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Abstract
Large training datasets have played a vital role in the success of modern deep learning methods in

computer vision. But, obtaining sufficient amount of training data is challenging, specially when

annotating volumetric images. This is because fully annotating a single image volume require

annotating a whole stack of images which is costly. Moreover, majority of volumetric images

originate from niche domains that require expert knowledge to annotate and it further increase

the associated cost. Therefore, designing models for volumetric image segmentation that can

work with small training datasets is of great importance.

One way to address this challenge is to use prior knowledge in segmentation model design. There

are many forms of prior knowledge and in this thesis, we focus on using object priors which

defines prior knowledge related to the properties of the object being segmented. We begin by

proposing an end-to-end differentiable architecture that produce surface meshes from input image

volumes which enable easy integration of object priors related to topology and surface properties.

With that we demonstrate how the priors help achieve better accuracy and quality in predictions

compared to state-of-the-art methods that do not use them. Then we focus on surface priors and

propose a methodology based on Active Surface models to achieve better trade-offs between the

accuracy of the surfaces produced by the segmentation models and their quality. Afterwards,

we apply the Active Surface model proposed earlier to develop an interactive annotation tool

that significantly reduce the effort necessary to annotate image volumes. Along with that, a

volumetric image segmentation model that best utilize annotations produced with the tool is also

proposed. Finally we focus on object priors related to overall shape. We use Probabilistic Atlases

(PAs) to introduce this prior knowledge into the segmentation model and demonstrate its ability

to improve the accuracy in predictions.

Overall, we use object prior to improve the accuracy, quality and the speed of annotation in

volumetric image segmentation. To demonstrate their effectiveness, we use volumetric images

produced by Magnetic Resonance Imaging (MRI), Computed Tomography (CT) and Electron

Microscopy (EMs).
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Résumé
Les grandes bases de données d’entraînement ont joué un rôle essentiel dans le succès des

méthodes modernes d’apprentissage profond en vision par ordinateur. Cependant, il est difficile

d’obtenir une quantité suffisante de données d’entraînement, en particulier lorsqu’elles requièrent

l’annotation d’images volumétriques. En effet, l’annotation complète d’un seul volume d’images

nécessite l’annotation de toute une pile d’images, ce qui est coûteux. De plus, la majorité des

images volumétriques proviennent de domaines de niche qui nécessitent des connaissances

d’experts pour être annotées, ce qui augmente encore le coût associé. Par conséquent, la

conception de modèles de segmentation d’images volumétriques pouvant fonctionner avec de

petites bases de données d’apprentissage est d’une grande importance.

Une façon de relever ce défi consiste à utiliser les connaissances préalables (a priori) dans la

conception de modèles de segmentation. Il existe de nombreuses formes de connaissances a

priori et dans cette thèse, nous nous concentrons sur l’utilisation des a priori relatifs aux

propriétés de l’objet segmenté. Nous commençons par proposer une architecture différentiable de

bout en bout qui produit des maillages de surface à partir de volumes d’images, et qui permet une

intégration facile des a priori liés à la topologie et aux propriétés de surface de l’objet reconstruit.

Avec cela, nous démontrons comment les a priori aident à obtenir une meilleure précision et

qualité dans les prédictions par rapport aux méthodes de pointe les plus récentes qui ne les

utilisent pas. Ensuite, nous nous concentrons sur les a priori portant sur la surface de l’objet, et

proposons une méthodologie basée sur les modèles de surface active pour obtenir de meilleurs

compromis entre la précision des surfaces produites par les modèles de segmentation et leur

qualité. Puis nous appliquons le modèle de surface active proposé précédemment pour

développer un outil d’annotation interactif qui réduit considérablement l’effort nécessaire pour

annoter des volumes d’images. Parallèlement à cela, un modèle de segmentation d’image

volumétrique qui utilise au mieux les annotations produites avec l’outil est également proposé.

Enfin, nous nous concentrons sur les a priori des objets liés à la forme globale. Nous utilisons des

atlas probabilistes (AP) pour introduire ces connaissances préalables dans le modèle de

segmentation et démontrer sa capacité à améliorer la précision des prédictions.
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Résumé

Dans l’ensemble, nous utilisons des connaissances a priori portant sur les objets reconstruits pour

en améliorer la précision, la qualité et la vitesse d’annotation dans la segmentation d’images

volumétriques. Pour démontrer leur efficacité, nous utilisons des images volumétriques produites

par imagerie par résonance magnétique (IRM), tomodensitométrie (CT) et microscopie

électronique (EM).

