the interaction energy map of the type shown in Figure 3.2(a,c) and the associated

energy change map shown in Figure 3.2(b,d), a number of fundamental issues arise. The
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Figure 3.2 – Solute/screw dislocation interaction energy map. (a) Solute-dislocation interac-
tion energy versus solute position around the screw dislocation core for a Ti solute in a W
matrix, as computed by Density Functional Theory [70]. Green dashed line indicates the 6
atoms closest to the core that are considered in Suzuki model. (b) Interaction energy differ-
ence as the core moves by one Peierls valley distance a (green arrow). (c) Solute-dislocation
interaction energy versus solute position around the screw dislocation core for a Nb solute in
the average atom NbTaVTi matrix. Arrows correspond to the differential dispacements (DD),
showing that the core is compact and symmetric. Green dashed line indicates the 6 atoms
closest to the core which are considered in Suzuki model. (d) Interaction energy difference as
the core moves by one Peierls valley distance a (green arrow).

first issue is the identification of the correct solute/dislocation interaction energy parameter

that should enter any theory for screw strengthening in alloys. The second issue is then what

range of solute interactions are necessary to accurately compute this solute/dislocation energy

parameter. The third issue is how to compute such a parameter in a complex multicomponent

random alloy. The fourth issue is whether there is any simplified approximation that might

enable sufficiently accurate estimation of the parameter. The final, and most important, issue

is how the correct solute/dislocation interaction energy parameter should enter into any

theory for solute strengthening. This last issue is not addressed here and is the subject of

subsequent Chapters. The first four issues are the subject of this Chapter, and establish a basis

for a theory for strengthening in BCC solid solutions including HEAs as is the main objective

of this thesis.

Rao et al. [119, 120] have recently examined an interesting concept related to the fourth
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issue above. Specifically, they have shown that there exists a good correlation between the

solute-screw interaction energy in the first three atomic rows at the dislocation core and the

interaction energy between the solute and the [111]/6 unstable stacking fault (USF). This

correlation was made only for the central core rows. Although not carried out, the implication

was that this single interaction energy could then be used in the Suzuki model assuming the

energies of the six central atomic rows are equal to the solute/USF interaction energy. The

correlation was established in several model High Entropy Alloys. Here, we further assess

the correlation of the solute/USF energy with the new solute/dislocation interaction energy

parameter.

3.1 Solute/Screw Interaction Energy Parameter

The solute/screw dislocation energy parameter in an alloy of arbitrary composition is obtained

following the previous analysis for the same quantity in fcc materials [172]. The general

concept is independent of crystal structure and/or dislocation type.

We consider a BCC HEA consisting of N types of alloying elements with concentration cn of

the nth element (
∑N

n=1 cn = 1). There is no correlation between the types of solutes on different

distinct BCC lattice sites (i.e. the alloy is a random alloy). So, the probability that any specific

lattice site is occupied by a type-n solute is exactly cn . For the true random alloy at a given

composition, we define a corresponding effective homogeneous alloy that has all the average

properties of the true random alloy (e.g. lattice constant a0, elastic constants, Ci j , unstable

stacking fault energy ΓUSF, etc.) but does not have the randomness. Each elemental alloy

component can then be considered as a solute embedded in the effective alloy matrix. We can

then conceptually create a straight screw dislocation in the effective matrix. The interaction

energy of a type-n solute at position (xi , y j ) relative to the screw dislocation positioned at

the origin and aligned along z is denoted as U n
i j . A schematic of this conceptual approach is

shown in Figure 3.3. The quantity U n
i j is shown in Figure 3.2(a,c) for many solute positions

i j around the core in two different systems. As the dislocation glides by one Peierls valley

distance a, a solute at position (xi , y j ) now resides at a position (xi −a, y j ) relative to the new

position of the dislocation core. Therefore, the energy change is ∆U n
i j =U n

i−1, j −U n
i j , as shown

in Figure 3.2(b,d).

Strengthening of the dislocation by solutes is related to the changes in energy as a dislocation

segment glides through the random alloy and experiences fluctuating environments of the

surrounding solutes. These fluctuating energies are independent of how the dislocation

actually moves, such as by double-kink nucleation and kink glide. So, we consider a straight

screw dislocation segment of length ζ aligned along z-direction and centered at (x = y = 0).

The interaction energy of a solute of type n located at position (xi , y j , zk ) relative to the center

of dislocation is denoted as U n
i j k . Neglecting direct solute-solute interactions and due to the

periodicity along z, this quantity is actually independent of z and is equal to U n
i j for all atomic

sites zk associated with the in-plane position (xi , y j ). The analysis can be extended to include
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Figure 3.3 – Average alloy method for solute-screw dislocation interactions. (a) True random
3-component alloy containing a screw dislocation. The A solute at position (xi , y j , zk ) relative
to the dislocation centered at the origin, has interaction energy U A

i j k , (b) Average-atom material
of the same alloy, with an embedded A solute at projected position (xi , y j ), with the same
average interaction energy U A

i j =U A
i j k .

a distribution of local environments along z [172] but this feature is not discussed here, for

simplicity. When the dislocation segment glides by a, the change in dislocation position

relative to all of the fixed solutes leads to a potential energy change of

∆Utot (ζ, a) = ∑
i , j ,k

∑
n

sn
i j k

[
U n

i−1, j ,k −U n
i j k

]
, (3.1)

where the site occupation variable sn
i j k = 1 if a type-n solute is at position (xi , y j , zk ) and 0

otherwise.

The mean energy change is zero. A (configurational) force acting on the dislocation due to the

solute-dislocation interactions can only arise due to local spatial fluctuations in the solute

concentrations. Such fluctuations create a statistical distribution of potential energy changes

for the dislocation segment as it moves through the alloy. The magnitude of the typical energy
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change is then characterized by the standard deviation of the potential energy change,

σ∆Utot =
[
〈∆U 2

tot(ζ, a)〉−〈∆Utot(ζ, a)〉2
] 1

2

(3.2)

where brackets denote averaging over random occupation variables sn
i j k . With ζ/b sites along

z for all (xi , y j ), the averaging process leads to

σ∆Utot =
(
ζ

b

) 1
2

∆Ẽp (a), (3.3)

where

∆Ẽp (a) =
(∑

i , j

∑
n

cn∆U n
i j (a)2

) 1
2

, (3.4)

where ∆U n
i j (a) =U n

i−1, j −U n
i j . Independent of the segment length ζ, and independent of the

details of the dislocation motion, this analysis identifies the quantity ∆Ẽp (a) as the relevant

scale for variations in the dislocation energy as a screw dislocation moves by one Peierls

valley. The summations over i and j in Eq. (6.1) extend to infinity, in principle, and there are

no limitations on the number of solute types or their concentrations. Eq. (6.1) is thus the

fundamental energy parameter related to screw dislocation strengthening in random alloys.

Its application in a new strengthening theory for BCC alloys is pursued elsewhere. Here we

focus on evaluating ∆Ẽp (a) across a range of alloys.

3.2 Molecular Static Simulations

Here we describe the simulation details employed to compute the solute/screw dislocation

interactions energies and the solute/ 1
6 [111] unstable stacking fault interaction energy. The

methods are standard, but details are provided for completeness.

All Molecular Statics simulations are performed using the Large-scale Atomic-Molecular Mas-

sively Parallel Simulator (LAMMPS) [114]. The alloy interatomic interactions are all described

using the EAM potentials developed by Zhou et al. [203, 88] for the elemental family Nb-

Ta-Ti-V-Zr. For each specific random alloy composition, it is possible to create the effective

homogeneous matrix material of the alloy using the “average alloy" formulation of Varvenne

et al. [173]. The resulting “average-atom" EAM potential for the alloy has, to high accuracy,

all of the average properties of the true random alloy, but not the actual random atoms. Fur-

thermore, an individual elemental solute of the alloy can be introduced into the average-atom

material to measure the interaction energy of the solute with any defect created in the effective

matrix/average-atom material, as shown in Fig. 3.3b and as described next.

To simulate the screw dislocation structure and the solute/screw interactions, we use a rectan-
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gular simulation cell oriented with [11̄2] along the glide direction X , [110] along the glide plane

normal direction Y , and [1̄11] along the line direction Z . The dimensions of the simulation

cell are L1 ∼ 300Å, L2 ∼ 300Å, and L3 ∼ 34Å corresponding to 175,000 atoms. The perfect BCC

lattice is populated with the corresponding average atoms. A screw dislocation of Burgers vec-

tor a/2[111] with line direction along Z is then introduced by displacing the atomic positions

according to the anisotropic elastic Volterra solution, and subsequent relaxation. During relax-

ation of atomic positions, periodic boundary condition is imposed along Z direction, while

holding those atoms within two times the cutoff radius (2rc ) from the outer boundaries fixed

at the initial Volterra displacement. The total energy E disl of this relaxed system is computed.

It is well-established that the screw dislocation core structures predicted by various EAM

potentials for the elemental BCC metals can have unphysical features. In particular, many

potentials predict a so-called “polarized" core or 3-fold-symmetric core, whereas DFT studies

nearly uniformly show an “unpolarized" or 6-fold-symmetric core. We thus carefully identify

the core structure for each average-atom screw core obtained using the Zhou et al. potentials.

We focus our study on those cores for which the core is 6-fold symmetric, but separately show

results for cases that have polarized cores.

The type-n solute-screw dislocation interaction energy U n
i j is measured at each symmetry-

unique atomic site (xi , y j ) around the dislocation core as follows, with all symmetry-equivalent

sites having the same interaction energy. First a separate computation of the type-n solute

solution energy E sol−bulk in a periodic bulk BCC crystal is performed. This is the difference

between the energy of a bulk crystal with one solute and the same bulk crystal with no solute.

Next, in the system with the screw dislocation, the average atom at the atomic site (xi , y j ) is

replaced by a type-n solute. The simulation cell is then relaxed to the minimum energy struc-

ture, while still holding the outer boundaries fixed at the initial Volterra displacements. The

total energy of the relaxed system with the solute E sol−disl
n,i j is then computed. The interaction

energy between the solute and the screw dislocation is then computed as

U n
i j =

(
E sol−disl

n,i j −E disl
)
−

(
E sol−bulk

)
(3.5)

The neglect of the strain energy created by introducing the misfitting solute while holding the

outer boundaries fixed can be estimated as misfit volume change, and associated misfit strain

energy, is E = 1
2 K ∆V 2

V where V is the sample volume, ∆V the misfit volume of the solute, and

K is the alloy bulk modulus. For all alloys studied here, this energy is at most 4×10−6 eV, and

hence negligible. Direct tests also confirm that the dislocation length of L3 ∼ 34Åis sufficient

to prevent any solute-solute image effects.

The solute-unstable stacking fault interaction energy is computed as follows. We use a sim-

ulation cell with the [ ¯112] direction along X (∼ 60A), [110] direction along Y (∼ 200A), and

[1̄11] direction along Z (∼ 60A) containing approximately 40000 atoms. The simulation cell

is periodic in the X and Z directions, and has free boundaries in the Y direction. This cell is

relaxed, giving rise to surface relaxations on the Y surfaces that do not affect the interaction
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energy calculation. The upper half of the cell is then displaced by the [111]/6 unstable stacking

fault vector relative to the bottom half of the cell. The simulation box is then relaxed only in

the Y direction to form the relaxed stacking fault. The energy E usf of this relaxed system is

computed. A type-n solute is then introduced at an atomic position adjacent to the fault plane,

the system is fully relaxed, and the energy E sol−usf
n is computed. The solute/USF interaction

energy is then computed as

E usf
n =

(
E sol−usf

n −E usf
)
−

(
E sol−bulk

)
(3.6)

The concentration-averaged solute/screw interaction energy,
∑

n cnU n
i j for all i j and so-

lute/USF interaction energy,
∑

n cnE usf
n must both be zero, by construction. Deviations from

zero can arise because the average-atom potential for the alloy is not exact or due to errors in

the simulation methodology. We find only very small deviations from zero in all alloys studied

in this Chapter, reinforcing the accuracy of the computational methods described here.

3.3 Results

We study multicomponent alloys across a wide range of compositions for the succession of

Ti-Zr-Nb, Nb-Ta-V-Ti, and Nb-Ta-V-Ti-Zr alloys. Obtained using the Zhou et al. potentials, the

computed energies are not expected to be accurate for the real alloys but are used to exam

features of the key quantity ∆Ẽp (a).

3.3.1 Full results and convergence

The summations over i and j in Eq. 6.1 extend to infinity. However, ∆Ẽp (a) converges nicely

because the energy differences Ui j −Ui−1, j decrease rapidly beyond some distance away

from the core. Here we study the convergence of ∆Ẽp (a) as a function of the inclusion of

successive shells of atomic sites. The 1st, 2nd, and 3rd, shells containt 3, 6, and 12 atomic

sites and correspond to the inclusion of 1st, 2nd, and 3rd nearest-neighbors, respectively, as

depicted in Fig. 3.4. The 4th shell contains 27 atomic sites including the 4th, 5th, and 6th

nearest-neighbors. The fully converged value is obtained considering 320 atomic sites around

the core (not shown). The total interaction energy parameter corresponding to the nth shell

uses the atomistic interaction energies for all atoms within the nth shell while setting all

interaction energies outside the nth shell equal to zero.

Figs. (3.5)a, (3.5)b, and (3.5)c show the interaction energy parameter ∆Ẽp (a) for the different

shells of neighbors versus the composition of various BCC Ti-Zr-Nb, Nb-Ta-V-Ti, and Nb-

Ta-V-Ti-Zr alloys having unpolarized cores, respectively. Inclusion out to the 4th shell of

atoms (6th neighbors) is required to achieve good agreement with the fully-converged results.

Consideration of the 1st shell only yields results that deviate from the converged result by

approximately 10% across all alloys, which is surprisingly good. For 1st, deviations for Ti-
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Figure 3.4 – Sucessive shells of atomic sites around the compact dislocation core. Definition
of 1st, 2nd, 3rd, and 4th sucessive shells of atomic sites around the compact dislocation core
used to study convergence of the solute/screw interaction energy parameter. Colored atoms
and numbers show the first six near-neighbor atoms.

Zr-Nb are both positive and negative, while values for both Nb-Ta-V-Ti and Nb-Ta-V-Ti-Zr

are typically underestimated. Consideration of the 2nd shell, however, yields a significant

overestimate of the interaction energy parameter. Addition of the 3rd shell reduces that

error, with the convergence achieved by including the 4th shell. We keep in mind that other

interatomic potentials or first-principles methods may require more neighbor shells to achieve

convergence although, to our knowledge, there is no evidence of this in any published results

to date.

3.3.2 Suzuki approximation

The Suzuki approximation considers the first two shells and assumes the interaction energies

in the two shells to be equal. Rao et al. used the interaction energy in the first shell within the

Suzuki model. The interaction energy parameter for this model then reduces to

∆Ẽp (a) =p
6
[∑

n
cn(U n

first)
2
] 1

2
, (3.7)

where U n
first is the solute/screw dislocation interaction energy at the first nearest-neighbors

around the center line of the dislocation core. Figs. 3.5 (a), (b), and (c) show that this approxi-

mation is quite poor, significantly overestimating the interaction parameter and tending to be

close to the results obtained using the 2nd shell interaction energy parameter (which are the

worst among all shells).

The Suzuki theory of strengthening scales, at moderate temperatures, with the square of the
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Figure 3.5 – Interaction energy parameter ∆Ẽp (a) versus alloy composition. Interaction
energy parameter ∆Ẽp (a) versus alloy composition obtained by full atomistic solute-screw
dislocation interaction energies for various shells of atoms, by the USF approximation, and by
the Suzuki approximation. (a) Ti-Zr-Nb ternary; (b) Nb-Ta-V-Ti quaternary; (c) Nb-Ta-V-Ti-Zr
quinary alloys, only compositions with compact (unpolarized) core structure are shown.

interaction parameter. Therefore, the overestimate of the interaction parameter leads to a

significant overestimate of the strength. A similar scaling emerges, from an entirely different

analysis, in the new theory of Maresca and Curtin [94], and so use of the Suzuki-type parameter

in such a theory would again be expected to greatly overestimate the strengthening.

3.3.3 Correlation with solute/USF interaction energy

We first examine the correlation proposed by Rao et al. between the solute-screw interaction

energy in the first three atomic rows at the dislocation core and the interaction energy between

the solute and the [111]/6 USF. The absolute differences between these interaction energies for
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each solute type for a wide range of compositions for Ti-Zr-Nb, Nb-Ta-V-Ti, and Nb-Ta-V-Ti-Zr

alloys is shown in Figures 3.6(a), (b), and (c), respectively. The differences are not negligible

for some solutes in most alloys, with one or more solutes often showing a difference of 0.1 eV

or more. Some of the larger differences occur for solutes at lower concentrations in the alloy,

however, which thus reduces the effects of the error on the overall estimate of the solute/screw

interaction energy parameter.

It is the full converged solute/screw interaction energy parameter that is relevant for solute

strengthening. Thus, we assess if there is any correlation between this parameter and an

estimate based on the solute/USF interaction energy. To make such a correlation, we estimate

the solute/screw interaction energy parameter by setting U n
first = E usf

n and setting all other

interaction energies to zero. This is equivalent to using the 1st shell model with the solute/USF

energy in place of the solute/screw energy. The estimated interaction energy parameter is

then

∆Ẽp (a) =p
4

[∑
n

cn

(
E usf

n

)2
] 1

2

. (3.8)

This estimated value is shown in Fig. 3.5 denoted as "USF approximation". The USF ap-

proximation describes the converged interaction energy parameter fairly well across all alloy

families, with absolute relative differences across all alloys of less than 10%. Results for the

Ti-Nb-Zr ternaries are comparable to those using U n
first directly, with some cases being better

and others worse, but results for the 4- and 5-component alloys tend to be better.

3.3.4 Polarized cores

The EAM potentials sometimes lead to polarized cores, as also noted by Rao et al. Here,

we examine the Ti-Zr-Nb alloys that exhibit the polarized core structure. The solute/screw

interaction energies are shown in Figure 3.7. For such cores, the results are significantly

different from those for unpolarized cores. The interaction energies using the first and second

shells and the USF approximation all greatly understimate the total converged interaction

energy parameter. Then, fortuitously, the Suzuki approximation is a better estimate of the

total interaction energy parameter. Convergence is still achieved by considering the 4th shell.

In general, we recommend that atomistic studies entirely avoid alloy cases where the cores are

polarized.
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Figure 3.6 – Examination of correlation of solute/screw interaction energies with so-
lute/USF interaction energy. Absolute differences between the solute-screw interaction
energy in the first three atomic rows at the dislocation core, U n

first and the interaction en-

ergy between the solute and the [111]/6 USF, E usf
n for each solute type and for a wide range

of compositions in (a) Ti-Zr-Nb ternary, (b) Nb-Ta-V-Ti quaternary, and (c) Nb-Ta-V-Ti-Zr
quinary alloys having compact (unpolarized) core structures.

3.4 Discussion and Summary

We have defined the proper solute/screw interaction energy parameter relevant for strength-

ening of screw dislocations in random BCC alloys with any number of components and

concentrations. In contrast to the assumptions made by the previous researchers, the so-

lute/screw interaction energy is not confined to any finite range and the effect of all solutes,

out to infinite distance in principle, are considered. Using EAM potentials as a model system,

we find that an accurate interaction energy parameter requires consideration of solutes out to
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Figure 3.7 – Interaction energy parameter ∆Ẽp (a) for BCC Ti-Zr-Nb ternary alloys. So-
lute/screw interaction energy parameter ∆Ẽp (a) versus alloy composition for BCC Ti-Zr-Nb
ternary alloys having a polarized (3-fold) core structure, as obtained by direct solute-screw
dislocation interaction energies, USF approximation, and the Suzuki approximation.

6th neighbors (4 shells). This range is also consistent with literature first-principles studies in

dilute alloys.

We have also found that a “USF approximation" is reasonably accurate. This is unexpected

since the converged interaction energy parameter involves many sites around the screw core.

Nonetheless, the correlation is extremely valuable. It suggests that alloy design can proceed by

computing the solute/USF interaction energies to make an estimate of the true interaction en-

ergy parameter. First-principles computation of the USF energy alone is challenging because

such studies must be performed in the true random alloy; there is currently no equivalent of

the average-alloy potential in the first-principles framework. First-principles studies thus re-

quire sufficiently large SF surfaces in the true random alloy. The solute/USF interaction energy

for a type-n solute can be computed by a substitution procedure where solutes of types n′ 6= n

along the stacking fault are replaced by the n-type solute and the energy difference computed.

A concentration-weighted averaging over many such substitutions for all solutes n′ 6= n then

provides the average solute/USF interaction energy for the type n solute. Such a procedure

was described and used for validating the average-alloy method [173], and is not limited to

EAM potentials. In contrast, computing the direct solute/screw interaction parameter using

first-principles methods in a complex alloy is not only computationally more challenging but

physically difficult. In the random alloy, the relaxed dislocation structure has already found

the minimum-energy configuration in the presence of the particular random realization of

solutes. A substitution procedure such as that suggested above for the solute/USF problem

thus has significant additional uncertainties that may make such a study unreliable.

Rao et al. suggested E usf
n ≈U n

first but then also used U n
second =U n

first and considered only the

first two shells. Our results show that such a model gives an interaction energy parameter

that is
p

6/4 larger than the present “USF approximation". Since the latter is close to the

fully-converged results, and the Suzuki model strength scales as the square of this parameter,
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Chapter 3. Solute/Screw Dislocation Interaction Energy Parameter

the Rao et al. model is expected to yield strength predictions that are 1.5 times larger than the

same model using the fully-converged (and presumably more accurate) interaction energy

parameter. This is a significant difference for the purposes of accurate predictions. Nonethe-

less, Rao et al. showed reasonable agreement between predictions and experimental strengths

estimated from hardness data on a number of BCC HEAs. However, in those comparisons, Rao

et al. used the upper limit of the measured hardness [Rao], and recent compression test data

on some of the single-phase alloys shows their strengths to be rather lower than deduced from

hardness measurements [27]. Thus, correcting the interaction energy by a factor of 2/3 may

re-establish some reasonable agreement between the analysis of Rao and the experiments. Rao

et al. also used their Suzuki-type model to make predictions for alloys in which the interatomic

potential has a polarized core. However, since the real material presumably does not have

a polarized core and since Rao et al. only use the first shell (first neighbor) interaction, the

errors created by the polarized core may have been partially cancelled.

The use of EAM potentials to obtain realistic values for this interaction energy parameter

remains uncertain, especially for complex multicomponent alloys. However, the general

methodology employed here remains valid. We would recommend that EAM models be used

solely to test new theoretical concepts and only on alloys that do not have polarized cores.

EAM potentials generally have the additional problem of showing a metastable split-core

configuration that influences analysis of dislocation glide problems. Thus, first-principles

calculations ([167, 68, 119, 70]) in combination with theoretical models seem preferable.

However, as noted above, first-principles computations of the necessary quantities in a true

random alloy remains very challenging.

In summary, future modeling of screw dislocations in BCC alloys - whether dilute or con-

centrated - should use the interaction energy parameter derived here. Computations of that

energy parameter should consider solutes out to 6th neighbors, although an estimated pa-

rameter can be obtained using solute/USF energies in a manner analogous to that suggested

by Rao et al. Accurate determination of this interaction energy parameter is challenging, but

it remains essential to have the proper theoretical framework that is expected to govern the

behavior of real materials.
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4 Double-kink nucleation in dilute BCC
alloys

This chapter is extracted from the following publication

Ghafarollahi, Alireza, and William A. Curtin. "Theory of double-kink nucleation in dilute

BCC alloys." Acta Materialia 196 (2020): 635-650.

In BCC metals and dilute substitutional alloys, plastic deformation is controlled by double-kink

nucleation and migration processes. In pure BCC metals, the double-kink nucleation is the

rate-limiting process because kink migration has a negligible barrier. In dilute solid solution

BCC alloys, the solutes modify the barriers for both double-kink nucleation and kink migration.

The controlling process is that with the largest barrier; this requires a statistical determination

of the relevant barriers as a function of the applied stress and concentration. In general, the

double-kink nucleation barrier is reduced because nucleation occurs in that region where the

solute fluctuations in the random alloy will most-favor formation of the double kink. Kink

migration must then overcome the largest barriers for migration along the remaining line

length. With increasing solute concentration, the conventional understanding is that the

nucleation barrier is steadily reduced and the kink migration barrier steadily increased such

that there can be a cross-over from control by nucleation to control by migration. This can lead

to a transition from softening (reduced flow stress, relative to the pure metal, with increasing

concentration) to hardening (increasing flow stress with increasing concentration). Such

behavior has been predicted via models [167] and observed in recent Monte Carlo simulations

in both Fe-Si [147] and W-Re [202], although results depend on details of the models and

simulation methods.

The softening by solutes in the dilute limit was recognized long ago [183, 113, 158]. Considering

the attractive force of impurity atoms on a dislocation line, Weertman [183] showed that the

impurity atoms could reduce the Peierls energy in their immediate neighborhood, leading to a

reduction in the required stress. Softening can be achieved, however, with either attractive

or repulsive solutes (see Figure 4.1). For repulsive solutes, an initial straight dislocation is

simply pushed away from the solute, and the double-kink nucleation barrier is reduced.
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Chapter 4. Double-kink nucleation in dilute BCC alloys

There is substantial evidence of softening due to small additions of many solutes in many

BCC elements at low temperatures [113, 153]. Suzuki [158] developed a statistical model

for solute effects on double-kink nucleation and kink-migration processes. He envisioned

a single solute/dislocation interaction energy E0 and considered that somewhere along the

dislocation line there could be m solutes within the double-kink nucleation length. Suzuki

then postulated that the decrease in double-kink nucleation energy would be −m|E0|/2 where

the absolute value accounts for the fact that both attractive and repulsive solutes could reduce

the barrier and where the factor of 1/2 was postulated as the reduction in barrier following

simple chemical kinetics models. The value of m was then computed as the largest value

along a dislocation line length L. The Suzuki model thus contains the key features of the

problem, but with crucial assumptions about the solute/dislocation interaction energies and

their effects on the nucleation barrier that limit quantitative predictions. That is, the single

parameter E0, the statistical factor m, and the factor of 1/2, are all ad-hoc approximations that

are not accurate in realistic systems.

repulsive solute

attractive solute
a b

Figure 4.1 – Schematic of double-kink nucleation in the presence of a single solute. (a) An
attractive and (b) a repulsive solute pulling and pushing the initial dislocation line away,
respectively, towards the next Peierls valley. In both cases, the double-kink nucleation barrier
is reduced.

In spite of the above early studies, the recent literature [167, 68] makes a different set of

assumptions. Retaining only a single solute/dislocation interaction energy E0, these works

postulate that the rate of double-kink nucleation along a long line is changed by the factor

c e−E0/kT where c is the solute concentration. This model thus effectively considers only

individual solutes (the very dilute limit) with no statistical effects and, moreover, predicts

that repulsive solutes (E0 > 0) decrease the double-kink nucleation rate (leading to increased

yield stress). Solutes with positive and negative interaction energy are thus predicted to be

fundamentally different[68] (hardening vs. softening). This is in conflict with experiments at

the yield point. For instance, as shown later below, data of Stephens [153] shows softening at

low temperature and low solute concentrations for both W-Ta and W-Re alloys even though

first-principles DFT predicts the interaction energy of Ta to be positive and that of Re to be

negative [68] (see figures 4.2(a) and (c)). Other comparisons with experiments were made

using hardness data [167], corresponding to plastic strains of ∼7-10% while the data in Ref.

[153] shows that behavior at yield and at a few percent plastic strain can lead to conflicting

conclusions regarding softening versus hardening.

Prior analyses [167, 5] also included an additional direct change to the Peierls stress in an

alloy. This contribution can be viewed as the Peierls stress of the effective homogeneous

representation of the alloy. Such a representation is important at non-dilute concentrations
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4.1. Solute effects on the double-kink nucleation barrier

where the identities of solute and matrix become less clear [131]. In the dilute limit, the explicit

dominant effects of the individual solute additions are clear and provide perturbations to the

double-kink nucleation barrier of the underlying matrix material. These effects change the

apparent Peierls stress, as discussed below, with no additional considerations.

Here, we re-consider double-kink nucleation in the presence of low concentrations (a few

percent or below) of solutes. We present and validate a general analytical statistical model for

the effects of solutes on the double-kink nucleation barrier as a function of concentration and

applied stress. This model is a significant improvement over the simplified model of Suzuki,

and reveals the limitations of other models. It should be noted that all screw-dislocation-based

theories to date including the present model assume that the screw dislocation core is the

well-defined compact symmetric core. This is true for dilute alloys [68, Romaner, 67, 170] of

interest here, but first-principles studies by Rao et al. [119], Romaner et al. [131], and Li et al.

[86] show that screw cores may not always remain symmetric and compact in some non-dilute

alloys.

In applications of the model, we obtain reasonable agreement with experiments at low concen-

trations where double-kink nucleation is expected to dominate. With increasing concentration,

we then show a cross-over from softening, controlled by the present theory, to hardening,

controlled by the recent non-dilute theory of Maresca and Curtin [94]. The Maresca-Curtin

theory argues that the low-energy state of a screw dislocation is intrinsically kinked over a

characteristic length scale, making double-kink nucleation irrelevant. The cross-over from

softening to hardening is then mainly related to whether the spacing of the intrinsic kinks

is smaller than the typical dislocation length between dislocation junctions. If not, then the

dilute theory (softening) applies. If so, then the non-dilute theory (hardening) applies. The

strength in the non-dilute domain of the Maresca-Curtin theory is still controlled by some

combination of kink-migration, cross-kink formation/pinning of screws, and, at very low

temperatures, a Peierls-like motion. These features are similar to, although different in detail

than, those postulated by Suzuki [158]. So, both new [94] and old [158] theories, while different,

show that double-kink nucleation does not control strengthening at higher concentrations.

The present theory and that of Maresca et al. thus bridge across the full composition range of

BCC alloys from very dilute up to multicomponent non-dilute High Entropy Alloys.

4.1 Solute effects on the double-kink nucleation barrier

4.1.1 Basic quantities

We consider a binary dilute alloy in which there is only one type of solute at concentration c

and the other component has a high concentration and serves as the ”matrix". The model

is easily generalized to multiple components. The solute concentration c is low (below a few

percent) but above a ”very dilute limit" defined later by a critical concentration c∗.

Underpinning double-kink nucleation in the alloy is the stress-dependent double-kink nu-
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Figure 4.2 – Solute/screw dislocation interaction energy map. Solute/screw dislocation in-
teraction energy versus solute position for a Ta [68, 69] and c Re [68, 69] in single crystal BCC W
as calculated by DFT and e Si in Fe as computed using the EAM potential of [147]. Interaction
energy difference as the screw dislocation core moves by one Peierls valley distance a (red
arrow) for b Ta and d Re solutes in W and f Si in Fe. Sites marked with 1-8 in f are substituted
with Si atoms for subsequent NEB calculations, and are referred to in Figs. 4.5 and 4.6.

cleation barrier and transition state in the pure matrix. Fig. 4.3 shows the transition state

configurations for pure Fe at various applied stresses, as obtained using a reasonable EAM
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4.1. Solute effects on the double-kink nucleation barrier

potential for Fe [117] (see [95] for a study using a machine-learning potential and [31] for

configurations obtained using a line tension model). At zero stress, the transition state is sym-

metric, has two fully-developed kinks, and spans 1/2 the simulation cell size. With increasing

applied stress, the initial position of the dislocation moves away from the zero-stress Peierls

valley to position xeq(τ). More importantly, the critical double-kink configuration becomes

progressively smaller: the kinks are closer together and the kink is not fully-developed. Only at

low stresses does the kink extend into the next Peierls energy minimum at distance a = 0.943b

from the original minimum.

The dislocation shape xdisl(z,τ) of the double-kink transition state versus applied stress can

be expressed generally as

xdisl(z,τ)/a = g (z,τ)+ geq(τ) (4.1)

where geq(τ) = xeq(τ)/a is the dimenionless initial straight screw position at stress τ and g (z,τ)

is the dimensionless kink shape, or deviation from the initial straight dislocation, as a function

of τ, At low stresses (e.g. 100 MPa in Figure 4.3), the nucleation occurs over a length ldk

approximately equal to that of the two kink widths. Across a range of systems, this length

is ldk ≈ 20b −25b. The geometry of the transition-state double-kink structure versus stress

serves as one main input for our analysis of solute effects on nucleation.

