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Abstract
In this thesis, we explore and propose model order reduction techniques for high-dimensional
differential equations that preserve structures and symmetries of the original problems and develop
a closure modeling framework that leverages the Mori-Zwanzig formalism and recurrent neural
networks. Partial differential equations play an essential role in describing multi-dimensional
systems in many disciplines, including engineering, physics, chemistry, and economics. Since high-
fidelity approximations of such models often result in a large number of degrees of freedom, the
need for iterative evaluations for numerical optimizations and rapid feedback is computationally
challenging. The resulting computational requirements are even more critical in the case of
nonlinear, time-dependent problems. Among the various model order reduction techniques, the
reduced basis method has successfully emerged to produce low-dimensional, stable, and accurate
approximations for high-dimensional elliptic and parabolic problems.
The first part of this thesis is devoted to conserving the high-dimensional equation’s invariants,
symmetries, and structures during the reduction process. Traditional reduction techniques are not
guaranteed to yield stable reduced systems, even if the target problem is stable. In the context of
fluid flows, the skew-symmetric structure of the problem entails the preservation of the kinetic
energy of the system. By recasting the high-fidelity problem in a pure skew-symmetric formulation
at the discrete level, we show that the same structure is preserved with minor changes to the
reduced basis technique even at the reduced model level. These conservative reduced models offer
enhanced stability and accuracy and acquire physical significance by preserving a surrogate of
the energy of the original problem. Next, we focus on Hamiltonian systems, which, being driven
by symmetry, are a source of great interest in the reduction community. It is well known that the
breaking of these symmetries in the reduced model is accompanied by a blowup of the system
energy and flow volume. In this thesis, the traditional models proposed within the framework of
geometric model reduction for Hamiltonian systems are further developed and combined with the
dynamically orthogonal methods, developed by Sapsis and Lermusiaux (2009-2012). In this way,
the solution is sought in a low dimensional space that evolves in time and whose rank evolves
in time, thus allowing the issue of low reducibility in time of advection-dominated problems to
be addressed. The reduced solution is expressed as a linear combination of a finite number of
modes and coincides with the symplectic projection of the high-fidelity Hamiltonian problem
onto the tangent space of the approximating manifold. An error surrogate is used to monitor the
approximation ability of the reduced model and make a change in the rank of the approximating
system if necessary. The method is further developed through a combination of discrete empirical
interpolation and dynamic mode decomposition to reduce non-polynomial nonlinearities while
preserving the symplectic structure of the problem and applied to the Vlasov-Poisson system.
In the second part of the thesis, we consider several data-driven methods to address the under-
resolved regime problem in Galerkin reduced models. Trying to maintain the same computational
efficiency as traditional reduced models, we introduce a reduced closure term to increase numerical
accuracy. The closure term is developed systematically from the Mori-Zwanzig formalism by

iii



Abstract

introducing projection operators on the spaces of retained and truncated modes, thus resulting in
an additional memory integral term. The novelty of the approach lies in its application to the
case of approximation by reduced basis methods, and it serves as a starting point for studying
the influence on the resolved part of the unresolved part of the problem. The interaction turns
out to be nonlocal in time and dominated by a high-dimensional orthogonal dynamics equation,
which cannot be solved precisely and efficiently. Several classical methods in the field of statistical
mechanics are used to approximate the memory term, exploiting the finiteness of the memory
kernel support. In the case of reduced models using a reduced basis, we show that approximating
and including this interaction in the model leads to a significant improvement in predicting the
resolved part of the high-dimensional solution. We conclude this thesis by showing through
numerical experiments how long short-term memory networks, i.e., machine learning structures
characterized by feedback connections and capable of processing data sequences, represent a valid
tool for approximating the memory term introduced through the Mori-Zwanzig formalism.

Keywords: Model order reduction, Reduced basis method, Energy and Structure conservation,
Hamiltonian problems, Symplectic manifolds, Dynamical low-rank approximation, Vlasov-Poisson
equation, Closure modeling, Mori-Zwanzig formalism, Deep learning.
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Sommario
In questa tesi sviluppiamo tecniche di riduzione di modello che preservano strutture e simmetrie
per equazioni alle derivate parziali ad alta dimensionalità e proponiamo un quadro di tecniche
per la chiusura di modelli ridotti basato sul formalismo di Mori-Zwanzig e reti neurali ricorrenti.
Le equazioni alle derivate parziali sono frequentemente utilizzate per la descrizione di sistemi
complessi in diversi ambiti, ad esempio in ingegneria, fisica, chimica, ed economia. Approssimare
le soluzioni di queste equazioni con accuratezza richiede un grande numero di gradi di libertà,
rendendo computazionalmente oneroso risolvere problemi che richiedono una rapida soluzione
o approssimazioni per diversi valori dei parametri, come succede in problemi di ottimizzazione.
Questo problema risulta ancora più critico nel caso di problemi nonlineari e tempo-dipendenti.
Tra le diverse tecniche di riduzione di modello, il metodo delle basi ridotte è emerso come valido
strumento per la definizione di approssimazioni di dimensioni ridotte per problemi ellittici e
parabolici.
La prima parte della tesi affronta il problema della conservazione di invarianti, simmetrie, e
strutture durante il processo di riduzione. Le tecniche tradizionali di riduzione non garantiscono
la stabilità del problema ridotto, anche a fronte di un problema da ridurre che risulta stabile.
Nel caso di flussi di fluidi, l’antisimmetria dell’operatore usato per descrivere il problema fisico
viene usata per dimostrare la conservazione dell’energia cinetica della soluzione. Riscrivendo
il problema da ridurre in una forma puramente antisimmetrica a livello discreto, dimostriamo
che la stessa struttura viene ereditata dal modello ridotto ottenuto con minime variazioni delle
tecniche di riduzione standard. Il modello ridotto conservativo garantisce non solo una maggiore
stabilità della soluzione ma acquisce anche un significato fisico, andando a preservare un surrogato
dell’energia del sistema originale. Successivamente ci concentriamo su sistemi Hamiltoniani, i
quali, essendo caratterizzati da diverse simmetrie, hanno recentemente suscitato forte interesse
nella comunità della riduzione di modello. Diversi studi numerici hanno dimostrato che non
conservare queste simmetrie nel modello può comportare forti instabilità, come ad esempio
crescite esponenziali dell’energia del sistema. In questa tesi, i metodi di riduzione geometrici
per sistemi Hamiltoniani sono combinati con i metodi dinamici ortogonali sviluppati da Sapsis
e Lermusiaux (2009-2012). In questo modo, la soluzione ridotta viene cercata in uno spazio di
dimensione piccola che evolve nel tempo e il cui rango evolve nel tempo, risolvendo quindi il
problema della limitata riducibilità nel tempo per problemi caratterizati da forte convezione.
Le soluzione ridotte è rappresentata dalla combinazione lineare di un numero finito di modi e
coincide con la proiezione simplettica dell’originale problema Hamiltoniano sullo spazio tangente
dello spazio approssimante. Un surrogato dell’errore viene utilizzato per controllare la capacità
di approssimazione del modello ridotto e, nel caso, cambiare il rango del sistema approssimante.
Il metodo è ulteriormente sviluppato tramite una combinazione dei metodi DEIM e DMD per
trattare nonlinearità non polinomiali preservando allo stesso tempo la struttura simplettica del
problema ed è stato applicato all’equazione di Vlasov-Poisson.
Nella seconda parte della tesi, consideriamo diversi metodi basati sulla collezione di dati per
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risolvere il problema dei sistemi parzialmente risolti nel contesto delle proiezioni di Galerkin. Per
mantenere l’efficienza computazionale dei modelli ridotti, introduciamo un termine di chiusura
ridotto per migliorare l’accuratezza dell’approssimazione. Il termine di chiusura viene sviluppato
in maniera sistematica a partire dal formalismo di Mori-Zwanzig introducendo operatori di
proiezione sugli spazi relativi ai modi risolti e non risolti, i quali portano all’introduzione di un
termine integrale di memoria. La novità dell’approccio proposto consiste nell’applicazione di
queste tecniche nel caso di basi ridotte, e serve come punto di partenza per studiare l’influenza
della parta non risolta sulla dinamica della parte risolta. L’interazione risulta essere dominata
dall’equazione ad alta dimensionalità della dinamica ortogonale alla parte risolta ed è non locale
in tempo, non potendo quindi essere risolta in maniera precisa ed efficiente. Diversi metodi
nell’ambito della statistica meccanica sono utilizzati per approssimare il termine di memoria,
sfruttando la finitezza del supporto del nucleo della memoria. Nel caso di modelli ridotti basati
su basi ridotte, mostriamo che approssimare ed includere questo termine di memoria porta ad
un significativo miglioramento dell’accuratezza della parte risolta del problema. Concludiamo
questa tesi mostrando tramite esperimenti numerici come le reti neurali LSTM, caratterizzate da
connessioni di feedback e usate per sequenze di dati, riescano ad approssimare in maniera efficace
il termine di memoria dato dal formalismo di Mori-Zwanzig.

Parole chiave: Riduzione di modello, Metodo delle basi ridotte, Conservazione dell’energia
e della struttura, Problemi Hamiltoniani, Varietà simplettiche, Approssimazioni dinamiche di
rango basso, Equazioni di Vlasov-Poisson, Modelli di chiusura, Formalismo di Mori-Zwanzig,
Apprendimento profondo.
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1 An Introduction to the Reduced
Basis method

This Chapter introduces the general framework of computational reduction techniques considered
in this thesis. After a brief excursus on the necessity and motivations in favor of model order
reduction (MOR) in Section 1.1, we target the reduced basis (RB) method for parametrized
ordinary differential equations (ODEs), with a particular emphasis, in Section 1.2, on the notations
and formulations useful for the description and analysis of the approaches proposed in the following
Chapters.
Section 1.3 describes different methods for generating the reduced basis from available information
about the original computationally expensive problem we want to reduce. The approximated
parametric reduced order model (ROM), obtained using Galerkin projection on the reduced basis,
is introduced in Section 1.4, while several approaches addressing the efficiency issue of nonaffine
parametric dependence are described in Section 1.5.

1.1 Motivations
High-fidelity simulations have become essential tools for investigating complex problems of scien-
tific interest and industrial value, thanks to a significant increase in the available computational
power and more advanced algorithms. The resulting computational speed-up made it possible to
solve mathematical problems beyond the reach of previous generations and has cemented the
importance of computational sciences in the contemporary technological world. These advance-
ments have gone hand in hand with an ever-increasing demand for more realistic and detailed
simulations, requiring finely adapted meshes to achieve pristine precisions and the inclusion of
several physical contributions in the modeling phase, leading to multi-scale and multi-physics
problems to be solved. In the mathematical formalism, these models consist of parametric partial
differential equations (PDEs) that have been discretized by classical methods like finite element
(FEM), spectral, or finite volume (FVM) methods leading to dynamical systems with very large
state-space dimensions, typically of the order of millions of degrees of freedom to match the target
accuracy. Therefore, full order models (FOM) are usually not viable for industrial applications
like product design, optimal control, and uncertainty quantification, all of which require repeated
model evaluations over a potentially wide range of parameter values.
The goal of computational reduction techniques is to simplify large dimensional dynamical systems,
using a limited number of equations and degrees of freedom (DOFs) while retaining the essential
features and details of the original solution. Physical insights have been used in the past to
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reduce the computational complexity of models, mainly by formulating physical simplifications
before starting the computations.
Worth mentioning, in this direction, is the work by Quarteroni [209] on the simulation of blood
flow in the human circulatory system. The flow in small vessels is approximated using a one-
dimensional model, while arteries require two-dimensional parametrizations. Only the heart’s
dynamic is described using a three-dimensional model, thus enabling a complete simulation of
the blood flow in the human body with the computational power offered by today’s processors.
A similar idea was exploited before that for the development of the PSP model [100] of electromag-
netic effects in MOR transistors, designated as industrywide model for chip design by the Compact
Model Council in 2005. Using a large set of measurements and simulations, computationally
expensive 3D Maxwell models of transistors have been replaced by cheap parametrized algebraic
equivalences. The introduction of these approximating models has represented a breakthrough
step for the accurate simulation of integrated circuits comprising millions of semiconductor
components.
The two examples cited above share the spirit of a priori simplification of the model at hand
and require a deep understanding of the physics of the problem and possible sources of modeling
error. They follow the paradigm known in computational reduction as physical metamodeling,
according to which the new simplified model is nevertheless solved using full-order discretization
techniques. Unfortunately, it is not always possible to introduce such simplifications, either for
lack of physical insight of the problem or because such simplifications are not easily identifiable.
In this thesis we consider a different type of approach, known as model order reduction, or com-
putational reduction technique, that relies on automatic identification of potential simplifcations.
Starting from the Truncated Balanced Realization, introduced by Moore [178] in 1981, several
other MOR techniques have been developed and flourished during the last 40 years, including
the Hankel-norm reduction [104], the Padé-via-Lanczos (PVL) algorithm [88], and the PRIMA
method [186]. In the following, we focus on the reduced basis method, introduced in the context
of nonlinear structural analysis of beams and arches [8], and further developed [20; 22; 92; 215]
in the last decades of the last century for more general parametrized PDEs. In particular, we
emphasize the significant results obtained for applications in fluid dynamics, starting from the
seminal work of Sirovich [232] regarding turbulence theory and arriving at the wide variety of
efficient ROMs for Stokes and Navier-Stokes equations [98; 99; 200; 75] proposed in more recent
years.
The key components of the RB method (definition of low dimensional reduced subspace, of-
fline/online computational decomposition and a posteriori error estimators) have been introduced
and formalized in [130; 208; 109; 167; 168; 71; 256]. The reduction of non-affine and nonlinear
problems has been recently addressed [21; 57; 240; 7] and a posteriori error estimators have been
developed, for parabolic and elliptic PDEs in [110; 217], with consequent certification of RB
methods in those context. Several software packages based on RB methods are now available and
usable for a wide range of physical problems. In this regard, we would like to mention RBmatlab
[117], RBiCS [130], and pymor [176].
The goal of the following Sections is to provide a general overview of some of the topics mentioned
above, supported by appropriate references.
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1.2 The reduced basis method
As pointed out in Section (1.1), problems arising in multi-query contexts or involving PDE-
constrained optimization entail relevant computational costs and hence demand computational
reduction to be tackled.
The reduced basis method is built upon an high fidelity approximation method of the parametric
PDE. The goal of the next Section is to present a general formulation of the RB method as an
approximation of the solution of parametric PDEs via Galerkin projection on a compact space
built using precomputed high-dimensional solutions.

1.2.1 Problem formulation and notation

Let T := (t0, T ] be a temporal interval and let Γ ⊂ Rd, with d ≥ 1, be a compact set of parameters.
For each η ∈ Γ, we consider the initial value problem: For u0(η) ∈ RN , find u(·, η) ∈ C1(T ,RN )
such that 

d

dt
u(t; η) = f(t, u; η), for t ∈ T ,

u(0; η) = u0(η),
(1.2.1)

where the dot denotes the derivative with respect to time t, C1(T ,RN ) denotes continuous
differentiable functions in time taking values in RN , and f : T × RN × Γ 7→ RN that satisfies
the regularity assumptions required in the Picard-Lindelöf theorem. For a fixed parameter η,
additional problem specific properties may be required to f to assume the well-posedness of
(1.2.1). Problems described by (1.2.1) often arise from the semidiscrete formulation of systems
of PDEs, using a suitable high-fidelity method. Several high-fidelity methods are compatible
with the RB framework described in the following, such as the finite element [246], the finite
volume [118] and the spectral element approaches [162; 194]. Moreover, in the RB notation,
problem (1.2.1) is referred to as full-order model (FOM). To achieve satisfactory results in terms
of accuracy of the numerical approximations, these FOMs rely on high-order approximations or
on the use of fine meshes, resulting in N being large and, hence, increasing the computational
cost of the simulation.
We define the set of all solutions to (1.2.1) for different values of the parameter vector η ∈ Γ and
t ∈ T as

M := {u(t; η)|η ∈ Γ, t ∈ T }. (1.2.2)

The fundamental assumptions of the RB approach is thatM is reducible, i.e., any element ofM
can be accurately approximated using a linear combination of a limited number of solutions to
(1.2.1). The mathematical measure that encodes the system’s linear reducibility is the Kolmogorov
n-width [253], a concept from approximation theory that quantifies the maximum possible error
that might occur from the projection of the solution trajectory onto an optimal subspace of
dimension n. It is defined by

Dn(M) := inf
Mn⊂Rn

sup
v∈M

inf
w∈Mn

‖v − w‖2 , (1.2.3)

whereMn is a linear subspace of RN of dimension n.
Let ΠMn

be the Euclidean orthogonal projector operator fromM toMn, where we assume that
RN is equipped with the Euclidean inner product operator 〈·, ·〉N and ΠMn is a projection with
respect to 〈·, ·〉N . Being a projector, ΠMn

is a linear map satisfying the idempotency condition
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Π2
Mn

= ΠMn
. It trivially follows that also IN − ΠMn

is a projector, where IN is the identity
operator, and every element v of RN can be written as v = ΠMn

v+ (IN −ΠMn
) v, entailing that

the space RN can be defined via the direct sum

RN = ker(ΠMn)⊕ range(ΠMn).

The orthogonality of the projector ΠMn
implies that

ker(ΠMn
) = range(ΠMn

)⊥,

or, equivalently, that for any v ∈ RN ,

ΠMnv ∈Mn and (IN −ΠMn) v ∈M⊥n .

These relations lead to the optimality property of orthogonal projectors stated in the next
theorem.

Theorem 1.2.1 ([221, Theorem 1.38, page 39]). Let ΠMn
be the orthogonal projector onto the

subspaceMn. Then for any given vector v in RN , the following is true:

inf
w∈Mn

‖v − w‖2 = ‖v −ΠMnv‖2 . (1.2.4)

Using (1.2.4), then (1.2.3) simplifies to

Dn(M) := inf
Mn⊂Rn

sup
v∈M

‖v −ΠMn
v‖2 . (1.2.5)

From (1.2.5), we can infer that the quality of a reduced-order linear approximation ofM can be
judged by how quickly Dn(M) decreases as n increases and, once a user-defined tolerance δ is
set, the truncation error is bounded. Once the subspaceMn has been identified, with n possibly
small to ensure computational advantages, we can construct the reduced-order system

d

dt
ΠMn

u(t; η) = ΠMn
f(t, u; η), for t ∈ T ,

ΠMn
u(0; η) = ΠMn

u0(η),
(1.2.6)

as a result of the projection of (1.2.1) using ΠMn
. Unless specified otherwise, we assume that ΠMn

and the related subspaceMn are time-independent and we refer to (1.2.6) as global reduced-order
model (gROM), where we use the term global to stress that the approximating subspace is used
∀t ∈ T . For reducible problems, n can be taken much smaller than N , and thus (1.2.6) has a
lower order than (1.2.1).
In the following Section, we summarize a convenient offline/online decomposition that is employed
to decouple the operations whose cost depends on the number of degrees of freedom N of the
FOM from those independent on it, with the aim of lowering the computational complexity of
the reduction algorithm. A complete decomposition is achieved by requiring affine parameter
dependence and linearity to the evolution operator f . Several treatments for nonlinear terms,
with the aim of restoring this computational splitting, are addressed in Section 1.5.
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1.3 Offline phase
The offline step consists of identifying the RB spaceMn, constructing the operator ΠMn

, and
the crucial step of computing reduced matrices and vector associated with ΠMn

f . Unless
stated otherwise, in this work we restrict 〈·, ·〉N to the inner product of the Euclidean space.
Let v1, . . . , vn ∈ RN be a set of basis vectors, orthonormal with respect to 〈·, ·〉N , such that
Mn = span {v1, . . . , vn} and let U ∈ RN×n be the basis matrix collecting these vectors as columns.
Given g ∈ RN , since ΠMn

g belongs toMn it can be written in terms of U as ΠMn
g = Uz, with

z ∈ Rn expansion coefficients of the representation. Similarly, the orthogonality of the projector
translates into

U>Uz = z, and U> (g − Uz) = 0N ,

which yields the matrix representation of ΠMn as

ΠMn
= UU>, (1.3.1)

for g ∈ RN .
The two problems of formulating the approximation spaceMn and constructing the orthogonal
projector ΠMn on it can then be condensed into the search for an optimal basis U , addressed
in the following as reduced basis. Two popular and efficient approaches to design the reduced
basis U , namely the proper orthogonal decomposition and the greedy method, are detailed in the
following sections.

1.3.1 Proper orthogonal decomposition

The POD was developed to obtain low-dimensional representations of turbulent fluid flows
[239; 14], after the seminal work of Lumley in the 60s on the study of coherent structures in fully
developed turbulent flows [165]. With the aim of simplifying the analysis of complex systems, the
POD was subsequently employed in the fields of structural vibrations [72; 9], damage detection
[95], and image processing [36; 206]. In the following we will provide a brief description of the
application of POD to the case of parametric surrogate modeling [16; 138; 43; 66] for the definition
of ROMs. Given any spaceM representing the solution manifold of the FOM (1.2.1), the proper
orthogonal decomposition method builds an n-dimensional RB spaceMn by first samplingM
and defining the snapshots (or training) set

M∆ := {u(ti; ηj) | ηj ∈ Γh, ti ∈ T∆} , (1.3.2)

with Γh discrete subset of Γ of cardinality Np and T∆ discrete subsets of T of cardinality Nt. In
the remainder of this thesis, we will use NS = NpNt to denote the cardinality of the setM∆.
Members ofM∆ are referred to as snapshots of (1.2.1) and one can obtain an approximation M̃∆
of this snapshot set by applying a time-integration scheme, e.g., the Runge-Kutta methods, to
(1.2.1) for different values ηj ∈ Γh of the parameter of interest. While sampling in time in (1.3.2) is
usually dictated by the chosen numerical integrator and the propagation speed of the information
in the physical space, sampling in parameters should satisfy two different criteria. On one hand,
the number of ineffective samples must be reduced to avoid unnecessary computational cost and
diminishing returns in accuracy. On the other hand, the sampling must be fine enough to ensure
that M̃∆, and henceM∆, can be considered faithful representations ofM. In practice, an often
effective choice, especially in the case of relatively small d, is sampling from a random distribution
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or a log-equidistant distribution [194; 219]. In the context of high-dimensional integration, we
refer the reader to the techniques described in [234; 154] to mitigate the potential curse of
dimensionality effect induced by the dimension of the parameter space. Moreover, throughout
this thesis, we assume that we can choose M̃∆ arbitrary close toM∆ and we drop the overscript.
The proper orthogonal decomposition (POD) method is a popular approach for the construction
of a reduced basis U given the snapshot matrix Su ∈ RN×NS having as columns the solution
snapshots u(ti; ηj), i.e.,

Su := [u(ti; ηj)] , (1.3.3)

with tj ∈ T∆ and ηj ∈ Γh. The reduced basis is computed as solution to the optimization problem

min
U∈RN×n

∥∥Su − UU>Su∥∥
F
,

subject to U ∈ St(n,RN )
(1.3.4)

where ‖·‖F is the Frobenius norm and

St(n,RN ) := {L ∈ RN×n : L>L = I}

is the set of all orthonormal n-frames in RN , also known as Stiefel manifold. Problem (1.3.4)
can be viewed as the discrete surrogate of the Kolmogorov n-width problem (1.2.3) for the
approximation of the column space of the snapshot matrix Su, with the l∞-norm replaced by
the mean-square error. Despite the nonlinear and non-convex nature of problem (1.3.4), the
Eckart-Young-Mirsky-Schmidt theorem provides a best approximation result, as stated in the
following theorem.

Theorem 1.3.1. Let A ∈ RN×m has the singular value decomposition (SVD), A = WΣV >, with
W ∈ RN×N and V ∈ Rm×m with columns {wi}mi=1 and {vi}mi=1, called left and right singular
vectors of A, respectively. Σ ∈ RN×m is diagonal in the sense that Σi,j = 0 if i 6= j, with diagonal
entries σi = Σi,i, representing the singular values of A, satisfying σ1 ≥ σ2 ≥ · · · ≥ σmin(N,m) ≥ 0.
Then, the truncated sum

An = UnΣnV >n (1.3.5)

with Un = [w1, . . . , wn] ∈ RN×n, Vn = [v1, . . . , vn] ∈ RN×n, and Σn = [σ1, . . . , σn] ∈ Rn×n solves
the optimization problem

An = min
rank(B)=n

‖A−B‖∗ , (1.3.6)

for ∗ = {2, F}. In (1.3.5) we have highlighted the dimensions of the involved matrices through
the corresponding subscripts. Furthermore

‖A−An‖22 = σ2
n+1 and ‖A−An‖2F =

min(N,m)∑
i=n+1

σ2
i . (1.3.7)

Let
Σn =

[
Σn 0
0 0

]
∈ RN×m.

It can be verified that
An = UnΣnV >n = WΣnV >,

6



1.3 Offline phase

−5 0 5

−5

0

5

(a) σ1 ≈ σ2

−10 −5 0 5 10

−5

0

5

(b) σ1 � σ2

Figure 1.1: Examples of samples from from an isotropic (a) and anisotropic (b) bivariate
distribution.

and then it follows that

An = WΣnV > = WΣnΣ−1W>A = WnW
>
n A.

We therefore conclude that the minimization problem (1.3.6) is equivalent to problem (1.3.4), from
which it follows that the optimal n-dimensional RB in the Frobenius norm has as columns the
first n left singular vectors of the snapshot matrix Su, i.e. U = Un. The geometric interpretation
of Theorem 1.3.1 may provide an even clearer picture of the connection between SVD and POD.
The matrix Su represents a linear operator that maps N dimensional vectors to its columns space.
The unit sphere in RN is mapped into an hyper-ellipsoid in RNS , where the directions of the
principal radii are given by the left singular vectors wi and the corresponding lengths are given by
the singular values σi. The columns of Su constitute a set of NS points in a N -dimensional space.
For any n ≤ NS , we seek a n-dimensional subspace that minimizes the mean squared distance
of the points from the subspace. The best n-dimensional approximation is the n-dimensional
ellipsoid having as principal radii the POD modes wi associated with the largest singular values
σi. In the principal radii coordinate system, a large anisotropy of the snapshots data suggests a
suitable representation in a low-dimensional space (see Figure 1.1). Since the length of each of
the radii is related to σi, the choice of the dimension n of the POD basis U of the approximating
space Mn is related to the decay of the singular values σi. The singular values σi are often
apostrophized to as energy of the corresponding POD modes, a terminology derived from the
early application of POD to incompressible fluid mechanics, where this energy is related to the
fluid’s kinetic energy. To obtain a representative, low-dimensional basis, following (1.3.7), the
modes corresponding to the smallest eigenvalues are discarded. To make the selection procedure
more rigorous, let us define the relative information content of an n-dimensional basis U obtained
by POD as

I(n) =
∑n
i σi∑NS
i σi

. (1.3.8)

The relative information content I(n) represents the percentage of the energy of the snapshot
matrix Su captured by the first n POD modes and is tightly connected to the Kolmogorov
n-width. We refer the reader to [253] for a strong results about the connection between the
Kolmogorov n-width and the (Hankel) singular values and related optimization processes. As a
reasonable dimension-selection criterion for the POD basis, the dimension n is selected as the
smallest integer number satisfying

I(n) ≥ 1− δ2
POD, (1.3.9)
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where δ2
POD represents the energy contained in the neglected NS − n modes. Combining (1.3.8)

and (1.3.7), it is straightforward to show that criterion (1.3.9) is equivalent to∥∥Su − UU>Su∥∥2
‖Su‖2

≤ δPOD.

The POD algorithm is summarized in Algorithm 1.

Algorithm 1 POD algorithm
1: procedure POD(u(ti; ηj), δPOD)
2: Collect data u(ti; ηj) from the high-fidelity model for selected values of parameters ηj ∈ Γh

and time ti ∈ T∆.
3: Build the snapshot matrix Su using the collected data as columns.
4: Compute the singular value decomposition of Su, i.e.,

Su = WΣV >.

5: Find the number of POD basis vectors capturing at least 1 − δ2
POD of the relative

information content of the snapshot matrix.
6: Choose the first n left singular vectors to define the corresponding POD basis functions.

Several variations of the method proposed in Algorithm 1 have been suggested over time. We
mention here the POD with a weighted inner product [255], where the data used to assemble the
snapshot matrix are weighted according to a given probability distribution. In the POD with
difference quotients [161], different quotients of the data are added to the standard snapshot
matrix to reach optimal pointwise POD projection error bounds and optimal pointwise ROM
errors. To overcome certain deficiencies of POD for linear modal analysis, the smooth orthogonal
decomposition [58] has been proposed in the context of structural vibration analysis.

1.3.2 Greedy algorithm

When d is large, since the computational cost scales with the cardinality of Γh, the definition
of a compact yet accurate training set becomes a computational challenge. Even though a
certain amount of computational complexity is tolerated in the offline stage to obtain a significant
speed-up in the online stage, the evaluation of the high-fidelity solution for a large sampling set
and the SVD of the corresponding snapshot matrix are often impractical or not even feasible. In
the reducible scenario, the fact that the number of relevant modes n extracted from the snapshots
matrix is significantly smaller than the number NS of total snapshots suggests that the amount of
snapshots collected can be optimized and the relative basis built using an incremental algorithm.
The reduced basis, in which the column space represents the approximating manifold, is improved
iteratively by adding basis vectors as columns. By evaluating the high-fidelity solution only once
(or few times) per iteration, the SVD of S is no longer required because the optimality over all
n-dimensional subspaces is replaced with a local optimality criterion, reducing the computational
cost of the offline phase. This summarizes the philosophy of the greedy strategy applied to
RB methods [41; 31], which requires the definition of an optimization problem to identify the
candidate basis vector at each iteration and an a posteriori error bound estimate to monitor the
approximation accuracy of the basis.
Let Su

∆ := Γh × T∆ be a given set of parameters and times for which the high-fidelity solution is
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available and Uk ∈ RN×k the orthonormal reduced basis of dimension k produced after k steps of
the greedy algorithm, spanning the approximating manifoldMk. In its idealized form, introduced
in [257], the greedy algorithm uses the projection error

(t∗, η∗) = argmax
(ti,ηj)∈Su∆

∥∥u(ti; ηj)− UkU>k u(ti; ηj)
∥∥

2 (1.3.10)

to identify the snapshot u∗ := u(t∗; η∗) that is worst approximated by the column space of Uk
over the entire sampling set Su

∆. Let vk+1 be the vector obtained by orthonormalizing u∗ with
respect to Uk. The basis matrix is then updated as Uk+1 = [Uk vk+1 ]. To avoid the accumulation
of rounding errors, it is preferable to utilize backward stable orthogonalization processes, such as
the modified Gram-Schmidt orthogonalization [33]. The algorithm terminates when the basis
reaches the desired dimension, or the error (1.3.10) is below a certain tolerance. In this sense,
the basis Uk+1 is hierarchical because its column space contains the column space of its previous
iterations. This process is referred to as strong greedy method. Even though introduced as a
heuristic procedure, interesting results regarding algebraic and exponential convergence have
been formulated in [41; 31], requiring the orthogonality of the basis in the corresponding proofs.

Theorem 1.3.2 ([31, Theorem 3.1, page 8]). Suppose that D0(M) ≤M and

Dn(M) ≤Mn−α, n > 0,

for some M > 0 and α > 0. Then,

max
u∈M

∥∥u− UnU>n u∥∥2 ≤ CMn−α, n > 0,

with C := q
1
2 (4q)α and q := d2α+1e2.

Theorem 1.3.3 ([31, Theorem 3.2, page 9]). Suppose that

Dn(M) ≤Me−an
α

, n > 0,

for some M,a, α > 0 and α > 0. Then setting β := α
α+1 , one has

max
u∈M

∥∥u− UnU>n u∥∥2 ≤ CMe−cn
β

, n > 0,

whenever for any fixed 0 < θ < 1, one takes c := min{|lnθ|, (4q)−αa}, C := max{ecNβ0 , q 1
2 },

q := d2θ−1e2 and N0 := d(8q)
1

1−β e = d(8q)α+1e.

However, in this form, the scheme cannot be efficiently implemented: the cost required to
compute (1.3.10) is very high because the greedy procedure requires all the snapshots of the
training set to be accessible, thus making the outlined method still computational expensive and
relieving the computation only of the cost associated to the SVD. Introduced as adjustment to the
shortcomings of the strong greedy algorithm, the weak greedy algorithm represents the standard
greedy algorithm applied in the RB context. The idea is to replace (1.3.10) with a surrogate
indicator γ : Su

∆ 7→ R that does not require the computation of the high-fidelity solution for
the entire time-parameter domain. In the case of elliptic PDEs, an a-posteriori residual-based
indicator requiring a polynomial computational cost in the approximation space dimension n has
been introduced in [230], as an application for heat conduction problems. In [219], a comparable
algorithm targeting the energy norm of the error is presented. One might also use a goal-oriented
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indicator as the driving selection in the greedy process to obtain similar computational benefits.
In this direction, in the framework of structure-preserving MOR, we detail in Section 3.3.3 a
greedy selection using the Hamiltonian function as a proxy error indicator. More examples of
error upper bounds, based on the calculation of the residual and usable as indicators for the
greedy approach, are provided in [208]. The substantial computational savings allow the choice
of a more refined, and therefore representative, sampling set Su

∆. The indicator γ(t, η) is then
computed for each element of the set and its evaluations sorted in decreasing order to find the
largest one, i.e.,

(t∗, η∗) = argmax
(ti,ηj)∈Su∆

γ(ti, ηj).

As for the strong form of the approach, the candidate u(t∗, η∗) ∈ RN is then appended to the
basis Uk and the process is repeated until a stopping criterion is met. For the sake of efficiency, it
is crucial that the surrogate indicator is computable with an affordable cost, since it is evaluated
(almost) over the entire set Su

∆ for each step of the greedy method. If the cost to evaluate the
indicator γ cannot be neglected with respect to the cost of the high-fidelity solver, any form of
computational saving is jeopardized.
In [110], it has been noted that once a certain instance of the parameter η is selected for the
basis enrichment, taking a single snapshot from the time sequence could lead to a stall in the
basis enhancement. Combining a greedy choice in the parameter space and a time compression
step based on POD, in [81; 144; 116] a heuristic method, known as POD-greedy, to solve
the convergence problem of the pure greedy method has been proposed, and is now the gold
standard for the greedy approach to reduced basis generation. Rates of algebraic and exponential
convergence are achieved [116], as in Theorems 1.3.2 and 1.3.3, in case of similar decay of the
Kolmogorov n-width Dn(M).

1.4 Online phase

Having shown, in Section 1.3, several techniques for generating a reduced basis U ∈ RN×n for the
reduced spaceMn, we now explain how this can be used, in combination with (1.2.6), to generate
a gROM. An approximation ur(t; η) ∈ RN to the solution to (1.2.1) is provided by means of
two approximations. First, we assume u(t; η) can be well approximated on the low-dimensional
subspaceMn, leading to the so called RB ansatz

ur(t; η) ≈ Uz(t; η), (1.4.1)

where z : T × Γ 7→ Rn represents the generalized coordinates of the approximate solution ur with
respect to U . Substituting (1.4.1) into (1.2.1) leads to the overdetermined systemU

d

dt
z(t; η) = f(t, Uz; η) + r(t; η), for t ∈ T ,

z(0; η) = U>u0(η),

The quantity r represents the residual due to (1.4.1) not solving exactly the FOM. In the framework
of a Petrov-Galerkin projection, if we consider a second reduced basis W that is orthogonal to
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the residual r and W>U is invertible, we recover the reduced system of n equations
d

dt
z(t; η) = U>f(t, Uz; η), for t ∈ T ,

z(0; η) = U>u0(η),
(1.4.2)

In this thesis work, unless stated otherwise, we restrict ourselves to the pure Galerkin framework,
i.e. W = U . In this context, we report in the following an important result in terms of (local)
minimal residual optimality of the Galerkin projection

Theorem 1.4.1 ([48, Theorem 3.2, page 5]). In case of orthogonal reduced basis U , the Galerkin
ROM (1.4.2) is continuous optimal in the sense that the approximated velocity minimizes the
norm of the FOM ODE residual (1.2.1) over the column space of U , i.e.,

d

dt
ur(t; η) = argmin

v∈range(U)
‖v − f(t, ur; η)‖22 . (1.4.3)

Moreover, enriching the approximating reduced space results in a monotonical decrease in the
norm of the error in the ROM velocity, as formulated in (1.4.3).

Before stating the accuracy estimate result presented in [210], for the case of POD generated
reduced basis, we consider the two different components of the error made in approximating the
solution of the FOM problem with the solution of the ROM. Consider the solution u(t; η) to the
FOM defined in (1.2.1) for a given parameter η ∈ Γ. We are interested in the time-evolution of
the error

ε(t; η) := ur(t; η)− u(t; η) = ε⊥(t; η) + ε‖(t; η). (1.4.4)

In (1.4.4), we have highlighted the component ε⊥(t; η) of the error that is orthogonal to the
approximating spaceMn, for which UU>ε⊥(t; η) = 0, ε(0; η) = ε⊥(0; η), and that depends only
on the approximation capability of the basis U , and the parallel component ε‖(t; η), for which it
applies UU>ε‖(t; η) = ε‖(t; η).

Theorem 1.4.2 ([210, Proposition 4.2, page 1899]). Consider solving the initial value problem
(1.2.1), approximated using the POD reduced model in the interval T for a given parameter η. Let
U ∈ RN×n be the reduced basis, and letMn denote the affine subspace onto which the POD basis
projects. The solution u(t; η) to the FOM and the solution ur(t; η) to the ROM can be writtern as

u(t; η) = Uze(t; η) + Ucv(t; η),

and
ur(t; η) = Uze(t; η) + Uw(t; η),

where ze(t; η) = U>u(t; η) and Uc ∈ RN×(N−n) is the orthogonal complement to U . Since the
projected FOM solution is u⊥(t; η) = Uze(t; η), the two error components ε⊥(t; η) and ε‖(t; η) are
given by

ε⊥(t; η) = −Ucv(t; η),

and
ε‖(t; η) = Uw(t; η).

Note that ze(t; η) ∈ Rn, w(t; η) ∈ Rn, and v(t; η) ∈ RN−n. Let γ ≤ 0 be the Lipschitz constant of
U>f(t, u; η) in the directions orthogonal to Mn in a region containing u(t; η) and u⊥(t; η). In
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particular, suppose ∥∥U>f(t, u⊥ + Ucv; η)− U>f(t, u⊥; η)
∥∥

2 ≤ γ ‖v‖2 ,

for all (v, t) ∈ D ⊂ RN−n × T , where the region D is such that the associated region D̃ =
{(t, u⊥ + Ucv) : (v, t) ∈ D} ⊂ RN×T contains (t, u⊥) and (t, u) for all t ∈ T . Let µ

(
U> ∂f∂u (t, Uz; η)

)
≤

µ for (s, t) ∈ V ⊂ Rn × T , where the region V is such that it contains (ze(t; η), t) and
(ze(t; η) + w(t; η), t) for all t ∈ T and µ denotes the logarithmic norm related to the 2-norm,
defined as

µ(A) = lim
h→0,h>0

‖In + hA‖2 − 1
h

,

for A ∈ Rn×n. Then the error ε‖ in the ∞-norm satisfies∥∥ε‖∥∥∞ ≤ ‖ε⊥‖2 γ√
2µ
√
e2µT − 1, (1.4.5)

and the 2-norm of the total error satisfies

‖ε‖2 ≤ ‖ε⊥‖2

√
1 + γ2

4µ2 (e2µT − 1− 2µT ). (1.4.6)

Although they represent only upper bounds, the message we take home from (1.4.5) and (1.4.6)
is that an inaccurate basis, i.e., large ε⊥(t; η), can lead to a compounding of the total error ε(t; η)
and the parallel error ε‖(t; η) over time. This problem turns out to be particularly relevant,
especially in the case of advection dominated problems, and a solution is proposed in Chapters 4
and 5. Even in the case of a small orthogonal component ε⊥(t; η) of the error, the total error
ε(t; η) may increase over time due to the approximation of the FOM dynamics in the ROM.
In Chapters 7 and 8, we suggest approaches to improve the full dynamics approximation via a
correction term introduced into (1.4.2), thereby reducing the parallel component ε‖(t; η) of the
error.

A more detailed analysis of error bounds for time-dependent FOM that also considers other
sources of error, such as the dimension n, the exact sampling in the time-parameter domain of
the snapshots, and the type of snapshots can be found in [148].

1.5 Efficient treatment of nonlinear term
One crucial assumption for an efficient Offline-Online decomposition is that the dynamics of the
FOM (1.2.1) is affine in the parameter η and time t, i.e.,

f(t, u; η) =
Q∑
q=1

Θq(η, t)fq(u),

where Θq : Γ × T 7→ R are parameter and time dependent functions and fq(u) are parameter
and time independent linear functions in u. In this scenario, the offline-online strategy allows to
reduce the computational burden associated with the online phase, which is particularly useful in
multi-query and real-time simulations where approximations to the solution to (1.2.1) for new
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1.5 Efficient treatment of nonlinear term

parameter values are required. In particular, the operational count of the online stage would be
independent of the number N of degrees of freedom of the FOM. The linearity requirement on the
functions fq(u) can be relaxed by requiring a more general low-order polynomial dependence on
u. By rearranging the order of computation, the tensorial POD technique exploits the structure
of polynomial nonlinearities to separate the quantities that depend on the dimension N of
the FOM from the reduced variables. We refer the reader to [240] for more details on this
approach and we apply this method, with accompanying cost analysis, in Chapter 4. However,
the same approach cannot be used in case of general nonlinearity, where additional complexity-
reduction mechanisms, more generally known as hyper-reduction techniques, are required. In
particular, the computational complexity associated with the repeated computation of the term
U>f(t, Uz; η) in (1.4.2) has to be reduced. Several methods have been proposed in the past:
here we mention the gappy POD method [50; 85], the reduced-order quadrature [11], the RB-
sparsification technique [51], and different collocation methods [220; 13]. In this thesis we consider
the discrete empirical interpolation method (DEIM) [57], a variant of the empirical interpolation
method (EIM) introduced in [21] and applied in MOR in [130]. In the same spirit as missing
point estimation (MSE) [13], the DEIM method identifies a subset of nonlinearity components to
avoid the costly evaluation of the same nonlinearity on all grid points. The approximation of
the nonlinearity of the FOM is realized through a coefficient interpolation matrix, whose cost
scales proportionally to the size of the set of spatial indices and thus obtaining a computational
speedup.
The selected interpolation indices are used to define the row selection operator

P =
[

eρ1 . . . eρnd

]
∈ RN×nd , (1.5.1)

where eρi =
[

0 . . . 0 1 0 . . . 0
]> ∈ RN is the ρi-th column of the identity matrix

IN and nd < N is the number of selected indices. Let us assume that the manifold

Mf := {f(u(t; η); η) | η ∈ Γ, t ∈ T } (1.5.2)

can be accurately approximated via a linear subspaceMf
DEIM of dimension nd, i.e.,

f(u(t; η); η) ≈ fDEIM(u(t; η); η) = Φfθ(t; η), (1.5.3)

where θ(t; η) ∈ Rnd is a coefficient vector to be computed with respect to the basis Φf ∈ RN×nd .
Similarly to the POD method, a basis Φf can be computed via a SVD on a set of snapshots
obtained by sampling (1.5.2) in time and parameter space. The i-th basis vector is denoted by φfi .
The coefficient vector θ(t; η) is uniquely determined by imposing the nd interpolation constraints
(1.5.1) in (1.5.3), resulting in

P>f(u(t; η); η) =
(
P>Φf

)
θ(t; η).

Assuming P>Φf is invertible, we obtain

θ(t; η) =
(
P>Φf

)−1
P>f(u(t; η); η)

and the approximation of the nonlinearity becomes

fDEIM(u(t; η); η) = ΠMf
DEIM

f(u(t; η); η), (1.5.4)
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where ΠMf
DEIM

:= Φf
(
P>Φf

)−1
P> is the DEIM oblique projector operator, which satisfies

Π2
Mf

DEIM
= ΠMf

DEIM
and

∥∥∥ΠMf
DEIM

∥∥∥
2

=
∥∥∥Ind −ΠMf

DEIM

∥∥∥
2
if ΠMf

DEIM
6= Ind ,0nd . Additional

properties of oblique projectors are given in [247]. Approximation (1.5.4) is effectively an
interpolation relation, since fDEIM coincides with f at the interpolation points ρi, i.e.,

P>fDEIM(u(t; η); η) = P>Φf
(
P>Φf

)−1
P>f(u(t; η); η) = P>f(u(t; η); η).

In terms of application, the matrix Φf
(
P>Φf

)−1 ∈ Rn×nd is assembled during the offline phase
and the nonlinear term f is evaluated only in the components specified by P during the online
phase. As a result, the computational cost of approximating the nonlinearity depends only on n
and nd but is independent of N . The algorithm to determine the interpolation indices ρi has
been originally provided in [57] and it is summarized in Algorithm 2. An error bound for fDEIM

Algorithm 2 DEIM algorithm
1: procedure Selection indices DEIM({φ1, . . . , φnd} ⊂ RN )
2: Pick ρ1 as the index corresponding to the largest component in absolute value of φf1 .
3: Let Φf ←

[
φf1

]
, P ←

[
ρ1

]
.

4: for i = 2 to nd do
5: Solve

(
P>Φf

)
c = P>φfi for c.

6: Define r← φfi − Φfc.
7: Let ρi be the index of the largest component in absolute value of r.
8: Let Φf ←

[
Φf φfi

]
, P ←

[
P ρi

]
.

is then given in the following theorem.

Theorem 1.5.1 ([57, Lemma 1, page 5]). Let fDEIM be the DEIM approximation defined in (1.5.4).
Then

‖f − fDEIM‖2 ≤
∥∥∥ΠMf

DEIM

∥∥∥
2

∥∥(Ind − Φf (Φf )>)f
∥∥

2 . (1.5.5)

In (1.5.5), the quality of the basis Φ chosen to approximate the nonlinearity f directly affects
term

∥∥(Ind − Φf (Φf )>)f
∥∥

2 in the error bound. The quantity
∥∥∥ΠMf

DEIM

∥∥∥
2
, known as DEIM error

constant, plays the role of the conditioning number of the DEIM approximation and depends on
the algorithm chosen for the interpolation indices.
For the classical DEIM algorithm schematized in Algorithm 2, the Φf basis not only determine
the approximating space, but also the interpolation indices used to sample the nonlinear term,
further affecting the quality of the approximation. As pointed out in [57], the justification of
Algorithm 2 is given by the limitation, at each step of the iterative process of index selection, of
the growth of the approximation error of f . This result is due to the fact that selecting the index
of the maximum of the interpolation error r, means minimizing its reciprocal value, and thus the
approximation error (1.5.1) following the proof of Theorem 1.5.1 given in [57]. From this we also
get the invertibility of the term P>Φf .
A variation of the original algorithm for the index subset selection based on a randomized
algorithm is proposed in [222], with the aim of reducing the computational cost required and
to make the process parallelizable. With similar goals, in [78] the Q-DEIM variant is proposed,
which leverages the QR-factorization with column pivoting to further reduce the term

∥∥∥ΠMf
DEIM

∥∥∥
2
.

Finally, we mention the adaptive DEIM algorithm [196], which evolves in time the DEIM basis
via optimal rank-one updates and will be used in the context of plasma physics in Chapter 5.
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The first part of the thesis is devoted to the conservation, during the reduction process, of
invariants and structures characterizing the high fidelity models in the reduction process, which
is one of the main original contributions of the thesis.

As stated in Section 1.1, in the past decade, MOR has been successful in reducing the computa-
tional complexity of elliptic and parabolic systems of PDEs. In the framework of RB, classical
approaches have been presented in Chapter 1. However, the MOR of hyperbolic equations remains
a challenge. Symmetries and conservation laws, which are distinctive features of such systems,
are often destroyed by conventional MOR techniques, resulting in perturbed, and often unstable
reduced systems. The importance of energy conservation is well-known for correct numerical
integration of fluid flow. In Chapter 2, we discuss a novel approach in model reduction that
exploits skew-symmetry of conservative and centered discretization schemes to recover conserva-
tion of energy at the level of the reduced system. Moreover, we argue that the reduced system,
constructed with the new method, can be identified by a reduced energy that mimics the energy
of the high-fidelity system. Therefore the loss in energy associated with the model reduction
remains constant in time. Preserving this physical property of the original problem ensures an
overall correct evolution of the numerical fluid that ensures the robustness of the reduced system.
We evaluate the performance of the proposed method through numerical simulation of various
fluid flows and a numerical simulation of a continuous variable resonance combustor model.1

Chapter 3 is devoted to the recent developments of projection-based MOR techniques targeting
Hamiltonian problems. Hamilton’s principle completely characterizes many high-dimensional
models in mathematical physics, resulting in rich geometric structures, with examples in fluid
dynamics, quantum mechanics, optical systems, and epidemiological models. Unfortunately, as
in the case of energy-preserving problems, standard reduction approaches do not guarantee the
conservation of the delicate dynamics of Hamiltonian problems, resulting in reduced models
plagued by instability or accuracy loss over time. By approaching the reduction process from the
geometric perspective of symplectic manifolds, the resulting reduced models inherit the stability
and conservation properties of the high-dimensional formulations. We first introduce the general
principles of symplectic geometry, including symplectic vector spaces, Darboux’s theorem, and
Hamiltonian vector fields. These notions are then used as a starting point to describe different
structure-preserving RB algorithms, including SVD-based approaches and greedy techniques. We
conclude this review Chapter by addressing the reduction of problems that involve a dissipation
term or are in a non-canonical Hamiltonian form. Even though the methods presented in this
Chapter are not novelties of the thesis work, we deem it necessary to introduce the reader to this
part of ROM literature to have a clearer picture of Chapters 4 and 5.2

In Chapter 4, an adaptive structure-preserving model order reduction method for finite-dimensional
parametrized Hamiltonian systems modeling non-dissipative phenomena is introduced. To
overcome the slowly decaying Kolmogorov n-width (1.2.3) typical of transport problems, the
full model is approximated on local reduced spaces adapted in time using dynamical low-rank
approximation techniques. The reduced dynamics is prescribed by approximating the symplectic
projection of the Hamiltonian vector field in the tangent space to the local reduced space. This
step ensures that the canonical symplectic structure of the Hamiltonian dynamics is preserved
during the reduction. In addition, accurate approximations with low-rank reduced solutions are
obtained by allowing the dimension of the reduced space to change during the time evolution.

1In accordance with the Springer Copyright Transfer Statement, parts of this chapter are adapted from [4].
2In accordance with the EMS Press Author License Agreement, parts of this chapter are adapted from [127].
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Whenever the quality of the reduced solution, assessed via an error indicator, is not satisfactory,
the reduced basis is augmented in the worst approximated parameter direction in the current
basis. Extensive numerical tests involving wave interactions and nonlinear transport problems
demonstrate the superior stability properties and considerable runtime speedups of the proposed
method as compared to the global and traditional reduced basis approaches presented in Chapter
3.3

The same Hamiltonian and action principle formulations emerge in the field of plasma physics.
High-resolution simulations of particle-based kinetic plasma models typically require a high number
of particles and thus often become computationally intractable. This burden is exacerbated
in multi-query simulations, where the problem depends on a set of parameters, creating the
need for reduction techniques for parametric plasma physics problems. Since the problem’s
non-dissipative and highly nonlinear nature makes it reducible only locally in time, we adopt the
nonlinear reduced basis approach discussed in Chapter 4 where the reduced phase space evolves
in time. More in detail, we derive ROMs for the semi-discrete Hamiltonian system resulting
from a geometric particle-in-cell approximation of the parametric Vlasov–Poisson equations. This
strategy allows a significant reduction in the number of simulated particles, but the evaluation of
the nonlinear operators associated with the Vlasov–Poisson coupling remains computationally
expensive. In Chapter 5, we propose a novel reduction of the nonlinear terms that combines
adaptive parameter sampling and hyper-reduction techniques to address this. The proposed
approach allows decoupling the operations having a cost dependent on the number of particles
from those that depend on the instances of the required parameters. In particular, in each time
step, the electric potential is approximated via dynamic mode decomposition (DMD) and the
particle-to-grid map via the discrete empirical interpolation method (DEIM), described in Chapter
5. These approximations are constructed from data obtained from a past temporal window at a
few selected values of the parameters to guarantee a computationally efficient adaptation. The
resulting DMD-DEIM reduced dynamical system retains the Hamiltonian structure of the full
model, provides good approximations of the solution, and can be solved at a fraction of the
original computational cost.4

A summary of the results and possible insights for future research for each of the chapters are
provided in Chapter 6.

Let us observe that, even though the Euler equations considered in Chapter 2 for inviscid
and incompressible flow can be put, in its natural Eulerian coordinates, into an Hamiltonian
formulation, this is not the canonical formulation discussed for most of Chapters 3, 4, and 5.
Hence, skipping Chapter 2 does not compromise the comprehension of the remaining Chapters of
this block, which, however, requires reading Chapter 1, where RB-based methods are introduced.

3In accordance with the EDP Sciences Copyright Transfer Statement, parts of this chapter are adapted from
[131].