Mots-clés : Images volumétriques, Segmentation, Apprentissage profond, A priori de forme,

Connaissances préalables, Maillages surfaciques, Vision par ordinateur
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1 Introduction

Volumetric image segmentation is one of the sub-domains in computer vision which has the

potential to make significant real world impact. Its objective is to segment 3D structures in

volumetric image data. Even though the problem landscape and the approaches to solve it

has many similarities with 2D image segmentation, it has one unique challenge; that is the

difficulty in obtaining large training datasets. Compared to other computer vision tasks like image

classification or object detection, annotating images for image segmentation is time consuming

and difficult, even in 2D images. When it comes to volumetric images, the problem become

more difficult since we have to annotate a whole image stack to obtain a single annotated sample.

Furthermore, most of the modern day volumetric image data originate from medical imaging

techniques such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) or

laboratories that use imaging devices such as Electron Microscopes (EMs). As a result, annotating

volumetric image data requires export knowledge and it adds another layer of difficulty to the

process. Therefore, it is vital to develop methods for volumetric image segmentation that can

work with small training datasets and use of prior knowledge in model design is one of the

common approaches to address this challenge.

1.1 Prior Knowledge for Volumetric Image Segmentation

Within the context of machine learning, prior knowledge refers to all the information available

about a problem in addition to the training data [87]. Based on this definition, we can identify

many forms of prior knowledge. Here we list some of the mostly used forms of prior knowledge

and how they are used in state-of-the-art volumetric image segmentation model design.
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• Object Properties: Prior knowledge about the object being segmented is introduced by

identifying properties of the object. They can be divided in to two categories as global

and local properties. Information about overall shape and topology of the structure is

considered as global properties where as information about local regions is considered as

local properties. Together, we refer to them as object priors.

Prior knowledge on overall shape is commonly introduced via atlases [112, 60, 109, 22, 94].

They are made by averaging multiple segmented objects to obtain a mean shape. They can

take the form of a binary atlas [51] or a probabilistic atlas (PAs) [92, 93, 112, 60]. Atlases

are commonly used in volumetric image segmentation because they are mostly acquired

through non-projective imaging techniques such as MRI, CT or EM. If images are captured

using a device like the standard camera that employs projective techniques, application

of the prior information become challenging. The atlases are commonly incorporated by

using them as inputs similar to the input image volumes [92, 93] or learning to deform the

atlases to fit the target object in the input image volume [22].

Topology is not as descriptive as shape priors, but still contains useful information about

an object. It is possible to introduce both geometric and network topology of a structure as

prior knowledge. Genus of an object defines the geometric topology while connectivity of

parts in an object which consist of multiple parts (i.e part image segmentation) defines the

network topology. All the atlas based approaches that introduce prior knowledge related to

the shape also introduce prior knowledge about the topology.

Local properties define prior information about a local region which is almost consistent

throughout the object. This include volume based prior knowledge such as voxels with

similar intensity belonging to the same class and surface based prior knowledge such as

surface smoothness, tension, and skewness. Volume related priors are commonly introduced

in to CNNs by incooperating probabilistic graphical models with CNNs [58, 111] or

introducing more complex loss terms [12]. Surface related priors are commonly introduced

using shape regularizing loss terms [98].

• Transformation Invariance: In image segmentation, transformation invariance refers to

the detection of low-to-high level features of objects of interest irrespective of its position,

orientation, scale and color/intensity variations in the input image. Incorporation of

these forms of prior knowledge can be widely seen in start-of-the-art image segmentation

methods. For instance, in standard Convolutional Neural Networks (CNNs) used for

segmentation like the U-Net [19], convolutional layers are used because of the prior

knowledge on translation invariance of the features. The choice of convolutional layers over

fully connected layers based on this prior knowledge significantly reduce the computations
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needed and make the modern day CNNs a reality. Similarly, pooling layers enable the

model to learn scale invariance, even though the primary objective of the layer is feature

aggregating across space. Rotational invariance is not incorporated in standard CNNs.

But various attempts have been made to introduce rotational invariance as well in to

convolutional layers [16].

Similarly, prior knowledge on transformation invariance is used during training when

deciding data augmentation methods. This enable the network to learn these invariances.

Random translation and scaling is used as a common data augmentation technique. When

performing rotations, 90o rotations and mirroring is commonly used. To introduce

invariance to color transformations, various types color augmentations are performed.