Associated with each stress and transition state is the nucleation enthalpy barrier ∆H 0(τ) of

the pure matrix. The functional form of ∆H 0(τ) is not directly relevant for most of our analysis

below, but is needed for predictions. This barrier can be obtained by simulations, models,

or fitting. The latter often takes the form of a Kocks law [79] ∆H 0(τ) =∆H 0(0)
[
1− (

τ/τp
)p]q

where 0 ≤ p ≤ 1 and 1 ≤ q ≤ 2 are fitting parameters and ∆H 0(0) and τp are the zero-stress

enthalpy barrier and Peierls stress, respectively.
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Figure 4.3 – Stress-dependent transition state configurations in pure Fe. Transition state
configurations xdisl(z,τ)/a versus normalized applied shear stress τ/τP with τP = 1GPa deter-
mined using pure Fe EAM potential [117]. The points are the direct outcome of the disregistry
method [177]. The solid lines are the fits to the functional form for g (z,τ) given by Eq. (4.19)
with parameteres shown in Table 4.1. On the lower left, the equilibrium position geq(τ) of the
initial straight dislocation is indicated by the arrows for several applied stresses.
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Chapter 4. Double-kink nucleation in dilute BCC alloys

The second major quantity of importance is the interaction energy between a type-n solute at

position (xi , y j , zk ) and a straight screw dislocation positioned in the Peierls valley minimum

at the origin and aligned along the z axis. This interaction energy is denoted as U n
i j k . Fig. 4.2(e)

shows U n
i j k for many solute positions i j around the core within the periodic length b along

the line direction z for Si solutes in Fe as computed using a model Fe-Si alloy described by

EAM potentials [147]. The solute/dislocation interaction energies for Ta and Re solutes in

single crystal BCC W as computed by Density Functional Theory (DFT) [68, 69] are shown

in Figs. 4.2(a) and (c); quantitatively similar results are reported in other works [Romaner].

With this projection, the interaction energy is independent of the z coordinate. For the model

Fe-Si and W-Re systems all solute/dislocation interactions are negative (attractive) while the

interactions for Ta in W are all positive (repulsive). The interaction energies are not localized

to the first or second neighbors around the core, as commonly assumed in theories that use

these computed energies to predict strengths [158, 167, 68].

Dislocation motion is determined by the changes in solute/dislocation energy as a dislocation

glides. Fig. 4.2(f) shows the change in energy of a Si solute in Fe upon glide of the screw

dislocation by one Peierls valley distance, a. Figs. 4.2(b) and (d) show the corresponding DFT

energy changes for Ta and Re solutes in W matrix, respectively. Non-negligible changes in

energy can exist for solutes located at initial positions up to sixth neighbors from the center

line of the core. As discussed extensively in Chapter 3, and important in the present work, it

is necessary to consider solutes out to such distant neighbors to capture the relevant energy

changes accurately. These interaction energies and changes upon glide are the fundamental

quantities driving double-kink nucleation in a dilute alloy.

4.1.2 Solute/double-kink interaction energy

Direct computation of the solute/double-kink interaction energies for all possible solute posi-

tions around the (transition state) double-kink structure is not possible. Computation of an

interaction energy requires full relaxation of the system containing the solute and dislocation

but the double-kink structure is a constrained state and is not a low-energy relaxed equilib-

rium structure. Here, we thus make a model assumption and then validate that assumption

via direct simulations in Section 4.3.2.

We assume that the solute/double-kink interaction energy at each stress and for a single solute

at position (xi , y j , zk ) is

Edk(xi , y j , zk ,τ) = xdisl(zk ,τ)

a
∆Ui j (a)+U (xi , y j ), (4.2)

where ∆Ui j (a) =U (xi −a, y j )−U (xi , y j ) is the solute/screw dislocation energy change as the

dislocation moves by one Peierls valley distance a (Figures 4.2b,d,f). That is, the solute/double-

kink interaction energy of a solute in plane z is equal to the full energy change upon glide by

a scaled by the distance x of the kink in the same z plane. This approximation is reasonable

because the kink width is fairly large, so that the character of the kink is near screw. Therefore,
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4.1. Solute effects on the double-kink nucleation barrier

a solute experiences a surrounding region that is very nearly a straight screw dislocation at

position xdisl(zk ,τ). This approximation also satisfies the limiting cases where the dislocation

is in the initial and final Peierls valleys, i.e. xdisl(zk ,τ) → 0 and xdisl(zk ,τ) → a.

In the presence of any specific arrangement of solutes, the change in nucleation barrier is

the sum of the changes, whether positive or negative, contributed by each individual solute.

In the dilute limit, we can safely neglect any effects of multi-solute interactions because the

average solute-solute separation is large (≈ b/c
1
3 ); each solute thus has an effect independent

of any other solutes. A specific random arrangement of solutes is represented by a set of

occupation variables si j k where si j k = 1 if a solute is at position (xi , y j , zk ) and = 0 otherwise.

Overall all sites N À 1 in the alloy, 1/N
∑

i , j ,k si j k = c. The double-kink nucleation barrier is

then the energy difference between all solutes interacting with the transition state structure

g (z,τ)+ geq(τ) and with the initial straight dislocation at geq(τ), and so involves only the

non-straight portion g (z,τ) = xdisl(zk ,τ)/a of the transition state shape. Using Eq. (4.2) for the

single solute/double-kink interaction energy, the solute contribution to the nucleation barrier

is computed by summing the contributions of all the solutes in the specific realization of the

random alloy as

∆H sol(τ) = ∑
i , j ,k

si j k g (zk ,τ)∆Ui j (a) (4.3)

4.1.3 Model for solute softening in dilute alloys

For a dislocation segment of length ldk , the mean energy change over all possible fluctuations

in the positions of the solutes is zero. This is shown by averaging Eq. (4.3) over all realizations

si j k . However, the local fluctuations in the spatial arrangement of solutes give rise to a

statistical distribution of energy changes of the nucleated dislocation segment. The standard

deviation of this energy change is

σ∆H sol =
[
〈∆H sol(ldk , xdisl)

2〉−〈∆H sol(ldk , xdisl)〉2
] 1

2
, (4.4)

where brackets denote averaging over the random occupation variables si j k . Carrying out the

averaging and algebra leads to (A.1)

σ∆H sol =∆Ẽp (a)G(τ), (4.5)

where

G(τ) =
(

Ns∑
k=−Ns

g (k b,τ)2

) 1
2

, (4.6)

is a geometrical shape factor and Ns = ldk /(2b) is the total number of atomic sites along

the dislocation line z within one kink length ldk /2. The standard deviation of the statistical
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Chapter 4. Double-kink nucleation in dilute BCC alloys

distribution of nucleation barriers at length ldk thus scales with the quantity

∆Ẽp (a) =
(∑

i j
c∆Ui j (a)2

) 1
2

; (4.7)

this is precisely the solute/screw dislocation interaction energy parameter that enters in the

theory for yield strength of a BCC alloy [94, 51], but reduced to the dilute binary alloy limit.

This feature will later enable a bridging between dilute and non-dilute alloys. The shape of the

double-kink transition state enters only as an overall stress-dependent numerical factor G(τ).

Considering one nucleation length ldk , the random fluctuations in solutes leads to a Gaussian

probability distribution of the solute contributions to the double-kink nucleation enthalpy

∆H sol as

P [∆H sol] = 1p
2πσ∆H sol

exp

[
−1

2

(
∆H sol

σ∆H sol

)2]
. (4.8)

The above result is for a dislocation of length ldk only. A longer dislocation line of length L

can be considered approximately as a set of N = L/ldk statistically-independent segments

of length ldk , and double-kink nucleation could initiate at any one of these segments. Each

segment has a distinct local solute configuration and hence has a local double-kink nucleation

barrier that is sampled randomly from the above statistical distribution. The total rate of

double-kink nucleation due to nucleation at all sites is the sum of the rates of all N segments,

which can be written as (see A.2)

R =ν0N exp

(
−∆H 0(τ)

k T

)
exp

(
σ∆H sol (c,τ)p

2k T

)2 1

2
erfc

(
∆H̄ sol(N ,c,τ)p

2σ∆H sol (c,τ)
+ σ∆H sol (c,τ)p

2k T

)
, (4.9)

where ∆H̄ sol is the the largest reduction in activation energy among all the N segments (the

”weakest-link", see below), k is Boltzmann’s constant, ν0 is an appropriate attempt frequency,

and erfc is the complementary error function. In the absence of solutes, or for very weak

solute/screw interactions, the nucleation rate is R = ν0N exp
(
−∆H 0(τ)

k T

)
which is the rate for a

dislocation length in the pure matrix.

The temperature- and stress-dependent plastic shear strain rate ε̇ at applied stress τ then

follows from Orowan’s law as ε̇ ≈ ρbaR, where ρ is the mobile dislocation density and R is

the nucleation rate. Using this relationship, the yield stress as a function of temperature and

strain rate can be determined, as described in more detail in the context of the applications

presented in Section 5.4.

At sufficiently low temperatures, the rate of double-kink nucleation is controlled by that one

segment having the greatest reduction of the kink-pair nucleation barrier; i.e. nucleation is an

extreme-value (weak-link) problem. For a dislocation of length N ldk , the mean of the lowest
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4.1. Solute effects on the double-kink nucleation barrier

activation energy is

∆H̄ sol =

∞∫
−∞

. . .
X3∫

−∞

X2∫
−∞

X1

N∏
n=1

P (Xn)dXn

∞∫
−∞

. . .
X3∫

−∞

X2∫
−∞

N∏
n=1

P (Xn)dXn

, (4.10)

The standard deviation of activation energies around this mean lowest value is

σ̄2
∆H sol =

∞∫
−∞

. . .
X3∫

−∞

X2∫
−∞

(
X1 −∆H̄ sol

)2 N∏
n=1

P (Xn)dXn

∞∫
−∞

. . .
X3∫

−∞

X2∫
−∞

N∏
n=1

P (Xn)dXn

, (4.11)

For long lengths L, corresponding to large N and relevant for real physical systems, the above

distributions are asymptotically approximated by the extreme-value Gumbel distribution

having the cumulative probability

CN (∆H sol) ≈ 1−e−e

∆Hsol−σ
∆Hsol bN

σ
∆Hsol aN

(4.12)

where the Gumbel scale aN and location bN parameters are

aN = 1√
2log(N )

,

bN = log(log(N ))+ log(4π)√
8log(N )

−
√

2log(N ),
(4.13)

respectively. In terms of σ∆H sol , the mean and standard deviation at length N ldk are

∆H̄ sol(c, N ,τ) =σ∆H sol (c,τ)
(
bN −γaN

)
,

σ̄∆H sol (c, N ,τ) =σ∆H sol (c,τ)
πp

6
aN ,

(4.14)

where γ ≈ 0.5772. Numerical tests show these asymptotic results to be quite accurate for

N > 15 while exact results from Eqs. (4.10) and (4.11) can be computed for N < 15. One feature

of the weak-link analysis is that the mean contribution of solutes increases with increasing

N but the standard deviation decreases. Also, the temperature T0 below which the weak-link

dominates can be determined (see A.2) and the double-kink nucleation rate can be expressed

as

R = ν0 exp

(
−∆H 0(τ)+∆H̄ sol(c, N ,τ)

k T

)
, (4.15)

The weak-link limit provides an easy-to-use analytic form.

Eqs. (4.5), (4.6), and (4.8) together with Eq. (4.10) (for N < 15), and Eqs. (4.13) and (4.14) (for

N > 15) constitute our analytic statistical model for the reduction in double-kink nucleation

barrier due to solutes in the dilute limit. The only inputs to the theory are the matrix transition
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Chapter 4. Double-kink nucleation in dilute BCC alloys

state shape versus stress, the solute/dislocation interaction energies, and the dislocation line

length N ldk .

Lastly, the solute/double-kink interaction energies are modeled using the transition state

configurations of the pure matrix at the relevant applied stress. However, a careful treatment

is required at zero stress since the transition state in the pure metal is strictly equal to 1/2 the

total simulated dislocation length. As shown below, even in the very dilute limit where the

transition is affected only by one isolated solute, the transition state at zero stress is always

localized around the position of a single favorable solute. The transition state structure is

never that found in the pure material (spanning 1/2 the cell size). Therefore, here we use the

transition state configuration at the lowest non-zero stress where the kinks are well-formed

but only separated enough such that the leading part of the transition state is very nearly in

the final-state Peierls valley. For our model system, this corresponds to the configuration at 0.1

GPa in Figure 4.3. In all subsequent analyses, the transition state configuration at zero stress

xdisl(zk ,0) refers to this configuration. This assumption enters the model only through the

structure-dependent factor G(0); any other approximation to the zero-stress transition state

structure would simply correspond to a (small) change in the value of G(0). We validate our

zero-stress transition state structure via direct simulations for specific solute configurations in

a model Fe-Si alloy in Section 4.3.2.

4.2 Solute effects in the very dilute limit

The previous analysis is valid for concentrations above a critical value in which multiple

solutes are present across the double-kink nucleation length ldk so that a statistical analysis is

appropriate. In the very dilute limit, however, at most only a single solute will exist around

the dislocation over length ldk and its affect on the double-kink nucleation requires special

treatment as discussed here.

Far from the screw dislocation core, the solute/dislocation interaction energy differences are

vanishingly small and so do not affect the double-kink nucleation barrier. There are thus only

some finite number of distinct atomic sites that contribute to the double-kink nucleation

energy difference. We denote the number of atomic sites with appreciable negative interaction

energy differences per unit b of line length as NT . Due to symmetry, there are then also NT

sites with positive appreciable energy difference. A critical concentration is then defined as

c∗ = b/(2NT ldk ), at which there exists, on average, only one solute among all the 2NT -type

sites over the entire double-kink nucleation length ldk . For concentrations above this critical

concentration, multiple solutes are found within the double-kink nucleation length and the

analysis of the previous section quickly becomes relevant. When c < c∗, there will be only one

solute or no solute within each double-kink nucleation length. The concentration c∗ is thus

the boundary between the very dilute limit and the dilute limit cases (see Fig. 4.4).

In the very dilute limit, the change in interaction energy of a solute initially at the i -th distinct

site (i = 1, ...NT ) due to motion of the straight screw dislocation from the initial to the final is

54



4.2. Solute effects in the very dilute limit

a
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c *0
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b

Figure 4.4 – Schematic of the very dilute and dilute solute regimes around a double-kink
nucleation. Schematic of the solute (red dots) distribution surrounding a double-kink nucle-
ation structure with length ldk for (a) very dilute (c < c∗) and (b) dilute limit (c > c∗) cases.
When c < c∗ there will be at most one solute within the length ldk . Whereas, multiple solutes
may be found within double kink nucleation length when c > c∗.

now labeled simply as ∆Ui . A dislocation of length L with N = L/ldk double-kink nucleation

segments will have a fraction c/c∗ of segments containing one solute randomly distributed

among the 2NT possibilities while the remaining fraction (1−c/c∗) of segments are solute-free.

The latter fraction have a double-kink activation barrier ∆H 0 equal to that of the pure matrix.

Nucleation will be preferred in segments containing solutes having favorable interaction

energies, and nucleation will be centered on the solute position. Therefore, the barrier change

due to a single favorable solute at site i is

∆H sol
i (τ) =∆Ui g (0,τ). (4.16)

The nucleation rate is slower in segments containing solutes with unfavorable interaction

energies. As an approximation, we treat these segments as having zero solutes, which slightly

overestimates the nucleation rate in these segments. The total double-kink nucleation rate

Rdk is then the sum of the rates over all segments, with or without solutes,

Rdk =
(
1− c

c∗
)
N∑

k=1
ν0 exp

(
−∆H0(τ)

k T

)
︸ ︷︷ ︸

pure matrix

+
(

c
c∗ N

)
/2∑

k=1
ν0 exp

(
−∆H0(τ)

k T

)
︸ ︷︷ ︸

segments containing
one unfavorable solute

+
(

c
c∗ N

)
/2∑

k=1

∑
i∈NT

ν0 si exp

(
−∆H0(τ)+∆H sol

i (τ)

k T

)
︸ ︷︷ ︸

segments containing
one favorable solute

,

(4.17)

where the summation over i extends over all NT favorable sites and si = 1 for site i containing

a favorable solute and si = 0 for all other sites. Noting that 〈si 〉 = 1/NT the above equation can
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Chapter 4. Double-kink nucleation in dilute BCC alloys

be reduced to

Rdk = Nν0 exp

(
−∆H0(τ)

kT

)[
1+ c

ldk

b

∑
i∈NT

(
exp

(
−∆H sol

i (τ)

k T

)
−1

)]
(4.18)

Recall that NT is the number of sites with appreciable negative interaction energy changes. The

above relation shows that the inclusion of more-distant sites, i.e. those having comparatively

low interaction energy changes compared to those within the NT sites, will not influence the

double-kink nucleation rate since exp(−∆Ui g (0,τ)/kT )−1 ≈ 0 for such sites. Thus, the choice

of the NT sites mainly affects the definition of the critical concentration c∗ rather than the

actual rate of nucleation in this domain.

The transition from the very dilute to the dilute limit is not fully developed. Neither result is

quite correct at concentrations c ∼ c?: there will often be more than one solute with ldk but not

quite enough such that the asymptotic random Gaussian statistics is applicable. However, the

critical concentration c? may be below commonly-studied solute concentrations of dilute BCC

binary alloys (1 at.%). Therefore, a lack of precision in the definition of c? and the behavior in

the vicinity of c? is not a major issue.

4.3 Validation against atomistic simulations using a model Fe-Si al-

loy

We now compare predictions of our analytical model for double-kink nucleation enthalpy

barrier against direct atomistic simulations using a model Fe-Si alloy. The only input pa-

rameters to the model are the solute/screw-dislocation interaction energies U (xi , y j ) at all

distinct solute positions i j around the screw core, the length L of the dislocation, and the

stress-dependent enthalpy barrier and transition state dislocation configurations of the pure

matrix material. There are no fitting parameters.

We use a model Fe-Si alloy system as represented by a recent EAM potential [147]. The Fe-Fe

interactions are based on the Fe EAM potential developed by Proville et al. [117], which has all

the key aspects for Fe screw dislocations such as the non-degenerate compact core structure,

the single-hump Peierls potential, and {110} slip-plane. We further set the Si-Si interaction

energies to those of Si-Fe, which eliminates direct solute-solute interactions. Since we are

interested in dilute alloys and since the theory does not include solute-solute interactions,

this treatment of solute-solute interactions is convenient and very useful. We note clearly

that this Fe-Si potential is not an accurate representation of real Fe or real Fe-Si. However, it

is a well-defined model system with no pathological behaviors that often plague atomistic

modeling of BCC screw dislocations. Thus, this model Fe-Si system is well-suited to validate

our general analytic model in detail.

The solute/screw dislocation interaction energy parameter ∆Ẽp (a) is computed using the in-

dividual solute/dislocation interaction energies shown in Figure 4.2b. The individual energies
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4.3. Validation against atomistic simulations using a model Fe-Si alloy

were computed as discussed carefully in Section 3.2. The resulting solute/dislocation interac-

tion energy parameter for this model Fe-Si alloy is then computed as ∆Ẽp (a) = 344
p

c meV.

To compute the transition path from the initial to the final state, we use the nudged elastic band

(NEB) method as implemented in LAMMPS. Details of the NEB simulation can be found in A.3.

NEB calculations on the pure Fe matrix at various stresses up to the Peierls stress τp ≈ 1000

were performed. The transition state configurations, determined using the disregistry method

[177], are shown in Figure 4.3. These configurations were fit to a functional form for g (z,τ) as

g (z,τ) = 1

2

(
tanh

[
z/b +ζ(τ)

α(τ)

]
− tanh

[
z/b −ζ(τ)

α(τ)

])
, (4.19)

where ζ(τ) and α(τ) are two fitting parameters shown in Table 4.1. The kink-pair nucleation

length was estimated as ldk = 20b, consistent with the result of [147]. The initial positions

geq(τ) and the geometrical shape factor G(τ) are shown in Table 4.1. The maximum energy

along each energy path is the double-kink nucleation energy barrier ∆H 0(τ) for pure Fe

as described by this potential, which was fit to the empirical form ∆H 0(τ) = (0.62eV)(1−
(τ/1000MPa)0.62)1.02 for later use.

Table 4.1 – Parameters describing the transition state configurations for double-kink nucle-
ation of pure Fe at various normalized applied stresses, τ/τp . The geometrical factor, G(τ/τp )
is obtained by Eq. (4.6) with g (z,τ) given by Eq. (4.19) and Ns = 10.

τ/τp α(τ/τp ) ζ(τ/τp ) geq(τ/τp ) G(τ/τp )
0.0 4.347 6.987 0.00 3.07
0.1 4.347 6.987 0.00 3.07
0.2 4.381 5.367 0.01 2.55
0.3 4.444 4.487 0.02 2.20
0.4 4.571 3.918 0.03 1.94
0.5 4.792 3.584 0.04 1.77
0.6 5.184 3.419 0.05 1.64
0.7 5.755 3.311 0.06 1.52
0.8 6.725 3.241 0.08 1.39
0.9 7.886 2.666 0.14 1.06
1 - 0 0.365 0

To study the (weak-link) scaling of the nucleation barrier with total dislocation length, NEB

simulations are performed for lengths 40b, 70b, 100b, and 200b. The shortest length of

40b is the shortest length at which the double-kink nucleation barrier in pure Fe becomes

essentially length-independent, i.e. at which there is very limited interaction between the two

kinks formed during kink-pair nucleation. Specifically, the pure Fe enthalpy barrier at 40b

is 572 meV, only 28 meV smaller than the value 600 meV at 200b. NEB calculations are then

performed to find the double-kink nucleation barrier in random Fe-Si dilute alloys for a range

of stresses and solute concentrations of 1, 2, and 4%. At zero stress 200 different realizations

of random Si are considered at each concentration while 120 cases are studied at non-zero

stresses.
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Chapter 4. Double-kink nucleation in dilute BCC alloys

4.3.1 Very dilute limit: the single solute

NEB calculations of the double-kink nucleation process in the model Fe-Si alloy containing

a single Si atom at 6 different atomic sites (numbered in Fig. 4.2f) were performed. The

interaction energy changes upon glide range from -113 meV to -69 meV for these 6 sites. Fig.

4.5 shows the enthalpy barriers for double-kink nucleation barrier versus the applied stress τ

for each solute position. Similar studies were performed by [147], which served as the only

input into their subsequent Monte Carlo studies at all concentrations. All of these favorable

sites reduce the pure double-kink nucleation barrier, with a decreasing effect with increasing

applied stress. Also shown is the prediction for one particular case, site #4 with interaction

energy change -89 meV. For each solute, the trends follow the model predictions (not shown

except for site #4) in general, but the precise results do not agree exactly. The nucleation path

adjusts very subtly to the precise solute position, affecting the energy barrier slightly, and this

cannot be captured in the model. Across all these cases, the differences between NEB and

model are roughly +/- 20 meV, which is comparable to the differences among the 6 solute

interaction energies. This result sets a level of agreement that can be expected for subsequent

results.

4.3.2 Validation of solute/double-kink interaction energies

In our model, the collective interaction energies of the solutes with the double-kink transition

state (Eq. (4.3)) were modeled using the transition state configuration of the pure matrix at

the relevant applied stress (Fig. 4.3) and an approximation for the solute/transition state

interaction energies (Eq. (4.2)). Here, we test the model by comparing the predicted and

NEB-computed changes in nucleation barrier∆H sol(0) due to specific arrangements of solutes

at zero stress.

Si solute configurations were created by placing multiple Si solutes at selected atomic sites

around the dislocation core. The configurations were selected so as to sample various local

energy environments (combinations of solute positions, including favorable and unfavorable

sites, at different distances). The configurations used are shown schematically in see Figure

4.6(a), with solutes labeled by the atomic row (1-8 as indicated in Figure 2e) and with an

additional overbar notation for multiple solutes spaced along the same row. The spacings of

solutes along the same row are indicated by either w or d , as shown in the figure. For each

specific set of solute positions, we calculated the double-kink nucleation barrier change at

zero stress using Eq. (4.3) and the transition state shape parameter G(0) = 3.07 shown in Table

4.1. Direct NEB calculations were performed on the exact same solute configurations at zero

applied stress.

The atomistic and predicted results for the change in nucleation barrier are shown in Fig.

4.6(b). The trends in the simulation are well-predicted by the analytic model with no adjustable

parameters. The generally good agreement between the predicted and simulated energy

changes for most of the cases (deviating by only 20-30 meV except for one extreme case
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Figure 4.5 – Single-solute effect on the double-kink nucleation barrier. The double-kink
nucleation enthalpy barriers,∆H (τ) versus the applied stresses τ for various single Si positions
in Fe matrix. The solute/screw interaction energy change associated with each site, ∆Ui is also
shown.

discussed below) shows that the use of the zero stress transition state structure to describe

the collective effect of multiple solute/double-kink interaction energies is quite accurate. The

maximum deviation in Fig. 4.6(b) is for the case 1+1+5+5,d = 3b. However, this configuration

consists of solutes in four energetically-favorable positions, two of which are in the most

favorable positions, and no other solutes. This is thus an extreme case - all the solutes are

strongly attracting the double-kink - that is very unlikely to occur in the dilute alloys. Evidently,

it distorts the transition state shape away from the assumed shape sufficiently to reduce the

effect of the solutes. Overall, however, while the precise double-kink transition state structure

in the NEB varies with each distinct solute configuration, with solutes pulling/pushing the

dislocation line away from the pure Fe shape, our model remains quite good, and so is a

quantitative parameter-free analytical model.
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Figure 4.6 – Validation of the model for solute/double-kink interaction energies. (a) Defini-
tion of solute positions relative to a double-kink nucleation shape (orange solid line). Same
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4.3.3 Double-kink nucleation in model dilute Fe-Si random alloys

Finally, we compare our predictions of the double-kink nucleation barrier for the model binary

random Fe-Si dilute alloys to direct NEB simulations for a range of solute concentrations

and dislocation lengths and under zero and non-zero stresses. The NEB selects the lowest

barrier in any particular realization, and so our predictions use the weakest-link limit (Eq.

4.10) appropriate for the NEB simulations.

zero stress

Figures 4.7(a)-(d) show the mean, statistical distribution, and standard deviation of the NEB

double-kink nucleation barrier∆H as a function of solute concentration for dislocation lengths

L = 40b,70b,100b, and 200b, respectively, at zero stress. The corresponding predictions of the

theory for the mean and standard deviation, with no adjustable parameters, are also shown.

As predicted, the changes in nucleation energy barrier are statistically-distributed in random

dilute alloys and are a function of both solute concentration and dislocation length.

At the shortest length of 40b, there is essentially no weak-link scaling effect. The distribution

of barriers is centered on the single-solute result, not the zero-solute result, because the nu-

cleation will typically occur around the single most-favorable solute. The standard deviation,

which is representative of the statistical variations from sample to sample, increases as the

concentration increases. The theory predicts both the mean and standard deviation in good

agreement with the simulations, with no adjustable parameters. The results at 40b represent
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4.3. Validation against atomistic simulations using a model Fe-Si alloy

the ”unit" statistical process, with weak-link length effects entering for longer lengths.

For the longer lengths 70b −200b, the mean barrier decreases because the system can find

the weakest among several possible nucleation environments along the dislocation line, as

predicted by the theory. The standard deviation also narrows slowly, as predicted. All the

trends predicted by the theory agree quantitatively with the simulations. At length 200b,

essentially none of the simulations at 1, 2 or 4% has a barrier that exceeds that of pure Fe. The

system always finds some favorable solute fluctuations that reduce the double-kink nucleation

barrier, i.e. ”softening" the alloy, even at this rather small dislocation length. Note that these

results are for double-kink nucleation only; kink migration is not investigated even though it

may become the rate-controlling factor at the higher concentrations.

Non-zero stress

The predictive model is further verified by comparing to NEB simulations under applied

stresses in the range 100-900 MPa. Simulations were performed for a single dislocation length

of 70b and concentration of 2%. Figure 4.8 shows the mean enthalpy barrier as simulated and

as predicted, along with the enthalpy barrier for pure Fe. The statistical distribution of barriers

as simulated is shown as a histogram and is important because nucleation in realistic systems

will occur along lengths much larger than 70b.

Very good agreement is found between the predicted and NEB results. The barrier reduces as

the stress increases, but the difference between pure Fe and the alloy decreases with increasing

stress. At a stress of 70% of the Peierls stress, the spectrum of barriers extends to zero (and

below). That is, for some cases, the initial dislocation position is unstable (zero barrier) against

gliding forward into the lower-energy state in the next adjacent Peierls valley. These cases are

not shown and the predictions for the mean barrier at the higher stresses must use a lower

limit of −∆H 0(τ) in the integrals in Eq. (4.10). More importantly, for longer lengths, the mean

barrier at any stress will decrease even further, with the standard deviation decreasing only

slowly, enabling zero-energy barriers to occur with increasing frequency.

The results in Figure 4.8 fully validate our analytic model for double-kink nucleation in random

alloys as a function of both concentration and stress. For any length dislocation beyond more

than a few segments, and at all stresses below the Peierls stress, the presence of solutes reduces

the double-kink nucleation barrier, i.e. solutes always soften double-kink nucleation. This

validation is performed on a model Fe-Si alloy where all material parameters are known, but

now enables application of the analytic model to be applied to realistic alloys using input

material parameters relevant for the real alloys.
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4.4 Applications and implications

The agreement between theory and simulation shown in the previous section on a model

random dilute Fe-Si alloy validates all of the major features of the theory, and demonstrates

the quantitative accuracy of the approximations that render the theory analytic. The theory

can thus be applied with confidence to any bcc alloy system in the dilute limit. Challenges

in applying the theory lie in obtaining accurate input data and also accurate experimental

results. Nonetheless, below we achieve some insights in making comparisons to experiments

at a level of detail well beyond previous literature.

We first address how the theory can be used to estimate the yield strength of a dilute alloy.

The material parameters in the theory are reiterated: (i) the double-kink nucleation barrier

and transition state configurations of the pure matrix; (ii) the double-kink nucleation length

and total dislocation length; and (iii) the solute/screw dislocation interaction energies. The

interaction energies can in principle be computed using first-principles (e.g. Figures 4.2(a)

and (c)), although this is computationally challenging and still not necessarily precise for the

real material. The double-kink nucleation length can be estimated reasonably by various

means [95, 31]. The stress-dependent double-kink nucleation barrier for the pure matrix is

derived from experiments of the flow stress versus temperature as explained below.

Obtaining ∆H 0(τ) from experiments requires accounting for the number of nucleation sites

N along each dislocation segment of length L = 1/
p
ρ between dislocation junctions. When

deformed at a constant strain rate ε̇, the thermally-activated Arrhenius model plus the Orowan

model leads to a strain rate ε̇= Nρbaν0 exp(−∆H 0(τ)/kT ) where N ∼ 1/(ldk
p
ρ) is the number

of possible nucleation sites along dislocations in between dislocation junctions. A reference

strain rate ε̇0 often replaces the combination ρbaν0. The enthalpy barrier at stress τ is then
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Chapter 4. Double-kink nucleation in dilute BCC alloys

obtained as

∆H 0(τ) =∆H 0
exp(τ)+k T log(N ) . (4.20)

where ∆H 0
exp(τ) = k T log(ε̇0/ε̇) is the experimental enthalpy barrier obtained from the experi-

mental flow stress versus temperature experimental data.

With the above details, softening by solutes is then determined as shown schematically in

Fig. 5.9. Starting with the experimental enthalpy barrier versus stress, the correction is made

for N , and then the contribution of the solutes is added, where the figure shows the case

where the low-temperature weak-link result is applicable. An experiment carried out at a

particular ∆H exp = k T log(ε̇0/ε̇) determined by the specified temperature and strain-rate will

then measure the strengths indicated in Fig. 5.9.

While the weak-link analysis can only be applied for low temperatures T < T0, the total

nucleation rate due to all nucleation sites, Eq. (4.9), can be applied for the whole temperature

range of interest. In this case, considering Eq. (4.20) along with Orowan’s law, Eq. (4.9) is

solved numerically to determine the yield stress at a given strain rate and temperature. In

the following, the full rate theory has been used to predict the yield stress of real dilute Fe-Si,

W-Re, and W-Ta alloys.
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Figure 4.9 – Generic prediction of solute softening by double-kink nucleation starting from
double-kink nucleation in the pure metal. The experimental barrier versus stress must first
be corrected for the number of nucleation segments N , and then the additional effect of
softening is added to obtain the total activation enthalpy. At a given experimentally-imposed
activation enthalpy determined by the temperature and strain rate, the alloy has a lower yield
stress than the pure metal. The example here uses the weak-link limit for illustration.
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4.4.1 Application to Fe-Si alloys

We now use the theory to make specific predictions for real dilute Fe-Si (0.52 at%, 1.3 at%, 3.2

at%, and 5 at%) alloys over a wide temperature range and compare to the experimental data of

[78] performed at a strain rate of 1.7×10−4 s−1. We use a reference strain rate of 104 s−1 and

take a dislocation density of ρ = 1012m2 (L ∼ 1µm; N ∼ 170) based on the TEM measurements

of Takeuchi [162].

The same Fe-Si alloys at 5 at% and higher were previously studied by [94] using the non-

dilute theory. There is significant strengthening at this concentration, indicating that the

non-dilute theory is appropriate. Good agreement in strength versus temperature at these

higher concentrations was obtained using a solute/dislocation interaction energy parameter

∆Ẽp = 178
p

c meV, and so we use this value here. The transition state configurations for pure

Fe are taken from a study using a machine-learning interatomic potential trained on a very

large DFT dataset [95] with double-kink nucleation length ldk = 12b. Both the interaction

energy parameter and the double-kink transition state structures differ from those of the

model Fe-Si EAM potential precisely because that potential is not quantitative for real Fe-Si.