4In accordance with the AMS Copyright Agreement Form, parts of this chapter are adapted from [129].
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2 Model order reduction of fluid
equations in skew-symmetric
form
MOR, particularly RB methods, has emerged as a powerful approach to coping with the complex
and computationally intensive models in engineering and science. As seen in Chapter 1, such
techniques construct a reduced ordered representation for the state of a model, which accurately
approximates the configuration of the system. The evaluation of this representation is then
possible with considerable acceleration.
Although RB methods successfully reduce the computational complexity of models with elliptic
and parabolic PDEs, MOR of systems of hyperbolic equations, or models with strong advective
terms, remain a challenge. Such models often arise from a set of invariants and conservation laws,
some of which are violated by MOR, resulting in a qualitatively wrong and sometimes unstable
solution.
Constructing MOR techniques and RB methods that preserve intrinsic structures has recently
attracted attention [139; 87; 23]. For example, preserving time symmetries of Lagrangian,
Hamiltonian, and port-Hamiltonian systems can be found in the works of [198; 51; 3; 56; 115]
and will be the focus of Chapter 3. Conserving inf-sup stability, in the context of finite element
methods, can be found in [87; 19]. Furthermore, a flux preserving model reduction for finite
volume methods is presented in [49].
Large-scale simulations of fluid flows arise in various disciplines and industries. Therefore, reducing
fluid flows, especially when advective terms are dominant, is essential. It is well known that
energy conservation, especially kinetic energy, is critical to a qualitatively correct numerical
integration of fluid flows. Unfortunately, conventional model reduction techniques often violate
the conservation of mass, momentum[49], or energy in fluid flows, resulting in unstable reduced
systems, particularly for long time integration.
In this Chapter we discuss how to preserve skew-symmetry of the differential operators at the
level of the reduced system. The preservation of the skew-symmetry results in the conservation
of quadratic invariants. Furthermore, the conservation of quantities in the proposed method is
guaranteed through the mathematical formulation of the reduced system for any orthonormal
reduced basis. Therefore, the offline and online computational costs of this method are comparable
with conventional MOR techniques introduced in Chapter 1. However, other conservative model
reduction methods often require solving multiple nonlinear optimization problems to ensure
conservation properties, increasing the computational costs. Furthermore, we show that the
reduced system, as a system of coupled differential equations, contains quadratic invariants
and associated energy that approximates the high-fidelity system’s energy. Therefore, a proper
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time stepping scheme preserves the reduced representation of the energy, and therefore, the loss
in energy due to model reduction remains constant in time. Furthermore, through numerical
experiments, we demonstrate that a quasi-skew-symmetric form of fluid flow, i.e., a formulation
where only spacial differential operators are in a skew-symmetric form, offers remarkable stability
properties in terms of MOR. This allows an explicit time-integration to be utilized while recovering
the robustness of skew-symmetric forms at the reduced level.
The organization of this Chapter adheres to the following scheme. In Section 2.1 we discuss
skew-symmetric and conservatives methods for compressible and incompressible fluid flows.
Conservative and energy-preserving model reduction of fluid flows is discussed in Section 2.2. We
evaluate the performance of the method through numerical simulations of incompressible and
compressible fluid flow in Section 2.3. We also apply the method to construct a reduced system
for the continuous variable resonance combustor, a one dimensional reaction-diffusion model for a
rocket engine. 1

2.1 Skew symmetric and centered schemes for fluid flows
In this Section we summarize the conservation properties of skew-symmetric forms and discretiza-
tion schemes at the FOM level.

2.1.1 Conservation laws

In the context of fluid flows, transport of conserved quantities can be expressed as

∂

∂t
ρϕ+∇ · (ρuϕ) = ∇ · Fϕ, in Ω ⊂ Rs. (2.1.1)

Here, s = 1, 2, or 3, ρ : Ω → R is the density, u : Ω → Rs is the velocity vector field, ϕ is a
measured scalar quantity of the flow, and Fϕ is the flux function associated to ϕ. Integration of
(2.1.1) over Ω yields

d

dt

∫
Ω
ρϕdx =

∫
∂Ω

(Fϕ − ρuϕ) · n̂ ds, (2.1.2)

where ∂Ω is the boundary of Ω, and n̂ is the unit outward normal vector to ∂Ω. This means that
the quantity ρϕ is explicitly conserved over control volumes. Therefore, (2.1.2) is referred to as
the conservative form and the convective term in (2.1.1) is referred to as the divergence form.
However, using the continuity equation

∂

∂t
ρ+∇ · (ρu) = 0,

we can write (2.1.1) as
ρ
∂

∂t
ϕ+ (ρu) · ∇ϕ = ∇ · Fϕ.

The convective term in this formulation is referred to as the advective form. The skew-symmetric
form of the convective term is obtained by the arithmetic average of the divergent and the

1The author’s original contribution for this part of the thesis was to define the research question and develop
the method for the case of incompressible fluids. The author participated in the extension of the approach to
the case of compressible fluids, for which the main contributor was Dr. Maboudi. The author was primarily
responsible for validating the proposed approach by numerical experiments.
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advective form:

1
2

(
ρ
∂

∂t
ϕ+ ∂

∂t
(ρϕ)

)
+ 1

2 ((ρu) · ∇ϕ+∇ · (ρuϕ)) = ∇ · Fϕ. (2.1.3)

Multiplying (2.1.3) with ϕ yields

1
2

(
ρϕ

∂

∂t
ϕ+ ϕ

∂

∂t
(ρϕ)

)
+ 1

2 ((ρuϕ) · ∇ϕ+ ϕ∇ · (ρuϕ)) = ϕ∇ · Fϕ. (2.1.4)

Using the product rule, we recover

∂

∂t
ρϕ2 +∇ ·

(
ρuϕ2) = ϕ∇ · Fϕ.

Therefore, ρϕ2 is a conserved quantity for ∇ · Fϕ = 0. Since the divergence, the advective, and
the skew-symmetric forms are analytically equivalent at the continuous level, ϕ2 is a conserved
quantity for all forms. However, the equivalence of these forms is not preserved through a general
discretization scheme, and we can not expect ϕ2 to be a conserved quantity at the discrete
level. This could result in unstable simulations since it is commonly accepted that quadratic
invariants conservation is a key feature for the stability of unsteady computations. To motivate
the numerical advantages of the skew-symmetric form, consider the operator

Sρu(·) = 1
2 ((ρu) · ∇+ [∇ · ρu]) (·) ,

with ∇· ρu(·) = ∇· ρu·. With a proper set of boundary conditions, this operator is a skew-adjoint
operator on L2. Here, [·] indicates that the inside of the brackets act as a differential operator.
This skew-adjoint property is used later to show the conservation of quadratic quantities in (2.1.1).
Similarly, we can define a skew-adjoint operator with respect to the time variable

Sρ,∂t = 1
2

(
ρ
∂

∂t
+
[
∂

∂t
ρ

])
.

Here, the subscript ∂t is to emphasize that Sρ,∂t is a differential operator with respect to t. A
proper time and space discretization of Sρu and Sρ,∂t can preserve the skewness property, which
is the focus of skew-symmetric numerical schemes, with the result of preserving the stability and
the conservation properties of the continuous formulation. Numerical time integration of (2.1.4)
can be challenging since the time differentiation of different variables is present. Following [179],
we rewrite (2.1.4) as

√
ρ
∂

∂t
(√ρϕ) + Sρu(ϕ) = ∇ · Fϕ. (2.1.5)

Time integration of this form is presented in [179; 213]. Note that one can also generate a
quasi-skew-symmetric form [34; 181] of (2.1.1) as

∂

∂t
(ρϕ) + 1

2 (∇ · (ρuϕ) + ρu · ∇ϕ+ ϕ∇ · (ρu)) = ∇ · Fϕ. (2.1.6)

Even though this is not a fully skew-symmetric form (skew-symmetric only in space), the quasi-
skew-symmetric form has proved to be more stable than the divergence and the advective forms
[179; 34; 181]. Note that this quasi-skew-symmetric form is identical to the skew-symmetric form
in the incompressible limit.
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We point out that stability is only a necessary condition for a solution to being physical. In
the presence of discontinuities and stretched grid nodes, ringing and oscillations do develop
if an artificial viscosity is not added, as it will be shown in Section 2.3. For the sake of the
understanding of the properties of the fully-discrete formulation, however, explicitly adding
dissipation is preferable over relying on the numerical dissipation created by a numerical scheme
that is not structure-preserving for two reasons. First, it allows tailoring the viscosity introduced to
the problem taken into consideration. Second, while the effect of viscous terms is well understood
in the RB framework [6], the same cannot be said for the projection of nonlinear transport terms.
However, as we show in Section 2.2, by correctly retaining the neutrality of these terms in the
evolution equation for the conserved quantities at the reduced level, the artificial viscosity affects
the conservation balance as an isolated and therefore controllable term.

2.1.2 Incompressible fluid

Consider the governing equations of an incompressible fluid with a skew-symmetric convective
term: ∇ · u = 0,

∂

∂t
u+ Su (u) +∇p = ∇ · τ,

(2.1.7)

defined on Ω. Here, p : Ω→ R+ is the pressure, τ : Ω→ Rs×s is the viscous stress tensor, and
Su = 1

2 ([∇ · u] + u · ∇). It is straightforward to check

∂

∂t
K +∇ · (Ku) +∇ · (pu) = ∇ · (τu)− (τ∇) · u, (2.1.8)

where K = 1
2
∑s
i=1 u

2
i is the kinetic energy and we used

u · Su (u) = ∇ · (Ku) .

The only non-conservative term in (2.1.8) is −(τ∇) · u, which corresponds to the dissipation
of kinetic energy. Therefore, in the absence of the viscous terms, K is a conserved quantity of
the system, and d

dt

∫
ΩK dx < 0 when τ 6= 0. Note that as long as ∇ · u = 0, as discussed in

Section 2.1.1, the divergence, the convective, and the skew-symmetric forms are identical for the
incompressible fluid equation. Thus, kinetic energy is conserved for all forms. However, these
forms are not identical for a general discretization scheme, and often conservation of kinetic
energy (in the discrete sense) may be violated.
A skew symmetric discretization of (2.1.7) is a scheme that exploits the skew-adjoint property of
Su and ensures conservation of kinetic energy at the discrete level. We uniformly discretize Ω
into N points and denote by u ∈ RN×s, p ∈ RN , and T ∈ RN×s×s the discrete representation
of u, p, and τ , respectively. Let Dj be the centered finite difference scheme for ∂/∂xj , and for
j = 1, . . . , s. The momentum equation in (2.1.7) is discretized as

d

dt
ui + Suui +Dip =

d∑
j=1

DjTi,j , i = 1, . . . , s (2.1.9)
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2.1 Skew symmetric and centered schemes for fluid flows

where Su is the discretization of Su given by

Su =
d∑
j=1

DjUj + UjDj (2.1.10)

and Uj contains components of ui on its diagonal. We require Dj to satisfy:

• Dj = −D>j
• Dj1 = 0, where 1 and 0 are vectors of ones and zeros, respectively.

The two conditions yield

Su = −S>u , 1>Suui = 0, i = 1, . . . , d.

Conservation of momentum in the discrete sense is expressed as

d

dt

d∑
i=1

1>ui =
d∑
i=1

−1>Suui − 1>Dip
d∑
j=1

1>DjTij

 = 0.

Similarly, it is verified that

d

dt

d∑
i=1

(
1
2u>i ui

)
= −

d∑
i,j=1

TijDjui ≤ 0. (2.1.11)

Both conditions for Dj are easily checked for a centered finite differences scheme on a periodic
domain. For other types of boundaries, e.g., wall boundary and inflow/outflow, we refer the
reader to [76; 180] to construct the proper discrete centered differentiation operator. We note that
the finite differences schemes are chosen here for illustration purposes. It is easily checked that
any discrete differentiation operator that satisfies discrete integration by parts, e.g., summation
by part (SBP) methods and discontinuous Galerkin (DG) methods, also satisfies conditions 1
and 2 and can be used to construct a skew-symmetric discretization.

2.1.3 Compressible fluid

Consider the equations governing the evolution of a compressible fluid in a skew-symmetric form
in one spatial dimension 

∂

∂t
ρ+ ∂

∂x
(ρu) = 0,

Sρ,∂t (u) + Sρu (u) + ∂

∂x
p = ∂

∂x
τ,

∂

∂t
ρE + ∂

∂x
(uE + up) = ∂

∂x
(uτ − ϕ) .

(2.1.12)

Here E = e + u2/2 is the total energy per unit mass, with e = pρ(γ − 1) being the internal
energy, γ the adiabatic gas index, and ϕ = −λ∂T∂x is the heat flux, with λ as the heat conductivity.
The remaining variables are the same as those discussed in Section 2.1.2. Following [213], the
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Model order reduction of fluid equations in skew-symmetric form

evolution of the momentum equation is

d

dt

(
1
2ρu

2
)

+ ∂

∂x

(
ρu

(
1
2u

2
))

= 1
2u
(
d

dt
ρu+ ρ

d

dt
u

)
+ 1

2u
([

∂

∂x
ρu

]
u+ ρu

∂

∂x
u

)
= −u ∂

∂x
p+ u

∂

∂x
τ,

(2.1.13)

leaving only the pressure work and viscous stress as only possible sources and sinks of kinetic
energy. Substituting this into the equation in (2.1.12), while assuming a constant adiabatic index,
yields

1
1− γ

d

dt
p+ γ

γ − 1
∂

∂x
up− u ∂

∂x
p = −u ∂

∂x
τ + ∂

∂x
(uτ − ϕ) . (2.1.14)

We discretize the real line, uniformly, into N grid points and denote by ρ,u,p ∈ RN , the discrete
representations of ρ, u, and p, respectively. Using the matrix differentiation operator D ∈ RN×N

(we omit the subscript "i" for the one dimensional case), introduced in Section 2.1.2, we define the
skew-symmetric matrix operator Sρu = 1

2 (DUR+RUD), where R is the matrix that contains ρ

on its diagonal. Semi-discrete expression of (2.1.12) and (2.1.14) takes the form
d

dt
ρ +DUρ = 0,

Sρ,∂t (u) + Sρuu +Dp = DT,

1
γ − 1

d

dt
p + γ

γ − 1DUp− UDp = −UDT +D (UT − ϕ) .

(2.1.15)

Recalling the two conditions for D, discussed in Section 2.1.2, it is easily verified that

S>ρu = −Sρu, 1>Sρuu = −u>DUρ. (2.1.16)

Conservation of the total mass M(t) is expressed as

d

dt
M = d

dt
1>ρ = −1>DRu = 0.

Furthermore, we recover conservation of total momentum P (t) in the discrete sense as

d

dt
P = d

dt

(
ρ>u

)
= 1

2
d

dt

(
ρ>u

)
+ 1

2

(
ρ>

d

dt
u + u> d

dt
ρ

)
= 1

2u> d
dt

ρ + 1>Sρ,∂t (u)

= −1
2u>DUρ− 1

21>Sρuu− 1>Dp + 1>DT = 0.

(2.1.17)

Here we used (2.1.16) and the mass and the momentum equations in (2.1.13). Similarly, for the
conservation of the total energy, we have

d

dt

(
1

γ − 11>p + 1
2 (Ru)> u

)
= d

dt

(
1

γ − 11>p
)

+ 1
2u>Sρ,∂t (u) = 0. (2.1.18)
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2.2 Model reduction of fluid flow

In addition to the conservation of the total energy, the skew-symmetric form of (2.1.13) also
conserves the evolution of the kinetic energy K(t):

d

dt
K = d

dt

(
1
2u>Ru

)
= 1

2u>Sρ,∂t(u) = −u>Sρuu + u>Dp + u>DT

= u>Dp + u>DT,
(2.1.19)

where we have used the skew-symmetry of Sρu. Therefore, only the pressure and the viscous
terms contribute to a change in the kinetic energy.
We point out that there are other methods to obtain a skew-symmetric form for (2.1.12), that
result in the conservation of other quantities. An entropy preserving skew-symmetric form can be
found in [233]. Furthermore, a fully quasi-skew-symmetric form for (2.1.12), where all quadratic
fluxes are in skew-symmetric form, is shown to minimize aliasing errors [134].

2.1.4 Time integration

Following [213; 179] we can construct a fully discrete second order accurate scheme for (2.1.15)
as 

1
2
√

ρτ+1/2

√
ρτ+1 −

√
ρτ

∆t +DUτ+1/2ρτ = 0,√
ρτ+1/2

√
Rτ+1uτ+1 −

√
Rτuτ

∆t + Sρτuτuτ+1/2
α +Dpτ = DT τ ,

1
1− γ

pτ+1 − pτ

∆t + γ

γ − 1DU
τpτ − UτDpτ = −UτDT τ +D (UτT τ − ϕτ ) .

(2.1.20)

Here ∆t is the time step, superscript τ denotes evaluating at t = τ∆t, superscript τ + 1/2 denotes
the arithmetic average of a varible evaluated at t = τ∆t and t = (τ + 1)∆t, the square root sign
denotes element-wise application of square root and

uτ+1/2
α =

√
Rτ+1uτ+1 +

√
Rτuτ

2
√

ρτ+1/2
.

As discussed in [213], this time discretization scheme preserves the symmetries expressed in
(2.1.11), (2.1.17), (2.1.18), and (2.1.19). In the incompressible case, the method reduces to the
implicit midpoint scheme.

2.2 Model reduction of fluid flow
A straightforward model reduction of (2.1.7) and (2.1.12) does not generally preserve the sym-
metries and the conservation laws presented in Section 2.1.1. In this Section, we discuss how to
exploit the discrete skew-symmetric structure of (2.1.9) and (2.1.15) to recover conservation of
mass, momentum, and energy at the level of the reduced system.
Let Uρ, Uρu, and Uui be the reduced bases for the snapshots of ρ, Ru, and ui, respectively, with
reduced coefficients zρ, zRu, and zui . The subscript "i" is omitted for the one-dimensional case,
and for an impressible fluid, Uρ and Uρu are not computed. For simplicity, we assume that all
bases have the same size n. We seek to project Su, Sρ,∂t , and Sρu onto the reduced space, such
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Model order reduction of fluid equations in skew-symmetric form

that the projection preserves the skew-symmetric property. The projected operators, using a
Galerkin projection, read

Sru = U>uiSuUui , i = 1, . . . , s, (2.2.1)

and
Srρ,∂t = U>ρuSρ,∂tUu, Srρu = U>ρuSρuUu. (2.2.2)

Note that Srρ,∂t is not computed explicitly. It is clear that Sru is already in a skew-symmetric
form. On the other hand, Srρ,∂t and S

r
ρu are not, in general, skew-adjoint and skew-symmetric,

respectively. The preservation of the skew-symmetric structure can be ensured by requiring
Uρu = Uu. We denote such a basis by Uρu,u. Using (2.2.1) and (2.2.2), a Galerkin projection
of the momentum equation in (2.1.9) and the governing equations for a compressible fluid in
(2.1.15) take the form

d

dt
zui + Sruzui + U>uiDip =

s∑
j=1

U>uiDjTij (Uuizui) , i = 1, . . . , s (2.2.3)

and

d

dt
zρ +

n∑
i=1

U>ρ DUiUρzρ = 0,

Srρ,∂tzu + Srρuzu + U>ρu,uDUpzp = U>ρu,uDT,

1
γ − 1

d

dt
zp + γ

γ − 1U
>
p DUUpzp − U>p UDUpzp = −U>p UDT + U>p D (UT − ϕ) ,

(2.2.4)

respectively. Note that in (2.2.4), the dependency of T on Uρu,u is not shown for abbreviation.
In (2.2.3) and (2.2.4), Di is always multiplied from the left with a basis matrix or a diagonal
matrix. Therefore, the telescoping sum, discussed in Section 2.1.2, cannot be used to show
the conservation of mass and momentum. However, POD preserves the linear properties of
snapshots. An approximated variable, e.g., density, can be represented as a linear combination of
some snapshots as ρ ≈ ρr =

∑NS
i=1 ciρi, for some snapshots ρi and some coefficients ci ∈ R, for

i = 1, . . . , NS . Conservation of the total mass, evaluated by ρr and denoted by Mr(t) for the
approximated solution, reads

d

dt
Mr = d

dt
1>Nρr =

NS∑
i=1

ci

(
1>N

d

dt
ρi

)
= −

NS∑
i=1

ci
(
1>NDRiui

)
= 0, (2.2.5)

where we used that 1>ND = 0>N . Similarly, we recover conservation of the total momentum Pr(t)
for the reduced approximation

d

dt
Pr = d

dt

(
ρ>r ur

)
= 1

2
d

dt

(
ρ>r ur

)
+ 1

2

(
ρ>r

d

dt
ur + u>r

d

dt
ρr

)
=

NS∑
i,j=1

dicj

(
u>i

d

dt
ρj +

(
ρ>j

d

dt
ui + u>i

d

dt
ρj

))
= 0.

(2.2.6)
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2.2 Model reduction of fluid flow

Here, ur =
∑NS
i=1 diui, for some snapshots ui and coefficients di ∈ R. Denoting by (Ru)r the

reduced representation of Ru in basis Uρu,u, the evolution of kinetic energy is expressed as

d

dt

(
1
2u>r (Ru)r

)
= d

dt

(
1
2z
>
u U
>
ρu,uUρu,uRrzu

)
= d

dt

(
1
2z
>
u Rrzu

)
= 1

2

(
z>u

d

dt
zRu + z>Ru

d

dt
zu

)
= 1

2

(
z>u U

>
ρu,uUρu,u

d

dt
zRu + z>Ru

d

dt

(
U>ρ,u,uUρu,uzu

))
= z>u S

r
ρ,∂tzu = z>u Uρu,uDUpPr + z>u U

>
ρu,uDT.

(2.2.7)

In the last line, skew-symmetry of Srρu is used. Note, that only the reduced pressure and
the viscous term contribute to the evolution of the kinetic energy. Furthermore, the quantity
Kr(t) = 1

2z
>
u zRu is the kinetic energy associated with the reduced system (2.2.4), approximating

the kinetic energy of the high-fidelity system (2.1.15), and is a quadratic form with respect to the
reduced variables. Conservation of kinetic energy for (2.2.3) follows similarly. It is straightforward
to check that

d

dt

(
1

γ − 11>Npr + 1
2u>r (Ru)r

)
= 0, (2.2.8)

i.e., the total energy is conserved. We immediately recognize that zp/γ − 1 is the internal energy
of the reduced system. However, the total internal energy of (2.2.4) is a weighted sum, b>zp/γ − 1,
with b = U>p 1 which is an approximation of the total internal energy in (2.1.15). From (2.2.5),
(2.2.6), (2.2.7), and (2.2.8) we conclude the following proposition.

Proposition 2.2.1. The loss in the mass, momentum, and energy associated with the model
reduction in (2.2.4) is constant in time, and therefore, bounded.

2.2.1 Assembling nonlinear terms and time integration

Nonlinear terms that appear in (2.2.3) and (2.2.4) are of quadratic nature. These terms can be
evaluated exactly using a set of precomputed matrices as described in Section 1.5. As an example,
consider

Sru = U>u (DUr + UrD)U>u .

where Ur is the diagonal matrix having the RB approximation ur of the velocity on its diagonal.
We write Ur as a linear combination of matrices as Ur =

∑n
j=1 urjUj , where urj is the j-th

component of ur, and Uj contains the j-th column of Uu on its diagonal. It follows

Sru =
k∑
j=1

urj
(
U>u (DUj + UjD)U>u

)
,

The matrices
(
U>u (DUj + UjD)U>u

)
can be precomputed prior to the time integration of the

reduced system. However, the form of the fully discrete system in (2.1.20) introduces quartic
terms and support variables. In principle, the same method can be applied to assemble the
nonlinear terms. However, the number of precomputed matrices grows exponentially with the
order of the nonlinear term, as noted in Section 1.5.
To accelerate the assembly of the nonlinear terms we may approximately evaluate them using
the DEIM. Since this is an approximate evaluation, we do not expect conservation of invariants,
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Model order reduction of fluid equations in skew-symmetric form

as discussed in Section 2.2. However, the numerical experiments in Section 2.3 suggest that an
accurate approximation of the invariants is achieved when an accurate DEIM approximation is
used for evaluating nonlinear terms. A possible extension of the approach, which exploits a block
division of skew-symmetric operators for certain physical problems, is proposed in [269] in the
context of noncanonical Hamiltonian problems.
To integrate (2.2.4) in time, the fully discrete system (2.1.20) is modified prior to model reduction,
by dividing the mass and momentum equation by

√
ρτ+1. Note that since the new form is

identical to (2.1.20), it does not affect the conserved quantities. Subsequently, a basis for √ρ,
denoted by U√ρ, is constructed. The nonlinear terms are evaluated exactly using the quadratic
expansion or approximated using DEIM.

2.3 Numerical experiments

2.3.1 Vortex merging

Consider the incompressible 2D Euler equation (2.1.7) on a square domain Ω = [0, 2π]2, with
periodic boundary conditions. Spatial derivatives are discretized using a Fourier spectral method.
To capture the fine details characterizing the solution, 256 modes per dimension are used, for a
total of N = 65536 degrees of freedom per variable. We consider the evolution of three vortices,
with the initial structure given by

ω = ω0 +
3∑
i=1

αi exp
(
− (x− xi)2 + (y − yi)2

β2

)
.

Here, ω = ∇× u is the vorticity of the velocity flow, (x, y) represents the spatial coordinates,
(xi, yi) is the center of the i-th vortex, αi its maximum amplitude, and β controls the effective
radius of the vortex. In this numerical experiment, the center of three vortices are

(x1, y1) = (0.75π, π), (x2, y2) = (1.25π, π), (x3, y3) = (1.25π, 1.5π).

Two of the vortices have a positive spin with α1 = α2 = π and the third rotates in the opposite
direction with α3 = −0.5π. The effective radius of all the vortices is set to β = 1/π. This
arrangement of vortices has been traditionally considered as initial condition to study the process
of vortex merging due to fast-moving dipoles with the same spin facing the third vortex of opposite
spin [77]. The merging process transfers the vorticity from the initial configuration into long,
narrow, and spiral-shaped strips of intense vorticity [142]. Because of aliasing, the formation of
such thin vorticity filaments in the fluid may pose numerical challenges.
In the context of MOR, conservation of energy and stability are crucial to capture fine structures.
With the absence of natural dissipation, straightforward application of MOR techniques for the
Euler equations produces unstable ROMs.
To define the initial conditions in terms of the velocity components u and the pressure p, we
define the stream-function Ψ as the solution to the equation

−∆Ψ = ω. (2.3.1)

The initial velocity is then given by ∇×Ψ. To solve the stream-function problem (2.3.1), we
require

∫
Ω Ψ dx = 0. In our setting, it is easily verified that this requirement implies ω0 = 0.038.
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Figure 2.1: VM: (a) Evolution of the kinetic energy K for the advective, divergence and skew-
symmetric formulations of the incompressible Euler equation in the vortex merging setting. (b)
Singular values of the snapshot matrix of the the solution to the FOM.

The pressure is recovered by solving the related Poisson pressure equation

∆p = −∇ · Su (u) ,

obtained by applying the divergence operator to (2.1.7) and using the incompressibility condition.
We use the numerical integrator defined in (2.1.20), which in this case reduces to the implicit
midpoint scheme The merging phenomenon is simulated for a total of T = 18 seconds using a
temporal step ∆t = 0.004.
Figure 2.1(a) illustrates the evolution of the kinetic energy K for the advective, the divergence, and
the skew-symmetric forms of the high-fidelity system. It is observed that only the skew-symmetric
form preserves the kinetic energy, supporting the findings of Section 2.1.1 A total of Nt = 5000
temporal snapshots is used to construct a reduced basis, following the process discussed in Section
1.3.1. The decay of the singular values, used as an indicator of the reducibility of the problem,
is presented in Figure 2.1(b). The first 35 POD modes contain over 99% of the energy of the
high fidelity solution. This suggests that an accurate reduced system can be constructed using
fewer basis vectors. Smaller reduced bases are also considered to illustrate the effectiveness and
stability of the method.
For qualitative analysis, in Figure 2.2, four solutions at different times are shown for the high-
fidelity and the reduced systems with n = 17 and n = 35 modes. The overall dynamics of the
problem, and in particular the formation and development of vorticity filaments, are correctly
represented, and even with a moderate number of basis vectors. Although small details are
not captured by the reduced system of dimension n = 17, the positions and the spreading of
the vortices are comparable. Figure 2.3(a) shows the norm of the error between the velocity
components of the high-fidelity solution and the reduced solution, defined as

εu(t) = ‖u(t)− ur(t)‖2 . (2.3.2)

The error decreases consistently as the number n of basis vectors increases. Furthermore, the
accuracy is maintained over the entire simulated interval. The conservation of the reduced kinetic
energy Kr is presented in Figure 2.3(b). The kinetic energy remains constant even for a small
number of basis vectors, where the solution is not well approximated. This is central for the
robustness of the reduced system during long time-integration.
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Figure 2.2: VM: Vorticity field at different times obtained from the FOM and the ROM with
n = 17 and n = 35. Starting from three separated vortices, filamentous structures develop as a
result of the interactions between the vortices as early as t = 8.
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Figure 2.3: VM: (a) Evolution of the velocity absolute error, as defined in (2.3.2), for different
values of the basis dimension n. (b) Comparison of the time evolution of the reduced kinetic
energy Kr for different values of n.

2.3.2 2D Kelvin-Helmholtz instability

Consider the 2-dimensional compressible Euler equation (2.1.12) in the periodic square box
Ω = [0, 1]2. Unlike the incompressible example in Section 2.3.1, a centered finite difference scheme
of fourth order is used to discretize (2.1.12). The physical domain is discretized onto a grid of
256× 256 nodes, giving N = 65536.
The initial conditions are given by

ρ =
{

2, if 0.25 < y < 0.75,
1, otherwise,

u1 = a sin (4πy)
(

exp
(
− (y − 0.25)2

2σ2

)
+ exp

(
− (y − 0.75)2

2σ2

))
,

u2 =
{

0.5, if 0.25 < y < 0.75,
−0.5, otherwise,

p = 2.5,

where a = 0.1 and σ = 5
√

2 · 10−3. This initial configuration depicts contacting streams of
fluid with different densities and velocities. Thin structures and vortices emerge at the interface
between the streams for specific choices of parameters describing the initial jets. Such instability
is referred to as the Kelvin-Helmholtz instability [54].
As centered schemes are often dissipation free, resolving the discontinuous initial data requires
artificial viscosity. Therefore, the method discussed in [270] is used as an artificial viscosity in
the high-fidelity model. However, at the level of the reduced system, this is replaced with a low
pass filter on the expansion coefficients of POD basis vectors.
The fully discrete skew-symmetric form (2.1.20) is used as time marching scheme with the time
step ∆t = 5 ·10−4 over a time frame of T = 1. The same time step is adopted for the discretization
of the ROM.
Figure 2.4 illustrates that the ROM’s accuracy consistently improves as a higher number n of
POD modes is considered. Furthermore, the same Figure shows that reducing the skew-symmetric
form allows to control the accuracy over the entire integration interval T . It is observed in Figure
2.5 that all the features of the flow are correctly represented by the solution to the reduced system,
even with a small number of basis vectors. Approximations of the mass M(t), the momentum
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Figure 2.4: KH: Evolution in time of the velocity error (2.3.2) between the high-fidelity solution
and the reduced solution of the Kelvin-Helmholtz numerical experiment for different basis
dimensions n.

P (t), and kinetic energy K(t) are shown in Figure 2.6. The method’s accuracy in approximating
these invariants improves as the size of the basis is increased. Furthermore, Figure 2.6(c) shows
how the reduced system’s kinetic energy mimics the high-fidelity system’s kinetic energy. This
helps to ensure the correct evolution of kinetic energy, and thus, the internal energy.

2.3.3 1D Shock problem

This section studies the 1-dimensional compressible Euler problem (2.1.12) with a steady-state
discontinuous solution without viscous terms. This numerical experiment prepares the ground for
Chapter 4, where we consider efficient techniques for the reduction of solutions showing sharp
propagating fronts. Here we assess if preserving the skew-symmetric form of (2.1.12) in the
reduction process guarantees stability. Consider periodic boundary conditions on the domain
Ω = [0, 1] with the initial condition

ρ = 0.5 + 0.2 cos (2πx) ,
u = 1.5,
p = 0.5 + 0.2 sin (2πx) .

The domain is discretized using N = 2000 nodes and a centered finite differences scheme is used
to assemble the discrete Euler equation in skew-symmetric form, as discussed in Section 2.1.3.
The full discrete skew-symmetric form (2.1.20) is used for time integration over the time interval
[0, 0.3]. To resolve the discontinuous solution we use an artificial viscosity term with τ = µ∂u∂x ,
where µ = 0.5 · 10−4.
Figure 2.7 shows the evolution of conserved quantities for the high-fidelity and reduced system.
Here, the high-fidelity model is also considered in the divergence and advective form in addition to
the skew-symmetric form. It is clear that when the reduced system is not in the skew-symmetric
form, it violates the conservation of mass, momentum, and energy. Even while the high-fidelity
systems in divergence and advective forms are stable, the constructed reduced system is unstable,
independently of the number of basis vectors. On the other hand, the skew-symmetric form
yields a stable and conservative reduced system. Note that the energy loss associated with the
skew-symmetric form, illustrated in Figure 2.7, is due to the application of an artificial viscosity.
Figure 2.8 shows the evolution of the total error in time. It is observed that the formation of a
discontinuity, at t = 0.16, affects the method’s accuracy. This degradation of the approximation
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Figure 2.5: KH: Density field at different times obtained from the full-order model and the
reduced model for n = 200 and n = 500. The instability developing from the velocity discontinuity
across the interface is properly captured by the ROM solution.
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Figure 2.6: KH: Evolution of the relative errors in the conservation of the mass (a), of the
momentum (b), and of the total energy (c) for the solution of the ROM for different values of n.

quality is expected because relatively few POD modes are not enough to resolve sharp gradients.
However, the method remains robust and stable during the period time of integration. In
Figure 2.9 we compare the numerical artifacts of different formulations of the Euler equation.
The advective formulation is not shown since it does not yield a stable reduced system. It is
observed that the reduced system based on the skew-symmetric formulation accurately represents
the overall behavior of the high-fidelity solution. On the other hand, a Gibbs-type error [250]
appears near sharp gradients for the reduced system based on the divergence form of the Euler
equation. The well-representation of the skew-symmetric form is due to the low aliasing error
property of the form, as mentioned in Section 2.1.3. As discussed in Section 2.2.1, the DEIM
approximation needed for an efficient evaluation of the nonlinear components of (2.1.12) can
affect the conservation properties of the skew-symmetric form. Figure 2.10 shows the decay of the
singular values of the nonlinear snapshots. The decay of these snapshots is significantly slower
than the temporal snapshots of (2.1.12). This indicates that to maintain the accuracy of the
reduced system, the DEIM basis should be chosen richer than the POD basis. Figure 2.11(a)
and 2.11(b) present the error and the conservation of total energy when the DEIM is used to
approximate the nonlinear term. The energy conservation is recovered once DEIM approximates
the nonlinear terms with enough accuracy. In this numerical experiment, evaluation of the
nonlinear terms in (2.1.12) using DEIM is four times faster than the high-fidelity evaluation.

2.3.4 Continuous variable resonance combustor

CVRC is a model rocket combustor designed and operated at Purdue University (Indiana, U.S.) to
investigate combustion instabilities [271]. This setup is called the Continuously Variable Resonance
Combustor (CVRC) because the length of the oxidizer injector can be varied continuously, allowing
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Table 2.1: Geometry parameters of the quasi-1D CVRC with an oxidizer post length Lop = 14 cm.

Section Oxidizer post Chamber Nozzle
injector back-step converging part diverging part

Length (cm) 12.99 1.01 38.1 1.27 3.4
Radius (cm) 1.02 1.02~2.25 2.25 2.25~1.04 1.04~1.95

for a detailed investigation of the coupling between acoustics and combustion in the chamber.
However, the 2D/3D high-fidelity simulations of CVRC are expensive. Thus, a quasi-1D model
has been proposed in [235] and further developed in [93] to get a fast analysis tool. The CVRC
consists of three parts: the oxidizer post, the combustion chamber and the exit nozzle, as shown
in Figure 2.12. The oxidizer is injected from the left end of the oxidizer post and meets the fuel,
injected through an annular ring around the oxidizer, at the back-step. The combustion products
flow through the chamber and exit the system from the nozzle. Both the injector and the nozzle
are operated at chocked condition during the experiment. The length of the oxidizer post Lop
of the CRVC can be varied continuously, leading to different dynamics. Here, we focus on the
case with Lop = 14.0 cm, in which the combustion is unstable. The geometry parameters of
the quasi-1D CVRC with an oxidizer post length Lop = 14.0 cm are shown in Table 2.1. The
back-step and the converging part of the nozzle are sinusoidally contoured to avoid a discontinuity
of the radius that will invalidate the quasi-1D governing equations studied here.
The fuel is pure gaseous methane. The oxidizer is a mixture of 42% oxygen and 58% water (per
unit mass) injected in the oxidizer post at temperature Tox = 1030 K so that both water and
oxygen are in the gaseous phase. The operating conditions are listed in Table 2.2.
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Figure 2.12: CVRC: Geometry of quasi-1D CVRC model.

Table 2.2: CVRC operating conditions.

Parameter Unit Value
Fuel mass flow rate , ṁf kg/s 0.027
Fuel temperature, Tf K 300
Oxidizer mass flow rate, ṁox kg/s 0.32
Oxidizer temperature, Tox K 1030
O2 mass fraction in oxidizer, YO2 - 42.4%
H2O mass fraction in oxidizer, YH2O - 57.6%
Mean chamber pressure MPa 1.34
Equivalence ratio, Er - 0.8

For the combustion, we consider the one-step reaction model

CH4 + 2O2 7→ CO2 + 2H2O.

We assume that the fuel reacts instantaneously to form products, allowing us to neglect interme-
diate species and finite reaction rates. As the equivalence ratio is less than one, some oxidizer
is left after the combustion. Therefore, only two species need to be considered: oxidizer and
combustion products.
The governing equations that describe the conservation of mass, momentum, and energy of the
quasi-1D CVRC flow, are the quasi-1D unsteady Euler equations for multiple species, expressed
in conservative form as

∂

∂t
ν + ∂

∂x
Fν = sA + sf + sq. (2.3.3)

The conserved variable vector ν and the convective flux vector Fν are

ν =


ρA

ρuA

ρEA

ρYoxA

 , F =


ρuA(

ρu2 + p
)
A

(ρE + p)uA
ρuYoxA

 , (2.3.4)

where ρ is the density, u is the velocity, p is the pressure, E is the total energy, Yox is the mass
fraction of oxidizer, and A = A(x) is the cross sectional area of the duct. The pressure p can be
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computed using the conserved variables as

E = p

ρ(γ − 1) + u2

2 − CpTref ,

where Tref is the reference temperature and is set at 298.15 K. The temperature T is recovered
from the equation of state p = ρRT . The gas properties Cp, R and γ are computed as Cp =∑
CipYi, R =

∑
RiYi and γ = Cp/(Cp −R), respectively.

The source terms are

sA =


0

p
dA

dx
0
0

 , sf =


ω̇f
ω̇fu

ω̇f

(
hf0 +∇hrel0

)
ω̇ox

 , sq =


0
0
q
′

0

 , (2.3.5)

where ω̇f is the depletion rate of the fuel, ω̇ox is the depletion rate of the oxidizer, hf0 is the total
enthalpy of the fuel, ∇hrel0 is the heat of reaction per unit mass of fuel and q′ is the unsteady
heat release term. The quantity sA accounts for area variations, sf and sq are related to the
combustion with the combustion. The quantity sf represents the addition of the fuel and its
combustion with the oxidizer, which in turn results in the creation of the combustion products.
The depletion rate of the fuel is

ω̇f = kfṁfYox(1 + sin(ξ))
lf − ls

,

where
ξ = −π2 + 2π x− ls

lf − ls
, ∀ls < x < lf .

The setting of the fuel injection restricts the combustion to the region ls < x < lf . The reaction
constant kf is selected to ensure that the fuel is consumed within the specified combustion zone.
The depletion rate of the oxidizer is computed by

ω̇ox = Co/f ω̇f ,

where Co/f is the oxidizer-to-fuel-ratio.
The unsteady heat release term q

′ also called the combustion response function, models the
coupling between acoustics and combustion. Here, we use the combustion response function
designed by Frezzotti et al. [93], which is a function of the velocity, sampled at specific abscissa
x̂ that is almost coincident with the antinode of the first longitudinal modal shape with a time
lag t0, i.e.,

q
′
(x, t) = αg(x)A(x)[u(x̂, t− t0)− ū(x̂)]. (2.3.6)

Here ū is the time averaged velocity, estimated with the steady-state quasi-1D model assuming
q
′ = 0, and g(x) is a Gaussian distribution

g(x) = 1√
2πσ2

exp
(
− (x− µ)2

2σ2

)
,

where µ is the mean and σ is the standard deviation. The amount of heat released due to velocity
oscillations is controlled by the parameter α, in (2.3.6).
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The boundary conditions for the quasi-1D CVRC flow include the fixed mass flow rate and the
stagnation temperature at the head-end of the oxidizer injector, and the supersonic outflow at
the exit of the nozzle.
Prior to the unsteady simulation, the quasi-1D CVRC needs to be excited, which is achieved by
adding a perturbation to the steady-state solution. The perturbation is added by forcing the
mass flow rate with a multi-sine signal

ṁox(t) = ṁok,0

[
1 + δ

K∑
k=1

sin (2πk∆ft)
]
,

where ṁox is the oxidizer mass flow rate in Table 2.2, ∆f is the frequency resolution and K

is the number of frequencies. In this work, ∆f = 50 Hz and K = 140, resulting in a minimal
frequency of 50 Hz and a maximal frequency of 7000 Hz. δ is required to be small to control the
amplitude of the perturbation and is set as 0.1%.
The procedure of the unsteady simulation of the quasi-1D CVRC flow includes three steps:

• Compute the steady-state solution by setting ṁox = ṁox,0 and q′ = 0.
• Excite the system by adding a perturbation to the oxidizer mass flow rate according to

(2.3.6) and setting q′ = 0.
• Perform the unsteady simulation by turning on the combustion response function q

′ in
(2.3.5) and turning off the oxidizer mass flow rate perturbation by setting ṁox = ṁox,0.

Introduction of an artificial viscosity is essential for a robust and long time-integration of (2.3.3).
Common discretization schemes for (2.3.3) are often dissipative, e.g., the Lax-Friedrich scheme
used in [259]. Since the skew-symmetric discretization is non-dissipative, we modify (2.3.3) as

∂

∂t
ν + ∂

∂x
Fν = sA + sf + sq + d, d = (0, ∂

∂x
τ, 0, 0)>, (2.3.7)

with τ = µ∂uA∂x and µ = 6 · 10−5. This type of artificial viscosity is chosen for its simplicity. This,
however, can be replaced with a more moderate and sophisticated method.
Note that the right hand side in (2.3.7) suggests that, in general, mass, momentum, and energy
are not conserved. Furthermore, the complex coupling of the variables in (2.3.3) and the non-
constant adiabatic gas index prohibits the application of complex and implicit time integration
schemes. Therefore, a quasi-skew-symmetric form, introduced in (2.1.6), is used for (2.3.3). It is
straightforward to check [233], for t, s ∈ RN

1
2δx(st)j + 1

2sjδx(t)j + 1
2 tjδx(s)j = 1

4δ
+
x (sj + sj−1)(tj + tj−1). (2.3.8)

where δx(ν)j = (νj+1−νj−1)/∆x is centered finite difference approximation of the space derivative
and δ+

x (νj) = (νj+1 − νj)/∆x for some ν ∈ RN . Therefore,

F∆
i+1/2(sjtj , sj+1tj+1) = (sj + sj−1)(tj + tj−1), (2.3.9)

can be interpreted as an approximation of a quadratic flux function at the boundary of two
adjacent finite volume cells. A better approximation of the flux in (2.3.9) corresponds to a higher
order skew-symmetric for a quadratic variable st in (2.3.8). We discretize the real line into N
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Figure 2.13: Pressure profile of the steady state (a) and oscillatory mode of pressure located at
x = 0.36 for the unsteady flow for the combustor model solution (b).

uniform cells of size ∆x. A quasi-skew-symmetric form for (2.3.7) now takes the form

d

dt
qij + δ+F∆

i+1/2(qijrij , qij+1r
i
j+1)− δ+F∆

d (dij , dij+1) + δ+F∆
p (pj , pj+1)

=
∫
cj

sA + sf + sq dx.

for j = 1, . . . , N . Here, cj is the j-th cell, qij =
∫
cj
vi dx is the cell average of the i-th component

of ν, F∆
p is the flux approximation of the pressure term, F∆

d is the flux approximation for the
viscous term and r = (u, u, u, u)>.
The three-stage Runge-Kutta (SSP RK3), even though not structure-preserving, is used to
integrate (2.3.7) in time. The pressure profile for the steady state, with q′ = 0, and the pressure
oscillatory mode in the unsteady phase is presented in Figures 2.12(a) and 2.12(b), respectively.
The discontinuities that appear in the solution of (2.3.7) suggest that a relatively large basis is
required to resolve fine structures. Here, a POD basis is generated with n = 200, n = 300 and
n = 400 number of basis vectors. To avoid basis changes in the reduced system, only one POD
basis is considered for ρ, ρu, ρE, and ρYox. The explicit SSP RK3 is then used to integrate the
reduced system, for the unsteady system. The source terms are evaluated in the high-fidelity
space and projected onto the reduced space. However, in principle, the DEIM can be applied to
accelerate the evaluation of this component.
Figure 2.14(a) shows the approximation error of the pressure, due to MOR. It is observed that
the approximation is consistently improved as the number of basis vectors increases. Furthermore,
the approximate solution maintains high accuracy over a relatively long time-integration. The
oscillation of pressure is demonstrated in Figure 2.14(b). The overall behaviour of pressure is well
approximated by the reduced system. Similar results are obtained for a POD basis with higher
number of modes. We note that the discrete form of (2.3.7) is not in the full skew-symmetric form.
Nonetheless, the quasi-skew-symmetric discretization offers remarkable stability preservation.
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3 Model order reduction of Hamil-
tonian systems

This Chapter is organized as follows. In Section 3.1, we present the structure characterizing the
dynamics of Hamiltonian systems and the concept of symplectic transformations. In Section 3.2,
we show that linear symplectic maps can be used to guarantee that the reduced models inherit
the geometric formulation from the full dynamics. Different strategies to generate such maps are
investigated in Section 3.3, with thoughts on optimality results and computational complexities.
Finally, we discuss applications of structure-preserving reduction techniques to two more general
classes of problems in Section 3.4.

3.1 Symplectic geometry and Hamiltonian systems
Let us first establish some definitions and properties concerning symplectic vector spaces.

Definition 3.1.1. Let P be a 2N -dimensional vector space. A bilinear map ω2N : P × P → R is
called anti-symmetric (or skew-symmetric) if

ω2N (u, v) = −ω2N (v, u), ∀u, v ∈ P.

It is non-degenerate if
ω2N (u, v) = 0, ∀u ∈ P. =⇒ v = 0. (3.1.1)

Definition 3.1.2. Let V2N be a finite-dimensional manifold with ω2N an anti-symmetric bilinear
form on TV2N . The pair (V2N , ω2N ) is a symplectic manifold if ω2N is non-degenerate. Moreover,
V2N has to be even dimensional.

In Definition 3.1.2, for any u ∈ V2N the bilinear form ω2N is the map ω2N |u : TuV2N×TuV2N → R
on the tangent space TuV2N of V2N at u and it varies smoothly with u. Hence, the non-degeneracy
of the form implies that for every point of the manifold V2N the skew-symmetric pairing introduced
by ω2N on the tangent space TuV2N is non-degenerate in the sense defined in (3.1.1). If ω2N is also
closed, i.e., the exterior derivative dω2N is zero, then it is possible to define a Lie algebra structure
for the symplectic manifold (V2N , ω2N ). In this case, there exists a contravariant skew-symmetric
tensor J2N : T ∗V2N → TV2N of rank 2 on the manifold V2N such that, for all F ,G ∈ C∞(V2N ),
it is possible to define a bracket as

{F ,G}2N := ω2N (J2NdF ,J2NdG) , (3.1.2)
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which takes the name of Poisson bracket and the related tensor is commonly referred to as Poisson
tensor. The Poisson bracket introduces an algebraic structure in the sense given in the following
proposition.
Proposition 3.1.3 ([2, Proposition 3.3.17, page 194]). The real vector space C∞(V2N ), together
with the Poisson bracket {·, ·}2N defined in (3.1), forms a Lie algebra.

Since we are interested in structure-preserving transformations, preserving the structure means
preserving the anti-symmetric bilinear form, as stated in the following definition.
Definition 3.1.4. Let (V2N , ω2N ) and (V2n, ω2n) be two symplectic manifolds of finite dimensions
with n ≤ N . The differentiable map ϕ : (V2N , ω2N )→ (V2n, ω2n) is a symplectic transformation
(symplectomorphism) if

ϕ∗ω2n = ω2N ,

where ϕ∗ω2n is the pull-back of ω2n with ϕ or, equivalently, if it satisfies

ϕ∗{F ,G}2n = {ϕ∗F , ϕ∗G}2N , ∀F ,G ∈ C∞(V2n).

The closedness of the bilinear form ω2N is also important for the local representation of symplectic
manifolds as symplectic vector spaces, which are vector spaces over a field equipped with a bilinear
form satisfying the requirements introduced in Definition 3.1.1. This result becomes even more
relevant in the context of MOR via RB since we are interested in approximating high-dimensional
symplectic manifolds, such as solution manifolds of Hamiltonian systems, with low-dimensional
linear vector spaces.
Theorem 3.1.5 ([2, Proposition 3.3.21, page 195]). Let (V2N , ω2N ) be a finite-dimensional
symplectic manifold, and (U,Ψ) be an atlas of coordinate chart Ψ(u) :=

(
qi(u), pi(u)

)N
i=1 =(

q1(u), . . . , qN (u), p1(u), . . . , pN (u)
)
with u ∈ U . Then (U,Ψ) is a symplectic canonical chart (or

Darboux’ chart, or canonical basis) if and only if

{qi, qj}2N = {pi, pj}2N = 0, {qi, pj} = δj,i,

on U for i, j = 1, . . . , N . Moreover, it holds

ω2N =
N∑
i=1

dqi ∧ dpj ,

where it is understood that dqi and dpj are elements of the dual basis for the coordinate chart
Ψ(u).

One constructive way of proving Theorem 3.1.5 is based on the symplectic Gram-Schmidt
procedure [223]. For each u ∈ U , let u1, u2 ∈ TuV2N be any elements of the tangent space of V2N
at u. Then, the symplectic canonical chart defines a basis for TuV2N and it holds locally

ω2N |u(u1, u2) = ξ>J2Nη, (3.1.3)

where ξ, η ∈ R2N are the expansion coefficients of u1, u2 ∈ TuV2N with respect to the canonical
basis and

J2N =
[

0N IN
−IN 0N

]
, (3.1.4)
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3.1 Symplectic geometry and Hamiltonian systems

with 0N ∈ RN×N and IN ∈ RN×N denoting the zero and identity matrices, respectively. More
generally, using a non-canonical basis, the form retains a structure similar to (3.1.3), with J2N
being an invertible skew-symmetric matrix.
One of the essential properties of Euclidean spaces is that all the Euclidean spaces of equal
dimensions are isomorphic. By considering Theorem 3.1.5 for the specific case of symplectic
vector spaces, a similar result holds since two 2N -dimensional symplectic vector spaces are
symplectomorphic to one another. In particular, there exists a symplectomorphism between any
2N -dimensional symplectic vector space and the symplectic vector space (R2N , ω0), with ω0 being
the canonical symplectic form on R2N given by (3.1.3). Therefore, symplectic vector spaces are
fully characterized by their dimensions.
One of the most relevant applications of the abovementioned concepts of symplectic geometry to the
field of dynamical systems concerns the definition of Hamiltonian systems on symplectic manifolds.
The gist of the propositions to follow is that to any smooth function on a symplectic manifold, it
is associated a vector field, whose flow preserves the smooth function and the symplectic form.
The pairing between the given smooth function and the conservative flow stemming from the
related vector field represents an instance of the Noether theorem for symplectic manifolds, which
affirms that conserved quantities are reflections of symmetries of the system.

Definition 3.1.6. Let (V2N , ω2N ) be a finite dimensional symplectic manifold and H : V2N → R a
C∞ function on V2N . We refer to the vector field XH ∈ TV2N , which satisfies

dH = i(XH)ω2N ,

as the Hamiltonian vector field related to H, where i(XH) denotes the contraction operator and
d is the exterior derivative. The function H is called the Hamiltonian of the vector field XH.

Given a Hamiltonian function H and a related vector field XH, a second function H′ is another
Hamiltonian for XH if and only if d

(
H−H′

)
= 0 for all the elements of V2N . On the other

hand, from the non-degeneracy of the bilinear form ω2N it follows the uniqueness of the vector
field XH associated with H. Moreover, if XH is complete [107], it can be integrated, i.e., there
exists a phase flow, which is a one-parameter diffeomorphism ΦXH : V2N → V2N , that satisfies
the equation 

d

dt
ΦXH(t;u) = XH (ΦXH(t;u)) , for t ∈ T ,

ΦXH(t;u) = u.
(3.1.5)

Equation (3.1.5) is referred to as Hamilton’s equation of evolution or Hamiltonian system.