• Data Distribution: Data distribution captures the prior knowledge on the nature of the data

distribution. Bayesian learning brings prior knowledge on data distribution into modeling

and it has been adapted in to deep learning as Bayesian deep learning [35].

All these types of prior knowledge opens up countless opportunities to use prior knowledge

in model design. In this thesis we focus on the use of object priors for volumetric image

segmentation. We use them to design state-of-the-art deep learning models and use them to

improve the accuracy, quality and the speed of annotation in volumetric image segmentation.

1.2 Shape Representations and Object Priors

One of the critical factors that determine the ease of which object priors can be introduced is

the type of shape representation used in the segmentation model. Therefore, it is vital to choose

the appropriate shape representation depending on the form of prior knowledge that is being

incorporated. Here we list most widely used types of shape representations and how they support

the incorporation of different forms of object priors.

• Voxel Representations: Since input image volumes use voxel representation to represent

data, voxel representation is the most widely used shape representation. Typical models

based on this representation use 3D CNNs and since there are no changes in the

representation within the model, the architectures are relatively simpler [19, 73, 49].

Atlases are commonly used to introduce object priors related to shape and topology when

using voxel representations [112, 60, 109, 22, 94]. But introducing priors on surface

properties is not trivial with voxel representation. Additionally, introduction of new layers
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in to 3D CNNs [41], complex loss functions [12, 107] and integration with graphical

models [4, 5] can be identified as attempts to incorporate different forms of object priors

when working with voxel representation.

• Surface Mesh Representation: Surface meshes explicitly models the surface of the target

object. Therefore, it can be easily used to introduce priors related to topology, shape

and surface properties. One of the key challenges is performing the shift from voxel

representation into surface mesh representation. It could be addressed using differentiable

marching cube algorithms [84] or a mesh deformation based approach [98, 38].

• Implicit Surface Representations: Recent work has proposed the use of implicit surfaces

for representing 3D shapes. While one class of implicit surfaces learn the occupancy

fields [72], the other learns distance fields [80, 97]. Even though occupancy fields has the

same limitation with introducing surface priors as with voxel representations, distance fields

has demonstrated its ability to incorporate surface priors similar to surface meshes [90]. But,

one disadvantage with implicit surfaces is that, in applications that require fast extraction

of an explicit surface (eg: interactive annotation tool), extraction of a the surface from the

implicit field adds an additional computational overhead compared to using surface mesh

representation.

• Other Representations: They include point clouds, octrees, and volumetric meshes. Point

clouds are not used in volumetric image segmentation since it fails to represent the surface

of an object fully. Octrees and volumetric meshes do not have this drawback, but still they

are not used since the models that use them fails to achieve superior performance compared

to other competing shape representations.

1.2.1 Contribution

As mentioned above, in this thesis we focus on introducing object priors for volumetric image

segmentation. Depending on the type of object priors we want to introduce, we choose appropriate

shape representation and propose an ensemble of methods that address different aspects in

volumetric image segmentation. They are,

• Voxel2Mesh (see Chapter 2) that introduce priors on geometric topology and surface

properties such as smoothness and tension to produce more accurate segmentations,

• DASM (see Chapter 3) that introduce an alternative mechanism to enforce surface

properties such as tension, smoothness, and skewness on surface meshes produced by
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graph convolutional neural networks to achieve better trade-offs between the accuracy and

the quality of the meshes produced by them,

• Weak-Net (see Chapter 4) that use prior knowledge on surface properties and topology

to obtain weak annotations of target objects and use them to train CNNs for volumetric

image segmentation, and

• PA-Net (see Chapter 5) that introduce prior knowledge on approximate overall shape using

PAs to produce more accurate segmentations,

Collectively, these approaches improve the accuracy, quality and the speed of annotation in

volumetric image segmentation.
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2 Voxel2Mesh: 3D Mesh Model
Generation from Volumetric Data

2.1 Introduction

State-of-the-Art volumetric segmentation techniques rely on Convolutional Neural Networks

(CNNs) that use voxel representation [19, 73, 88]. However in clinical and research practice, a

mesh representation is often required to model the surface morphology and to compute area-based

statistics. Furthermore, introducing surface priors with voxel representation is not trivial and

priors related to shape and topology can be easily introduced using a mesh deforming approach.