Our predictions are shown in Fig. 4.10. For 0.52at%Si at low T, the experiments show a

very small hardening while the theory predicts a very small amount of softening. At higher

T> 200K, the prediction and experiment are similar, and deviations from pure Fe are quite

small. There is a small hump in the data around 150K, widely discussed but unexplained

to date [80, 13, 19]. For the 1.3at%Si alloy, there is again a very small strengthening seen at

low T and minimal effects at higher T. The predictions show a small softening at low T and

then little net effect at higher T. For 3.2at%Si, at low T there is slight softening and then a

small but distinct strengthening at higher T> 100K. The theory shows a stronger softening that

remains roughly constant relative to pure Fe over the entire temperature range. At 3.2at%Si, the

double-kink nucleation theory deviates significantly from experiments throughout the entire

temperature regime, suggesting another mechanism controlling deformation (see below).

Further significant deviations are obtained at an even higher concentration of 5at%Si, where

the alloy is significantly strengthened but the double-kink nucleation theory predicts a large

softening, relative to pure Fe, again indicative of another controlling mechanism (see below).

The observed strengthening at low T for 0.52at%Si and 1.3at%Si is small and not explained by

the present model. However, we show below another set of data at 1.0at%Si that shows distinct

softening relative to pure Fe. Thus, the theory is qualitatively consistent with experiments at

low concentrations in showing little effect of the solutes while the experiments themselves are

in some conflict.

The failure of the present double-kink nucleation theory in comparison to the experiments at

3.2at%Si and higher concentrations is attributed to a transition from nucleation controlled

softening at lower concentrations to some strengthening mechanisms at the higher concen-

trations. The traditional view is a transition to strengthening controlled by kink migration

[158, 167, 147, 202]. Here we apply the non-dilute yield strength model of Maresca et al. [94]
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Chapter 4. Double-kink nucleation in dilute BCC alloys

that has successfully captured strengths in a number of bcc alloys. In this theory, an initially-

straight screw dislocation in a random alloy lowers its energy by spontaneously forming a

multiply-kinked structure at zero stress. The strength is then controlled by a combination of

kink glide and cross-kink (also called jog or dipole) pinning, with a Peierls-like mechanism

replacing kink glide at very low T. Crucially, there is no role of thermally-activated nucleation

of double-kinks in this model, and so it is applicable only in the non-dilute regime.

The transition between dilute (double-kink nucleation controlled softening) and non-dilute

(kink glide and cross-kink controlled strengthening) is then mainly dictated by the spacing of

the spontaneous kinks. If this length is smaller than the distance between forest junctions L,

then the Maresca et al. model should apply and the alloy is in the non-dilute regime. If the kink

spacing is predicted to be larger than L, then the spontaneous kinked structure cannot actually

form, and thermally-activated double-kink nucleation is necessary; such alloys are in the

dilute regime where the present theory should apply. Maresca et al. predict the spontaneous

energy-minimizing kink-spacing to be 2.5ζc where ζc = (1.083Ek /∆Ẽp )2b is a critical length

scale that depends only on the ratio between the kink formation energy (Ek = 0.5∆H 0(0))

and the solute/dislocation energy quantity ∆Ẽp . The length scale 2.5ζc that determines the

boundary between dilute and non-dilute domains thus depends on precisely the two major

material quantities that enter into the present double-kink nucleation theory (∆H 0(0),∆Ẽp ),

enabling direct comparisons of the two theories with no additional material parameters.

The legend in Figure 4.10 shows the predictions of Maresca et al. for the length scale 2.5ζc at

each Si concentration. At both 0.52at%Si and 1.3at%Si, the length scale 2.5ζc is larger than

or comparable to L. According to our criterion, these alloys are thus expected to be in the

“dilute" regime where double-kink nucleation controls the strengthening. This conclusion

is supported by the reasonable agreement of the strength predictions using the double-kink

nucleation theory and the poor agreement of the strength predictions (too low) of the Maresca

et al. theory as shown in Figure 4.10. In contrast, at 3.2at%Si, the length scale 2.5ζc is definitely

smaller than L and, correspondingly, the strength predictions of Maresca et al. are in fairly

good agreement with experiments, aside from a small over-prediction at low T < 75K . At

this concentration, the double-kink nucleation prediction is too low at all temperatures. The

experiments at 5at%Si with 2.5ζc ¿ L are then, as expected, captured well by the Maresca et al.

model while the double-kink nucleation model predictions are poor. This analysis supports a

transition from the dilute softening regime to the non-dilute strengthening regime between

1.3at% and 3.2at%.

The transition here is based on temperature-independent length scales. The experiments

at 3.2at%Si suggest that there can be both softening at low T and strengthening at higher

T. The trends in strength versus temperature of the two different models also suggest that

at concentrations in between 1.3at% and 3.2at%, there could be changes in the strongest

mechanism vs. temperature. Such details are well beyond the scope of the present models.

Our predictions for Fe-Si can be further compared to experiments of Chen et al. [23] who
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Figure 4.10 – Theory predictions for dilute Fe1−xSix alloys.

reported the yield stress of dilute Fe-1at%Si and Fe-4at%Si polycrystals. Chen et al. converted

the uniaxial polycrystalline yield stresses to critical resolved shear stresses (CRSS) by using the

Taylor factor ∼ 2.75 for bcc pencil glide. The CRSS for pure Fe was then approximately 20%

higher than that of Ref. [78], indicating the possibility that the data of Ref. [78] on pure Fe is

low (for unknown reasons) which then brings into question the apparent strengthening at

0.52at%Si relative to the pure Fe data of Kitajima et al. More importantly, Chen et al. report

distinct softening in Fe-1at%Si relative to pure Fe, in contrast to the results of Ref. [78] at

1.3at%Si. These comparisons demonstrate uncertainty in the pure and dilute Fe-Si data, which
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Chapter 4. Double-kink nucleation in dilute BCC alloys

then leads to uncertainty in assessing softening versus strengthening.

To apply our analysis to the data of Chen et al., we must first shift the results of Chen et al.

because our analysis was based on the pure Fe of Ref. [78]. To do so, we simply rescale all

the data of Chen et al. by a single factor of 0.8 to best-match the pure Fe experimental data

of Kitajima et al. We then make predictions for Fe-1at%Si as shown in Fig. 4.11. For 1at%Si

and at very low temperature T = 77K, both experiments and theory show slight softening.

The experiments then show a slight strengthening at T=300K. The length scale 2.5ζc and

the strengthening predicted by Maresca et al. are also shown in Figure 4.11. At 1at%Si, the

predicted strengthening is well below the experiments and the length scale 2.5ζc is comparable

to L. These results indicate that this alloy is in the ’dilute’ regime where double-kink nucleation

controls the screw dislocation motion. This is consistent with our conclusions based on the

data of Kitajima et al.

Similar predictions for Fe-4at%Si are shown in Fig. 4.11. At T = 77K, the experiments show

a notable softening followed by a transition to strengthening above 200K. The length scale

2.5ζc of Maresca et al. indicates this alloy should be in the non-dilute regime. In addition, the

non-dilute theory captures the strengthening reasonably well at the higher temperatures. The

double-kink nucleation theory is in good agreement with the experiments at low T, which is

surprising since we would expect this alloy to be in the non-dilute regime.

In spite of uncertainties in the experimental data, our analysis of the classic Fe-Si alloy pro-

vides a solid conceptual understanding of the nature of the transition in strengthening with

increasing concentration. At low concentrations, there is generally softening by double-kink

nucleation. At high concentrations, double-kinks are pre-existing and strength is controlled

by kink migration and cross-kink formation. The transition is formulated in terms of length

scales only, however. So, at concentrations in the transition range between 1.3 and 4 at%Si,

strengthenging may be a complex and temperature-dependent interplay between the two

mechanisms. Such an interplay could be revealed by detailed kinetic Monte Carlo studies on

long dislocation lengths that account carefully for the origins of kinks (pre-existing versus

nucleating) and using the full statistical analyses for solute/screw interactions developed here.

Existing kMC methods have already shown a transition generically, but have made simplifying

assumptions about the solute/screw interactions, the kink formation, and the initial structure

of the dislocation [157, 147, 202], that can perhaps be revisited.

4.4.2 Application to W-Ta and W-Re alloys

We now examine the yield stress for W-Re and W-Ta alloys at 0 (pure W), 1, and 3 at%, and

temperatures T = 150K , T = 300K , and T = 590K . Experimental data was reported by

Stephens[153] at a strain rate of 5.5×10−4 s−1. We use the pure W data to estimate the pure

W enthalpy barrier versus stress assuming the reference strain rate ε̇0 = 104 s−1 and fitting a

Kocks law as ∆H 0
exp(τ) = ∆H 0

exp(0)

(
1−

(
τ
τP

)0.49
)1.69

with ∆H 0
exp(0) = 1.4 eV and τP = 1.1 GPa.
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Figure 4.11 – Theory predictions for dilute Fe1−xSix alloys.

We use the transition state configurations obtained by GAP for pure Fe, since estimates for W

are similar [31]. We use the solute/dislocation interaction energies obtained by DFT (Fig. 4.2)

from which we compute the solute/dislocation interaction energy parameters as∆Ẽp = 345
p

c

meV for W-Re and ∆Ẽp = 137
p

c meV for W-Ta. We again use a mobile dislocation density

of ρ = 1012 m−2 corresponding to L = 1µm and N ∼ 150 segments along the length L when

considering the transition to the non-dilute limit. We note clearly that, given the limited

data to fit H 0
exp and the uncertainty of other parameters, our predictions below are mainly

qualitative and illustrative.

Predictions of the strength using the double-kink nucleation theory for the W-Re alloys are

shown in Fig. 4.12 (a). The predicted softening for W-1at%Re is in reasonable agreement with

the experiments at all three temperatures. For W-3at%Re, the predicted softening increases,

as expected, while the experiments at 150K and 500K show a slight strengthening relative to

1at%Re and the experiments at 300K exhibit continued softening. This suggests a mechanism

transition between 1at%Re and 3at%Re. We thus evaluate the length scale 2.5ζc of the Maresca

model to assess a possible transition 3at%Re. Using the kink energy Ek = 0.905 eV from the

DFT-based GAP potential for W [160], we predicted 2.5ζc = 0.55µm for W-1at%Re. This is

comparable to the (approximate) dislocation length L, indicating that W-1at%Re is in the

dilute regime. In contrast, we predict 2.5ζc = 0.18µm at 3at%Re, which is rather smaller than

the (approximate) dislocation length L, suggesting that 3at%Re is in the non-dilute regime.

The underpredictions of strength by the double-kink nucleation model at 3at%Re are thus

qualitatively understood as being due to a transition to the non-dilute limit. The Maresca et al.

model does not predicted a temperature-dependence of 2.5ζc and so the observed softening

at T=300K in W-3at%Re requires a full application of the Maresca et al. model before further
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Chapter 4. Double-kink nucleation in dilute BCC alloys

conclusions can be made.

Both trends and uncertainities in the experiments on W-Re are revealed by examining the data

of Raffo [118] on very clean polycrystals at 0, 1, and 2at% at temperatures of 77K, 298K, and

589K. Data at 77K (not shown) shows a steady softening, although very small at 1at%; there

is no comparable data by Stephens. At T=298K, as shown in Figure 12a scaled by the Taylor

factor 2.71, Raffo shows a small strengthening at 1at%Re followed by softening at 2at% (but

still stronger than pure W). At T=589K, as shown in Figure 12a, there is softening at 1at% and

strengthening at 2at%. If the single data point for pure W at T=298K were higher, the Raffo

data would be qualitatively similar to the data of Stephens, and generally consistent with our

analysis. Raffo also showed data at 7at% indicating continued softening at 77K but continued

strengthening at 298K and 589K, the latter two results consistent with our analysis.
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Figure 4.12 – Theory predictions for W-Re and W-Ta alloys. Critical resolved shear stress
(CRSS) versus solute concentration at various temperatures as indicated for (a) W-Re (filled
symbols: data from Stephens [153]; open symbols: present theory; black triangles: data from
Raffo [118]); (b) W-Ta (filled symbols: data from Stephens [153]; open symbols: present theory)
dilute alloys.

Predictions of the strength using the double-kink nucleation theory for the W-Ta alloys are

shown in Fig. 4.12 (b). The experiments on W-Ta show a softening at 1at%Ta for all three

temperatures studied. The double-kink nucleation theory predicts only a very slight softening

for the 1at%Ta alloys, and so agrees only qualitatively with the experiments. The experiments

at 3at%Ta show a slight strengthening at all three temperatures. The double-kink nucleation

theory predicts continued softening, suggesting a transition in mechanism between 1 and

3at%Ta. However, the non-dilute theory of Maresca et al. predicts a length scale of 2.5ζc =
1.1µm at 3at%Ta that remains comparable to the (assumed) L and so does not quite indicate

a transition at this composition. A transition would be expected only at slightly higher Ta

content.
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Overall, softening at 1at% is predicted and observed for both Re and Ta solutes, supporting

the general concept that softening arises for all solutes. A transition to hardening at 3at% is

captured by our analysis for Re but not for Ta. These findings remain tentative on both theo-

retical and experimental sides. The material parameters needed for the theory are estimated

to the best of current ability but remain uncertain. In addition, it is not expected that there

is a distinct transition from softening to hardening at some very specific concentration but

rather a delicate and possibly temperature-dependent interplay of mechanisms. Identifying a

precise transition is also not of practical importance - what is important is that the operative

physical mechanisms be identified and quantified so that alloy design can proceed on the

basis of these mechanisms. Even with these significant caveats, the two theories together

(present theory and Maresca et al. theory) remain broadly consistent with the experiments

and so provide the desired framework for alloy design.

We conclude with some remarks about previous modeling and simulation on the W-Re and

W-Ta alloys. The model of [68] was applied to W-Re and compared to hardness data at T=298K.

Hardness and yield strength are not directly related, unfortunately, because hardness depends

on the work hardening rate as well as the yield strength. This is clearly seen in the differences

in flow stress versus solute type as a function of plastic strain in the uniaxial data of Stephens.

Conclusions about relative softening and hardening based on experiments at a few percent

plastic strain are thus inconsistent with the actual data at the onset of yielding. Hu et al.

nonetheless converted the hardness data of Stephens and Witke at 298K [154] to a CRSS,

leading to a CRSS for pure W of ∼350 MPa significantly higher then the ∼250 MPa reported by

Stephens in direct uniaxial single crystal experiments. Hence, quantitatively, the predictions

of Hu et al. do not agree with the uniaxial data of either Stephens or Raffo. The trends in

converted hardness data do, however, suggest softening up to 5at%Re at T=298K while the

uniaxial data of both Stephens and Raffo also indicate softening up to at least 2-3at%Re at

T=298K. The uniaxial data, however, shows hardening at 3at%Re at both 150K and 590K,

suggesting an underlying transition around 3at%Re that might not be predicted by the Hu et al.

model. Zhao et al. [202] compared results from Monte Carlo studies to the data of Stephens at

2% plastic strain rather than to the data reported at yield. Zhao et al. also calibrated the pure W

parameters to DFT results that are well-established to greatly overestimate the yield strength,

and so the quantitative results of Zhao et al. are far higher than the experiments at both yield

and 2% plastic strain. Examining trends only, Zhao et al. predict slight softening relative to

pure W up to 5at%Re at 150K, in conflict with the experimental hardening at 3at%Re. They

also predict essentially no softening at T=300K up to 1.5at%Re and very slight strengthening

up to 5at%Re, in conflict with the distinct softening observed experimentally up to 3at%Re. At

T=590K, Zhao et al. show a trend in good agreement with experiments. Overall, the results

of Zhao et al. are quantitatively far from experiments and the trends are inconsistent with

experiments. Finally, as noted in the Introduction, the model of Hu et al. was also applied to

W-Ta and can only predict strengthening, inconsistent with the softening data of Stephens.
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Chapter 4. Double-kink nucleation in dilute BCC alloys

4.4.3 Implications for spontaneous kinking in the non-dilute regime

In the non-dilute screw strengthening theory of Maresca et al., the initial straight dislocation

in the random alloy at zero stress is spontaneously kinked at a characteristic length of 2.5ζc .

Envisioning that the system is somehow prepared with initially-straight dislocations, the

present analysis can assess what barriers must be overcome to achieve the spontaneously-

kinked length. This was not addressed in Maresca et al., where it was assumed that there is

sufficient time to overcome such barriers in any real systems. Here, we can use the present

analysis to examine the typical reduction in double kink nucleation barrier due to solutes over

the characteristic length of ζc . The reduction in barrier then corresponds to a reduction in the

average time required for the dislocation to attain the fully-kinked configuration envisioned

by Maresca et al.

The relevant solute/screw interaction energy is a generalization of the dilute limit of Eq. (4.7)

in which all elements of the alloy are considered to be solutes within an effective or average

alloy matrix (see Maresca et al. and Chapter 3 for details). The interaction parameter is

then ∆Ẽp =
(∑

i , j
∑

n cn∆U n 2
i j

)1/2
where the ∆U n

i j is the energy change for a solute of type-n at

initial position i j relative to a screw dislocation in the effective or average alloy material. This

interaction parameter has been estimated for various HEAs in Maresca et al. and has been

examined for a wide range of alloys described by interatomic potetntials in Chapter 3. Below,

we use the values previously reported by Maresca et al. as shown in Table 4.2.

For simplicity, we assume a single double-kink nucleation length ldk = 20b for all of these

non-dilute complex alloys. Based on the number of possible nucleation segments over each

characteristic length N = ζc /ldk , the energy reduction at zero stress due to the solutes can be

then estimated from Eqs. (4.10) and (4.11) as
∣∣∣∆H̄ sol(σ∆H sol , N )

∣∣∣+ σ̄∆H sol (σ∆H sol , N ), where the

standard deviation of the solute energy changes σ̄∆H sol has been also taken into account and

σ∆H sol =G(0)∆Ẽp is the zero stress standard deviation. For each of the non-dilute complex

alloys considered, the energy reduction
∣∣∣∆H̄ sol

∣∣∣+ σ̄∆H sol normalized with respect to σ∆H sol

has been computed as shown in Table 4.2. The time required for the dislocation to kink is

the inverse of the nucleation rate t = 1/R, where R is given by Eq. (4.15). We consider room

temperature T = 300K , an attempt frequency ν0 = 1012s−1, and a zero-stress geometrical

factor G(0) = 2.8.

Fig. (4.13) shows the double-kink nucleation enthalpy barriers and the time required to move

a kink over the length ζc at room temperature for various alloys. There is a considerable

reduction in the zero stress double-kink nucleation barrier at room temperature for all the

non-dilute complex alloys. This leads to a huge reduction in time required for the kink to

overcome the nucleation barrier. For instance, the NbMoTaW high-entropy alloy has the largest

estimated double-kink nucleation barrier among all these alloys and the solute fluctuations

reduce the barrier by ∼ 0.4 eV, which decreases the nucleation time from years to less than 2

hours (note however that Maresca et al. contend that the strength of this alloy is controlled

by edge dislocations [93]). The maximum nucleation time across all alloys is 7 hours for the
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4.4. Applications and implications

Table 4.2 – The kink formation energy Ek , solute/dislocation interaction energy parameter
∆Ẽp , characteristic length ζc , and the typical energy reduction due to solute fluctuations
(
∣∣∆H̄ sol

∣∣+ σ̄∆H sol ) at characteristic length ζc = N l dk , for various non-dilute complex alloys.

Alloy Ek (eV) ∆Ẽp (meV) ζc /b (
∣∣∆H̄ sol

∣∣+ σ̄∆H sol )/σ∆H sol

Nb95Mo5 0.634 48.8 198 2.13
Nb75Mo25 0.611 84.7 61 1.59
Fe91.7Si8.3 0.493 51.4 108 1.83

NbMoTaW 0.6695 86.2 71 1.66
VNbMoTaW 0.6214 90.6 55 1.59

dilute alloy Nb95Mo5.

The present analysis thus shows that attaining the low-energy kinked screw structure envi-

sioned by Maresca et al. is facilitated by the reduction of the double-kink nucleation barrier

in a complex alloy over the crucial length scale ζc . However, at very low temperatures, the

time to overcome these barriers remains very large and this may inhibit the transition to the

non-dilute low-energy configuration in the Maresca et al. model. This might explain some

differences between experiments and the non-dilute theory at T=77K and T=150K at higher

solute concentrations where the non-dilute theory is expected to be applicable.
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Figure 4.13 – Double-kink nucleation enthalpy barrier and the time required to move a kink
over the length ζc at room temperature for various non-dilute complex alloys.
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5 Kink migration in dilute BCC alloys

This chapter is extracted from the following publication

Ghafarollahi, Alireza, and W. A. Curtin. "Theory of kink migration in dilute BCC alloys."

Acta Materialia (2021): 117078.

The temperature-dependent plasticity of BCC metals and dilute substitutional alloys is con-

trolled by the motion of 1/2〈111〉{110} screw dislocations between local energy minima (Peierls

valleys at spacing a) by a two-step thermally-activated process [113, 158, 20, 5]. The first step

is nucleation of a pair of kinks somewhere along an initial long straight screw dislocation. The

second step is the migration of these kinks along the screw dislocation of length L, where

L = 1/
p
ρ is estimated as the distance between dislocation junctions/jogs at dislocation den-

sity ρ. These steps lead to a plastic displacement of a for each dislocation segment. The

macroscopic plastic strain rate due to the motion of all N dislocations is then consistent

with Orowan’s law ε̇= N ab/L2 t̄ = ρba/t̄ where t̄ is the average time for the two-step process

[158, 5, 167, 68]. Nucleation and migration processes each have stress-dependent activation

energies ∆H(τ) and the rate-controlling process is the one with the higher activation energy

and longer time t̄ ∼ exp(∆H(τ)/kT ).

In pure BCC metals, flow is controlled by the double-kink nucleation process because kink

migration has a negligible barrier. In dilute random alloys, the added solutes affect the ac-

tivation energies for both nucleation and migration processes [132, 111]. Generally, solutes

reduce the nucleation barrier, as understood theoretically [113, 158, 183] and observed experi-

mentally [113, 153], because nucleation always occurs in a region along the dislocation line

where the local solute fluctuations in the random alloy most-favor double-kink formation. In

contrast, solutes increase the kink migration barrier because the kinks must overcome the

largest barrier(s) created by the extreme solute statistical fluctuations along the remaining

line. Since stress provides a driving force for overcoming barriers and since longer lengths will

have larger extreme fluctuations somewhere along the length, it becomes critical to accurately

determine the stress- and length-dependent barriers∆Hdk(τ,L) and∆Hkm(τ,L) for nucleation
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Chapter 5. Kink migration in dilute BCC alloys

and migration, respectively, in a random alloy.

Note that any model that embodies the above two effects of the solutes in some manner will

predict a transition from nucleation to migration control of strength. Predicting a transition

is thus not sufficient validation of a model. Furthermore, models that involve adjustable

parameters allow for the transition to be tuned to match data, and so again are not sufficient

validation. Historical models for nucleation and migration do not fully handle the energetic

and statistical aspects of the problem [158, 167, 68]. These models simplify the solute/screw

dislocation interactions to a single value E and then use approximate statistics to estimate

the effects of solute fluctuations. The Suzuki model predicts a reduced barrier for nucleation

but the model of Trinkle and Woodward does not (see [51] for more discussion). For kink

migration, Suzuki [158] considered the statistical number of accumulated solute atoms m(z)

around the screw core that have been passed during the movement of the kink a distance z

along the dislocation line with barrier ∆Hkm = m(z)E −τzab where b is the Burgers vector

and a = 0.943b. The kink width w was then introduced by averaging the barrier over z ±w/2.

Trinkle and Woodward [167, 68] approximated the barrier as ∆Hkm = m|E | with fixed m =
25

p
c, or other related forms, as an estimate of the largest cluster, with no accounting for kink

width. Kinetic Monte Carlo methods have also been used recently to model both double-kink

and kink-migration in dilute alloys [67, 202, 147]. The formulations ensure that a transition is

obtained but treatment of the kink structure, solute/screw interactions, and/or solute effects

on the nucleation barrier remain approximate.

We note that after the transition from double-kink nucleation to kink migration control has

occurred, additional phenomena are possible. In particular, when the kink migration barriers

are high (low stress, high temperature), it is possible that more than one double-kink can

nucleate along the same dislocation segment. If this nucleation occurs on one of the other

crystallographically-equivalent slip systems, the eventual intersection of two kinks on different

planes gives rise to cross-kinks. Cross-kinks form strong pinning points that are only broken

by formation of vacancy or self-interstitial point defects, and so contribute to strengthening.

This phenomenon tends to arise in the non-dilute regime, and is incorporated into various

theories [158, 94] and can occur in KMC simulations [17, 16, 100, 204]. This topic is beyond

the scope of the present study.

Here, we develop a rigorous statistical model for the effect of solutes on the kink migration

barrier as a function of concentration and applied stress. Interactions of all solutes at all

distances from the straight and kinked screw are considered, as in our previous model of

double-kink nucleation. The model for the kink migration barriers is validated against direct

atomistic nudged elastic band (NEB) calculations and related stochastic simulations on a

model Fe-Si alloy. We then show that the kink migration process under stress is essentially the

random walk-type ”Wiener process with drift", which yields analytic results for the barrier in

terms of all relevant material properties. The resulting model for the kink migration barrier as

a function of stress, solute concentration, and dislocation length is fully compatible with our

previous analytic solution for the double-kink nucleation barriers, enabling natural predictions

76



5.1. Solute effects on the kink migration barrier

of the transition from nucleation to kink control of strength as function of temperature and

strain rate in any dilute alloy. Application to real dilute Fe-Si with independent inputs show

that kink migration becomes controlling around 3% Si. Application to real dilute W-Re up to

7%Re using DFT calculations of the W-Re screw interaction energies and other independent

inputs also show good agreement for the transition from nucleation softening to migration

strengthening at T=300K and above.

5.1 Solute effects on the kink migration barrier

5.1.1 Solute/kink interaction energy

We consider a dilute binary alloy with ”solute" atoms at concentration c << 1 and ”matrix"

atoms at concentration 1− c. The model is easily generalized to multiple components and

non-dilute concentrations. For a dislocation at the origin x = y = 0 lying along the z direction,

a solute at lattice site (xi , y j ) has an interaction energy U (xi , y j ) with the dislocation, indepen-

dent of the z coordinate due to translational invariance. When the dislocation glides by a along

the glide direction x, the energy of the same solute has an interaction energy U (xi −a, y j ), and

the change in interaction energy is then denoted as ∆Ui j (a) =U (xi −a, y j )−U (xi , y j ).

After double-link nucleation, the two kinks propagate away from each other through the

random field of solutes. The two kinks are assumed to be independent, neglecting their

very small elastic interactions. We thus focus on a single kink. The kink is the structure that

shifts the screw dislocation from the initial to the final Peierls valley. The shape of the kinked

dislocation with the kink centered at zc and gliding in the positive z-direction is commonly

described by a hyperbolic tangent function [157, 74]. We thus describe the kinked dislocation

as

x(z − zc ; w) = a

2

(
1− tanh

[
2(z − zc )/b

w/b

])
(5.1)

where w denotes the kink width defined as distance between the intersections with the

adjacent Peierls valleys of a tangent line at the kink inflection (see Figure 5.1a). Estimates

and models show that w ∼ 10−20b is typical, so that the kink character is very nearly screw

(character angle at most tan−1(2a/w) ≈ 5◦).

We must compute the total energy change ∆E(zc ) of the system (dislocation plus solutes)

as a function of the center position zc of the kink as it glides across the segment length

(0 < zc < L). Here, we assume a model for the solute/kink interaction energies and validate

that assumption via direct simulations in Section 5.2.2. The solute/dislocation interaction

energy should vary smoothly from U (xi , y j ) to U (xi −a, y j ) as the kink glides past the solute,

and this total change is independent of the kink shape. Thus, although the theory is developed

by carefully considering the solute/kink interactions, the final results emerge to be weakly

dependent on the actual kink width and shape (see Eq. (5.10)). Since the kink shape is very
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Figure 5.1 – (a) Schematic of the models for the kink shape and solute/kink interaction
energy. The atomistic kink shape in the pure metal is described by a hyperbolic tangent
function Eq. (6.12) with kink width w defined by the geometric constuction shown. The
solute/kink interaction energy (Eq. (5.2)) is related to the square of the distance of the kink
to the nearest Peierls valley, which is nearly identical to a tanh function with effective kink
width w∗ = w/2 as shown. (b,c,d,e) Schematic of models developed here for determining
the energy landscape of single kink migration across a random field of solutes. (b) Fully-
atomistic NEB simulation with a possibly-varying kink shape and all solutes interacting with
all portions of the dislocation line; (c) Discrete Rigid-Kink Model (DRKM) with solute/kink
interactions governed by the effective kink shape (effective width w∗ = 0.5w) and interactions
of each solute at zk scale with the relative distance zk − zc ; (d) Stochastic Rigid-Kink Model
(SRKM) where the total solute/dislocation interactions at zk are replaced by a single stochastic
value Ri∆Ẽp chosen from the statistical distribution of the solute/dislocation interaction
energies where Ri is a random number chosen from a Gaussian probability distribution of
mean zero and unit standard deviation; (e) Wiener Process Model (WPM) where the dislocation
is divided into L/1.5w∗ statistically uncorrelated segments each of which is assigned an
energy Ri∆Ep (1.5w∗/b)1/2 where Ri is a random number chosen from a Gaussian probability
distribution of mean zero and unit standard deviation randomly selected from a normal
distribution with zero mean and standard deviation. This model does not involve the kink
shape, only the decorrelation length 1.5w∗ of the solute/kink interaction.
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5.1. Solute effects on the kink migration barrier

nearly screw-like at either end, i.e. at |z − zc |→±w/2, the solute interaction energies in these

regions are very nearly those of the straight screw. Here, we assume that the interaction energy

between a solute at (xi , y j , zk ) and a kinked dislocation with kink centered at zc is proportional

to the normalized square of the kink position relative to the nearest Peierls valley in the same

zk plane as the solute. This effective kink shape is shown schematically in Fig. 5.1(a); it is

essentially identical to the original kink shape but with an effective kink width w∗ = 0.5wk .

Therefore, the solute/kinked-dislocation interaction energy is approximated as

U (xi , y j , zk , zc ) = x(zk − zc ; w∗)

a
∆Ui j (a)+Ui j . (5.2)

In this approximation, the kink is assumed rigid, i.e. not affected by the solutes, which is also

implicit in prior screw strengthening theories [158, 167]. Nevertheless, using the NEB method

as described later, we have examined variations in the kink shape as it glides through a random

atomistic in Fe-4 at.%Si model alloy that has significant solute/dislocation interactions. Among

hundreds of specific random solute environments, we find very little, if any, change in kink

shape and width.

5.1.2 Energy landscape models for kink glide

Here, we present a sequence of models for determining the energy landscape experienced by

a kink gliding through a random field of solutes. A schematic illustration of these models is

shown in Fig. 5.1.

Using Eq. (5.2) for the single solute/kink interaction energy, the total interaction energy of the

solutes with a kink centered at zc is simply the sum of the interaction energies contributed by

each individual solute in the specific configuration of solutes in the random alloy,

U (zc ) = ∑
i , j ,k

si j kU (xi , y j , zk , zc ; w∗) (5.3)

where the site occupation variable si j k = 1 if a solute is at position (xi , y j , zk ) and 0 otherwise.

The energy landscape that determines the overall kink migration corresponds to the total

solute/dislocation energy change as a function of the migration distance starting from an

initial position zc = z0 to the current zc , which can now be written as

∆E(zc ) = ∑
i , j ,k

si j k
x(zk − zc ; w∗)−x(zk − z0; w∗)

a
∆Ui j (a) (5.4)

We call this model for the energy landscape of the migrating kink the Discrete Rigid-Kink

Model (DRKM); a schematic is shown in Figure 5.1c. The DRKM differs from the true atomistic

problem only by the assumed solute/kink interaction model and rigid kink shape.

The DRKM energy landscape is for one specific configuration of random solutes. A further

simplification is required to ultimately achieve an analytic model. We first note that the
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Chapter 5. Kink migration in dilute BCC alloys

statistical average of the solute/kinked dislocation interaction energy change is zero, 〈∆E (z)〉 =
0, where the average is taken over the stochastic variable si j k . Thus, only the statistical

fluctuations lead to energy variations with position, as discussed in [51]. The relevant statistical

quantity is the standard deviation in the interaction energy change per Burgers vector of line

length. For a straight segment of dislocation, the standard deviation can be computed as

[51, 49]

∆Ẽp =
(∑

i j
c∆Ui j (a)2

) 1
2

(5.5)

Then, within our solute/kinked-dislocation interaction energy model, each individual section

of material of width b perpendicular to the dislocation line has some random set of solute

positions that dictate the contribution to the total energy at that position z. The fluctuations

in this energy over all possible solute configurations are proportional to ∆Ẽp and to the

dislocation position x(z − zc ; w). The energy of each section of width b with the kink at

position zc is thus R∆Ẽp x(z−zc ; w∗)/a where R is a random number selected from a Gaussian

probability distribution having zero mean and standard deviation of unity. For a dislocation

segment of length L = N b the energy landscape can then be written as

∆E(zc ) =∆Ẽp

N=L/b∑
k=1

x(zk − zc ; w∗)Rk (5.6)

We call this model the Stochastic Rigid Kink Model (SRKM), schematically shown in Figure 5.1d.