Let us consider the Darboux’ chart defined in Theorem 3.1.5. The Hamiltonian vector field XH
can be locally written as

XH =
N∑
i=1

∂

∂qi
H ∂

∂pi
− ∂

∂pi
H ∂

∂qi
. (3.1.6)

Moreover, in canonical coordinates on the phase space, given two functions F ,G ∈ C∞(V2N ), the
Poisson bracket takes the local form

{F ,G}2N =
N∑
i=1

(
∂

∂qi
F ∂

∂pi
G − ∂

∂pi
F ∂

∂qi
G
)
. (3.1.7)
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Model order reduction of Hamiltonian systems

Using (3.1.6), the local expression of the Hamiltonian system (3.1.5) in the Darboux’ chart is
d

dt
qi = {qi,H}2N = ∂

∂pi
H,

d

dt
pi = {pi,H}2N = − ∂

∂qi
H,

(3.1.8)

which is a first order system in the (q, p)-space, or generalized phase-space.
Thus, if the state vector u = (q1, . . . , qN , p1, . . . , pN ) is introduced, (3.1.8) takes the form

d

dt
u(t) = J2N∇uH(u(t)), (3.1.9)

where ∇uH(u(t)) is the gradient of H. The following proposition highlights an important property
of the flow ΦXH of Hamiltonian systems.

Proposition 3.1.7. Let ΦXH be the flow of a Hamiltonian vector field XH. Then ΦXH : V2N → V2N
is a symplectomorphism.

We rely on a geometric perspective to highlight the importance of Proposition 3.1.7 in the context
of symplectic vector spaces. First, we notice that expression (3.1.3) can be rewritten as the sum
of N contributions of the form

ωi2N |u(u1, u2) = ξiηN+i − ξN+1ηi, (3.1.10)

each representing the oriented area of the orthogonal projection of the 2-dimensional parallelogram
in R2N generated by different subsets of components of the expansion coefficients. The orientation
here follows the "right-hand" rule convention for vector multiplication. Given a symplectic map
ϕ, Definition 3.1.4 is recast [171] into the requirement for the Jacobian ϕ′ of the transformation
to preserve the bilinear form in the sense that

ω2N (ϕ
′
u, ϕ

′
v) = ω2N (u, v),

to be a symplectomorphism. Hence, as a consequence of (3.1.10), every symplectomorphism
is a volume-preserving transformation. However, the opposite is not necessarily true, and, in
particular, the non-squeezing theorem [112] provides a negative result about the approximability
of volume-preserving transformations by symplectic ones. The natural conclusion is that being
symplectic is an essentially different and much stringent condition for maps than being volume-
preserving. Even though out of the scope of this thesis work, we refer the reader to [12; 73] for
conjectures on global invariants for symplectic transformations, known as symplectic capacities,
that are more sophisticated than the volume defined in (3.1.10).
In addition to the conservation of volume, for the Hamiltonian dynamics it is possible to define
constant of motions. The total time differential of a smooth function I(q, p, t) is given by

d

dt
I = ∂

∂t
I +

N∑
i=1

(
∂

∂qi
I d
dt
qi + ∂

∂pi
I d
dt
pi

)

= ∂

∂t
I +

N∑
i=1

(
∂

∂qi
I ∂

∂pi
H− ∂

∂pi
I ∂

∂qi
H
)

= ∂

∂t
I + {I,H}2N ,
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3.2 Symplectic Galerkin projection

where we used the definition of Hamiltonian system (3.1.8) and the Poisson bracket in canonical
form (3.1.7) in the above equalities, leading to the following definition.

Definition 3.1.8. A smooth function I : V2N×R→ R is an invariant of motion of the Hamiltonian
system (3.1.9) if I is time-independent and {I,H}2N = 0 for all u ∈ V2N .

The Hamiltonian, if time-independent, is a constant of motion and as a consequence, it is preserved
along the orbits of XH.

3.2 Symplectic Galerkin projection
The motivation of MOR is to reduce the computational complexity of dynamical systems in
numerical simulations. In the context of structure-preserving projection-based reduction, two key
ingredients are required to define a reduced model. First, we need a low-dimensional symplectic
vector space that accurately represents the solution manifold of the original problem. Then, we
have to define a projection operator to map the symplectic flow of the Hamiltonian system onto
the reduced space while preserving its delicate geometric properties.
Let us assume that Hamilton’s equation can be written in the canonical form

d

dt
u(t) = J2N∇uH(u(t)),

u(0) = u0,
(3.2.1)

and the related symplectic vector space is denoted by (V2N , ω2N ). Symplectic projection-based
model order reduction adheres to the key idea of the general framework of projection-based
techniques, described in Chapter 1, with the additional requirement to approximate u in a
low-dimensional symplectic vector subspace (A2n, ω2N ) of dimension 2n. In the following, for
the sake of notation, we use A2n to indicate the reduced symplectic vector space paired with its
bilinear form. As for standard reduction techniques, we aim at n� N to have a clear reduction,
and therefore, significant gains in terms of computational efficiency. Let us consider the linear
map Φ : (V2N , ω2N )→ (A2n, ω2N ) given by

z = Φ(u) = A+u,

where z ∈ R2n and A+ ∈ R2n×2N is the corresponding matrix representation of Φ. We require
the linear map to be a symplectomorphism in the sense introduced by the following lemma as a
result of the definition of symplectic map given in (3.1.4).

Definition 3.2.1 ([189, Lemma 3.1, page 415]). Let (V2N , ω2N ) and (A2n, ω2N ) be two symplectic
vector spaces of dimension 2N and 2n, respectively, with n ≤ N . The linear map Φ : (V2N , ω2N )→
(A2n, ω2N ) is symplectic if and only its matrix representation A+ ∈ R2n×2N satisfies

A+J2N
(
A+)> = J2n. (3.2.2)

The matrix representation A+ of a symplectic linear map is called symplectic matrix.

Given a symplectic matrix A+ ∈ R2n×2N , its symplectic inverse is defined as

A = J2N
(
A+)> J>2n.
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Model order reduction of Hamiltonian systems

The symplectic inverse A represents the adjoint operator of the symplectic matrix A+ with respect
to the bilinear form ω2N , i.e. ω2N (A+v, u) = ω2N (u,Av), for all u ∈ V2n and v ∈ V2N .
The condition (3.2.2) on the symplecticity of A+ translates to

A>J2NA = J2n (3.2.3)

for the symplectic inverse A. That is why, with a little abuse of notation, in the following we say
that A ∈ R2N×2n is also symplectic if it belongs to the symplectic Stiefel manifold, defined by

Sp
(
2n,R2N) :=

{
L ∈ R2N×2n : L>J2NL = J2n

}
. (3.2.4)

It can be easily verified that A+ (A+)> = I2N if and only if A = (A+)> . In the same setting, it
is possible to construct an oblique projection operator onto A2n that reads

Π/
V2n

= A
(
A>A

)−1
A> = A

(
A+A

)−1
A+ = AA+. (3.2.5)

In the spirit of RB approximation, the projector (3.2.5), and hence A2n, should provide a
faithful and efficient representation of the original solution manifold. If that is the case, the
Hamiltonian system (3.2.1) is amenable of approximation with a Hamiltonian system of dimension
2n, characterized by the reduced Hamiltonian function Hr : A2n → R defined as

Hr(z) = H(Az),

thus preserving the geometric structure of the problem.
In particular, in the framework of Galerkin projection, by considering the RB ansatz

Π/
V2N

u = AA+u = Az, (3.2.6)

equation (3.2.5) yields
A
d

dt
z = J2N∇uH(Az) + r, (3.2.7)

with r being the residual term. By using the chain rule and the properties of A+, the gradient of
the Hamiltonian in (3.2.7) can be recast as

∇uH(Az) =
(
A+)>∇zHr(z). (3.2.8)

Similarly to the approaches described in Chapter 1, by assuming the projection residual r is either
small or orthogonal with respect to the symplectic bilinear form to A2n, we recover

d

dt
z(t) = J2n∇zHr(z(t)), in T ,

z(0) = A+u(0).
(3.2.9)

System (3.2.9) is known as a symplectic Galerkin projection of (3.2.1) onto A2n. Following
the MOR framework described in Chapter 1, the reduction process consists of two stages. The
pre-processing stage covers all the computations required to assemble A and corresponds to
the offline stage. The numerical solution of the low-dimensional problem (3.2.9) represents the
online stage. Even though the offline stage is possibly computationally expensive, this splitting is
beneficial in a multi-query context, when multiple instances of (3.2.1) have to be solved, e.g., for
parametric Hamiltonian systems.
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3.2 Symplectic Galerkin projection

The most remarkable result regarding the symplectic Galerkin projection is the guarantee of
stability obtained by preserving the symplectic structure of the problem (3.2.1). More in detail,
the characterization of symplectic matrices given in (3.2.3) is necessary for reformulating (3.2.8)
in terms of the reduced Hamiltonian Hr and hence preserving the structure in the reduction
process. Unfortunately, traditional projection-based reduction techniques, such as those based on
Galerkin projection via POD/greedy RB, lack this feature. Therefore, they do not guarantee
stable ROM, even if the high-dimensional problem admits a stable solution [210], often resulting
in a blowup of system energy. The first result concerning the boundness of energy for symplectic
reduction is offered in the following proposition, exploiting the property of the Hamiltonian H of
being an invariant of motion.

Proposition 3.2.2 ([198]). Let u(t) be the solution of the Hamiltonian FOM (3.2.1) and z(t)
be the solution to the Hamiltonian ROM (3.2.9) at the same time t. If the Hamiltonian H is
time-independent, then the error in the Hamiltonian, defined as

∆H(t) = |H(u(t))−H(Az(t))| = |H(u(0))−H(Az(0))| , (3.2.10)

is constant for all t ∈ T .

As a consequence of Proposition 3.2.2, if the initial data u(0) is exactly represented by Az(0) or
by introducing a constant bias in the reduced representation, the error in the Hamiltonian is not
only constant but equals zero.
Additional stability results regarding symplectic reduction concern Lyapunov stability. Let us
consider the dynamical system (3.2.1) and its phase flow ΦXH . A point ue is called an equilibrium
point (or fixed point) if XH(ue) = 0. However, this property alone does not fully characterize
the behavior of the flow ΦXH in the vicinity of ue. The point ue is Lyapunov stable if we can
choose a neighborhood of ue as small as desired and all the future states obtained by integrating
(3.2.1) will be trapped within this neighborhood, given that the initial condition u0 is taken in a
smaller neighborhood centered in the same equilibrium point ue. This concept is formalized in
the following proposition in terms of Euclidean metric.

Proposition 3.2.3 ([30]). Let ue be an equilibrium point for the system (3.2.1) and ΦXH its phase
flow. The point ue is Lyapunov stable (or nonlinearly stable) if, for any ε > 0, there exists δ > 0
such that, if ‖u0 − ue‖2 ≤ δ, then ‖ΦXH(t;u0)− ue‖2 ≤ ε for all t ∈ T .

For an equilibrium point to be Lyapunov stable, a sufficient condition is provided by the Lyapunov
stability theorem.

Proposition 3.2.4 ([30]). The equilibrium point ue for the system (3.2.1) is Lyapunov stable if
there exists a scalar function W : V2N → R, such that ∇uW(ue) = 0, the Hessian ∇2

uW(ue) is
positive definite, and

∇uW(u)>XH(u) ≤ 0, ∀u ∈ V2N . (3.2.11)

The scalar function W takes the name of Lyapunov function.

Since for a Hamiltonian system XH(u) = J2N∇uH(u) and J2N is skew-symmetric, condition
(3.2.11) is automatically fulfilled for W = H, making the Hamiltonian H a natural candidate
for the role of Lyapunov function [39]. Thus, if the Hessian of H is positive definite, then the
Lyapunov stability theorem applies. And if the Hessian is negative, one considers −H as Lyapunov
function, leading to the Dirichlet’s stability theorem for Hamiltonian systems.
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Model order reduction of Hamiltonian systems

Proposition 3.2.5. In the setting of Propositions 3.2.3 and 3.2.4, an equilibrium point ue is
Lyapunov stable if it is an isolated local minimum or maximum of the Hamiltonian H.

The brief excursus on Lyapunov stability theory for Hamiltonian systems has been propaedeutic
for the following result of stability for the solution of Hamiltonian ROMs.

Proposition 3.2.6 ([3]). Let ue be an equilibrium point for (3.2.1) and ue that is a strict local
minimum/maximum of H in the open set Sue,H centered in ue. If span(A) ∩ Sue,H 6= 0, then
there exists a Lyapunov stable equilibrium point for the reduced Hamiltonian system (3.2.9) in
span(A) ∩ Sue,H.

In the following Section, we describe different strategies to construct the symplectic matrix A as
a result of optimization problems, similarly to the POD and greedy procedures.

3.3 Proper symplectic decomposition

Let us consider the snapshot matrix Su ∈ R2N×NS introduced in Section 1.3.1 while discussing
the POD method. We emphasize that the columns of Su are the solution vectors u ∈ R2N of
(3.2.1), obtained for different time instances ti ∈ T∆ and parameter instances ηj ∈ Γh.
In Section 3.2, we have shown that an RB ansatz of the form (3.2.6), paired with the symplectic
Galerkin projection, leads to a Hamiltonian ROM. To preserve the geometric structure of the
original model with the reduction, we consider an optimization problem similar to the POD,
known as proper symplectic decomposition (PSD), which represents a data-driven basis generation
procedure to extract a symplectic basis from Su. It is based on the minimization of the projection
error of Su onto the symplectic vector space A2n, and it results in the following optimization
problem for the definition of the symplectic basis A ∈ R2N×2n:

minimize
A∈R2N×2n

∥∥Su −AA+Su
∥∥
F
,

subject to A ∈ Sp
(
2n,R2N) (3.3.1)

where ‖·‖F is the Frobenius norm and Sp
(
2n,R2N) is the symplectic Stiefel manifold defined

in (3.2.4). Problem (3.3.1) is similar to the POD minimization, but with the feasibility set
of rectangular orthogonal matrices, also known as Stiefel manifold, replaced by its symplectic
counterpart. Regardless of the MOR discussed in this thesis, PSD has relevant implications in
different physical applications, such as the study of optical systems [258] and the optimal control
of quantum symplectic gates [265]. From a mathematical perspective, we mention applications to
optimal control systems [24; 263] and reduction of the Riccati equations [26]. Unfortunately, PSD
is significantly more challenging for different reasons with respect to POD. The non-convexity of
the feasibility set and the unboundedness of the solution norm preclude standard optimization
techniques, which may be plagued by compounding numerical errors [140]. Similarly, iterative
solvers are constrained by the 4Nn degrees of freedom in the optimization problem, especially for
N � 1. Moreover, most of the attention is focused on the case 2n = 2N , which is not compatible
with the reduction framework of MOR.
Despite the interest in the topic, an efficient optimal solution algorithm has yet to be found for the
PSD. Suboptimal solutions have been attained by focusing on the subset of the ortho-symplectic
matrices, i.e.,

S(2n,R2N ) := Sp
(
2n,R2N) ∩ St

(
2n,R2N) . (3.3.2)
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In [198], while enforcing the additional orthogonality constraint in (3.3.1), the optimization
problem is further simplified by assuming a specific structure for A. An efficient greedy method,
not requiring any additional block structures to A, but only its orthogonality and simplecticity,
has been introduced in [3]. More recently, in [38], the orthogonality requirement has been removed,
and different solution methods to the PSD problem are explored. In the following, we briefly
review the abovementioned approaches.

3.3.1 SVD-based methods for orthonormal symplectic basis generation

In [198], several algorithms have been proposed to directly construct ortho-symplectic bases.
Exploiting the SVD decomposition of rearranged snapshots matrices, the idea is to search for
optimal matrices in subsets of Sp

(
2n,R2N). Consider the more restrictive feasibility set

SCL
(
2n,R2N) := Sp

(
2n,R2N) ∩{[Φ 0

0 Φ

]∣∣∣∣∣Φ ∈ RN×n
}
,

where CL is used to recall the name method (Cotangent Lift) that we present in the following.
Symplecticity condition (3.2.3) is satisfied if and only if Φ>Φ = IN , i.e., Φ ∈ St

(
n,RN

)
. This

establishes a bijection between SCL
(
2n,R2N) and St

(
n,RN

)
, leading to

SCL
(
2n,R2N) =

{[
Φ 0
0 Φ

]∣∣∣∣∣Φ ∈ St
(
n,RN

)}
.

The PSD problem is then replaced by (3.3.1)

minimize
Φ∈RN×n

∥∥SuCL − ΦΦ>SuCL
∥∥
F
,

subject to Φ ∈ St
(
n,RN

)
,

(3.3.3)

where SuCL ∈ RN×2NS is obtained by stacking as separate columns the generalized positions and
momenta of the snapshots used to assemble Su, i.e.,

SuCL =
[

p1 . . . pNs q1 . . . qNs
]
∈ RN×2NS .

Thus, as a result of the Eckart-Young-Mirsky-Schmidt theorem, (3.3.3) admits a solution in
terms of the singular value decomposition of the matrix SuCL since the optimization problem
has the same structure as the POD problem. The main difference with the POD algorithm is
the approximation target: while in the POD case we target the entire solution vector, with the
approach described above, the resulting optimal basis should fit for both generalized positions
and momenta. Thus, by weighting either the positions or the momenta, it is possible to favor the
approximation of one of the two quantities, without having, however, a guarantee of optimality
of the original PSD functional.
This algorithm, formally known as Cotangent Lift, owes its name to the interpretation of the
solution A to (3.3.1) in SCL

(
2n,R2N) as the cotangent lift of linear mappings, represented by Φ

and Φ>, between vector spaces of dimensions N and n. We refer the reader to [198] for more
details on this interpretation. Moreover, this approach constitutes the natural outlet in the
field of Hamiltonian systems of the preliminary work of Lall et al. [156] on tangent methods for
structure-preserving reduction of Lagrangian systems.
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A different strategy, known as Complex SVD, relies on the definition of the complex snapshot
matrix

SuCSVD =
[

p1 + iq1 . . . pNs + iqNs
]
∈ CN×NS ,

with i being the imaginary unit. Let V = Φ + iΨ ∈ CN×2n, with Φ,Ψ ∈ RN×n, be the unitary
matrix solution to the following accessory problem

min
V ∈RN×2n

∥∥SuCSVD − V V >SuCSVD
∥∥
F
,

subject to V ∈ St
(
2n,CN

)
.

(3.3.4)

As for the Cotangent Lift algorithm, the solution to (3.3.4) is known to be the set of the 2n
left-singular vectors of SuCSVD corresponding to its largest singular values. In terms of the real
and imaginary parts of V , the orthogonality constraint implies

Φ>Φ + Ψ>Ψ = I2n, Φ>Ψ = Ψ>Φ. (3.3.5)

Consider the ortho-symplectic matrix, introduced in [198], and given by

U =
[

E J>2NE
]
∈ R2N×2n, (3.3.6)

with
E =

[
Φ
Ψ

]
∈ R2N×n

that satisfies
E>E = In, E>J2NE = 0n.

Using (3.3.5), it can be shown that such an A is the optimal solution of the optimization problem
on the feasility set

SCSVD
(
2n,R2N) := Sp

(
2n,R2N) ∩{[Φ −Ψ

Ψ Φ

]∣∣∣∣∣Φ,Ψ ∈ RN×n
}
,

that consists in minimization, in the Frobenius norm, of the projection of the matrix

SuCSVD :=
[

Su J2NS
u
]
,

where Su is the snapshot matrix defined in (1.3.3) in the POD context.

In [38], extending the result obtained in [190] for square matrices, it has been shown that (3.3.6) is a
complete characterization of the elements of (3.3.2), meaning that all the ortho-symplectic matrices
admit a representation of the form (3.3.6), for a given E and hence S

(
2n,R2N) ≡ SCSVD

(
2n,R2N).

In the same work, Haasdonk et al. showed that an ortho-symplectic matrix that solves the
minimization problem (3.3.4) in the context of the complex SVD algorithm, is also a minimizer
for the PSD problem with an additional orthogonality constraint, and viceversa. This result
is achieved using an equivalence argument based on the POD applied to the snapshot matrix
SuCSVD. Thus, combining these two results, the Complex SVD algorithm provides a minimizer of
the PSD problem for ortho-symplectic matrices.
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3.3.2 SVD-based methods for non-orthonormal symplectic basis gener-
ation

In the previous Section, we showed that the basis provided by the Complex SVD method is
not only near-optimal in SCSVD

(
2n,R2N), but is optimal for the minimization of the projection

error over the entire space of ortho-symplectic matrices. The orthogonality of the resulting basis
is beneficial [140], among others, for reducing the condition number associated with the fully
discrete formulation of (3.2.9). A suboptimal solution to the PSD problem not requiring the
orthogonality of the feasibility set is proposed in [198] as an improvement of the SVD-based
generators of ortho-symplectic bases using the Gappy-POD [94], under the name of nonlinear
programming approach (NLP). Let A∗ ∈ S

(
2r,R2N) be a basis of dimension 2r generated using

the Complex SVD method. The idea of the NLP is to construct a target basis A ∈ Sp(2n,R2N ),
with n < r � N , via the linear mapping

A = A∗C, (3.3.7)

with C ∈ R2r×2n. The symplecticity constraint on A results in C also being symplectic, i.e.,

C>J2rC = J2n.

Using (3.3.7) in (3.3.1) results in the following PSD optimization problem for the coefficient
matrix C

min
A∈R2N×2n

∥∥∥Su −A∗CC> (A∗)+
Su
∥∥∥
F
,

subject to C ∈ Sp
(
2n,R2r) , (3.3.8)

that is characterized by 4nr degrees of freedom, a significantly smaller number when compared
to the 4nN of the original problem. However, no optimality results are available for the NLP
method.

A different direction has been pursued in [38], based on the connection between traditional SVD,
Schur forms, and the matrix decompositions proposed in the following theorem.

Theorem 3.3.1 ([268, Theorem 1, page 6]). If B ∈ R2N×Ns , then there exists S ∈ Sp(2N,R2N ),
Q ∈ Sp(Ns,RNs) and D ∈ R2N×Ns of the form

D =

b q b n− 2b− q



Σ 0 0 0 b

0 I 0 0 q

0 0 0 0 m− b− q
0 0 Σ 0 b

0 0 0 0 q

0 0 0 0 m− b− q

, (3.3.9)

with Σ = diag(σ1, . . . , σb), σi > 0 ∀i = 1, . . . , b, such that

B = SDQ.

Moreover, rank(B) = 2b+ q and σi are known as symplectical singular values.
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Let us apply the SVD-like decomposition to the snapshot matrix Su, where NS represents the
number of snapshots, and define its weighted singular values as

wi =

σi
√
‖Sui ‖

2
2 + ‖SuNS+i‖22, 1 ≤ i ≤ b,

‖Su‖2 , b+ 1 ≤ i ≤ b+ q.

with Sui ∈ R2N being the i-th column of Su and ‖·‖2 the Euclidean norm. The physical
interpretation of the classical POD approach characterizes the POD reduced basis as the set of a
given cardinality that captures most of the system’s energy. The energy retained in the reduced
approximation is quantified as the sum of the squared singular values corresponding to the left
singular vectors of the snapshot matrix representing the columns of the basis. A similar guiding
principle is used in [38], where the energy of the system, i.e., the Frobenius norm of the snapshot
matrix, is connected to the weighted symplectic singular values as

‖Su‖2F =
b+q∑
i=1

w2
i . (3.3.10)

Let IPSD be the set of indices corresponding to the n largest contributors in (3.3.10),

IPSD = {ij}nj=1 = argmax
I⊂{1,...,b+q}

(∑
i∈I

w2
i

)
.

Then the PSD SVD-like decomposition defines a symplectic RB A ∈ Sp(2n,R2N ) by selecting the
pairs of columns from the symplectic matrix Su corresponding to the indices set IPSD

A =
[

si1 . . . sin sN+i1 . . . sN+in
]
.

Similarly to the POD, the reconstruction error of the snapshot matrix depends on the magnitude
of the discarded weighted symplectic singular values as∥∥Su −AA+Su

∥∥2
F =

∑
i∈{1,...,b+q}\IPSD

w2
i . (3.3.11)

Even though there is no proof that the PSD SVD-like algorithm reaches the global optimum
in the sense of (3.3.1) , the error upper bounds and the numerical investigations offered in [38]
suggest that it provides superior results compared to orthonormal techniques.

3.3.3 Greedy approach to symplectic basis generation

In [3], in the framework of structure-preserving model order reduction, a variation of the greedy
method described in Section 1.3.2 using the Hamiltonian as a proxy error indicator to assemble a
symplectic basis is proposed. Let

A2k :=
[

Ek J>2NEk
]
∈ R2N×2k,

with
Ek =

[
e1 . . . ek

]
∈ R2N×k,
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be a given ortho-symplectic basis of dimension 2k and consider

(t∗, η∗) := argmax
(ti,ηj)∈Su∆

∣∣H(u(ti; ηj))−H(A2kA
+
2ku(ti; ηj))

∣∣ . (3.3.12)

By (3.2.10), the error in the Hamiltonian depends only on the initial condition. Hence, by
assuming that the Hamiltonian function is a good indicator of error, the indicator (3.3.12) does
not require integrating in time the FOM (3.2.1) over the entire set Γh, but we are allowed to
consider only the initial condition, making the procedure faster and more efficient. The parameter
space can be explored first to identify the value of the parameter that maximizes the error in the
Hamiltonian as a function of the initial condition, i.e.,

η∗ := argmax
ηj∈Γh

∣∣H(u0(ηj))−H(A2kA
+
2ku0(ηj))

∣∣ .
This step may fail if u0(ηj) ∈ range(A2k), ∀ηj ∈ Γh. Then the FOM (3.2.1) is integrated to
collect the snapshot matrix

Sη∗ =
[

u(0; η∗) u(t1; η∗) . . . u(tNt ; η∗)
]
. (3.3.13)

Finally, the candidate basis vector u∗ = u(t∗; η∗) is selected as the snapshot that maximizes the
projection error

t∗ := argmax
ti∈T∆

∥∥u(ti; ηj)−A2kA
>
2ku(ti; ηj)

∥∥
2 .

Standard orthogonalization techniques, such as QR methods, fail to preserve the symplectic
structure [44]. In [3], the SR method [224], based on the symplectic Gram-Schimidt, is employed
to compute the additional basis vector ek+1 that conforms to the geometric structure of the
problem. To conclude the (k + 1)-th iteration of the algorithm, the basis A2k is expanded in

A2(k+1) =
[

Ek ek+1 J>2NEk J>2Nek+1
]
.

We stress that, with this method, known as symplectic greedy RB, two vectors, ek+1 and J>2Nek+1,
are added to the symplectic basis at each iteration, because of the structure of ortho-symplectic
matrices. A different strategy, known as PSD-Greedy algorithm and partially based on the PSD
SVD-like decomposition, has been introduced in [40], with the feature of not using orthogonal
techniques to compress the matrix Sη∗ . In [3], following the results provided in [41], the exponential
convergence of the strong greedy method has been proved.

Theorem 3.3.2. Suppose that

D2n(M∗) ≤Me−αn, n > 0,

for some M > 0, α > log 3, andM∗ a compact subset ofM. Then there exists β > 0 such that
the symplectic basis A2n generated by the symplectic strong greedy algorithm provides exponential
approximation properties, i.e.,

max
u∈M∗

∥∥u−A2nA
+
2nu
∥∥

2 ≤ Ce
−βn, n > 0, (3.3.14)

Theorem (3.3.2) holds only when the projection error is used as the error indicator instead of
the error in the Hamiltonian. However, it has been observed for different symplectic parametric
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problems [3] that the symplectic method using the loss in the Hamiltonian converges with the
same rate of (3.3.14). The orthogonality of the basis is used to prove the convergence of the
greedy procedure. In the case of a non-orthonormal symplectic basis, supplementary assumptions
are required to ensure the convergence of the algorithm.

3.4 Extension to more general Hamiltonian problems
Many areas of engineering require a more general framework than the one offered by classical
Hamiltonian systems described in Section 3.1, requiring the inclusion of energy-dissipating
elements or state-dependent Poisson tensors. The last Section of this Chapter briefly presents
structure-preserving reduction techniques for these two special cases.

3.4.1 Dissipative Hamiltonian systems

While the principle of energy conservation is still used to describe the state dynamics, dissipative
perturbations must be modelled and introduced in the Hamiltonian formulation (3.2.1). Dissi-
pative Hamiltonian systems, with so-called Rayleigh-type dissipation, are considered as special
case of forced Hamiltonian systems, with the state y = (q, p) ∈ R2N , with q, p ∈ RN , following
the time evolution given by

d

dt
u(t) = J2N∇H(u(t)) + XF (u(t)),

u(0) = u0,
(3.4.1)

where XF ∈ R2N is a velocity field, introducing dissipation, of the form

XF :=
[

0N
fH(u(t))

]
. (3.4.2)

Following the definition of invariant of motion in Definition 3.1.8, we require XF to satisfy
(∇uH)>XF ≤ 0, ∀u ∈ R2N , to represent a dissipative term and therefore

(∇pH)>fH ≤ 0. (3.4.3)

In terms of Rayleigh dissipation theory, there exists a symmetric positive semidefinite matrix
R(q) ∈ RN×N such that fH = −R(q)q̇(p, q) and (3.4.3) reads

(∇pH)>fH = q̇>fH = −q̇>R(q)q̇ ≤ 0.

Several strategies have been proposed to generate stable reduced approximations of (3.4.1), based
on Krylov subspaces or POD [123; 203]. In [56], without requiring the symplecticity of the reduced
basis, the gradient of the Hamiltonian vector field is approximated using a projection matrix
W , i.e., ∇uH(Uz) ≈ W∇zHRB(z), which results in a non-canonical symplectic reduced form.
The stability of the reduced model is then achieved by preserving the passivity of the original
formulation. A drawback of such an approach is that, while viable for nondissipative formulations,
it does not guarantee the same energy distribution of (3.4.1) between dissipative and null energy
contributors. In the following, we show that the techniques based on symplectic geometry
introduced in the previous sections can still be used in the dissipative framework described in
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(3.4.1) with limited modifications to obtain consistent and structured reduced models. Let us
consider an ortho-symplectic basis A ∈ S(2n, 2N) and the reduced basis representation u ≈ Az,
with z = (r, s) ∈ R2n being the reduced coefficients of the representation and r, s ∈ Rn being the
generalized phase coordinates of the reduced model. The basis A can be represented as

A =
[

Aqr Aqs
Apr Aps

]
, (3.4.4)

with Aqr, Aqs, Apr, Aps ∈ RN×n being the blocks, the indices of which are chosen to represent
the interactions between the generalized phase coordinates of the two models, such that q =
Aqrr +Aqss and p = Aprr +Apss. Following [197], the symplectic Galerkin projection of (3.4.1)
reads

d

dt
z = A+(XH(Az) + XF (Az)) = J2n∇zHRB(z) +A+XF (Az) = XHRB +A+XF , (3.4.5)

with
A+XF =

[
A>ps −A>qs
−A>pr A>qr

] [
0N
fH

]
=
[
−A>qsfH
A>qrfH

]
. (3.4.6)

We note that, in (3.4.5), the reduced dynamics is described as the sum of a Hamiltonian vector
field and a term that, for a general choice of the symplectic basis A and hence of A>qs, does not
represent a dissipative term in the form of a vertical velocity field. The Cotangent Lift method,
described in Section 3.3.1, enforces the structure of a vertical velocity field because Aqs = 0. It
can be shown [197] that dissipativity is also preserved since the rate of energy variation of the
reduced system is non-positive, i.e.,

∇sHRB(Az)(A>qrfH) = ṙ>(A>qrfH) = −(Aqr ṙ)>R(Aqrs)(Aqr ṙ) ≤ 0. (3.4.7)

However, time discretization of the reduced dissipative model is not trivial. Even though the
reduction process preserves the dissipative Hamiltonian structure, standard numerical integrators
do not preserve the same structure at the fully discrete level.
A completely different approach is proposed in [166], where (3.4.1) is paired with a canonical
heat bath, absorbing the energy leakage and expanding the system to the canonical Hamiltonian
structure. Consider a dissipative system characterized by the quadratic Hamiltonian H(u) =
1
2u
>K>Ku. Following [91], such a system admits a time dispersive and dissipative (TDD)

formulation 
d

dt
u = J2NK

>f(t),

u(0) = u0,
(3.4.8)

with f(t) being the solution to the integral equation

f(t) +
∫ t

0
χ(t− s)f(s)ds = Ku, (3.4.9)

also known as a generalized material relation. The square time-dependent matrix χ ∈ R2N×2N

is the generalized susceptibility of the system, and it is bounded with respect to the Frobenius
norm. Physically, it encodes the accumulation of the dissipation effect in time, starting from
the initial condition. When χ = 02N , (3.4.8) is equivalent to (3.3.1). Under physically natural
assumptions on χ (see [91, Theorem 1.1, page 975] for more details), system (3.4.8) admits a
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quadratic Hamiltonian extension (QHE) to a canonical Hamiltonian system. This extension is
obtained by defining an injection I : R2N 7→ R2N ×H2N , where H2N is a suitable Hilbert space,
and reads 

d

dt
u = J2NK

>f(t),

∂tφ = θ(t, x),
∂tθ = ∂2

xφ(t, x) +
√

2δ0(x) · √χf(t),

(3.4.10)

where φ and θ are vector-valued functions in H2N , δ0 is the Dirac-delta function, and f solves

f(t) +
√

2 · √χφ(t, 0) = Ku(t).

It can be shown that system (3.4.10) has the form of a conserved Hamiltonian system with the
extended Hamiltonian

Hex(u, φ, θ) = 1
2

(
‖Ku− φ(t, 0)‖22 + ‖θ(t)‖2H2N + ‖∂xφ(t)‖2H2N

)
,

and can be reduced, while preserving its geometric structure, using any of the standard symplectic
techniques. We refer the reader to [166] for a formal derivation of the reduced model obtained by
projecting (3.4.10) on a symplectic subspace and for its efficient time integration. The method
extends trivially to more general Hamiltonian functions, as long as the dissipation is linear in
(3.4.9).

3.4.2 Non-canonical Hamiltonian systems

The canonical Hamiltonian problem (3.2.4) has been defined under the assumption that a canonical
system of coordinates for the symplectic solution manifold is given, and the Hamiltonian vector
can be represented as (3.1.6). However, many Hamiltonian systems, such as the KdV and Burgers
equations, are naturally formulated in terms of a non-canonical basis, resulting in the following
description of their dynamics: 

d

dt
u(t) = J2N∇uH(u(t)),

u0) = u0,
(3.4.11)

with J2N ∈ R2N×2N being invertible and skew-symmetric, but generally different from that in
(3.1.4). A reduction strategy, involving the non-canonical formulation (3.4.11) and based on POD,
has been proposed in [105]. Consider the RB ansatz u ≈ Uz, with U ∈ R2N×n as an orthonormal
basis obtained by applying the POD algorithm to the matrix of snapshots collected by solving
the full model. The Galerkin projection of (3.4.11) reads

d

dt
z = U>J2N∇uH(Uz), (3.4.12)

with the time derivate of the Hamiltonian function, evaluated at the reduced state, given by

d

dt
H(Uz) = d

dt
z>(∇zH(Uz)) = (∇uH(Uz))>J>2NUU>∇uH(Uz). (3.4.13)
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As expected, the Hamiltonian structure is lost in (3.4.12) and the energy of the system, represented
by the Hamiltonian, is no longer preserved in time because J2NUU

> is not skew-symmetric. Both
issues are solved in [105] by considering a matrix W , with the same properties of J2N , such that
the relation

U>J2N = WU> (3.4.14)

is satisfied. We stress that a condition similar to (3.4.14) naturally holds in the canonical
Hamiltonian setting for a symplectic basis and has been used to derive Hamiltonian reduced
models using the symplectic Galerkin projection. A candidate W is identified in [105] by solving
the normal equation related to (3.4.14), i.e. W = U>J2NU . For invertible skew-symmetric
operators J2N that might depend on the state variables u, Miyatake has introduced in [177] an
hyper-reduction technique that preserves the skew-symmetric structure of the J2N operator.
Formulation (3.4.11) is further generalized with the characterization of the phase-space as a
Poisson manifold, defined as a 2NP -dimensional differentiable manifold MP equipped with a
Poisson bracket {·, ·} : C∞(Mp)× C∞(Mp) 7→ C∞(Mp) satisfying the conditions of bilinearity,
skew-symmetry, the Jacobi identity, and the Leibniz’ rule. Since derivations on C∞(MP ) are
represented by smooth vector fields, for each Hamiltonian function H ∈ C∞(MP ), there exists a
vector field XH that determines the following dynamics,

d

dt
u(t) = XH(u) = J2NP (u)∇uH(u(t)),

u(0) = u0,
(3.4.15)

with the Poisson tensor J2Np being skew-symmetric, state-dependent, and generally not invertible.
The flow of the Hamiltonian vector field XH(u), which is a Poisson map and therefore preserves
the Poisson bracket structure via its pullback, also preserves the rank 2N of the Poisson tensor
J2NP (u). Moreover, r = 2NP − 2N represents the number of independent nonconstant functions
onMP that {·, ·} commutes with all the other functions in C∞(MP ). These functions are known
as Casimirs of the Poisson bracket and their gradients belong to the kernel of J2NP (y), making
them independent of the dynamics of (3.4.15) and only representing geometric constraints on
configurations of the generalized phase-state space.

An interesting relation between symplectic and Poisson manifolds is offered by the Lie-Weinstein
splitting theorem, stating that locally, in the neighborhood Uu∗ of any point u∗ ∈MP , a Poisson
manifold can be split into a 2N -dimensional symplectic manifold M and an r-dimensional
Poisson manifold M . Following on this result, Darboux’ theorem guarantees the existence of
local coordinates (q1, . . . , qN , p1, . . . , pN , c1, . . . , cr), where {qi, pi}Ni=1 corresponds to canonical
symplectic coordinates and {ci}ri=1 are the Casimirs, such that the Poisson tensor J2Np(u) is
recast, via Darboux’ map, in the canonical form JC2Np , i.e.,

JC2Np =
2N r[ ]
J2N 0 2N

0 0 r
,

with J2N ∈ R2N×2N being the canonical Poisson tensor defined in (3.1.4).
In [127], a quasi-structure-preserving algorithm for problems of the form (3.4.15) has been
proposed, leveraging the Lie-Weinstein splitting, an approximation of the Darboux’ map and
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traditional symplectic RB techniques. Let{
uj+1 = uj + ∆tJ2Np(ũj)∇uH(ũj),
u0 = u0,

(3.4.16)

be the fully-discrete formulation of (3.4.15), where j is the integration index, and ỹj represents
intermediate state/states dictated by the temporal integrator of choice. GivenMP,j , an open
subset of MP comprising the discrete states uj , ũj , and uj+1, the authors of [127] introduce
an approximation ϕj+ 1

2
: MP,j 7→ Ms × Nj of the Darboux’ map at ũj , with Ms being a

2N -dimensional canonical symplectic manifold and Nj approximating the null space of the
Poisson structure. The proposed approximation exploits a Cholesky-like decomposition (see [127,
Proposition 2.11, page 1708]) of the noncanonical rank-deficient J2Np(ũj) and exactly preserves
the dimension of Nj , hence the number of independent Casimirs. By introducing the natural
transition map Tj := ϕj+ 1

2
· ϕ−1

j− 1
2
between the neighboring and overlapping subsetsMj−1 and

Mj , problem (3.4.16) is locally recast in the canonical form{
ūj+1 = Tj ū

j + ∆tJC2Np∇ūH
j(¯̃uj),

ū0 = u0,
(3.4.17)

where ūj+1 := ϕj+ 1
2
uj+1, ūj := ϕj+ 1

2
uj , ¯̃uj+1 := ϕj+ 1

2
ũj , and Hj(¯̃uj) := H(ϕ−1

j+ 1
2
(¯̃uj)). Even

though the flow of (3.4.17) is not a global JC2Np -Poisson map because the splitting is not exact, the
approximation is locally structure-preserving for each neighborhoodMP,j . By exploiting a similar
splitting principle, the canonical Poisson manifoldMs ×Nj is projected on a reduced Poisson
manifold A×Nj , with the reduction acting only on the symplectic component of the splitting and
dim(A) = 2n� 2N . The corresponding reduced model is obtained via Galerkin projection of
(3.4.17) using an orthogonal JC2n-symplectic basis of dimension 2n, generated via a greedy iterative
process inspired by the symplectic greedy method described in Section 3.3.3. Different theoretical
estimates and numerical investigations show the proposed technique’s accuracy, robustness, and
conservation properties, up to errors in the Poisson tensor approximation.
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4 Symplectic dynamical reduced
basis

Hamiltonian systems describe conservative dynamics and non-dissipative phenomena in, for
example, classical mechanics, transport problems, fluids, and kinetic models. We consider
finite-dimensional Hamiltonian systems, in canonical symplectic form, that depends on a set of
parameters associated with the geometric configuration of the problem or which represent physical
properties of the problem. The development of numerical methods for the solution of parametric
Hamiltonian systems in many-query and long-time simulations is challenged by two major factors:
the high computational cost required to achieve sufficiently accurate approximations and the
possible onset of numerical instabilities resulting from failing to satisfy the conservation laws
underlying non-dissipative dynamics. MOR and RB methods provide an effective procedure to
reduce the computational cost of such simulations by replacing the original high-dimensional
problem with models of reduced dimensionality without compromising the accuracy of the
approximation. The success of RB methods relies on the assumption that the problem possesses
a low-rank nature, i.e., that the set of solutions, obtained as time and parameters vary, can be
approximated by low dimensional space. However, non-dissipative phenomena do not generally
exhibit such global low-rank structure and are characterized by slowly decaying Kolmogorov
n-widths. In Chapter 2, we have seen, for some examples characterized by sharp discontinuities or
dominated by advection processes, that it is possible to define stable reduced models but to obtain
accuracy in the representation it is necessary to increase the dimension of the approximating space
significantly. This implies that traditional reduced models derived via linear approximations,
such as the gROMs discussed so far, are generally ineffective in reducing the computational cost
required to solve advection dominated problems .

In recent years, there has been a growing interest in developing of model order reduction techniques
for transport-dominated problems to overcome the limitations of linear global approximations.
A large class of methods consists in constructing nonlinear transformations of the solution
manifold and to recast it in a coordinate framework where it admits a low-rank structure, e.g.
[45; 83; 137; 158; 187; 212; 248; 264; 39]. A second family of MOR techniques focuses on online
adaptive methods that update local reduced spaces depending on parameter and time, e.g.
[47; 196; 216]. None of the aforementioned methods provides any guarantee on the preservation
of the physical properties and the geometric structure of the problem considered, and they might
therefore be unsuitable to treat non-dissipative phenomena.

In parametric dynamical systems with finite numbers of parameter realizations, the state can
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be represented, at each time, as a matrix whose columns are the solution vectors associated
with the different parameter values. In this perspective, finding a low-dimensional space in
which the solution state can be well approximated is strictly related to the problem of low-rank
matrix approximations. In a time-dependent setting, dynamical low-rank approximation [146]
provides a low-rank factorization updating technique to efficiently compute approximations of
time-dependent large data matrices. This approach can be equivalently seen as a reduced basis
method based on a modal decomposition of the approximate solution with dynamically evolving
modes. A geometric perspective on the relation between dynamical low-rank approximation and
model order reduction in the context of time-dependent matrices has been proposed in [89]. To
the best of the author knowledge the only dynamical low-rank approximation methods able to
preserve the geometric structure of Hamiltonian dynamics were proposed in [183] to deal with the
spatial approximation of the stochastic wave equation and in [189] to deal with finite-dimensional
Hamiltonian systems. The gist of these methods is to approximate the full model solution in a
low-dimensional manifold that evolves in time and possesses the symplectic structure of the full
phase-space. The reduced dynamics is then derived via a symplectic projection of the Hamiltonian
vector field onto the tangent space of the reduced symplectic manifold at each reduced state.

Their success notwithstanding, traditional dynamical low-rank approximation techniques are
based on a reduced (low-rank) space whose dimension is fixed at the beginning of the evolution.
This is a major limitation since it frequently happens that the rank of the initial condition does
not correctly reflect the effective rank of the solution at all times. Consider, as an example, a
linear advection problem in 1D, where the parameter represents the transport velocity. It is clear
that if the initial condition does not depend on the parameter, its rank is equals one. However,
its rank rapidly increases as the initial condition is advected in time with different velocities.
Approximating such dynamics with a time-dependent sequence of reduced manifolds of rank-1
matrices yields poor approximations.
Conversely, an overapproximation of the initial condition, and possibly of the solution at other
times, could improve the accuracy but will inevitably yield situations of rank-deficiency, as
observed in [146]. This example demonstrates that, in a dynamical reduced basis approach, it
is crucial to accurately capture the rank of the full model solution at each time. However, this
issue has received little attention so far [59; 225]. In this Chapter, we propose a novel dynamical
low-rank approximation scheme for the solution of parametric Hamiltonian systems that combines
adaptivity in the rank of the solution with preservation of the Hamiltonian structure of the
dynamics.

The proposed rank-adaptive algorithm can be summarized as follows.

• Given a fixed partition of the temporal domain, in each temporal subinterval, the discretized
reduced dynamical system obtained with the structure-preserving approach of [189] is
considered. While in [189] the rank of the approximate solution is fixed a priori, here the
rank adaptively changes from one temporal interval to the next one.

• To this aim, a surrogate error based on a linearization of the problem residual is computed
at chosen times and for all tested parameters. If the error indicator reveals, according to
a specific criterion, that the current reduced space is too small to approximate the state,
we augment it in the direction that is worst approximated by the current reduced basis.
The reduced dynamical system is then evolved, in the subsequent temporal interval, in the
augmented manifold. Approximations for new instances of the parameter can be added by
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interpolation in the coefficient space. In case of overapproximation, the size of the reduced
space is, instead, decreased.

• Two major difficulties are associated with this approach: (i) to maintain the global Hamilto-
nian structure of the dynamics while modifying the reduced phase space; and (ii) to evolve
the system on the updated space starting from a rank-deficient initial condition. To address
these problems, we devise a regularization of the velocity field of the reduced flow so that
the resulting vector belongs to the tangent space of the updated reduced manifold, and
the Hamiltonian structure is then preserved. Although this introduces a small error in the
Hamiltonian function, the Hamiltonian structure is exactly conserved resulting in a stable
reduced model.

The remainder of the Chapter is organized as follows. In Section 4.1, we extend the definition
of Hamiltonian systems made in Chapter 3 by considering the parametric case. The dynamical
reduced basis method proposed in [189], which we adopt here, is summarized in Section 4.2.
Section 4.3 deals with the numerical temporal integration of the reduced dynamics: first, we
summarize the structure-preserving integration method for the evolution of the reduced basis
and expansion coefficients, and then we design partitioned RK schemes that are accurate with
order 2 and 3 and preserve the geometric structure of each evolution problem. The problem
of overapproximation and rank-deficiency is discussed in Section 4.4, where the regularization
algorithm is introduced. Section 4.5 pertains to the rank-adaptive algorithm. We describe the
major steps: computation of the error indicator, criterion for the rank update, and update of the
reduced state. The computational complexity of the adaptive dynamical reduced basis algorithm
is thoroughly analyzed in Section 4.6. Section 4.7 is devoted to extensive numerical simulations
of the proposed algorithm and its numerical comparisons with global reduced basis methods. 1

4.1 Problem formulation

Let T := (t0, T ] be a temporal interval and let Γ ⊂ Rd, with d ≥ 1, be a compact set of
parameters. For each η ∈ Γ, we consider the Hamiltonian system, introduced in Chapter 3
for the non-parametric case, described by the initial value problem: For u0(η) ∈ V2N , find
u(·, η) ∈ C1(T ,V2N ) such that

d

dt
u(t; η) = J2N∇uH(u(t; η); η), for t ∈ T ,

u(t0; η) = u0(η),
(4.1.1)

where the dot denotes the derivative with respect to time t, V2N is a 2N -dimensional vector
space, and C1(T ,V2N ) denotes continuous differentiable functions in time taking values in V2N .
Moreover, the function H : V2N × Γ→ R is the Hamiltonian of the system, ∇u is the gradient
with respect to the state variable u, and J2N is the so-called canonical symplectic tensor defined
as

J2N :=
(

0N IN
−IN 0N

)
∈ R2N×2N , (4.1.2)

1Professor Pagliantini was responsible for defining the approximating space of reduced dimension and reduced
dynamics by structure-preserving projection onto tangent spaces, reported in Sections 4.1 and 4.2, respectively.
The author participated in defining the numerical integrator described in Section 4.3 and was the main contributor
to the material described in Sections 4.4, 4.5, 4.6, and 4.7., and designed and carried out the numerical experiments
reported at the end of the Chapter.
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with IN ,0N ∈ RN×N denoting the identity and zero matrices, respectively. The operator J2N
identifies a symplectic structure on the phase-space of the Hamiltonian system (4.1.1), as seen
in Section 3.1. Equivalently, the vector space V2N admits a global basis that is symplectic and
orthonormal according to the following definition, which is another way of formulating the matrix
constraint given in (3.2.3).

Definition 4.1.1 (Orthosymplectic basis). The set of vectors {ei}2Ni=1 is said to be orthosymplectic
in the 2N -dimensional vector space V2N if

e>i J2Nej = (J2N )i,j , and (ei, ej) = δi,j , ∀i, j = 1 . . . , 2N,

where (·, ·) is the Euclidean inner product and J2N is the canonical symplectic tensor (4.1.2) on
V2N .

4.2 Dynamical reduced basis method for Hamiltonian sys-
tems

We are interested in solving the Hamiltonian system (4.1.1) for a given set of p vector-valued
parameters {ηj}pj=1 ⊂ Γ, that, with a small abuse of notation, we denote ηh ∈ Γh. Then, the
state variable u in (4.1.1) can be thought of as a matrix-valued application T 3 t→ u(t, ·) ∈ Vp2N
where Vp2N := V2N × . . . × V2N . Throughout this Chapter, for a given matrix R ∈ R2N×p, we
denote with Rj ∈ R2N the vector corresponding to the j-th column of R, for any j = 1, . . . , p.
Let [a1|a2| . . . |ar] denote the matrix of size 2N × (m1 + . . .+mr) resulting from the horizontal
concatenation of the matrices aj ∈ R2N×mj for j = 1, . . . , r. The Hamiltonian system (4.1.1),
evaluated at ηh, can be recast as a set of ordinary differential equations in a 2N × p matrix
unknown in Vp2N as follows. For R0(ηh) :=

[
u0(η1)| . . . |u0(ηp)

]
∈ Vp2N , find R ∈ C1(T ,Vp2N ) such

that 
d

dt
R(t) = XH (R(t), ηh) := J2N∇H (R(t); ηh) , for t ∈ T ,

R(t0) = R0(ηh),
(4.2.1)

where H : Vp2N → Rp and, for any R ∈ Vp2N , its gradient ∇H(R; ηh) ∈ Vp2N is defined as
(∇H(R; ηh))i,j = ∂Hj

∂Ri,j , for any i = 1, . . . , 2N , j = 1, . . . , p. The function Hj is the Hamiltonian
of the dynamical system (4.1.1) corresponding to the parameter ηj , for j = 1, . . . , p. We assume
that, for a fixed sample of parameters ηh ∈ Γh, the vector field XH(·; ηh) ∈ Vp2N is Lipschitz
continuous in the Frobenius norm ‖·‖F uniformly with respect to time, so that (4.2.1) is well-posed.
We stress how this is a different setting than the one presented in Chapter 3. In this case, the set
of parameters for which we want to obtain the solution is fixed a priori.
Let us consider the splitting of the time domain T into the union of intervals Tτ := (tτ−1, tτ ],
τ = 1, . . . , Nτ , with t0 := t0 and tNτ := T , and let the local time step be defined as ∆tτ = tτ−tτ−1

for every τ . For the model order reduction of (4.2.1) we propose an adaptive dynamical scheme
based on approximating the full model solution in a lower-dimensional space that is evolving,
and whose dimension may also change over time. To this aim, we adopt a local perspective by
considering, in each temporal interval, an approximation of the solution of (4.2.1) of the form

R(t) ≈ R(t) =
2nτ∑
i=1

Ui(t)Zi(t, ηh) = U(t)Z(t), ∀t ∈ Tτ , (4.2.2)
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where U(t) =
[
U1| . . . |U2nτ

]
∈ R2N×2nτ , and Z ∈ R2nτ×p is such that Zi,j(t) = Zi(t, ηj) for

i = 1, . . . , nτ , j = 1, . . . , p, and any t ∈ Tτ . Here nτ ∈ N satisfies 2nτ ≤ p and nτ � N , and is
updated over time according to Algorithm 4 that will be discussed in Section 4.5. With this
notation, we introduce the collection of reduced spaces of 2N × p matrices having rank at most
2nτ , and characterized as

M2nτ :=
{
R ∈ R2N×p : R = UZ with U ∈ Uτ , Z ∈ Zτ

}
, ∀τ = 1, . . . , Nτ ,

where U represents the reduced basis and it is taken to be orthogonal and symplectic, while Z
are the expansion coefficients in the reduced basis, i.e.