We therefore introduce an end-to-end trainable architecture that goes from volumetric images to

3D surface meshes by learning to deform a template mesh to fit the target object. Our Voxel2Mesh
architecture is depicted in Fig. 2.1 (b). It comprises a voxel encoder, voxel decoder and a mesh

decoder. The two decoders communicate at all resolution levels and our approach incorporates

two innovative features that are key to performance.

• Learned Neighborhood Sampling. The mesh decoder learns to sample the output of the

volume decoder only where needed, that is, in the neighbor- hood of output vertices.

• Adaptive Mesh Unpooling. Accurately representing the surface requires densely sampled

mesh vertices in high-curvature areas but not elsewhere. We introduce an adaptative mesh

unpooling scheme that achieves this results and eliminates the need for exponentially large

amounts of memory that uniform unpooling requires.

Our contribution therefore is a novel architecture that takes a 3D volume as input and yields an

accurate 3D surface without any post-processing. We evaluate it on Electron Microscopy and
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Figure 2.1: Architectures (a) The Pixel2Mesh-3D architecture, a straightforward extension of [98],
uses a surface decoder but no voxel decoder. (b) By contrast, our Voxel2Mesh architecture takes as
input an image and spherical mesh. They are jointly encoded and then decoded into cubes and meshes of
increasing resolution. At each mesh decoding stage, the decoder first receives as input the current mesh
and a set of features sampled from the cube of corresponding resolution. Then the mesh is deformed and
refined non-uniformly by adding vertices only where they are needed.

MRI brain images as well as CT liver scans. We will show that it outperforms state-of-the-art

segmentation methods, especially when the training set is relatively small.

2.2 Related Work

CNN-based volumetric methods such as U-Net and its variants [19, 49, 73, 88] now dominate

biomedical image segmentation. This is evident from the CHAOS challenge [55] and Medical

Segmentation Decathlon [50] results. The winners of both competitions used ensembles of

methods relying on volumetric CNNs.

2.2.1 Importance of Surface Models

Many biological imaging tools are designed to study the morphology of structures such as cells,

organs, or tissues. Researchers usually prefer to visualize them as 3D surfaces at the required
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level of detail everywhere and are not limited by the voxels resolution. Even though volumes and

distances can be estimated using voxels, analyzing surfaces is best accomplished using meshes.

But, state-of-the-art methods produce volumetric descriptions and therefore must be converted to

surface meshes. This conversion typically relies on algo- rithms such as Marching Cubes [67]

followed by mesh smoothing. This introduces artifacts and prevents end-to-end training. We now

turn to existing approaches that mitigate these difficulties.

2.2.2 Deformable Models

Deformable surface models became popular in the 1990s to model biological structures in

volumetric data [43, 71] and are still being developped [52, 63, 82]. They are now used in

conjunction with deep networks [69] trained to return the energy function the deformed models

should minimize.

While they can remove some of the artifacts introduced by converting volumes to surfaces,

their use makes the processing pipeline more complex and still prevents end-to-end training.

Furthermore, they are not well-suited to segmenting structures that exhibit high inter-sample

shape variations, such as the synaptic junctions used in our experiments.

2.2.3 Deep Surfaces

In this context, the Pixel2Mesh [98] approach and its more recent variants [79, 100] are of

particular interest. They are among the very few approaches that go directly from 2D images to

3D surface meshes without resorting to an intermediate stage. They take an image and encodes

it into a set of progressively smaller feature maps. This set is then used at each stage of the

decoding process to produce an increasingly accurate mesh. This approach is easily extended

to handle 3D image volumes using the architecture depicted by Fig. 2.1(a) and we will refer to

this extension as Pixel2Mesh-3D. Unfortunately, as we will see, it was conceived for a different

purpose and its design choices makes it suboptimal for handling 3D image volumes.

2.3 Method

Our Voxel2Mesh architecture is depicted by Fig. 2.1(b). It takes an image volume as input and

returns a 3D surface mesh. The image volume is first encoded into smaller latent volumes that

serves as input to the voxel decoder. Then the voxel decoder generates a pyramid of cubes of
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Figure 2.2: Approach. (a) Learned Neighborhood Sampling. (b) Adaptive Mesh Unpooling.

increasing resolution whose voxels contain feature vectors. Finally the mesh decoder generates

increasingly precise deformations of an initial spherical mesh using feature vectors extracted

from voxel decoder. The voxel encoder and voxel decoder pictured at the top of Fig. 2.1(b) are

based on a standard U-Net [19] architecture.