This model involves no direct discrete solutes, only the relevant stochastic energy quantity

∆Ẽp , the kink shape, and a set of random numbers along the line that capture the exact

statistical fluctuations due to random solutes, within our approximation for the solute/kinked-

dislocation interaction energy.

The above models are representations of the entire energy landscape over a length L in a

specific random alloy as a function of the solute/dislocation interaction energies, the kink

shape, and the length L. An applied stress is added subsequently as discussed below. From

these models, we extract the largest global barrier for kink glide, i.e. the difference between the

highest energy and the lowest energy along the entire path in the direction of the kink glide. It

is this (stress-dependent) barrier that will control the kink migration over length L.

5.2 Validation using an atomistic model Fe-Si alloy

We now compare predictions of our analytical model for the solute/kink interaction energy and

the stress assisted kink migration enthalpy barrier against direct atomistic simulations using a

model Fe-Si alloy. The only input parameters to the model are the solute/screw-dislocation

interaction energies U (xi , y j ) at all distinct solute positions i j around the screw core, the

length L of the dislocation, and the single kink shape in the pure matrix material.
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5.2. Validation using an atomistic model Fe-Si alloy

5.2.1 Simulation Details

We use a model Fe-Si alloy system as represented by an EAM potential [147]. The Fe-Fe

interactions [117] have all the underlying DFT-based features for Fe screw dislocations such as

the compact core structure, the single-hump Peierls potential, and {110} slip-plane. Since we

are interested in dilute alloys, we further set Si-Si interactions to those of Si-Fe, eliminating

direct solute-solute interactions. Therefore, although not being an accurate representation

of real Fe or real Fe-Si, this potential is a well-defined model system that can be used with

confidence to validate our analytical model; it was also used previously to study solute effects

on double-kink nucleation [49]. The kink shape in pure Fe is determined using the disregistry

method [177] and fit to the functional form given by Eq. (6.12) leading to w = 10b. The critical

solute/dislocation energy change ∆Ui j as a function of solute position for this potential

is shown in Figure 5.2. The key statistical quantity entering the analytic theories is then

calculated as ∆Ẽp = 344meV
p

c at Si solute concentration c. We study both c = 0.01 and

c = 0.04, for which ∆Ẽp = 34.4meV and ∆Ẽp = 68.8meV. All quantities entering the model are

well-defined and computed independently of the model.
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Figure 5.2 – Solute/screw interaction energy and energy change for single Si solute in Fe
matrix. (a) Solute/screw interaction energy Ui j versus solute position for single Si solute
in Fe matrix computed using the EAM potential of [147]. (b) Interaction energy difference
∆Ui j (a), as the screw dislocation core moves by one Peierls valley distance a (black arrow).
Sites marked with 1 and 2 are substituted with Si atoms for subsequent NEB calculations, and
are referred to in Fig. 5.3.

The minimum energy path during kink migration from an initial position to a final position is

computed using the nudged elastic band (NEB) method as implemented in LAMMPS. Since

kinks must come in pairs, the simulation of motion of a single kink requires special details.

We start with pure Fe and create a cell having total dislocation line length longer than the

simulated kink glide length L = 120b subsequently studied in the alloy. A single solute is

placed in the most energetically favorable location for aiding double-kink nucleation and a

second solute placed at ∼ w away to inhibit glide of one of the two nucleated kinks. An NEB

simulation is then performed during which the double-kink nucleates at the favorable solute
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Chapter 5. Kink migration in dilute BCC alloys

and only one kink glides across the remaining length of the simulation cell. A large number

of replicas are used so that increments of kink motion between each replica are nearly one b

distance. These replicas are then used as the initial path for NEB through a random solute

field. More details of the NEB simulation can be found in A.3.

5.2.2 Validation of solute/kink interaction energies

Here we validate the solute/kink interaction model shown in Figure 5.1a where the interaction

involves the effective kink width w∗ = w/2. This is achieved by comparing predicted and

NEB-computed changes in energy as the kink moves past specific selected arrangements of

solutes.

The specific Si solute configurations studied here are shown schematically in Fig. 5.3(a). For

each specific set of solute positions, we calculated the energy landscape of the system as

function of kink position zc using Eq. (5.4). Direct NEB calculations of the total system energy

change are then performed on the exact same solute configurations. Figs. 5.3(b-i) show the

atomistic NEB and predicted energy landscapes of the selected solute configurations. The

agreement is very good in all cases, with deviations of less then ∼ 10 meV across all cases.

Subsequent similar studies discussed below in fully-random Fe-Si will further confirm, at a

statistical level, the agreement between the model and NEB.

5.2.3 Validation of Kink Migration Models

Here, we validate the Discrete Rigid-Kink Model and Stochastic Rigid-Kink models by compar-

ison against direct fully-atomistic NEB simulations of a single kink migrating across a random

field of solutes at zero stress.

In order to perform the NEB simulations of kink migration in random solute field, using the

NEB simulation setup generated as discussed in 5.2.1, a random solute field of the Fe-Si alloy

is created by randomly distributing Si atoms at concentration c over a central section of length

L = 120b in the simulation cell away from the original double-kink nucleation site. This length

is approximately 24w∗, which is sufficient for validating our models. NEB is then executed to

obtain the energy change ∆E(zc ) as a function of the kink position zc . We create 200 different

realizations of random Si at concentrations 1% and 4% to assess the average barrier and

variations around the average with good accuracy. For each individual random distribution of

solutes, we have a precise corresponding DRKM simulation.

Example energy landscapes as computed from the NEB and from the DRKM on exactly

the same solute configuration are shown in Figs. 5.4b-e. By definition, the zero of energy

corresponds to the energy at the initial kink position when it is first fully within the solute

region. The net energy change over the length L can be positive or negative, depending on the

overall fluctuations of the particular solute configuration. The DRKM captures the overall full

NEB landscape very well in magnitude and length scales of major energy variations. Recall that
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Figure 5.3 – Validation of the model for solute/kink interaction energies. (a)Schematic of
solute positions that are bypassed by a single kink, with similar colors and numbers for solutes
in the same atomic row position (xi , y j ) and corresponding to sites marked in Fig. 5.2b with
∆U1 = 112 meV and ∆U2 = 95 meV. (b)-(i) NEB and predicted kink migration energy versus
kink position zc /b for each special solute arrangement as indicated; e.g. 1+2,d = 6.5b in (f)
denotes solutes at sites #1 and #2 at fixed distance d = 6.5b.

the DRKM has no adjustable parameters. As expected, the NEB landscape shows additional

energy variations on scales smaller than w∗ = 5b because the atomistic kink may adapt subtly

to the precise solute configurations and because the model for the solute/kink interactions is

not exact. Nonetheless, the differences between the NEB and the DRKM are typically below
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Chapter 5. Kink migration in dilute BCC alloys

0.05 eV and 0.1 eV for c = 1% and c = 4%, respectively, which are small compared to the overall

variations of 0.4 eV and 1.0 eV.
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Figure 5.4 – NEB and predicted results for energy landscape of a single kink motion in ran-
dom field of solutes. (a) Schematic of a single kink migrating from left to right through a
field of solutes randomly distributed within the yellow-shaded region of length L = 120b.
(b,c,d,e) Energy landscape as a function of the center position zc of the kink as computed
from direct atomistic NEB and from the Discrete Rigid Kink Model on exactly the same solute
configuration, for two typical samples of Fe-1%Si and two typical samples of Fe-4%Si alloys.
The largest barrier encountered by the kink for two of the NEB landscapes is indicated as∆Ekm

for illustration.

The most important quantity controlling the rate of the kink motion is the largest typical energy

barrier encountered by the kink over a glide distance z. We have thus extracted the maximum

barrier over the length L = 120b from our NEB, DRKM, and SRKM simulations. Figure 5.5

shows the average barrier energy and the distribution of barriers over 200 simulations for the
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5.3. Kink migration under stress

NEB and DRKM and over ten thousand simulations for the SRKM at c=1% and 4%, and also

the average values from the SRKM over a wider range of Si concentrations c. Results are also

shown for the Wiener process model (WPM) discussed later. The DRKM captures the average

barrier very accurately. The average maximum barrier for the SRKM is slightly higher at both

concentrations. The statistical distributions of barriers around the mean all have the same

overall shape and magnitude, and the standard deviations are nearly identical. The mean of

the SRKM deviates from the NEB and DRKM by less than ∆Ẽp , which is itself a factor of ∼ 6

smaller than the standard deviations of all models. These results quantitatively validate the

DRKM and SRKM.

The good agreement between the NEB and the SRKM demonstrates that the dominant energy

barriers are controlled by the well-defined solute/dislocation interaction energy parameter.

Details of specific solute distributions and deviations of the kink shape from an idealized

model are not important in determining the operative distribution of barriers. This is not

surprising because the kink is primarily affecting the transition of solute positions relative to

the (shifting) dislocation line, and the energy difference at any z once the kink has fully passed

by z is captured exactly in the model. This agreement has two important consequences: (i) it

justifies the application of the computationally-inexpensive SRKM to examine barriers over

length scales L that are much larger than can be studied using direct atomistic NEB or the

DRKM and (ii) it points toward the development of an analytic stochastic model.

5.3 Kink migration under stress

The analyses in the previous section were performed at zero stress. The competition between

nucleation and migration is intrinsically stress-dependent, with the applied stress doing work

on the system as the double-kinks nucleate and then as the kinks migrate. Here we extend the

models and analysis to incorporate the driving force due to an applied shear stress. Specifically,

an applied shear stress τ on the glide plane does work (starting from zc = 0) of −τb a zc and

hence the energy landscape becomes ∆E(zc ,τ) =∆E(zc ,τ= 0)−τb a zc . This model assumes

a rigid kink, but fluctuations in the area swept due to atomistic changes in kink shape at a

fixed mean kink position zc are negligible.

In the landscape ∆E(zc ,τ) with increasing applied stress, the maximum energy barrier ∆Ekm

and the activation distance z∗ between the points of minimum and maximum energies that

determine the barrier are both reduced. For each individual energy landscape ∆E(zc ,τ= 0)

computed from the NEB, DRKM, and SRKM, the stress-dependent kink migration barrier

∆Ekm(τ) is computed as a function of τ. Fig. 5.6(a) shows the average ∆Hkm(τ) over 200

independent simulations for the NEB and DRKM and over twenty thousand simulations for

the SRKM at length L = 120b for c =1% and c =4%. Fig. 5.6(b) shows the activation distance

z∗ versus stress, varying smoothly from ∼ L/2 at τ = 0 to 0 at the stress where ∆Hkm = 0.

The overall agreement is very good. The slightly higher barrier for the SRKM at τ = 0 seen

previously is again evident, but the absolute difference then decreases with increasing stress.
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Figure 5.5 – Comparison of the results of the kink migration barrier as obtained by NEB and
developed models. (a) Average kink migration barrier ∆Hkm versus Si solute concentration at
zero stress as obtained from NEB, the Discrete Random Kink Model (DRKM), the Stochastic
Random Kink Model (SRKM), and the Wiener Process Model (WPM). The distributions of kink
migration barriers ∆Ekm associated with each models for 200 Fe-1at.%Si and 200 Fe-4at.%Si
realizations are also shown, with the standard deviations indicated.

5.3.1 Kink migration under stress: a Wiener Process

The fluctuating energy landscape of a single kink migrating through a random field of solutes

over a distance z has several key features: (i) the mean energy change over all possible fluctua-

tions in the solute positions is zero, (ii) the standard deviation of the energy changes due to

the fluctuations in the spatial arrangement of solutes scales with
p

z, and (iii) the incremental

energy change during kink migration over a distance zc2 − zc1 ≈ 1.5w∗ is a stochastic variable.

The decorrelation distance of 1.5w∗ is obtained by examining the correlation function be-

tween two kinks separated by zc2 − zc1, which decreases rapidly from ∼ 0.21 at w∗ toward zero

(∼ 0.02) at 1.5w∗. These features also appear in the random-walk ”Wiener process" [36] and

so the known solution of the Wiener process can be adapted to address kink migration.

The Wiener process is a continuous-time random walk in which the increments (in our case

the energy changes as the kink migrates) are independent. Here, the kink energies become

essentially independent after motion by the decorrelation distance 1.5w∗. In the presence of

an applied stress, the kink migration is then similar to the ”Wiener process with drift" where
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Figure 5.6 – Comparison of the results of the kink migration barriers and activation dis-
tances at different applied stress as obtained by NEB and developed models. (a) Average
kink-migration barrier ∆Hkm and (b) average activation distance z∗ versus applied stress τ
in model Fe-1at%Si and Fe-4at%Si alloys as obtained from NEB, the Discrete Random Kink
Model, the Stochastic Random Kink Model, and the Wiener Process Model.

there is a constant-magnitude bias introduced in each step of the random walk. The Wiener

process does not appear to capture all the statistical fluctuations of the real energy landscape

on the scale of b but it is verified below to capture the all-important mean energy barrier as a

function of τ and L. From here on, we will use a normalized kink width w̄ = 1.5w∗/b to reduce

the notation.

To validate the Wiener process as applied to the kink migration problem, we first execute

stochastic simulations at the increment scale of w̄ as follows and as shown schematically in

Figure 5.1e. A dislocation of length L is first divided into N = L/(bw̄) sections, each of which

is assigned an energy ∆Ẽp w̄1/2 ×Ri where Ri is a random number selected from a normal

distribution with mean zero and standard deviation of unity. A bias energy of (−ab2w̄)τk is

then added to the k-th segment centered on zc /b = kw̄ . The discrete kink-migration energy

landscape sampled at discrete bw̄ intervals can then be written as

∆E(kw̄) =∆Ẽp w̄1/2
k∑

i=1
Ri − (ab2τw̄)k, k = 1,2, . . . ,L/(bw̄) (5.7)

This model is called the Wiener Process Model (WPM).

At zero stress (τ= 0), we compare the mean and standard deviations of the barrier distributions

predicted by the WPM against the SRKM for L = 120b (N = 16), as shown in Fig. 5.5. The

agreement is essentially perfect. The mean energy barrier versus applied stress as predicted

by the WPM is shown in Fig. 5.6, and again excellent agreement with the SRKM is obtained.

To further validate the WPM, we considered longer migration lengths L/b = 200,400,800 and

a range of relevant concentration and stress levels. The comparison between the WPM and

the SRKM is shown in Figure 5.7, and again the agreement is excellent. Hence, the physical

problem of kink migration in a random solute environment and under stress is quantitatively
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captured by the random walk Wiener process with drift.
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We now make the final step to an analytic model, eliminating entirely the need for any stochas-

tic simulations. The analytic model will then enable direct applications of the model to any

system under any experimental conditions (temperature, strain rate, stress, dislocation den-

sity) in terms only of the underlying material parameter ∆Ẽp , w∗= w/2, and L. Specifically,

Magdon et al. [90] showed that the mean maximum minus minimum of the continuous

Wiener process could be written as −2σ2

µ Qp

(
µ2N
2σ2

)
where Qp (x) is a tabulated function and

σ and µ ≤ 0 are the standard deviation and the drift bias of the process and N denotes the

total number of uncorrelated steps. Applied to the kink migration problem, σ = ∆Ep w̄1/2,

µ = −ab2w̄τ, and N = L/(bw̄). When these relationships are substituted into the result of
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Magdon et al., we obtain

∆Hkm =
2∆Ẽ 2

p

ab2τ
Qp

(
a2b4τ2L/b

2∆Ẽ 2
p

)

= 2∆Ẽp
τc

τ
Qp

(
τ2

τ2
c

L

2b

)
; τc =

∆Ẽp

ab2 ,

(5.8)

where the characteristic stress τc is the stress required to overcome a single typical kink energy

difference ∆Ẽp over unit glide distance b. Interestingly, the kink width w̄ no longer appears

in the barrier, and the barrier scales directly with the fundamental energy ∆Ẽp . This result

demonstrates why the WPM and SRKM are essentially identical at lengths L/b >> 1.

The kink migration is discrete, and the discrete-time Wiener process involves an additional

correction term that is a function of σ and the discrete interval length (here w̄) [128]. The

Wiener process also does not nominally apply when the activation distance is z∗/b < w̄ . We

can thus derive a correction factor by imposing the requirement that the energy barrier at the

minimum WPM distance L/b = w̄ is zero at the stress τ= ∆Ẽp
p

w̄
ab2w̄ that is needed to overcome

the average single-step barrier in the WPM. This leads to a correction factor −2Qp ( 1
2 )∆Ẽp

p
w̄ .

The coefficient −2Qp ( 1
2 ) = −0.926, however, does not yield sufficiently agreement with the

simulations and so we fit the numerical prefactor as −1.24 to best-match the WPM simulations,

obtaining

∆Hkm =∆Ẽp

[
2
τc

τ
Qp

(
τ2

τ2
c

L

2b

)
−1.24w̄

1
2

]
(5.9)

The function Qp (x) with x ≡ τ
τc

√
L

2b remain tabulated only. However, we can accurately

(∼ 2%) approximate Qp (x2)x−1 = 1.63(x +1.91)−1 +0.025 over the full range of x relevant in

applications. Hence, a fully-analytic result for the kink migration barrier is then, after a bit of

algebra, obtained as

∆Hkm =∆Ẽp

[
3.26

(
τ

τc
+ 2.7p

L/b

)−1

+0.035
p

L/b −1.07
p

w/b

]
(5.10)

where we have also reverted to using the true kink width w . The results of the analytical

solution, Eq. (5.10) for relatively short dislocation segments of L/b = 200,400, and 800 versus

the Si concentration at various applied stresses are shown in Fig. 5.7. Excellent agreement is

obtained with the previous stochastic simulations which demonstrates the accuracy of this

fully analytical solution. Introducing the correction factor introduces a very small error in the

activation volume Vact = z∗ab, as discussed in A.4.

Before comparing the analytic model to more simulations with longer dislocation lengths,

we discuss the final step of connecting the kink migration model to the double-kink nucle-
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ation/kink migration problem of physical interest. In the real physical problem, two kinks are

nucleated and migrate away from each other. The implicit assumption in essentially all models

of the overall plasticity process is that the next double-kink nucleation and kink migration

event should only occur after the previous process is complete. Retaining this assumption,

each of the two kinks experiences a similar statistical process but the migration distances

Lright and Lleft are different because the double-kink nucleation may occur anywhere along

the total length L = Lright +Lleft with equal probability. Since the migration barrier increases

with L, the kink with the longer migration path will typically encounter the largest barrier, and

hence be the slowest process. The larger of the two sections is then randomly distributed in

the range (L/2,L) with an average of 3L/4.

We thus adapt the SRKM to account for the double-kink nucleation process. For a disloca-

tion of length L with stochastic energies assigned for each section of width b, we use the

solute/double-kink interaction energy developed in [51] to find the most favorable nucleation

site along the entire line. The left and right kinks are nucleated at this location and the kinks

migrate through their remaining landscapes of lengths Lright and Lleft, respectively. The energy

landscape for each kink is computed (Eq. 5.6) from which the stress-dependent kink migration

barrier ∆Ekm(τ) is computed. We perform twenty thousand realizations for three dislocation

lengths L/b = 500,1000,2000. For each realization, we determine the right and left migration

distances Lright and Lleft and the two associated migration barriers. The relevant barrier is the

one corresponding to the longer of the lengths Lright and Lleft. Although there are cases where

the largest barrier is found along the shorter path, their effects on the mean migration barrier

are negligible (a few %). We thus apply the WPM at the mean 3L/4 of the longest segment,

leading to N = L/w . The results of the SRKM and WPM models are shown in Fig. 5.8, and

excellent agreement is obtained. Finally, Fig. 5.8 also shows the analytical result for the mean

migration barrier, Eq. (5.10). The agreement is again excellent, demonstrating the accuracy of

the fully analytical solution in this regime.

5.4 Applications

The analytic theory of kink-migration has been extensively verified against simulations. This

enables us to apply the theory with confidence to real BCC alloy systems in the dilute limit.

Here we combine the kink migration theory with our recent double-kink nucleation theory

to examine the transition from solute softening to solute strengthening in several dilute

binary alloys. The challenges in comparing predictions to experimental data mostly lie in

obtaining accurate input data, especially the solute/screw interaction energies, and accurate

experimental results.

Experiments measure yield strength versus temperature and/or strain rate. Results here for the

activation barrier are thus related to experiments via a standard thermally-activated Arrhenius

model and Orowan’s law. The total rate of dislocation motion in terms of the rates rdk for
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Figure 5.8 – Model predictions for single kink migration barrier for very long migration
distances. Migration barrier∆Hkm as computed by the SRKM, WPM, and fully-analytic theory
versus applied stress τ for dislocations with length L (a) 500b, (b) 1000b, and (c) 2000b in
Fe-4at.%Si model alloy.

double-kink nucleation and rkm for kink migration is

r =
(

1

rdk
+ 1

rkm

)−1

. (5.11)

Under almost all conditions, either rdk or rkm dominates the rate and thus the total rate is

expressed as

r = ν0 exp

(
−∆H(τ)

k T

)
, (5.12)

where the rate-controlling ∆H(τ) is the larger of the double-kink nucleation and migration

barriers and ν0 is an appropriate attempt frequency [171]. As noted in the introduction, the

temperature- and stress- plastic shear strain rate ε̇ at applied stress τ follows from Orowan’s

law as ε̇≈ ρbar and hence

ε̇= ε̇0 exp

(
−∆H(τ)

k T

)
, (5.13)
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where ε̇0 = ρbaν0 is the reference strain rate. Experiments impose a temperature and strain

rate, and hence an experimental enthalpy barrier ∆H exp = k T log(ε̇0/ε̇).

Inverting Eq. (5.10) gives the yield stress required to achieve the imposed experimental

enthalpy barrier as

τ(ε̇,T ) = τc

[
3.26

(
∆H exp

∆Ẽp
−0.035

p
L/b +1.07

p
w/b

)−1

−2.7
p

b/L

]
(5.14)

Eq. (5.14) constitutes our analytical model for the migration-controlled strength as a function

of temperature and strain rate. The only inputs to the theory are the solute/dislocation

interaction energies that determine ∆Ẽp , the dislocation line length, and kink width. The

reference strain rate appears in a logarithm and thus has modest quantitative effects. Moreover,

in real physical problems where the dislocation length is very large, L ∼ 2×103b, the kink

width has rather small effects on final strength predictions.

Double-kink nucleation occurs at one of the most favorable local region of solute fluctuations

for the process. At low temperatures when the most-favorable region dominates, the barrier

can be written as

∆Hdk(τ) =∆H 0(τ)+∆H̄ sol(c, N ,τ). (5.15)

Here, ∆H 0(τ) is the nucleation enthalpy barrier of the pure matrix which often takes the form

of a Kocks law [79] ∆H 0(τ) =∆H 0(0)[1− (τ/τ0
p )p ]q where p and q are fitting parameters and

∆H 0(0) and τ0
p are the zero-stress enthalpy barrier and pure Peierls stress, respectively. The

solute contribution ∆H̄ sol(c, N ,τ) is the mean largest reduction in activation energy among all

the N = L/2w segments, and is [51]

∆H̄ sol =∆ẼpG(τ)
log(4π log N )−4log N −1.1544√

8log N
, (5.16)

where G(τ) describes the stress-dependent double-kink transition state shape in the pure BCC

metal under stress. At higher temperatures, additional regions could contribute to enhance the

rate. We will use the full solution, as given in [51], in results shown below using the equations

in [51]. Of importance here is that all of the effects of solutes on the nucleation barrier depend

on exactly the same material parameters as derived here for the migration barrier (∆Ẽp , w ,

dislocation length L).

With theory for both the migration barrier ∆Hkm(τ,L) and the nucleation barrier ∆Hdk(τ,L),

the stress and temperature regimes of the controlling plasticity mechanism can be found.

A schematic result of the two barriers versus stress, using parameters for real W-Re (see

below), is shown in Figs. 5.9(a),(b), and (c) for W-1%Re, W-3%Re, and W-10%Re, respectively.

With increasing solute concentration and at any specified stress, the barrier for nucleation is
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decreasing and the barrier for migration is increasing. Experimental conditions of temperature

and strain rate determine the accessible barrier as∆H exp and the highest-strength mechanism

controls the strength under those conditions. The experimental barrier at T=300K and ε̇ =
5.5×10−4/s is shown in the Figs. 5.9. At 1%Re, yield is controlled by double-kink nucleation

and is lower than pure W (solute softening). At 3% Re kink migration controls the strength but

the double-kink nucleation strength is only slightly lower; the alloy is still softer than pure W. At

10% Re, the kink migration continues to control the strength, with the double kink nucleation

stress now being much lower. This demonstrates the transition in mechanism. Furthermore,

at 10% Re, the alloy is stronger than pure W, demonstrating solute strengthening. At a higher

temperature, ∆H exp is higher and both the mechanism transition and onset of strengthening

relative to pure W occur at a lower concentration. For example, but not shown, at T=650K

(∆H exp = 936meV), the strength of W-3% Re is migration controlled and slightly larger than

that of pure W.

5.4.1 Fe-Si alloys

Experimental yield stresses for Fe-Si (0.52 at%, 1.3 at%, 3.2 at%, and 5 at%) alloys versus

temperature at a strain rate of 1.7×10−4s−1 were reported by [78]. Other data by [23] at 1 and 4

at%, shown previously [49], is slightly lower than the data used here, and so the experimental

results are not definitive. For predictions, we use a reference strain rate of 104s−1, a dislocation

density of ρ = 1012m2 [162] and kink width w = 12b [51] obtained by GAP for pure Fe [95]. The

solute/dislocation interaction energy parameter ∆Ẽp = 178
p

c meV was obtained previously

by Maresca et al. [94] as the value needed to fit data at 5at% using their non-dilute theory,

with good agreement of that model at all higher concentrations. The interaction energy

parameter differs from that of the model Fe-Si EAM potential because the EAM potential is

not quantitative for real Fe-Si.

Fig. 5.10 shows the strength vs. temperature as measured and as predicted by various mech-

anisms. The data for pure Fe is shown for reference. The predictions are made for the kink

migration model presented here, the double-kink nucleation model (Eqs. (9),(14),(20) [51]),

and also the non-dilute model of Maresca et al. applied at these lower concentrations. The

strength-controlling mechanism is the mechanism with the highest strength at a given concen-

tration and temperature. At the low concentrations of 0.52 at.%, double-kink nucleation is the

controlling mechanism, with both kink migration strength and the non-dilute theory being

much lower than experiments; the theory predicts almost no solute effects while experiments

appear to show a slight strengthening (but see Ref. [49]). At 1.3 at.%, double-kink nucleation

continues to control strength over nearly the entire temperature range. However, both kink

migration and the non-dilute theory are close to the nucleation strength near T=300K. At

3.2 at.%, a transition in mechanism is predicted. The kink migration strength is higher than

the double-kink nucleation strength over the entire temperature range. The experiments

show a clear strengthening at higher T, consistent with predictions but slightly higher. At this

concentration, in spite of different contributions to the total strengthening, the non-dilute
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Figure 5.9 – Prediction of double-kink and kink migration barriers for W-Re alloys. Pre-
dicted barriers for double-kink nucleation ∆Hdk (red) and kink-migration ∆Hkm (blue) versus
applied stress τ, using parameters for W-Re at (a) W-1%Re, (b) W-3%Re, and (c) W-3%Re alloys.
For illustration, an experimentally imposed ∆H exp = 0.43 eV corresponding to T=300K and
ε̇= 5.5×10−4/s is shown and the strength of each mechanism is indicated. The higher strength
sets the alloy yield stress. A transition from double-kink nucleation to kink migration control
of the strength is observed with increasing Re concentration. The barriers and strength for
pure W are also shown, illustrating regimes of alloy softening and hardening relative to pure W.

strength is predicted to be nearly identical to the kink migration strength, with differences
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only at very low T. The nucleation-to-kink-migration and dilute-to-non-dilute transitions thus

occur at essentially the same concentration. Then, at the higher concentration of 5.0 at.%, the

alloy strength is significantly higher than that of pure Fe, the kink migration strength is also

much higher but below the experiments, and the non-dilute theory captures the experiments

with ∆Ẽp having been fit to this data.
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Figure 5.10 – Theory predictions for dilute Fe1-x-Six alloys. Yield strength versus temperature,
as predicted for the double-kink nucleation model, kink migration model, and non-dilute
model, Fe1-xSix alloys at the concentrations shown.

As discussed previously, other literature data on Fe-Si shows very small softening at 1%Si
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and slightly less strengthening at 4at%, both being more consistent with theory. With such

uncertainties in the experiments, we consider the parameter-free predictions here to capture

the major trends versus temperature and concentration quite well. We also conclude, however,

that there is only a very narrow concentration around 3at% where the kink migration mecha-

nism may control strength but where the non-dilute mechanisms give nearly identical results.

Thus, while increasing Si in Fe-Si shows very weak (if any) softening followed by hardening,

the traditional transition from nucleation to migration is quickly superseded by the non-dilute

theory/mechanisms.

5.4.2 W-Re alloys

We now turn to the W-Re system and examine the yield stress of this alloy over a wide con-

centration range and temperatures T=150K, T=300K, T=590K, and T=700K. Experimental

data are reported by [153] and [118] which were performed at nearly identical strain rates of

5.5×10−4s−1 and 8.3×10−4s−1. We again take ρ = 1012m−2 (L = 1µm), as a typical value for

well-annealed metals, and ε̇0 = 104s−1. The kink width in pure W is taken as 12b [51]. The data

on pure W reported by [153] is used to fit the Kocks model parameters ∆H0 = 1.4 eV, τ0
p = 1.1

GPa,p = 0.49, q = 1.69. Note that this fit does not have high accuracy due to the limited

data but that it only appears in the double-kink migration model and does not affect kink

migration predictions. The solute/dislocation interaction energies were computed previously

by first-principles DFT [Romaner] from which the solute/dislocation interaction energy is

obtained as ∆Ẽp = 345
p

c meV. Strength is again predicted as the larger of the nucleation and

migration strengths. There are no adjustable parameters.

Predictions of the strength versus Re concentration for several temperatures are shown in Fig.

5.11 along with the experimental data. The experiments are not definitive: the two datasets at

T=300K show some differences at low concentrations. Nonetheless, the data generally show

a transition from softening to hardening with increasing Re at temperatures up to 590K and

no softening at 700K. The theory predicts the transition from softening to hardening at all

temperatures, but with very little softening at 700K. The concentration at the transition is

predicted to decrease with increasing temperature, as observed for 300K, 590K, and 700K. The

experiments at 150K suggest a transition below 3%, with strengthening; this is a significant

quantitative deviation between experiment and theory that remains unexplained. However,

the experiments and theory at T=300K suggest a transition around 3%, and there is no mecha-

nistic theory that would predict that the transition concentration increases with increasing

temperature, so the experiments at T=150K and 3% Re are inconsistent with any model. The

7at.%Re alloy is predicted to be in the strengthening regime at all the temperatures studied

(300, 590, 700K) and there is very good quantitative agreement with available experiments.

Predictions of the non-dilute theory of Maresca et al. [94] at 7at.%Re are also shown in Fig.

5.11, and also agree very well with experiments and the kink migration strength. Thus, as for

Fe-Si around 3%Si, there is also a concentation domain in W-Re (7% Re) where dilute and
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non-dilute theories give very similar results, indicating a smooth transition.
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Figure 5.11 – Theory predictions for W-Re alloys. Critical resolved shear stress (CRSS) versus
solute concentration at various temperatures (blue: T=150K; red: T=300K; green: T=590K;
purple: T=700K) for dilute W-Re alloys. Experiments (filled symbols: data from Stephens [153];
open symbols: data from Raffo [118]); present theory (solid lines); non-dilute theory at 7%Re
[94] (bold? symbols)

Overall, the predictions for W-Re are in good quantitative and qualitative agreement with

the totality of available experiments. Note that no material parameters (beyond those for

pure W) were fitted to achieve this level of agreement. The parameters were chosen based on

independent considerations. Hence, we consider the predictions of the essentially parameter-

free fully-derived statistical models for double-kink nucleation [51] and kink migration (this

work) to be quite good.

5.5 Discussion

We have developed an analytical theory for the stress-dependent kink migration barrier in

random dilute BCC alloys. We have shown that the kink migration process under stress is

essentially the random walk-type ”Wiener process with drift". The material parameters in

the theory are only (i) the solute/screw dislocation interaction energies leading to a single

relevant energy quantity ∆Ẽp , (ii) the total dislocation length L, and (iii) emerging to a play

a minor role, the kink-width w in the pure metal. The theory has been extensively validated

on a model Fe-Si alloy via NEB calculations and direct stochastic simulations. Combined
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with a recent double-kink nucleation theory that involves the same material quantities, we

have thus established a fully-analytic model for strengthening of screw dislocations over the

full temperature range in the dilute regime concentration. A transition from double-kink

nucleation and softening to kink-migration and strengthening is predicted with increasing

temperature and/or concentration. We also find a smooth transition from the dilute theory to

a recent non-dilute theory in application to both Fe-Si and W-Re alloys.