Uτ :=
{
U ∈ R2N×p : U>U = I2nτ , U

>J2NU = J2nτ
}
, (4.2.3)

Zτ :=
{
Z ∈ R2nτ×p : rank

(
ZZ> + J>2nτZZ

>J2nτ
)

= 2nτ
}
. (4.2.4)

To approximate the Hamiltonian system (4.2.1) in Tτ with an evolution problem on the reduced
spaceM2nτ we need to prescribe evolution equations for the reduced basis U(t) ∈ Uτ and the
expansion coefficients Z(t) ∈ Zτ . For this, we follow the approach proposed in [183] and [189],
and derive the reduced flow describing the dynamics of the reduced state R in (4.2.2) by applying
to the Hamiltonian vector field XH the symplectic projection ΠTR(t)M2nτ

onto the tangent space
of the reduced manifold at the current state. The resulting local evolution problem reads: Find
R ∈ C1(Tτ ,M2nτ ) such that

d

dt
R(t) = ΠTRM2nτ

XH (R(t), ηh) , for t ∈ Tτ , (4.2.5)

where we assume, for the time being, that the initial condition of (4.2.5) at time tτ−1, τ ≥ 1, is
given, and we refer to Section 4.5.3 for a complete description of how such an initial condition is
prescribed.
By exploiting the characterization of the projection operator ΠTR(t)M2nτ

in [189, Proposition 4.2],
we obtain the local evolution equations for the factors U and Z in the modal decomposition of the
reduced solution (4.2.2), as in [183, Proposition 6.9] and [189, Equation (4.10)]. In more details,
for any τ ≥ 1, given (U(tτ−1), Z(tτ−1)) ∈ Uτ ×Zτ we seek (U,Z) ∈ C1(Tτ ,Uτ )×C1(Tτ ,Zτ ) such
that 

d

dt
Z(t) = J2n∇ZHU (Z, ηh),

d

dt
U(t) =

(
I2N − UU>

) (
J2NY Z

> − Y Z>J>2nτ
) (
ZZ> + J>2nτZZ

>J2nτ
)−1

,

(4.2.6a)

(4.2.6b)

where Y (t) := ∇H(R(t); ηh) ∈ Vp2N , and R(t) = U(t)Z(t) for all t ∈ Tτ . Observe that the local
expansion coefficients Z ∈ Zτ satisfy a Hamiltonian system (4.2.6a) of reduced dimension 2nτ ,
where the reduced Hamiltonian is defined as HU (Z; ηh) := H(UZ; ηh), similarly to (3.2.9) for the
case of a single parameter.
To compute the initial condition of the reduced problem at time t0 we perform the complex SVD
[198, Section 4.2] of R0(ηh) ∈ R2N×p in (4.2.1), truncated at the n1-th mode. Then, the initial
reduced basis U0 ∈ U1 can be derived from the unitary matrix of left singular vectors of R0(ηh),
via the isomorphism between U1 and the Stiefel manifold of unitary N × n1 complex matrices.
The expansion coefficients matrix is initialized as Z0 = U>0 R0(ηh). In Figure 4.1, we sketch how
the computational costs break down into the offline and online phases for the method considered
in comparison with the classical techniques seen in Chapters 1 and 3.
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u(·, η1) u(·, η2) u(·, η3) u(·, η4) u(·, ηk)· · ·
· · ·
· · ·

Multi-query with high-dimensional model:

Offline phase ur(·, η1), · · · , ur(·, ηk)

· · ·
· · ·
· · · Online phase

Multi-query with reduced model:

Runtime

Runtime

Runtime
Offline phase ur(·, η1), · · · , ur(·, ηk)

· · ·
· · ·
· · · Online phase

Multi-query with reduced model (problem not globally reducible):

...

...

z(·, η1)

z(·, ηk)

z(·, ηp)

Basis evolution

Evolution of coefficients

U(·)

Runtime

Multi-query with dynamical reduced model:

Figure 4.1: Comparison of the distribution of computational costs required to solve parameter
problems in a multi-query context. In particular, we report the cases of FOM, gROM, and
dynamical low-rank model. We underline how in the case in which the problem is not globally
reducible, as we have seen in Chapter 2, the efficiency of the classical reduction methods is
compromised.
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4.3 Partitioned Runge-Kutta method
For the numerical time integration of the reduced dynamical system (4.2.5) we rely on partitioned
Runge–Kutta (RK) methods. Partitioned RK methods were originally introduced to deal with
stiff evolution problems by splitting the dynamics into a stiff and a nonstiff part so that the two
subsystems could be treated with different temporal integrators. There are many other situations
where a dynamical system possesses a natural partitioning, for example Hamiltonian or singularly
perturbed problems, or nonlinear systems with a linear part. In our setting, the factorization of
the reduced solution (4.2.2) into the basis U and the coefficients Z provides the natural splitting
expressed in (4.2.6).
In this section we first consider structure-preserving numerical approximations of the evolution
problems (4.2.6b) and (4.2.6a), treated separately. Then, for the numerical integration of the
coupled system (4.2.6), we design partitioned RK schemes that are accurate with order 2 and 3
and preserve the geometric structure of each evolution problem.
Since the evolution equation (4.2.6a) is a Hamiltonian system (of reduced dimension) we can
rely on symplectic methods for its temporal approximation, so that the symplectic properties
of the flow are preserved at the discrete level, as seen in Chapter 3. The evolution equation
(4.2.6b) for the reduced basis is approximated using tangent methods that we briefly summarize
here. The idea of tangent methods for the solution of differential equations on manifolds, as
introduced in [53], is to recast the local dynamics on the tangent space of the manifold, which is
a linear space. The temporal approximation of (4.2.6b) by tangent methods allows to obtain, at
a computational cost linear in N , a discrete reduced basis that is orthogonal and symplectic. Let
F(·, ·; ηh) : R2N×2nτ × Zτ → R2N×2nτ denote the velocity field of the evolution (4.2.6b) of the
reduced basis, namely

F(U,Z; ηh) :=
(
I2N − UU>

) (
J2NY Z

> − Y Z>J>2nτ
)
S−1, ∀U ∈ R2Nnτ , Z ∈ Zτ , (4.3.1)

It can be easily shown that, for any Q ∈ Uτ , F(Q,Z; ηh) belongs to the space

HQ :=
{
X ∈ R2N×2nτ : X>Q = 0, XJ2nτ = J2nX

}
. (4.3.2)

This is a subspace of the tangent space of the manifold Uτ of orthosymplectic 2N × 2nτ matrices
at the point Q ∈ Uτ . Let us assume to know, in each temporal interval Tτ , the approximate
solution Q := Uτ−1 ∈ Uτ of U(tτ−1). Then, any element of Uτ , in a neighborhood of Q, can be
expressed as the image of a vector G ∈ HQ via the retraction

RQ :HQ −→ Uτ ,
G −→ cay

(
GQ> −QG>

)
Q

(4.3.3)

where cay is the Cayley transform, defined as cay(M) = (IN − M/2)−1(IN + M/2) for any
skew-symmetric and Hamiltonian square matrix M ∈ R2N×2N . Since RQ is a retraction, rather
than solving (4.2.6b) for U , one can derive the local behavior of U in a neighborhood of Q by
evolving G(t), with U(t) = RQ(G(t)), in the space HQ. By computing the local inverse of the
tangent map of the retraction RQ, the evolution problem for the vector V reads: for any t ∈ Tτ ,

d

dt
G(t) = fτ (G(t), Z(t); ηh) := −Q

(
RQ(G)>Q+ I2nτ

)−1 (RQ(G) +Q)>Φ+Φ−QΦ>Q (4.3.4)

67



Symplectic dynamical reduced basis

where Φ :=
(

2F(RQ(G), Z; ηh) − (GQ> − QG>)F(RQ(G), Z; ηh)
)

(Q>RQ(G) + I2nτ )−1. We
refer to [189, Section 5.3.1] for further details on the derivation of the function fτ .
The resulting set of evolution equations describes the reduced dynamics in each temporal
interval Tτ as: given (Uτ−1, Zτ−1) ∈ Uτ × Zτ , find Z(t) ∈ Zτ and G(t) ∈ HUτ−1 such that
U(t) = RUτ−1(G(t)) for all t ∈ Tτ and

d

dt
Z(t) = G

(
RUτ−1 (G(t)) , Z(t); ηh

)
,

d

dt
G(t) = fτ (G(t), Z(t); ηh) ,

G(tτ−1) = 0 ∈ HUτ−1 ,

Z(tτ−1) = Zτ−1 ∈ Zτ ,

(4.3.5)

where G := J2n∇HU (Z, ηh) from (4.2.6a) and fτ is defined in (4.3.4).
For the numerical approximation of (4.3.5), we derive partitioned Runge–Kutta methods. Let
PZ = ({bi}si=1, {aij}si,j=1) be the collection of coefficients of the Butcher tableau describing an
s-stage symplectic RK method, and let P̂U = ({b̂i}si=1, {âij}1≤j<i≤s) be the set of coefficients of
an s-stage explicit RK method. Then, the numerical approximation of (4.3.5) via partitioned RK
integrators reads

Zτ = Zτ−1 + ∆t
∑s
i=1 biki, Gτ = ∆t

∑s
i=1 b̂ik̂i,

k1 = G
(
Uτ−1, Zτ−1 + ∆t

∑s
j=1 a1,jkj ; ηh

)
, k̂1 = fτ

(
Uτ−1, Zτ−1 + ∆t

∑s
j=1 a1,jkj ; ηh

)
ki = G

(
RUτ−1

(
∆t
∑i−1
j=1 âi,j k̂j

)
, Zτ−1 + ∆t

∑s
j=1 ai,jkj ; ηh

)
, i = 2, . . . , s,

k̂i = fτ

(
∆t
∑i−1
j=1 âi,j k̂j , Zτ−1 + ∆t

∑s
j=1 ai,jkj ; ηh

)
, i = 2, . . . , s,

Uτ = RUτ−1 (Gτ ) .
(4.3.6)

Runge–Kutta methods of order 2 and 3 with the aforementioned properties can be characterized
in terms of the coefficients PZ and P̂U as in the following result.

Lemma 4.3.1. Consider the numerical approximation of (4.3.5) with the s-stage partitioned Runge–
Kutta method (4.3.6) obtained by coupling the Runge–Kutta methods PZ = ({bi}si=1, {aij}si,j=1)
and P̂U = ({b̂i}si=1, {âij}1≤j<i≤s). Then, the following statements hold.

• Symplectic condition [120, Theorem VI.4.3]. The Runge–Kutta method PZ is symplectic if

biaij + bjaji = bibj , ∀i, j = 1, . . . , s. (4.3.7)

• Order condition [119, Theorem II.2.13]. The Runge–Kutta method PZ has order k, with

k = 2 iff
s∑
i=1

bi = 1,
s∑

i,j=1
biaij = 1

2; (4.3.8)

k = 3 iff
s∑
i=1

bi = 1,
s∑

i,j=1
biaij = 1

2 ,
s∑
i=1

bi

 s∑
j=1

aij

2

= 1
3 ,

s∑
i,j,l=1

biaijajl = 1
6 .

(4.3.9)

• Coupling condition [120, Section III.2.2]. The partitioned Runge–Kutta method (PZ , P̂U )
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has order p, if PZ and P̂U are both of order k and

k = 2 if
s∑
i=1

i−1∑
j=1

biâij = 1
2 ,

s∑
i=1

s∑
j=1

b̂iaij = 1
2; (4.3.10)

k = 3 if
s∑
i=1

aij =
j−1∑
i=1

âij ,

s∑
i,l=1

i−1∑
j=1

biâijajl = 1
6 ,

s∑
i,j,l=1

b̂iaijajl = 1
6 . (4.3.11)

4.4 Reduced dynamics under rank-deficiency
In Section 4.2 we have proposed to approximate the phase space of the full Hamiltonian system
(4.2.1) by an evolving low-rank matrix manifold. Particular attention needs to be devoted to the
case of overapproximation in which a FOM solution with effective rank r < n is approximated
by a rank-n matrix, as pointed out first in [146, Section 5.3]. In this case, a rank-deficient
reduced dynamical system needs to be solved and it is not clear how the effective rank of the
reduced solution will evolve over time. Indeed, in each temporal interval Tτ , the dynamics may
not remain on the reduced manifoldM2nτ and the matrix S(Z) := ZZ> + J>2nτZZ

>J2nτ may
become singular or severely ill conditioned. This happens, for example, when the full model state
at time t0 is approximated with a rank deficient matrix, or, as we will see in the rank-adaptive
algorithm in Section 4.5, when the reduced solution at a fixed time is used as initial condition to
evolve the reduced system on a manifold of states with increased rank.
In this section, we propose an algorithm to deal with the overapproximation while maintaining
the geometric structure of the Hamiltonian dynamics and of the factors U and Z in (4.2.2).

Lemma 4.4.1 (Characterization of the matrix S). Let S := ZZ> + J>2nZZ
>J2n ∈ R2n×2n with

Z ∈ R2n×p and p ≥ 2n. S is symmetric positive semi-definite and it is skew-Hamiltonian,
namely SJ2n − J2nS

> = 0. Moreover, if S has rank 2n then S is non-singular and S−1 is also
skew-Hamiltonian.
In particular, the null space of S is even dimensional and contains all pairs of vectors (v, J2nv) ∈
R2n × R2n such that both v and J2nv belong to the null space of Z>.

Proof. It can be easily verified that S is symmetric positive semi-definite and skew-Hamiltonian.
Any eigenvalue of a skew-Hamiltonian matrix has even multiplicity, hence the null space of S
has even dimension. Since S is positive semi-definite, v ∈ kerS if and only if ZZ>v = 0 and
ZZ>J2nv = 0, that is kerS = kerZ> ∩ kerZ>J2n. Observe that all the elements v of the kernel
of Z> are such that J>2nv ∈ kerZ>J2n.

In addition to the algebraic limitations associated with the solution of a rank-deficient system,
the fact that the matrix S might be singular or ill conditioned prevents the reduced basis from
evolving on the manifold of the orthosymplectic matrices. If U(tτ−1) ∈ Uτ then U(t) ∈ R2N×2nτ

solution of (4.2.6b) in Tτ satisfies U(t) ∈ Uτ for all t ∈ Tτ , owing to the fact that F(U,Z; ηh)
belongs to the space HU in (4.3.2).

Lemma 4.4.2. The function F(·, ·; ηh) : R2N×2nτ ×Zτ → R2N×2nτ defined in (4.3.1) is such that
F(U,Z; ηh) ∈ HU if and only if U ∈ Uτ and Z ∈ Zτ .
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Proof. Let XU := F(U,Z; ηh) = (I2N − UU>)AS−1, where A := J2NY Z
> − Y Z>J>2nτ . The

condition X>U U = 0 is satisfied for every U ∈ R2N2nτ orthogonal and Z ∈ R2nτ×p. Concerning
the second condition, it can be easily shown that J2NAJ

>
2nτ = A and J2N (I2N − UU>) =

(I2N − UU>)J2N . Hence, J2NXU = (I2N − UU>)AJ2nτS
−1 and this is equal to XUJ2nτ if and

only if J2nτS
−1 = S−1J2nτ . This condition follows from Lemma 4.4.1.

Lemma 4.4.2 can be equivalently stated by considering the velocity field F as a function of the
triple (U,Z, S(Z)). Then F(U,Z, S(Z); ηh) belongs to HU if and only if U ∈ Uτ , Z ∈ R2nτ×p

and S(Z) is non-singular, symmetric and skew-Hamiltonian. If the matrix S is not invertible, i.e.
Z /∈ Zτ , its inverse needs to be replaced by some approximation S†. By Lemma 4.4.2, if S† is not
symmetric skew-Hamiltonian, then F†(U,Z; ηh) := (I2N − UU>)AS† does no longer belong to
the horizontal space HU . If, for example, S† is the pseudo inverse of S, then the above condition
is theoretically satisfied, but in numerical computations only up to a small error, because, if S is
rank-deficient, then its pseudoinverse corresponds to the pseudoinverse of the truncated SVD of
S.
To overcome these issues in the numerical solution of the reduced dynamics (4.2.6), we introduce
two approximations: first we replace the rank-deficient matrix S with an ε-regularization that
preserves the skew-Hamiltonian structure of S and then, in finite precision arithmetic, we set
as velocity field for the evolution of the reduced basis U an approximation of F in the space
HU(t), for all t ∈ Tτ . The ε-regularization consists in diagonalizing S and then replacing, in the
resulting diagonal factor, the elements below a certain threshold with a fixed factor ε ∈ R. This is
possible since (real) symmetric matrices are always diagonalizable by orthogonal transformations.
However, unitary transformations do not preserve the skew-Hamiltonian structure. We therefore
consider the following Paige Van Loan (PVL) decomposition, based on symplectic equivalence
transformations.

Lemma 4.4.3 ([254]). Given a skew-Hamiltonian matrix S ∈ R2n×2n there exists a symplectic
orthogonal matrix W ∈ R2n×2n such that W>SW has the PVL form

W>SW =
[
Sn R

S>n

]
(4.4.1)

where Sn ∈ Rn×n is an upper Hessenberg matrix.

In our case, since the matrix S is symmetric, its PVL decomposition (4.4.1) yields tridiago-
nal matrices with identical blocks Snτ = S>nτ . We further diagonalize Snτ using orthogonal
transformations to obtain Snτ = T>DnτT , with T>T = Inτ and diagonal Dnτ ∈ Rnτ×nτ . Hence,

S = W

[
T>DnτT

T>DnτT

]
W> =: QDQ>

with
Q := W

[
T>

T>w

]
, D :=

[
Dnτ

Dnτ .

]
It can be easily verified that Q ∈ R2nτ×2nτ is orthogonal and symplectic. The PVL factorization
4.4.3 can be implemented as in, e.g., [25, Algorithms 1 and 2], with arithmetic complexity
O(n3

τ ). The factorization is based on orthogonal symplectic transformations obtained from Givens
rotations and symplectic Householder matrices, defined as the direct sum of Householder reflections
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[190]. Once the matrix S has been brought in the PVL form, we perform the ε-regularization.
Introduce the diagonal matrix Dnτ ,ε ∈ Rnτ×nτ defined as,

(Dnτ ,ε)i =
{

(Dnτ )i if (Dnτ )i > ε,

ε otherwise,
∀1 ≤ i ≤ nτ ,

and let us denote with Dε ∈ R2nτ×2nτ the diagonal matrix composed of two blocks, both equal to
Dnτ ,ε. The matrix Sε := QDεQ

> ∈ R2nτ×2nτ is symmetric positive definite and skew-Hamiltonian.
Its distance to S is bounded, in the Frobenius norm, as ‖S − Sε‖ =

∥∥Q(D −Dε)Q>
∥∥ =

‖D −Dε‖ ≤
√
mε ε, where mε is the number of elements of Dnτ that are smaller than ε. Since

the ε-regularized matrix Sε is invertible, S−1
ε exists and is skew-Hamiltonian. This property

allows to construct the vector field Fε := (I2N − UU>)(J2NY Z
> − Y Z>J>2nτ )S−1

ε ∈ R2N×2nτ

with the property that Fε belongs to the tangent space of the orthosymplectic 2N × 2nτ matrix
manifold. To gauge the error introduced by approximating the velocity field F in (4.3.1) with
Fε, let us denote with L the operator L := (I2N − UU>)(J2NY Z

> − Y Z>J>2nτ ), so that (4.2.6b)
reads U̇S = L. Then, the error made in the evolution of the reduced basis (4.2.6b), by the
ε-regularization, is

‖Fε − L‖ =
∥∥L (S−1

ε S − I2nτ
)∥∥ =

∥∥LQ (D−1
ε D − I2nτQ

>)∥∥
≤ ‖L‖

∥∥D−1
ε D − I2nτ

∥∥ =
√

2
ε
‖L‖

√√√√ nτ∑
j=nτ−mε+1

|Dj − ε|2.

Observe that the resulting vector field Fε belongs to the space HU by construction. However,
in finite precision arithmetic, the distance of the computed Fε from HU might be affected by
a small error that depends on the norm of the operators L and Sε. This rounding error can
affect the symplecticity of the reduced basis over time, whenever the matrix S is severely ill
conditioned. To guarantee that the evolution of the reduced basis computed in finite precision
remains on the manifold of orthosymplectic matrices with an error of the order of machine
precision, we introduce a correction of the velocity field Fε. Observe that any XU ∈ HU is
of the form XU = [F |J>2NF ], with F ∈ R2N×nτ satisfying U>F = 02nτ×nτ . Let us write
Fε as Fε = [F |G], with F> = [F>1 |F>2 ] ∈ Rnτ×2N and G> = [G>1 |G>2 ] ∈ Rnτ×2N . Since
U>Fε = [U>F |U>G] = 02nτ×2nτ , we can take Fε,? := [F |J>2NF ]. Alternatively, we can define
Fε,? := [W |J>2NW ] where W> = [X>| − Y >] ∈ Rnτ × 2N and 2X := F1 +G2, 2Y := G1 − F2.
It easily follows that, with either definitions, Fε,? belongs to HU and the error in the Frobenius
norm is

‖Fε −Fε,∗‖ = 1
4 ‖FεJ2nτ − J2NFε‖2 =

∥∥G− J>2NF∥∥2

We summarize the regularization scheme in Algorithm 3.

4.5 Rank-adaptivity
The dynamical reduced basis method that we have introduced in Section 4.2 is based on approxi-
mating the full model solution, in each temporal interval Tτ , on a low-dimensional space of size
nτ . The fact that the size of the reduced space can change over time allows to fully exploit the
local low-rank nature of the solution. In this Section, we propose an algorithm to detect when
the reduced space needs to be enlarged or reduced and how this operation is performed. The
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Algorithm 3 ε-regularization
1: procedure Regularization(U ∈ U , Z ∈ R2nτ , ε)
2: Compute S ← ZZ> + J>2nτZZ

>J2nτ
3: if rank(S) < 2nτ then
4: Compute the PVL factorization QDQ> = S
5: Set Sε ← QDεQ

> where Dε is the ε-regularization of D
6: Compute Fε ←

(
I2N − UU>

) (
J2NY Z

> − Y Z>J−1
2nτ
)
S−1
ε

7: Compute Fε,∗ by enforcing the skew-Hamiltonian constraint
8: Set F ← Fε,∗
9: else
10: Compute F ←

(
I2N − UU>

) (
J2NY Z

> − Y Z>J−1
2nτ
)
S−1

11: return velocity field F ∈ HU

method is summarized in Algorithm 4.
Here we focus on the case where the current rank of the reduced solution is too small to accurately
reproduce the full model solution. In cases where the rank is too large, one can perform an
ε-regularization following Algorithm 3 or decrease the rank by looking at the spectrum of the
reduced state and remove the modes associated with the lowest singular values.

4.5.1 Error indicator

As stated in Chapter 1, error bounds for parabolic problems are long-established and have been
widely used to certify global reduced basis methods. However, their extension to noncoercive
problems often results in pessimistic bounds that cannot be used to properly assess the quality of
the reduced approximation. Few works have focused on the development of error estimates (not
bounds) for reduced solutions of advection-dominated problems. In this work, we propose an error
indicator based on the linearized residual of the full model. A related approach, known as Dual-
Weighted Residual method (DWR) [175], consists in deriving an estimate of the approximation
error via the dual full model and the linearization of the error of a certain functional of interest
(e.g. surface integral of the solution, stress, displacement, ...). Despite the promising results of
this approach, the arbitrariness in the choice of the functional clashes with the goal of having a
procedure as general as possible.
We begin with the continuous full model (4.2.1) and, for its time integration, we consider
the implicit RK scheme used in the temporal discretization of the dynamical system for the
expansion coefficients Z in (4.3.6), and having coefficients ({bi}si=1, {aij}si,j=1). Then, assuming
that Rτ−1 ∈ R2N×p is known,

Rτ = Rτ−1 + ∆t
s∑
i=1

biki,

k1 = J2N∇RH (Rτ−1) ,

ki = J2N∇RH

Rτ−1 +
s∑
j=1

ai,jkj ; ηh

 , i = 2, . . . , s

(4.5.1)
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The discrete residual operator, in the temporal interval Tτ , is

ρτ (Rτ ,Rτ−1; ηh) = Rτ −Rτ−1 −∆t
s∑
i=1

biki = 0. (4.5.2)

We consider the linearization of the residual operator (4.5.2) at (Rτ , Rτ−1), where Rτ is the
approximate reduced solution at time tτ , obtained from (4.3.6) as Rτ = UτZτ ; thereby

ρτ (Rτ ,Rτ−1; ηh) = ρτ (Rτ , Rτ−1; ηh) + ∂ρτ
∂Rτ

∣∣∣∣
(Rτ ,Rτ−1)

(Rτ −Rτ )

+ ∂ρτ
∂Rτ−1

∣∣∣∣
(Rτ ,Rτ−1)

(Rτ−1 −Rτ−1) +O
(
‖Rτ −Rτ‖2 + ‖Rτ−1 −Rτ−1‖2

)
.

(4.5.3)

Similar procedures have been adopted in the formulation of the piecewise linear methods for the
approximation of nonlinear operators, providing accurate approximations in case of low-order
nonlinearities. From the residual operator, an approximation of the local error Rτ −Rτ is given
by the matrix-valued quantity Eτ defined as

Eτ := −
(
∂ρτ
∂Rτ

∣∣∣∣
(Rτ ,Rτ−1)

)−1(
ρτ (Rτ , Rτ−1; ηh) + ∂ρτ

∂Rτ−1

∣∣∣∣
(Rτ ,Rτ−1)

Eτ−1

)
, (4.5.4)

with E0 := R(t0) − U0Z0. The quantity defined by (4.5.4) is the first order approximation
of the error between the reduced and the full model solution. In particular, it quantifies the
discrepancy due to the local approximation (4.2.2). Even if the linearization error is negligible,
the computational cost related to the assembly of the entire full-order residual ρ and its Jacobian,
together with the solution of a linear system for any instance of the p parameters ηh, makes the
indicator unappealing if used in the context of highly efficient reduced approximations. In [175], a
hierarchical approach has been proposed to alleviate the aforementioned computational bottleneck
but it relies on the offline phase to capture the dominant modes of the exact error. Instead, in
this work, we solve (4.5.4) on a subset η̃h of the p vector-valued parameters ηh of cardinality
p̃� p, and only each NE time steps during the simulation. To further reduce the computational
cost, we compute (4.5.4) on a coarse mesh in the parameter domain, whenever possible, and
then Eτ is recovered on the original mesh via spline interpolation. Although the assembly and
solution of the sparse linear system in (4.5.4) has, for example, arithmetic complexity O(N 3

2 )
[96] for problems originating from the discretization of two-dimensional PDEs, this sampling
strategy allows to reduce the computational cost required by the error estimator as compared to
the evolution of the reduced basis and the coefficients, as discussed in Section 4.7.

4.5.2 Criterion for rank update

Let Eτ ∈ R2N×p be the error indicator matrix obtained in (4.5.4). To decide when to activate
the rank update algorithm, we take into account that, for advection-dominated and hyperbolic
problems discretized using spectral methods, the error accumulates, and the effect of unresolved
modes on the resolved dynamic contributes to this accumulation [70]. Moreover, it has been
noticed [236] that, for many problems of practical interest, the modes associated with initially
negligible singular values might become relevant over time, potentially causing a loss of accuracy
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if a reduced manifold of fixed dimension is employed.

Let us define tτ as the current time, t∗ as the last time at which the dimension of the reduced
basis U was updated and let λτ be the number of past updates at time tτ . At the beginning of
the simulation t∗ = t0 and λ0 = 0. The rank update is performed if the ratio between the norms
of error indicators at tτ and t∗ satisfies the criterion

‖Eτ‖
‖E∗‖

> rcλτ , (4.5.5)

where r, c ∈ R are control parameters larger than 1. The ratio of the norms of the error indicator
gives a qualitative indication of how the error is increasing in time and (4.5.5) fixes a maximum
acceptable growing slope. Deciding what represents an acceptable slope is a problem-dependent
task but the numerical results in Section 4.7 show little sensitivity of the algorithm with respect
to r and c. Moreover, the variable λτ induces a frequent rank-update when nτ is small and vice
versa when nτ is large, hence controlling both the efficiency and the accuracy of the updating
algorithm. Note that other (combinations of) criteria are possible: one alternative is to check
that the norm of the error indicator remains below a fixed threshold; another possibility is to
control the norm of some approximate gradient of the error indicator, etc. By numerically testing
these various criteria, it has been observed that, at least in the numerical simulations performed,
the criterion (4.5.5) based on the ratio of error indicators is reliable and robust and gives the
largest flexibility.

4.5.3 Update of the reduced state

If criterion (4.5.5) is satisfied, the rank adaptive algorithm updates the current reduced solution
to a new state having a different rank. Specifically, assume that, in the time interval Tτ−1, we
have solved the discrete reduced problem (4.3.6) to obtain the reduced solution Rτ−1 = Uτ−1Zτ−1
inMnτ−1 .
As a first step, we derive an updated basis U ∈ Uτ from Uτ−1 ∈ Uτ−1, with nτ = nτ−1 + 1. To
this aim, we enlarge Uτ−1 with two extra columns derived from an approximation of the error,
analogously to a greedy strategy. In greater detail, with the algorithm described in Section 4.5.1,
we derive the error matrix Eτ associated with the reduced solution at the current time. Via a
thin SVD, we extract the left singular vector associated with the principal component of the
error matrix, and we normalize it in the 2-norm to obtain the vector e ∈ R2N . We finally enlarge
the basis Uτ−1 with the two columns [e | J>2Ne] ∈ R2N×2. The rationale for this choice is that we
seek to increase the accuracy of the low-rank approximation by adding to the reduced basis the
direction that is worst approximated by the current reduced space.
From the updated matrix [Uτ−1| e | J>2Ne] ∈ R2N×2nτ , we construct an orthosymplectic basis in
the sense of Definition 4.1.1, by performing a QR-like decomposition using symplectic unitary
transformations. In particular, we employ a symplectic (modified) Gram-Schmidt algorithm,
similar to the one employed in the symplectic greedy method discussed in Section 3.3.3, with the
possibility of adding reorthogonalization to enhance the stability and robustness of the algorithm.
Once the updated reduced basis U ∈ Uτ is computed, we derive the matrix Z ∈ R2nτ×p by
expanding the current reduced solution Rτ−1 in the updated basis. Therefore, the updated Z
satisfies UZ = Rτ−1, which results in Z = U>Rτ−1.

Remark 4.5.1. Since the updated reduced state coincides with the reduced solution Rτ−1 at
time tτ−1, all invariants of (4.2.1) preserved by the partitioned Runge–Kutta scheme (4.3.6) are
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conserved during the rank update.

Observe that, even if the current reduced state Rτ−1 is in M2nτ−2, it does not belong to the
manifold M2nτ . Indeed, one easily shows that Z = U>Rτ−1 ∈ R2nτ×p does not satisfy the
full-rank condition,

rank(S(Z)) = rank
(
U>Uτ−1[Zτ−1Z

>
τ−1 + J>2nτZτ−1Z

>
τ−1J2nτ ]U>τ−1U

)
≤ min

{
rank(U>Uτ−1), rank

(
Zτ−1Z

>
τ−1 + J>2nτZτ−1Z

>
τ−1J2nτ

)}
≤ 2nτ − 2

As shown in Lemma 4.4.2, the fact that Z /∈ Zτ implies that the velocity field F in (4.3.1),
describing the evolution of the reduced basis, is not well-defined. Therefore, we need to introduce
an approximate velocity field for the solution of the reduced problem (4.2.6) in the temporal
interval Tτ with initial conditions (U,Z) ∈ Uτ × R2nτ×p. We refer to Section 4.4 for a discussion
about this issue and the description of the algorithm designed to solve the rank-deficient reduced
dynamics ensuing from the rank update.

Algorithm 4 Rank update
1: procedure Rank update(Uτ−1, Zτ−1,E∗)
2: Compute the error indicator matrix Eτ−1 ∈ R2N×p (4.5.4)
3: if criterion (4.5.5) is satisfied then
4: Compute QΣV > = Eτ−1 via thin SVD
5: Set e← Q1/‖Q1‖2 where Q1 ∈ 2N is the first column of the matrix Q
6: Construct the enlarged basis Ū ← [Uτ−1|e|J>2Ne] ∈ R2N×(2nτ+2)

7: Compute U via symplectic orthogonalization of Ū with symplectic Gram-Schmidt
8: Compute the coefficients Z ← U>Uτ−1Zτ−1
9: else
10: U ← Uτ−1, Z ← Zτ−1 and nτ = nτ−1

11: return updated factors (U,Z) ∈ U × R2nτ×p

4.5.4 Approximation properties of the rank-adaptive scheme

To gauge the local approximation properties of the rank-adaptive scheme for the solution of the
reduced dynamical system (4.2.6), we consider the temporal interval Tτ where the first rank update
is performed. In other words, assume that Rτ−1 = Uτ−1Zτ−1, with (Uτ−1, Zτ−1) ∈ Uτ−1 ×Zτ−1,
is the numerical approximation of the solution R(tτ−1) ∈ M2nτ−1 of the reduced dynamical
system (4.2.5) at time tτ−1 with nτ−1 = nτ−2 = . . . = n1. After the rank update at time tτ−1,
the reduced state R satisfies the local evolution problem

d

dt
R(t) = PεRXH(R(t), ηh), for t ∈ Tτ ,

R(tτ−1) = Rτ−1 = Unττ−1Z
nτ
τ−1

(4.5.6)

where (Unττ−1, Z
nτ
τ−1) ∈ Uτ × R2nτ×p are the rank-updated factors, and

PεRXH(R(t), ηh) := (I2N − UU>)(XHZ>J2NXHZ>J>2nτ )Sε(Z)−1Z + UU>XH,
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for all R = UZ ∈ R2N×p. We make the assumption that the reduced problem (4.2.5) is well-posed.
Let R(t) ∈ Vp2N be the full model solution of problem (4.2.1) in the temporal interval Tτ with
given initial condition R(tτ−1). The error between the approximate reduced solution of (4.5.6)
and the full model solution at time tτ ∈ T is given by

Rτ −R(tτ ) = (Rτ −R(tτ )) + (R(tτ )−R(tτ ))

The quantity eτA := Rτ − R(tτ ) is the approximation error associated with the partitioned
Runge–Kutta discretization scheme, and can be treated using standard convergence analysis
techniques, in light of the fact that the retraction map is Lipschitz continuous in the Frobenius
norm, as shown in [189, Proposition 5.7]. The term eRA(t) := R(t) − R(t), for any t ∈ Tτ , is
associated with the rank update and can be bounded as

d

dt
‖eRA‖ ≤ ‖PεRXH(R)−XH(R)‖ ≤ ‖PεRXH(R)−XH(R)‖ + ‖XH(R)−XH(R)‖

≤ LXH ‖eRA‖ + ‖(I2N − PεR)XH(R)‖ ,

where LXH is the Lipschitz continuity constant of XH. Gronwall’s inequality [113] gives, for all
t ∈ Tτ ,

d

dt
‖eRA(t)‖ ≤ ‖eRA(t0)‖ eLXH t +

∫ tτ

tτ−1
eLXH (t−s) ‖(I2N − PεR)XH(R)‖ ds (4.5.7)

Observe that the estimate (4.5.7) depends on the distance between the Hamiltonian vector field at
the reduced state and its image under the map PεR that approximates the orthogonal projection
operator on the tangent space ofM2nτ . Although a rigorous bound for this term is not available,
we expect that it can be controlled arbitrary well by increasing the size of the reduced basis, as
will also be demonstrated in Section 4.7. Moreover, the estimate (4.5.7) on the whole temporal
interval T depends exponentially on the final time T . A linear dependence on T can be obtained
only in special cases, for example when ∇RH is uniformly negative monotone.

4.6 Computational complexity of the rank-adaptive algo-
rithm

In this Section we discuss the computational cost required for the numerical solution of the
reduced problem (4.2.6) with the rank-adaptive algorithm introduced in Section 4.5.
In each temporal interval Tτ , the algorithm consists of two main steps: the evolution step, which
entails the repeated evaluation of the velocity fields F and G in (4.3.6) at each stage of the
Runge–Kutta temporal integrator, and the rank update step, which requires the evaluation of
the error indicator and the update of the approximate reduced solution at the current time step.
The rank update strategy introduced in Section 4.5, and summarized in Algorithm 4, has an
arithmetic complexity of O(Np2) + O(Nn2

τ ) + O(Npnτ ), and the computational bottleneck is
the computation of the error indicator. As suggested in Section 4.5.1, sub-sampling techniques
and mesh coarsening can be employed to overcome this limitation. The evolution step consists
in solving the discrete reduced system (4.3.6) in each temporal interval. To understand the
computational complexity of this step, we neglect the number of nonlinear iterations required by
the implicit temporal integrators for the evolution of the coefficients Z. The solution of (4.3.6)
requires the evaluation of four operators: the velocity fields G and F , the retraction R and its
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inverse tangent map fτ . The algorithms proposed in [189, Section 5.3.1] for the computation
of R and fτ have arithmetic complexity O(Nn2

τ ). We denote with CH = CH(N,nτ , p) the
computational cost to evaluate the gradient of the reduced Hamiltonian at the reduced solution.
Finally, the velocity field F is computed via Algorithm 3 with a computational complexity of
O(Nnτp) + O(Nn2

τ ) + O(pn2
τ ) + O(n3

τ ), while CH is the cost to evaluate Y . It follows that
the rank-adaptive algorithm for the solution of the reduced system (4.3.5) with a partitioned
Runge–Kutta scheme has a computational complexity being at most linear in the dimension
of the full model N , provided the computational cost CH to evaluate the Hamiltonian vector
field at the reduced solution has a comparable cost. Concerning the latter, observe that the
assembly of the reduced state R from the factors U and Z and the matrix-vector multiplication
U>∇RH(R; ηh) require O(Npnτ ) operations. Therefore, the computational bottleneck of the
algorithm is associated with the evaluation of the Hamiltonian gradient at the reduced state R.
This problem is well-known in model order reduction and emerges whenever reduced models
involve non-affine and nonlinear operators, as discussed in Section 1.5.
As mentioned in Chapter 1, several hyper-reduction techniques have been proposed to mitigate
or overcome this limitation, resulting in approximations of nonlinear operators that can be
evaluated at a cost independent of the size of the full model. However, we are not aware of
any hyper-reduction method able to exactly preserve the Hamiltonian phase space structure
during model reduction for the general case represented by (4.1.1). Furthermore, hyper-reduction
methods entail an offline phase to learn the low-rank structure of the nonlinear operators by means
of snapshots of the full model solution. Compared to traditional global model order reduction,
in a dynamical reduced basis approach the constraints on the computational complexity of the
reduced operators is less severe since we allow the dimension of the full model to enter, albeit at
most linearly, the computational cost of the operations involved. This means that the dynamical
model order reduction can accommodate Hamiltonian gradients where each vector entry depends
only on a few, say k � N , components of the reduced solution, with a resulting computational
cost of CH = O(Npnτ ) + O(kNp). This is the case when, for example, the dynamical system
(4.1.1) ensues from a local discretization of a partial differential equation in Hamiltonian form.
Note that this assumption is also required for the effective application of DEIM. When dealing
with low-order polynomial nonlinearities of the Hamiltonian vector field, we can use tensorial
techniques to perform the most expensive operations only once and not at each instance of the
parameter, as discussed in the following.

4.6.1 Efficient treatment of the polynomial nonlinearity

Let us consider the explicit expression of the cost CH for different Hamiltonian functions H. If
the Hamiltonian vector field XH in (4.2.1) is linear, then

G(U,Z; ηh) = J2nU
>∇RH(R; ηh) = J2nU

>AUZ, ∀R = UZ ∈M2nτ ,

where A ∈ R2N×2N corresponds to a given linear map, associated with the spatial discretization of
the Hamiltonian function H. Standard matrix-matrix multiplication to compute G has arithmetic
complexity O(Nn2

τ ) +O(pn2
τ ) +O(nτk), where k is the number of nonzero entries of the matrix

A. The computational complexity of the algorithm is therefore still linear in N provided the
matrix A is sparse. This is the case in applications we are interested in where the Hamiltonian
system (4.2.1) ensues from a local spatial approximation of a partial differential equation.
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In case of low-order polynomial nonlinearities, we use the tensorial representation [240] of the
nonlinear function and rearrange the order of computing. The gist of this approach is to exploit
the structure of the polynomial nonlinearities to separate the quantities that depend on the
dimension of the full model from the reduced variables, by manipulating the order of computation
of the various factors. Consider the evolution equations for the coefficients Z in (4.2.6a) for a
single value ηj of the parameter ηh ∈ Γh. The corresponding reduced Hamiltonian vector can be
expressed in the form

J2n∇ZjHU (Zj ; ηj) = U>J2NG
{q}

(
q⊗
i=1

AiUZj

)
= U>J2NG

{q}

(
q⊗
i=1

AiU

)
︸ ︷︷ ︸

GU

(
q⊗
i=1

Zj

)
︸ ︷︷ ︸

Z

(4.6.1)

where Zj ∈ Zτ with p = 1, q ∈ N is the polynomial degree of the nonlinearity, Ai ∈ R2N×2N

are sparse discrete differential operators, G{q} represents the matricized q-order tensor and ⊗
denotes the Kronecker product. The last expression in (4.6.1) allows to separate the computations
involving factors of size N from the reduced coefficients Z, so that the matrix GU ∈ R2nτ×(2nτ )q

can be precomputed during the offline phase.
In the case of the proposed dynamical reduced basis method, we employ the tensorial POD
approach to reduce the computational complexity of the evaluation of G, the RHS of (4.2.6a),
and its Jacobian needed in the implicit symplectic integrator at each time step of the numerical
integrator. We start by noticing that a straightforward calculation of the second expression in
(4.6.1) suggests O(cNpnτ ) +O(cpqk) +O(cNpq) operations, where the first term is due to the
reduced basis ansatz and the Galerkin projection, the second term to the multiplication by the
sparse matrices Ai and the third term to the evaluation of a polynomial of degree q for each
entry of a 2N × p matrix. The constant c represents the number of iterations of the Newton
solver and k := maxi ki, where ki is the number of nonzero entries of Ai. Moreover, in each
iteration we evaluate not only the nonlinear term but also its Jacobian, with an additional cost
of O(cNp(q − 1)) + O(cpkGnτ ) + O(cNpn2

τ ) operations, with kG being the number of nonzero
entries of the full-order Jacobian. These terms represent, respectively, the operations required to
evalute the polynomial functions in the Jacobian, the assembly of the Jacobian matrix and its
Galerkin projection onto the reduced basis. This high computational cost can again be mitigated
by resorting to the second formula in (4.6.1), where the term GU is precomputed at each iteration,
for each stage of the partitioned RK integrator (4.3.6). To estimate the computational cost of
the procedure we resort to the multi-index notation by introducing n := (nτ , . . . , nτ ) ∈ Rn and
hence GUZ in (4.6.1) can be recast as

GUZ = U>J2n
∑
l≤2n︸ ︷︷ ︸

(III)

∏
1<i≤q

(II)︷ ︸︸ ︷
diag (AiU)︸ ︷︷ ︸

(I)

A1Ul︸ ︷︷ ︸
(1)

Zl. (4.6.2)

The arithmetic complexity of this step is O(qknτ ) +O((q − 1)Nnqτ ) +O(Nnq+1
τ ), where the first

term is due to the matrix multiplication of the q matrices AiU in (I), the second term to the
pointwise and diagonal matrices multiplications involved in the computations of (II) and the
third term to the multiplications by UTJ2N in (III). We stress that the cost required to assemble
GU is independent of the number of parameters p and the number of iterations of the nonlinear
solver. Once GU has been precomputed, the evaluation of the reduced RHS has a computational
cost of O(cpnq+1

τ ) [240]. The same splitting technique is exploited for each evaluation of the
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reduced Jacobian and most of the precomputed terms in (4.6.2) can be reused. The proposed
treatment of polynomial nonlinearities results in an effective reduction of the computational cost
in case of low-order polynomial nonlinearity (q = 2, 3), a large set of vector-valued parameters
(p� 10) and a moderate number nτ of basis vectors.

4.7 Numerical experiments
To assess the performance of the proposed adaptive dynamical structure preserving reduced basis
method, we consider finite-dimensional parametrized Hamiltonian dynamical systems arising from
the spatial approximation of PDEs. Let Ω ⊂ Rd be a continuous domain and let u : T ×Ω×Γ→ Rm

belong to a Sobolev space V endowed with the inner product 〈·, ·〉. A parametric evolutionary
PDE in Hamiltonian form can be written as

∂

∂t
u(t, x; η) = J δ

δu
H(u; η), in Ω× T ,

u(0, x; η) = u0(x; η), in Ω,
(4.7.1)

with suitable boundary conditions prescribed at the boundary ∂Ω. Here, the dot denotes the
derivative with respect to time, and δ denotes the variational derivative of the Hamiltonian H
defined as

d

dε
H (u+ εv; η)|ε=0 =

〈
δ

δu
H, v

〉
, ∀u, v ∈ V,

so that, for l = 1, . . . ,m and ul,k := ∂xkul, it holds

δ

δul
H = ∂H

∂ul
−

d∑
k=1

∂

∂xk

(
∂H

∂ul,k

)
+ . . . , with H(u; η) =

∫
Ω
H(x, u, ∂xu, ∂xxu, . . . ; η) dx.

In the numerical tests, we consider, for any fixed value of the parameter ηj ∈ Γh, numerical
spatial approximations of (4.7.1) that yield a 2N -dimensional Hamiltonian system in canonical
form 

d

dt
uh(t; ηh) = J2N∇uHh(uh; ηj), in T ,

uh(0; ηj) = u0
h(ηj),

(4.7.2)

where uh belongs to a finite 2N -dimensional subspace of V, ∇u is the gradient with respect to
the state variable uh and Hh : R2N → R is such that ∆x1 . . .∆xdHh is a suitable approximation
of H. Testing (4.7.2) for p values Γh = {ηj}pj=1 of the parameter, yields a matrix-valued ODE of
the form 3.2.1, where the j-th column of the unknown matrix R(t) ∈ R2N×p is equal to uh(t, ηj)
for all j = 1, . . . , p.
We validate the proposed adaptive dynamical reduced basis method on several representative
Hamiltonian systems of the form (4.7.2), of increasing complexity, and compare the quality of the
adaptive dynamical approach with a reduced model with a global basis. The proposed approach,
including all the steps introduced in the previous sections, is summarized in Algorithm 5.
For the global model, we consider Complex SVD method discussed in Section 3.3.1, where a
reduced basis is built via a complex SVD of a suitable matrix of snapshots and the reduced model
is derived via symplectic Galerkin projection onto the space spanned by the global basis. The
accuracy, conservation properties and efficiency of the reduced models are analyzed and compared
by monitoring various quantities. To assess the approximation properties of the reduced model,
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Algorithm 5 Rank-adaptive reduced basis method
1: procedure Rank_ Adaptive_Reduced_Basis_Method(R0, ηh, η̃h, NE, n1, ε, r, c)
2: Compute U0 ∈ U1 via complex SVD of R0(ηh) truncated at the n1-th mode, and Z0 ←
U>0 R0(ηh)

3: Initialize the error indicator matrix E0 ← R0(η̃h)− U0U
>
0 R0(η̃h) ∈ R2N×p̃ and E∗ ← E0

4: for τ = 1, . . . , Nτ do
5: Calculate (Uτ , Zτ ) ∈ Uτ × R2nτ×p using partitioned RK integrator (4.3.6),

starting from (Uτ−1, Zτ−1) ∈ Uτ−1 × R2nτ−1×p:
· Use the tensorial POD approach (4.6.1) to assemble the operator G
· Use the retraction map given in (4.3.3) to compute RUτ−1

· Compute fτ according to (4.3.4), using Regularization (Algorithm
3), with parameter ε as input, to assemble F

6: if mod(τ,NE) = 0 then
7: Compute the error indicator matrix and check the rank update criterion

using Rank_update (Algorithm 4) as
(Uτ , Zτ ,E∗,Eτ , λτ ) = Rank_update(Uτ , Zτ ,E∗,Eτ−1, λτ−1, r, c)

we track the error, in the Frobenius norm, between the full model solution R and the reduced
solution R at any time t ∈ T , namely

E(t) = ‖R(t)−R(t)‖2 . (4.7.3)

Moreover, we study the conservation of the Hamiltonian via the relative error in l1-norm in the
parameter space Γh, that is

EHh(t) =
p∑
i=1

∣∣∣∣H(UτZiτ ; ηi)−H(U0Z
i
0; ηi)

H(U0Zi0; ηi)

∣∣∣∣ . (4.7.4)

The reason for the use of the l1-norm is the following. For any fixed parameter ηj , let Hj :=
H(·; ηj) : R2N → R, and let ωj(a, b) := ω(aj , bj) = a>j J2Nbj where aj ∈ R2N denotes the j-th
column of the matrix a ∈ R2N×p. As explained in Section 4.2, the velocity field of the reduced
flow is the symplectic projection of the full model velocity onto the tangent space of the reduced
manifold, see (4.2.5). This entails that the reduced solution R ∈ C1(T ,M2n) satisfies the
symplectic variational principle

p∑
j=1

ωj

(
ΠTRM2nXH(R, ηj)−XH(R, ηj), y

)
=

p∑
j=1

ωj

(
Ṙ−J2N∇Hj(R), y

)
= 0, ∀ y ∈ TRM2n,

where XH(R, ηj) = J2N∇uH(R, ηj). This implies that

p∑
j=1

d

dt
Hj(R(t)) =

p∑
j=1

(∇RjHj(R), Ṙj) =
p∑
j=1

ω(J2N∇RjHj(R), Ṙj) =
p∑
j=1

ωj(Ṙ, Ṙ) = 0.

Finally, we monitor the computational cost of different reduction strategies. Throughout, the
runtime is defined as the sum of the lengths of the offline and online phases in the case of complex
SVD (global method); while, for the dynamical approaches it is the time required to evolve basis
and coefficients (4.3.5) plus the time required to compute the error indicator and update the
dimension of the approximating manifold, in the adaptive case.
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The adaptive dynamical RB method is numerically tested on two nonlinear problems, the shallow
water and Schrödinger equations in one and two dimensions. Finally, we consider a preliminary
application to particle simulations of plasma physics problem with the reduction of the Vlasov
equation with a forced external electric field, modeling the evolution of charged particle beams.
All numerical simulations are performed using Matlab computing environment on computer
nodes with Intel Xeon E5-2643 (3.40 GHz).

4.7.1 Shallow water equations

The shallow water equations (SWE) describe the kinematic behaviour of a thin inviscid single
fluid layer flowing over a variable topography. In the setting of irrotational flows and flat
bottom topography, the fluid is described by a scalar potential φ and the canonical Hamiltonian
formulation is recovered [243]. The resulting time-dependent nonlinear system of PDEs is defined
as 

∂

∂t
h+∇ · (h∇φ) = 0, in Ω× T ,

∂

∂t
φ+ 1

2 |∇φ|
2 + h = 0, in Ω× T ,

h(0, x; ηh) = h0(x; ηh), in Ω,
φ(0, x; ηh) = φ0(x; ηh), in Ω,

(4.7.5)

with spatial coordinates x ∈ Ω, time t ∈ T , state variables h, φ : Ω×T → R, ∇· and ∇ divergence
and gradient differential operators in x, respectively. The variable φ is the scalar potential of the
fluid and h represents the height of the free-surface, normalized by its mean value. The system is
coupled with periodic boundary conditions for both the state variables. The evolution problem
(4.7.5) admits a canonical symplectic Hamiltonian form (4.7.1) with the Hamiltonian

H(h, φ; η) = 1
2

∫
Ω

(h|∇φ|2 + h2) dx.

We consider numerical simulations in d = 1 and d = 2 dimensions on rectangular spatial domains.
The domain Ω is partitioned using a Cartesian mesh inM−1 equispaced intervals in each dimension,
having mesh width ∆x and ∆y, when d = 2. As degrees of freedom of the problem we consider
the nodal values of the height and potential, i.e., uh(t; ηh) := (h, φ) = (h1, . . . , hN , φ1, . . . , φN ),
for all t ∈ T and ηh ∈ Γh, where N := Md, hm = hi,j with m := (j−1)M+ i, and i, j = 1, . . . ,M .
In 1D, N = M , and the index j is dropped.
We consider second order accurate central finite difference schemes to discretize the differential
operators in (4.7.5), and denote with Dx and Dy the discrete differential operators acting in the
x- and y-direction, respectively. The semi-discrete formulation of (4.7.5) represents a canonical
Hamiltonian system with the gradient of the Hamiltonian function with respect to uh given by

∇Hh(uh; ηh) =
( 1

2

[
(Dxφh)2 + (Dyφh)2

]
+ hh

−Dx(hh �Dxφh −Dy(hh �Dyφh)

)
(4.7.6)

where � is the Hadamard product between two vectors. The discrete Hamiltonian is

Hh(uh; ηh) = 1
2

M∑
i,j=1

(
hi,j

[(
φi+1,j − φi−1,j

2∆x

)2
+
(
φi,j+1 − φi,j−1

2∆y

)2
]

+ h2
i,j

)
. (4.7.7)
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Figure 4.2: SWE-1D: (a) Singular values of the global snapshots matrix Suh and time average
of the singular values of the local trajectories matrix Suhτ . The singular values are normalized
using the largest singular values for each case. (b) ε-rank of the local trajectories matrix Suhτ for
different values of ε.

In the one-dimensional case, the operator Dy vanishes.

One-dimensional shallow water equations (SWE-1D)

For this example, we set Ω = [−10, 10] and we consider the parameter domain Γ =
[ 1

10 ,
1
7
]
×
[ 2

10 ,
15
10
]
.