A key specificity of our approach is that both the sampling of the voxel features and the location

and number of the new vertices needed to refine the mesh are adaptive so that the final mesh is

refined where it needs to be, and only there.

2.3.1 Mesh Decoder

The input to the mesh decoder is a sphere mesh with 3D vertices forming facets whose edges we

use to perform graph convolutions. It learns to iteratively refine the sphere mesh to match the

target object.

Let us denote by l = 0 the input to the decoders and by 1 ≤ l ≤ L the output of subsequent blocks.

For each mesh vertex, we write

zl = hl (xl ,zl−1,vl−1) and vl = vl−1 +∆l (zl ) , (2.1)

where vl are the 3D vertex coordinates after block l ; xl and zl−1 are the feature vectors produced

by blocks l and l −1 in the voxel and mesh decoder, respectively; hl and ∆l are two functions

implemented by 4 graph convolution layers each, whose weight we learn during training. By

convention, we take z0 to be an empty feature vector. We write the graph convolutions as
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f ′ = w1f+ 1

|N (vl )|
∑

vi
l∈N (vl )

f i w2e−d2
i /σ2

, (2.2)

where f′ and f are the feature vector associated with the vertex vl before and after the convolution.

N (vl ) is the set of neighborhood vertices of vl and y i is the feature vector corresponding to the

neighboring vertex vi
l . di =

√
||vi

l −vl ||. w1,w2 and σ are weights learned during training.

Learned Neighborhood Sampling (LNS)

The feature vector xl in Eq. 2.1 is extracted from voxel features by feature sampling at locations

that are functions of the mesh vertices. Since voxel features lie on a discrete grid, we use tri-linear

interpolation to sample features and refer to this as point sampling. Current approaches only

sample at exact vertex locations [98] or in pre-determined neighborhoods around the vertex [100].

This restricts the sampler’s ability to pool information from its neighborhood.

Instead, we introduce our LNS strategy that learns optimum sampling loca- tions. It first samples

feature vector y at a given vertex vl using point sampling. We then train a neural function to

return the set of neighborhood points to sample

U = {ui }P
i=1 = f (y,vl ) . (2.3)

Next, the set of features Y = {yi }P
i=1 are sampled at {ui }P

i=1, again using point sampling. Finally,

the feature vector xl corresponding to vertex vl is given by another neural function

xl = g (Y,U,y,vl ) . (2.4)

As shown in Fig. 2.2 (a), LNS only samples from the voxel feature map corres- ponding to the

mesh deformation stage. This is in contrast to earlier sampling strategies, that samples from all

feature maps at each stage which yields graph convolution networks with many more weights in

their mesh deforming module and thus over-fitting when trained with smaller datasets.

Adaptive Mesh Unpooling

High accuracy requires enough vertices to pro- perly fit the underlying surface. We could

start with a sphere with many vertices but this is neither computationally nor memory efficient.

Therefore, Pixel2Mesh-3D and its variants use an uniform unpooling strategy that gradually

increase the vertex count. Unfortunately, the vertex count still increases exponentially.
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To prevent this, we introduce the adaptive unpooling strategy depicted by Fig. 2.2 (b). First,

we add candidate vertices using uniform unpooling strategy. Then the mesh is deformed and

we compute the shortest distance from each candidate vertex to its parent edge as indicated by

red and green arrows in Fig. 2.2 (b). If the distance is greater than a threshold, we keep them,

otherwise we discard them. This looses edge connectivity making re-meshing necessary. To this

end, we exploit the fact that the mesh decoder learns a continuous mapping from the surface

points on the input sphere to those on the object surface. This relationship enables us to find

the corresponding points on the sphere’s surface for each mesh vertex. We compute the convex

hull to restore edge connectivity E ′ between the points on the sphere. E ′ can then be directly

transferred to the target mesh because the mapping is continuous. Since our remeshing only

recomputes the neighbors of each vertex and does not perform any non-differentiable operations

on vertex variables, it preserves overall differen- tiability.

2.3.2 Loss function

We use the cross entropy loss Lce with ground-truth volumes and the Chamfer distance Lc f to

points at the boundary of the same ground-truth volumes to train the voxel and mesh decoders,

respectively. Instead of using mesh vertices when evaluating Lc f , we randomly sample points

from the 3D mesh [78]. We also introduce three regularization terms normal loss Ln , Laplacian

loss Ll ap , and edge length loss Lel to improve convergence and smooth the output mesh [98].