Our derived theory rationalizes some results from the Suzuki model. At high temperatures,

corresponding to low stresses, the second and third terms in the bracket of Eq. (5.10) can

be neglected. Also, in real alloys the dislocation segments length are typically large and so
τ
τc

À 2.7
√

b
L . Then, setting the barrier equal to the experimental ∆H = k T log(ε̇0/ε̇), the

strength versus temperature can be estimated as

τ'α′ ∆Ẽ 2
p

k T b3 , (5.17)

where α′ is nearly constant. The yield strength thus decreases as ≈ 1/T and increases linearly

with solute concentration since ∆Ẽ 2
p ∝ c. This rationalizes Suzuki’s high-T estimate [158]

τ'α E 2c

k T b3 , (5.18)

The agreement in scalings with T and c arises because Suzuki’s counting of the fluctuations in

total solutes passed as the kink glides over long distances is captured correctly. However, E

and α differ from ∆Ẽp and α′, leading to both qualitative and quantitative differences.

Existing kMC methods have also made simplifying assumptions about the solute/screw inter-

actions and the kink structure. For instance, [147] show schematics of a sharp kink (pure edge)

so that kink glide corresponds to very few solutes entering the advancing screw segments. In a

real kink, extending over 10−20b, the change in energy due to solutes entering and leaving

the kink is more gradual (spread over ∼ 1/2 the kink width). Our SRKM and WPM analysis

demonstrate that the effect of the kink width is fairly small, especially at higher temperatures.

The kink width is, however, critical for double-kink nucleation. Thus, kMC approaches to tack-

ling the overall problem of nucleation and migration should include details such as accurate

interactions and accurate representation of the kinks and double-kink nucleation process.

The motion of screw dislocations in BCC High Entropy Alloys has emerged as an important and

challenging issue for theory. One contribution to the strengthening is due to kink migration

barriers. Recent work has shown that screw motion in complex alloys depends on a generalized

form of ∆Ẽp [171, 94, 93] as

∆Ẽp =
(∑

i , j

∑
n

cn∆U n
i j (a)2

) 1
2

, (5.19)

where all atom types n are considered solutes, cn is the concentration of atom type n, and∆U n
i j
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is the change in interaction energy of a type-n solute at position (xi , y j ) with the dislocation

of the average alloy (see [173, 94]) as the dislocation glides by a. The results here do not

directly apply to screw controlled HEAs because HEAs adapt to the local energy landscape

by forming kinks spontaneously along their length. The dislocation segments are in low-

energy environments rather than random environments, and this must be accounted for in

assessing kink glide. These aspects will be discussed in future work. We further note that the

strengthening in HEAs may be controlled by edge dislocations rather than screw dislocations

[93], making the kink migration process irrelevant.

The present theory applies within the standard approximation that solute interactions are

weak enough for (i) screw motion to occur one Peierls valley at a time and (ii) the screw core

structure is not altered by the solutes. The present analysis can be adapted to address the first

assumption, but that is well beyond the scope of the present work. The second approximation

has been found suitable for most substitutional solutes but not for interstitial solutes such as

C, N, and O [89, 122, 59]. Interstitial interactions in the core can also be very large such that

even the annihilation of two kinks converging at the site of the interstitial is not sufficient to

overcome the interstitial interaction energy. Thus, multiple kinks are required. These issues

are beyond the scope of the present work, but the concepts here can be generalized to address

some aspects of interstitial strengthening.

In summary, our nucleation and migration models provide a complete, accurate, and nearly

analytical statistical theory of strengthening in dilute substitutional BCC alloys. The set of

material properties is small, and the same properties enter both double-kink nucleation and

kink migration theories. While obtaining these properties remains challenging, we believe the

theory here cements the long-sought quantitative understanding of strengthening in dilute

BCC alloys.
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6 Screw-controlled strength of BCC
non-dilute and High-Entropy alloys

This chapter is extracted from the following publication

Ghafarollahi, Alireza, and William A. Curtin. "Screw-controlled strength of BCC non-

dilute and High-Entropy alloys." Acta Materialia (2022): 117617.

Owing to their impressive mechanical properties including high yield strength at room temper-

ature, high ultimate strength, high ductility, high fracture toughness, or superior mechanical

performance at high temperatures, HEAs have recently attracted considerable attention from

the mechanics and materials science communities [142, 198, 169, 99, 47, 46]. Unlike con-

ventional alloys, HEAs are composed of many (4, 5, or more) elements all at non-dilute

concentrations [193]. The immense composition space opens the possibility for discovery

of many more new alloys with even better performance in one or more properties. Any such

discovery can be greatly facilitated by theoretical understanding that provides guidance for

identifying the most promising alloy families and compositions.

The mechanisms of strengthening in BCC HEAs differ significantly from their dilute coun-

terparts. Dilute alloy strength is controlled by the nucleation of double kinks and then kink

migration along long straight screw dislocations. In non-dilute alloys, Suzuki [158] postulated

that kink formation is easy while Maresca et al. [94] showed that screw dislocations become

spontaneously kinked at zero load and zero temperature so as to lower their total energy due

to solute/screw-dislocation interactions. The kinked structure forms because the dislocation

finds local regions of favorable random concentration fluctuations that lower the dislocation

energy in spite of the energy cost of the kinks. Kinks along a single dislocation can also form

on different glide planes. When these kinks intersect during kink migration, high-strength

cross-kinks are formed that must be overcome. The screw-controlled strength of the alloy

is thus controlled mainly by the processes of kink migration and cross-kink formation and

pinning. At low temperatures, a Peierls-like motion that can supplant kink migration. Each of

these processes have their own length and energy scales, and thus have different consequences

on the overall temperature- and strain-rate-dependent strength of the alloy. In some BCC
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HEAs, Maresca et al. also showed that edge dislocations can be significantly strengthened

[93, 81, 83] making edge motion competitive or exceeding screw strengthening. Here, we focus

on the screw dislocation motion.

Figure 6.1 – Structure and motion of a screw dislocation in a non-dilute random solute
environment. An initially straight dislocation of length L in a random solute environment
becomes spontaneously kinked which are spaced by a characteristic length ζc . Three mecha-
nisms contribute to the screw dislocation strengthening; (I) Peierls-like mechanism (II) kink
glide mechanism, and (III) cross-kink formation and unpinning (adapted from [94]).

The analysis of kink glide barriers in [94] was developed based on an incorrect focus on

the local interactions of a screw kink with its surrounding solute environment. First, the

solute/kink interaction energy therein is not consistent with the recent atomistically-verified

model developed in [48]. Fortunately this error still results in some of the correct scalings

in the problem. Second, migration of the kink was considered using only the solute/kink

energy of the kink at its current position, whereas a proper analysis must consider the total

accumulated energy change during kink glide. The kink migration energies were then obtained

only through stochastic simulations that were fitted to an ad-hoc analytic form. The resulting

theory of Maresca et al. enabled, with the use of limited fitting, quite good agreement with a

number of experiments on well-studied non-dilute binary alloys. In spite of any success, these

two theoretical issues, once recognized, require attention and rectification.

The purpose of this Chapter is to re-examine the kink migration barriers by generalizing our
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new accurate and atomistically-validated analysis of kink migration in dilute alloys. While

deriving a new model for the kink migration process in non-dilute alloys, we will then retain

many key aspects of the Maresca et al. model, especially those related to the length scales for

spontaneous kinking, cross-kink formation, cross-kink failure, and the Peierls motion, for the

overall strengthening. We do not see a need to re-evaluate these other features of the Maresca

et al. model, although future studies might demonstrate aspects that should be re-assessed.

Kink migration is then shown to be essentially described by the random walk-type "Wiener

process with drift", enabling analytic results for kink migration. Application of the revised

model shows, surprisingly but fortunately, exceptionally good agreement with the model of

Maresca et al. under most circumstances. The new analytic formulation provides, however, a

solid theoretical footing for future applications and should replace the Maresca et al. model as

the benchmark model for screw motion in multicomponent BCC alloys.

In section 6.1 of this Chapter, we review the entire Maresca et al. screw strengthening theory

and discuss the shortcomings of their kink migration model in detail. A statistical model for

the kink migration barrier versus the applied stress is presented in section 6.2, resolving issues

of the previous model. Section 6.3 presents applications of the theory and comparison with

experiments on Fe-Si, Nb-Mo, and Nb-W alloys. In the last Section 6.5 of this Chapter, we

compare the precise kink migration model to the previous models of Maresca et al. and Suzuki,

which has been adapted to HEAs by Rao et al. [120, 123], demonstrating the qualitative and

quantitative issues in those earlier formulations.

6.1 Maresca-Curtin model for screw strengthening in non-dilute al-

loys

Here we provide a brief overview of the previous screw strengthening theory for non-dilute

to high-entropy alloys [94] with a focus on the problematic kink migration. Again, we do not

re-evaluate most aspects of this model because, beyond the kink migration model, the other

aspects appear robust. We consider a random alloy containing N solute types each at concen-

tration cn (n = 1,2, . . . N ). For a given true random alloy, there is a conceptual homogenized

reference alloy that has all the macroscopic properties of the alloy but is composed of a single

”average" atom. In particular, the reference ”average" alloy has the same lattice constant, elas-

tic constants, stacking fault energies, average screw kink formation energy, and other relevant

properties, and is only lacking the effects due to the atomic scale randomness. The individual

true elemental atoms are then considered as solutes residing within this average alloy matrix.

Starting from the average alloy containing a screw dislocation and introducing the solutes,

there is an interaction energy between a solute and the dislocation. Let U n
i j denote the interac-

tion energy of a type-n solute located at position (xi , y j ) with a screw dislocation at the origin

x = y = 0 aligned along z. When the straight dislocation glides by one Peierls valley distance

a, the change in interaction energy between the solute and dislocation is ∆U n
i j =U n

i−1, j −U n
i j .

In a random alloy, solutes exist at every site in the alloy and there is a collective solute/screw

interaction energy. On average over all possible random solute arrangements, this energy is
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zero. The motion of the screw dislocation thus depends on the fluctuations in solute/screw

interaction energy as the dislocation glides by a distance a. Thus, as derived earlier [51, 94],

the relevant scale for variations in the dislocation energy is the solute/screw interaction energy

parameter

∆Ẽp =
(∑

i , j

∑
n

cn∆U n
i j (a)2

) 1
2

(6.1)

In the presence of all of the random solutes, an initially straight screw dislocation does not

remain straight (Fig. 6.1). Rather, due to the solute energy fluctuations that scale as ∆Ẽp , the

dislocation will be attracted and repelled by favorable and unfavorable fluctuations, respec-

tively, along its length. Over a sufficient length, these fluctuations are sufficient to overcome

the (high) kink formation energy Ek . As derived in Ref. [94], the initially straight dislocation

will thus lower its total energy by spontaneously forming a kinked structure with characteristic

length ζc

ζc =
(

1.083
Ek

∆Ẽp

)2

b (6.2)

Although ζc is the characteristic length in the screw strengthening theory, statistical aspects

show that adjacent segments of length ζc should often be at the same position, so that the

average spacing between kinks is 2.5ζc . The formation of kink pairs can occur on different

glide planes. Adjacent kinks on different planes would form cross-kinks, which is energetically

very costly. Thus, kinking on different planes is less frequent, and analysis shows that the

average spacing of the cross-kinks is 7.5ζc . Starting from the kinked structure, the screw

dislocation motion is governed by three strengthening mechanisms, each characterized by

distinct energy and length scale.

In a Peierls-like mechanism, the entire segment of length 2.5ζc advances forward from its initial

low-energy position across the adjacent higher-energy position (Fig. 6.1). This mechanism is

only active at very low temperatures/high stresses where the dislocation is poised near the

Peierls barrier. The energy barrier consists of the intrinsic Peierls barrier ∆Vp of the average

alloy barrier plus the barrier due to solutes minus the energy gain by annihilation of two kinks.

The stress associated with the Peierls mechanism is

τP (ε̇,T ) = τP,0

[
1−

(
∆H(ε̇,T )

∆Eb,P

) 2
3

]
(6.3)

where

∆H(ε̇,T ) = kT log

(
ε̇0

ε̇

)
(6.4)

is the experimental enthalpy barrier; T and ε̇ are the imposed temperature and strain rate,
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respectively, and ε̇0 is the reference strain rate. Moreover

τP,0 =
π∆Vp

ab
+ 0.44Ek

abζc

[
1− 5∆Vpζc

20∆Vpζc +0.7Ek

]
, (6.5)

∆Eb,P = (10∆Vpζc +0.7Ek )3

(20∆Vpζc +0.7Ek )2 , (6.6)

Dislocation glide and plastic flow also requires breaking of the cross-kinks (see Fig. 6.1). The

failure of a cross-kink occurs by the creation of either vacancies or self-interstitials. The energy

barriers are thus the vacancy and self-interstitial formation energies. Vacancy formation ener-

gies are lower, and so the length scale for failure of these cross-kinks is 7.5ζc . The remaining

self-interstitial cross-kink spacing is 15ζc . The strengths for cross-kink failure of these two

processes are were considered by Maresca-Curtin to be thermally-activated and thus modeled

as

τxk (ε̇,T ) = τxk,0

[
1−

(
∆H

Ev/i

) 2
3

]
(6.7)

where

τxk,0 =
πEv/i

abζv/i
, (ζv = 7.5ζc ,ζi = 15ζc ) (6.8)

Cross-kink strengthening at a specified temperature and strain rate is determined as the larger

of the two strengths. Since defects must be formed, the cross-kink strength may actually be

athermal, with temperature entering through the vacancy and self-interstitial free energies,

but this requires further study.

Finally, lateral glide of the kinks across the straight segments of average length 2.5ζc presents

another strengthening mechanism that competes with the Peierls mechanism as schematically

shown in Fig. 6.1. Insightfully, Maresca and Curtin recognized that, because the initial screw

segments of the spontaneously-kink dislocation are lying in local energy minima, lateral kink

migration always faces a net energy barrier of magnitude 2.7Ek across the length z = 2.5ζc ; i.e.

the net energy lowering due to the spontaneous kinking must always be overcome during kink

glide. In addition, there are additional stochastic variations in the kink migration energy as a

function of the position of the gliding kink. Maresca and Curtin assumed that (i) these stochas-

tic variations are independent of the overall 2.7Ek energy barrier and (ii) that the stochastic

variations were only due to the variations of the local kink/solute interactions. That is, as

the kink of width w glides through a random solute field, the energy of relevance is the local

interaction energy of the kink with the solutes within w . Maresca et al. simulated these energy

fluctuations by (i) dividing a long dislocation into slices of width b, (ii) assigning a solute/dislo-

cation interaction energy chosen randomly from a distribution with zero mean and standard

deviation ∆Ẽp , (iii) computing the local solute/screw energy at position z as the sum of the

solute/screw energies within z−w/2 and z+w/2. They then considered an activation distance

z∗ and computed, from the stochastic simulations, the typical minimum-to-maximum energy

107



Chapter 6. Screw-controlled strength of BCC non-dilute and High-Entropy alloys

over length z∗. These numerical results were taken to be the kink migration barrier over a

length z∗. The barrier ∆Eb(z∗) was fitted to a convenient but ad-hoc analytic form. This

barrier was added to the average energy barrier 2.7Ek z∗/(2.5ζc ) to obtain a total barrier for

motion over z∗. In all, the analysis results in the following fitted analytical form for the energy

barrier for kink glide of

∆Hkm(τ) = 1.37
p

w/b∆Ẽp


τ−τb

τk,0 −τb
− log

(
τ−τb

τk,0 −τb

)
−1, τ> τb

−5.75
τ−τb

τk,0 −τb

ζc

w
+ log

(
5.75

ζc

w
+1

)
,τ< τb

(6.9)

where

τk,0 =
6.3∆Ẽp

ab2
p

w/b
+τb (6.10)

τb = 1.08Ek

abζc
. (6.11)

Here τk,0 is the zero-temperature flow stress for kink migration process and τb is the ”back-

stress” imposed on the kink due to the global energy change of 2.7Ek . Table 6.1 summarizes

all the notations used in the theory.

Table 6.1 – Symbols defining all relevant quantities in the theory.

Symbol Meaning
a0 BCC lattice parameter
a Peierls valley spacing
b Burgers vector magnitude
w kink-width
ζc Characteristic length for solute-induced kink formation
ζxk Characteristic length for cross-kink formation
∆Ẽb,P Energy barrier for advancing 1.5ζc segments
∆Ẽp Solute/screw interaction energy parameter
∆H Imposed experimental enthalpy barrier
∆VP Peierls barrier
Ev Vacancy formation energy
Ei Self-interstitial formation energy
ε̇ Strain rate
ε̇0 Reference strain rate

The broad framework of Maresca and Curtin involving spontaneous kinking to lower the

energy, the resulting energy and length scales, and the mechanisms of strengthening, is, we

believe, robust. There are no fundamental issues that we can find with the Peierls motion

mechanism and cross-kink failure model, although both could certainly be refined further

and/or significantly revised if fundamental issues emerge. The kink migration analysis is

flawed, however, for the following reasons. First, the overall energy change 2.7Ek is embedded
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into the overall stochastic process, and the treatment of Maresca and Curtin may not be proper.

Second, Maresca and Curtin did not treat the solute/kink interactions using the true kink

shape. Third, and by far the most important, the kink migration barrier, under zero or finite

stress, is the barrier between a global minimum and a global global maximum in the total

energy of the system over the length 2.5ζc . The local analysis where the barrier is taken as

determined by the deepest local minimum and the highest local maximum, local minima

and maximum being over the scale w is simply not generally correct within the standard

framework of thermal activation theory [60].

The predictions of the Maresca-Curtin theory must be recognized as quite good, but that

success must thus be understood within the context of a more-robust theory. We note that

a similar situation arose for Maresca and Curtin. They discussed the Suzuki model and its

extensions to HEAs, which has showed good agreement with some experiments and also

capturing some of the behaviors and scalings predicted by the Maresca-Curtin model, but

they highlighted some clearly incorrect assumptions and unphysical predictions. The purpose

of this Chapter is to derive a new kink migration model for complex alloys that avoids the

assumptions in the Maresca-Curtin model and thus rectifies the clear shortcomings of that

model, while leading to an analytic result that is easy to apply.

6.2 New theory for kink migration in non-dilute alloys

6.2.1 Energy landscape for kink migration in a random solute environment

We start with the general framework for kink motion in a random alloy that will then be

adapted to deal with the spontaneously-kinked situation arising in non-dilute alloys and HEAs.

We consider a single kink that is migrating (direction z) across a random solute environment.

The kink motion transfers the screw dislocation by one Peierls valley along the glide direction,

as shown schematically in Figure 6.2. The atomistic shape of the kinked dislocation can be

well described by a hyperbolic tangent function as [157, 74, 48]

x(z − zc ; w) = a

2

(
1− tanh

[
2(z − zc )/b

w/b

])
(6.12)

where zc is the center position of the kink and w denoted the kink width. We wish to compute

the total energy change ∆E(zc ) of the dislocation/solute system as a function of the center

position zc of the kink as it glides across a length L (0 < zc < L) in a random field of solutes.

This requires the interaction energy between a solute and the kink. Following the validated

analysis of Ref. [48], the interaction energy between a solute at (xi , y j , zk ) with a kink located

at zc is

U (xi , y j , zk ) = x(zk − zc ; w∗)

a
∆Ui j (a)+Ui j (6.13)
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where the width w∗ = 0.5w is an effective kink width for the interactions (see Fig. 6.2). Final

results below will have a very weak dependence on the kink width, however. Kink motion

through a random environment is then very well captured by the stochastic rigid-kink model

(SRKM) developed in [48]. In the SRKM, a dislocation segment of length L = N b is divided into

N slices of width b. Each slice is then assigned a random energy of magnitude R∆Ẽp where R

is a random number selected from a Gaussian probability distribution having zero mean and

standard deviation of unity. The energy landscape for the kink can then be written as

∆E(zc ) =∆Ẽp

N=L/b∑
k=1

x(zk − zc ; w∗)Rk (6.14)

Note that the fundamental underlying energy scale for kink motion is always ∆Ẽp . The SKRM

model has been validated against full atomistic NEB simulations on dilute alloys but does not

itself depend on the dilute limit assumption.

0

1

zc/b

z/b

x
a

w
Atomistic kink shape x(z zc)
tanh model x(z zc, w) (Eq. (12))
Solute-kink interaction model x(z zc, w = 0.5w)

Figure 6.2 – Schematic of the models for the kink shape and solute/kink interaction energy.
The atomistic kink shape in the pure metal is described by a hyperbolic tangent function
Eq. (6.12) with kink width w defined by the geometric construction shown. The solute/kink
interaction energy is proportional to a hyperbolic tangent function with effective kink width
w∗ = w/2 (adapted from Ref. [48]).

6.2.2 Kink migration in a non-dilute random alloy

The above discussion pertained to a kink whose initial position is random and gliding over

a distance L through a random environment. In non-dilute alloys, the initial dislocation is

spontaneously kinked. The straight segments in between kinks are not in a random alloy

environment but in a low-energy environment. Motion of the kinks that bound these segments

is thus occurring in an environment where the initial dislocation segments of length L = 2.5ζc

are lower in energy, on average, by 2.7Ek ; this was derived by Maresca et al. The kink motion

in the non-dilute alloy is thus, on average, energetically uphill by 2.7Ek .

To obtain the proper statistics for kink motion in the spontaneously-kink screw dislocation, we

must thus select a subset of energy landscapes from among all possible random energy land-

scapes. Executing the SKRM over a length L = 2.5ζc , we obtain a full set of energy landscapes

that include paths with net energy changes that are (i) negative, reflecting that the migrated
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segments are the low energy segments or (ii) positive, reflecting that the initial segment is in a

low energy environment with an energy cost to migrate. Figure 6.3(a) shows the SRKM model

executed on 50 random realizations of kink migration along a length L = 100b with kink width

w = 10b. Some landscapes (blue lines) have a net negative energy change and others (red

lines) have a net positive energy change.

In the true spontaneously-kinked dislocation, the relevant energy landscapes are that subset

of landscapes that have an average uphill energy of 2.7Ek over the length L. Sorting the energy

landscape from highest to lowest, we can identify the N∗
r realizations having, on average, a

net energy change of +2.7Ek . For the 50 samples shown in Fig. 6.3a, there are N∗
r = 9 samples

whose average net energy change is 2.7Ek , as indicated in Fig. 6.3b. The average energy

landscape over all 9 paths is also shown. This selected group of energy landscapes has, by

construction, the critical features of the kink migration problem in the non-dilute alloy: (i)

the local solute fluctuations based on a proper model for solute/kink interaction energy, (ii)

the total accumulated energy change during glide from 0 < zc < L = 2.5ζc , and (iii) on average,

an energy change of 2.7Ek . Furthermore, as envisioned by Maresca et al., the average over all

paths yields a nearly linear increase in energy change with increasing glide distance, showing

that the fluctuations versus glide distance along any individual path, relative to the mean bias,

are randomly distributed along the length of the path and so average to zero.

We note here that the simulations above are actually a general analysis of kink glide over some

length L in a set of paths with an average bias Ebias. The specific choices of L = 2.5ζc and

Ebias = 2.7Ek make the study here specific to the Maresca-Curtin model but the subsequent

analytic modeling can be adapted to any other choice of L and Ebias if other values are shown

to be more relevant.

In the Maresca-Curtin model, the relevant quantity for stress-assisted, thermally-activated

kink glide is the typical energy barrier, i.e. global minimum to global maximum energy,

encountered during the glide over the entire segment of length 2.5ζc under an applied shear

stress τ. To obtain the energy barrier under stress, we first note that an applied shear stress τ on

the glide plane does work (relative to the initial kink position at zc = 0) of −τbazc . Hence the

stress-dependent energy landscape is ∆E (zc ,τ) =∆E (zc ,τ= 0)−τbazc ; the stress has no other

effect on the landscape, as demonstrated previously. We have performed SRKM simulations

for a spectrum of representative alloys with inputs being the solute/kink interaction energy

parameter and the kink formation energy as shown in Table 6.2. A kink width w = 10b is used

for all alloys. Fig. 6.4 shows the average kink migration barrier ∆Hkm versus applied stress

obtained from over five thousand simulations for each alloy. These results constitute the

kink migration barriers versus stress, for each of these particular alloys. These representative

numerical results will be used in the next section to validate an analytical model.
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Figure 6.3 – Energy landscape due to kink migration as computed from stochastic rigid-
kink model (SRKM). a Energy landscape as a function of the center position zc as computed
from SRKM for fifty samples of length L = 100b. b Subset of energy landscapes chosen from
those in a such that their average (green line) would have a total energy change of 2.7Ek at
length L.

Table 6.2 – Input parameters to the theory for all alloys studied. Please refer to [94] for more
details.

Alloy a0 (Å) ∆Ẽp (meV) Ek (eV) Ev (eV) Esi (eV) ∆Ṽp (meV.b)
Fe95Si5 2.864 38.0 0.4932 2.22 5.1 6.6

Fe94.2Si5.8 2.864 40.9 0.4932 2.22 5.1 5.9
Fe92Si8 2.861 48.1 0.4932 2.22 5.1 3.9

Fe91.7Si8.3 2.861 49.0 0.4932 2.22 5.1 3.7
Nb95Mo5 3.289 48.8 0.6342 2.989 5.361 20

Nb91.5Mo8.5 3.282 56.2 0.6302 2.987 5.437 20
Nb81Mo19 3.261 74.5 0.6182 2.984 5.664 20
Nb75Mo25 3.250 84.7 0.6112 2.983 5.794 20

Nb94W6 3.289 54.1 0.6559 3.024 5.511 20.5
Nb85W15 3.275 73.2 0.6798 3.076 5.897 20.5

Ti33Nb33Zr33 3.393 71.0 0.255 1.868 3.535 10.7
Ti66Nb17Zr17 3.340 56.8 0.257 1.613 3.267 0.9

6.2.3 Analytic model for kink migration

An analytic model for kink migration in the non-dilute alloys can now be developed as follows.

Ghafarollahi and Curtin [48] showed that the kink migration process in dilute alloys can be

described by a stochastic random walk model also known as a ”Wiener process model (WPM)".

Here we can adapt that analysis for the non-dilute case. In the WPM, the energy landscape is

sampled at discrete bw̄ intervals, where w̄ = 1.5∗w/b makes the discrete samples essentially

statistically independent. The WPM energy landscape can thus be written as (refer to [48] for
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Figure 6.4 – Kink migration barrier versus applied stress. Average kink migration barrier
∆Hkm versus applied stress τ in various model alloys as obtained from the Stochastic Random
Kink Model, the Wiener Process Model, and analyitcal result, Eq. (6.20). The input parameters
are tabulated in Table 6.2. The migration distance L = 2.5ζc and the number of statistically-
independent segments N = L/(w̄) where w̄ = 1.5∗w/b is also shown for each alloy.

more details)

∆E(kw̄) =∆Ẽp w̄1/2
k∑

i=1
Ri − (ab2τw̄)k, k = 1,2, . . . ,L/(bw̄) (6.15)

As in the SRKM, the first adaption of the WPM is to select only those landscapes that have, at

zero stress and on average, the net energy change of Ebias = 2.7Ek . For this subset of landscapes,

Fig. 6.4 shows the variation of the mean energy barrier versus applied stress as predicted by

the WPM and SRKM for the different alloys. Excellent agreement is found, showing that the
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physical problem of kink migration in a non-dilute solute random environment under stress

is quantitatively captured by the Wiener process with drift.

A fully analytical model for the kink migration barriers, eliminating entirely the need for any

stochastic simulations, is then achieved by using the known solution to the WPM provided by

Magdon et al. [90]. Specifically, the mean maximum minus minimum energy of the continuous

Wiener process can be written as

−2σ2

µ
Qp

(
µ2N

2σ2

)
, µ≤ 0,

−2σ2

µ
Qn

(
µ2N

2σ2

)
, µ≥ 0,

(6.16)

where σ and µ are the standard deviation and the drift bias of the process and N is the total

number of uncorrelated steps. Qp (x) and Qn(x) are tabulated functions that are accurately

(3%) approximated as

Qp (x2)x−1 = 1.63(x +1.91)−1 +0.025

Qn(x2)x−1 = 0.878+0.542x

over the full range of x > 0 relevant in applications to alloys.

In non-dilute alloys, the bias term µ appearing in the above analytical solutions consists of

two contributions. The first contribution is due to the applied shear stress and is similar to the

dilute case. The second contribution, which does not appear in dilute case, arises because of

the global energy change of Ebias = 2.7Ek over the total segment length L = 2.5ζc . As shown by

the SRKM simulations in Fig. 6.3b, on average, this energy contribution varies linearly with

glide distance z from zero to maximum value Ebias = 2.7Ek at z = L = 2.5ζc . Therefore, the

energy contribution due the global energy change acts like a ”backstress” and can be expressed

as

τb = Ebias

abL
= 1.08Ek

abζc
, (6.17)

which emerges to be identical to the ’backstress’ introduced in Maresca and Curtin model,

Eq. (6.11). Applied to the kink migration problem in non-dilute alloys, we can thus write the

standard deviation, the bias, and the number of independent segments as

σ=∆Ẽp w̄1/2

µ= (τb −τ)ab2w̄

N = L/(bw̄).

Substituting these relationships into the result of Magdon et al. Eq. (6.16), after some algebra,
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we obtain

∆Hkm = 2∆Ẽp
τc

τ−τb


Qp

(
(τ−τb)2

τ2
c

L

2b

)
τ> τb

(−1)Qn

(
(τ−τb)2

τ2
c

L

2b

)
τ< τb

(6.18)

where

τc =
∆Ẽp

ab2 , (6.19)

is introduced as the characteristic stress required to overcome a single typical kink energy

difference ∆Ẽp over unit kink glide distance b.

The results of Eq. (6.18) are for the continuous Wiener process where the discrete intervals are

infinitesimal, i.e., w̄ → 0, so that the interval length w̄ does not appear. To properly include

the effects of the non-infinitesimal discrete interval length, an additional correction term that

depends on σ is required [128]. Following [48], the correction term is −1.24∆Ẽp w̄1/2. Hence, a

fully-analytic result for the kink migration barrier in non-dilute to HEAs, after a bit of algebra,

can be obtained as

∆Hkm(τ) =∆Ẽp

[
3.26

(
τ−τb

τc
+1.58

∆Ẽp

Ek

)−1

+0.06
Ek

∆Ẽp
−1.07

p
w/b

]
, τ> τb

∆Hkm(τ) =∆Ẽp

[
2.12

Ek

∆Ẽp
+1.59

τb −τ
τc

E 2
k

∆Ẽ 2
p
−1.07

p
w/b

]
, τ< τb

(6.20)

where we have reverted to using the true kink width w and written the relevant segment

length in terms of material parameters Ek and ∆Ẽp (Eq. (6.2)). More general results in terms

of L and Ebias could be derived similarly. While these analytic results are ungainly, they arise

directly from the analytic approximations to Qp and Qn and substitution of various derived

relationships; there is no fitting involved.

The predictions of our fully analytic solution (Eq. (6.20) as a function of applied stress for

all the alloys examined earlier are shown in Fig. 6.4. Excellent agreement with the direct

numerical SKRM is obtained for all cases, validating the analytic adaptation of the WPM to the

discrete kink migration problem.

In a rate-dependent theory, we wish to express the stress in terms of the experimentally

imposed enthalpy barrier ∆H (ε̇,T ), Eq. (6.4). Inverting Eq. (6.21) we obtain the kink migration
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strength τk (ε̇,T ) at temperature T and strain rate ε̇ as

τk (ε̇,T ) = τb +τc

[
3.26

(
∆H

∆Ẽp
−0.06

Ek

∆Ẽp
+1.07

p
w/b

)−1

−1.58
∆Ẽp

Ek

]
, τk > τb ,

τk (ε̇,T ) = τb −τc

[
∆Ẽ 2

p

1.59E 2
k

(
∆H

∆Ẽp
−2.12

Ek

∆Ẽp
+1.07

p
w/b

)]
, τk < τb .

(6.21)

Eq. (6.21) constitutes our analytical model for the kink migration strength in non-dilute and

high-entropy alloys as a function of temperature and strain rate. The only inputs to the theory

are the solute/dislocation interaction energies that determine ∆Ẽp , the kink formation energy

Ek , and the width of the kink w , which plays a minor role.

6.3 Applications of the theory

With the extensive validation of the proposed model for the kink migration process in non-

dilute to high entropy alloys, we can now confidently apply the kink migration theory to

determine the strength of the real BCC systems. For the two other strengthening processes, i.e.

the Peierls and cross-kink mechanisms, the models developed in [94] and given by Eqs. (6.3)

and (6.7) are used without modification. The alloy yield strength at the imposed experimental

enthalpy barrier Eq. (6.4) is

τ(ε̇,T ) = τxk (ε̇,T )+min
[
τk (ε̇,T ),τp (ε̇,T )

]
(6.22)

The underlying material parameters for the cross-kink and Peierls mechanisms are vacancy

and self-interstitial formation energies Ev/i and Peierls barrier ∆Vp , respectively.