The discrete set of parameters Γh is obtained by uniformly sampling Γ with 10 samples per
dimension, for a total of p = 100 different configurations. Problem (4.7.5) is completed with the
initial condition {

h0(x; ηh) = 1 + αe−βx
2
,

φ0(x; ηh) = 0,
(4.7.8)

with ηh = (α, β), where α controls the amplitude of the initial hump in the depth h and β

describes its width. We consider a partition of the spatial domain Ω into N − 1 equispaced
intervals with N = 1001. The full model solution uh(t; ηh) is computed using a uniform step
size ∆t = 10−3 in the time interval T = (0, T := 7]. We use the implicit midpoint rule as
time integrator because, being symplectic, it preserves geometrical properties of the flow of the
semi-discrete equation associated to (4.7.6). To study the reducibility properties of the problem,
we explore the solution manifold and collect the solutions to the high-fidelity model in different
matrices. The global snapshot matrix Suh ∈ R2N×(Ntp) contains the snapshots associated with
all sampled parameters ηh and time steps, while, for any τ = 1, . . . , Nt, the matrix Suhτ ∈ R2N×p

collects the full model solutions at fixed time tτ .
In Figure 4.2(a), we compare the normalized singular values of Suh and Suhτ , averaged over

time for the latter. Although, in both cases, the exponential decay of the spectrum suggests the
existence of reduced approximation spaces, the decay of the singular values of the averaged Suhτ
is roughly 5 times faster than that of Suh . This difference suggests that a low-rank dynamical
approach may be beneficial to reduce the computational cost and increase the accuracy of the
solution of the reduced model compared to a method with a global basis. Furthermore, the
evolution of the numerical rank of Suhτ over time, reported in Figure 4.2(b), shows a rapid growth
during the first steps, followed by a mild increase in the remaining part of the simulation. This is
compatible with the observations, made in Section 4.5.2, about the behavior of the singular value
spectrum for advection dominated problems.
In order to compare the performances of local and global model order reduction, we con-
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Figure 4.3: SWE-1D: Relative error at time T = 7, as a function of the runtime for the complex
SVD method (Global ROM), the dynamical RB method (Non adaptive), and the adaptive
dynamical RB method for different values of the control parameters r and c. For the sake of
comparison, we report the runtime required by the high-fidelity solver to compute the numerical
solutions for all values of the parameter ηh ∈ Γh.

sider, as global reduced method, the complex SVD approach with reduced dimension 2n ∈
{10, 20, 30, 40, 60, 80}. This is used to generate a symplectic reduced basis from the solution of
the high-fidelity model (4.7.5) obtained every 10 time steps and by uniformly sampling Γ with
4 samples per dimension. The reduced system is solved using the implicit midpoint rule with
the same time step ∆t used for the full order model. The quadratic operator, describing the
evolution of (4.7.5), is reduced by using the approach described in Section 4.6.1 and the reduced
operators are computed once during the offline stage.
Concerning the adaptive dynamical reduced model, we evaluate the initial condition (4.7.8) at all
values ηh = Γh and compute the matrix Suh1 ∈ R2N×p having as columns each of the evaluations.
As initial condition for the reduced system, we use{

U(0) = U0,

Z(0) = U>0 S
uh
1 ,

(4.7.9)

where U0 ∈ R2N×2n1 is obtained using the complex SVD applied to the snapshot matrix Suh1 .
System (4.2.6) is then evolved using the 2-stage partitioned Runge-Kutta method described in
Algorithm 5. For the following numerical experiments, we consider 2n1 ∈ {6, 8, 10, 12} as initial
dimensions of the approximating reduced manifolds. As control parameters for the rank update
criterion of Algorithm 5, we fix the value c = 1.2 and study examples with r ∈ {1.02, 1.05, 1.1, 1.2}.
Moreover, we examine the case in which the rank-updating algorithm is never triggered, i.e., the
basis U(t) evolves in time but its dimension is fixed (nτ = n1 for all τ). In the adaptive case,
the error indicator Eτ is computed every 100 iterations using a coarse mesh with 500 equispaced
intervals on the subset ηE

h obtained by sampling 5 parameters per dimension from Γh.
In Figure 4.3, we compare the global reduced model, the dynamical models for different values
of r, and the high-fidelity model in terms of total runtime and accuracy at the final time T
by monitoring the error (4.7.3). The results show that, as we increase the dimension of the
global reduced basis, the global reduced model provides accurate approximations but the runtime
becomes larger than the one required to solve the high-fidelity problem. Hence, the global method
loses the efficiency. The adaptive dynamical reduced approach outperforms the global reduced
method by reaching comparable levels of accuracy at a computational time which is one order of
magnitude smaller than the one required by the global reduction. Compared to the high-fidelity
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solver, the adaptive dynamical reduced method achieves an accuracy of E(T ) = 2.55 · 10−5 with
a speedup up of 42, in the best-case scenario. For this numerical experiment, the effectiveness of
the rank update algorithm is limited by the error introduced in the approximation of the initial
condition via a reduced basis. While the error is reduced from a factor of 4 in the case of 2n1 = 8
to a factor of 20 in the case of 2n1 = 12, compared to the non adaptive method, the accuracy is
not significantly improved when 2n1 = 6. We note that, when the adaptive algorithm is effective,
the additional computational cost associated with the evaluation of the error indicator and the
evolution of a larger basis is balanced by a considerable error reduction.
To better gauge the accuracy properties of the adaptive dynamical reduced basis method, we
compare its error with the error given by the high-fidelity solver for the same initial condition.
The solution to the full model, with the projection of (4.7.8) onto the column space of U0 as
the initial condition, is the target of the adaptive reduced procedure, which aims at correctly
representing the high-fidelity solution space at every time step. The importance of having a
reduced space that accurately reproduces the initial condition can be inferred from Figure 4.4(a):
the error associated with a poorly resolved initial condition dominates over the remaining sources
of error, and adapting the dimension of the reduced basis is not beneficial in terms of accuracy.
As noted above, increasing 2n1 not only improves the performance of the non adaptive reduced
dynamical procedure but also boosts the potential gain, in terms of relative error reduction, of
the adaptive method, as can be seen in Figure 4.4(e).
Moreover, in Figures 4.4 we report the growth of the dimension of the reduced basis for different
initial dimension 2n1. For the evolution of the error, we do not notice any significant difference
as the parameter r for the adaptive criterion varies. Ideally, within each temporal interval, the
reduced solution is close, in the Frobenius norm, to the best rank 2nτ approximation of the full
model solution. To verify this property for the adaptive dynamical reduced basis method, we
monitor the evolution of the error E⊥ between the full model solution R, at the current time and
for all ηh ∈ Γh, and its projection onto the space spanned by the current reduced basis, namely

E⊥(t) =
∥∥R(t)− U(t)U(t)>R(t)

∥∥
2 .

In Figure 4.5, the projection error is shown for different values of the control parameters (Figures
4.5(a) and 4.5(b)) and the corresponding evolution of the reduced basis dimension is reported
(Figures 4.5(c) and 4.5(d)). We notice that, when the dimension of the basis U is not adapted,
the projection error tends to increase in time. This can be ascribed to the fact that the effective
rank of the high-fidelity solution is growing and the reduced basis is no longer large enough to
capture the rank-increasing solution. Adapting 2nτ during the simulation results in a zero-growth
scenario, with local negative peaks when the basis is enlarged. This indicates that the strategy
of enlarging the reduced manifold in the direction of the larger error (see Section 4.5) yields a
considerable improvement of the approximation.
In Figure 4.6 we show the relative error in the conservation of the Hamiltonian for different

dimensions of the reduced manifold, and values of the control parameters r and c. As the
Hamiltonian (4.7.7) is a cubic quantity, we do not expect exact conservation associated with
the proposed partitioned Runge–Kutta temporal integrators. However, the preservation of the
symplectic structure both in the reduction and in the discretization yields a good control on the
Hamiltonian error, as it can be observed in Figure 4.6.
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Figure 4.4: SWE-1D: On the left column, we report the evolution of the error E(t) for the
adaptive and non adaptive dynamical RB methods for different values of the control parameter r
and different dimensions 2n1 of the approximating manifold of the initial condition. The target
error is obtained by solving the full model with initial condition obtained by projecting (4.7.8)
onto a symplectic manifold of dimension 2n1. On the right column, we report the evolution of
the dimension of the dynamical reduced basis over time. The adaptive algorithm is driven by the
error indicator (4.5.4), while in the non adaptive setting, the dimension does not change with
time. We consider the cases 2n1 = 6 (Figures (a)-(b)), 2n1 = 8 (Figures (c)-(d)), and 2n1 = 10
(Figures (e)-(f)).
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Figure 4.5: SWE-1D: In Figures (a) and (b), we report the evolution of the projection error E⊥
for different values of the initial dimension 2n1 of the reduced manifold. In Figures (c) and (d),
we report the corresponding evolution of the dimension of the reduced manifolds.
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Figure 4.6: SWE-1D: Relative error (4.7.4) in the conservation of the discrete Hamiltonian (4.7.7)
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Figure 4.7: SWE-2D: (a) Singular values of the global snapshots matrix Suh and time average
of the singular values of the local trajectories matrix Suhτ . The singular values are normalized
using the largest singular values for each case. (b) ε-rank of the local trajectories matrix Suhτ for
different values of ε.

Two-dimensional shallow water equations (SWE-2D)

We set Ω = [−4, 4]2 as the spatial domain and Γ =
[ 1

5 ,
1
2
]
×
[ 11

10 ,
17
10
]
as the domain of parameters.

We consider 10 uniformly spaced values of the parameter for each dimension of Ω to define the
discrete subset Γh. As initial condition, we consider{

h0(x, y; ηh) = 1 + αe−β(x2+y2),

φ0(x, y; ηh) = 0,
(4.7.10)

where ηh = (α, β) represents the natural extension to the two-dimensional setting of the parameter
used in the previous example. The domain Ω is partitioned using M = 51 points per dimension,
so that the resulting mesh width is ∆x = ∆y = 16 · 10−2. The time domain T = [0, T := 20] is
split into Nt = 10000 uniform intervals of length ∆t = 2 · 10−3. The symplectic implicit midpoint
is employed as time integrator in the high-fidelity solver, while the reduced dynamics is integrated
using the 2-stage partitioned RK method. The spatial and temporal domains considered for this
numerical experiment are taken so that the solution of the high-fidelity model is characterized by
circular waves that interact and overlap because of the periodic boundary conditions, as shown in
Figure 4.8.
The increased complexity of the two-dimensional dynamics is reflected in the behaviour of the
spectrum of the matrix snapshots. In Figure (4.7)(a), we show the normalized singular values of
the global snapshot matrix Suh ∈ R2N×(Ntp) and the average of the Nt local-in-time snapshot
matrices Suhτ ∈ R2N×p. The decay of the singular values of the local trajectories is one order of
magnitude faster than of the global (in time) snapshots, suggesting that there exists an underlying
local low-rank structure that can be exploited to improve the efficiency of the reduced model. The
evolution of the numerical rank of Suhτ , reported in 4.7(b), indicates that, while the matrix-valued
initial condition is exactly represented using an extremely small basis, the full model solution at
times t ≥ 2 requires a relatively large basis to be properly approximated, and hence adapting the
dimension of the reduced manifold becomes crucial. We employ the complex SVD method to
build a global reduced order model, using the same sampling rates in time and parameter space as
in the 1D test case. With none of the dimensions considered, i.e., 2n ∈ {10, 20, 40, 60, 80, 120}, we
obtain results that are both accurate (error smaller than 10−1) and computationally less expensive
than solving the high-fidelity model. Hence, for this two-dimensional test, we only compare the
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Figure 4.8: SWE-2D: High fidelity solution (Figures (a)-(d)) and adaptive dynamical reduced
solution (Figures (e)-(h)) for the parameter (α, β) =

( 1
3 ,

17
10
)
and t = 0, 5, 15, and 20s. In the

adaptive reduced approach, we set r = 1.1, c = 1.3, and 2n1 = 6.

performances of the adaptive and the non-adaptive dynamical reduced basis method in terms
of accuracy and computational time. As initial condition for the reduced dynamics we consider
the initialization (4.7.9) where Suh1 is given by (4.7.10). Moreover, for the adaptive method, we
compute the error indicator every 10 iterations and on a subset ηE

h of 25 uniformly sampled
parameters. Different combinations of the initial reduced manifold dimension 2n1 = {4, 6, 8} and
control parameters r = 1.1, 1.2, 1.3 and r = 1.1, 1.2, 1.3, are considered to study their impact on
the accuracy of the method.
Figure 4.8 shows the high-fidelity solution for (α, β) =

( 1
3 ,

17
10
)
with its adaptive reduced approxi-

mation at different times. The results are qualitatively equivalent.
Figure 4.9 reports the error E(t) versus the runtime required to compute the solution for all
ηh ∈ Γh by means of the adaptive and non-adaptive dynamical reduced methods, for different
values of 2n1, r, and c. Observe that the runtime of the high-fidelity solver is 3.29 · 105 s. The
results show that both reduction methods are able to accurately approximate the high-fidelity
solution, with speed-ups of 261 for the non-adaptive approach and 113 for the adaptive approach.
The exceptional efficiency of the dynamical reduced approach in this context is a result of the
combination of three main factors: the low degree polynomial nonlinearity, the large number of
degrees of freedom needed to represent the high-fidelity solution, and the compact dimension of
the local reduced manifold. Despite the small computational overhead for the adaptive method
due to the error estimation, the basis update and the larger approximating spaces used, the
adaptive algorithm leads to approximations that are one (2n1 = 4) to two (2n1 = 10) orders of
magnitude more accurate than the approximations obtained by the non adaptive method.
The results presented in Figure 4.10 on the evolution of the error for 2n1 = {4, 6, 8}, corroborate
the conclusions, already drawn from the 1D test case, regarding the effect of a poorly approxi-
mated initial condition on the performances of the adapting procedure. The evolution of the basis
dimension is reported in Figures 4.10(b), 4.10(d) and 4.10(f) for different values of r, c, and 2n1.
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Figure 4.9: SWE-2D: Error (4.7.3), at time T = 20, as a function of the runtime for the dynamical
RB method and the adaptive dynamical RB method for different values of the control parameters
r and c for the simulation of all the sampled parameters in Γh. For comparison, the high-fidelity
model runtime is 3.3 · 105 s.

4.7.2 Nonlinear Schrödinger equations

The nonlinear Schrödinger equation (NLS) is used to model, among others, the propagation
of light in nonlinear optical fibers and planar waveguides and to describe the Bose–Einstein
condensates in a macroscopic gaseous superfluid wave-matter state at ultra-cold temperature. In
our setting, we test the adaptive strategy in the case of a Fourier mode cascade, where, starting
from an initial condition represented by few low Fourier modes, the energy exchange to higher
modes quickly complicates the dynamics of the problem [46]. More specifically, in the spatial
domain Ω, we consider the cubic Schrödinger equationi

∂

∂t
u+∇u+ |u|2u = 0, in Ω× T ,

u(t0, x; η) = u0(x; η), in Ω,
(4.7.11)

with periodic boundary conditions, and vector-valued parameter η. By writing the complex-valued
solution u in terms of its real and imaginary parts as u = q + iv, (4.7.11) can be written as a
Hamiltonian system in canonical symplectic form with Hamiltonian

H(q, v; η) = 1
2

∫
Ω

[
d∑
i=1

((
∂

∂xi
q

)2
+
(

∂

∂xi
v

)2
)
− 1

2
(
q2 + v2)2] dx.

Two-dimensional nonlinear Schrödinger equations

Let us consider the spatial domain Ω = [−2π, 2π]2 and the set of parameters Γ = [0.97, 1.03]2. We
seek the numerical solution to (4.7.11), for p = 64 uniformly sampled parameters ηh := (α, β) ∈ Γh
entering the initial condition

u0(x, y; ηh) = (1 + α sin x)(2 + β sin y). (4.7.12)

This problem is characterized by an energy exchange between Fourier modes. Although this
process is local, it is not well understood how the energy exchange mechanism is influenced by
the problem dimension and parameters. In particular, although the values of α and β have a
limited impact on the low-rank structure of the initial condition (4.7.12), the explicit effect of
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Figure 4.10: SWE-2D: On the left column, we report the evolution of the error E(t) (4.7.3) for the
adaptive and non adaptive dynamical RB methods for different values of the control parameters
r and c, and for different dimensions 2n1 of the initial reduced manifold. The target error is
obtained by solving the full model with initial condition obtained by projecting (4.7.10) onto
a symplectic manifold of dimension 2n1. On the right column, we report the evolution of the
dimension of the dynamical reduced basis over time. The adaptive algorithm is driven by the
error indicator (4.5.4), while in the non adaptive setting, the dimension does not change with
time. We consider the cases 2n1 = 4 (Figures (a)-(b)), 2n1 = 6 (Figures (c)-(d)), and 2n1 = 8
(Figures (e)-(f)).
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Figure 4.11: NLS-2D: (a) Singular values of the global snapshots matrix Suh and of the time
average of the local trajectories matrix Suhτ . The singular values are normalized using the largest
singular value for each case. (b) ε-rank of the local trajectories matrix Suhτ for different values of
ε.

their variation on the energy exchange process is not known. We use a centered finite difference
scheme to discretize the Laplacian operator. The domain Ω is partitioned using M = 101 nodes
per dimension, for a total of N = 10000 intervals of width ∆x = ∆y = 4π · 10−2. Let uh(t; ηh),
for all t ∈ T and ηh ∈ Γh, be the vector collecting the degrees of freedom associated with the
nodal approximation of u.The semi-discrete problem is canonically Hamiltonian with the discrete
Hamiltonian function

Hh(uh; ηh) = 1
2

N∑
i=1

[(
qi+1,j − qi,j

∆x

)2
+
(
vi+1,j − vi,j

∆x

)2
+

(
qi,j+1 − qi,j

∆y

)2
+
(
vi,j+1 − vi,j

∆y

)2
−1

2
(
q2
i,j + v2

i,j

)2]
,

with periodic boundary conditions for qi,j and vi,j . We consider Nt = 12000 time steps in the
interval T = (0, T := 3] so that ∆t = 2.5 · 10−4. As in the previous examples, the implicit
midpoint rule is used as the numerical integrator in the high-fidelity solver. The reduced dynamics
is integrated using the 2-stage partitioned RK method.
To assess the reducibility of the problem, we collect in Suh ∈ R2N×(Ntp) the snapshots associated
with all parameters ηh and times tτ , and in Suhτ ∈ R2N×p the snapshots associated with all
parameters ηh at fixed time tτ , with τ = 1, . . . , Nt. The slow decay of the singular values of Suh ,
reported in Figure 4.11(a), suggests that a global reduced basis approach is not viable for model
order reduction. The growing complexity of the high-fidelity solution, associated with different
values of α and β, is reflected by the growth of the numerical rank shown in Figure 4.11(b).
Hence, despite the exponential decay of the singular values of Suhτ , Figure 4.11(b) indicates
that this test represents a challenging problem even for the adaptive algorithm and a balance
between accuracy and computational cost is necessary while adapting the dimension of the
reduced manifold. We consider several combinations of r ∈ {1.1, 1.2} and c ∈ {1.05, 1.1, 1.2} and
different initial dimensions of the reduced manifold 2n1 ∈ {6, 8}. The error indicator is computed
every 10 time steps on a subset ΓI ⊂ Γh of 16 uniformly sampled parameters. Both adaptive
and non-adaptive reduced models are initialized using (4.7.9), with U0 obtained via a complex
SVD of the snapshots matrix Suh1 of the initial conditon (4.7.12). Figure 4.12 confirms that the
evolving basis U generated by the dynamical reduced basis method satisfies the orthogonality and
symplecticity constraints to machine precision. In line with the fact that the full model solution
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Figure 4.12: NLS-2D: Evolution of the error in the orthogonality (a) and symplecticity (b) of
the reduced basis obtained with the adaptive dynamical RB method for different choices of the
control parameters r and r and initial dimension of the reduced manifold 2n1.

has a gradually increasing rank (see Figure 4.11 (b)), adapting the dimension of the basis improves
the accuracy of the approximation, as shown in Figure 4.13. In terms of the computational cost
of the adaptive dynamical model, we record a speedup of at least 58 times with respect to the
high-fidelity model, whose runtime is 6.2 · 105 s. These results can be explained as for the 2D
shallow water test: in the presence of polynomial nonlinearities the strategy proposed in Section
4.6.1 allows computational costs that scale only linearly with N .
In Figure 4.13, we observe that, although increasing in time, the error associated with the adaptive
reduced dynamical model has a smaller slope than the error of the non-adaptive method.
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Figure 4.13: NLS-2D: On the left column, we report the evolution of the error E(t) (4.7.3) for the
adaptive and non adaptive dynamical RB methods for different values of the control parameters
r and c, and for different dimensions 2n1 of the initial reduced manifold. On the right column,
we report the evolution of the dimension of the dynamical RB over time. We consider the cases
2n1 = 6 (Figures (a)-(b)) and 2n1 = 8 (Figures (c)-(d)).
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5 Model order reduction of the
Vlasov equation

5.1 Introduction
The kinetic modeling of collisionless magnetized plasmas is based on the Vlasov–Maxwell equa-
tions, which describe the evolution of the distribution function of a collection of charged particles
under the action of self-consistent electromagnetic fields. Because of the high dimensionality
of the phase space, the large separation of scales, the inherent nonlinearity, and the infinitely
many conserved quantities, the numerical treatment of the Vlasov–Maxwell equations, and of its
electrostatic limit of Vlasov–Poisson equations is a challenging task.
Arguably, the most widely used family of numerical methods for the solution of kinetic plasma
models are Particle-In-Cell (PIC) methods [32]. The idea of PIC schemes is to sample the distribu-
tion function in velocity space using a finite number of macro-particles that are evolved along their
characteristics. The electromagnetic fields are discretized on a grid in the computational domain,
and the macro-particles move through the grid according to the Lorentz force. To preserve key
physical properties of the problem, such as conservation of total energy, PIC schemes have evolved
into variational algorithms based on least action principles [159; 163; 237] or on the Hamiltonian
formulation of the Vlasov–Maxwell and Vlasov–Poisson equations [172; 86]. In parallel, several
numerical methods [237; 86] for kinetic plasma models have leveraged discrete differential forms
and de Rham complexes for the geometric approximation of the electromagnetic fields through
Maxwell’s equations. Combining these ideas of structure-preserving approximations has led to
finite element PIC methods able to exactly satisfy physical constraints, like the Gauss laws, and
guarantee the preservation of the Hamiltonian structure of the problem. Examples include the
canonical [207] and non-canonical [266] symplectic particle-in-cell algorithms, the Hamiltonian
particle-in-cell method of [124] , and its generalization, the Geometric Electromagnetic PIC
(GEMPIC) method [152].
The multiscale nature of plasmas implies that PIC codes require a significant amount of com-
putational resources to resolve the shortest length scale and the fastest plasma frequency and,
thus, to yield stable and accurate numerical approximations. Moreover, the slow convergence rate
of particle-based methods necessitates the use of many particles to achieve sufficient accuracy,
to capture, for example, time-dependent physical phenomena such as plasma instabilities. As
a result, PIC methods can have prohibitively expensive computational cost. Furthermore, the
computational burden can become intractable in the parametric case when simulations for many
input parameters are of interest. This problem has been tackled from an algorithmic standpoint
by improving algorithms’ structure and using suitable computational hardware. In this work,
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we propose to address this computational issue through model order reduction. Starting from
the high-resolution geometric PIC approximation of the Vlasov–Poisson problem, the idea is to
derive a low-dimensional surrogate model that can be solved at a reduced computational cost
and still provides accurate approximate solutions.
In recent years, some effort has been devoted to the development of numerical methods for the
infinite-dimensional Vlasov–Poisson problem based on model order reduction techniques and
low-rank approximations, with the intent to optimize the number of degrees of freedom needed
for a sufficiently accurate and stable approximation of the solution. In [82], the solution of the
full-Eulerian time-dependent Vlasov–Poisson system is approximated using a tensor decompo-
sition whose rank is adapted at each time step. In [84], the continuous distribution function
of the Vlasov–Poisson problem is expanded into a finite sum of low-rank factors, for which a
new dynamical system is derived. A conservative discretization in space and velocity of the
resulting problem yields a low-rank approximation of the original dynamics. To address the
problem of the fluid closure for the collisionless linear Vlasov system, an interpolatory order
reduction is proposed in [101]. In the context of a particle-based discretization of kinetic plasma
models, a dynamic mode decomposition (DMD) strategy has been proposed in [184] to reconstruct
the electric field within an Electromagnetic particle-in-cell (EMPIC) algorithm. Although the
proposed approach can effectively capture and extrapolate the electric field behavior around
equilibria, the computational burden associated with the high number of particles is not overcome.
Model order reduction — in the number of particles — of parametric plasma models is, to the
best of our knowledge, an open problem. This work aims at addressing this issue.
We focus on the parametric 1D-1V Vlasov–Poisson problem and consider its discretization in space
and velocity via a geometric PIC method. The resulting dynamical system has a Hamiltonian
form and, hence, corresponds to a symplectic flow. Model order reduction of the Vlasov–Poisson
problem poses some major challenges, and standard reduced basis techniques are prone to fail
in terms of numerical stability, computational efficiency, and accuracy of the simulations. The
application [252] of the symplectic reduced basis methods proposed in [198; 3] to the Vlasov
equation, with a fixed external electrostatic field, shows the importance of retaining the symplectic
structure of Vlasov’s equation in the reduced model. However, the multi-scale nature of the
problem makes it difficult for a reduced-order model to characterize, with sufficient accuracy,
the plasma behavior using a small number of degrees of freedom. This implies that accurate
reduced representations of the solution may require large approximation spaces that eliminate
model order reduction benefits. To overcome this limitation, we adapt the method described in
Chapter 4. This approach accurately describes the plasma evolution with a considerably reduced
number of particles without compromising the simulation quality. Furthermore, the bulk of the
computational effort to solve the reduced dynamics is due to the nonlinearity of the particles-to-
grid mapping, and thus the Hamiltonian, whose evaluation needs to be performed in the original
high-dimensional space. To alleviate these computational inefficiencies, we propose a strategy that
approximates the reduced Hamiltonian gradient via a combination of hyper-reduction techniques
and parameter sampling procedures. A reduction in the computational runtimes of the algorithm
is achieved by decoupling the operations that depend on the number of particles from those
that depend on the number of parameters while retaining an accurate representation of the
plasma dynamics. The resulting discrete dynamical system preserves the symplectic structure of
the problem, ensures the stability of the approximation, and exploits the local-in-time low-rank
nature of the solution by using the dynamical low-rank method described in Chapter 4.
The remainder of this Chapter is organized as follows. In Section 5.2, the parametric Vlasov–
Poisson problem is introduced both in its classical Eulerian formulation and in the Hamiltonian
formulation. Moreover, the semi-discrete approximation of the problem via a particle method
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coupled with a finite element discretization of the Poisson problem is described. In Section 5.3, the
model order reduction of the parametric dynamical system originating from the semi-discretization
of the Vlasov–Poisson equation is considered. We apply the nonlinear structure-preserving ap-
proach given in Chapter 4 and we set the notation for the following chapters. After discussing
the computational complexity of the dynamical reduced basis algorithm, Section 5.4 is devoted to
the DMD-DEIM structure-preserving approximation of the nonlinear Hamiltonian gradient and
the particles-to-grid mapping, which is the author’s novel contribution in the thesis. Numerical
experiments in Section 5.5 on benchmark tests show that the proposed method can accurately re-
produce the dynamics of particle-based kinetic plasma models with significant speedups compared
to solving the original system.

5.2 The physical model
We consider the parametric Vlasov–Poisson problem with parameters that describe physical
properties of the system. In particular, we focus on the study of the effect of parametrized initial
distributions on the plasma dynamics. Let us assume that the parameters range in a compact
set Γ ⊂ Rq with q ≥ 1. The plasma, at any time t ∈ T , is described in terms of the distribution
function fs(t, x, v; η) in the Cartesian phase space domain (x, v) ∈ Ω := Ωx ×Ωv ⊂ R2. Here s
denotes the particle species, i.e., ion and electron in our case. Assume that Ωx := T = R/(2πZ) is
the one dimensional torus and Ωv := R. For η ∈ Γ fixed, we introduce the space

Vη :=
{
f(t, ·, ·; η) ∈ L2(Ω) : f(t, x, v; η) > 0 for all (x, v) ∈ Ω, f(t, ·, v; η) ∼ e−v

2
as |v| → ∞

}
.

The 1D-1V Vlasov-Poisson problem reads: For each η ∈ Γ and fs0 (η) ∈ Vη|t=0, find fs(·, ·, ·; η) ∈
C1(T ;L2(Ω)) ∩ C0(T ;Vη), and the electric field E(·, ·; η) ∈ C0(T ;L2(Ω)) such that

∂

∂t
fs(t, x, v; η) + v

∂

∂x
fs(t, x, v; η) + qs

ms
E(t, x; η) ∂

∂v
fs(t, x, v; η) = 0, in Ω× T , ∀s,

∂

∂x
E(t, x; η) =

∑
s

qs
∫

Ωv
fs(t, x, v; η) dv, in Ωx × T ,

fs(0, x, v; η) = fs0 (x, v; η), in Ω.

Here qs is the charge and ms is the particle mass. The boundary conditions for fs are periodic
in space and prescribed via the space Vη in velocity.
Since the electric field can be written as the spatial derivative of the electric potential φ, namely
E(t, x; η) = − ∂

∂x
φ(t, x; η), the Vlasov-Poisson problem can be recast, for each η ∈ Γ, as


∂

∂t
fs(t, x, v; η) + v

∂

∂x
fs(t, x, v; η)− qs

ms

∂

∂x
φ(t, x; η) ∂

∂v
fs(t, x, v; η) = 0, in Ω× T , ∀s,

− ∂2

∂x2φ(t, x; η) = ρ(t, x; η) :=
∑
s

qs
∫

Ωv
fs(t, x, v; η) dv in Ωx × T .

(5.2.1)

The Lagrangian and Hamiltonian formulation of the Vlasov–Poisson and Vlasov–Maxwell equa-
tions reveals a set of mathematical and geometric features that encode the physical properties
of these systems. The Vlasov–Poisson problem admits a Hamiltonian formulation [52], with a
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Lie-Poisson bracket, and Hamiltonian given by the sum of the kinetic and electric energy as

H(f, η) =
∑
s

ms

2

∫
Ω
v2fs(t, x, v; η) dx dv + 1

2

∫
Ωx
|E(t, x; η)|2 dx. (5.2.2)

Eulerian-based discretizations of kinetic plasma models in Hamiltonian form, with general
noncanonical Poisson brackets, do not appear to inherit the phase space structure of the continuous
problem, as has been observed in [182; 229]. On the contrary, particle-in-cell methods have
led to the geometric approximation of these models when coupled to the discretization of the
electromagnetic fields via discrete differential forms [266; 124; 152; 82]. For the structure-
preserving approximation and reduction of the Vlasov–Poisson system (5.2.1) we rely on the
Hamiltonian structure of its semi-discrete formulation obtained via particle-based methods as
derived in the following.

5.2.1 Geometric particle-based discretization

We consider a particle method for the approximation of the Vlasov equation, coupled with a
H1-conforming discretization of the Poisson problem for the electric potential. In detail, the
distribution function fs is approximated by the superposition of N computational macro-particles
as

fs(t, x, v; η) ≈ fsh(t, x, v; η) =
N∑
l=1

ωsl S(x−Xs
l (t, η))δ(v − V sl (t, η)),

where ωsl ∈ R is the weight of the l-th particle, δ is the Dirac delta, S is a compactly supported
shape function, and, for each η ∈ Γ and t ∈ T , Xs(t, η) ∈ RN and V s(t, η) ∈ RN denote the
vectors of the position and velocity of the macro-particles, respectively. The idea of particle
methods is to derive the time evolution of the approximate distribution function fsh by advancing
the macro-particles along the characteristics of the Vlasov equation, i.e. the particles’ positions
and velocities satisfy the following set of ordinary differential equations

d

dt
Xs
l (t, η) = V sl (t, η), in T , ∀s,

d

dt
V sl (t, η) = qs

ms
E(t,Xs

l (t, η); η), in T , ∀s,
(5.2.3)

under suitable initial conditions. The macro-particles move through a computational grid under
the influence of electromagnetic fields. The latter are self-consistently calculated from the
positions of the particles on the grid via the Poisson equation (5.2.1). On a partition of the
spatial domain Ωx, we consider a finite element discretization of the Poisson equation in the space
PkΛ0(Ωx) ⊂ H1(Ωx) of continuous piecewise polynomial functions of degree at most k ≥ 1. The
semi-discrete variational problem reads: For each η ∈ Γ, find φh(·; η) ∈ C1(T ;PkΛ0(Ωx)) such
that

ah (φh(t, ·; η), ψ) = g(ψ), ∀ψ ∈ PkΛ0(Ωx), (5.2.4)

where the bilinear form ah corresponds to the Laplace operator, while the linear function g is
associated with the density ρ; thereby

ah(ϕ,ψ) :=
∫

Ωx

d

dx
ϕ(x) d

dx
ψ(x) dx, g(ψ) :=

∑
s

qs
∫

Ωv
fsh(t, x, v; η)ψ(x) dv dx,
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for all ϕ,ψ ∈ PkΛ0(Ωx). Then the time-dependent algebraic system ensuing from (5.2.4) reads

Lφ(t, η) =
∑
s

Λ0(Xs(t, η))>Ms
q =: ρh(X(t, η); η), (5.2.5)

where Ms
q ∈ RN is the vector of entries

(
Ms
q

)
l

= qsωsl , for l = 1, . . . , N . The proposed
discretization of the electromagnetic field allows to recast the characteristic equation (5.2.3) as
a Hamiltonian system. As discussed in Chapter 3, the phase space of Hamiltonian systems is
characterized by a symplectic geometric structure. We denote with V2N ⊂ R2N the phase space
of (5.2.3) and we assume it is a 2N -dimensional symplectic vector space.
For a species s, let W s(t, η) = [Xs(t, η);V s(t, η)] ∈ V2N denote the vector of all particle positions
and velocities at a given time t ∈ T and parameter value η ∈ Γ, obtained by concatenating the
vectors Xs(t, η) and V s(t, η). The latter are also known as generalized position and momentum
in the symplectic formalism. For Ns number of species, we denote with W ∈ VNs2N ⊂ R2NNs the
state vector collecting the positions and velocities of all particles of all species. The Hamiltonian
(5.2.2), resulting from the proposed discretization, is given by

H(W (t, η)) =
∑
s

N∑
l=1

ms
l

2 ωsl V
s
l (t, η) + 1

2

∫
Ωx

∣∣∣∣ ∂∂xφh(t, x; η)
∣∣∣∣2 dx

= 1
2
∑
s

V s(t, η)>Ms
pV

s(t, η) + 1
2φh(t, η)>Lφh(t, η)>

= 1
2
∑
s

V s(t, η)>Ms
pV

s(t, η) +
∑
s,s′

1
2
(
Ms
q

)> Λ0 (Xs(t, η))L−1Λ0
(
Xs′(t, η)

)>
Ms′

q ,

(5.2.6)
where Ms

p = diag(ms
1ω

s
1, . . . ,m

s
Nω

s
N ) ∈ RN×N , with diag(d) denoting a diagonal matrix with

entries given by the vector d. Differentiating the discrete Hamiltonian in (5.2.6) with respect
to the vector Xs of particles’ positions and the vector V s of particles’ velocities, results in the
semi-discrete system in Hamiltonian form d

dt
X(t, η)

d

dt
V (t, η)

 = J2N

((
Ms
p

)−1 0
0

(
Ms
p

)−1

)(
diag

(
Ms
q

)
∇Λ0 (Xs(t, η))L−1∑

s′ Λ0
(
Xs′(t, η)>

)
Ms′

q

Ms
pV

s(t, η)

)
, ∀s.

(5.2.7)
Here ∇λ0(Xs) ∈ RN×Nx is defined as

(
∇λ0(Xs)

)
l,i

:=
(
dxλ

0
i

)
(Xs

l ), for i = 1, . . . , Nx and
l = 1, . . . , N . A generalization of this discretization to the case of Vlasov–Maxwell’s equations
leads to the GEMPIC method introduced in [152]. Note that the proposed semi-discretization
preserves the Hamiltonian, which corresponds to the discrete energy of the system, but not the
momentum. In PIC it does not appear possible to simultaneously conserve momentum and energy
[32].

5.3 Model order reduction of the Vlasov-Poisson problem
For better readability we restrict ourselves to the case of a single-species plasma model and,
thus, drop the superscript s. Moreover, we assume homogeneous macro-particles’ weights so that
ml = m and ωl = ω, for all l = 1, . . . , N . The proposed method can be extended to the general
case mutatis mutandis.
To simplify the notation, we re-define the Hamiltonian H from (5.2.6) up to the constant
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mp := (mω)−1, such that, for any W (t, η) = [X(t, η);V (t, η)] ∈ V2N ,

H(W (t, η)) = 1
2V (t, η)>V (t, η) +

m−1
p

2 M>q Λ0 (X(t, η))L−1Λ0 (X(t, η))>Mq, (5.3.1)

We also introduce the (nonlinear) electric energy E : R2N × Γ→ R defined as

E(X(t, η); η) :=
m−1
p

2 M>q Λ0 (X(t, η))L−1Λ0 (X(t, η))>Mq. (5.3.2)

The parametric Hamiltonian system (5.2.7) reads: For each η ∈ Γ and forW0(η) = [X(0, η);V (0, η)] ∈
V2N , find W (·, η) ∈ C1(T ,V2N ) such that

d

dt
W (t, η) = J2N∇WH (W (t, η)) , in T ,

W (0, η) = W0(η),

where the initial condition W0(η) ∈ V2N is prescribed by the initial distribution f0(η).

5.3.1 Dynamical structure-preserving MOR

The non-dissipative nature of the Hamiltonian problem (5.3.1) is associated with poor reducibility
and a slowly decaying Kolmogorov n-width. If traditional symplectic reduction approaches are
employed, such as the ones described in Chapter 3, the approximation of the solution to (5.3.1)
may require large approximation spaces that jeopardize the benefits of model order reduction.
Hence, we adopt the structure-preserving dynamic RB method for Hamiltonian system described
in Chapter 4.

Assume we seek to solve the semi-discrete Vlasov-Poisson problem (5.3.1) for p parameters Γh :=
{ηj}pj=1 ⊂ Γ. Similarly to Section 4.2, we recast (5.3.1) as an evolution equation in the matrix-
valued unknown R(t) := [W (t, η1)| . . . |W (t, ηp)] ∈ Vp2N ⊂ R2N×p, with Vp2N := V2N × · × V2N .
Given R0 = [W0(η1)| . . . |W0(ηp)], we look for R ∈ C1(T ,Vp2N ), such that

d

dt
R(t) = J2N∇RHp(R(t)), in T ,

R(0) = R0.
(5.3.3)

The Hamiltonian of (5.3.3) is a vector-valued quantity Hp : Vp2N → Rp that collects the values
of the Hamiltonian of (5.3.3) for each parameter in Γh, namely (Hp (R(·)))j = H(W (·, ηj)), for
j = 1, . . . , p. Moreover, the gradient ∇RHp(R(t)) ∈ Vp2N is defined as

(∇RHp(R(t))l,j = ∂

∂Wl(·, ηj)
H(W (·, ηj)), l = 1, . . . , 2N, j = 1, . . . , p.

The idea of dynamical low-rank approximations is to expand the full-order solution in a truncated
modal decomposition where both the basis and the expansion coefficients are time-dependent.
For all t ∈ T , we approximate W (t), in (5.3.3), as R(t) = U(t)Z(t), where U(t) ∈ R2N×2n is the
time-dependent orthosymplectic basis and Z(t) ∈ R2N×n are the associated expansion coefficient,
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5.3 Model order reduction of the Vlasov-Poisson problem

with Z(t) := [Z1(t)| . . . |Zp(t)], and Zi(t) := Z(t, ηi). The reduced space is then defined as

Mp
2n :=

{
R ∈ R2N×p : R = UZ with U ∈ S(2n,R2N ), Z ∈ Z

}
,

where S(2n,R2N ) is the set of ortho-symplectic matrices in R2N×2n defined in (3.3.2) and

Z :=
{
Z ∈ R2n×p : rank(ZZ> + J2nZZ

>J2n) = 2n
}
,

with n� N and 2n < p. Let Xi
r(t) := UX(t)Zi(t) ∈ RN and V ir (t) := UV (t)Zi(t) ∈ RN denote

the reduced position and velocity vectors, respectively, associated with the parameter ηi, for
i = 1, . . . , N and j = 1, . . . , 2n. For fixed U and for each parameter ηi ∈ Γh, the flow map of the
coefficient equation is a canonical symplectic map with a Hamiltonian HU (Z(t)) := H(U(t)Z(t))
having the i-th entry equal to

HU,i(Zi(t)) := H(U(t)Zi(t)) = 1
2V

i
r (t, η)>V ir (t, η) + EU,i(Zi(t)), (5.3.4)

where the first part is quadratic in the coefficients Zi, and EU,i : RN → R is the nonlinear electric
energy component (5.3.2) of the Hamiltonian function, i.e., for all i ∈ p,

EU,i(Zi(t)) = E(Xi
r; ηi) =

m−1
p

2 M>q Λ0 (Xi
r

)
L−1Λ0 (Xi

r

)>
Mq. (5.3.5)

We introduce the matrices

GpH(U,Z) := [GpH(U,Z1)| . . . |GpH(U,Zp)] ∈ R2N×p, (5.3.6)

and
gpH(U,Z) := [gpH(U,Z1)| . . . |gpH(U,Zp)] ∈ R2n×p,

having as columns the p instances of the gradient of the Hamiltonian and of the reduced
Hamiltonian, respectively,

GpH(U,Zi) := ∇UZiHU,i(Zi) ∈ R2N ,

and
gpH(U,Zi) := U>GpH(U,Zi) = ∇ZiHU,i(Zi) ∈ R2n,

where
∇UZiHU,i(Zi(t)) =

(
m−1
p diag (Mq)∇Λ0 (Xi

r(t)
)
L−1Λ0 (Xi

r(t)
)
Mq

V ir (t)

)
. (5.3.7)

Under these assumptions, a dynamical system for the reduced solution is characterized via the
symplectic projection of the velocity field of the full dynamical system (5.3.3) onto the tangent
space of Mp

2n at each state [189; 183]. The resulting reduced dynamics is given in terms of
evolution equations for the reduced basis and for the expansion coefficients as

d

dt
Z(t) = J2ng

p
H (U,Z) = J2n∇ZHU (Z),

d

dt
U =

(
I2N − UU>

) (
J2NG

p
H(U,Z)Z> −GpH(U,Z)Z>J>2n

)
S(Z)−1

U(t0)Z(t0) = U0Z0,

(5.3.8a)

(5.3.8b)

(5.3.8c)
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Model order reduction of the Vlasov equation

where S(Z) = ZZ> + J>2nZZ
>J2n, and the initial condition U0Z0 ∈ Mp

2n is computed via
a truncated complex SVD of R0 ∈ R2N×p. Equation (5.4.2) describes the evolution of the
coefficients Z(t) and is a system of p independent equations, each in n unknowns. It corresponds
to the Galerkin projection of the full-order Hamiltonian systems onto the space spanned by the
columns of U(t), as obtained with the global symplectic reduced basis method in (3.2.9). Here,
however, the basis U changes in time, and the evolution problem (5.3.8b), for the basis U , is
a matrix-valued problem in N × n unknowns on the manifold of ortho-symplectic rectangular
matrices. Observe that the reduced basis depends on the parameters, but it is the same for all
parameters in the set Γh.

5.4 Efficient treatment of nonlinear terms
In this Section, we discuss the computational cost of the numerical solution of the reduced problem
(5.3.8), and propose a novel algorithm for the efficient and structure-preserving treatment of the
nonlinear operators.
The proposed reduction of the nonlinear terms is independent of the numerical time integrators
used to solve the reduced dynamical system (5.3.8). However, the algorithm can be optimized
depending on the time integrator of choice. We consider the structure-preserving partitioned
Runge-Kutta temporal integrators described in Chapter 4. In particular, the evolution of the
basis U is approximated with an explicit method, while a symplectic temporal integrator is
employed for the evolution of the coefficients Z, and this latter will generally be an implicit
scheme. Observe that we do not require that the stages of the RK integrators for the basis U and
coefficients Z coincide. We will discuss the details and implementation of such schemes in Section
5.5. Although not strictly necessary, here we also assume that the first step of the partitioned
RK method involves the evolution of the reduced basis; this assumption implies that we have the
information on the Hamiltonian gradient at the beginning of the temporal interval (at least for
some parameter values).
Let us split the temporal domain T into sub-intervals Tτ := (tτ−1, tτ ], for any τ = 1, . . . , Nt,
where t0 = 0 and ∆t = tτ − tτ−1 is the uniform time step. For each temporal interval Tτ , the
dynamical reduced basis method involves the following operations.

• The evolution of the basis U requires O(Nnp) +O(N2
xp) +O(Nxpc) +O(Nn2) +O(n2p)

flops, where c ∈ N is the number of finite element basis functions whose support is contained
in a given mesh element, and we recall that N is the number of particles, 2n the size
of the reduced basis and p denotes the number of parameter values. Note that this is a
mild constant, and it is equal to 2 for piecewise polynomial functions in 1D, as in the
discretization discussed in Section 5.2.1. The computational costs of this step are distributed
as follows

Arithmetic complexity Operation
O(Nnp) computation of Vr = UV Z and Xr = UXZ

O(Npc) assembly of ∇Λ0(Xi
r) and of Λ0(Xi

r), for all i ∈ Sp
O(Npc) +O(N2

xp) computation of diag(Mq)∇Λ0(Xi
r(t))L−1Λ0(Xi

r(t))Mq

O(pn2) +O(n3) construction and inversion of the matrix S(Z)
O(Nnp) +O(Nn2) matrix-matrix multiplications in the r.h.s. of (5.3.8b)

The first three rows of the table correspond to the assembly and evaluation of GpH for all p
parameters in Γh.
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5.4 Efficient treatment of nonlinear terms

• The integration, using an implicit time scheme, of the evolution equation (5.4.2) for the p
vector-valued coefficients requires O(Nnp) +O(N2

xp) +O(Npc) flops:

Arithmetic complexity Operation
O(Nn) computation of U>V V ir = U>V UV Zi

O(Nn) +O(N2
x) +O(Nc) assembly and evaluation of GpH(U,Zi)

O(Nn) computation of U>XG
p
H(U,Zi)

Each of the operations listed in the table needs to be performed for each parameter ηi ∈ Γh,
at each stage of the RK scheme, and at each iteration of the nonlinear solver.

The leading computational cost in both steps depends on the product of the number of particles
N and of the number of parameter p, both potentially large in multi-query simulations of high-
dimensional problems. This cost is associated with the remapping of the particles to the full
dimensional space, in each temporal interval and for each parameter, and with the evaluation of
the velocity field of the reduced flow. Indeed, the sole knowledge of the expansion coefficients with
respect to the reduced basis is not enough to compute the particles-to-grid mapping needed to
evaluate the electric field and, hence, the Hamiltonian. Even in the reduced model (5.3.8), these
operations require the reconstruction of the approximate particle positions, at a cost proportional
to the size of the full model. This lifting to the high-dimensional space needs to be performed for
each instance of the parameter, at each stage of the RK time integrator, and at every iteration of
the nonlinear solver. Analogous computational problems are common in model order reduction
and emerge whenever non-affine and nonlinear operators are involved, as seen in Section 1.5.
In the numerical experiments in Chapter 4, tensorial techniques [240] have been be used to
separate terms that depend on full spatial variables and on reduced coefficients to allow efficient
computations of the nonlinear terms, because of the low-order polynomial nature of nonlinearities.
The non-polynomial nature of the nonlinearity in the gradient of (5.3.4) prevents us from using
the aforementioned tensorial approach to accelerate the computation. The discrete empirical
interpolation method (DEIM), described in Chapter 1, is an interpolatory technique used to
approximate the nonlinearity in the projection-based ROM, requiring the computations of only a
few components of the original nonlinearity. While effective in the case where each component of
the nonlinearity depends only on a few components of the input, it is not suited for the treatment
of not component-wise nonlinear terms. Using a sparsity argument [57] or the introduction of
auxiliary variables [74], DEIM has been adapted to deal with the approximation of the nonlinear
terms at interpolation points that require the evaluation of the reduced solution on a limited
number of neighboring mesh points, as it happens for high-order spatial discretization schemes
with large stencils. However, the same strategy does not work for the treatment of the gradient of
(5.3.4), as the inverse of the discrete Laplacian operator is generally dense, and hence each of its
entries requires the computation of Xi

r for p sampled parameters, making traditional approaches
computationally impractical. Moreover, traditional hyper-reduction techniques applied to a
gradient vector field do not result in a gradient field, which means that the geometric structure
of the Hamiltonian dynamics is compromised in the hyper-reduction process.
To achieve computational efficiency in the simulation of (5.3.8) without compromising its geometric
structure, we propose a strategy that approximates the reduced Hamiltonian gradient via a
combined hyper-reduction technique and sampling procedure. A reduction in the computational
runtimes of the algorithm is achieved by decoupling the operations that depend on N from those
that depend on p, while retaining an accurate representation of the plasma dynamics. There are
several challenges that we need to face in the development of such techniques:
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Model order reduction of the Vlasov equation

• The preservation of the Hamiltonian structure of the dynamics.

• The lack of information on the full model solution and nonlinear operators, traditionally
collected in an offline phase via snapshots.

• The lack of a sparsity pattern in the nonlinear Hamiltonian gradient, i.e., the fact that each
entry of the electric energy vector (5.3.5) depends on all N computational particles.

5.4.1 Parameter sampling

The reduced dynamics (5.3.8) involves p evolution equations for the expansion coefficients, one
per parameter value, and one evolution problem for the matrix-valued reduced basis. Since, at
each time, the reduced basis is the same for all parameters, one can reduce the computational
cost required for its evolution by sampling over the parameter space and constructing a reduced
basis for only a subsample of parameters, but which remains accurate for all other parameters
in Γh. This corresponds to a reduction in parameter space. Let us denote by p the cardinality
of the set Γh and assume that the parameters in Γh are indexed from the set Sp := {1, . . . , p}.
Let us consider a subset Γ∗h of Γh of size p∗ � p. Define Sp∗ ⊂ Sp to be the set of indices
corresponding to the parameters in the selected subset so that Γ∗h = {ηi ∈ Γh| i ∈ Sp∗} ⊂ Γh.
The idea of the proposed sampling approach is to replace, in the evolution of the basis (5.3.8), the
matrix of the expansion coefficients Z(t) ∈ R2n×p by the matrix obtained via the concatenation
of the columns of Z with indices in Sp∗ . Following the discussion at the beginning of the section,
this approximation leads to a computational complexity for the basis evolution of the order of
O(Nnp∗) +O(N2

xp) +O(Np∗c) +O(Nn2) +O(n2p∗). To preserve the accuracy of the method,
we must ensure that the chosen subset Γ∗h is representative of the entire parameter set Γh. For
the sake of simplicity, in this work, we set it at t = 0, and we keep it fixed over time. Starting
from p∗ = ∅, the set p∗ is constructed using a greedy algorithm that, at each iteration, adds to
the index subset Sp∗ the index i that satisfies

max
i∈Γh\Γ∗h

min
j∈Γh

‖Z0
i − Z0

j ‖2, (5.4.1)

until a user-defined threshold value of the cost function or a maximum number of iterations.
Possible research directions to improve the selection strategy would be to adapt in time the set
p∗ to capture significant changes in the behavior of the solution relative to the parameters or
to modify the cost function to incorporate errors in the evaluation of physical quantities, such
as the electric field. However, as (5.4.1) is an NP-complete problem [231], it is not currently
known if it is possible to find an optimal parameter selection strategy with a polynomial cost
in p. Thus, in the current form, while affordable if performed only once at t = 0, the selection
strategy may become computationally expensive for large p and could compromise the efficiency
of the proposed dynamical RB method if repeated in each temporal sub-interval. Suboptimal, yet
more efficient, algorithms could be adopted by framing the problem into the more general column
subset selection problem (CSSP) [35], that consists in finding an optimal subset of columns of a
given matrix that minimizes the residual of the projection of the given matrix onto the selected
column subset. Other parameter reduction strategies, like active subspaces [67], might also be
envisioned.
Concerning the expansion coefficients, for which one differential equation per parameter needs to
be solved, subsampling is not an option.
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5.4 Efficient treatment of nonlinear terms

5.4.2 DMD-DEIM approximation of the Hamiltonian gradient

In this section, we develop a reduction algorithm where, in each temporal interval Tτ , DMD is used
for the hyper-reduction of the electric potential φ(Xi

r(t)) = L−1Λ0(Xi
r(t))>Mq in (5.3.5), while a

DEIM strategy is developed to approximate the component Λ0(Xi
r(t)) of the particles-to-grid

mapping. Note that in (5.3.4), the quadratic term involving the particles’ velocity represents a
linear contribution in the gradient of the reduced Hamiltonian and, hence, does not require any
hyper-reduction.