We write the complete loss as

L =
L∑

l=1
L l

c f +λ1Lce +λ2Ln +λ3Ll ap +λ4Lel , (2.5)

where L is the number of stages in the mesh decoder.

2.4 Experiments

2.4.1 Datasets

We tested our approach on 3 datasets. We describe them below briefly and provide more details

on the training and testing splits in the supplementary material.

Synaptic Junction Dataset. åIt comprises a 500×500×200 FIB-SEM image stack of a mouse

cortex. We extracted 13 volumes roughly centered around a synapse for training and 13 for

testing. The task is to segment the pre-synaptic region, post-synaptic region, and synaptic cleft.
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(a) (b) (c) (d) (e)

Figure 2.3: Qualitative results. (a) Input volumes. EM (row 1,2), CT(row 3), MRI(row 4) (b) Ground
truth (c) CNN baseline (d) CNN baseline + post processing (e) Voxel2Mesh. The orange boxes highlight
false positive regions.

They are shown in blue, green, and red respectively in the first two rows of Fig. 2.3.

Hippocampus Dataset. It consists of 260 labeled MRI image cubes from the Medical

Segmentation Decathlon [89]. The task is to segment the hippocampus, as depicted by the fourth

row of Fig. 2.3.

Liver dataset. It consists of 20 labeled CT image cubes from the CHAOS challenge [55]. The

task is to segment the liver as shown in the third row of Fig. 2.3.

2.4.2 Baselines

As the architecture of Voxel2Mesh borrows from U-NET and Pixel2Mesh-3D, they both

constitute natural baselines. As state-of-the-art CNN based appro- aches, we use TernausNet,
LinkNet34, ResNet50 and ResNet50-SE, which belong to the ensemble of architectures that

won the CHAOS challenge. U-NET was used as the base architecture by the winner of Medical

Segmentation Decathlon. We also use V-NET, a widely used variant of U-NET, as a baseline.

Since we are working with volumetric data, we use 3D variants of all these architectures.
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(a) (b)

Figure 2.4: Levels of resolution. (a) Pixel2Mesh-3D result (10422 vertices). (b) Voxel2Mesh result
(7498 vertices). With our adaptative unpooling, we obtain better results with fewer vertices.

2.4.3 Comparative Results

Fig. 2.3 and Fig. 2.4 depict our results qualitatively and we report quantitative ones in Tab. 2.1.

As all the baselines shown above the first thick line return volumetric descriptions, we rasterize

the mesh that Voxel2Mesh returns and use intersection over union (IoU) score to compare all the

results against the ground truth. In all cases, we trained the networks three times with different

initializations and we report the mean IoU and its standard deviation.

For completeness, we simulated a post-processing pipeline by selecting the best performing

baseline for each of the three datasets, removing small false positive regions outside the object by

connected component analysis, running Marching Cubes followed by smoothing using Algebraic

Point Set Surfaces [39]. We refer to the result obtained by only removing the false positives as

Best CNN + CLN and the one with full post-processing as Best CNN + FPP.

Voxel2Mesh performs best in all cases except the synaptic cleft, where it comes second. This can

ascribed to the fact that synaptic clefts sometimes have holes in them, which a spherical mesh

cannot capture. The improvement is most significant in the two datasets—liver and synaptic

junction—with fewer training samples compared to the hippocampus dataset that features more

training data.

The key challenge when training Voxel2Mesh is finding the correct amount of regularization.

If the regularization is not sufficient, it can result in vertices with large movements and faces

with large area. If it is too much, it can result in meshes that are over-smoothed. Therefore, the

regularization coefficients should be found using hyperparameter grid search.
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Table 2.1: Comparative results on three datasets using the IoU metric.

Liver Hippo. Synaptic Junction
Pre-Synap. Synapse Post-Synap.