We now apply the analytical model to predict the strength versus temperature for real alloys

and compare them with existing experiments. Consistent with [94], we take a single values

of ε̇0 = 104s−1 and kink width w = 10b for all alloys. The material parameters for the Peierls

mechanism and the cross-kink mechanism are also taken as those used by Maresca et al. We

keep in mind that these parameters were estimated but not used to fit any strength data; any

refinements to the estimates would change overall predictions, leading to possibly better or

worse agreement. The important overall point is that the theory has been fully derived, not

fitted to experiments, and the challenges are thus in obtaining the material parameters that

enter the theory.

Experimental yield stresses for Fe-Si (5 at%, 5.8 at%, 8 at%, and 8.3 at%) alloys versus tempera-

ture were reported by [164, 196, 78, 61]. We use the same input parameters as Maresca and

Curtin [94] (Table 6.2) except we use ∆Ẽp = 170 meV
p

c fitted to experiments at 5 at% Si rather

than the value 178 meV
p

c of[94].

Fig. 6.5 shows the predictions for the four compositions over a wide temperature range. As

can be seen, for all the compositions our predictions are in fairly good agreement with the
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experimental results, especially at higher temperatures. For lower concentrations of 5 at%

and 5.8 at% the very low temperature strength is controlled by the Peierls mechanism up to

about T ∼80K (with underlying cross-kink strengthening). The rest of the temperature range

is controlled by the kink glide process and cross-kink mechanism, where the predictions are

in good agreement with experiments. The theory also captures the increase in strength upon

increasing the concentration to just 5.3at%Si. Increasing the concentration to 8 at%Si and

8.3%Si, the Peierls mechanism becomes the controlling process for a wider temperature range

up to about room temperature and the strengths agree well with experiments, with slight

under-prediction at low T. The theory also captures the negligible difference between 8at%Si

and 8.3%Si up to T=300K. Moreover, the rather significant decrease in experimental strength

observed at T=443K is well-captured by the theory, which is attributed to the transition in

strength-control from the Peierls mechanism to kink migration.
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Figure 6.5 – Theory predictions for non-dilute Fe1-x-Six alloys.

Experimental data on stress versus temperature was reported in [152] for Nb-Mo for composi-

tions from 2-25 at%Mo and in [148] for Nb-W at W concentrations from 1-15 at%. Here, we

consider the non-dilute regime of concentrations of 5%, 8.5%, 19%, and 25% Mo for Nb-Mo

and 6% and 15% W for Nb-W alloys. We use the same material parameters as[94] shown in

Table 6.2.

The predictions for the Nb-Mo alloys at different concentrations are shown in Fig. 6.6a along

with the experiments. Fairly good agreement is obtained between theory and experiment over

all compositions and temperatures. For the low concentrations of 5at% and 8.5at% Mo, the

strength is controlled by the kink-glide process (plus the underlying cross-kink mechanism)
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over the whole temperature range. With increasing the concentration, the low-temperature

strength is revealed to be controlled by the Peierls mechanism. In general, there tends to

be some under-prediction at lower T and slight over prediction at higher T. Such differences

could be likely be rectified by an increase in the ∆Ẽp and decreases in the vacancy and self-

interstitial formation energies, but our aim here is not to fit the experiments but rather to

demonstrate that theory is reasonably quantitative with accessible estimates of the input

parameters. Turning to the Nb-W system, Fig. 6.6b shows the predictions of the theory for

6at%W and 15at%W concentrations over a wide temperature range. The predictions mirror

those for Nb-Mo.
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Figure 6.6 – Theory predictions for Nb-based binary alloys. a Nb1−xMox alloys, data from
[152] . b Nb1−xWx alloys, data from [148].

The advantage of considering the alloys above is that experimental data exists for a range of

concentrations as well as temperatures. Thus, the trends in the theory predictions can be

reasonably verified. In applications to HEAs, available data usually corresponds to a single

composition, and the ability to estimate the important material parameters is far more limited.

If parameters are fit to the experimental data, then little is learned that can be truly predictive.

Applications to HEAs thus await reliable estimates for the material parameters needed in the

theory.

6.4 Discussion

The present theory plus the recent theories of double-kink nucleation and kink migration

in dilute alloys of Ghafarollahi et al. [49, 48] together provide a coherent framework for

strengthening of screw dislocations over the full range of concentrations from dilute (up

to a few at.%) to non-dilute alloys including High Entropy Alloys. As explained in [49] the

criteria determining the cross-over from dilute to non-dilute domains is how the kink spacing

2.5ζc compared with the total dislocation length L = 1/
p
ρ where ρ is the mobile dislocation

density. When the characteristic length 2.5ζc is comparable to the total dislocation length L, i.e.

2.5ζc ∼ L we fall into the dilute limit where the screw dislocation cannot become spontaneously

118



6.5. Current vs. existing theories

kinked and so motion is controlled by the double-kink nucleation and migration processes.

Conversely, when 2.5ζc ¿ L, the kinked structure is realizable and the current non-dilute

theory applies.

The new model derived here for kink migration mechanism has several fundamental dif-

ferences with that developed by Maresca and Curtin [94]. When applying our model to the

real systems, however, agreement with the experimental results is obtained using the same

material parameters used in [94]. This surprising agreement is examined more generally in

Section 6.5 over a wide general material properties.

The historical model for kink migration by Suzuki is very different from the present model

and that of Maresca et al. Yet adaptations of it to HEAs shows reasonable agreement with

experiments. In the next Section 6.5, we thus also present the Suzuki model for kink migration

and identify some unphysical features in that formulation. But we also show that, in an

intermediate range of stresses and length scales, the numerical results for the migration

barrier are roughly comparable to those rigorously derived here. This rationalizes some of the

successes of the adapted Suzuki model in spite of some fundamental theoretical problems.

In summary, we have derived an accurate model for the migration barriers encountered by

screw dislocation kinks as a function of stress in non-dilute alloys of any composition and

number of alloying elements. The kink migration model has been integrated into the overall

framework for screw dislocation motion in complex alloys developed recently by Maresca et al.

Applications to several alloys for which extensive experimental data is available demonstrates

the predictive capability of the theory. The open challenge for true predictions now lies in

determining the accurate alloy-dependent material parameters that enter the theory. It is

entirely expected that these material parameters (mainly the solute/screw interaction energies;

kink formation energy; average vacancy and self-interstitial formation energies) should dictate

screw motion and they are all physically well-defined. But they are rarely, if ever, directly

measurable and very difficult to compute via first principles methods. However, even without

detailed values, the theory demonstrates the qualitative and quantitative effects of these

parameters on HEA performance. Thus, reasonable estimates and trends can be used now

with the theory to guide design of new high-performance HEAs.

6.5 Current vs. existing theories

The existing theories of Suzuki and Maresca and Curtin have shown good agreement with

some experiments. However, there are incorrect assumptions made in both theories. Here, we

provide some quantitative comparisons between the kink migration theory derived here and

these earlier models. We note that the focus is solely on kink migration, which makes only one

contribution to the overall alloy strength.

The kink migration model of Maresca and Curtin was stated in Eqs. (6.9) of the main text. It

involves the same backstress and same combinations of material parameters as the present

119



Chapter 6. Screw-controlled strength of BCC non-dilute and High-Entropy alloys

theory. Thus, direct comparisons are easily made. The only quantity that influences the relative

difference between the two models is the length L, which is determined by the material ratio

Ek /∆Ẽp . Figure 6.7 thus shows predictions for the normalized migration barrier versus the

normalized stress over a range of lengths L. In general, the barriers in the Maresca model are

larger, especially at very low ∆H corresponding to very low T. Since the strength in the low T

domain becomes controlled by the Peierls stress, the overprediction of the Maresca-Curtin

model in this domain can often be of little practical importance. Moreover, for L > 150b

(with L = 2.5ζc ), the two models agree quite well over most of the range of stresses below

the reference stress τc . For alloys studied here, the range of ∆H/∆Ẽp is ∼1-3, where the two

models agree very well when L > 150b. This agreement arises in part because the ’backstress’

contribution to strengthening, which dominates at low stresses, is identical in the two theories.

The previous agreement of the Maresca-Curtin model with experiments is thus understood, in

spite of some incorrect assumptions about kink migration in that model.
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Figure 6.7 – Comparison of the present theory for the kink migration barrier with the
Maresca and Curtin model.Normalized average kink migration barrier ∆Hkm/Ek versus nor-
malized applied stress τ/τc for various values of Ek /∆Ẽp as obtained from the present analyti-
cal mode, Eq. (6.20) and Maresca and Curtin model, Eq. (6.9).

The Suzuki model for kink migration is substantially different. We will not repeat Suzuki’s
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analysis here, but only look at the final results for kink migration. Suzuki uses a single so-

lute/dislocation interaction energy labeled Ew . For a screw dislocation of length L in a binary

alloy with minor element concentration c, Suzuki obtains an enthalpy barrier as a function of

stress as

∆Hkm = 3cE 2
wκ

2/(2τab2)−τ3a3b4w2/(18κ2E 2
w c) (6.23)

where κ is a concentration- and length-dependent constant given by

1p
2π

∫ ∞

κ
exp

(
−x2

2

)
dx = b

3Lc
(6.24)

The dependence of the kink migration barrier on length L thus enters solely through the

parameter κ.

Inspection of Eqs. (6.23) and (6.24) immediately reveals two fundamental problems with

Suzuki’s result. The first problem is that, in any specified finite length L, Suzuki predicts that

the migration barrier diverges as τ goes to zero. That is, at zero stress, there is an infinite barrier

for migration over any finite length L. This is quite obviously unphysical. The zero-stress

barrier must be finite, as also clearly seen in the exact analysis of the problem by Magnon

et al. This error translates into a weak dependence of strength versus T at high T that is not

correct; i.e. a tendency toward a plateau in strength versus temperature that does not arise in

the rigorous kink migration theory derived here. Since the high T behavior of HEAs is crucial

for applications, this aspect of the Suzuki model may lead to erroneous predictions in this

domain.

The second fundamental problem is that the activation volume, which is the derivative of the

enthalpy barrier versus stress Vact =−∂∆H/∂τ, must be zero at T = 0 (∆H = 0). In the Suzuki

model, the activation volume is finite at 2w ab/
p

3. This value is not negligible, and translates

into an incorrect temperature dependence of the kink migration strength versus temperature

at low T .

The problems above are revealed in numerical solutions. However, to compare quantitatively

to the present model first requires a connection to be made between the Suzuki interaction

energy parameter Ew and the correct solute/dislocation interaction energy parameter ∆Ẽp .

This connection has been examined earlier, and for the binary alloy was found to be ∆Ẽp =p
6cEw [51]. Thus, the only difference in concentration dependence is in the dependence of κ

on c (Eq. (6.24)), which is relatively weak.

The normalized kink migration barrier ∆Hkm/(
p

cEw ) versus the normalized applied stress

τ/τc , where τc is given by Eq. (6.19), is shown in Fig. 6.8 for the Suzuki model and the precise

kink migration model developed in this Chapter, for different dislocation lengths L that span

the region of lengths emerging from applications of the Suzuki model as adapted to HEAs

by Rao et al. [120]. These normalized Suzuki results still depend on concentration while the

precise model does not, and so the figure shows a range of concentrations. The Suzuki results
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immediately show the fundamental problems - the divergence at low τ and the finite slope at

∆H = 0. However, over a wide intermediate domain of normalized stresses, the magnitude

of the Suzuki enthalpy barrier is remarkably comparable to our precise model for a range of

relevant L values. The full Suzuki model involves other aspects related to determining the

appropriate length L and the cross-kink spacing and total strengthening. But the comparison

in 6.8 rationalizes why the Suzuki model and its adaptation to HEAs can give strengths in the

range of experiments in spite of differences in the dependence of kink migration barriers with

temperature, especially at high and low T. Any application of the Suzuki model must be made

with these limitations in mind.
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7 Analysis of high energy barriers for
edge dislocation motion in BCC high-
entropy alloys

This chapter is extracted from the following publication

Kubilay, R.E., Ghafarollahi, A., Maresca, F., and Curtin W.A. High energy barriers for edge

dislocation motion in body-centered cubic high entropy alloys. npj Comput Mater 7,

112 (2021).

High-entropy alloys (HEAs) are multicomponent alloys with non-dilute concentrations of

most or all of the alloying elements. Various HEAs have impressive mechanical properties such

as high yield strength at room temperature, high ultimate strength, high ductility, high fracture

toughness, or high strength retention at very high temperatures [145, 99, 137, 47, 71, 54].

Of primary interest here is the high strength retention in the refractory BCC HEAs such as

MoNbTaW and MoNbTaVW. High strength retention might suggest a solute drag mechanism,

but the high strengths starting from low T and the high vacancy formation (see Table 7.2)

and migration energies preclude standard solute drag at typical experimental strain rates

(estimates can be made using theories such as that found in Ref. [197]. The high strength and

strength retention at high T thus requires that the barriers to dislocation glide are substantial.

Recent theory [93] has predicted that edge dislocations in these BCC HEAs encounter such

high barriers due to the random fluctuations in local environments in the complex alloy.

This prediction is unusual because it is commonly assumed that screw dislocations control

plastic flow in BCC alloys. However, simulations of edge dislocation motion on model alloys

at T=0K show high strengths comparable to those predicted by the parameter-free theory.

Application of the edge dislocation model to real alloys also shows good agreement for the

strength versus temperature, including the observed high strength retention at temperatures

up to 1600°C. Recent experiments support the key role of edge dislocations in strengthening

of some BCC HEAs [83]. The theory makes other predictions that have been validated by

atomistic simulations. Here, we report detailed transition-state computations of the atomistic

barriers for edge dislocation glide in two model alloys, NbTaV and MoNbTaW, as represented

using interatomic potentials that have been shown to be accurate for this problem, and show

broad agreement with the theory. We then apply a reduced analytic theory to several further
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HEAs recently reported in the literature. We show that the significant strengthening due to

the addition or substitution of Mo into HfNbTaTiZr and of V into MoNbTaW and MoNbTaTiW

can be quantitatively captured using the theory for edge dislocations. The loss of strength in

the former alloys at 1200°C is correlated with the estimated vacancy formation energy, but

no mechanism has yet been identified. Overall, the analytic theory based on large barriers to

edge dislocation motion, validated here, provides a path for preliminary alloy selection for

high strength and high strength retention at high temperatures.

7.1 Solute strengthening theory

We first briefly review the theory for yield strength for edge dislocations in a random BCC alloy,

as presented in [93]. A dislocation in a random alloy minimizes its total energy by becoming

wavy over some characteristic length scales ζc (wavelength ∼ 5.6 ζc) and wc/2 (amplitude).

The waviness forms because the dislocation exists in a rough potential energy landscape

and so finds local regions of favorable random concentration fluctuations that lower the

dislocation energy, but at the energetic cost of an increased dislocation line length. In the

wavy structure, the dislocation resides in lower energy in segments of length ζc and faces

barriers created by unfavorable regions at distance wc along the glide direction. Stress and/or

thermal activation are needed to overcome these energy barriers and generate plastic flow by

dislocation glide. The detailed derivations in the theory are given in [93] and only the relevant

results are stated here.

The theory considers an N -component random alloy composed of atom types n = 1, ...N each

at concentration cn . The solute/dislocation interaction energy of a type-n solute at position

(xi , y j ) relative to an edge dislocation aligned along z is denoted as Un(xi , y j ). The theory

then considers a generic wavy dislocation characterized by unknown length scales ζ and w .

The fluctuations in dislocation energy caused by the interactions with the random solutes

are characterized by the standard deviation of the energy of a unit Burgers vector b as the

dislocation glides a distance w along the x direction,

∆Ẽp(w) =
[ ∑

i , j ,n
cn

(
Un(xi −w, y j )−Un(xi , y j )

)2
] 1

2

. (7.1)

From this solute/dislocation energy per unit length and the elastic energy cost to create the

waviness due to the dislocation line tension Γ, the characteristic wavelength scale ζc(w) as a

function of the amplitude w is obtained by minimizing the total energy with respect to ζ. The

required stochastic analysis is discussed in [93] with the final result

ζc(w) = 1.73

(
Γ2w4b

∆Ẽ 2
p(w)

) 1
3

. (7.2)

Here, the coefficient 1.73 is derived, not fitted, in the analysis [93]. The characteristic amplitude

parameter wc is then computed by minimizing the total energy versus w , which reduces to
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the solution of

d∆Ẽp(w)/d w =∆Ẽp(w)/2w. (7.3)

The characteristic energy barrier facing a segment of length ζc that lies in a local favorable

energy minimum is then derived to be

∆Eb = 1.11

(
w2

cΓ∆Ẽ 2
p(wc)

b

) 1
3

(7.4)

where again the coefficient 1.11 is derived. At an applied resolved shear stress τ, this charac-

teristic barrier is overcome by a combination of thermal activation and the work −τbζcx done

on the length ζc segment as it glides a distance x relative to the minimum energy position.

For a sinusoidal energy landscape, the stress-dependent energy barrier is well approximated

within 1% error over the whole stress regime by

∆E(τ) =∆Eb

(
1− τ

τy0

) 3
2

(7.5)

where τy0 is the zero-temperature flow stress, given as

τy0 = π

2

∆Eb

bζc(wc)wc
= 1.01

(
∆Ẽ 4

p(wc)

Γb5w5
c

) 1
3

. (7.6)

The above results are all analytical, requiring only the solute/dislocation interaction energies,

the dislocation line tension, and the Burgers vector. The line tension is taken to be Γ =
1

12µ{110}〈111〉)b2 where µ{110}〈111〉 is the alloy shear modulus for shear on the {110} glide plane in

the 〈111〉 direction of glide.

In this Chapter, the theory is quantitatively assessed against carefully-executed direct numeri-

cal simulations of the barriers encountered by dislocation motion through true random alloys.

However, one cannot simply insert a dislocation of arbitrary line length into a simulation cell

and follow its motion under stress. The characteristic waviness associated with ζc must be

captured, which requires the use of a very long line length L >> ζc. This is computationally

costly. A second strategy is to use a line length of precisely L = ζc. According to the theory, such

a segment should remain essentially straight because the line tension prevents the dislocation

from becoming wavy on smaller scales. A dislocation segment of length ζc is then predicted to

encounter an energy landscape along the glide direction that consists of local minima and

maxima at an average spacing of wc and with an average energy difference (barrier) of ∆Eb.

We adopt the second strategy below and use the Nudged Elastic Band method to explicitly

compute the energy landscape and configurations of a dislocation of length ζc in the random

alloy (see Methods). This study thus reveals the statistical distribution and average value for

both wc and ∆Eb, from which the distribution of barriers and the strength τy0 can then be

determined.
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7.2 Material properties

We study two model BCC random alloys, NbTaV and MoNbTaW. In these alloys, we compute

the solute/dislocation interaction energy Un(xi , y j ) of a type-n solute using the Zhou et al.

EAM-type interatomic potentials [203, 88]. The Zhou et al. potentials have been reasonably

validated for this problem [93]. More importantly, their accuracy for real alloys is irrelevant for

the present study - we will compare simulation and theory on these well-defined model alloys.

For the given alloy composition, we first construct the homogenized reference average-atom

(A-atom) interatomic potential from the underlying atom-specific potentials [173]. The A-

atom potential accurately and automatically encodes, with no fitting, all the average properties

(elastic constants, lattice constant, stacking fault energies, etc.) of the true random alloy. Any

individual atom type n can be substituted into any position in any configuration of the A-

atom material to accurately obtain the energy of the n atom at that position averaged over

all possible configurations of atoms in all surrounding positions. The interaction between

the n and A atoms thus encodes all the average solute-solute interactions in the alloy. Using

this feature of the A-atom potential, an edge dislocation of Burgers vector a〈111〉/2 is created

in the homogeneous A-atom material using standard methods in a large simulation cell. A

solute of type n then replaces an A-atom at position (xi , y j ) near the dislocation, and the

energy of the system is measured. The interaction energy Un(xi , y j ) is this energy minus the

energy of the type n solute in the dislocation-free crystalline A-atom BCC material. Use of the

A-atom neglects explicit solute-solute interactions in the alloy but recent theory [103] that

includes such solute-solute interactions shows this effect to be small especially in strong alloys.

Moreover, explicit results for MoNbTaW using both Zhou EAM potentials and first-principles

methods shows that solute-solute interactions have a negligible effect on strength in this alloy

[103].

The solute/dislocation interaction energies for two solutes in each of the two alloy studied are

shown in Figure 7.1, as examples. The individual energies are not large, typically 0.15 eV or

less, and are close to the elasticity estimate Un(xi , y j ) =−p(xi , y j )∆Vn where p(xi , y j ) is the

dislocation pressure field at (xi , y j ) and ∆Vn is the misfit volume of a type-n solute in the alloy.

Although the individual interaction energies are small, the collective random fluctuations of

the solutes over the scale (ζc, wc) creates large barriers for the dislocation motion as shown

below.

7.3 Computational method

For both model alloys, a rectangular simulation cell oriented with glide direction X||[1̄11], glide

plane normal Y||[101] and line direction Z||[121̄] is first created using the lattice parameter of

the corresponding “average atom" alloy. The dimensions of the simulation cell are (Lx = 1327,

Ly = 123) Å and (Lx ∼ 190, Ly ∼ 90)Å for NbTaV and MoNbTaW alloys, respectively. The huge

difference between the sample sizes Lx for the two alloys stems from different methodologies

used to find the edge dislocation minimum energy positions as discussed later. As explained
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Figure 7.1 – Solute/edge dislocation interaction energies (in meV) (a) Nb solutes and (b) V
solutes in the average-atom NbTaV alloy. (c) Mo solutes and (d) Ta solutes in the average-atom
MoNbTaW alloy.

above, the dislocation line length is fixed at the characteristic length of Lz = ζc ∼ 29Å for NbTaV

and Lz = ζc ∼ 50Å for MoNbTaW alloys (see Table 7.1). The surfaces normal to the Y-direction

are traction-free while those along the X- and Z-directions are periodic.

To insert a single edge dislocation, the simulation cell created above is first populated with

the corresponding average atoms. Two adjacent YZ-atomic planes in the lower half of the

simulation cell are then removed. The average atom at each lattice site is then randomly

replaced with a solute atom of the alloy according to the solute concentration in the alloy.

The created simulation cell (with two missing atomic planes in the lower half) enables us to

introduce the edge dislocation at any desired position x∗. First, the atomic positions in the

lower half of the simulation cell are shifted in the x-direction (keeping the same randomness)

such that the gap due to the missing atoms is located at x∗. The empty space in the lower

half at location x∗ is then eliminated by displacing the atoms on both sides by ux = b (2x ±
Lx)/(2x∗±Lx) where ± reflects positions to the left and right of x∗. The true random alloy

with the dislocation is finally created by relaxing the atomic positions. In order to minimize

computation time, the Conjugate Gradient algorithm and then the FIRE algorithm are used in

sequence, and the domain is relaxed until convergence is achieved (force tolerance< 10−5 eV

per atom). All simulations are performed using molecular statics as implemented in LAMMPS
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[114].

For the long NbTaV random alloy sample, the minimum energy positions are first found by

placing an initial dislocation at every possible location (spacing of one Burgers vector) along

the slip plane and then minimizing the energy. During minimization, the dislocation moves

from its initial position to the local minimum energy position within the local energy basin

[109]. Many close initial positions thus have the same final position. NEB simulations are

then performed to find the path and barrier between each pair of adjacent minima, using a

sub-domain of Lx = 200 Å centered around the pair of adjacent minima. Two large random

realizations were studied, with the minimum energy paths (MEP) obtained using 32 and 50

replicas, respectively, between each pair of initial and final configurations. No significant

statistical differences are found between the two realizations, and their results are aggregated.

The inter-replica spring constant is set to 1 eVÅ−1 (force units) with "ideal-parallel" option in

LAMMPS which calculates nudging forces as described in [184] and results in more equally-

spaced replicas. Using the same spring constant used for the MoNbTaW NEB computations

(see below) results in very similar barriers. Each stage of the NEB calculation (convergence to

MEP and barrier climbing) is executed for 10,000 steps and convergence is checked afterwards

by observing the MEP progression. These NEB computations were performed for every pair of

adjacent minima along the entire length Lx ∼ 1300Å.

For the MoNbTaW alloy, after inserting an edge dislocation in the system and relaxing to

the local minimum configuration, a dislocation is again introduced into the same initial

simulation cell (same random configuration) at a distance 2wc from the previously-found

minimum position. This is the distance around which the adjacent minimum is expected. Full

relaxation then enables the dislocation to reach the actual minimum energy position. This

procedure establishes the initial and final dislocation positions for an NEB computation of the

path and energy barrier between them. This procedure was repeated for over 100 MoNbTaW

random realizations of the alloy to generate a statistical distribution of barriers. In no case

was another minimum found in between the initial and final positions of any realization. NEB

simulations were performed using 100 replicas and inter-replica spring constant is set to 10−2

eVÅ−2. Convergence was assumed when the maximum force acting on all of the atoms across

all replicas was less than 1×10−3 eVÅ−1.

7.4 Results from NEB simulations

From the interaction energies for all solutes in each alloy, the theory predicts the characteristic

length scales (ζc, wc), the energy barrier ∆Eb, and the zero-temperature yield stress τy0 as

shown in Table 7.1. Direct simulations of long edge dislocations inserted into the random alloy

and relaxed at T=0K were previously performed by Maresca and Curtin [93] and the length

scales (ζc, wc) were then derived from examination of the correlation function along the long

wavy dislocation. These values are shown in Table 7.1 and agree well with the theoretical

values. Here we compare the direct NEB results to the theory predictions.
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Table 7.1 – Characteristic length scale and energy barrier, mean(·)±standard deviation(·) of
the corresponding distributions, as measured by direct NEB simulations and as predicted by
theory [93] for two model alloys.

Alloy Method ζc (Å) wc (Å) ∆Eb (eV) τy0 (MPa)
Theory [93] 27.6 12.0 1.949 517

NbTaV Direct MS [93] 28.7 10.0 − 496
NEB - this work − 17.7±9.1 1.95±1.23 293

Theory [93] 43.6 12.1 2.645 422
MoNbTaW Direct MS [93] 51.8 9.1 − 470

NEB - this work − 11.3±4.5 2.43±1.33 410

We first present results for the NbTaV random alloy (see Methods). Figure 7.2 shows the entire

energy landscape. Many local minima and maxima are found, as expected, indicated by blue

and red dots, respectively. From the two random realizations of total length 2500 Å, N=71

maxima are found. The average barrier ∆Eb is found to be 1.95 eV, matching the theoretical

value very well (see Table 7.1). The relatively large standard deviation for the barriers is

expected. The average barrier spacing that corresponds to wc is wNEB
c = L/2N = 17.7 Å.

Several very small barriers (<0.2eV) that span a few angstrom are disregarded; including

these decreases ∆Eb and wc by 7% and 6.5%, respectively, thus having little effect on τy0. As

seen in Table 7.1, the value of wc is somewhat larger than both the predicted value and the

value deduced from the correlations along an individual relaxed dislocation. We have no

explanation for the differences in wc , which affects the NEB-derived strength (see below), but

have performed further convergence checks in the NEB to verify that no significant barriers

were missed in the calculations. We do note that the standard deviation of wc is rather large

and encompasses the theoretical value.

The theory predicts that the dislocation line at length L = ζc should remain essentially straight.

Fig. 7.3 shows the atomistic configurations of 12 successive minimum-energy dislocations

along the glide plane using Common Neighbor Analysis in OVITO for visualization [155, 156].

The cores are spread on the glide plane, as expected (see Fig. 7.1), and variations from a

straight dislocation are quite minimal. As noted by Varvenne et al. [172], the theory based on

line tension does not apply for fluctuations at the scale of the atomic spacing. So roughness

on the atomic scale can exist but is outside the scope of the theory. It was argued in Varvenne

et al. that such roughness leads to small energy barriers that are easily overcome at finite

temperature, so that strength at finite T is mainly controlled by the larger-scale barrier over

glide distance wc.

The theory also assumes that the dislocation remains essentially straight as it moves through

the energy landscape from minimum to maximum and then back to the next local minimum.

Figures 7.4(a,c) show typical examples of the dislocation configurations corresponding to

different average dislocation position along the minimum energy path between two adjacent

129



Chapter 7. Analysis of high energy barriers for edge dislocation motion in BCC
high-entropy alloys

-600 -500 -400 -300 -200 -100 0 100 200 300 400 500 600
Dislocation Position (Å)

-2

-1

0

1

2

3

4

5

6

E 
(e

v)

1

2

3

4
5

6
7

8

9

10

11
12

Figure 7.2 – Energy landscape E(x) versus position x for a dislocation moving through one
entire simulation cell for NbTaV. Minima and maxima are labelled blue and red, respectively.
Numbered labels correspond to dislocation configurations shown in Fig. 7.3. Few of the
labelled paths are shown in Fig. 7.4 in more detail.

minima, for two different barriers. The dislocation again remains fairly straight as it moves

over the distance 2wc, in agreement with the theory.

-180 Å -90 Å 0 Å 90 Å 180 Å

121110987654321

Figure 7.3 – Dislocations at their minimum energy locations on 360 Å portion of the long
NbTaV sample. The distribution of the distances between the dislocations can also be ob-
served. The dislocations are labelled and can be matched with their energies on Figure 7.2.

Similar results are found for the MoNbTaW alloy. Each individual NEB simulation provides a

distance between adjacent minima and the path between them, with an associated energy

barrier. Over 100 NEB simulations, the mean of the local minima/maxima spacing wc and

mean of the energy barrier ∆Eb are both shown in Table 7.1. Very good agreement is found

between our NEB simulations, the parameter-free theory, and direct atomistic simulations of

long wavy dislocations. A typical example of the NEB path and atomistic configurations along

the path are shown in Fig. 7.5 for MoNbTaW. As found for NbTaV, the dislocation segment

remains quite straight as it moves through the barrier from initial to final configuration (see

Fig. 7.5). Similar behavior is found for the other individual configurations.

The above results for both NbTaV and MoNbTaW demonstrate both qualitatively and quan-
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Figure 7.4 – Energy and shape of an edge dislocation through its minimum energy path in
NbTaV. (a,c) Edge dislocation configurations at several positions along the minimum energy
paths, with the dashed lines indicating the original position of the minima to show the glide
distance clearly. (b,d) Minimum energy paths (energy versus mean dislocation position) for
the dislocations moving from one minimum to the next in one region of the true random alloy.
The labels can be matched with those in Figures 7.2 and 7.3.
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Figure 7.5 – Energy and shape of an edge dislocation through its minimum energy path
in MoNbTaW. (a) Edge dislocation configuration at several positions along the minimum
energy path, with the dashed lines indicating the original position to show the glide distance
clearly. (b) Minimum energy path (energy versus mean dislocation position) for the dislocation
moving from one minimum to the next in one region of the true random alloy.

titatively the features emerging from predictions of the theory. For a dislocation segment

length fixed at the theoretical value of ζc, the NEB studies find that (i) the average energy

barriers are very large (≈ 2eV ) in very good agreement with the predicted barriers, (ii) the

dislocation energy landscape corresponds to minima and maxima separated by a typical

spacing wc that is comparable to the theory, and (iii) the dislocation segments of length ζc

remain quite straight throughout their entire migration through the rough energy landscape.

The essentially 1-dimensional energy landscape postulated and predicted by the theory is

thus fully confirmed by the present simulations.

We now turn to the final fundamental aspect of edge dislocation motion: the evolution of the

energy barrier under stress and the associated alloy flow stress as a function of temperature

and strain rate. It is computationally demanding to perform direct NEB simulations over a
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range of stresses for each of the hundreds of barriers studied here and so we take an accurate

analytic approach as follows. Starting with the zero-stress energy landscape E (x) as a function

of mean dislocation position x (see Figures 7.2, 7.4 and 7.5), the work done by an applied

resolved shear stress τ on the glide plane is −τbζcx. Even if the dislocation does not remain

perfectly straight, the area swept during the motion is still exactly bζcx when x is the mean

dislocation position and the work done remains the same. The total energy landscape at stress

τ is then E tot(x) = E (x)−τbζcx. In this new landscape, the individual energy barriers between

local minima and adjacent maxima are computed numerically from the NEB landscape E(x).

With increasing applied stress, each barrier is reduced steadily, and we can compute the

spectrum of barriers ∆Eb(τ) at any τ. For each individual barrier, there is a zero-temperature

“flow" stress at which the stable local minimum disappears and the barrier becomes zero;

this occurs when dE tot(x)/dx = 0 locally. To explicitly validate the analytic approach, we

performed direct NEB simulations versus stress for a few typical barriers in MoNbTaW and

find that the barrier height versus stress matches the analytical value nearly perfectly in all

cases.

Figs. 7.6(a,b) show the cumulative distribution of energy barriers over a range of applied shear

stresses for both the NbTaV and MoNbTaV alloys. At zero stress, the barriers span a wide range

from near 0 eV to 6 eV. With increasing stress, all barriers are steadily reduced, leading to a

leftward shift. Furthermore, an increasing number of barriers are reduced to zero; these are

included in the cumulative distribution and so are reflected in the non-zero initial value of the

cumulative probability at zero energy.