Dynamic Mode Decomposition of the electric potential

Dynamic mode decomposition is an equation-free data-driven approach, proposed in [227; 228],
that uses only data measurements of a given dynamical system to approximate the dynamics
and predict future states. The idea is to decompose the problem into a set of coherent spatial
structures, known as DMD modes, and associate correlated data to specific Fourier modes that
capture temporal variations. DMD was initially employed as a spectral decomposition method
for complex fluid flows [218]. More recently, it has proved successful in a wide range of settings
such as background/foreground separation in real-time video [114], characterization of dynamic
stall [170], and analysis of the propagation of infectious diseases [204]. DMD hinges on the
theory of Koopman operators [147], which allows representing the flow of a nonlinear dynamical
system via an infinite-dimensional linear operator on the space of measurement functions. DMD
computes a least-squares regression of data measurements to an optimal finite-dimensional linear
dynamical system that approximates the infinite-dimensional Koopman operator without explicit
knowledge of the operator describing the dynamics. This subsection first describes the classical
DMD algorithm following [155]. Next, we introduce a sliding-window-based DMD formulation
for the hyper-reduction of the electric potential in the dynamical reduced model (5.3.8) of the
Vlasov–Poisson problem.
Consider a general nonlinear dynamical system: Find y : T → Rl, for l ∈ N such that

d

dt
y(t) = F (t,y(t)), t ∈ T ,

y(t0) = y0.
(5.4.2)

Assume that we have as data measurements exact values or approximations of the state at
different time instants, namely

Y =
[
y0 y1 . . . yτ−1

]
∈ Rl×τ , Y′ =

[
y1 y2 . . . yτ

]
∈ Rl×τ , (5.4.3)

where yk = y(k∆t) and ∆t is the uniform time step. In the DMD method, data measurements
are used to approximate the nonlinear dynamics (5.4.2) by a locally linear system d

dt
y = Ay,

where A ∈ Rl×l is the matrix that best fits the measurements in a least-square sense, i.e.,
A = arg min

B∈Rl×l
‖Y′ −BY‖F . Then, A is given by A = Y′Y†, where † denotes the Moore-Penrose

pseudoinverse.
From the linear approximation of the dynamics, the DMD algorithm computes a low-rank
eigendecomposition of the matrix A by extracting its rτ largest eigenvalues ΛA and corresponding
eigenvectors ΘA = [θA1 . . . θArτ ] ∈ R`×rτ . The resulting DMD approximation of the state y(t), for
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Algorithm 6 DMD algorithm
1: procedure DMD(Y,tol)
2: Compute the truncated SVD of Y, Y = UΣV >, using tol as tolerance for singular values

selection.
3: Define Atol = U>Y′V Σ−1.
4: Compute the eigendecomposition of Atol: AtolW = WΛ.
5: Reconstruct the eigendecomposition of A by defining is eigenvectors as Θ = Y′V Σ−1W .

t > τ∆t, reads

y(t) ≈ yDMD(t) = ΘA
(

Π� eΩ(t−τ∆t)
)

=
rτ∑
j=1

θAj πje
ωj(t−τ∆t), (5.4.4)

where, for any j = 1, . . . , rτ , ωj := ln(ΛAj )/∆t is the j-th entry of the vector Ω ∈ Rrτ , while πj is
the j-th entry of the vector Π = (ΘA)†y0 ∈ Rrτ containing the coordinates of the initial condition
y0 with respect to the DMD modes.
If the size of the matrix A is large, A might be severely ill-conditioned and not directly tractable.
In this situation, a different version of the DMD algorithm, proposed in [251], projects the data
into a low-rank subspace instead of deriving A directly from the data, as described in Algorithm 6.
Moreover, given the sensitivity of the DMD algorithm to the duration and sampling of the series
Y and Y′, [80] proposes a sliding-window approach where the measurement data are not taken
in the whole temporal interval but only in the sampling window [tτ−T , tτ ] of length T ∈ N. The
rationale is that if the system is time-varying and the incoming data is harvested in a streaming
fashion, it may be beneficial to accuracy and memory storage to consider only the most recent
data. The only computational overhead is the computation of the DMD modes and weights in the
DMD approximation (5.4.4) as new data are collected. This cost may be mitigated by efficient
online updates of the eigenvalues and eigenvectors of A [125] or by means of incremental SVD
algorithms [173].
In the context of kinetic plasma PIC simulations, a DMD strategy has been used in [184]

to detect and track equilibrium states. The aforementioned method relies on snapshots of the
high-fidelity simulation until an equilibrium is detected and, after this time, the solution is
extrapolated via the DMD modes. Here, we propose to employ a DMD strategy in a different way,
namely to hyper-reduce the self-consistent electric potential φ(Xi

r(t)) = L−1Λ0(Xi
r(t))>Mq ∈ RNx

that enters the reduced Hamiltonian (5.3.4) for each parameter ηi ∈ Γh. The idea is to extract
low-dimensional dynamical features from a time-series of the electric potential and use them,
as part of the DMD algorithm in (5.4.4), to extrapolate the value of φ(Xi

r(t)) needed for the
computation of the reduced Hamiltonian (5.3.4) in each temporal interval Tτ . In details, let φiτ ,
for a fixed parameter with index i ∈ Sp∗ and τ = 1, . . . , Nτ , be the approximation of φ(Xi

r(t))
at t = tτ for each parameter in the subset Γ∗h. Since the first step of the temporal integrator
involves the evolution of the reduced basis, these quantities are computed while assembling the
right hand side of the basis evolution equation (5.3.8). For each Tτ , we collect the time-discrete
approximations of the electric potential obtained in a time window of length T + 1;

Yi =
[
φiτ−T−1 φiτ−T · · · φiτ−2

]
, Y′i =

[
φiτ−T φiτ−T+1 · · · φiτ−1

]
, (5.4.5)

where Yi,Y′i ∈ RNx×T for i = 1, . . . , p∗. Extracting the dominant modes from each realization of
the electric potential associated with a fixed parameter is a cumbersome task. To the best of our
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knowledge, DMD-based methods for the model order reduction of parametric problems have not
been developed. In our setting, the dependence on the parameter comes from the state, and it is
propagated via the parametric initial distribution f0. This suggests that, instead of extracting
the DMD modes for each fixed parameter ηi ∈ p∗, we can incorporate the parameter in the DMD
procedure to approximate the dynamics of the electric potential for all parameters. A similar
approach can be found in [226] when dealing with bifurcation parameters in thermo-acoustic
systems. For each parameter index i ∈ Sp, the datasets Yi and Y′i are concatenated column-wise
to form two global datasets Y and Y′, i.e.

Y =
[
Y1 Y2 · · · Yp∗

]
, Y′ =

[
Y′1 Y′2 · · · Y′p∗

]
, (5.4.6)

with Y,Y′ ∈ RNx×p
∗T . This procedure is justified by the absence of an explicit dependence of the

electric potential on the parameter. Following Algorithm 6, we generate the DMD eigenvectors
Θ ∈ RNx×rτ and eigenvalues Λ ∈ Rrτ×rτ of the linear approximation of the dynamics for the
problem of interest. The resulting DMD approximation of the self-consistent electric potential
reads

φ(Xi
r(t)) ≈ φiDMD(t) = Θ

(
Πi � eW (t−(τ−1)∆t)

)
, ∀ i ∈ Sp∗ ,∀ t ∈ Tτ , (5.4.7)

with W ∈ Rrτ is the vector of entries ωj = ln(Λj)/∆t, for any j = 1, . . . , rτ , and Πi := Θ†Φiτ−1 ∈
Rrτ for any i ∈ Sp∗ .
Assuming a smooth dependence of the DMD coordinates Πi on the parameter, interpolation
techniques can be used to recover the DMD coordinates for parameters not included in Γ∗h,
similarly to the POD with interpolation (PODI) [43]. In this work, we adopt the radial basis
interpolation [37], with a Gaussian kernel, as interpolation algorithm to reconstruct the DMD
coordinates Πi for i ∈ Γh \ Γ∗h. The computational cost of the interpolation step is negligible
as compared to the cost of Algorithm 6, as we comment on at the end of the section. For ease
of the notation, we use the same symbol Πi to represent the interpolated DMD coefficients for
all i ∈ Sp. Knowing Πi for all i ∈ Sp, the electric potential is reconstructed using (5.4.7). The
resulting sampling error can be controlled by enriching the subset of parameters Γ∗h and by
optimal placement of the location of the parameters with indices in Sp∗ in the parameter space.
Using the DMD estimate of the potential φ, the Hamiltonian function (5.3.4) is approximated as

HDMD
U,i (Zi) = 1

2V
i
r (t)>V ir (t) +

m−1
p

2 M>q Λ0(Xi
r(t))φiDMD(t), ∀ i ∈ Sp, ∀ t ∈ Tτ . (5.4.8)

Remark 5.4.1. If the Hamiltonian function depends explicitly on the parameter, the approach
outlined above is not legitimized because a non-parametric operator would be used to approximate
the parametric potential. An alternative strategy would require an approximation of the form
(5.4.7) for each parameter realization ηi, with i ∈ Sp∗ , using different Wi and Θi for each i. The
resulting DMD approximations of the potential φiDMD(t) could then be directly interpolated on
Sp or, as suggested in [79], interpolated based on physical concepts as in PODI.

The DMD approximation based on the matrix A, instead of its projection Atol defined in Algorithm
6, would result in a computational complexity O(N3

x). Although this cost might still be tractable
in one dimension, it becomes prohibitive when considering the Vlasov–Poisson problem in a
higher dimension. The method described in Algorithm 6 is, therefore, the preferred choice.
The computational cost of the proposed DMD strategy, applied to the electric potential, reduces
to the cost needed to perform Algorithm 6 from the datasets Y,Y′ ∈ RNx×p

∗T in (5.4.6). The
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truncated SVD decomposition of Y has arithmetic complexity O(Nxp∗Trτ ), where rτ is the
number of retained modes [122]. Observe that, if the number rτ of truncated modes is chosen
based on a tolerance to control the magnitude of the neglected singular values, Algorithm 6
computes the full SVD of Y and then performs the truncation. This variant of the truncated SVD
has computational complexity O(Nx(p∗T )2), under the assumption that the chosen DMD window
length T and number of parameter subsamples p∗ satisfy Nx > p∗T . The eigendecomposition of
Atol ∈ Rrτ×rτ in Algorithm 6 costs O(r3

τ ). Finally, the matrix-matrix multiplications to compute
Atol and Θ, respectively, require O(Nxr2

τ ) +O(Nxp∗Trτ ) operations. The computational cost to
compute φiDMD for every parameter ηi ∈ Γh – including sampling parameters and reconstructed
parameters – is O(Nxrτp). The leading cost is, therefore, O(Nxrτp) +O(Nxp∗Trτ ), with the last
term replaced by O(Nx(p∗)2T 2) for a naive implementation of the truncated SVD. This cost is
linear in Nx, does not depend on the number N of particles, and only the computation of the
DMD coordinates Πi depends on the number of parameters p.

Discrete Empirical Interpolation Method for reduction in the number of particles

The DMD approach described in the previous Section allows to derive an approximate electric
potential that can be evaluated independently on the number of particles. However, the evaluation
of the electric energy component of the approximate reduced Hamiltonian (5.4.8) still requires
the particles-to-grid mapping for Λ0(Xi

r(t)), for each value of the parameter, at each stage of the
temporal solver, and at each iteration of the nonlinear solver. The computational cost of this step
is a major bottleneck of the algorithm. We propose hyper-reduction of the approximate reduced
Hamiltonian (5.4.8) with a DEIM-based strategy to overcome this computational burden.
The DEIM approach is a discrete variant of the empirical interpolation method (EIM) introduced
in [21] to approximate nonlinear functions via a combination of projection and interpolation.
DEIM constructs carefully selected interpolation indices to specify an interpolation-based projec-
tion so that the complexity of evaluating the nonlinear term becomes proportional to the (small)
number of selected spatial indices, as seen in Section 1.5.
The application of the classical DEIM procedure for the hyper-reduction of the nonlinear Hamil-
tonian gradient (5.3.7) is challenged by several factors. As stated at the beginning of the Section,
applying the DEIM interpolation directly to the right-hand side of the coefficients evolution
equations arising from the dynamic reduced basis approach, would not result in a structure-
preserving approximation. Moreover, the classical DEIM algorithm hinges on the availability of
snapshots of the full model nonlinear operator of interest collected in the offline phase. In our
dynamical model order reduction approach, there is no offline phase and, therefore, snapshots are
not available.
We consider the Hamiltonian splitting in (5.3.4), and the approximation of the reduced electric
energy (5.3.5) resulting from DMD, namely

EDMD
U,i (Zi(t), t) :=

m−1
p

2 M>q Λ0(Xi
r(t))ΦiDMD(t), ∀i ∈ Sp, ∀ t ∈ Tτ ,

where Φi
DMD is defined in (5.4.7). Approximating directly the vector ∇EDMD

U,i by a DEIM
interpolation would not preserve the geometric structure of the problem because it is not possible
to define explicitly Hamiltonian gradient from the interpolated vector field. We propose a DEIM
approximation of the reduced electric energy via hyper-reduction of the term Λ0(Xi

r(t)) ∈ RN×Nx ,
which otherwise would require the evaluation of the finite element basis functions at each particle
position.
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5.4 Efficient treatment of nonlinear terms

Let us introduce the function Ni(Xi
r(t), t) := Λ0(Xi

r(t))φiDMD(t) ∈ RN ; approximated using a
DEIM approach in each temporal interval Tτ as follows. First, we consider snapshots of the
nonlinear term associated with the electric potential φ (5.2.5) at p∗ instances of the parameter
and over a temporal window of length T + 1. The snapshot matrix Y ∈ RN×p

∗(T+1) is defined as

Y =
[
Y1 Y2 · · · Yp∗

]
, Yi :=

[
Λ0(Xi

r(tτ−T−1))Φiτ−T−1 · · · Λ0(Xi
r(tτ−1))φiτ−1

]
.

(5.4.9)

Note that the terms Λ0(Xi
r(ττ−j−1)) and φiτ−j−1, for i ∈ Γ∗h and j = 0, . . . , T , are available

from the evolution equation (5.3.8) for the reduced basis solved at previous time steps. The
DEIM basis matrix Ψτ ∈ RN×nd is obtained by taking the first nd left singular vectors of the
snapshot matrix Y, where the value nd is fixed at the beginning of the simulation and might
differ for different problems. We will comment on this in the numerical experiments in Section 5.5.
Denoting with Pτ ∈ RN×nd the matrix corresponding to the DEIM indices obtained as described
above, the nonlinear term Ni(Xi

r(t), t) is approximated by

Ψ>τ (P>τ Ψτ )−1P>τ Ni(Xi
r(t), t), ∀ i ∈ Sp, ∀ t ∈ Tτ .

Observe that, although the basis Ψτ is constructed from the parameter subsample Γ∗h, the
nonlinear term Ni is approximated by its DEIM projection onto the DEIM space for all instances
of the parameter, i.e., for all i ∈ Sp.
To reduce the computational burden associated with the computation of the DEIM sampling
points Pτ in each temporal interval Tτ , we follow an update strategy similar to the one proposed
in [196]. All the interpolation indices in the set IDEIM are computed using the standard DEIM
greedy method; not at all time steps but only every kDEIM > 1 time steps. In other temporal
intervals, we proceed as follows. Assume we have computed the set of DEIM indices Iτ−1

DEIM in
the temporal interval Tτ−1, then, in the following interval Tτ , we update only the indices in the
subset I∗ ⊂ Iτ−1

DEIM of cardinality nDEIM given by

I∗ = argmax
I⊂Iτ−1

DEIM,

dim(I)=nDEIM

∑
k∈I

(ψτk)>ψτ−1
k , (5.4.10)

where ψτk denotes the k-th vector of the DEIM basis Ψτ at time tτ . The remaining nd − nDEIM
indices in Iτ−1

DEIM\I∗ are inherited by IτDEIM. The rationale for the choice of I∗ is to only update
the indices associated with the DEIM basis vectors at tτ−1 that have undergone the largest
rotations in the DEIM basis update from Ψτ−1 to Ψτ .
The resulting approximate reduced Hamiltonian, associated with the parameter ηi ∈ Γh, reads

HDD
U,i (Zi(t), t) = 1

2V
i
r (t)>V ir (t)+

m−1
p

2 M>q Ψτ (P>τ Ψτ )−1P>τ Λ0(Xi
r(t))φiDMD(t), ∀i ∈ Sp, ∀t ∈ Tτ .

(5.4.11)
Observe that the multiplication of the matrix Λ0(Xi

r), of the finite element basis functions
evaluated at the particles’ position, by the DEIM sampling matrix P>τ , corresponds to evaluating
the finite element basis functions only on a subset of nd � N particles. Hence, this operation
represents a substantial reduction in the number of particles.
The computational cost of the DEIM algorithm can be summarized as follows. The computation
of the snapshot matrix in (5.4.9) only involves the multiplications of the terms Λ0(Xi

r(tτ−j−1))
and φiτ−j−1, for i ∈ Γ∗h and j = 0, . . . , T . Indeed, since these terms are available from the solution
of the reduced basis evolution at previous time steps, there is no cost associated with their
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assembly, at least at this stage of the proposed model order reduction algorithm. The matrix-
matrix multiplications require O(Np∗Tc), where p∗ is the dimension of the subset of sampling
parameters, T is the length of the sampling window for the snapshots, and c is a mild constant
that depends only on the support of the finite element basis functions. The truncated SVD
decomposition of the snapshot matrix Y ∈ RN×p

∗(T+1) has arithmetic complexity O(NpTnd),
where nd is the number of DEIM modes. The computational cost required to assemble the
interpolation matrix Pτ ∈ RN×nd using [57] only depends on nd. This cost is further reduced
by updating the indices according to the strategy described above and inspired by the adaptive
sampling of [196]. Hence, the leading computational cost of the DEIM algorithm is O(Np∗Td).

5.4.3 DMD-DEIM reduced dynamics and computational complexity

From (5.4.11), the Hamiltonian gradient GpH(U,Zi) in (5.3.6) is approximated as

GDD
H (U,Zi, t) := ∇UZiHDD

U,i (Zi(t), t) =
(
m−1
p diag

(
∇Λ0(Xi

r(t))φiDMD(t)
)
Pτ (P>τ Ψτ )−>Ψ>τ Mq

V ir (t)

)
,

(5.4.12)
for all i ∈ Sp, and t ∈ Tτ . Similarly, the approximation of the gradient of the reduced Hamiltonian
gpH(U,Zi) reads

gDD
H (U,Zi, t) = U(t)>GDD

H (U,Zi, t) = ∇ZiHDD
U,i (Zi(t), t)

= UV (t)>V ir (t) +m−1
p UX(t)>diag

(
∇Λ0(Xi

r(t))φiDMD(t)
)
Pτ (P>τ Ψτ )−>Ψ>τ Mq,

(5.4.13)
for all i ∈ Sp, and t ∈ Tτ .

The reduced dynamical system (5.3.8) is approximated by replacing the gradient of the reduced
Hamiltonian gpH(U,Zi) ∈ R2N with its DMD-DEIM approximation gDD

H (U,Zi, t) from (5.4.13) in
the evolution equations of the expansion coefficients. The DMD-DEIM reduced dynamics reads

Ż(t) = J2ng
DD
H , in T ,

U̇(t) = (I2N − UU>)(J2NG
p∗

H (U,Z)Z>−Gp
∗

H (U,Z)Z>J>2n)S(Z)−1, in T ,
U(t0)Z(t0) = U0Z0,

(5.4.14a)

(5.4.14b)
(5.4.14c)

Note that this approximate reduced model retains the geometric structure of the full model.
We analyze the computational cost to assemble and evaluate the right hand side of the DMD-
DEIM reduced model (5.4.14) at each time instance. We then compare the results with the
ones at the beginning of Section 5.4.1 corresponding to the reduced model. The evolution of
the reduced basis requires O(Nnp∗) +O(N2

xp
∗) +O(Np∗c) +O(Nn2) +O(n2p∗) flops owing to

the parameter sampling discussed in Section 5.4.1. This cost also includes the assembly of the
quantities Λ0(Xi

r) and φi needed in the DMD and DEIM algorithms. The computational cost
required to assemble and evaluate the velocity field of the flow characterizing the evolution of
the coefficients reduces to the cost of the evaluation of the gradient (5.4.13) of the DMD-DEIM
Hamiltonian at each time instant t. This includes:

(1) The cost to compute the linear part U>V Vr of (5.4.13), for all instances of the parameter
in Γh, is O(Nn2) +O(pn2). Note that the cost O(Nn2) required to assemble the matrix
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U>V UV is performed once per stage of the RK time integrator, while the matrix-matrix
product (U>V UV )Z, at cost O(pn2), has to be performed, at every RK stage, and for each
iteration of the nonlinear solver.

(2) The cost to compute the DMD approximation of the electric potential φiDMD ∈ RNx , for
any i ∈ Sp, is O(Nxp∗Trτ ) + O(Nxrτp), as shown in Section 5.4.2. This cost is linear in
Nx, and does not depend on the number N of particles. The evaluation of φiDMD, that
requires O(Nxrτp) flops, needs to be performed at each stage of the RK scheme and at
each iteration of the nonlinear solver. The other cost O(Nxp∗Trτ ) is accounted for once
per time step.

(3) The cost to run the DEIM algorithm is O(Np∗Td) +O(Np∗Tc), as described in Section
5.4.2. The matrix-matrix multiplication (P>τ Ψτ )−>Ψ>τ Mq costs O(Nd) + O(d3). These
operations are performed once per time step.

(4) The computation of the nonlinear time-dependent part of (5.4.13) for all parameters
ηi ∈ Γh, namely U>Xdiag

(
∇Λ0(Xi

r(t))φiDMD(t)
)
Pτ , requires O(pdn) + O(pdc) operations.

This includes the cost of the matrix-matrix multiplications and the cost O(pdc) to assemble
∇Λ0(Xi

r) for d particles.

To summarize, the DMD-DEIM approximation allows a complete separation of the costs involving
the number N of particles and the number p of parameters, both potentially large. Once for each
time interval Tτ , the algorithm requires O(Np∗Td) +O(Nn2) operations. These are shared by
all parameters, resulting in a computational cost independent of the size p of the parameter set
Γh, but only dependent on the number of parameter subsamples p∗. The arithmetic complexity
of the parameter-dependent computations is O(pn2) +O(Nxrτp). These need to be performed
at each RK stage and nonlinear iteration, but their computational cost is independent of the
number of particles N .

5.5 Numerical experiments
For the numerical time integration of the DMD-DEIM reduced dynamics (5.4.14), we adopt the
partitioned RK method of order 2 proposed in [128] and described in Section 4.3. The idea is to
combine a symplectic temporal integrator for the evolution (5.4.14a) of the expansion coefficient,
with a time discretization of the basis evolution (5.4.14b) able to preserve the ortho-symplectic
constraint. For the latter, we adopt the tangent method proposed in [189], summarized next.
In each temporal sub-interval Tτ = (tτ−1, tτ ], given the approximate reduced basis Uτ−1, the
method constructs a local retraction Rτ−1 from the tangent space TUτ−1U into U so that
U(t) = Rτ−1(ξ(t)) for some ξ in the tangent space at Uτ−1. For the computation of Uτ , the idea
is to evolve ξ(t) in the tangent space and then recover U via the retraction. The reduced problem
(5.4.14) in each temporal sub-interval Tτ is re-written in terms of the variable Z(t) and ξ(t) as:
Given Zτ−1 and ξτ−1 = 0, find Z(t) and ξ(t) such that Ż(t) = J2n g

DD
H

(
Rτ−1(ξ(t)), Z(t), t

)
, in Tτ ,

ξ̇(t) = Y(ξ(t), Z(t)), in Tτ .

(5.5.1a)

(5.5.1b)

The velocity field Y : TUτ−1U × Z → R2N×2n, describing the local flow on the tangent space at
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Uτ−1, is

Y(ξ, Z) := −Uτ−1(R>τ−1(ξ)Uτ−1+I2n)−1(Rτ−1(ξ)+Uτ−1)>Υ(ξ, Z)+Υ(ξ, Z)−Uτ−1Υ>(ξ, Z)Uτ−1,

where Υ(ξ, Z) is given by

Υ(ξ, Z) :=
(

2X (Rτ−1(ξ), Z)− (WU>τ−1 − Uτ−1W
>)X (Rτ−1(ξ), Z)

)
(U>τ−1Rτ−1(ξ) + I2n)−1,

with 2W := (2I2N − Uτ−1U
>
τ−1)ξ and X : R2N×2n ×Z → R2N×2n being the velocity field of the

approximate basis evolution in (5.4.14b), i.e.

X (U,Z) := (I2N − UU>)
(
J2NG

p∗

HZ
>−Gp

∗

HZ
>J>2n

)
(ZZ> + J>2nZZ

>J2n)−1.

The retraction is defined according to [189] as Rτ−1(ξ) = cay(WU>τ−1 − Uτ−1W
>)Uτ−1 where

cay denotes the Cayley transform. We refer the reader to [189; 128] for further details regarding
the formal derivation of (5.5.1). Note that, with the algorithm proposed in [189], the computation
of the retraction R and the assembly of the operator Y have arithmetic complexity O(Nn2).
The partitioned Runge-Kutta scheme applied to (5.5.1) reads

Zτ = Zτ−1 + ∆t
ns∑
l=1

blkl,

ξτ = ∆t
ns∑
l=1

b̂lk̂l, Uτ = RUτ−1(ξτ ),

k1 = J2n g
DD
H (Uτ−1, Zτ−1 + ∆t

ns∑
j=1

a1,jkj , tτ−1), k̂1 = X
(
Uτ−1, Zτ−1 + ∆t

ns∑
j=1

a1,jkj

)
,

kl = J2n g
DD
H (RUτ−1

(
∆t

l−1∑
j=1

âl,j k̂j
)
, Zτ−1 + ∆t

ns∑
j=1

al,jkj , tτ−1 + cl∆t) l = 2, . . . , ns,

k̂l = Y
(

∆t
l−1∑
j=1

âl,j k̂j , Zτ−1 + ∆t
ns∑
j=1

al,jkj

)
, l = 2, . . . , ns,

(5.5.2a)

(5.5.2b)

(5.5.2c)

(5.5.2d)

(5.5.2e)

where {al,j , bj , cj} and {âl,j , b̂j} are the set of coefficients corresponding to the implicit midpoint
rule and the explicit midpoint method, respectively, cf. [128]. Note that the Hamiltonian (5.3.1)
is separable, i.e. the gradient of the electric energy determines the evolution of the state variable
and the gradient of the kinetic energy describes the dynamics of the momentum. The separability
of the full-order Hamiltonian is, however, not inherited by the reduced model, as seen in (5.3.4).
This precludes the explicit integration of (5.8). Even though explicit numerical integrators
for non-separable Hamiltonian, based on Hamiltonian extensions, have been recently proposed
[249], further investigations are required to assess their accuracy in the framework of partitioned
Runge-Kutta schemes.
For comparison purposes, in the numerical experiments, we will solve the full-order model
(5.2.7). The Störmer-Verlet scheme [119] is the most popular symplectic integrator for separable
Hamiltonian systems and yields the following system of equations

Xi
τ = Xi

τ−1 + ∆τ
(
V iτ−1 + ∆t

2 Eh(Xi
τ−1; ηi)

)
,

V iτ = V iτ−1 + ∆t
2
(
Eh(Xi

τ−1; ηi) + Eh(Xi
τ ; ηi)

)
,

(5.5.3a)

(5.5.3b)
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to be solved for each of the p parameters ηi ∈ Γh. Here Eh denotes the approximate electric
field (up to constants), i.e. Eh(Xi

τ ; ηi) = −m−1
p diag(Mq)∇Λ0(Xi

τ )L−1Λ0(Xi
τ )Mq.

5.5.1 Implementation and numerical study

In this Section, we apply the proposed structure-preserving dynamical model order reduction
approach to several periodic electrostatic benchmark problems. In all the examples, computational
macro-particles are loaded from a perturbed initial distribution given by

f(0, x, v; η) = fv(v; η)fx(x; η), (5.5.4)

where fv(v; η) is the initial velocity distribution, and fx(x; η) := 1 + α cos(kx) is the initial
perturbation, with k as the wavenumber and α as the amplitude of the perturbation. We have
chosen physical units such that the particle mass and particle charge are normalized to one for
electrons, i.e., q = −1 and m = 1, and the weight w of the computational macro-particles is set
to N−1. To reduce the statistical noise [133; 153] introduced by the particle discretization (5.2.1)
of the initial condition (5.5.4), particles are loaded following a quiet start procedure based on a
quasirandom sequence of samples. In detail, particles’ positions and velocities are initialized by
evaluating the inverse cumulative distribution function of f(0, x, v; η) at the points defined by
the Hammersley sequence [245] of length N . The distribution is defined over Ω := Ωx × Ωv, with
Ωv = [−10, 10] for all numerical experiments and Ωx specified for each example. The quasirandom
Hammersley sequence is characterized by a discrepancy value proportional to N−1, whereas for a
random distribution, the discrepancy is proportional to N−1/2. Since the discrepancy measures
the highest and lowest densities of points in a sequence, the Hammersley sequence guarantees that
the particles are almost evenly distributed, and a significant noise reduction in the electrostatic
field is therefore achieved.
The DMD-DEIM reduced-order model (5.4.14) is numerically integrated in time according to the
scheme described in Section 5.5, resulting in the system of equations in (5.5.2). The full-order
model is solved using the Störmer-Verlet scheme (5.5.3). The same integration step ∆t and
number of time steps Nτ are considered for the numerical integration of the two models. In the
following, we adopt the notation W i

τ := [Xi
τ ;V iτ ] ∈ R2N and Riτ := [Xi

r,τ ;V ir,τ ] = UτZi,τ ∈ R2N to
denote the numerical solutions of the discrete full-order model (5.5.3) and the discrete reduced-
order model (5.5.2) for the parameter ηi at time tτ , respectively.
The reducibility of the considered benchmark tests is studied in terms of the decay of the singular
values of the snapshots matrices

SX =
[
X1

0 · · · Xp
0 · · · X1

Nτ
· · · Xp

Nτ

]
and SV =

[
V 1

0 · · · V p0 · · · V 1
Nτ

· · · V pNτ
]
,

(5.5.5)
collecting the position and velocity components of W i

τ . As in traditional reduced basis methods,
the space spanned by the selected snapshots is assumed to be representative of the solution set.
The behavior of the singular values of SX and SV is also compared to the decay of the singular
values of the local snapshots matrices

SτX =
[
X1
τ · · · Xp

τ

]
and SτV =

[
V 1
τ · · · V pτ

]
, ∀ τ = 1, . . . , Nτ , (5.5.6)

to assess the applicability and the benefits of the dynamical approach over standard global
reduction methods. For the local snapshots matrices, we compute the ordered singular values
{στX,j}j of SτX , for each τ = 1, . . . , Nτ , and normalize them with respect to the maximum singular
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value στX,1. Then, for each j, we consider the average over time, i.e.,
∑
τ σ

τ
X,j , and the maximum

over time, i.e., maxτ στX,j . The same study is carried out for the matrix SτV . A further indicator
of the reducibility properties of the problem is given by the numerical rank of SτX and SτV , defined
as the number of singular values larger than a user-defined threshold tolerance. In the following,
different tolerances are considered.
The accuracy of the DMD-DEIM-ROM is evaluated by computing, for each τ = 1, . . . , Nτ , the
relative errors

εrel,X(tτ ) =
‖SτX −Xr,τ‖F
‖SτX‖F

, and εrel,V (tτ ) =
‖SτV − Vr,τ‖F
‖SτV ‖F

, (5.5.7)

where Xr,τ , Vr,τ ∈ RN×p are the position and velocity components of the discrete reduced-order
solution Rτ = UτZτ ∈ R2N×p, respectively. We study the error in the position and velocity of
the particles separately because they are characterized by different scales of absolute error. The
relative errors (5.5.7) are compared to the target values given by the projection errors

εTarget
rel,X (tτ ) =

∥∥SτX − SτX,cSVD
∥∥
F

‖SτX‖F
, and εTarget

rel,V (tτ ) =
∥∥SτV − SτV,cSVD

∥∥
F

‖SτV ‖F
, (5.5.8)

where SτX,cSVD, S
τ
V,cSVD ∈ RN×p are the position and velocity components of the projection of

the snapshots onto the space spanned by the ortho-symplectic basis of size 2N × 2n obtained
from the Complex SVD [198] of the matrix SτX + iSτV . Since the Complex SVD provides the
ortho-symplectic basis that minimizes the projection error in the snapshots [198, Theorem 4.6],
comparing (5.5.7) and (5.5.8) allows to test the approximability properties of the reduced basis
constructed in the dynamical approach.
Moreover, we analyze the evolution of the electric field energy (5.3.2) for the reduced-order
approximation, i.e., E(Xi

r,τ ; ηi), and for the full-order solution, i.e., E(Xi
τ ; ηi), for each instance

ηi of the parameter. This term gives information of the macroscopic behavior of the plasma, and
it is also the one affected by more levels of approximation.
Finally, the efficiency of the proposed approach is investigated by comparing the running times
required for the integration over a single time step of the fully-discrete DMD-DEIM reduced
model (5.5.2) and of the discrete full-order model (5.5.3). The running time for the full model
is obtained by summing the times required for each instance of the parameter ηi ∈ Γh. The
comparison focuses on the scalability in the approximation of parametric problems as the size
p of the parameter set increases, a typical scenario in a multi-query context. To compare the
efficiency of the different methods, we analyze the runtime required for integration over a single
time interval for all parameter values considered. The values reported were obtained as the
average of the runtimes obtained in the first 25 time intervals. For the dynamical reduced basis
method, we also analyze separately the contributions to the computational cost due to the basis
evolution (5.8)-(5.5.2e) and to the coefficients evolution (5.8)-(5.5.2c)-(5.5.2d), in line with the
theoretical findings of Section 5.4.3.
In the construction of the DMD-DEIM reduced model, we consider a tolerance equal to 10−5 in
the computation of the DMD modes in Algorithm 6. Moreover, the nonlinear system, (5.5.2c)
and (5.5.2d), describing the evolution of the increments kl, l = 1, . . . , ns, is solved using the
fixed point iteration method. As a stopping criterion for the nonlinear solver, we check when
the relative norm of the update to kl is smaller than the threshold value 10−9. All numerical
simulations are performed using Matlab on computer nodes with Intel Xeon E5-2643 (3.40GHz).
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Figure 5.1: LD: Initial positions and velocity distributions for selected values of the parameter in
Γh (a)− (b). Exponential time decay of the electrostatic energy E(Xi

τ ; ηi) obtained from the full
model solution, for selected values of ηi in Γh (c) . Since not all parameters in Γh are reported, the
black lines in each subplot are used to mark the region where the plotted quantity is contained,
for any value of the parameter in Γh.

5.5.2 Weak Landau damping of 1D Langmuir waves

The first application we consider is the study of the damped propagation of small amplitude
plasma waves, also known as Landau damping (LD). The resonance between physical particles
and the propagating wave generates damping of the electric field energy, without particle collisions.
This process is used in particle accelerators to prevent coherent beams oscillations that could
cause potential instabilities [126]. The initial condition is given by (5.5.4) with the velocity
distribution function

fv(v; η) = 1√
2πσ

exp
(
− v2

2σ2

)
, (5.5.9)

where the amplitude of the perturbation α and the standard deviation σ of the velocity Maxwellian
are the study parameters η = (α, σ), with η ∈ Γ = [0.03, 0.06] × [0.8, 1], and the perturbation
wavenumber k is fixed to 0.5. Following the sampling procedure described in Section 5.5.1, we
solve the Landau damping problem for p = 300 different realizations of the parameter η. In
Figure 5.1(a) and 5.1(b) the initial position and velocity distributions are shown for several
of the selected parameter values. We consider periodic boundary conditions on the physical
space domain Ωx :=

(
0, 2π

k

)
with a uniform neutralizing background charge. For the numerical

solution of the full-order model, we use Nx = 32 piecewise linear basis for the Poisson solver, and
N = 5× 104 macro-particles for the approximation of the solution density. A uniform time step
∆t = 0.0025 has been adopted for the evolution of particles’ positions and velocities over the time
interval T = (0, 20].
In Figure 5.2, the decay of the singular values of the global snapshots matrices SX and SV ,
normalized with respect to the corresponding largest singular value, are compared to the maximum
and averages over τ of the normalized singular values of the local counterparts SτX and SτV ,
computed as described in Section 5.5.1. Concerning the particles position, although a plateau of
the singular values can be seen for both global and local matrix, the initial decay is sharper in
the local case with singular values that are two orders of magnitude smaller than in the global
case, suggesting a more efficient representation using a local low-rank model. This gap increases
when considering the particles velocity, suggesting that a global reduced basis approach would
not be effective in reducing the computational cost of the Landau damping simulation. In Figure
5.3, we report the numerical rank of the matrices SτX and SτV as a function of τ and for different
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Figure 5.3: LD: Numerical rank of SτX in (a) and SτV in (b), as a function of τ . Different colors
are associated with different values of the threshold, according to the legend.

values of the threshold. The numerical rank remains constant and below 4 for tolerances larger
than 10−3, grows to 8 for a tolerance of 10−4, and reaches a maximum of 13, for positions and 32
for velocities, when the tolerance is set to 10−5. The increase in the solution complexity over
time is partially due to the accumulation of statistical noise associated with the discretization
of f(t, x, v; η) by macro-particles. In Figure 5.4, in support of this conclusion, we note that as
the average number of particles per cell increases during the initial particle loading phase, the
numerical ranks of SτX and SτV , at fixed tolerance, decrease. This behavior of the numerical rank
suggests that evolving the basis, but keeping the rank of the approximation constant, is sufficient
to accurately approximate the solution of the full-order model, at least in this test case.
Concerning the reduced dynamical model, we consider 2n = 4 as the reduced manifold dimension.
For the DEIM reduction described in Section 5.4.2, d = 32 interpolation points have been used to
reduce the approximation error, and nDEIM = 12 DEIM indices are updated at each time step, for
the sake of efficiency, according to (5.4.10). All DEIM indices are recomputed every kDEIM = 3
time steps.
For this test case, we include a numerical study of the evolution of the approximation errors
εrel,X and εrel,V in (5.5.7) under variations of the size p∗ of the subset of the parameters used to
evolve the basis effectively, according to Section 5.4.2, and the length T + 1 of the time window
adopted to harvest the self-consistent electric potential Φ(Xi

r) for the DMD extrapolation step,
as described in Section 5.4.2. In particular, we consider p∗ ∈ {8, 12, 16} and T ∈ {3, 5} and the
results are shown in Figure 5.5. In all tested combinations of T and p∗, the error is proportional
to the best approximation error, both in position and velocity. As p∗ increases, both errors
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using the Complex SVD algorithm, as described in Section 5.5.1.
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(a) the full-order model; (b) the dynamical reduced model with T = 3 and p∗ = 16; and (c) the
dynamical reduced model with T = 5 and p∗ = 8.

decrease: this is expected since a more refined sampling of the subset Γ∗h results in a more
accurate representation of the dynamics of evolution of the bases in (5.4.14b). We also note that,
for p∗ = 16, the error εrel,V is, at several time instances, smaller than the target value. This
performance can be explained by the fact that the optimality of the Complex SVD algorithm
concerns the projection of the entire state [SτX SτV ] and not of its components individually. We
observe that the DMD window length T + 1 has no impact on the error when p∗ is large, and
a small accuracy degradation is even registered for p∗ = 8 when T = 5 is chosen over T = 3.
The optimal choice of T remains an open problem: as pointed out in [80], it should capture
slow and fast scales of the local dynamics, but a rigorous optimization strategy would require
a study of the multi-scale properties of the solution to the Vlasov–Poisson equation for each of
the parameter realization considered. However, we stress that the results are relatively robust
concerning this parameter.
Landau theory [27] establishes that, for small perturbations of the initial analytical data of the
form (5.5.9), the electric energy E(Xi; ηi) decays (in time) exponentially with a damping factor
that depends on the standard deviation σ of the Maxwellian distribution fv but is independent
of the amplitude of the perturbation α. As can be seen from Figure 5.6, this dependence of the
damping rate on the considered parameters is captured by the reduced model numerical solution.

In Figure 5.7(a), we report the evolution of the relative error of the Hamiltonian (5.3.1) computed
in the reduced and full model solutions, i.e.

‖H([Xτ , Vτ ])−H(UτZτ )‖2
‖H([Xτ , Vτ ])‖2

, ∀ τ = 1, . . . , Nτ . (5.5.10)

It is observed that the error is bounded and grows only slowly over time. The reason why the
Hamiltonian is not exactly preserved is twofold: the numerical temporal integrator is symplectic
but not Hamiltonian-preserving, and the reduced model possesses a Hamiltonian structure but
with an approximate Hamiltonian function. To better understand these two sources of errors, we
consider the error in the Hamiltonian at two consecutive time instances of the solution. For the
DMD-DEIM reduced model discretized with the partitioned Runge–Kutta method described in
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Figure 5.7: LD: Evolution of the relative error (5.5.10) of the Hamiltonian (a). Evolution of
the components ∆Hτ−1→τ , ∆HZτ−1→τ and ∆HZ,DDτ−1→τ of the error bound (5.5.11), (5.5.12) in the
local conservation of the reduced Hamiltonian (b). The values of the hyper-parameters are set to
p∗ = 12 and T = 3, respectively.

Section 5.5, it holds

∆Hτ−1→τ := ‖H(UτZτ )−H(Uτ−1Zτ−1)‖2 ≤
∥∥∥H(UτZτ )−H(Uτ− 1

2
Zτ )
∥∥∥

2

+
∥∥∥H(Uτ− 1

2
Zτ−1)−H(Uτ−1Zτ−1)

∥∥∥
2

+
∥∥∥H(Uτ− 1

2
Zτ )−H(Uτ− 1

2
Zτ−1)

∥∥∥
2
.

(5.5.11a)

(5.5.11b)

(5.5.11c)

The first two terms (5.5.11a) and (5.5.11b) depend on the numerical time integration of the basis
equation (5.8), while the last term (5.5.11c) also depends on the DMD-DEIM approximation of
the Hamiltonian. In particular, it holds

∆HZτ−1→τ :=
∥∥∥H(Uτ− 1

2
Zτ )−H(Uτ− 1

2
Zτ−1)

∥∥∥
2
≤
∥∥∥H(Uτ− 1

2
Zτ )−HDD

U
τ− 1

2
(Zτ , tτ )

∥∥∥
2

+
∥∥∥HDD

U
τ− 1

2
(Zτ−1, tτ−1)−H(Uτ− 1

2
Zτ−1)

∥∥∥
2
,

+
∥∥∥HDD

U
τ− 1

2
(Zτ , tτ )−HDD

U
τ− 1

2
(Zτ−1, tτ−1)

∥∥∥
2
,

(5.5.12a)

(5.5.12b)

(5.5.12c)

where HDD
U is defined in (5.4.11). The first two terms (5.5.12a) and (5.5.12b) depend on the

approximation of the Hamiltonian introduced by the DMD-DEIM method, while the last term
(5.5.12c), that we dub ∆HZ,DD

τ−1→τ , in only associated with the numerical time integrator of the
coefficient equation. In Figure 5.7(b) we report the time evolution of ∆Hτ−1→τ , ∆HZτ−1→τ
and ∆HZ,DD

τ−1→τ , for the hyper-parameters T = 3 and p∗ = 12. We can observe that the DMD-
DEIM method provides a good approximation of the Hamiltonian (dashed line). To study the
algorithm efficiency, we investigate the runtime as a function of the number p of tested parameters.
The proposed approach outperforms the full-order solver, as shown in Figure 5.8(a), and the
gap widens as the value of p increases. Depending on the choice of hyper-parameters of the
reduced model, the algorithm speed-up varies between 1.9 and 3.3 when p = 30 and between
46 and 71 when p = 1000. For p ≥ 2000, the evolution of the expansion coefficients (5.4.14a)
becomes computationally more demanding than the evolution of the reduced basis (5.4.14b),
as shown in Figure 5.8(b), and the overall computational cost of the reduced model begins to
grow approximately linearly as a function of p. Thus, for values of p larger than 2000, the ratio
between the time required to integrate the full model and the time to integrate the reduced
model remains constant, with speed-ups ranging between 141 and 183, depending on the values
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Figure 5.8: LD: Comparison of the runtime (in seconds) between the full-order solver and the
dynamical reduced basis approach for different hyper-parameter configurations, as function of
the parameter sample size p (a). Separation of contributions to the running time of the reduced
model due to basis evolution (dashed lines) and coefficients evolution (continuous line) (b) .

of the hyper-parameters. We also remark that the computational cost to evolve the reduced basis
(dashed lines in Figure 5.8(b)) is independent of p because it only depends on the number p∗ of
subsamples.

5.5.3 Nonlinear Landau damping of 1D Langmuir waves

For larger initial perturbation amplitudes, the linear theory does not hold and, after an initial
shearing in phase space, leading to Landau damping, the damping is halted, and strong particle-
trapping vortices are formed, leading to a growth of the system’s potential energy [169]. To simulate
this scenario, starting from the same initial condition (5.5.9) and periodic domain Ωx :=

(
0, 2π

k

)
of the previous test, we take the parameter η = [α, σ] in the domain Γ = [0.46, 0.5] × [0.96, 1]
and consider p = 300 different realizations. In Figure 5.9, we report the behavior of the initial
velocity and position distributions along with the evolution in time of the electric field energy.
The full-order simulations are conducted using Nx = 64 degrees of freedom for the discretization
of the Laplacian operator, and N = 105 particles for the approximation of the distribution
function. We consider the time interval T = (0, 40], with ∆t = 0.002 and the numerical time
integrators described in Section 5.5.
The decay of the singular values of the global and local snapshot matrices, defined in (5.5.6)

and (5.5.5), is shown in Figure 5.10. Compared to the linear Landau damping, the nonlinear test
case is unsuitable for reduction with a global reduced basis approach both in terms of particles
position and velocity. Regarding reducibility via a local basis in time, we note that although the
problem is more challenging than the weak Landau damping, the normalized singular values of
SτX and SτV reach 3.9 · 10−4 and 2.2× 10−3, respectively, at the sixth singular value, making the
problem amenable to local reduction.
Similar conclusions are drawn from the behavior of the numerical rank, shown in Figure 5.11 as
a function of time, from which we also note that the problem becomes significantly more complex
in the final part of the time interval considered, corresponding to the formation of the particle
attractor vortices and as the nonlinear contribution to the dynamics of the particles becomes
dominant.
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Figure 5.9: NLD: Initial position and velocity distributions for selected values of the parameter in
Γh (a)− (b). Exponential time decay of the electrostatic energy E(Xi

τ ; ηi) obtained from the full
model solution, for selected values of ηi in Γh (c). Since not all parameters in Γh are reported, the
black lines in each subplot are used to mark the region where the plotted quantity is contained,
for any value of the parameter in Γh.
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Figure 5.12: NLD: Evolution of the position (a) and velocity (b) relative errors, as defined in
(5.5.7), for different choices of p∗ and T . These errors are compared to the target values given
by the position component εTarget

rel,X and the velocity component εTarget
rel,V of the relative projection

errors defined in (5.5.8). The target reduced basis has dimension 6 and is computed, for each
time step, using the Complex SVD algorithm, as discussed in 5.5.1.

To reduce this test problem, we consider a symplectic dynamical basis of dimension 2n = 6 and
the same number d = 32 of DEIM interpolatory indices as used for the weak Landau damping.
In addition, a subset of p∗ = 8 parameters, taken according to Section 5.4.1, is considered for the
efficient evolution of the basis. The relative errors for the different choices of the DMD windows
length T + 1 and frequency kDEIM are shown in Figure 5.12: the error does not deteriorate over
time for any of the chosen hyper-parameters, and the increase of kDEIM only marginally impacts
the performances of the reduced model.
In Figure 5.13, we plot the distribution function fh(t, x, v; η) reconstructed from the macro-

particles for the parameter η = (0.4912, 0.9889). The numerical solution of the approximate
reduced model is in good agreement with the full model solution, and the various dynamical
stages, from the initial shearing to the development of the two particle-trapping vortices, are
correctly captured. Furthermore, although tiny artifacts in the vortex structure can be observed
in the case of hyper-parameters T = 3 and kDEIM = 3 at t = 40, this is not the case for the choice
T = 5 and kDEIM = 1.
To better understand the macroscopic effects of the order reduction on the numerical solution,
we consider, in Figure 5.14, the evolution of the electric field energy for different realizations of
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Figure 5.13: NLD: Numerical distribution function for η = (0.4912, 09889) at different times
obtained from (a) the full-order model; (b) the dynamical reduced model with T = 3 and
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the perturbed Maxwellian distribution, particles with different energies oscillate with different
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Figure 5.14: NLD: Evolution of the electric field energy E(· ; ηi). The energy is evaluated at the
positions Xi

τ computed using the high-fidelity solver and at the positions Xi
r,τ computed using

the reduced model, for different values ηi of the parameter.

the parameter. The reduced model solution gives accurate results, both in terms of the amplitude
and frequency of the peaks. As a further analysis, in Figure 5.16, we report the exponential
damping rate of E(Xi

r,τ ; ηi), which is obtained during the initial phase of Landau damping,
and the exponential growth rate of E(Xi

r,τ ; ηi) that characterizes the subsequent formation of
particle-trapping vortices in phase space. For ηi = (0.5, 1), the values obtained are around −0.287
and 0.078, which is in agreement with the literature [152]. We show in Figure 5.15 the peaks
of E(Xi

r,τ ) that have been fitted for the calculations of the damping and growth rates. Finally,
in Figure 5.17, we compare the running times of the full-order solver and the reduced-order
solver. For this numerical simulation, the choice of the hyper-parameters T and kDEIM has a mild
impact on the computational cost required to advance the reduced state of a single time step.
Once the cost to integrate the evolution of the coefficients has exceeded the cost to integrate
the basis equation, the most computationally expensive choice of hyper-parameters (i.e., T = 5
and kDEIM = 1) is only around 1.35 times more demanding than the computationally cheapest
choice (i.e., T = 3 and kDEIM = 3). This result is in agreement with the analysis of the arithmetic
complexity of the reduction algorithm presented in Section 5.4.3: for large p, the dominant cost
has order O(pn2) + O(Nxrτp) + O(pndn) + O(pndc), which depends on the hyper-parameters
only via the number rτ of retained DMD eigenvalues. Although the value rτ might be different
for different choices of the window length T , this does not significantly affect the computational
cost of the algorithm.
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Figure 5.17: NLD: (a) Comparison of the runtime (in seconds) between the full-order solver and
the dynamical reduced basis approach for different hyper-parameter configurations, as a function
of the parameter sample size p. (b) Separation of contributions to the running time of the reduced
model due to basis evolution (5.8) (dashed lines) and coefficient evolution (5.8) (continuous line).

5.5.4 Two-stream instability

The two-stream instability is a well-known instability in plasma physics generated by two
counterstreaming beams, where the kinetic energy of particles excites a plasma wave and,
consequently, transfers to electric potential energy [10]. In this study, we focus on the temporal
interval that includes the first two stages in which the evolution of electric field energy is distinct,
namely the initial, short transient stage, and the subsequent growth stage. For the latter stage,
the dynamic is defined by the interplay between harmonics characterized by different growth
rates. We consider the spatial domain Ωx := (0, 2π

k ) with periodic boundary conditions. The
initial velocity distribution is given by

fv(v; η) = 1
2
√

2πσ
exp

(
− (v − v0)2

2σ2

)
+ 1

2
√

2πσ
exp

(
− (v + v0)2

2σ2

)
, (5.5.13)

where v0 = 3 is the initial velocity displacement in phase space. The wavenumber k of the
perturbation is set to 0.2, and the parameter η = (σ, α) varies in the domain Γ = [0.009, 0.011]×
[0.98, 1.02] discretized using p = 300 samples. Figures 5.18(a)-(b) show the initial parametric
distributions of position and velocity. The evolution of electric energy is shown in Figure 5.18(c).
We note that the ratio between the maximum and the minimum of E(Xi

r,τ ; ηi) under variations
of the parameter ηi is slightly larger than 2, indicating a certain variability of the solution in the
range of parameters considered.
The distribution function f(t, x, v; η) is approximated with N = 1.5 · 105 computational macro-
particles, and Nx = 64 piecewise linear functions have been adopted to discretize the Poisson
equation. We solve the discrete systems (5.5.2) and (5.5.3) with a time step ∆t = 0.0025 over
the temporal domain T = (0, 20].
Compared to previous tests, there is a dissimilarity between the decays of the singular values of
the snapshots matrices for positions and velocities. The decay of the singular values of the SX
and SτX is rather fast, and the singular values of the global snapshot matrix become smaller than
10−3 after the fourteenth singular value. On the contrary, the decay of the singular values of the
snapshots matrices associated with the velocity of the particles suggests that a local basis might
be more effective in approximating the evolution of the particles’ velocity.
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Figure 5.18: TSI: (a)− (b) Initial position and velocity distributions for selected values of the
parameter in Γh. (c) Exponential time decay of the electrostatic energy E(Xi

τ ; ηi) obtained from
the full model solution, for selected values of ηi in Γh. Since not all parameters in Γh are reported,
the black lines in each subplot are used to mark the region where the plotted quantity is contained,
for any value of the parameter in Γh.
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Figure 5.19: TSI: Singular values of the global snapshots matrices SX and SV compared to the
maximum and time average of the singular values of the local trajectories matrices SτX and SτV .
We study position (a) and velocity (b) variables separately. The singular values are normalized
using the largest singular value for each case.

A similar conclusion can be drawn from the evolution of the numerical ranks of SτX and SτV , shown
in Figures 5.20(a)-(b). In Figure 5.20(c), we also report the numerical rank of the self-consistent
electric potential φ(Xτ

i ) obtained from the full model at different time instants tτ . It can be
observed that the electric potential is low-rank throughout the simulation, which justifies the use
of hyper-reduction strategies, in our case provided by the DMD-DEIM approach, to accelerate
the computation of the nonlinearity in the Vlasov–Poisson equation. This speedup is ensured
on the entire time interval since the numerical rank remains, on average, constant over time.
We observe that, in principle, the rank of the hyper-reduced approximation provided by DMD
and DEIM can change over time. As a general consideration, although the electric potential
depends on the particles’ positions, there seems to be no straightforward connection between the
reducibility properties of the sets {Xτ

i }τ and {Φ(Xτ
i )}τ .