TernausNet [49] 84.4 ± 1.3 78.4 ± 1.2 73.5 ± 1.3 64.4 ± 0.5 78.4 ± 1.3
LinkNet34 [88] 82.8 ± 1.4 79.4 ± 0.8 72.3 ± 0.5 63.2 ± 1.2 78.2 ± 1.1
ResNet50 [55] 82.1 ± 0.7 80.7 ± 0.2 70.3 ± 0.8 63.3 ± 0.6 76.2 ± 1.4
ResNet50-SE [55] 82.6 ± 1.2 80.5 ± 1.3 71.3 ± 0.6 63.6 ± 0.7 76.3 ± 0.9
V-NET [73] 81.5 ± 1.4 75.3 ± 1.4 64.3 ± 0.7 65.2 ± 1.3 74.1 ± 0.7
U-NET [19] 84.2 ± 1.6 80.9 ± 1.5 73.6 ± 1.3 67.2 ± 0.8 78.2 ± 0.9
Best CNN + CLN 84.6 ± 1.7 81.1 ± 1.5 74.5 ± 1.2 67.6 ± 0.8 79.5 ± 0.9
Best CNN + FPP 84.3 ± 1.7 80.8 ± 1.5 74.2 ± 1.2 67.4 ± 0.8 79.3 ± 0.9
Voxel2Mesh 86.9 ± 1.1 82.3 ± 0.9 77.3 ± 1.2 65.3 ± 1.2 83.2 ± 1.6

2.4.4 Ablation Study

Pixel2Mesh-3D is the baseline closest to our approach because it directly outputs a 3D surface.

Point Sampling (PS) and Uniform Mesh Unpooling (UMU) are the two modules in that play the

same role as our Learned Neighborhood Sampling (LNS) and adoptive mesh unpooling (AMU).

To check the importance of these strategies, we replaced them in our Voxel2Mesh pipeline by the

equi- valent ones in Pixel2Mesh-3D. We also evaluate the performance of Hypothesis Sampling

(HS), the sampling strategy of [100] that relies on a fixed neighborhood sampling. We report the

results in Table 2.2 in Chamfer distance terms. They demonstrate that our adaptative strategies

LNS+AMU deliver a clear benefit.

Table 2.2: Comparative results against CNN based mesh deforming baselines.

Liver Hippocampus
IoU Cf. IoU Cf.

PS + UMU 83.3 ± 0.8 3.3 ×10−3 78.8 ± 1.1 2.9 ×10−3

HS + UMU 84.2 ± 0.6 2.8 ×10−3 79.9 ± 0.9 2.3 ×10−3

LNS + UMU 85.6 ± 0.9 2.1 ×10−3 81.2 ± 1.2 1.8 ×10−3

LNS + AMU (Voxel2Mesh) 86.9 ± 1.1 1.3 ×10−3 82.3 ± 0.9 1.1 ×10−3

2.5 Conclusion

We have proposed an end-to-end trainable architecture that takes an image volume as input and

outputs a 3D surface mesh. This makes the post processing steps usually required to obtain such

a mesh from a volumetric representation unnecessary, while preserving accuracy. Our adaptative

sampling and unpooling strategies are key to this result. Not only does our architecture deliver

good results, it also bridges the gap between voxel-based and surface-based representations. In
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future work, we plan to extend our approach to structures with more complex topologies, such as

the synaptic cleft and its potential holes.
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3 Deep Active Surface Models

3.1 Introduction

Triangulated meshes are one of the most popular and versatile kind of 3D surface representation.

In recent years, one of the most popular approaches to inferring such representations from

images has been to use deep networks to produce a volumetric representation and then running

a marching-cube style algorithm to create the mesh. However, using marching-cubes tends

to introduce artifacts and introduces additional complexities when trying to make the process

end-to-end differentiable. Hence, deep-learning methods that go directly and without resorting to

an intermediate stage from 2D images [98, 79, 100] and 3D image stacks [103] to 3D triangulated

surfaces have recently been proposed.

Unfortunately, these direct methods are also prone to generating unwanted artifacts such as those

shown at the top of Fig. 3.1. State-of-the-art methods handle them by introducing additional

regularizing loss terms such as the edge length loss, the normal consistency loss, or the Laplacian

loss during training [38]. To be effective without sacrificing reconstruction accuracy, these terms

must be carefully weighted, which is typically difficult to achieve.

In this paper, we solve this problem by introducing into the surface generating architecture

a special-purpose layer that regularize the meshes using a semi-implicit scheme that involves

recursively solving sparse linear systems of linear equations. It propagates smoothness constraints

much faster and more reliably than traditional gradient descent-based energy minimization

without requiring much computational power and yields surface meshes that fit the data while

remaining smooth, such as those shown at the bottom of Fig. 3.1. Furthermore, this scheme

enables us to
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Figure 3.1: Smoothness and Accuracy. (Top) 3D surface meshes of a couch modeled from an RGB
image and of a synaptic connection segmented from an electron microscopy stack by Mesh R-CNN [38]
and by Voxel2Mesh [103], two state-of-the-art mesh-generating methods. (Bottom) Results using the same
backbones augmented by our DASM smoothing layers. The meshes have far fewer artifacts and we will
show that they are also more accurate.