The theory is developed in terms of a characteristic (mean) barrier and hence mean strength,

so that we should compare the theory predictions to the stress at which 50% of the barriers

have been reduced to zero. The original formulation of the theory rationalized this choice is as

follows. A long dislocation moves through a rough (stochastic) potential energy landscape

with characteristic length scales ζc along the line direction and wc along the glide direction,

and characteristic energy barriers between adjacent minima of ∆Eb. Individual segments

of length ζc encounter the spectrum of barriers as the entire dislocation moves forward.

However, individual segments cannot advance much beyond nor lag much behind the average

dislocation position. In advancing beyond, segments are pulled back by the remaining line. In

lagging behind, segments are pulled forward by the advanced line. The motion of the long

dislocation is thus controlled by neither statistically weaker nor stronger local barriers. This

behavior can be observed in direct simulations, but is difficult to quantify. At 50% probability,

there are an equal number of advanced and lagging segments, i.e. the dislocation retains the

roughness of the relaxed dislocation in the zero stress landscape, and there are no net forces

due to segment interactions. Since our goal is to compare to the theory, we use this 50% level

here.

The characteristic 50% stress for the zero temperature strength as obtained from Figs. 7.6(a,b)

is shown in Table 7.1 for each alloy. The mean strength for NbTaV is 293 MPa. This value only

∼60% of the theoretical prediction, a difference that stems solely from the larger typical value
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of wc found in the NEB simulations while the average energy barrier ∆Eb is very similar to the

theory. The wc deduced from the wavy dislocation scale in NbTaV was, in contrast, slightly

smaller than the theory prediction. As discussed earlier, the origins of these differences in wc

are unclear. The NbTaV alloy does show a comparatively large fraction (∼15%) of rather low

barriers (<0.4 eV) that are eliminated at very low stress; this may contribute to the reduced

average strength. The mean strength for MoNbTaW is 410 MPa, which compares quite well to

both the theory prediction of 422 MPa and the direct atomistic simulation of 470 MPa. In this

alloy, all three values for wc are quite comparable, the predicted and NEB energy barriers are

also quite close, and there are no very small barriers. Hence all the strengths agree well for

MoNbTaW.

0 1 2 3 4 5 6
Eb (eV)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

fre
qu

en
cy

0 MPa
100 MPa
200 MPa
300 MPa
400 MPa
500 MPa

a

True path
Sinusoidal approximation

0 1 2 3 4 5 6
Eb (eV)

0 MPa
100 MPa
200 MPa
300 MPa
400 MPa
500 MPa
600 MPa

b

True path
Sinusoidal approximation

Figure 7.6 – Cumulative probability distribution of energy barriers versus applied shear
stresses. The barriers are computed using the NEB energy landscape E(x) for (a) NbTaV and
(b) MoNbTaW. The same distribution computed using the theoretical sinusoidal model for the
local barrier is also shown, and agrees well.

Finally, in solute strengthening theories, the energy landscape is assumed to have a locally si-

nusoidal shape between the minimum and the maximum, which leads to the stress-dependent

energy barrier given by Eq. (7.5). Here, we assess this assumption by extracting the values ∆Eb

and wc from the direct NEB results and use the analytic result of Eq. (7.5) based on a sinusoidal

model to predict the energy barriers at finite applied stress. The results are shown in Fig. 7.6,

and the distribution agrees very well with the full analysis based on the actual (non-sinusoidal)

energy landscapes found in the NEB at all stress levels. The sinusoidal approximation of the

energy barrier, and its associated T=0K strength, is thus quite accurate.
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7.5 Application to real alloys

Both the analytical theory and direct NEB show that there are very large zero-stress energy

barriers of 1.95 eV for NbTaV and 2.45-2.65 eV for MoNbTaW. These values are significant,

meaning that high stresses are needed to overcome these barriers, even at high temperatures,

and thereby cause plastic flow in the alloys. The strain-rate and temperature-dependent flow

stress of an alloy follows from the thermally-activated Arrhenius model that connects the

plastic strain-rate ε̇ to the energy barrier via ε̇ = ε̇0 exp(−∆E(τ))/kT where ε̇0 = 104 s−1 is a

reference strain rate (see [171, 93]). Combining this relationship with Eq. (7.5) and inverting

gives the finite-temperature, finite strain-rate flow stress τy(T, ε̇). This equation holds for

low temperatures and/or high stresses (τy/τy0 > 0.5) [93]. At higher temperatures and/or low

stresses, the long dislocations (L << ζc) can explore higher wavelength fluctuations with larger

barriers that have a similar scaling [84]. To cover the full range of temperatures, Maresca et al.

[93] proposed the approximate form

τy(T, ε̇) = τy0 exp

[
− 1

0.55

(
kT

∆Eb
ln
ε̇0

ε̇

)0.91]
. (7.7)

The uniaxial tensile yield strength in a polycrystalline alloy is then computed as σy = Mτy

where M = 3.067 is the Taylor factor for an untextured BCC polycrystal deforming by edge

dislocation motion. It is clear that the large values of ∆Eb lead to significant strength retention

with increasing temperature.

To enable application of the edge theory for alloy design, Varvenne et al. [172] developed a

simplified elasticity theory for FCC alloys that was later extended to BCC alloys [83]. The theory

uses the elasticity approximation Un(xi , y j ) =−p(xi , y j )∆Vn where ∆Vn is the misfit volume

of a type-n atom in the alloy and p(x, y) is the edge dislocation pressure field. Assuming a

common dislocation structure (spreading of the BCC edge dislocation) then led to analytic

estimates of the T=0K strength and energy barrier as

τy0 = 0.040α− 1
3 µ̄

(
1+ ν̄
1− ν̄

) 4
3
[∑

n cn∆V 2
n

b̄6

] 2
3

∆Eb = 2.00α
1
3 µ̄ b̄3

(
1+ ν̄
1− ν̄

) 2
3
[∑

n cn∆V 2
n

b̄6

] 1
3

. (7.8)

Here, µ̄=
√

C̄44(C̄11 − C̄12)/2, ν̄= 3B̄−2µ
2(3B̄+µ)

are the isotropic elastic constants with Bulk modulus

B̄ = (C̄11 +2C̄12), all computed using a simple rule-of-mixtures of the elemental values. b̄

is the alloy Burgers vector computed using Vegard’s law for the alloy atomic volume, and

α= 1/12 is a numerical coefficient related to the dislocation line tension. The strength versus

temperature and strain rate can then be computed using Eqn. 7.7. The numerical coefficients

above were determined by fitting to results of the full theory across a range of alloys in the

Mo-Nb-Ta-V-W family, with the fit being most accurate for the high-barrier/high-strength
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alloys. The simplified theory depends only on elastic moduli and atomic misfit volumes, and

was implemented for preliminary design across 107 different compositions in the Al-Cr-Hf-

Mo-Nb-Ta-Ti-W-Zr family [83] to identify promising high-T alloys.

Here, we use the reduced analytic theory to understand the strengths in several alloys recently

reported. The first group of alloys consists of the base alloy of HfNbTaTiZr with additions of

Mo. Specifically, Mo was substituted for Nb and Ta to create HfTaTiZrMo and HfNbTiZrMo and

was also added to the base alloy to create HfNbTaTiZrMo; note that our labelling of the alloys

now does not follow conventional alphabetical order of elements but instead appends the new

element (Mo) to the end of the elemental list. Table 7.2 shows the atomic volumes and elastic

constants used to make predictions via Eqs. 7.8. In this family of alloys, Mo has the smallest

atomic volume, leading to the largest misfit volume, and also the largest elastic moduli. Mo

substitution or addition to HfNbTaTiZr is thus predicted to give significant strengthening.

Figure 7.7a shows the experimental strengths as reported in [137, 76] versus the predicted

strengths, at temperatures T=0°C, 1000°C, and 1200°C, and strain rate ε̇= 10−3 s−1. Agreement

between theory and experiment is very good at both T=0°C and 1000°C. Most notably, the

theory captures the very significant strengthening achieved due to the addition or substitution

of Mo. We discuss the deviation at 1200°C below.

Table 7.2 – Single-element properties used in the reduced edge theory predictions. The list
shows the elemental BCC atomic volume, the elastic moduli and the experimental vacancy
formation energy Evf.

Element Volume (Å3) C11 (GPa) C12 (GPa) C44 (GPa) Evf (eV)
Cr 12.321 339.8 58.6 99 2.2 ± 0.2 [106]
Hf 22.528 131 103 45 2.0 (est.) [4]
Mo 15.524 450.02 172.92 125.03 2.9 ± 0.3 [106]
Nb 17.952 252.7 133.2 30.97 2.85 ± 0.25 [106]
Ta 17.985 266.32 158.16 87.36 2.95 ± 0.15 [106]
Ti 17.387 134 110 36 1.55 [4]
V 14.020 232.4 119.36 45.95 2.15 ± 0.05 [106]
W 15.807 532.55 204.95 163.13 3.8 ± 0.3 [106]
Zr 23.02 104 93 38 1.7 [4]

The second group of alloys consists of the base alloys MoNbTaW and MoNbTaTiW to which V

is added to create MoNbTaWV and MoNbTaTiWV, respectively, again with the added element

V appended to the end of the alloy label. Table 7.2 shows the atomic volumes and elastic

constants for these elements, see [83]. V has the smallest misfit volume among all these

elements while its elastic constants are roughly comparable to those of Nb, Ta, and Ti; the V-

containing alloys should thus be stronger than the base alloys but with less of an effect than Mo

in HfNbTaTiZr. Figure 7.7b shows the experimental strengths versus the predicted strengths,

again at T=0°C, 1000°C, and 1200°C and strain rate ε̇ = 10−3 s−1. While the quantitative

agreement is not as good, the theory captures the notable strengthening due to the addition of
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Figure 7.7 – Yield strength theory predictions vs experiments at 0°C, 1000°C, and 1200°C
Alloys in the (a) HfNbTaTiZr(Mo) family show strengthening due to Mo additions and alloys in
the (b) MoNbTaW(Ti)(V) family show strengthening due to V additions.

V in both alloys. We note that the enhanced strength of MoNbTaTiW relative to MoNbTaW, i.e.

the role of the Ti addition to MoNbTaW, is not captured by the present theory; one possible

origin is O or N contamination, well-established to significantly increase alloy strength.

The Hf-Mo-Nb-Ta-Ti-Zr alloys in Figure 7.7a show a strong loss of strength between 1000°C

and 1200°C while the Mo-Nb-Ta-Ti-V-W alloys do not show such a loss of strength and instead

continue to agree with the theory trend. High-temperature mechanisms that can defeat edge

strengthening are unclear at this time. The random alloy presents edge barriers throughout

the material on the scale of wc and ζc and so avoiding these barriers seems difficult. The

solute/dislocation interaction energies scale with alloy elastic moduli, but their decreases

with temperature are modest for the refractory elements Mo, Nb, Ta, V, and W [41, 42]. We

thus postulate that there is some vacancy-related mechanism, such as climb, by which the

large edge barriers can be circumvented at sufficiently high temperatures. Such a mechanism

would then scale with the vacancy formation energies in these alloys families. In the four

Hf-Mo-Nb-Ta-Ti-Zr alloys, the vacancy formation energies estimated by a simple rule-of-

mixtures (see Table 7.2) are in the range of 2.2-2.3 eV. In contrast, the estimated vacancy

formation energies for the Mo-Nb-Ta-Ti-V-W alloys are higher, in the range of 2.65-3.1 eV.

Thus, a mechanism operating at 1200°C in the Hf-Mo-Nb-Ta-Ti-Zr alloys that is related to the

vacancy concentration (cV = e−Evf/kT ≈ 2×10−8) would require a temperature of 1600°C in

the Mo-Nb-Ta-Ti-V-W alloys to achieve the same vacancy concentration. The MoNbTaW and

MoNbTaWV alloys do not show a significant drop in strength up until this range of temperature

[143]. This analysis can also be related to the alloy melting points. The Hf-Mo-Nb-Ta-Ti-Zr

alloy melting points have been estimated to be in the range of 2270-2360K [137] while the
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melting points of the Mo-Nb-Ta-Ti-V-W alloys are much larger, in the range of 2620-3110 K.

Hence the latter alloys are expected to retain strength up to higher temperatures [137]. In both

families of alloys, the ratio of estimated vacancy formation energy to melting temperature

is similar, Evf/kbTm ≈ 11.5+ /0.5, so that we cannot distinguish between vacancy-related

mechanisms and any other high-T mechanisms that might operate.

It remains possible that the strength loss at high T arises because the strength is controlled

by screw dislocations. Screw dominance has been observed in some BCC HEAs [28], and is

the accepted situation for dilute BCC alloys. Theoretically Maresca et al. [94, 93] have shown

that some BCC non-dilute alloys and HEAs are controlled by screw dislocations and others

by edge dislocations. The high temperature strength of screw dislocations is controlled by

cross-kinks that can be defeated by thermal vacancies [94, 119]. Hence, loss of screw strength

would also be correlated with Evf and/or Tm. While this mechanism is clear, it is difficult to

determine reliable alloy parameters for application of the screw theory. It is thus not possible

to determine whether the quantitative strength increase upon addition of Mo to HfNbTaTiZr

could be attributed to strengthening of screw dislocations. In contrast, the strength at 0°C and

1000°C, and the role of Mo, are well-captured by the parameter-free edge theory. The edge

theory should thus be a lower bound for strength and, being analytic, serves as a very useful

theory for alloy design/selection. The mechanism(s) of strength loss at high T remain to be

resolved; this is a critical open question for BCC HEAs.

In summary, the recent theory of strengthening of edge dislocations in BCC high entropy

alloys has been quantitatively supported by detailed atomistic NEB simulations of the complex

energy landscape for edge dislocations in two random alloys, NbTaV and MoNbTaW. The

analysis reveals the high energy barriers encountered by edge dislocations, and the magni-

tude and spacing of these barriers is in good agreement with the analytic predictions of the

theory. The simulations here further show that the dislocations remain quite straight over the

characteristic scale ζc, as predicted by the theory. The stresses required for dislocation motion

are also comparable to those observed in limited direct simulations. The present work thus

supports the theory for critical features of strengthening in two different refractory BCC HEAs.

A reduced version of the theory has then been applied to two families of alloys. The theory

rationalizes the observed significant increases in strength caused by addition of solutes with

large misfit volumes that is a hallmark of the edge theory. The high temperature mechanisms

of strength loss remain unknown but appear correlated with vacancy formation energy and/or

melting temperature. The reduced analytic theory (Eq. (7.8)) provides a validated mecha-

nistic path for selection of BCC HEA compositions for high strength that can be reaffirmed

by application of the full theory for the most promising compositions. The strength theory

can also be combined with other performance metrics to identify new compositions that are

strong at high temperatures, ductile, single-phase, and/or oxidation-resistant, fulfilling the

multi-performance requirements of many applications.
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8 Model of Dynamic Strain Aging in
BCC High-Entropy Alloys

This chapter is extracted from the following publication

Ghafarollahi, Alireza, and William A. Curtin. "The strength plateau at intermediate

temperatures in BCC High-Entropy Alloys: a Dynamic Strain Aging mechanism." Under

preparation

High Entropy Alloys, i.e. multicomponent non-dilute near-random crystalline metals [98, 99,

57, 46], are showing remarkable mechanical properties such as yield strength [198, 144, 83],

ductility [87], fracture toughness [54, 53, 193], and resistance to hydrogen embrittlement

[201, 200, 108, 206]. With millions of possible compositions within just one crystal structure,

there is a significant effort to understand the detailed underlying deformation mechanisms as

a function of the alloy crystal structure, composition, temperature, and thermodynamics, so

as to aid the discovery of new alloys that can satisfy many different performance requirements.

The BCC refractory HEAs composed of the family of Cr-Mo-W-V-Nb-Ta-Ti-Zr-Hf-Al are of par-

ticular interest due to their high-temperature strength retention [142, 145, 140, 139, 141, 138],

exceeding the capabilities of current superalloys, although improvements in low-temperature

ductility are needed [145, 91]. For instance, the two well-studied MoNbTaW and MoNbTaVW

alloys retain strengths of 400 and 480 MPa at 1600C [145]. Very recent theoretical and experi-

mental studies have proposed that yield strength in these and other BCC HEAs is controlled

by edge dislocation [93, 83]. The theory predicts that edge dislocations face very high energy

barriers to motion, leading to high strengths and high strength retention at elevated temper-

atures and attaining good agreement with various experiments. Screw dislocations are also

significantly strengthened [94, 50], and may dominate the deformation as in dilute BCC alloys

[49, 48]. Screw strengthening includes strengthening due to the formation of jog/cross-kink

defects that fail by formation of energetically-costly vacancy and self-interstitial defects, and

this can also convey high temperature strength [94].

Existing theories predict that both edge and screw strengths are controlled by thermal acti-
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vation, leading to a temperature- and strain-rate-dependent yield strength. While strength

generally decreases with increasing temperature, as expected, many of the HEAs show a dis-

tinct plateau in strength versus temperature at intermediate temperatures, as seen in Figure

8.1 for a selection of alloys. At higher temperatures, the strength then decreases again, either

rapidly or gradually. A true plateau in yield strength corresponds to an alloy with zero strain

rate sensitivity (SRS), and it is difficult theoretically to identify mechanisms that have zero

SRS. Very low SRS can be achieved for processes that have a very high energy barrier, such

as forest hardening, i.e. the breaking of dislocation junctions, and precipitate hardening, i.e.

shearing or looping of precipitates in the alloy. Neither of these mechanisms controls the

initial yield strength in precipitate-free, well-annealed HEAs, however. The formation of screw

cross-kinks may be athermal, but current models result in temperature-dependent cross-kink

strengthening and screw strengthening may not control strength in all of the alloys where the

plateau is observed. Thus, the origins of the intermediate-temperature strength plateau re-

main unknown. Understanding the mechanism(s) of this plateau would identify what features

of the alloy control this regime of deformation, enabling possible tuning of strength in this

domain that could also be important for manufacturing. In addition, understanding of this

phenomenon would either cement our knowledge of the deformation mechanisms in BCC

HEAs or necessitate the development of new mechanism(s) that might then be controlled or

exploited.
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Figure 8.1 – Experimental data of yield stress versus temperature for various BCC HEAs. The
experimental data for BCC metals in (a) exhibit a plateau in strength over the temperature
range of ≈ 700 < T <≈ 1200, while those in (b) show a plateau for ≈ 900K < T <≈ 1300K.

Here, we examine one possible mechanism for the intermediate-T strength plateau: the

dynamic strain aging (DSA) process of solute diffusion immediately across the core of an edge

dislocation. This mechanism, developed to explain DSA in dilute FCC alloys such as Al-Mg 5xxx

alloys [30], can lead to a temperature domain of zero SRS followed by a subsequent resumption
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8.1. Cross-core diffusion: mechanism and energetics

of thermally-activated softening at higher temperatures [150, 151], as discussed below. This

behavior aligns qualitatively with the observed behavior in BCC HEAs. We thus adopt the cross-

core diffusion concept, generalize it to the non-dilute HEA case, and use atomistic simulations

to demonstrate the temperature-dependent strengthening that results. An analytic model

captures the major dependencies in terms of underlying material properties, and can thus be

applied to other alloys. Quantitative agreement with experiments on MoNbTaW is achieved if

there is a fairly high non-equilibrium vacancy concentration or accelerated vacancy diffusion

in the dislocation core. This should drive further studies of realistic vacancy energetics and

kinetics in these complex alloys.

The remainder of this paper is organized as follows. In the next Section, we introduce the

cross-core diffusion mechanism and the energetic driving forces for it at the atomic scale.

A model for the cross-core energy barrier is then presented and validated by the atomistic

simulations. Section 8.1.5 discusses the kinetic model for cross-core diffusion to predict the

time-dependence of the cross-core diffusion energy barrier. The energetic and kinetic models

are then used in Section 8.2 to predict the strength of the model MoNbTaW HEA. Section 8.3

discusses aspects of the work here and summarizes our results.

8.1 Cross-core diffusion: mechanism and energetics

8.1.1 Solute strengthening

A dislocation in an alloy interacts with solutes, and the interaction energy of a type-n solute at

position x relative to the center of the dislocation is U n
i nt (x). Figure 8.2 shows the solute/edge

dislocation interaction energies at many positions around an edge dislocation in a model

MoNbTaW HEA as described using the Zhou et al. interatomic potentials [203], which have

been shown to be suitable for reasonable quantitative modeling of BCC edge dislocations in

these alloys. Details of the computational methods can be found in A.6. Due to local solute

fluctuations in a random alloy, the dislocation becomes wavy. It is pinned in local low-energy

regions over a characteristic segment length ζc , with adjacent local high-energy regions at a

characteristic distance wc along the glide plane [172, 93]. Under an applied stress, the motion

of the dislocation is controlled by thermal activation of these segments out of their local

energy minima and over the adjacent energy maxima. This determines the temperature- and

strain-rate-dependent flow stress in a random alloy in the absence of any solute diffusion

processes.

An edge dislocation generates an elastic pressure field. In an alloy, each atomic species can

be viewed as a solute in a hypothetical average matrix material, and thus each solute type n

has a misfit volume ∆Vn in that average matrix. The interaction energy of a solute with the

pressure field p(x) at atomic position x around the edge dislocation in the average matrix

is U n
i nt (x) = −p(x)∆Vn . This interaction energy dominates the solute strengthening in the

random alloy.
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Figure 8.2 – Interaction energy map of Nb, Ta, Mo, and W solutes with the edge dislocation in
the average-atom MoNbTaW alloy computed by Zhou et al. EAM-type interatomic potentials
[203].

8.1.2 Cross-core diffusion

Solutes in the atomic planes immediately above and below the glide plane have different signs

of the pressure field, and hence there is an energetic driving force for a solute to move from

one side of the glide plane to the other. The pressure field is by far the largest in the core

region of the dislocation, and so the energy difference is largest in the core region, leading

to the labeling of this phenomenon as ”cross-core" diffusion. Cross-core diffusion occurs

during the time that the dislocation is pinned in the local minima created by the initial random

fluctuations.

Cross-core diffusion of solutes lowers the total energy of the dislocation/solute system at the

current position of the dislocation. Glide of the dislocation thus requires an additional applied

stress, and so cross-core diffusion leads to strengthening. Since the cross-core diffusion

requires solute diffusion, it is a kinetic process. The longer the dislocation resides in its current

position, the more solutes can diffuse, and the higher the strengthening. The cross-core

diffusion strengthening thus depends on both temperature and strain rate, the latter imposing

an average time that dislocations reside in their local solute environments before escaping

and moving to new local environments. Cross-core diffusion is thus a mechanism of dynamic

strain aging.

Importantly, since there are only a finite number of solutes in the core region, the cross-core

process saturates. The driving forces for diffusion of solutes outside of the core are too slow to

continue the aging process. In dilute FCC Al alloys [30], it was also found that the vacancy-

mediated solute migration barrier in the very core could be substantially lower than that in

the bulk [112], leading to greatly accelerated kinetics of solute diffusion across the core and

thus further separating the time scales for bulk and cross-core diffusion.
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8.1. Cross-core diffusion: mechanism and energetics

8.1.3 Cross-core energetics

Modeling of cross-core diffusion in an HEA begins with an assessment of the energetic driving

forces for solutes just above and below the glide plane and in the core region of the dislocation.

As seen in Figure 8.2 for MoNbTaW, solutes Nb and Ta have positive misfit volumes and

hence have lower interaction energies on the tension (top) side of the dislocation core. In

contrast, Mo and W have negative misfit volumes and so have lower interaction energies on

the compressive (bottom) side of the core. The interaction energies are not entirely due to

misfit, and for this model alloy there is a ”chemical" correction in the core for Nb and W that

offsets the pressure field contribution on one side of the core. This leads to positive interaction

energies on both planes just above and just below the core.

For the initial pinned dislocation prior to any cross-core diffusion, the solutes (e.g. Nb, Ta, Mo,

W) will be found on both sides of the edge core. The diffusion of solutes from unfavorable

(high energy) to favorable (low energy) locations across the core results in a lowering the total

energy of the system. In the non-dilute alloy, the diffusion of solutes, while vacancy-mediated,

eventually occurs in pairs, i.e. on net, solute pairs change positions across the core. Figure 8.3

shows the change in energy for different possible pairs of solute ”swaps" upon motion from

unfavorable positions to neighboring favorable positions across the core; due to symmetry,

only one half of the paths are shown. Here and throughout the rest of the paper, the energy

reductions due to swaps in solute pairs from unfavorable to favorable positions are expressed

as positive quantities. Due to the similarities between Nb and Ta, and between Mo and W,

transitions involving (Nb,Ta) pairs and (Mo,W) pairs have very low energy changes and are not

shown. Swaps that that are not ”cross-core" also have significantly lower energy changes than

”cross-core" swaps, and so are also not shown. Fig. 8.3 reveals that the swaps in solute pairs

from unfavorable to favorable positions give rise to energy reductions of ∆W ∼+0.2±0.05eV

for all the different pairs over a core interaction region of width w ≈ 3b = 8.5Å. Solute swaps at

distances beyond w ≈ 3b = 8.5Å decrease steadily toward zero.

The number of cross-core swaps increases with time due to diffusion during the time over

which the dislocation is pinned in the local minima. We define ρ as the density of diffused

solutes per unit area of the dislocation core; the time dependence of ρ is not indicated but

will be address later. With the diffusion of solutes occurring predominantly over a core width

of w (w = 8.5Å in the model alloy) within the pinned segments of length ζc , we approximate

the dislocation/solute binding energy change as ρwζc∆W within −w/2 < x < w/2 and zero

for larger |x|. The dislocation energy change solely due to the cross core diffusion can thus be

expressed as

∆E xc (ρ) = H(w −x)ρwζc∆W (1−x/w) (8.1)

where H(·) is the Heaviside step function.

To predict the additional strengthening after cross-core diffusion up to density ρ, we now

develop and validate a model for the energy E(x,ρ,τ) of the dislocation/solute segment of
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Figure 8.3 – Energy difference for different solute-types swaps versus transition paths across
the core as numbered in the inset. Only transitions from higher to lower energy states have
been considered in these calculations.

length ζc as a function of (i) the dislocation position x relative to its initial position at x = 0, (ii)

the density of diffused solutes ρ per unit area of the core, and (iii) the applied stress τ. With

E (0)(x) the energy landscape in the absence of applied stress and before any solute diffusion,

the work done by an applied resolved shear stress over a glide distance x, and the energy

change due to the cross core, the total energy is then

E(x,ρ,τ) = E (0)(x)−τbζc x −H(w −x)ρwζc∆W (1−x/w) (8.2)

which, after some algebra, can be re-arranged as

E(x,ρ,τ) = E (0)(x)− (τ−H(w −x)∆τ)bζc x −H(w −x)ρwζc∆W (8.3)

Here,

∆τ(ρ) = ρ∆W /b (8.4)

is the additional strengthening due to cross-core diffusion. The additional strengthening is

directly proportional to the cross-core diffusion density and energy change ∆W and inde-

pendent of ζc , w , the original strength, or initial barrier. Eq. (8.3) is the stress- and solute-

diffusion-dependent total energy landscape.
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The energy barriers between local minima and adjacent maxima can be computed from Eq.

8.3 for each specific alloy realization and local initial energy landscape E (0)(x) of a pinned

dislocation segment. The zero-temperature flow stress is the stress at which the stable local

minimum disappears and the barrier becomes zero, and occurs when dE(x,ρ,τ)/d x = 0. In

the absence of cross-core diffusion, ∆E (0)
b (τ) is predicted by the model of Maresca et al. [93]

and historical models as

∆E (0)
b (τ) =∆E (0)

b

(
1− τ

τy0

) 3
2

(8.5)

where ∆E (0)
b is the zero-stress energy barrier andτy0 is the T=0 strength associated with the

landscape E0)(x). This result is for high stresses/low temperatures (τ> τy0/2) or low tempera-

tures, with a modified result at lower stresses/higher temperatures that is neglected here for

analytic simplicity. With cross core, the zero-T strengthening is simply τy0+∆τ and the energy

barrier ∆Eb as a function of applied stress and cross-core diffusion parameter ρ is then

∆Eb(τ,ρ) =∆E (0)
b

(
1− τ−∆τ(ρ)

τy0

) 3
2

(8.6)

The model of Eq. (8.6) for the barrier versus the degree of cross-core diffusion is validated

against atomistic simulations in the next section.

8.1.4 Validation of the cross-core energy barrier model

To assess the theoretical model for the energy landscape and thus the energy barrier due

to cross-core diffusion, we execute NEB simulations in the model NbMoTaW alloy. An NEB

simulation finds the minimum energy path (MEP) between two neighboring minimum energy

states, and here is executed as a function of the degree of cross-core diffusion ρ. Details of the

atomistic simulations to find the two adjacent minimum dislocation configurations can be

found in a recent work [81]. The cross-core diffusion of solutes is then incorporated as follows.

Starting from the initial minimum energy position in the absence of solute diffusion for a

given realization of the random alloy, we randomly pick two neighboring solutes on either

side of the dislocation core. We do not consider swaps for (Nb,Ta) or (Mo,W) pairs since these

are negligible in this system. We then swap the two chosen atoms, minimize the total energy,

and compute the energy difference due to the swapping. The swap is accepted if the energy

is reduced and rejected if the energy is increased. As the swapping process continues, the

cross-core diffusion density ρ increases, the initial minimum energy state is evolving, and

NEB is executed for a sequence of configurations having increasing ρ. The solute swapping

process is continued until no further energy reductions can be achieved, i.e. the cross-core

diffusion has saturated.

A typical example of the evolution of the minimum energy path for a specific random realiza-

tion as a function of actual solute-pair switches (density ρ) is shown in Figure 8.4. Here x is
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computed as the mean dislocation position by averaging over the x component of the core

position as identified by Common Neighbor Analysis. Cross-core diffusion around the initial

state reduces the energy at the minimum position x = 0 and also during initial glide of the

dislocation. Because the energy barrier at distance wc is typically greater than w , however, the

energy at the transition state and beyond is essentially unchanged by the cross-core diffusion.

The energy barrier is thus increasing with increasing cross-core diffusion density ρ. The barrier

energy changes are very large, with the barrier shown in Figure 8.4 evolving from ∼ 1.5 eV to

∼ 4 eV as diffusion progresses.
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Figure 8.4 – NEB results for a sample MoNbTaW random alloy at different cross-core diffusion
states ρ.

The NEB simulations provide the energy landscape E (x,0,ρ) = E (0)(x)+∆E xc in the absence of

applied stress for a certain diffusion density ρ. The energy in the presence of the applied stress

is then modeled using Eq. (8.2) above. To accurately examine the average barrier versus applied

stress, 100 random realizations of the model alloy are studied. For each random realization, the

energy barrier (max minus min) as a function of the applied stress τ is computed. Averaging

over the 100 random realizations for the same number of accepted solute swaps (same density

ρ), we obtain the atomistically-computed average energy barrier as a function of τ and ρ as

shown in Fig. 8.5. The results of the analytical model of Eq. (8.6) are also shown and very

good agreement is achieved. This analysis validates the analytical theory for the energy barrier

versus ρ and τ.
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Figure 8.5 – Average energy barrier versus applied stress over 100 realizations of edge dis-
location motion in random NbMoTaW alloy between two adjacent local minimum energy
states for different number of solute swaps (diffused density ρ) as obtained by direct NEB
simulations and predicted by theoretical model, Eq. (8.6) using an average solute-swap energy
change of ∆W = 200 meV

8.1.5 Kinetic model of cross-core diffusion

Cross-core diffusion is a time-dependent mechanism, occurring while the dislocation is

pinned. Thus, ρ(t) is time-dependent, leading to a time-dependent energy barrier and,

consequently, dynamic strain aging effects. Here, we model the kinetics of cross-core diffusion

to obtain ρ(t ) and thus the time-dependent energy barrier for dislocation motion.

Let N f and Nu denote, respectively, the total number of solutes per unit area of the dislocation

core located in favorable (low energy) and unfavorable (high energy) sites in the core region.

Moreover, assume that for every solute-pair swap the energy change is the average value

∆W . Now, noting that each site has two neighbors on the opposite side of the slip plane, the

rate of transition from unfavorable to favorable and from unfavorable to favorable sides can,

respectively, be expressed as

Γu→ f = 2Γc e−β∆W /2 (8.7)
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and

Γ f →u = 2Γc e+β∆W /2 (8.8)

where β= 1/kT and Γc = ν0e−β∆Hc denotes the core transition rate having enthalpy barrier

∆Hc and ν0 is an attempt frequency. The ratio of the above two rates is eβ∆W as required by

detailed balance. The evolution of the number of solutes in favorable and unfavorable sites

then follows the Master Equations

Ṅ f (t ) = Γu→ f Nu(t )−Γ f →u N f (t )

Ṅu(t ) = Γ f →u N f (t )−Γu→ f Nu(t )
(8.9)

where the dot denotes the time derivative.