In Figure 5.21, the evolution of the errors in the positions and velocities of the particles are
reported: the approximability properties of the dynamical approach are not affected by the choice
of the length T of the DMD window and the frequency kDEIM of full updates of the DEIM indices.
The dominant component of the error is the projection error. The growth in the error can be
explained by the increase in time of the rank of the full model solution. The same growth rate
and the small difference between the relative error for the proposed approach and the relative
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Figure 5.21: TSI: Evolution of the position (a) and velocity (b) relative errors, as defined in
(5.5.7), for different choices of kDEIM and T . These errors are compared to the target values given
by the position component εTarget

rel,X and the velocity component εTarget
rel,V of the relative projection

errors defined in (5.5.8). The target reduced basis has dimension 4 and is computed, for each
time step, using the Complex SVD algorithm, as described in Section 5.5.1.

projection error committed using an optimal ortho-symplectic basis of dimension 2n for both
positions and velocities support the same conclusion. We also stress that the error scales for
the two components are different, as to be expected from the trend of singular values, and the
greater accuracy in approximating the position is not affected by the velocity error. To study
the convergence properties of the proposed scheme in terms of the reduced basis size 2n, we
consider the same test case but in the parametric domain Γ = [0.0075, 0.0125] and with a larger
number N = 5 · 105 of macro-particles. Increasing the size of the parametric domain produces an
increase in the rank of the initial datum, while increasing the number of macro-particles reduces
the statistical noise in the numerical rank that plagues particle simulations. As expected, Figure
5.22 shows a decrease of the error between the reduced and the full-order solution as the size
n of the dynamical reduced basis is increased. The numerical rank of the full model solution,
shown in Figure 5.20, and the error evolution in Figures 5.21 and 5.22 suggest that enlarging the
reduced basis U over time to increase the rank of the reduced model solution may improve the
accuracy. Although a rank-adaptive algorithm has been proposed in [128], its direct application
to the Vlasov–Poisson DMD-DEIM reduced model (5.4.14) would require the solution of a linear
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Figure 5.22: TSI: Evolution of the position (a) and velocity (b) relative errors, as defined in
(5.5.7), for different choices of the reduced basis dimension 2n. The values of the hyper-parameters
kDEIM and T are both set to 3.

system of dimension proportional to the number of particles to determine a candidate vector for
the expansion of U . This cost would limit the computational speed-up obtained in the reduced
model when compared to the full-order model. For this case, the exploration of rank-adaptive
algorithms provides a possible direction for future investigation.
The evolution of the electric energy (5.3.2) is shown in Figure 5.23: the behavior of the electric
energy obtained from the approximate reduced model almost coincides with the full model except
for slight mismatches in the amplitude of the oscillations during the transient phase.
Similar to the two numerical tests on the Landau damping, the proposed dynamical model

order reduction method outperforms, in terms of efficiency, the full-order solver, with speed-ups
reaching 340 for p = 105 parameters, as shown in Figure 5.24.
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Figure 5.23: TSI: Evolution of the electric field energy E(· ; ηi). The energy is evaluated at the
positions Xi

τ computed using the high-fidelity solver and at the positions Xi
r,τ computed using

the reduced model, for different values ηi of the parameter.
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Figure 5.24: TSI: (a) Comparison of the runtime (in seconds) between the full-order solver and
the dynamical reduced basis approach for different hyper-parameter configurations, as function of
the parameter sample size p. (b) Separation of contributions to the running time of the reduced
model due to basis evolution (5.8) (dashed lines) and coefficients evolution (5.8) (continuous line).
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6 Conclusion of Part I

In Chapter 2, we have shown that conservation of nonlinear invariants is not, in general, guaranteed
with conventional model reduction techniques. The violation of such invariants often results
in a qualitatively wrong or unstable reduced system, even when the high-fidelity system is
stable. This is particularly important for fluid flow, where the conservation of the energy as
a nonlinear invariant of the system is crucial for a correct numerical evaluation. However, we
discuss that conservative properties of the skew-symmetric form for fluid flow can naturally be
extended to the reduced system. Conventional RB techniques preserve the skew-symmetry of
differential operator, resulting in the conservation of quadratic invariants at the level of the
reduced system. Furthermore, the reduced system also contains quadratic invariants with respect
to the reduced variables that approximate the invariants of the high-fidelity system. This results
in the construction of a physically meaningful reduced system rather than a mere coupled system
of differential equations.

Chapter 3 provides an overview of model reduction methods targeting Hamiltonian problems,
which lays the basis for the notation and concepts of the approaches proposed in Chapters 4
and 5. The symplectic Galerkin projection has been discussed as a tool to generate a reduced
Hamiltonian approximation of the original dynamics. PSD algorithms used to compute low-order
projection on symplectic spaces have been introduced and compared. Such strategies have been
classified in ortho-symplectic and symplectic procedures, depending on the structure of the
computed RB. A greedy alternative for the generation of ortho-symplectic basis, characterized
by an exponentially fast convergence, has been illustrated as an efficient iterative approach
to overcome the computational cost associated with SVD-based techniques that require a fine
sampling of the solution manifold of the high-dimensional problem. For problems where the
Hamiltonian dynamics is coupled with a dissipative term, structure-preserving reduced models can
be constructed with the symplectic reduction process by resorting to an extended non-dissipative
Hamiltonian reformulation. Finally, we have described RB strategies to reduce problems having
a non-canonical Hamiltonian structure that either enforce properties typical of a symplectic basis
or use canonical symplectic reductions as an intermediate step to preserve the structure of the
original model.

In Chapter 4, we introduce a model order reduction approach for parametrized non-dissipative
problems in their canonical symplectic Hamiltonian formulation. By leveraging the local low-rank
structure, we propose a nonlinear structure-preserving reduced basis method approximating the
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Conclusion of Part I

problem solution with a modal decomposition where both the expansion coefficients and the
reduced basis are evolving in time. Moreover, the dimension of the reduced basis is updated
in time according to an adaptive strategy based on an error indicator. The resulting reduced
models allow to achieve stable and accurate results with small reduced basis even for problems
characterized by a slowly decaying Kolmogorov n-width. The strength is the combination of
the dynamical adaptivity of the reduced basis and the preservation of the geometric structure
underlying key physical properties of the dynamics, illustrated by examples.

In Chapter 5, the nonlinear structure-preserving introduced in Chapter 4 is further adapted
for the model order reduction of parametric particle-based kinetic plasma problems. High
resolution simulations of such problems may require a high number of particles and thus can
become computationally intractable in multi-query scenarios. The proposed method combines
dynamical low-rank approximation where the reduced space changes in time with adaptive
hyper-reduction techniques to efficiently deal with the nonlinear operators. The resulting DMD-
DEIM reduced dynamical system retains the Hamiltonian structure of the full model, provides
good approximations of the solution using only few particles, and can be solved at a reduced
computational cost. Several benchmark plasma models have been used to numerically assess the
performances of the proposed method.

The study of efficient and structure-preserving algorithms for general nonlinear Hamiltonian
vector fields and the development of partitioned Runge–Kutta methods that ensure the exact
preservation of (at least linear and quadratic) invariants are still open problems and provide
interesting directions of investigation. Possible directions of future investigation include the
derivation of partitioned Runge–Kutta schemes that can ensure the preservation of the Hamiltonian
(at least when this is a lower degree polynomial), the study of parameter sampling and reduction
techniques to speedup the computation of the reduced basis, and the development of efficient
error estimators to allow to dynamically adapt the rank of the reduced-order solution.
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The second part of the thesis explores possible advancements of the state of the art in the fields
of modeling and approximation of ROM closures. Novel data-driven approaches based on the
Mori-Zwanzig formalism have been developed and tested on several numerical experiments.

One of the main obstacles to using ROMs in complex applications, apart from the stability
problem addressed in Part I, is the inaccuracy of the critical under-resolved regime. This regime is
encountered when the ROM size is not large enough to capture the dynamics of the FOM target,
resulting in a significant degradation in the accuracy of the approximation. In Part II, we focus
on ROM closures, consisting of additional terms introduced in the reduced dynamics to model
the effect of discarded ROM modes in the under-resolved regime, emphasizing data-driven closure
approaches. Interdependent physical and computational challenges related to the formulation of
ROM closures will also be addressed. In Chapter 7, we discuss the optimal prediction framework
introduced by Chorin as a reinterpretation of the Mori-Zwanzig (MZ) formalism for statistical
mechanics. Starting from the POD modes truncation discussed in Section 1.2, projection operators
onto resolved and unresolved subspaces are used to define a low-dimensional non-Markovian
system that takes the name of generalized Langevin equation. In this system, the effect of
the discarded modes is exactly represented as a convolutional integral known as memory term.
Despite being exact, this additional term is computationally intractable for nonlinear problems,
and this rigorous framework is therefore used as a starting point for developing approximate
closure models. The application of this framework as a practical tool is then tested on several
numerical problems.

In Chapter 8, the shortcomings of traditional methods are addressed by means of machine learning
techniques. Towards efficient model reduction of general problems, this thesis presents a recurrent
neural network (RNN) closure of the parametric POD-Galerkin ROM. Based on the short time
history of the reduced-order solutions, the RNN predicts the memory integral, representing
the unresolved scales’ impact on the resolved scales. A conditioned long short-term memory
(LSTM) network is utilized as the regression model of the memory integral, in which the POD
coefficients at a number of time steps are fed into the LSTM units, and the physical/geometrical
parameters are fed into the initial hidden state of the LSTM. The reduced-order model is
integrated in time using an implicit-explicit (IMEX) Runge-Kutta scheme, in which the memory
term is integrated explicitly, and the remaining right-hand-side term is integrated implicitly to
improve the computational efficiency. Numerical results demonstrate that the RNN closure can
significantly improve the accuracy and efficiency of the POD-Galerkin reduced-order model of
nonlinear problems. The POD-Galerkin ROM with the RNN closure is also shown to provide
accurate predictions, well beyond the time interval of the training data, for several test cases.1

A summary of the results and possible insights for future research for each of the chapters are
provided in Chapter 9.

1In accordance with the Elsevier publishing agreement, parts of this chapter are adapted from [260].
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7 Mori-Zwanzig closure models

In Section 1.3.1, we have seen that the reduced basis is computed, following the POD method,
by the singular value decomposition of the snapshots matrix and that the decay of the singular
values is a good indicator of the quality of the approximation as a function of the size of the
approximating space. The left singular vectors corresponding to the first n singular values can be
interpreted as the spatial structures that best represent the FOM and are taken to assemble the
reduced basis. In the Chapter 4, we pointed out that the quality of the approximation does not
depend only on the size n of the basis, but that this depends on the type of problem and that for
some classes of problems, using a small n leads to inaccurate approximations. We refer to this
setting, where the number n of POD modes is insufficient to capture the problem’s dynamics,
as under-resolved simulation. In the same Chapter, we have seen that using reduced models
that evolve in time represents a possible solution to overcome this problem, limiting the issue of
reducibility of FOM for the entire interval T .
If the under-resolution is not severe, then the projection error introduced with Galerkin’s ansatz
is limited, and the most important features of the FOM solution can potentially be captured.
Despite this, suppressing the interaction between the resolved and unresolved part of the problem
affects the quality of the projection of the solution trajectory, thus worsening the accuracy of the
reduced model for large T . In [111], it is rigorously proven, with arguments similar to those used
in finite element theory, that instabilities and inaccuracies in the approximation are attributable
to Galerkin projections, justifying the use of the Petrov-Galerkin projection. In the context
of Galerkin projections, several approaches, under the name of closure modeling, have been
introduced to approximate the effect of discarded modes on the dynamics of resolved modes.
Traditionally, closure models have been developed in fluid dynamics [5] and are divided into
phenomenological and mathematical models. Although there is overlap between these two groups,
in the former, knowledge about the physics of the problem is leveraged to make assumptions
about the closure term, while filtering and mean-field modeling techniques are used for the latter.
Relevant examples of closure models based on physical principles, particularly eddy viscosity
and Kolmogorov turbulent scales, are mixing-length [15; 201], Smagorinsky [211], and dynamic
SGS [97] ROM model closures. The idea behind these methods, supported theoretically and
numerically even in the case of POD-based reduction, is that the discarded modes correspond
to dissipative scales, and their truncation leads to energy accumulation in the resolved scales
and thus instability. Regarding filtering, we recall the variational multi-scale approach based on
mode ordering introduced in [238; 214]. Based on the similarities between LES and ROM, other
filtering techniques are described in [267; 145].
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This thesis focuses on closure models for type (1.4.2) ROMs based on Mori-Zwanzig formalism
and the memory effect. We cite, in this regard, the work of Stinis [242], Parish, and Duraisamy
[191] for reduced model closure without scale separation in the LES setting and the relationship
between MZ-based closure models and VMS in [193].
This Chapter of the thesis is broken down as follows. In Section 7.1, we analyze how energy
transfers between different POD scales, showing that the local transfer principle holds. Although
this result is not used in the remainder of the thesis, it is important to show it to the reader as an
example of a physical principle used in model closure since it represents the foundational idea of
the variational multi-scale method. In Section 7.2, we introduce the reader to the Mori-Zwanzig
formalism, starting with the linear FOM case and then considering the nonlinear case. Section
7.3 addresses the problem of how to efficiently approximate the closure term, starting with a
study of its kernel. We conclude the Chapter with several numerical experiments showing that
the proposed closure models succeed in improving the accuracy of the reduced model solution
when compared to simple truncation of unresolved modes.

7.1 Example of interaction between different scales: energy
scale identification

The POD method, as a data compression tool, was introduced to identify and study coherent
structures of turbulent flows [165]. Rather than relying on one of the several definitions of coherent
structure [90], according to the optimization problem (1.3.4), POD is based on the principle of
energy maximization. Hence, selecting the first n left singular vectors allows representing the
most energetic scales of the simulated flow.
However, even though unresolved POD modes are not relevant in terms of data compression, they
are vital for the correct representation of the dynamics of the resolved modes over long simulation
intervals. The core of the studies regarding the relation between resolved and unresolved modes
has roots in the dynamics of turbulence fluctuations in the Fourier domain, with the notions of
forward and backward energy cascades and dissipation associated with high order modes. In
the last five decades, following these first theoretical studies, several closure models have been
proposed to address the problem, and they have been grouped under the still fertile field of
turbulence modeling.
The same interest was not shown for POD analysis until recently. Couplet et al. [15] investigated
the transfer of energy between modes in the POD setting numerically, concluding that it was the
same characterizing the exchange between Fourier modes. In particular, one of the main findings
is that the interaction is local between modes, i.e., POD modes interact with modes of similar
scales.
Aubry et. al [15] proposed a modification to the standard POD-Galerkin approximation (1.4.2)
for fluid flows by adding an eddy viscosity-based (EV) additional term to the dynamics of the
reduced model to approximate the impact of the unresolved part of the simulation. Similar and
more sophisticated strategies have been proposed in [202; 201]. Most recent efforts regard the
reuse of traditional (and successful) LES closure models to the POD setting. The main barrier
to the application of these techniques is the treatment of the nonlinear term. Several solutions
have been proposed, either by incorporating the Empirical Interpolation Method (EIM) or the
two-level discretization method [261], used to adapt the Smagorinsky closure models to POD. A
complete discussion of state-of-the-art for POD closure models for turbulent flows is presented in
[262].
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Despite this progress, numerical approximations of the interactions between resolved and unre-
solved POD modes are limited to the scenario of fluid flows. Moreover, most of them are strongly
based on the unidirectionality and locality of the energy transfer, thus preventing its use for
problems characterized by energy back-scattering.
Accounting for the effects of the unresolved modes is essential to determine the component of the
error parallel to the approximating manifold. Indeed, while the orthogonal component depends
on the chosen reduced space, the parallel component is due to unmodeled interactions with
unresolved modes. In this Section, we consider a different approach, not based on the extension
of techniques developed for spectral methods for fluid flows, to obtain a closed model taking into
account the interactions with the unresolved part of the simulation, and hence improving the
accuracy of the traditional POD-Galerkin approximation. Before proceeding with the description
of the formalism used to compute the closure term, we would like to point out that for certain
problems, particularly fluid flows problems, it is possible to have a physical intuition of the
dependencies of the closure term. Consider the incompressible Navier-Stokes equations in 2D

∂

∂t
u+ (u · ∇)u+ σ∆u+∇p = 0,

∆p = −∇ · ((u · ∇)u),
(7.1.1)

with periodic boundary conditions on the domain Ω. The pressure variable is computed as
the solution of the Poisson pressure equation [68], obtained by applying the divergence to the
momentum equation and using the incompressibility condition. For a POD-Galerkin system,
the weak formulation of (7.1.1) using the RB basis {ui}ni=1 as test functions for the momentum
equation is given by(

∂

∂t
u+ (u · ∇)u, ui

)
+ σ

[
D∑
d=1

(
∇ud,∇udi

)]
+ (∇p, ui) = 0, ∀i = 1, . . . ,m, (7.1.2)

where (·, ·) represents the standard inner product on L2(Ω).
Consider the RB ansatz (1.4.1) in the continuous form

u(x, t) ≈
m∑
k=1

zk(t)uk(x), (7.1.3)

and inserting (7.1.3) in (7.1.2), we have

d

dt
zi = −

(((
m∑

k1=1
zk1uk1

)
· ∇

)(
m∑

k2=1
zk2uk2

)
, ui

)
+ σ

 D∑
d=1

∇( m∑
k=1

zkuk

)d
,∇udi

− (∇p, ui)

=
m∑

k1=1

m∑
k2=1
− ((uk1 · ∇)uk2 , ui)︸ ︷︷ ︸

Ck1,k2
i

zk1zk2 +
m∑
k=1

σ

[
D∑
d=1

(
∇udk,∇udi

)]
︸ ︷︷ ︸

Dk
i

zk

+
m∑

k1=1

m∑
k2=1

(
∇∆−1 (uk1 · ∇)uk2 , ui

)︸ ︷︷ ︸
Pk1,k2
i

zk1zk2

=
m∑
k1

m∑
k2

(
Ck1,k2
i + P k1,k2

i

)
zk1zk2 +

m∑
k=1

Dk
i zk,
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where we used the Poisson pressure equations to formally write the pressure in terms of the
velocity in the second step. Assuming unitary mass, the total kinetic energy is

K(t) = 1
2‖u‖

2 = 1
2 (u, u) = 1

2

 m∑
i=1

ziui,

m∑
j=1

zjuj

 = 1
2

m∑
j=1

m∑
i=1

zizjδij =
m∑
i=1

1
2z

2
i =

m∑
i=1

Ki,

with Ki as the contribution of the i-th mode to the total energy balance. Each contribution
evolves according to

d

dt
Ki = zi

d

dt
zi =

m∑
k1

m∑
k2

(
Ck1,k2
i + P k1,k2

i

)
zk1zk2zi +

m∑
k=1

Dk
i zkzi. (7.1.4)

In (7.1.4), as reported in [70], we can distinguish two different terms: a diadic interaction resulting
from the dissipative term and a triadic interaction due to the quadratic term and the pressure
effect on the velocity. A similar scenario is obtained if the POD modes are replaced by Fourier
modes where, however, the diadic term simplifies into a linear term and only a few triads of
the second term are different from zero. If we consider the time average of expression (7.1.4),
represented formally by the operator 〈·〉, we have〈

d

dt
Ki

〉
=

m∑
k1

m∑
k2

(
Ck1,k2
i + P k1,k2

i

)
〈zk1zk2zi〉+Di

i

=
m∑
k1

k1∑
k2

1
1 + δk1,k2

(
Ck1,k2
i + Ck2,k1

i + P k1,k2
i + P k2,k1

i

)
〈zk1zk2zi〉+Di

i

=
m∑
k1

k1∑
k2

Bk1,k2
i 〈zk1zk2zi〉+Di

i,

where we have used the orthogonality property [17] of the POD modes

〈zizj〉 = σiδij ,

and rearranged the summation related to the triadic term. It is straightforward to observe that
the interactions between different modes, if considered in terms of energy transfers, depends
uniquely on the triadic term. More precisely, the term Bk1,k2

i 〈zk1zk2zi〉 represents the influence
of the POD mode of index k1 on the variation of the kinetic energy associated to the i-th POD
mode. Thus, the quantity

Π (i|j) =
j∑
k

Bj,ki 〈zkzjzi〉

could give a deeper insight into the interactions between different modes. In Figure 7.1(a), the
behavior of Π(i|j) is represented as a global map for the first 30 POD modes and three selected
values of i. The diagonal structure in Figure 7.1(b) suggests that, as it happens for Fourier
modes for homogeneous turbulence, the interactions between POD modes are mainly local in
the spectrum. While for Fourier modes, it can be proved that the mode related to the i-th
wavenumber transfer most of its energy in the wavenumbers window [k/2, 2k] (see Kraichnan’s
works [151; 149; 150] on turbulence), no theoretical results are available in the POD scenario.
The conclusion that we draw from this qualitative study of the interaction between resolved
and unresolved POD modes is that, for certain physical problems, modes interact mainly with
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modes with similar energy content. More generally, we assume that if a proper set of modes has
been adopted to discretize the system, this interaction can be modeled with a certain level of
approximation with a simple term depending only on the resolved part of the computation. The
choice of the best basis to describe the solution of a given problem is still an open question, but
for parameter-dependent systems of PDEs, POD approximation represents a legitimate candidate.

7.2 Mori-Zwanzig formalism

7.2.1 Introductory example

We start by considering an illustrative example as an introduction to the Mori Zwanzig formalism
[275]. Consider the linear system of equations

d

dt
u1 = A11u

1 +A12u
2,

d

dt
u2 = A21u

1 +A22u
2,

(7.2.1)

with A11 ∈ Rn×n, A12 ∈ Rn×(N−n), A21 ∈ R(N−n)×n, and A22 ∈ R(N−n)×(N−n). Suppose we are
interested in the dynamics described by the variable u1 ∈ Rn in time which could represent the
first n POD or Fourier modes, while u2 contains the remaining N − n discarded modes. Solving
the entire system (7.2.1) can be computationally expensive, and n is assumed to be much smaller
than N . Hence subselecting entries from the full solution of (7.2.1) is not worth the cost of the
procedure.
Our goal is to write a reduced system that describes the evolution of u1 such that its dynamics
depend only on u1, that is

d

dt
u1 = A11u

1 + w(u1, t). (7.2.2)

To compute w, assume that u1 is known and integrate the second equation in (7.2.1) to obtain

u2(t) = eA22tu2(0) +
∫ t

0
eA22(t−s)A21u

1(s) ds,
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and then, if we insert (7.2.1) into the first equation, we recover

d

dt
u1 = A11u

1 +A12

∫ t

0
eA22(t−s)A21u

1(s) ds+A21e
A22tu2(0). (7.2.3)

Equation (7.2.3) is a generalized Langevin equation (GLE). The dynamics of the resolved variable
u1 is governed by a Markovian contribution, an integral memory term depending only on the
resolved u1, and a term describing the influence of the unresolved initial condition u2(0). No
approximations have been introduced, and (7.2.3) is exact.
In the linear case, we have shown that it is possible to provide a closed expression for the
evolution of the resolved scale. The same approach cannot be generalized to the nonlinear
scenario. However, a similar expression is obtained by means of Chorin’s formulation of Mori-
Zwanzig (MZ) formalism [63], frequently referred to as optimal prediction framework. More in
detail, following the introduction of projection operators, the Mori-Zwanzig formalism allows to
introduce a GLE describing the evolution of the resolved part. The projection operators separate
the phase space of an ordinary differential equation (1.4.2) into resolved and unresolved subspaces.
Similarly to the linear case, the Mori-Zwanzig theory reduces a large set of Markovian equations
to a lower-dimensional and non-Markovian set of equations for a subset of variables of the original
problem. The effect of the unresolved scales on the resolved scales is non-local in time and has
the form of a convolution integral, known as the memory term. As expected, this clear separation
of contributions to the resolved dynamic comes at a price.
The memory term depends on the so-called projected dynamics, and, even in the linear case, it
requires the computation of the exponential of a matrix of dimension N − n. Hence, it is not
practical to use the resulting GLE equation as direct computational tool given its integrodifferential
nature, which requires a number of operations comparable to the one required for the solution of
the full model (7.2.1). However, it represents a convenient exact starting point for developing
closure models. In this respect, although the choice of resolved and unresolved sets is not relevant
in the formulation of the GLE, it will be important for its approximation.
Globally hierarchical methods such as Fourier and POD methods are carried out to extract
hierarchical sets of structures. If the basis is chosen appropriately, the dominating contribution to
the dynamics of the resolved part of the simulation depends mainly on the resolved part itself. In
contrast, the additional terms in the dynamics, usually neglected as in (1.4.2), will be amenable
of simplification in the MZ description.
After a summary of the Mori-Zwanzig formalism, we apply to the POD-Galerkin setting the
method proposed in [108] to estimate the memory integrand a priori without computing the
projected (or orthogonal) resolved dynamic directly. Even though it requires a considerable
computational cost, which does not make it a viable choice for the numerical approximation
of the memory term on the fly, it represents a valuable tool to verify the assumptions in the
description of possible Markovian models of the integral memory, discussed in Section 7.3.2.

7.2.2 Mathematical foundations

Consider the generic initial value problem
d

dt
y = f(t, y(t)), for t ∈ T ,

y(0) = y0,
(7.2.4)

142



7.2 Mori-Zwanzig formalism

evolving on a smooth manifoldM. We assume that f : RN → RN is at least uniformly continuous
and y0 resides in an Hilbert space denoted by H. To provide a context, consider the POD reduced
system (1.4.2) in case n = N . The general use of the formalism we describe in this Section is to
study vector-valued observables of the form g :M→ Rl.
The potentially complex dynamics described by the observable g can be formally represented
using a semigroup K(t, s) of operators acting on the Banach space of observables. In particular,
we have

g(y(t)) = [K(t, s)g] y(s), (7.2.5)

where
K(t, s) = e(t−s)L, Lg(y) = f(y) · ∇g(y). (7.2.6)

In [63], it is shown that any nonlinear ordinary differential equation (7.2.4) is equivalent to the
linear partial differential equation in the phase space

∂

∂t
v = Lv,

v(y0, 0) = g(y0),
(7.2.7)

known as the Liouville equation, with L being the Liouville operator and is an exact representation
of the original dynamics. The equivalence holds in the sense that the solution to (7.2.7) is given
[65] by

v(y0, t) = g(y(y0, t)), (7.2.8)

which means that v(y0, t) is the solution to the PDE defined by the operator etL with initial value
g(y(y0, 0)). In particular, if g(y(y0, t)) = yk(t), the solution to (7.2.7) is the k-th component of
the solution to (7.2.4).
The Liouville operator L enjoys the following interesting property

etLg(y(y0, 0)) = g(etLy(y0, 0)), (7.2.9)

which implies that, given the solution y(t) to (7.2.4), also the solution to (7.2.7) is known for
any observable function g. This property is used in [108] for the a priori approximation of the
memory integral.
Consider the solution to (7.2.4), y(t) = {yk(t)}, k ∈ C, and two sets of indices R and U , such
that C = R ∪U , and our set of observables corresponds to the components of the solution y with
index in R. Let us divide the vector of initial condition y0 into a resolved ŷ0 (indices in R) and
unresolved ỹ0 part, such that y0 = (ŷ0, ỹ0). In our context, these two sets represent resolved and
unresolved POD modes, respectively. The most common use of the Mori-Zwanzig formalism is
stochastic modeling of deterministic systems and uncertainty quantification: here, we discard the
statistical aspect of the approach and focus on the deterministic part. In the deterministic setting
of our approach, we consider the following projection operator for a function l of the resolved
and unresolved parts

Pl(ŷ0, ỹ0) = l(ŷ0, 0),

and we define the natural complementary orthogonal projector as Q = I − P.
The first step to derive an exact equation for the dynamic of the observables is to apply Dyson’s
identity

etL = etQL +
∫ t

0
esLPLe(t−s)QLds (7.2.10)
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to the Koopman operator. In (7.2.10), the term etQL represents the evolution operator related to
the dynamics constrained by the orthogonal projector Q. Starting from (7.2.10), we obtain the
operator equation

∂

∂t
etL = etLPL+ etQLQL+

∫ t

0
esLPLe(t−s)QLQLds. (7.2.11)

By applying (7.2.11) to the observable y0, we obtain the Mori-Zwanzig identity in phase space

∂

∂t
etLy0 = etLPLy0 + etQLQLy0 +

∫ t

0
esLPLe(t−s)QLQLy0ds. (7.2.12)

Acting with P, we obtain the evolution equation for the resolved dynamics

∂

∂t
etLŷ0 = Pf(t, etLy0) +

∫ t

0
PK(t, s, etLy0)ds,

where
F (t, x) = etQLQLx, K(t, x) = PLF (t, x).

If we take as projector the truncation Pg(ŷ, ỹ) = g(ŷ, 0), (7.2.12) can be rewritten, component
by component, in terms of y(t) = (ŷ(t), ỹ(t)) as

d

dt
yk(t) = fk(t, ŷ(t)) + Fk(t, y0) +

∫ t

0
Kk(t, s, ŷ(t))ds, (7.2.13)

with k as index mode. Equation (7.2.13) can be interpreted as a POD-Galerkin discretization of
the original FOM problem accounting for the removal of the smaller scales.
It is worth discussing the role of each contribution in (7.2.13). The first term, depending only
on the resolved dynamic, represents the resolved variables’ self-interaction and is the Markovian
contribution to the time derivative of the resolved coefficients. The last term, commonly known
as the memory, depends on the resolved part of the simulation at all time s between 0 and t,
with the integrand commonly known as the memory kernel. For the second term we have that
Fk(y0, t) satisfies the linear PDE

∂

∂t
Fk(y0, t) = QLFk(y0, t),

Fk(y0, 0) = QLy0 = Ly0 − PLy0 = fk(y0, 0)− fk(ŷ0, 0),
(7.2.14)

known as the orthogonal dynamics equation. Projecting (7.2.14) givesP
∂

∂t
Fk(y0, t) = PQLFk(y0, t) = 0,

PFk(y0, 0) = Pfk(y0, 0)− Pfk(ŷ0, 0) = 0,

implying that Fk is orthogonal to the image of the projector P.
Hence, if the initial condition y0 belongs to the space of observables, this contribution, known
as the noise contribution, is null. A solution of the system (7.2.14) has been proved to exist,
for Hamiltonian systems, in a classic sense for finite rank projectors and in a weak sense for
projectors in the form of conditional expectations [102].
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7.3 Memory approximation

7.3.1 Study of the orthogonal dynamics

Section 7.3.2 is devoted to possible strategies to approximate the memory contribution in (7.2.12).
These procedures rely on the introduction of some assumptions regarding the behaviour of the
memory kernel to simplify the expression of the memory integrand. Unfortunately, the integrand
requires the solution to the orthogonal dynamics equation, making an exact analysis unfeasible
for problems with a large number of degrees of freedom. Before proceeding, we seek to clarify
how we apply Mori-Zwanzig formalism in the case of POD approximation. Consider the reduced
system (1.4.2), introduced in Chapter 1, where we assume that the size of the reduced space is
n1 and is large enough to represent the solution of FOM up to machine precision. To achieve a
significant speed-up in the computations, the standard POD procedure truncates the basis to the
first n2 elements, with n2 < n1, neglecting the effect of the unresolved n1 − n2 remaining modes
on the resolved part.
We introduce the following notation for the set of basis: Un1 ∈ RN×n1 represents the set of n1
basis vectors, ordered as columns of the matrix and Un2 ∈ RN×n2 is the submatrix obtained by
taking the first n2 basis vectors. In the more general case of application of the Mori-Zwanzig
formalism, it is not required that the resolved part of the simulation be represented by the most
relevant modes in terms of date compression.
Considering the formalism introduced in Section 7.2.2, which defines an additional memory term
to take into account the missing contribution to the evolution dynamics of the first n2 modes by
solving the reduced problem

d

dt
z = U>n1

f(t, Un1z; η) + w(z, t) = f̃(t, z; η) + w(z, t), (7.3.1)

where the term w represents a Markovian approximation of the memory term. It can be shown
[193] that MZ-based methods belong to the larger class of residual-based methods and w can be
written as a function of the residual. The same does not holds for subgrid-scale models based on
physical insight of the problem, such as the Smagorinsky closure.
In this work, we assume that the additional noise term due to the unresolved part of the initial
condition can be neglected compared to the contribution given by the memory term. In the case
of the POD basis, since the basis is computed by solving a constrained optimization problem,
with no guarantees regarding the complete resolution of the initial condition, the additional noise
term is not null. However, this problem can be easily solved by introducing a bias term in the
RB ansatz.
Several attempts have been made to extract the memory kernel and the orthogonal dynamics.
For example, Hermite polynomials and Volterra integral equations have been used in [63; 29]
to approximate memory terms in the Fourier context for low-dimensional problems. Other
methodologies have been considered in [157; 160]: however, they fail to address the case of
high-dimensional problems. In this Section, we briefly describe a different procedure proposed by
Gouasmi et al. [108] to estimate the memory term by approximating the orthogonal dynamics
operator. The advantage of this operation is twofold: on the one hand, we get a picture of the
interaction between resolved and unresolved part, and on the other hand, we estimate the relative
importance of the unresolved initial condition on the resolved part of the evolution dynamics.
The idea is to grant to the orthogonal dynamic operator etQL the same composition property
(7.2.9) that holds for the Liouville operator L in case g is a smooth function. While the composition
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property can be proved in case of etL, the same cannot be shown for the orthogonal dynamic
operator since it is not a Koopman operator. Results restricted to the linear case are shown in
[108]. For the more general nonlinear case, the high-dimensional orthogonal dynamics equation

∂

∂t
Fj(z0, t) = QLFj(z0, t)

has to be solved. A more complete presentation of the subject can be found in [195].
First, let us consider

∂

∂t
etQLz0 = QLetQLz0

comp
≈ etQLQLz0

= etQLLz0 − etQLPLz0

= etQLf(z0)− etQLPf(z0)
comp
≈ f(etQLz0)− Pf(etQLz0), (7.3.2)

which defines a differential equation in φQ(t, z0) = etQLz0, with initial condition φQ(0, z0) = z0,
and does not require the explicit knowledge of the orthogonal evolution operator. In the MZ
identity in the phase space (7.2.12), the memory term can be written as∫ t

0
esLPLe(t−s)QLQLz0ds =

∫ t

0
e(t−s)LPLesQLQLz0ds

comp=
∫ t

0
PLesQLQL e(t−s)Ly0︸ ︷︷ ︸

z(t−s)

ds

=
∫ t

0
PLesQLQLz(t− s)ds

=
∫ t

0
PLF (s, z(t− s))ds

=
∫ t

0
PLF (t− s, z(s))ds, (7.3.3)

where F (t−s, z(s)) represents the right hand side of (7.3.2) at time t−s, using as initial condition
z(s). The Liouville operator applied to F (s, z(s)) reads

LF (s, z(s)) = f̃(z(s)) · ∇F (s, z(s)). (7.3.4)

Gouasmi et al. [108] proposed the following first order approximation of LF (s, z(s)), which
does not require all gradient directions but introduces the unitary direction given by f̄(z(s)) =
f(z(s))/ ‖f(z(s))‖

LF (s, z(s)) = f(z(s)) · ∇F (s, z(s))
= ‖f(z(s))‖ f̄(z(s)) · ∇F (s, z(s))
= ‖f(z(s))‖∇f̄(z(s))F (s, z(s))

≈ ‖f(z(s))‖ F (s, z(s) + εf̄(z(s)))− F (s, z(s))
ε

. (7.3.5)
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Hence, the memory kernel is approximated as

PLF (t− s, z(s)) ≈ ‖f(Pz(s))‖ F (t− s,Pz(s) + εf̄(Pz(s)))− F (t− s,Pz(s))
ε

,

= ‖f(Pz(s))‖ F (t− s,Pz(s) + εf̄(Pz(s)))
ε

, (7.3.6)

= P̃LF (t− s, z(s)), s ∈ [0, t],

where the first-order approximation is in the discretization of the gradient. As noted in [108],
approximating the memory kernel is equivalent to computing the sensitivity with respect to the
initial condition of the solution to the orthogonal dynamics in a direction determined solely by
the resolved part of the solution. Once the integrand has been approximated, the memory is
computed as

∫ t

0
K̃(t, s, z(t))ds =

∫ t

0
P̃LF (t− s, z(s))ds ≈

N∆t∑
n=0
P̃LF (t− sn, z(sn)), (7.3.7)

with N∆t being the total number of time steps between 0 and t. The computational cost of this
procedure prevents, as previously said, the use of this tool as a memory-approximating procedure
for the solution of the reduced system. The computational cost Cmem is estimated to be

Cmem ∝
N∆t − 1

2 Cfull, (7.3.8)

where Cfull represents the cost of simulating the FOM. For a fixed integration interval T := (0, T ],
the estimate (7.3.8) has been computed taking into account that problem (7.3.2) has to be solved
around N∆t times, each time on a shorter interval (tn, T ] and with z(tn) as initial condition.
The first point of this study concerns the validity in assuming the compatibility property for the
operator etQL. Since the exact memory integrand is not available, we compare the approximated
memory (7.3.7) with the exact memory term. If we rewrite the FOM in terms of semi-group
operators, we recover

∂

∂t
etLz0 = LetLz0

= etLLz0

= etLPLz0 +
(
etLLz0 − etLPLz0

)︸ ︷︷ ︸
etLQLz0

, (7.3.9)

which, in terms of the subset of resolved variables, becomes

d

dt
zk(t) = fk(t, ẑ; η) + (fk(t, z; η)− fk(t, ẑ, η)) . (7.3.10)

and hence
etLQLz0k = fk(t, z;ω)− fk(t, ẑ;ω). (7.3.11)

Comparing equations (7.2.12) and (7.3.10), we note that the term etLQLz0, computable as the
difference between the right-hand side evaluated using all the n1 modes and the first n2 modes,
encapsulates the two contributions represented by the noise and the memory terms.
To check if our assumption that the noise term, due to unresolved initial condition, is negligible,
we compare (7.3.11) to the approximated memory kernel in two settings. In the first case, we
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Figure 7.2: BG: Absolute value of the memory contribution for the first n2=10 modes represented
as a smooth surface for the exact (a) and approximated (b) memory term as a function of time in
case of standard RB ansatz.
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Figure 7.3: BG: Absolute value of the memory contribution for the first n2=10 modes represented
as a smooth surface for the exact (left) and approximated (right) memory term as a function of
time in case of additional bias term in the RB approximation.

consider the RB ansatz given in (1.4.1), while in the second, we add a bias term b to the ansatz
to exactly represent the initial condition, i.e., u ≈ Uz + b.
As a test case, we consider the viscous Burgers’ equation with periodic boundary conditions and
a sinusoidal wave as initial condition, which leads to the formation of a standing shock. Time and
the viscous coefficient µ are taken as parameters. The POD approximation, if not stated otherwise,
is computed using n2 = 10 POD modes and the system is considered completely resolved when
n1 = 68 POD modes are used. The memory kernel is approximated using (7.3.6) with ε = 10−8

and compared with (7.3.11), in Figure 7.2 for the standard basis RB ansatz and in Figure 7.3
with the additional bias, in terms of the absolute value of the memory contribution. There seems
to be a good agreement for the tests considered between the memory term reconstructed from
the approximation of the memory integrand and the memory term computed directly from the
FOM solution. In the case of a standard RB ansatz, we notice a discrepancy between the two
at the start of the simulation, probably due to the unresolved initial condition. This difference
becomes neglectable after a few time steps. The same error has not been noticed when the set
of basis functions is modified to represent exactly the initial condition. The results allow us to
conclude that, despite the approximation of the orthogonal operator, the approximated memory
kernel provides an accurate reconstruction of the memory term for the Burgers’ problem in the
context of POD-Galerkin.
The possibility to study directly the orthogonal dynamics, despite the high but affordable
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computational cost required for its approximation, is relevant for a better understanding of the
behavior of the memory term. In particular, we focus on the exponential decay of the memory
kernel, as shown in the Figures 7.4 and 7.5. This concept is formally defined as finite memory
and it has been investigated by several authors [64], suggesting that the memory integrand has a
finite support, ∫ t

0
esLPLe(t−s)QLQLy0ds ≈

∫ t

t−τ(t)
esLPLe(t−s)QLQLy0ds,

with τ length of the support, also known as memory length.

We now consider the same Burgers’ equation but with a different initial condition and study
the behavior of the memory kernel as a function of the size of the resolved part. We consider,
as initial condition, the combination of shifted sinusoidal functions with different frequencies
and scaled them such that the corresponding individual energy content decays for increasing
frequency. In Figure 7.6, the normalized memory kernels profiles, related to different sizes of the
resolved part of the simulation are compared. We observe that the decay of the memory kernel
sharpens by increasing the size of the approximating space.
The orthogonal dynamics provides insight into the study of the behavior of the memory kernel.
Consider the memory integral∫ t

0
esLPLe(t−s)QLQLy0ds =

∫ t

0
esLPLSe(t−s)ΛS−1QLy0ds, (7.3.12)

where we have introduced the eigendecomposition of the orthogonal dynamics operator. Expression
(7.3.12) is exact for the case of linear FOM, while, for nonlinear problems, a linearization of
the operator eQL can be considered as a first approximation. In (7.3.12), Λ and S represent
the eigenvalues and eigenvectors of eQL. Equation (7.3.12) suggests that the integrand has
finite support, and its decay is dictated by the inverse of the operator’s eigenvalues. In [108],
the dominant decaying factor was approximated by the inverse of the spectral radius ρ of the
Jacobian of the resolved operator PL, assuming the absence of scale separation between resolved
and unresolved variables.
In Figure 7.7, it is confirmed that the inversely proportional relation between the memory length
and the ρ holds, in the form

τ(t) = C
1
ρ
, (7.3.13)

with τ(t) being the memory length at time t. Similar dependencies [191] have been found for the
same problem in the case of Fourier modes.

7.3.2 Memory Modelling

In the previous Section, we showed that MOR introduces a memory effect based on a projection
of the unresolved residual. While in the linear case this is easily demonstrated, for the nonlinear
case we used Chorin’s formulation of the Mori-Zwanzig formalism. The key observation is that,
even though the unresolved part of the simulation remains inaccessible, its contribution to the
evolution of the resolved part can be estimated by modeling the memory term. In the context
of spectral Fourier-Galerkin methods, MZ-based closure models have been used to improve the
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Figure 7.4: BG: Snapshots of the memory integrand and memory at different time frames in case
of standard POD basis. The results showed are related to the third element of the basis.
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Figure 7.5: BG: Snapshots of the memory integrand and memory at different time frames in case
of modified POD basis.
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accuracy of the solutions of the Naiver-Stokes equation in the past [121; 241; 55], using the
findings of Section 7.3.1 as starting development point. So far, we have concluded that the
memory term takes the form of an integral depending only on the resolved part of the simulation.
However, its exact computation is not a computationally viable option, and hence strategies to
model the additional memory term are required.
Despite the limited understanding of the orthogonal dynamics, several surrogate models exist,
with the t-model [64] being the first of this kind. More recent solutions employ high-order
expansions of the memory kernel and have been tested on Burgers’ and Euler’s equations. In
addition, estimates on the accuracy of a large class of closure MZ-based models have been provided
by Venturi in [272; 274]. This Section aims to introduce the reader to these MZ-based methods.

t-model

The t-model represents a long memory model [65], which has been applied in fluid flows simulations.
It can be derived via numerical integration of the memory term in (7.2.12) over a single interval.
Here we present the derivation proposed in [62] that, even though not constructive, clarifies
under which assumption it represents a good approximation of the memory contribution. As
stressed in Section (7.3.1), the main obstacles in the computation of (7.2.12) is the orthogonal
dynamics operator e(t−s)QL, which requires the solution of the orthogonal dynamics (7.2.14).
Such complication can be avoided by considering

etQL ≈ etL. (7.3.14)

The rationale of this approach is based on the coupling between the resolved and unresolved
dynamics. The complimentary projector Q eliminates any dependence on the resolved components
and belongs to the unresolved space. If the resolved dynamic does not interfere with the unresolved
variables or are weakly coupled, the application of etL or etQL to an element of the unresolved
space provides the same results as unresolved variables interact mainly with each other. Starting
from the projection of the Mori-Zwanzig model (7.2.12) we have

∂

∂t
PetLy0 = PetLPLy0 +

∫ t

0
PesLPLe(t−s)QLQLy0ds

= PetLPLy0 +
∫ t

0
PesLLe(t−s)QLQLy0ds−

∫ t

0
PesLQLe(t−s)QLQLy0ds

= PetLPLy0 +
∫ t

0
PLesLe(t−s)QLQLy0ds−

∫ t

0
PesLe(t−s)QLQLQLy0ds

≈ PetLPLy0 +
∫ t

0
PLetQLQLy0ds−

∫ t

0
PetQLQLQLy0ds

= PetLPLy0 + tP
(
LetQL − etQLQL

)
QLy0

= PetLPLy0 + tPetLPLQLy0, (7.3.15)

where the definition of the evolution operator and (7.3.14) have been used to obtain a Markovian
approximation of the memory contribution. In the long, we do not expect approximation (7.3.15)
to hold as etL may eventually take the initial unresolved QLy0k into the resolved space, impacting
the representation of the memory kernel.
Therefore, Stinis [242] proposed a model correction based on a scaled expansion in Ns terms to
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improve the accuracy of the t-model, which takes the form

∫ t

0
PesLPLe(t−s)QLQLy0ds,≈

Ns∑
i=1

Ci(−1)i+1 t
i

i!Pe
tL (PL)iQLy0

where the coefficients Ci are computed on-the-fly by enforcing that rates of change of the norms
of the solution should be the same when computed from the FOM and the reduced problem.
A mathematically rigorous upper bound, computable in certain settings, has been developed by
Venturi et al. [273]

Theorem 7.3.1 ([273]). Let etL and etQL be strongly continuous semigroups with upper bounds∥∥etL∥∥ ≤Metω and
∥∥etQL∥∥ ≤MQe

tωQ . Then∥∥∥∥∫ t

0
PesLPLe(t−s)QLQLy0ds− tPetLPLQLy0

∥∥∥∥ ≤M1(t) (7.3.16)

where

M1(t) =


C1

(
etωQ − etω

ωQ − ω
+ tetω

MQ

)
, ω 6= ωQ

C1
MQ + 1
MQ

tetω, ω = ωQ

and C1 = MMQ ‖P‖2 ‖LQLy0‖.

τ-model

The t-model overestimates the memory contribution because the short memory property of the
system is not taken into account in the derivation of the model itself. The first step to improve
the model consists in rewriting the memory term as∫ t

0
PesLPLe(t−s)QLQLy0ds ≈

∫ t

t−τ(t)
PesLPLe(t−s)QLQLy0ds, (7.3.17)

where, depending on the model, τ(t) represents the finite support of the memory kernel, also known
as memory length. Using a trapezoidal quadrature rule and the assumption that K(t, τ, ŷ(t)) ≈ 0
because of finite memory, we have∫ t

t−τ(t)
PesLPLe(t−s)QLQLy0ds ≈

1
2τ(t)PetLPLQLy0, (7.3.18)

known as the τ -model approximation of the memory contribution. In relation to what we
observed in Section 7.3.1, this model can also be obtained by forcing the memory kernel to have
an exponential behavior. Take A(t) ∈ Rn1×n1 , negative definite and time-dependent, and consider
the following approximation∫ t

0
PesLPLe(t−s)QLQLy0ds ≈

∫ t

0
eA(t)setLPLQLy0ds

= A(t)−1
(
etA(t) − In1

)
PetLPLQLy0. (7.3.19)
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The complexity of A(t) reflects the complexity of the approximation. A dense matrix could be
used to represent strong interactions between different modes, while a block diagonal matrix can
be helpful to describe localized effects of the basis. Let us consider the simplest model given
by A(t) = −c(t)In1 , with c(t) > 0 ∀t ∈ T . From a modeling point of view, this implies that
memory kernels, related to different modes, decay independently from each other and at the same
rate. Even though this might be an oversimplification of the physics behind the problem, this
hypothesis is often satisfied. Consider, for instance, the Burgers’ equation analyzed in Section
7.3.1: even though the intensity of the memory contribution depends on the mode considered, as
shown in Figure 7.3, the average memory length is not strongly influenced by it, as shown in
Figure 7.6.
If we insert the diagonal assumption into (7.3.19), we have∫ t

0
PesLPLe(t−s)QLQLy0ds ≈ A(t)−1

(
etA(t) − I

)
PetLPLQLy0

= 1
c(t)

(
1− e−tc(t)

)
PetLPLQLy0. (7.3.20)

Equation (7.3.20) is the τ -model, in which the renormalization coefficient and the decay parameter
are related by

τ(t) = 2
c(t)

(
1− e−tc(t)

)
. (7.3.21)

According to our knowledge, we stress that there are no works using models for A(t) more
complex than the one just described. Therefore, a good starting point to derive more accurate
approximations, tailored to the specific problem considered, could be an energy analysis similar
to the one carried out in Section 7.1, with the aim of incorporation the interactions between
different modes.
From a practical perspective, the τ -model increases the accuracy of the reduced model by
representing the unresolved contribution as a nonlinear dissipative/increasing energy term. In
particular, for systems characterized by constant energy, it can be shown that the nature of the
additional term depends only on the sign of the τ . To see this consider a system of the form
(7.3.1) characterized by the conservation of the norm of the solution

E = 1
2 ‖y‖

2
2 = 1

2 ‖(ŷ, ỹ)‖22 = 1
2

(
‖ŷ‖22 + ‖ỹ‖22

)
. (7.3.22)

For fluid flows problems, this is usually interpreted as the kinetic energy of the system, as seen
in Chapter 2. If we split the dynamical system to highlight the dynamics of the resolved and
unresolved parts we recover 

d

dt
ŷ = f̂ (ŷ, ỹ) ,

d

dt
ỹ = f̃ (ŷ, ỹ) .

(7.3.23)

The two relations (
etLy0

)T (PetLPLy0
)

= 0,∥∥f̃ (ŷ, 0)
∥∥2

2 +
(
etLy0

)T (PetLPLQLy0
)

= 0, (7.3.24)
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have been proved in [121] for (7.3.23) and, considering the τ -model approximation of the dynamics

∂

∂t
PetLy0 = PetLPLy0 + τPetLPLQLy0, (7.3.25)

we have
d

dt

∥∥PetLy0k
∥∥2

2 = −τ
∥∥f̃ (ŷ, 0)

∥∥2
2 . (7.3.26)

The result provided in (7.3.26) guarantees the energy stability of the τ -model.

Theorem 7.3.2. Let etL and etQL be strongly continuous semigroups with upper bounds
∥∥etL∥∥ ≤

Metω and
∥∥etQL∥∥ ≤MQe

tωQ . Assume that the memory kernel K(t, s, y0) = PesLPLe(t−s)QLQLy0
is twice continuosly differentiable and with compact support, i.e. supp(K) = {s ∈ [0, t]|K(t, s, y0) 6= 0} ⊂
[t−∆t(t), t]. Then∥∥∥∥∫ t

0
PesLPLe(t−s)QLQLy0ds− τ(t)PetLPLQLy0

∥∥∥∥ ≤M2(t)

where M2(t) = 2
3C (τ(t))3, τ(t) = ∆t(t)

2 and C ≥
∥∥∥∥ ∂2

∂s2K(t, s, y0)
∥∥∥∥ ,∀s ∈ [0, t].

Taylor approximation orthogonal dynamics

The first attempt to increase the order of accuracy of the memory approximation by using
multiple terms was made in [241]. The idea is to replace the operator e(t−s)QL with its truncated
Taylor series. The advantage of this approach is that the evolution of the orthogonal dynamics
operator is taken into account, while for the t-model and its derivatives, the approximation does
not depend on s. Using a Taylor series expansion, we have∫ t

0
PesLPLe(t−s)QLQLy0kds =

∞∑
j=0

1
j!

∫ t

0
(t− s)jPesLPL (QL)j QLy0kds. (7.3.27)

In this framework, the t-model can be regarded as a zeroth-order approximation of the memory
integrand. Formula (7.3.27) can be approximated by considering a limited number of terms in the
expansion. Although tedious to compute by hand in the nonlinear case, the term PL (QL)j QLy0
inside the integral can be assembled via a recursive routine from the previous term in the
expansion. Each term in the resulting sum of integrals is then approximated by numerical
quadrature formulas. In the following, we present a result regarding error convergence for this
memory term approximation technique.

Theorem 7.3.3. Let etL and etQL be strongly continuous semigroups with upper bounds
∥∥etL∥∥ ≤

Metω and
∥∥etQL∥∥ ≤MQetωQ , ω 6= ωQ. Then∥∥∥∥∥∥

∫ t

0
PesLPLe(t−s)QLQLy0ds−

k∑
j=0

1
j!

∫ t

0
(t− s)jPesLPL (QL)j QLy0ds

∥∥∥∥∥∥ ≤M2(t) (7.3.28)

where
M2(t) = 1

k!MMQ ‖P‖2
∥∥∥L (QL)k+2

y0

∥∥∥ I(t)
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and
I(t) = − etωQ

ωk+1
Q (ω − ωQ)

γ(k + 1, ωQ) + etω

ωk+1(ω − ωQ)γ(k + 1, ω)

with γ that represents the incomplete Gamma function .

We point out that Taylor expansion is only one of the possible high-order expansions. Stinis
himself noted that Padé expansions could provide more stable results, having a larger radius
of convergence than standard Taylor expansions. An interesting and complete list of similar
approaches is discussed in details in [274].