With initial values N f = Nu = N0, the solution of the above equations is straightforward and

the density of diffused solutes per unit area ρ(t ) is

ρ(t ) = (
N f (t )−N0

)
/wζc = ρ∞ tanh

(
β∆W

2

)(
1−e

− t
td

)
(8.10)

Here td is the characteristic time scale for the diffusion process

td =
(

4cosh

(
β∆W

2

)
Γc

)−1

≈
(

2ν0e
−β

(
∆Hc− ∆W

2

))−1

(8.11)

and ρ∞ is the average maximum density of solutes at saturation. In theory, in a random alloy,

ρ∞ = N0/wζc = 1/2b2. For NbMoTaW, this value would be is ρ∞ = 6.4 nm−2 but the atomistic

simulations yield ρ∞ ∼ 3.5 nm−2; the difference arises, in part, because the initially-pinned

solute already has more-favorable solutes than in a random environment.

Using Eqs. (8.1) and (8.10), the time-dependent change in energy barrier of the dislocation

segment of length ζc due to cross-core solute diffusion is

∆E xc
b (ρ(t )) =∆E xc

b∞
(
1−e

− t
td

)
(8.12)

where

∆E xc
b∞ = ρ∞wζc∆W tanh

(
β∆W

2

)
. (8.13)

is the maximum change in energy barrier achieved at saturation of the diffusion.

The time-dependent additional strength due to cross-core diffusion is then

∆τ(ρ(t )) =∆E xc
b (ρ(t ))/bwζc =∆τ∞

(
1−e

− t
td

)
(8.14)
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where

∆τ∞ =
[
ρ∞∆W /b

]
tanh

(
β∆W

2

)
(8.15)

is the maximum additional strengthening due to cross-core diffusion. Eqs. (8.12) and (8.14)

constitute our main results for the present study.

8.1.6 Yield strength versus temperature

The previous sections have addressed the evolving barrier of a single dislocation as cross-core

diffusion proceeds. We now need to connect this behavior to the dependence of the yield

stress versus temperature (T) and strain-rate (ε̇). This is achieved using Orowan’s Law and

thermal-activation theory. However, since the energy barrier is now time-dependent, the

analysis is more complex than in the standard situation where the barrier is independent of

time. We follow closely the analysis of Soare et al. [150, 151] to obtain the yield stress.

At constant strain rate ε̇, Orowan’s law dictates that the average waiting time tw of a dislocation

must satisfy

ε̇=Ω/t̄w (8.16)

with Ω= ρmbd̄ where ρm is the mobile dislocation density and d̄ ∼ wc is the average flight

distance between dislocation pinning points. Using typical values of ρm = 1012m−2 and

wc ≈ 10Å,Ω≈ 10−7. The yield stress τ is then the stress at which the average waiting time is t̄w .

The plastic flow involves escape of the dislocations from their (evolving) locally-pinned en-

vironments. Starting at the absolute time tp at which a dislocation last became pinned (i.e.

arrive at the current pinning location) and at a stress τ, the instantaneous rate of escape over

the time-dependent energy barrier at a later time t is

r (τ, t − tp ) = ν0 exp

(
−∆Eb(τ,ρ(t − tp ))

kT

)
. (8.17)

where ν0 is the microscopic attempt frequency for escape over the barrier. The stress- and

time-dependent energy barrier with cross-core diffusion (Eq. (8.6)) is

∆Eb(τ, t − tp ) =∆E (0)
b

(
1− τ−∆τ(ρ(t − tp ))

τy0

) 3
2

. (8.18)

The average waiting time t̄w is then the mean of the escape probability

t̄w =
∫ ∞

0
exp

(
−

∫ t

tp

r (τ, t ′− tp )d(t ′− tp )

)
dt (8.19)

This expression connects the waiting time and stress at temperature T. Orowan’s Law is then
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used to relate the strain rate and stress at temperature T. Using Eq. (8.5) for the barrier function,

Soare et al. [150, 151] derived an accurate analytical form for tw as a function of ∆E0, ∆τ∞, τ,

and temperature that is shown in A.7. With the result of Soare et al., the yield stress at (T, ε̇)

can be computed numerically.

Finally, the tensile yield strength is obtained from the shear stress using the Taylor factor 3.067

for edge glide in BCC polycrystals.

8.2 Dynamic strain aging in MoNbTaW

Here, the energetic and kinetic models developed above are used to predict the strength of

the MoNbTaW alloy in the presence of cross-core diffusion. The main input parameters to

the theory come from the edge strengthening theory of Maresca and Curtin in the absence

of cross-core diffusion. The relevant quantities are the zero-stress energy barrier ∆E0 = 2.65

eV and zero-temperature strength τ0 = 420 MPa. The cross-core diffusion parameters are

taken from our study on the model MoNbTaW alloy, with average energy change due to solute

diffusion ∆W = 0.2 eV and maximum cross-core density ρ∞ = 3.5 nm−2. The saturation

cross-core strengthening is then ∆τ∞ = 390 MPa.

For the kinetics, we take the reference core transition rate Γc to be equal to that in the bulk.

Therefore, the activation enthalpy ∆Hc for the vacancy-assisted transition is ∆Hc = ∆Hvf +
∆Hvm where ∆Hvf and ∆Hvm are the vacancy formation and migration enthalpies in the

bulk alloy. The appearance of the vacancy formation energy implies an equilibrium vacancy

concentration at the specified temperature. To incorporate the possibility of an excess vacancy

concentrations, possibly generated by the failure of screw segment cross-kinks occurring at

lower stresses, we write the reference transition rate in terms of the vacancy concentration cv

as

Γc = ν0v cv e−β∆Hvm (8.20)

where ν0v = 1013/s is taken as the estimated attempt frequency for vacancy diffusion. For

the NbMoTaW alloy, we use the concentration-weighted sum of the experimental vacancy

migration barriers in the elemental BCC components [37, 106], yielding ∆Hvm = 1.075 eV. For

reference, the estimated vacancy formation energy taken again as an average of elemental

experimental values is ∆Hvf = 3.125 eV.

The experiments were conducted at a strain rate of ε̇= 10−3s−1 [145]. To match prior results

of Maresca and Curtin at low temperatures and in the absence of any diffusion, the present

model should reduce to

ε̇= ε̇0 exp

(
−
∆E (0)

b (τ)

kT

)
. (8.21)
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where ε̇0 = 104s−1 is the reference strain rate used by Maresca and Curtin. Matching this result

then requiresΩ= ε̇0/ν0. Using ν0 = 1011s−1 for the dislocation attempt frequency, we obtain

Ω= 10−7 that agrees with an estimate given above. From Eq. (8.16), the average waiting time

is then t̄w = 10−4s.

Figure 8.6 shows the predictions of for the strength versus temperature for MoNbTaW HEA,

for various assumed vacancy concentrations along with the experimental results of [145] and

the predictions of Maresca and Curtin theory in the absence of cross-core diffusion. Using

the equilibrium vacancy concentration, there is no DSA effect at any reasonable temperature

because the average vacancy formation energy is very large. If the vacancy concentration

is higher than the equilibrium value, a DSA effect is seen at elevated temperatures, with

an increasing plateau-like region over intermediate temperatures as the assumed vacancy

concentration is increased. Quantitative agreement with experiments requires a vacancy

concentration of cv = 2×10−6. At this concentration, a near-plateau in the range 900-1300K is

predicted. At higher temperatures the strength then decreases steadily, and follows the same

trend as the alloy in the absence of the DSA but with the strength increased by the saturation

DSA strength of ∆τ∞ as indicated in the figure. Thus, the DSA model can rationalize the

observed experimental plateau.
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8.3 Discussion and Conclusions

The cross-core theory can make quantitative contact with experiments for a sufficiently high

non-equilibrium vacancy concentration. We also note that specific results depend on the

two attempt frequencies ν0v and ν0d in combination with cv . So, the precise value of cv

needed to match experiments should not be taken as definitive. This cv value is much larger

than the equilibrium values (that vary strongly with temperature). However, such vacancy

concentrations can arise during plastic flow in other metals. We mentioned previously that

the vacancy concentration could be elevated in BCC alloys due to screw dislocation motion at

lower stress levels that occurs by the failure of screw cross-kinks (also called jogs) that require

formation of vacancies and self-interstitials [94]. These vacancies could then be available

for diffusion until they annihilate with the self-interstitials or elsewhere. Vacancies are also

attracted to the core by the driving force −p(x)∆Vv and this might enhance the average

vacancy concentration in the core on the positive pressure side. The result here could also

be achieved if the kinetics of diffusion in the core is accelerated sufficiently by other physical

processes. For instance, the vacancy migration energy across the very center of the dislocation

core might differ from the bulk, as found in the core of FCC Al. Also, vacancy pipe diffusion

along the core of the dislocation could accelerate the cross-core process relative to the present

basic analysis. Neither of these phenomena needed to be invoked in describing DSA in FCC

Al, however. Furthermore, using the equilibrium vacancy concentration, agreement with

experiment cannot be obtained even if the vacancy migration enthalpy is reduced to zero.

Hence, a combination of increased vacancy concentration and decreased vacancy migration

(in the core) would be necessary.

The cross-core diffusion via dynamic strain aging mechanism was examined as a possible

route to provide additional strengthening in BCC HEAs where the strength is controlled

by the motion of edge dislocations. The predictive model was shown to provide substantial

strengthening through the movement of solute-pairs right at the dislocation core, in agreement

with atomistic simulations. The predicted results for the strength of MoNbTaW HEA, however,

showed that the range of temperatures at which the diffusion starts to happen are far above

the experimental observations, due to their very high values for the vacancy formation energy.

Therefore, it was proposed that out-of-equilibrium excessive vacancies need to be present in

the system, to have the theoretical results capture the experiments. These excess vacancies

could stem from the cross-kink failure, a well known mechanism for screw dislocation motion

in BCC HEAs, which requires formation of vacancies.

To make the prediction, we used the concentration-weighted sum over the vacancy forma-

tion/migration energies in the elemental BCC components which its accuracy remains uncer-

tain. Moreover, the energies associated with vacancy formation/migration are temperature-

dependent and reduce with increasing the temperature. These motivate further studying of

energetics and kinetics of vacancy point defect in HEAs.

Although, the theory was merely applied to predict the strength of a model NbMoTaW HEA, it
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8.3. Discussion and Conclusions

can be readily extended to other family of BCC alloys which possess a plateau in their plot of

strength versus temperature. The main quantity to be computed is the interaction energies

at various sites around the edge core which can then be used to calculate the average energy

barrier change. In overall, the dynamic strain aging model via cross core diffusion presented

in this paper, captures the major features observed in the experiments and sheds light on the

origin of the additional strengthening in HEAs causing the plateau in strength, which to our

knowledge, has not been established.
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9 Conclusion

In this thesis, we investigated in detail the underlying solute strengthening mechanisms in

BCC dilute and high-entopy alloys. We developed theoretical models that enable us to predict

the yield strength of the alloy as a function of underlying material quantities without any

fitting parameter. The developed statistical theoretical models have been extensively validated

via atomistic simulations.

The fundamental quantity in solute strengthening theories is the interaction energy between

solutes and an individual dislocation which can be obtained by DFT calculations or atomistic

simulations using EAM potentials. We first defined the proper solute/screw interaction energy

parameter relevant for strengthening of screw dislocations in random bcc alloys with any

number of components and concentrations. In contrast to the assumptions made by the

previous researchers, the solute/screw interaction energy is not confined to any finite range

and the effect of all solutes, out to infinite distance in principle, are considered. Using EAM

potentials as a model system, we found that an accurate interaction energy parameter requires

consideration of solutes out to sixth neighbors (four shells). This range is also consistent with

literature first-principles studies in dilute alloys. This interaction energy parameter plays the

essential role in developing our strengthening theories for screw dislocation motion in BCC

dilute and high-entropy alloys.

Computing an accurate estimation of the interaction energy parameter in complex alloys is a

challenging task. Although, for alloys describable by EAM potential, the convenient average-

alloy method can be used as a very clean approach in complex alloys such as HEAs, their

accuracy remains uncertain. The use of DFT calculations in computing interaction energies

is still limited to binary systems, since there is currently no equivalent of the average-alloy

potential in the first-principles framework. Moreover, as discussed in Section 2.4.1, another

challenging issue with the existing EAM potentials is the prediction of wrong non-compact core

structure. In light of the above, the development of accurate and general-purpose interatomic

potentials is a demanding goal, especially for BCC HEAs. State-of-the-art machine learning

methods appears to be one of the most likely avenues for developing high accuracy interatomic

potentials for complex alloys. A machine learning potential for BCC MoNbTaW refractory HEA
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Chapter 9. Conclusion

has been developed recently [195] and was employed in molecular dynamic simulations to

investigate the mechanisms of the movement of dislocations.

The plastic deformation in dilute BCC alloys occurs by double-kink nucleation and kink

migration processes which are influenced by the presence of solutes. We have developed an

analytical theory for the stress-dependent double-kink nucleation and kink migration barriers

in random dilute BCC alloys. We have shown that the kink migration process under stress

is essentially the random walk-type ”Wiener process with drift”. The material parameters in

the theories are only (I) the solute/screw dislocation interaction energies, (II) the transition

state configurations of the pure matrix, (III) the double-kink enthalpy barrier versus stress for

the pure matrix, (IV) the total dislocation length, and (V) emerging to a play a minor role, the

kink-width in the pure metal. The theory have been extensively validated on a model Fe-Si

alloy via NEB calculations and direct stochastic simulations. The EAM interatomic potential

describing the Fe-Fe interactions has all the key features of plastic deformation in BCC alloys.

The developed theories provide a fully-analytic model for strengthening of screw dislocations

over the full temperature range in the dilute regime concentration. Our theoretical predictions

are in quantitative agreement with the experimental results of Fe-Si dilute alloys. However, our

theory is incapable of predicting the small hump in the data for 0.52at%Si around 150K. The

origin of this hump remains unknown to date and needs additional study and exploration.

The theory of solute strengthening in dilute BCC alloys was developed based on the fact

that the interaction energy of solute with the dislocation does not exceed the double-kink

nucleation barrier. This limit is valid for many substitutional solutes in most BCC metals

but ceases to hold for interstitial solutes where, according to DFT results, posess very large

interaction energies. Another issue raised by interstitials is the possibility in changing the

screw core from compact to non-compact structures. The above issues call for a deeper study

on the effect of interstitial solutes on the energetics of double-kink nucleation and migration

processes.

In contrast to dilute alloys, the zero-temperature and zero-stress initial structure of the screw

dislocation in non-dilute and HEAs is kinked at a characteristic length of ζc . Three mechanisms

have shown to involve in the plastic deformation, Peierls-like motion, kink-migration, and

cross-kink failure. In this thesis, based on our understanding of kink migration in dilute

alloys, we developed a new theory for kink migration process in non-dilute alloys which was

validated against stochastic simulations. The double-kink nucleation and migration theories

plus the revised version of Maresca et al. theory together provide a coherent framework for

strengthening of screw dislocations over the full range of concentrations from extremely dilute

(« 1 at.%), to dilute (up to a few at.%) and non-dilute alloys including High Entropy Alloys.

The transition between dilute and non-dilute regime was understood to be mainly dictated

by the spacing of the spontaneous kinks, 2.5ζc . If this length is predicted to be larger than

or comparable to L, then the spontaneous kinked structure cannot actually form, where L is

the distance between forest junctions. Such alloys are in the dilute regime where motion is
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controlled by double-kink nucleation and migration processes. If the kink spacing is smaller

than L we are in the non-dilute regime and the revised non-dilute theory should be applied.

The dilute to non-dilute transition is thus not considered to be temperature-dependent

because the length scale ζc in the Maresca-Curtin model is related to energy minimization

that should occur at T=0K. However, as dicussed in Section4.4.1, the controlling strengthening

mechanism may be a complex and temperature- dependent interplay between the dilute and

non-dilute mechanisms. Such an interplay was not considered in this thesis and needs further

study.

As it was mentioned above, one of the mechanisms involved in the screw dislocation motion

in non-dilute alloys in the breaking of cross-kinks due to kink formation on different glide

planes. In Maresca and Curtin theory, this mechanism was assumed to be thermally activated.

However, since defects must be formed in this process, the cross-kink strength may actually

be athermal, with temperature entering through the vacancy and self-interstitial free energies.

Therefore, corss-kink failure mechanism is another intriguing aspect of strengthening in non-

dilute alloys which, to our knowledge, has not been carefully studied in the literature, and

needs additional examination.

Refractory high entropy alloys show high strength retention at elevated temperatures. Our

detailed NEB simulations of the energy landscape for edge dislocations in two random NbTaV

and MoNbTaW model alloys, revealed the high energy barriers encountered by edge disloca-

tions. A reduced version of the theory has then been applied to two Hf-Mo-Nb-Ta-Ti-Zr and

Mo-Nb-Ta-Ti-V-W families of alloys. The theory rationalizes the observed significant increases

in strength caused by the addition of solutes with large misfit volumes that is a hallmark of

the edge theory. There is a strong loss of strength observed for the Hf-Mo-Nb-Ta-Ti-Zr family

of alloys between 1000 and 1200 ◦C. High-temperature mechanisms that can defeat edge

strengthening are unclear at this time and requires further research. We postulated that there

is some vacancy-related mechanism, such as climb, by which the large edge barriers can be

circumvented at sufficiently high temperatures. Considering the dislocation climb in random

BCC HEAs is thus a point of interest for future research study.

While strength generally decreases with increasing temperature, as expected, many of the

refractory HEAs show a distinct plateau in strength versus temperature at intermediate temper-

atures. At higher temperatures, the strength then decreases again, either rapidly or gradually.

In this thesis, we examined one possible mechanism for the intermediate-T strength plateau:

the dynamic strain aging (DSA) process of solute diffusion immediately across the core of an

edge dislocation. An analytical model is developed to predict the temperature- and solute-

diffusion dependent strength in terms of underlying material properties. The theory was

then applied to predict the strength versus temperature in a model MoNbTaW BCC HEA.

Quantitative agreement with experiments is achieved if there is a fairly high non-equilibrium

vacancy concentration or accelerated vacancy diffusion in the dislocation core. This should

drive further studies of realistic vacancy energetics and kinetics in these complex alloys.
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Chapter 9. Conclusion

The research work performed as part of this thesis allows us to gain a deeper understanding of

strengthening mechanism in various BCC random alloys from very dilute to multi-component

high entropy alloys. The quantitatively predictive models developed in this enable us to

compute the strength of the material in terms of the underlying material parameters. The

predictive models pave the way for design of novel materials with excellent mechanical

strength and will greatly increase the efficiency and cost of alloy design, compared to physical

experiments.
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A Appendix

A.1 Standard deviation of the potential energy change

In this appendix, we derive the standard deviation of the potential energy change σ∆Utot when

a dislocation segment nucleates over a distance ldk in a random field of solutes, in a dilute

binary alloy. The stress-dependent total change in the nucleation barrier due to the nucleation

of dislocation is

∆H sol(τ) = ∑
i , j ,k

si j k∆Ui j (a) g (zk ,τ), (A.1)

where the site occupation variable si j k = 1 if a solute is at position (xi , y j , zk ) and 0 otherwise.

Positions (xi , y j , zk ) refer to the atomis sites along one dislocation segment of length ldk . Let

Ns = ldk /b +1 denote the number of atomic sites along z direction at each atomic row (xi , y j ).

Also, let label the atoms in each atomic row (xi , y j ) by k = 1. . . Ns .

The quantity of interest in the nucleation model is the standard deviation of the total energy

change as defined in Eq. (4.4) which requires 〈∆H sol〉2
and 〈∆H sol2〉. We can write

〈∆H sol〉2 =∑
i , j

∑
k

〈si j k〉2
∆U 2

i j g (zk ,τ)2

+∑
i , j

∑
k,l 6=k

〈si j k〉〈si j l 〉∆U 2
i j g (zk ,τ) g (zl ,τ)

+ ∑
i , j

m,n 6=i , j

∑
k,l

〈si j k〉〈smnl 〉∆Ui j g (zk ,τ)∆Umn g (zl ,τ)

(A.2)
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〈∆H sol2〉 =∑
i , j

∑
k

〈s2
i j k〉∆U 2

i j g (zk ,τ)2

+∑
i , j

∑
k,l 6=k

〈si j k si j l 〉∆U 2
i j g (zk ,τ) g (zl ,τ)

+ ∑
i , j

m,n 6=i , j

∑
k,l

〈si j k〉〈smnl 〉∆Ui j g (zk ,τ)∆Umn g (zl ,τ)

(A.3)

The square of the standard deviation of the potential energy change therefore equals

σ2
∆H sol =

∑
i , j

[∑
k

[
〈s2

i j k〉−〈si j k〉2
]
∆U 2

i j g (zk ,τ)2

+ ∑
k,l 6=k

[
〈si j k si j l 〉−〈si j k〉〈si j l 〉

]
∆U 2

i j g (zk ,τ) g (zl ,τ)

]
.

(A.4)

This result involves the variances and co-variances of the occupation variable si j k . Note that

〈si j k〉 = c. We have

〈si j k si j l 〉 =
∑
k

Ns !

k !(Ns −k)!
ck (1− c)Ns−k

× ∑
kk ,kl

k !

kk !kl !(k −kk −kl )!

(
1

Ns

)kk+kl
(
1− 1

Ns

)k−kk−kl

kk kl

=∑
k

Ns !

k !(Ns −k)!
ck (1− c)Ns−k

(
1

Ns

)2

k(k −1)

= c2
(
1− 1

Ns

)
,

(A.5)

with 1 ≤ k ≤ Ns and 0 ≤ kk +kl ≤ k, and

〈s2
i j k〉 =

∑
k

Ns !

k !(Ns −k)!
ck (1− c)Ns−k

×∑
kk

k !

kk !(k −kk )!

(
1

Ns

)kk
(
1− 1

Ns

)k−kk

k2
k

=∑
k

Ns !

k !(Ns −k)!
ck (1− c)Ns−k

×
[(

1

Ns

)2

k2 + 1

Ns

(
1− 1

Ns

)
k

]
=

(
1

Ns

)2 [
c2N 2

s + c(1− c)Ns
]+ c

(
1− 1

Ns

)
= c + c2

(
1− 1

Ns

)
,

(A.6)

with 1 ≤ k ≤ Ns and 0 ≤ kk ≤ k. Inserting Eqs. (A.5) and (A.6) into Eq. (A.4) and neglecting the
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A.2. Double-kink nucleation rate

second order terms in c (c2 ¿ 1), we obtain

σ2
∆H sol =

∑
i , j

c∆U 2
i j

∑
k

g (zk ,τ)2 (A.7)

Finally, by defining the z = 0 to be located right at the double-kink nucleus, the above equation

can be rewritten as

σ2
∆Usol

=∑
i , j

c∆U 2
i j

Ns∑
k=−Ns

g (k b,τ)2. (A.8)

Here, Ns = ldk /(2b).

A.2 Double-kink nucleation rate

The total double-kink nucleation rate is the sum of the rates of all N nucleation sites which

can be described as

R = ν0N exp

(
−∆H 0(τ)

k T

) ∞∫
∆H̄ sol(c,N ,τ)

d∆HP [∆H ]exp

(
−∆H

k T

)
, (A.9)

where P [∆H ] is the probability of finding the double-kink nucleation segment with solute

energy change ∆H given by Eq. (4.8). After some manupulations the above equation can be

rewritten as Eq. (4.9). It is of interest to find the temperature T0 below which the weakest

link dominates and thus the rate can be expressed by 4.15. To this end, we use the following

approximated form for erfc(x) [77]

erfc(x) ≈ (1−e−1.98 x )e−x2

1.135
p
πx

(A.10)

Substitutiong the above relation into Eq. (4.9) and equating the resultant equation with

Eq. (4.15), gives the following solution for T0 which is the temperature at which the two

representations of double-kink nucleation rate become equal

k T0

σ∆H sol (c,τ)
=

(
0.35Ne−

c2
N
2 +0.7W

[
−0.5N exp

(
−0.5Ne−

c2
N
2 − c2

N

2

)]
− cN

)−1

(A.11)

where W [·] stands for the Lambert W-function and cN = bN − γaN . This temperature is

approximately k T0 = 0.255σ∆H sol over a wide range of N . However, since σ∆H sol (c,τ) depends

on the applied stress τ which is not known a-priori, the exact computation of the cross-over

temperature is not possible. It can be shown that, to a high approximation, T0 can be obtained

by solving the following equation

∆H 0
exp(τ) = 0.255σ∆H sol (c,τ) log

[
250

ε̇0

ε̇

]
.

161



Appendix A. Appendix

The above equation gives the yield stress at temperature T0 from which σ∆H sol and thus T0 can

be computed.

A.3 Simulation details of NEB calculations for double-kink nucle-

ation

A.3.1 Periodic array of dislocations (PAD) configuration

To model screw dislocations, we use a periodic array of dislocations (PAD) configuration (e.g.

ref. [8]). Using the Fe lattice parameter, a rectangular simulation cell oriented with [11̄2]

along the glide direction X, [110] along the glide plane normal direction Y, and [1̄11] along

the dislocation line direction Z, was constructed. Periodic boundary conditions are imposed

along X and Z directions, and Y having imposed tractions. The simulation cell has dimensions

L1 ∼ 110A and L2 ∼ 100A and L3 depends on the dislocation length. A screw dislocation of

Burgers vector a/2[111] with line direction along Z is then introduced into the center of the

cell by imposing a linear displacement uz =−bx/lx for 0 < x < lx on all atoms in the upper

half of the simulation cell. Atomic positions are then relaxed by using a combination of the

FIRE algorithm [11] and relaxation of the cell dimensions. Convergence is achieved when the

norm of the force vector fell below 10−6 eV/A and stresses σX X , σX Y , and σY Y fell below 0.1

MPa.

A.3.2 Nudged elastic band (NEB) calculations

To compute the minimum energy path (MEP) connecting the initial and final states, nudged

elastic band (NEB) computations are performed as implemented in LAMMPS using the in-

teratomic potential developed by [147]. To perform NEB simulations, we first construct the

relaxed intitial state as described above in Section A.3.1. The final state has the same structure

as the initial state but shifted by a relative to the initial state as shown in Figure A.1. The

constructed initial and final states are used as templates to carry out the MEP calculations in

dilute alloys. In order to model the Fe-Si dilute alloys, the Fe atoms in initial state configura-

tions were replaced randomly by Si solutes at the desired alloy concentration. Accordingly, the

same Fe solutes were replaced by Si atoms in the final state. The energy of the intial and final

alloy configurations were then minimized using CG and FIRE with the same tolerences on

forces and stresses as specified above. NEB simulations are performed using 60 replicas. An

initial path of intermediate configurations (replicas) is constructed by linearly interpolating

the atomic positions between the relaxed initial and final states. The NEB inter-replica spring

constant is set to 10−2 eV/Å2 and convergence is assumed when the maximum of the force

acting on all of the atoms across all replicas is less than 1×10−3 eV/Å.

The above yields us the MEP at zero applied stress. To find the MEP under applied shear stress,

we follow the procedure outlined in [95] and reiterated here. The direct result of the NEB
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A.4. Activation volume of kink-migration process

Glide direction

top boundary

bottom boundary

a

Figure A.1 – The initial and final screw configurations in pure Fe to be used for subsequent
NEB simulations of double-kink nucleation in dilute Fe-Si alloys. The final state has the
same structure as the initial state but shifted by a relative to the initial state.

calculation at each applied stress τ is the configurational energy V C (τ,ξi ) as a function of the

reaction coordinate ξi ∈ [0,1] of replica i . The enthalpy of each replica at an applied shear

stress τ can then be computed as

H(τ,ξi ) =V C (τ,ξi )−W ext (τ,ξi ) (A.12)

where W ext (τ,ζi ) is the work done by the external stress acting on the boundary atoms given

by

W ext(τ,ξi ) = f · [ut (ξi )−ub(ζi )] , (A.13)

where ub and ut are vectors containing the displacements of all atoms on the bottom and top

boundary regions (see Fig. A.1), respectively, on which forces are applied.

A.4 Activation volume of kink-migration process

Here we address the activation volume Vact, of the thermally-activated kink-migration process.

Vact is the Burgers vector multiplied by the area swept by the dislocation during the activation

process and is computed as Vact =−∂∆Hkm/∂τ [171]. At the T = 0K flow stress, which is the

highest stress required for any kink migration, Vact = 0 is required. The activation volume from
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Eq. (5.10) is

Vact = ab2
(
0.55

τ

τc
+ 1.5p

L/b

)−2

. (A.14)

This decays to zero only as τ → ∞. Due to the introduction of the correction factor, the

energy barrier reaches zero at a finite τ with a finite Vact. This is also a flaw of the Suzuki

model. However, in the present model, the activation volume at the T = 0K flow stress can be

computed analytically as V ∗ = ab2
(
0.019

p
L/b −0.59

p
w/b

)2
and at typical dislocation long

lengths of L ∼ 2×103b, V ∗ ∼ 0.1abw , which is about one tenth of that obtained by Suzuki

[158].

A.5 Simulation details of NEB calculations for kink migration

To compute the minimum energy path (MEP), the initial and final states are first constructed

as described in Section A.3.1 with the same sample orientations, boundary conditions, and

simulation cell dimensions except that here Lz ∼ 490Å remains fixed. Subsequently, two

Si solutes in the proper locations, as discussed in 5.2.1, are added to the initial and final

configurations (see Figure A.2). Atomic positions are then relaxed by using a combination

of the FIRE algorithm [11] and relaxation of the cell dimensions. Convergence is achieved

when the norm of the force vector fell below 10−6 eV/A and stresses σX X , σX Y , and σY Y fell

below 0.1 MPa. An initial path of intermediate configurations (replicas) is constructed by

linearly interpolating the atomic positions between the above relaxed initial and final states.

We used 300 replicas and inter-replica spring constant was set to 10−2eV/Å2. Convergence was

assumed when the maximum force acting on all of the atoms across all replicas was less than

1×10−3 eV/Å2.

A.6 Simulation details of the solute/edge interaction energies

For the atomistic simulations, we use a rectangular simulation cell oriented with glide direction

X‖[111], glide plane normal Y‖[101], and line direction Z‖[121] with dimensions of Lx ∼ 190 Å,

Ly ∼ 90 Å, and Lz ∼ 50 Å, respectively. The surfaces normal to the Y-direction are traction-free

while those along the X- and Z-directions are periodic. All Molecular Statics simulations in

this study have been performed with the LAMMPS package [114] on the model NbMoTaW

BCC alloy represented by the Zhou et al interatomic potentials [203]. The minimization of the

system is performed with a combination of Conjugate Gradient and FIRE [11] algorithm and

is continued until convergence is achieved (force tolerance < 10−5 eV per atom).

To compute the interaction energies, the simulation cell created above is first populated with

the corresponding average atom EAM potential [173] which is then minimized to find the

energy of the pristine system Epure. Replacing an A-atom with a solute-type n and minimizing

the system yields E n
pure-sol. An edge dislocation will then be inserted into the pure average-
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A.7. Average waiting time

z/b
0

1

x/a

L= 120b

region of solutes
(to be added later)

Lz = 200b

Initial NEB state

Final NEB state

Intermediate replicas

Figure A.2 – Atomistic modeling of single kink motion. The initial state for the NEB simu-
lation is constructed by placing a single solute (top red dot) at the most favorable location
and a second solute (bottom red dot) to inhibit motion of left sided kink. The final state of
the kinked dislocation has the right kink at the far right of the sample. Executing NEB with
no other solutes then generates a set of configurations (replicas) connecting the initial and
final states and corresponding to kink glide. These replicas are then used as the initial path
for subsequent NEB studies of the same kink motion through a field of solutes randomly
distributed over the central length of L = 120b.

atom NbMoTaW matrix, as explained in [81], to compute the energy of the dislocated system

Eedge. Upon substitution of the A-atom at a specific site x around the core with the solute-type

n and relaxation of the system, the minimized energy E n
edge-sol(x) is obtained. Finally, the

interaction energy of the solute of type n at position x relative to the center of the dislocation

can be computed as

U n
int(x) =

(
E n

edge-sol(x)−Eedge

)
−

(
E n

pure-sol −Epure

)
(A.15)

In order to find the MEP between two minimum energy states we use the NEB method

[63, 104, 92, 114] as implemented in LAMMPS. Details of the NEB simulations, including

construction of the initial and final states can be found in Section 7.3.

A.7 Average waiting time

The analytical solution for the steady-state average waiting time is derived in [150, 151] which

can be written as

t̄w = t0D0 + t1D1 + t∞D∞ (A.16)
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where

t0 =
(
ν0 exp

(
−∆E0

kT

(
1− τ−∆τ∞

τ0

) 3
2

))−1

t1 =
(
ν0

(
1+0.12

(
1− τ

τ0
+0.63

∆τ∞
τ0

)− 1
3 ∆τ∞
τ0

∆E0

kT

)

×exp

(
−∆E0

kT

(
1− τ

τ0
+0.63

∆τ∞
τ0

) 2
3

))−1

t∞ =
(
ν0 exp

(
−∆E0

kT

(
1− τ

τ0
+ ∆τ∞

τ0

) 2
3

))−1

(A.17)

and with

D0 = 1−exp

(
−(1−k)

td

t0

)
D∞ = exp

(
−(1−k)

td

t0
−2k

td

t1

)
D1 = 1−D0 −D∞

(A.18)

The parameter k is a constant between 0 and 1 and td is given as

td =
(
2ν0d cv e

−β
(
∆Hvm− ∆W

2

))−1

(A.19)
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