Hierarchical memory approximation

The truncated Taylor expansion described in Section 7.3.2 can be rearranged in terms of a
hierarchical approximation problem, as shown in [274], while taking advantage of the limited
memory kernel support. Let us consider the memory term

w0(t) =
∫ t

0
esLPLe(t−s)QLQLy0ds. (7.3.29)

Under the assumption of differentiability of the memory integrand in time, we can differentiate
(7.3.29) to have

d

dt
w0(t) = PetLPLQLy0 +

∫ t

0
PesLPLe(t−s)QL(QL)2y0︸ ︷︷ ︸

w1(t)

. (7.3.30)

Equation (7.3.29) comprises a Markovian term that does not include the orthogonal evolution
operator and memory-like term w1 that depends on the orthogonal dynamics equation. The
high-order hierarchical memory approximation is realized by iterating the procedure described in
the previous paragraph on the term ω1 under the assumption of higher regularity of the memory
integrand. This leads to the following exact infinite hierarchy of equations

d

dt
PetLy0k = PetLPLy0 + w0(t),

d

dt
w0 = PetLPLQLy0k + w1(t),

d

dt
w1 = PetLPL(QL)2

y0k + w2(t),

...
d

dt
w(n−1) = PetLPL(QL)ny0k + wn(t),

...

(7.3.31)

However, (7.3.31) does not provide an efficient closure to the reduced model, since the issue of
computing an integral term depending on e(t−s)QL has been shifted to the next element in the
hierarchy. The infinite hierarchy must be truncated at a certain index to obtain a closure model.
Different solutions have been proposed in [274], but in this work, we focus on the straightforward
truncation of the k-th term, i.e. wHk (t) = 0. The resulting system is known as H-model and

156



7.3 Memory approximation

results concerning its accuracy are provided in [274]. Hereafter we mention one of these results.

Theorem 7.3.4. Let etL and etQL be strongly continuous semigroups with upper bounds
∥∥etL∥∥ ≤

Metω and
∥∥etLQ∥∥ ≤MQetQL. For some fixed n, we have∥∥w0(t)− wH0 (t)

∥∥ ≤MH(t),

where
MH(t) = MMQ

∥∥∥(LQ)n+1 Ly0

∥∥∥A1A2
tn+1

(n+ 1)! , (7.3.32)

and

A1 = max
s∈[0,t]

es(ω−ωQ) =
{

1 ω ≤ ωQ,

et(ω−ωQ) ω ≥ ωQ,
, A2 = max

s∈[0,t]
esωQ =

{
1 ω ≤ ωQ,
etωQ ω ≥ ωQ.

,

An extension to the standard H-model, taking into account the finiteness of the memory integrand
support of all the hierarchical integrands, is provided by Parish in [191]. A reasonable assumption
is that the support and kernel magnitude of the memory term becomes smaller as we move down
the approximation hierarchy. As for the derivation of the τ -model from the t-model, we have

ω0k(t) =
∫ t

0
esLPLe(t−s)QLQLy0kds ≈

∫ t

t−τ(t)
esLPLe(t−s)QLQLy0kds, k ∈ R. (7.3.33)

Differently from (7.3.30), however, if we differentiate the memory contribution we have an
additional term

d

dt
w0k(t) = PetLPLQLy0k +

∫ t

t−τ(t)
PesLPLe(t−s)QL(QL)2y0k︸ ︷︷ ︸

w1(t)

− (1− τ ′(t))Pe(t−τ(t))LPLeτ(t)QLQLy0.

(7.3.34)

The last term on the right hand side of (7.3.34) depends on the orthogonal dynamics and hence
computing it directly in this form is not efficient. By using the trapezoidal rule to approximate
(7.3.33) over a single sub-interval we have

w0 ≈
∆t(t)

2

(
PetLPLQLy0 − Pe(t−∆t(t))LPLe∆t(t)QLQLy0

)
, (7.3.35)

which, paired with (7.3.34), gives

d

dt
w0 = −21− τ ′(t)

∆t(t) w0 + (2− τ ′(t))PetLPLQLy0 + w1(t).

To obtain a closed scheme, repeated differentiation of the integral term and quadrature rule to
eliminate the dependence on the orthogonal dynamic, followed by a truncation of the last integral,
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can be used to have

d

dt
PetLy0 = PetLPLy0 + w0(t),

d

dt
w0 = −21− τ ′0(t)

τ0(t) w0(t) + (2− τ ′0(t))PetLPLQLy0 + w1(t),

d

dt
w1 = −21− τ ′1(t)

τ1(t) w1(t) + (2− τ ′1(t))PetLPL(QL)2
y0 + w2(t),

...
d

dt
w(n−1) = −2

1− τ ′n−1(t)
τn−1(t) w(n−1)(t) + (2− τ ′(n−1)(t))PetLPL(QL)ny0.

(7.3.36)

7.3.3 Estimates of the memory length

To accurately estimate the memory length τ , it is necessary to assemble the memory kernel.
Unfortunately, as we saw in Section 7.3.1, this operation requires the solution of the orthogonal
dynamics equations (7.2.14), whose computational cost is prohibitive and higher than that
required to obtain a solution of the FOM. The procedure described in Section 7.3.1, and proposed
by Gouasmi in [108], is useful for asserting the validity of some of the assumptions made during
the modeling phase but is not efficient enough to be used in the online phase of ROM. Several
approaches have been proposed to estimate hyper-parameters of models generated from the
Mori-Zwanzig formalism. We saw in 7.3.2 that Stinis proposed a modification of the t-model
based on renormalization coefficients to be estimated in accordance with the rate of change of the
p-norms of quantities of interest. Even though this approach shows good results for the Burgers’
equation discretized using Fourier basis, we did not obtain a similar accuracy using the POD
basis to approximate the same problem.
One popular approach is the dynamic-τ model proposed by Parish in [192]. In this approach,
which we will detail below, the value of τ is computed using the assumption of finite memory,
the value of the memory kernel for s = t, and the Germano identity [174]. We recall that for the
τ -model, the memory term is approximated as∫ t

t−τ(t)
PesLPLe(t−s)QLQLy0kds ≈

1
2τ(t)PetLPLQLy0k, (7.3.37)

where τ(t) has to be specified and is usually considered constant in time. The first step in
estimating τ , according to [192], is to adopt Germano’s identity to model the behavior of τ as a
function of the scale of the resolved part of the system. The idea is to introduce two standard
sharp spectral cutoff filters Ĝ and Ḡ, such that, if we decompose the resolved variable as

ŷ(t) = {ȳ(t), y′(t)} , (7.3.38)

then
y(t) = {ŷ(t), ỹ(t)} = {ȳ(t), y′(t), ỹ(t)} , (7.3.39)

and the filters are chosen in such a way that

Ĝ(y(t)) = {ŷ(t), 0} = {ȳ(t), y′(t), 0} , Ḡ(y(t)) = {ȳ(t), 0, 0} . (7.3.40)
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From (7.2.12) and (7.3.40), it follows∫ t

0
PK(t, s, etLy0)ds = Ĝ(f(y(t)))− f(Ĝ(y(t))), (7.3.41)

which, after the application of the filter Ḡ, becomes

Ḡ
∫ t

0
PK(t, s, etLy0)ds =

(
Ḡ(f(y(t)))− f(ȳ(t))

)
+
(
f(ȳ(t))− Ḡ(f(ŷ(t)))

)
. (7.3.42)

In (7.3.42), the second term can be computed directly from the set (and subset defined via the
filter Ḡ) of the resolved variables, while the first term corresponds to the memory term in the
case where the set of solved variables coincides with ȳ. Using the τ -model approximation for the
r.h.s. and the first term of the l.h.s. in (7.3.42), we obtain

1
2τ(t)PetLPLQLy0 = 1

2 τ̄(t)P̄etLP̄LQ̄Ly0 +
(
f(ȳ(t))− Ḡ(f(ŷ(t)))

)
, (7.3.43)

where P̄ and Q̄ are the projection operators defined in Section 7.2.2 with respect to the set of
resolved variables defined by the filter Ḡ and τ̄ is the relative coarse time-scale. Equation (7.3.43)
is not sufficient to determine the value of τ , and a constitutive relation between τ and τ̄ must be
introduced. In [192], a relation of the form

τ̄ =
(

∆̂
∆̄

)p
τ, (7.3.44)

is proposed, inspired by classical turbulence results, with ∆̂ and ∆̄ being the scales of the filters
Ĝ and Ḡ. The constant p in (7.3.44) has been adjusted based on a priori analysis of the ratio
between the memory term and its kernel for the Burgers equation, channel flow, and homogeneous
turbulence. For all examples considered, the memory length obeys approximately the form
(7.3.44) with p = 1.5.
In our work, we exploit the data collected to assemble the snapshot matrix S used to generate the
reduced basis for fitting an optimal value from relation (7.3.37). Exploiting (7.3.41) and (7.3.11),
an approximation for τ(t) that is optimal for the training set is given by

τ(t) ≈ 2 Ĝ(f(y(t)))− f(Ĝ(y(t)))
PetLPLQLy0k

. (7.3.45)

To simplify the proposed model, a constant fit for τ over time is computed and, in the case of
parametric problems, radial multiquadric basis functions are used to obtain τ values for new
parameter evaluations by interpolation.

7.4 Numerical experiments
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Figure 7.8: CA: Singular values decay of the snapshots matrix computed from the solution of the
test Cauchy problem (7.4.1). The exponential decay suggests that a small basis is sufficient to
represent the solution.

7.4.1 Randomized Cauchy problem

Consider the following autonomous linear system
d

dt
u(t) = Au(t), t ∈ T := (0, T ],

u(0) = u0,
(7.4.1)

where A ∈ RN×N , u ∈ RN and u0 ∈ RN is randomly taken from a standard distribution. For this
toy problem, we consider N = 100, T = 4 and time t is the only parameter. The matrix A is
negative definite, i.e.,

A = UTBU, UTU = I, B = diag(β),

where β ∈ RN is vector such that each entry βi is included in the interval (0,−3]. For the
time integration of (7.4.1), we use a second-order explicit Runge-Kutta method with time step
∆t = 4×10−3. The resulting Nt = 1000 snapshots are collected in the matrix S ∈ RN×Nt . Finally,
the singular value decomposition is applied to S, and the singular values show the exponential
decay reported in Figure 7.8.

Using a POD basis of dimension n1 = 16, we assume that the solution to the problem (7.4.1)
could be approximate up to machine precision. To simulate examples of under-resolution regimes,
we consider ROMs of sizes n2 ∈ [2, . . . , 9]. The classical POD-Galerkin-based ROM is compared
to the hierarchical closure models described in Section 7.3.2, for different truncation orders, in
Figure 7.9, where pointwise convergence to the projected solution on the approximating space of
dimension n2 is tested. We note that increasing the order of approximation in the hierarchical
model asymptotically guarantees an improvement in the convergence properties of the closure
model. In contrast, this improvement is not consistent when only 1 or 2 terms in the hierarchy
are computed before truncation. A similar conclusion can be drawn by directly comparing the
entries of the approximate memory term, as seen in Figure 7.10.
This phenomenon is well known for approximation techniques based on truncations similar to
those operated for the hierarchical model we are examining, and takes the name of convergence
barrier (see Corollary 3.4.2 in [272]). One can get an idea of why this problem arises by analyzing
the estimate (7.3.32) given in Theorem 7.3.4, despite the fact that this is only an upper bound
of the norm of the memory term approximation error. Once the value of n2 is fixed, the upper
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Figure 7.9: CA: Qualitative comparison of the entries 11(a), 34(b), 36(c), and 67(d) of the
projection of the exact solution of the problem (7.4.1) onto a space of dimension n1 = 16 ( )
and under-resolved ROM solutions for different values of n2 ∈ [2, 3, 4, 5]. For each value of n2,
hierarchical models of closure are compared for truncation orders k = 0 ( ), k = 1 ( ),
k = 2 ( ), k = 4 ( ), k = 7 ( ), k = 9 ( ), and k = 11 ( ).

bound in (7.3.32) depends on the term∥∥∥(LQ)n+1 Ly0

∥∥∥ tn+1

(n+ 1)! ,

which does not necessarily decrease monotonically with n. A similar conclusion in drawn by
comparing directly the approximated memory entries (see Figure 7.10).

7.4.2 1D Burgers’ equation

As a second numerical test, we consider the 1D viscid Burgers’ equation
∂

∂t
u(t;µ) = −1

2
∂

∂x
u(t;µ)2 + µ

∂2

∂x2u(t;µ), t ∈ (0, 5], x ∈ [0, 2π],

u(0;µ) = u0(x),
(7.4.2)
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Figure 7.10: CA: Comparison of the entries 1(a), 2(b), 3(c), and 5(d) of the exact memory term
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where the initial condition is given as a combination of sinusoidal signals

u0(x) =
kc∑
i

√
2E(ki)sin(kix+ βi),

where

E(k) =
{

5− 5
3 , if 1 ≤ k ≤ 5,

k−
5
3 , otherwise.

Periodic boundary conditions are considered for this problem. The phase angle β is sampled
following a uniform distribution from the interval [−π, π]. Partial derivatives in space are
discretized using the method of finite differences on a grid of N = 1024 nodes. The FOM is
integrated numerically in time using the implicit midpoint method with Nt = 1000 time steps, for 8
different values of the viscosity parameter µ ∈ [0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05].
Following the POD algorithm, the snapshots for all the values of t and µ considered are collected
in the snapshots matrix, and the left singular values are taken as the reduced basis. In this
setting, n1 = 100 represents the minimum size of a POD basis to represent the exact solution to
the problem (7.4.2) up to machine precision. Hyper-reduction of the nonlinear term is performed
by the DEIM algorithm described in Section 1.5 using 80 interpolation points.
With this numerical example, we want to evaluate the ability of the τ model to approximate the
memory term. In Figure 7.6, we have seen that using a single value of τ for all the modes of
the resolved part of the simulation is a reasonable modeling assumption. This value of τ is then
approximated following the strategy defined at the end of Section 7.3.3. We consider the error
defined as

ε(t;µ) =
∥∥Un2U

>
n2
u(t;µ)− Un2zn2(t;µ)

∥∥
2 , (7.4.3)

where u(t;µ) ∈ RN is the solution to (7.4.2), Un2 ∈ RN×n2 is a POD basis of under-resolved
dimension n2, and zn2(t;µ) ∈ Rn2 are the POD coefficients obtained by solving the under-resolved
ROM, with or without the closure model. The τ model outperforms the standard approach, being
between 2 to 10 times more accurate than the counterpart. In Figure 7.12, we compare the exact
memory term w(t) with the approximation provided by the τ model for different scales n2 of the
resolved simulation and parameter values. Considering the approximations taken into account,
The superiority, in terms of accuracy, obtained through the introduction of the closure term is
further evident from the analysis of the energy transfer due to the closure term, shown in Figure
7.13.
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8 Recurrent neural network closure
of parametric POD-Galerkin
reduced-order models
The availability of a large amount of data and the ease of use of the latest software for machine
learning has allowed rapid progress in data-driven modeling. In particular, the fact that projection-
based ROMs require a matrix of snapshots to be generated makes it natural to reuse this data
to model the closure term in a data-driven manner. Given the nature of the problem, most
of the proposed approaches reformulate the model closure problem as a supervised regression
task, where the closure term is estimated as a function of the reduced representation coefficients.
An initial division between the methods available in the literature is made between trajectory
regression-based and model regression-based methods. For the former, a form of the ROM
closure term is established a priori, and the available data are used to estimate the parameters
characterizing the closure term, such that the best fit of the reduced coefficients is obtained.
They are the first data-driven methods to be developed and, in the case of functional models,
have been proposed as a direct improvement over physics-based approaches. We refer the reader
to [262; 205; 238; 28] for several examples of data-driven estimates of viscosity coefficients for
mixed-length and Smagorinsky models. When the additional closure term is not derived directly
from physical principles but seeks to be as general as possible, we refer to these methods as
calibration methods. Linear [42; 18], quadratic [69], and cubic [199] models have been proposed
and have achieved some success for fluid dynamics problems.
Recently, model regression techniques have received more attention than trajectory-regression
methods due to the success of neural networks. They have a greater descriptive capability than the
methods described above since they require only mild ansatzes about the structure of the term to
be modeled, and regression occurs directly on the memory term and not for the coefficients of the
reduced system. In [185], it is conjectured that this type of strategy is more accurate in predicting
the solution beyond the time interval of the training set, whereas trajectory regression-based
methods would be more faithful to the solution of the FOM in the time interval of the training
set. Unfortunately, detailed numerical analyses supporting this conjecture are not available to
the author’s knowledge.
In this Chapter, we use a particular type of recurrent neural network, called the long short-term
memory (LSTM) neural network, to estimate the mismatch between FOM and ROM dynamics
in a parametric context, based on the formulation of the memory term provided in Chapter 7.
The idea is that the gating mechanism underlying this framework, which is used to select which
information should be forgotten or remembered in a sequence of data as time evolves, can be a
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good inductive bias for approximating memory terms characterized by exponentially decaying
kernels. Some information from the FOM system to be approximated, such as the memory length,
can then be enforced in the closure term by selecting the number of cells in the LSTM neural
network.
In Section 8.1, the structure and training of an LSTM network are described in detail, emphasizing
connections with the Mori-Zwanzig formalism. Next, in Section 8.2, we explain how the reduced
model fitted with the closure term is numerically integrated in time. Finally, the Chapter
concludes with Section 8.3, where several numerical experiments are conducted to evaluate the
approach’s effectiveness. 1

8.1 Recurrent neural network memory model
This Section presents the modeling of the memory effect using recurrent neural networks (RNNs).
A conditioned long short term memory (LSTM) network predicts the memory integral, given a
short history of the reduced basis coefficients. The structure and training of the network will be
presented in the remainder of this Section.

8.1.1 Regression of the memory term

Let us consider the discretization (ti−1, ti] of the interval T , where each interval has the length
∆t = ti− ti−1. Taking advantage of the finite memory length approximation introduced in Section
7, the memory integral w (ti, z; η) can be approximated using a short history of the reduced basis
solution as

w (ti, z; η) =
∫ ti

0
K (ti, s, z(s; η); η) ds

≈
∫ ti

ti−τ
K (ti, s, z(s; η); η) ds

≈ w̃ (zi−Nts+1, · · · , zi−1, zn; η) ,

where Nts is the number of time steps included in the support of the memory kernel, τ = Nts∆t
is the memory length, and w̃ is a numerical memory model that serves as the approximation of
the map

(zi−Nts+1, · · · , zi−1, zi; η) 7→ w (tn, z; η) . (8.1.1)

The approximation of the map in (8.1.1) is a regression task. In this Section, we use an artificial
neural network (ANN) as the regression model of the memory integral. The ANN seeks to predict
the memory integral, given a sequence of the reduced coefficients.

8.1.2 Conditioned long short-term memory network

Recurrent neural networks (RNNs) are a class of neural networks suitable for sequential modeling
[106]. Hence, RNN is a natural choice for the integral memory regression, a "many to one"
sequential modeling task. In our work, the long short-term memory (LSTM) [132], one of the

1The author contributed equally to Dr. Wang in the definition of the general research question, the design of
the approach and methodology, and the implementation of the numerical experiments.
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most popular gated RNNs that are developed to address the exploding/vanishing gradient issue
that can be encountered when training traditional RNNs [106], is selected as the basic RNN
structure for memory modeling.
A challenge in the design of the LSTM network for memory modeling is how to incorporate the
physical/geometrical parameters encoded in η. We need to predict the memory term at an arbitrary
parameter location during the online stage of the model reduction of a parametrized system.
Therefore, the LSTM network needs to be conditioned by the non-temporal physical/geometrical
parameters. There are several existing works on feeding non-temporal data into the RNN. For
example, in the encoder-decoder network for machine translation [60; 244], the final state of the
encoder LSTM network is set as the initial state of the decoder LSTM network. In the image
caption network [141], the output of the convolutional neural network (CNN) is fed into the
hidden state of the first gated recurrent unit (GRU). Inspired by these works, we condition the
LSTM network by feeding the physical/geometrical parameters into the initial hidden state. The
architecture of the conditioned LSTM network is shown in Figure 8.1.
The conditioned LSTM network consists of one dense layer, one LSTM layer and one another
dense layer. If we denote the number of hidden units of the LSTM as nhu, the first dense layer
maps the parameter vector η ∈ Rd to the initial hidden state h0 ∈ Rnhu , the LSTM layer maps
the input sequence {x1, x2, . . . , xnts} ∈ Rnts×m to the hidden states {h1, h2, . . . , hnts} ∈ Rnts×nhu

and the second dense layer maps the final hidden state hnts ∈ Rnhu to the output y ∈ Rm.
The initial hidden state h0 is the output of the first dense layer, which has no bias and uses a
linear (identity) activation function, i.e.,

h0 = Wh0η. (8.1.2)

The initial cell state c0 is set as zero. The forward propagation of the conditioned LSTM network
is achieved by iterating the following recurrent relation for t = 1 to Nts:

ft = σ (Wfxt + Ufht−1 + bf )
it = σ (Wixt + Uiht−1 + bi)
ot = σ (Woxt + Uoht−1 + bo)
c̃t = tanh (Wcxt + Ucht−1 + bc)
ct = ft ◦ ct−1 + it ◦ c̃t
ht = ot ◦ tanh (ct)

where σ is the hard sigmoid activation function

σ(z) =


0, z < −2.5,
0.2z + 0.5, −2.5 ≤ z ≤ 2.5,
1, z > 2.5.

The final output of the network is obtained through the second dense layer with a linear (identity)
activation function, i.e.,

y = Wyhnts + by. (8.1.3)
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Figure 8.1: Conditioned LSTM network. In this sketch, ε represents the system parameter and
xi are the elements of the input sequence.

The matrices

Wh0 ∈ Rnhu×d,W =


Wf

Wi

Wo

Wc

 ∈ R4nhu×m, U =


Uf

Ui

Uo

Uc

 ∈ R4nhu×nhu ,Wy ∈ Rm×nhu ,

and vectors

b =


bf

bi

bo

bc

 ∈ R4nhu , by ∈ Rm,

are the trainable weights and biases that are adjusted in the training process to achieve an
optimal network configuration.
For the conditioned LSTM network for memory modeling, the input is the sequence of the reduced
coefficients x = {zi−Nts+1, · · · , zi}, the auxiliary input is the physical/geometrical parameter
vector η, and the output is the predicted memory integral wLSTM (zi−Nts+1, · · · , zi; η). The
conditioned LSTM network is an approximation of the map in (8.1.1).

8.1.3 Training of the network

The training of the conditioned LSTM network is a supervised learning [106] task. In supervised
learning, labeled data is used to train the network. The goal of the training is to minimize the
difference between the predicted output wLSTM and the desired output w.
A training data setDtr = {((η, x) , w)j}1≤j≤Ntr and a validation data setDva = {((η, x) , w)j}1≤j≤Nva
are used in the training. Here (η, x) is the input object, w is the desired output. The training
data is collected from high-fidelity simulations with uniformly sampled parameter values, and
the validation data is collected from high-fidelity simulations with randomly sampled parameter
values.
A component of the input pattern is called a feature. The feature scaling technique in which
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all the features are scaled to the same range can be applied to the data sets to accelerate the
training process [136]. In this thesis, a feature χ is scaled by the mean normalization

χ̃ = χ− χ̄
σχ

,

where χ̄ and σχ are the mean and standard deviation of χ, respectively.

The network training is implemented in Keras [61], with TensorFlow [1] as the backend. The
optimal weights and biases of the network are obtained using the Adam stochastic optimizer
[143], which uses mini-batches of size Nb < Ntr of the training data to take a single optimization
step by minimizing the loss function. The full training data set with Ntr data points is shuffled,
and Ntr/Nb mini-batches are extracted to take Ntr/Nb optimization steps. Once the entire
training data set is exhausted, the training is said to complete one training epoch. The training
is performed for a sufficient number of epochs to obtain a converged network. The learning rate
η controls the convergence speed of the training.
For the training in this paper, the loss function is the mean absolute error (MAE). To avoid
possible overfitting, a weight regularization term that is the sum of the L2-norm penalties of
Wh0 , W, U and Wy, is added to the loss function. The weight regularization effect is controlled
by a hyper-parameter λ.
At the beginning of the training, the network’s weights and biases are randomly initialized
using normal distributions [103]. Therefore, the training needs to be performed several times,
following a multiple restarts approach [135], to prevent the training results from depending on
the initialization of the weights. In this paper, ten restarts are performed for the training of each
network, and the trained model with the best validation accuracy is selected as the final model.
The validation accuracy metric is the mean squared error (MSE).

8.1.4 Model selection

For a certain problem, the size of the conditioned LSTM mainly depends on the number of hidden
units nhu and number of time steps Nts. Therefore, we need a strategy to select a trained network
with a proper combination of nhu and Nts as the regression model for the memory integral.
Given enough training data, more hidden units imply a larger network, resulting in a higher
generalization accuracy. However, this is not the case for the number of time steps. As described
in Section 7, every problem has a specific range of memory lengths in the parameter space.
Therefore, the network with a too-small number of time steps, corresponding to a too short
memory length, does not have enough information to predict the memory integral accurately.
However, at the same time, a network with too many time steps, corresponding to a too-long
memory length, also can not accurately predict the memory integral since the hidden map between
the input and output is too complicated and requires a larger network, invalidating the finite
memory assumptions on which we base this approximation. Therefore, if the finite memory
assumption is satisfied, a suitable pair of (nhu, Nts) should be found to balance accuracy and
cost. In the case of non-autonomous systems, time t can be considered as an additional input
parameter to the network.
In this thesis, we train networks with a different number of time steps and hidden units. We
select the most accurate model from the models of which the memory lengths lie between the
minimum and maximum values estimated, in the parameter range, by the method described in
Section 7.
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8.2 Parametric POD-Galerkin with the RNNmemory model
This section presents the implementation of the RNN memory model in the framework of
parametric POD-Galerkin MOR.

8.2.1 POD-Galerkin with memory

For the sake of clarity, we report below some of the equations introduced in Chapters 1 and 7.
Consider the POD-Galerkin ROM

d

dt
z(t; η) = U>f(t, Uz + ū; η) = f̃(t, z; η), (8.2.1)

where z is the reduced coefficient vector, f̃ is the RHS term, and ū is a bias term introduced in
the RB ansatz. A memory closure termM is added to the RHS, which results in the corrected
reduced-order model

d

dt
z(t, η) = f̃(t, z; η) + w (t, z; η) . (8.2.2)

The motivation for the introduction of the memory term into the reduced-order model is to
account for the effect of the unresolved POD modes on the resolved POD modes, which can
improve the accuracy and stability of the reduced-order model.

The mechanism of the memory effect for the POD-Galerkin reduced-order model is sketched in
Figure 8.2. By multiplying (8.2.2) by 2z(t; η)>, we obtain the energy evolution equation

d

dt
z>z(t, η) = 2z>f̃(t, z; η) + 2z>w (t, z; η) , (8.2.3)

in which the second term in the RHS describes the energy exchange between the resolved scales and
the unresolved scales, which plays the same role as the subgrid-scale stress (SGS) in a large-eddy
simulation (LES). The introduction of the memory closure seeks to reduce the difference between
the reduced basis solution and the projection of the high-fidelity solution onto the reduced space
by providing the missing dynamics caused by omitting the unresolved POD modes in the energy
exchange term. With the memory closure, the trajectory of the reduced basis solution can follow
the trajectory of the projection of the high-fidelity solution. The projection of the high-fidelity
solution is the upper limit of the reduced basis solution in terms of accuracy.

8.2.2 Implicit-explicit Runge-Kutta time integration

Approximation of the memory term results in an improvement, in terms of computational efficiency,
over the exact evaluation of the memory term. However, in explicit or implicit time-stepping,
such as the Runge-Kutta (RK) method, the memory model needs to be evaluated in each stage
or inner iteration step for nonlinear systems, leading to substantial additional computational cost.
Therefore, the reduced-order model with the RNN memory closure is usually more expensive
than the original reduced-order model.
An efficient implementation of the conditioned LSTM memory model in the POD-Galerkin
framework is proposed in this thesis to address this efficiency issue. The implicit-explicit Runge-
Kutta (IMEX-RK) scheme is used to advance the reduced-order model in time. More specifically,
the RHS f̃ is integrated using the diagonally implicit Runge-Kutta (DIRK) scheme, and the
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Figure 8.2: Comparison between the solution u to the FOM ( ), the projection of u onto
the approximating manifold ( ), the solution uPG to the POD-Galerkin ROM ( ), and
the expected solution uPGL to the POD-Galerkin ROM with memory closure based on LSTM
network ( ).

memory term w is integrated using the explicit Runge-Kutta (ERK) scheme.
The s-stage IMEX RK scheme is

z
(j)
i = zi + ∆t

j∑
k=1

ajkf̃
(
ti + ck∆t, z(k)

i ; η
)

+ ∆t
j−1∑
k=1

âjkw
(
ti + ĉk∆t, z(k); η

)
, j = 1, · · · , s,

(8.2.4)

zi+1 = zi + ∆t
s∑

k=1
bkf̃

(
ti + ck∆t, z(j)

i ; η
)

+ ∆t
s∑

k=1
b̂kw

(
ti + ĉk∆t, z(k); η

)
, (8.2.5)

where a,b, c are the coefficients for the DIRK and â, b̂, ĉ are the coefficients for the ERK, defined
by the following Butcher tableaux

0 0 0 · · · 0 0
c2 a21 a22 · · · 0 0
...

...
... . . . ...

...
cs−1 as−1,1 as−1,2 · · · as−1,s−1 0
cs as1 as2 · · · as,s−1 ass

b1 b2 · · · bs−1 bs

,

0 0 0 · · · 0 0
c2 â21 0 · · · 0 0
...

...
... . . . ...

...
cs−1 âs−1,1 âs−1,2 · · · 0 0
cs âs1 âs2 · · · âs,s−1 0

b̂1 b̂2 · · · b̂s−1 b̂s

,

with the constraint

cj =
j∑

k=1
ajk =

j−1∑
k=1

âjk, j = 1, · · · , s.

The memory term w
(
ti + ĉk∆t, z(k)) is computed as

w
(
ti + ĉk∆t, z(k); η

)
= wLSTM

(
z

(k)
i−Nts+1, · · · , z

(k)
i ; η

)
. (8.2.6)

For linear systems, (8.2.4) is solved directly; while for nonlinear systems, (8.2.4) is solved
iteratively, e.g., through a Newton’s method.
For nonlinear problems, in each stage of the IMEX-RK, the memory term needs to be computed
only once, while the inner iteration needs to be performed until the residual reaches a certain
threshold. Therefore, most of the computational time is consumed by this inner iteration.
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Numerical results for nonlinear problems demonstrate that the POD-Galerkin with memory is
much more efficient than the original POD-Galerkin since introducing the memory closure into
the IMEX-RK leads to significant accuracy improvement and only a small extra computational
cost.
The IMEX-RK schemes used in the numerical experiments in Section 8.3 are:

1. IMEX-Euler

zi+1 = zi + ∆tf(ti+1, zi+1; η) + w(ti, z; η) (8.2.7)

The corresponding Butcher tableaux are

0 0 0
1 0 1

0 1
,

0 0 0
1 1 0

1 0
.

The IMEX-Euler scheme is first-order accurate.

2. IMEX-Trapezoidal

z̃i+1 = zi + ∆t
2 (f(ti, zi;ω) + f(ti+1, z̃i+1;ω)) + ∆tw(ti, z;ω), (8.2.8)

zi+1 = zi + ∆t
2 (f(ti, zi;ω) + f(ti+1, z̃i+1;ω)) + ∆t

2 (w(ti, z;ω) + w(ti+1, z̃;ω)) (8.2.9)

The corresponding Butcher tableaux are

0 0 0
1 1/2 1/2

1/2 1/2
,

0 0 0
1 1 0

1/2 1/2
.

The IMEX-Trapezoidal scheme is second-order accurate.

8.3 Numerical results
This Section presents the numerical results of the POD-Galerkin with the RNN memory closure
for model reduction of a 3D Stokes flow, the 1D Kuramoto–Sivashinsky (KS) equation, and the 2D
Rayleigh-Bénard convection. The linear 3D Stokes flow problem is used to validate the method.
The 1D Kuramoto–Sivashinsky (KS) equation and 2D Rayleigh-Bénard convection problems are
used to test the accuracy and efficiency of the POD-Galerkin with the RNN memory closure for
nonlinear problems.
The following two metrics are used to measure the generalization accuracy of the trained network:

1. The average relative error of the memory terms on the test data set:

ε1 = 1
Nte

Nte∑
i=1

||wLSTMi − wi||2
||wi||2

, (8.3.1)

174



8.3 Numerical results

2. The relative error of the entire memory data set:

ε2 =

√√√√∑Nte
i=1 ||wLSTMi − wi||22∑Nte

i=1 ||wi||22
, (8.3.2)

where Nte is the size of the test data set.
The accuracy of the reduced basis solution is measured by the following L2 norm error:

||ũ− u||L2(0,T ;L2) =

√∫ T

0
||ũ− u||22 dt,

where ũ is the reduced basis solution and u is the high-fidelity solution.
The following notations are used in some plots to distinguish results for different methods:

1. Full-Order : The high-fidelity (full-order) solution;

2. Projection: Projection of the high-fidelity solution onto the reduced space;

3. POD-Galerkin: Reduced basis solution of the POD-Galerkin method;

4. LSTM : Reduced basis solution of the POD-Galerkin with the conditioned LSTM memory
closure.

8.3.1 3D Stokes

The POD-Galerkin with the RNN memory closure is applied to the model reduction of the blood
flow in the human cardiovascular system [209]. The 3D Stokes equations

∂

∂t
u = ν∆u−∇p, t ∈ [0, 4]

∇ · u = 0,
u(∂Ωinlet, t) = f(t),
u(∂Ωwall, t) = 0,
u (Ω, 0) = 0,

(8.3.3)

are used to describe the blood flow. The computational domain Ω is shown in Figure 8.3. The
velocity is u = [ux, uy, uz]>, where ux, uy and uz are velocity components and p is the pressure.
The surface of the domain Ω consists of one velocity inlet, two free outlets and the no-slip
wall. The boundary condition at the inlet is f (t) = [0, 0, fz(t)], where fz is the time-dependent
boundary value of uz. The function fz(t) is shown in Figure 8.4. Following the Mori-Zwanzig
formalism, each variable of interest needs to be evaluated using a dynamical equation. Therefore,
the continuity equation in (8.3.3)

∇ · u = 0,

is replaced by
β
∂

∂t
p+∇ · u = 0,

following the artificial compressibility method [188]. β is the compressibility parameter, and is
set to β = 10−6 in this test case.
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Figure 8.3: ST: 3D carotid bifurcation geometry model and mesh.
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Figure 8.4: ST: Time-dependent velocity in z-direction, at the inlet boundary, for the training
(a) and prediction (b) regimes.
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Figure 8.5: ST: Singular value decay of the snapshot matrix S in logarithmic scale. The spectrum
shows a very fast decay, which suggests that a reduced basis with less than 20 elements is enough
to represent the high-fidelity solution with a reasonable accuracy.

The full-order model is discretized using the finite element method. The Taylor-Hood P2− P1
finite elements are used to satisfy the inf-sup condition, with 20,914 nodes for each velocity
component. To obtain a problem in the general dynamical system form in (1.2.1), we condense
the mass matrix into a diagonal matrix using mass lumping and multiply the resulting system by
the inverse of the mass matrix. The semi-discrete form of (8.3.3) is{

d
dtuh = A (µ) uh + b (t) , t ∈ [0, 4]
uh (0) = uh,0

(8.3.4)

The implicit Euler method is used to integrate (8.3.4) in time, using Nt = 1000 time steps.
The coefficient ν is the only physical/geometrical parameter of this problem. The range of ν is
[2, 6]. The snapshots for POD basis generation are collected from the high-fidelity simulations
with 9 values of ν that are sampled from a uniform distribution. The leading 100 singular values
of the snapshot matrix are plotted in Figure 8.5. The first 16 left singular vectors of the snapshot
matrix are selected as the reduced basis functions. The training, validation, and test data sets
are generated from the high-fidelity simulation results, with 50 uniformly, 25 uniformly randomly,
and 25 uniformly randomly sampled parameter values, respectively.
To obtain an accurate memory model, we train the conditioned LSTMs with 32, 64, and 128
hidden units and 2, 3, · · · , 8 time steps. The optimal length of the input sequence is estimated
using the criterion provided in (7.3.45). Ten restarts are performed in each training, with 500
epochs in each restart. In each epoch, the training data is shuffled and divided into mini-batches
of size 1000. The learning rate is 0.005. The coefficient of the L2 regularization is 10−9.
For model selection, we show the test errors of the trained networks with a different number of
time steps and hidden units, and the estimated memory length τ in Figure 8.6. The accuracy
comparison in Figure 8.6 shows that the models with more hidden units are more accurate but
also more costly. The models with 4 time steps are the most accurate among the models of which
the memory lengths are inside the estimated range. Therefore, the network with 128 hidden units
and 4 time steps is selected as the memory model for further test. The test errors of the trained
networks with 128 hidden units and 4 time steps, using data sets generated from high-fidelity
simulation results with 10, 20, 40, 50, 100, and 200 uniformly randomly sampled parameter
values are shown in Figure 8.7, to study the convergence property of the conditioned RNN with
respect to the number of training points. The results show that the test error of the conditioned
LSTM network decreases with increasing number of the parameter values in the training data set
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Figure 8.6: ST: Test error of the trained networks for the Stokes problem in the metrics defined
in (8.3.1) (in (a)) and in (8.3.2) (in (b)). The estimated mean (solid vertical line), minimum and
maximum (dashed vertical lines) of the estimated memory length τ over the parameter set are
also shown in the plot.
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Figure 8.7: ST: Test errors of the memory model in the metrics defined in (8.3.1) (in (a)) and in
(8.3.2) (in (b)), with respect to different number of parameter values in the training data sets.

without a certain convergence rate.

The POD-Galerkin with the memory model is tested with the 25 random values of ν of the test
data set. The simulations are performed using the IMEX-Euler time integration until t = 8,
which is beyond the range of the training data [0, 4], to test the prediction capability of the
reduced-order model.
The energy contribution of the closure to the reduced-order system is shown in Figure 8.8 to
provide an intuition of the accuracy of the memory model. It is observed in Figure 8.8 that the
conditioned LSTM network accurately models the memory closure.
The error between the reduced solutions of the original POD-Galerkin and the POD-Galerkin
with memory for 4 different parameter values is shown in Figure 8.9. The results show that the
error of the POD-Galerkin with memory is 2 to 3 orders of magnitude smaller than the original
POD-Galerkin, which demonstrates that the LSTM memory model can significantly improve the
accuracy of the POD-Galerkin method.
It is also observed in the numerical test that, for some small values of ν, the POD-Galerkin is
unstable. No instability was recorded for the reduced model with LSTM closure. The solutions of
ν = 3 are shown in Figure 8.10 to give an example of the instability of POD-Galerkin. The results
in Figure 8.10 show that the solution of the POD-Galerkin with memory closure is quite close to
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Figure 8.8: ST: Evolution of the energy exchange term 2z>w of the reduced-order models of the
Stokes problem for different parameter values in the training and prediction regimes.
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FOM Projection

POD-Galerkin LSTM

Figure 8.10: ST: A sectional view of the velocity magnitude contours of the reduced-order
solutions at t = 2.4 for ν = 3 for the FOM solution, the projection of the FOM solution onto the
reduced space, the solution to the POD-Galerkin model, and the solution to the POD-Galerkin
model with the LSTM correction.

the high-fidelity solution, while the solution of the original POD-Galerkin diverges. Hence, the
memory closure improves the accuracy and the stability of the reduced-order model.
The error-cost plot of the reduced-order models is shown in Figure 8.11 for efficiency comparison,
where we consider only parameter values for which the POD-Galerkin model without memory is
stable. We can observe that the original POD-Galerkin model can reach a certain accuracy level
using less computational time and is thus more efficient. As discussed in Section 8.2.2, we do not
expect efficiency improvement for linear problems, for the cost of evaluating the approximation
of the memory term.

8.3.2 Kuramoto–Sivashinsky equation

The fourth-order one-dimensional Kuramoto–Sivashinsky (KS) equation is used to test the
memory modeling capability of the conditioned LSTM network for highly nonlinear problems.
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Figure 8.11: ST: Error-cost plot of the reduced-order models for the Stokes problem for the
training (a) and prediction (b) intervals.

The parametrized KS equation is
∂
∂tu = − 1

2∂x · u
2 − ∂xxu− ν∂4

xu,

u(x+ L, t) = u(x, t),
u(x, 0) = g(x),

(8.3.5)

where L is the spatial period, g(x) is the initial datum, and ν is the parameter. In our test,
we take L = 22 and g(x) is obtained by the inverse Fourier transform from a series of Fourier
modes of which the first 4 mode coefficients are 0.06. The computational domain is partitioned
into Nh = 1024 elements. The full-order solver utilizes a finite-element discretization and a
second-order implicit trapezoidal time integration. The solution is updated until t = 50 using a
time step size ∆t = 0.025.
The coefficient ν of the fourth-order viscosity term is the only parameter in this problem. Following
Lu et al. [164], the dissipative term ∆2u provides damping at small scales. Therefore, the smaller
the ν, the less dissipative the system. In our test, we see that very small ν yields a chaotic or
quasi-chaotic system, making the model reduction challenging.
We set the range of the parameter ν as [0.3, 1.5]. The snapshots for the POD basis generation are
collected from the high-fidelity simulations with 25 values of ν that are uniformly distributed in
the log space, which means that more data points are sampled for small parameter values. The
basis is extracted from the snapshots via POD. We chose 25 left singular vectors of the snapshot
matrix as the reduced basis functions.
The training, validation, and test data sets are generated from high-fidelity simulation results,
with 124 equidistant, 62 uniformly randomly, and 61 uniformly randomly sampled parameter
values in the log space, respectively.
We train the conditioned LSTMs with 32, 64, and 128 hidden units and 2, 3, 4, 5, 6, and 10 time
steps to get an accurate memory model. Ten restarts are performed in each training, with 500
epochs in each restart. In each epoch, the training data is shuffled and divided into mini-batches
of a size of 1000. The learning rate is 0.005. The coefficient of the L2 regularization is 10−9.
The relative errors of the trained networks on the test data set and the estimated memory length
are shown in Figure 8.12. We observe that the networks with 128 hidden units are the most
accurate. Furthermore, the models with 3, 4, and 5 time steps are the most accurate among
the models whose memory length is inside the estimated range. However, we see in Figure 8.12
that the errors of the networks are quite large. To understand the cause of this large error, we
show the test errors of the networks with 128 hidden units with respect to different parameter
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Figure 8.12: KS: Test error of the trained networks for the KS equation in the metrics defined in
(8.3.1) (in (a)) and in (8.3.2) (in (b)). The estimated mean (solid vertical line), minimum and
maximum (dashed vertical lines) of the estimated memory length τ over the parameter set are
also shown in the plot.
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Figure 8.13: KS: Test error plots of the trained networks with 128 hidden units for different
parameter values in the metrics defined in (8.3.1) (in (a)) and in (8.3.2) (in (b)).

values in Figure 8.13. The results in Figure 8.13 show that the networks are very accurate for
ν ∈ [0.6, 1.5], while less accurate for ν ∈ [0.3, 0.6], which is reasonable since the small values of ν
correspond to quasi-chaotic dynamics that are very difficult to capture accurately. Furthermore,
for the well-modeled parameter range, the networks with different number of time steps have
very similar accuracy. Therefore, we chose the network with 128 hidden units and 4 time steps as
the memory model. The POD-Galerkin with the selected memory model is tested using the
physical parameter sampling of the test data set which includes 61 random values of ν. The
simulations are performed using the IMEX-Trapezoidal time integration in (8.2.8) until t = 100,
which is beyond the time range of the training data [0, 50], to test the prediction capability of the
reduced-order models.
The energy contribution of the closure to the reduced-order system is shown in Figure 8.14 to
provide an intuition of the accuracy of the memory model. It is observed in Figure 8.14 that the
conditioned LSTM network accurately models the memory closure.
The reduced solutions of the original POD-Galerkin and the POD-Galerkin with memory with
4 different parameter values are shown in Figure 8.15-8.18. For the small parameter value
(ν = 0.34756) case, both the reduced-order models with/without memory models fail to follow the
high-fidelity model’s fast dynamics. For the cases with large parameter values, the results show
that the reduced basis solutions computed by the POD-Galerkin with memory are much closer to
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Figure 8.14: KS: Evolution of the energy exchange term 2z>w of the reduced-order models of the
KS problem for different parameter values in the training and prediction regimes.
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the high-fidelity solutions than the original POD-Galerkin. We note that, for certain parameter
values, the POD-Galerkin reduced-order model can follow the high-fidelity solution only for a
short time interval, as shown in Figure 8.18. At the same time, the reduced-order model with
memory closure remains accurate for a much longer time and makes accurate predictions beyond
the training time interval.
For a global view of the dynamics, the contours of solutions for ν = 0.64424 on the x− t plane
are shown in Figure 8.19. The results in Figure 8.19 show that the POD-Galerkin with memory
closure provides accurate solutions in both the training and prediction intervals, while the original
POD-Galerkin model loses the dynamics after a certain time.
We show the error-cost plot of the reduced-order models in Figure 8.20 for efficiency comparison.
The POD-Galerkin model with memory has 10 to 100 times smaller errors than the original
POD-Galerkin model, with slightly more computational time, and is thus much more efficient.

8.3.3 Rayleigh-Bénard convection

The two-dimensional Rayleigh-Bénard convection problem is used as the last case to test the
capability of memory modeling of the conditioned LSTM network for multi-dimensional nonlinear
problems. The non-dimensionalized governing equations are

∇ · u = 0,
∂
∂tu + u · ∇u = −∇p+

√
Pr
Ra∆u + Tey,

∂
∂tT + u · ∇T = 1√

PrRa
∆T,

(8.3.6)

where u, T and p are the dimensionless velocity, temperature and pressure, respectively. The
Rayleigh number (Ra) and the Prandtl number (Pr) are the dimensionless quantities that control
the flow. The simulation setup, including the computational domain and the boundary conditions,
is shown in Figure 8.21. The high-fidelity simulations are performed until t = 50 on a triangular
mesh with 152,888 nodes, using a finite-element space discretization and the implicit trapezoidal
time integration with a time step size ∆t = 0.01. The solution of a low Rayleigh number case
Ra = 33019.2725, P r = 0.85 at t = 50, starting from a stationary flow with linear temperature
distribution between the hot and cold plates, is used as the initial condition for the high-fidelity
simulations.
We select Ra and Pr as the two physical parameters for model reduction of this problem. The
parameter domain of the problem is (Ra, Pr) ∈ [5× 106, 1.5× 107]× [0.85, 0.95]. The snapshots
for POD basis generation are collected from the high-fidelity simulations with 36 parameter values
generated via the Latin hypercube sampling. The reduced basis functions are extracted from
the snapshots using the randomized SVD [122]. The singular value decay is shown in Figure
8.22, and it is observed that the singular values decay slowly, implying that a large number of
reduced basis vectors is necessary to recover the main dynamics, making the model reduction of
this problem challenging. We select 24 left singular vectors of the snapshot matrix as the reduced
basis functions.
The training data is generated using the same high-fidelity simulation results used for reduced
basis generation. The validation and test data sets are obtained from high-fidelity simulations
with 18 randomly sampled parameter values.
To obtain an accurate memory model, we train the conditioned LSTMs with 128 hidden units
and 2, 3, · · · , 8 time steps. Each network is optimized by 10 restarts, with 1200 epochs in each
restart. In each epoch, the training data is shuffled and divided into mini-batches of size 1000.
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Figure 8.15: KS: Numerical solutions for parameter ν = 0.34756. High-fidelity;
Projection of high-fidelity; POD-Galerkin; POD-Galerkin with memory.
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Figure 8.16: KS: Numerical solutions for parameter ν = 0.71166. High-fidelity;
Projection of high-fidelity; POD-Galerkin; POD-Galerkin with memory.
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Figure 8.17: KS: Numerical solutions for parameter ν = 1.0006. High-fidelity;
Projection of high-fidelity; POD-Galerkin; POD-Galerkin with memory.
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Figure 8.18: KS: Numerical solutions for parameter ν = 1.4399. High-fidelity;
Projection of high-fidelity; POD-Galerkin; POD-Galerkin with memory.
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Figure 8.19: KS: Evolution of the numerical solutions of the KS equation with η = 0.64424.
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Figure 8.20: KS: Error-cost plot of the reduced-order models for the KS problem for the training
(a) and prediction (b) intervals. The horizontal dashed line represents the projection error.
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Figure 8.21: RB: Simulation setup of the Rayleigh-Bénard convection.

The learning rate is 0.005. The coefficient λ of the L2 regularization is 10−9.
The relative errors of the trained networks on the test data set and the estimated memory length
are shown in Figure 8.23. The network with 3 time steps is the most accurate among the models
of which the memory length is inside the estimated range and is thus selected as the memory
model.
The POD-Galerkin with the selected memory model is tested using the physical parameter
sampling of the test data set that includes 61 random values of ν. The simulations are performed
using the IMEX-Trapezoidal time integration until t = 100, which is beyond the time range of
the training data [0, 50], to test the prediction capability of the reduced-order model.
The energy contribution of the closure to the reduced-order system is shown in Figure 8.24 to
provide an intuition of the accuracy of the memory model. It is observed in Figure 8.24 that the
conditioned LSTM network accurately captures the memory closure.
The reduced solutions of the original POD-Galerkin and the POD-Galerkin with memory for
(Ra, Pr) = (14024512.0002, 0.86976) are shown in Figure 8.25. The results show that the reduced
solutions computed by the POD-Galerkin with memory are much closer to the high-fidelity
solutions. Furthermore, the results also show that the POD-Galerkin model with memory closure
can make accurate predictions, even in the case that the reduced basis can not accurately represent
the dynamics of the high-fidelity solution.
For a global view of the dynamics, the contours of solutions for (Ra, Pr) = (14024512.0002, 0.86976)
are shown in Figure 8.26. The results show that the POD-Galerkin with memory closure can
provide much more accurate solutions in both the training and prediction intervals than the
original POD-Galerkin model.
We show the error-cost plot of the reduced-order models in Figure 8.27 for efficiency comparison.
We can see from Figure 8.27 that, the POD-Galerkin model with memory has 5 to 10 times smaller
error than the original POD-Galerkin model, at only slightly more computational cost, and is
thus much more efficient. We highlight the fact that the error of the POD-Galerkin model with
memory is very close to the projection error, which means that the conditioned LSTM memory
model is very accurate and the reduced basis solution evolves with almost exact dynamics.
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Figure 8.24: RB: Evolution of the energy exchange term 2z>w of the reduced-order models of the
Rayleigh-Bénard problem for different parameter values in the training and prediction regimes.
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Figure 8.25: RB: Temperature evolution of Rayleigh-Bénard convection problem at four points,
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POD-Galerkin; POD-Galerkin with memory.
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9 Conclusion of Part II

In Chapter 7, we have seen that the Mori-Zwanzig formalism is a consistent framework for
closing reduced models. The generalized Langevin equation obtained by rewriting the FOM
system allows for greater insight into the effect of separation between resolved and unresolved
scales. In particular, by studying the dynamics of the orthogonal dynamics equation, we noticed
that there is a class of problems for which this interaction, in the case of approximation via
POD-Galerkin, manifests itself as a memory integral term characterized by limited support. The
appeal of this approach is that the closure term is derived by exploiting information directly
from the FOM, and is not based solely on heuristic reasoning. Numerical examples demonstrate
the method’s robustness and superior accuracy in the cases considered, while also predicting the
energy contribution of the unresolved term.

In Chapter 8, we propose an RNN closure for parametric POD-Galerkin ROM. A conditioned
LSTM network is used to predict the memory integral that accounts for the impact of the
unresolved scales on the resolved scales, given the physical/geometrical parameter values and
the short time history of the resolved scales as inputs. The RNN closure is embedded into the
POD-Galerkin model in the framework of implicit-explicit (IMEX) Runge-Kutta time integration,
in which the RNN memory term is computed only once in each time step or inner iteration
step, resulting in an efficient reduced-order model. Numerical results demonstrate that the
POD-Galerkin ROM with the RNN closure is much more efficient than its original scheme for
nonlinear problems.

We have seen that MOR is a valuable tool for creating low-dimensional models from data generated
from computationally expensive FOM simulations. However, for complex problems, a limited
number of modes is not sufficient to capture all the features of the relevant dynamics, resulting
in poor accuracy or instability. The Mori-Zwanzig formalism provides a valuable mathematical
framework for developing closure models that guarantee a good representation of the dynamics of
the solved part of the problem, as an alternative to traditional methods that only exploit physical
insights of the FOM dynamics. Although the use of data-driven approximations in this framework
ensures further improvements in accuracy, some issues are still open, including extrapolation
beyond the training interval and the stability and boundedness of the solution. We believe that a
possible solution to these issues is to combine the best of the approaches mentioned above, i.e.,
mathematical frameworks, physics-based modeling, and data-driven approximations. For example,
although closure via LSTM allows the trajectory of the FOM solution to be followed over long
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time intervals, better results could be obtained by incorporating conservation laws and physical
constraints in the reduced dynamics and closure in the spirit of Part I of this thesis. Similarly,
this idea would allow the stability of the reduced solution to be enforced by construction.
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