• modulate locally the amount of regularization we impose so that we regularize only where

it is needed and, hence, preserve accuracy;

• use meshes consisting of vertices with arbitrary degrees which is not commonly seen in

majority of Active Shape Models.

Both of these are important to model complex 3D objects that can be smooth in some places and

very curvy elsewhere.

We took our inspiration from the Active Surface Models (ASMs) idea [95, 96], which were first

introduced over 30 years ago and also used a semi-implicit optimization scheme to model complex

3D shapes from images. Today, they are mostly used in conjunction with deep networks that are

used to compute the data term that is minimized when deforming the models and meta-parameter

maps that controls its behavior [69, 24]. Even though these methods are end-to-end trainable,

they do not embed the ASMs within the contour deforming graph convolution networks as we do.

Furthermore, they are limited to 2D contours whereas we handle irregular 3D surface meshes,

that is, meshes whose vertices can be of arbitrary degrees. To this end, we propose an original
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method to compute the derivatives required for back-propagation on such a mesh.

Our contribution therefore is Deep Active Surface Models (DASMs) that outperform equivalent

architectures in which the smoothness constraints are imposed by minimizing a traditional loss

function. We will demonstrate this for 3D surface reconstruction from 2D images and for 3D

volume segmentation.

3.2 Related Work

3.2.1 Active Contour and Surface Models

Active contour models allow contours to be refined to account for local image properties while

preserving global geometric primitives. They were first introduced in [53] for interactive

delineation and then extended for many different purposes [33]. Active surface models operate

on the same principle [95, 96] but replace the contours by triangulated meshes to model 3D

surfaces. They have proved very successful for medical [70, 43] and cartographic

applications [34], among others, and are still being improved [63, 82, 52].

Both active contours and surfaces operate by minimizing an objective function that is a weighted

sum of data term derived from the images and a quadratic term that enforces global smoothness.

They owe part of their success to the ability to perform the optimization using a semi-implicit

scheme that propagates smoothness constraints much faster than gradient descent energy

minimization would and gives them superior convergence properties. In our work, we integrate

this scheme into our deep architecture.

3.2.2 Deep Surface Models

Before the advent of deep learning, mesh representations used to be dominant in the field of 3D

surface reconstruction [70, 33]. Since then, they have been eclipsed by methods that rely on

continuous deep implicit-fields. They represent 3D shapes as level sets of deep networks that

map 3D coordinates to a signed distance function [80, 106] or an occupancy field [72, 13]. This

mapping yields a continuous shape representation that is lightweight but not limited in resolution.

This representation has been successfully used for single-view reconstruction [72, 13, 106] and

3D shape-completion [17].

However, for applications requiring explicit surface parameterizations, the non-differentiability of

standard approaches to iso-surface extraction, such as the many variants of the Marching Cubes
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algorithm [67, 76], as well as their tendency to produce artifacts, remain an obstacle to exploiting

the advantages of implicit representations. The non-differentiability is addressed in [84] but the

artifacts remain. Pixel2Mesh [98] and its newer variants [79, 100] represent attempts to overcome

this difficulty by going directly from 2D images to 3D surface meshes without resorting to an

intermediate stage. This approach has recently been extended to handle 3D image volumes [103].

These methods rely on graph-convolution layers to iteratively deform an initial mesh to match the

target. While effective, they tend to produce large artifacts that detract both from their accuracy

and their usability for further processing. This can be mitigated by introducing regularizing cost

terms into the training loss function. However, it is difficult to weigh them properly to remove the

artifacts without compromising the accuracy. Our method is designed to address this very issue.

3.2.3 Deep Contour Models

Similar to Pixel2Mesh and its variants for surface extraction, there exist its 2D counter parts.

[64, 81] use graph-convolution networks to perform instance segmentation by deforming a

contour. The same approach is used in [65] to perform interactive object annotation.

3.2.4 Active Contours/Surfaces and Neural Networks

Active contour models have been combined with deep networks by exploiting the differentiability

of the active contour algorithm [69, 15, 42]. These approaches use deep networks to produce the

data term as well as meta-parameter maps controlling the behavior of the active contour. This

has also been exploited to correct errors in contour labels used in semantic segmentation [1].

However, we are not aware of any recent work that embeds active surfaces into deep networks.

One potential reason is that most current approaches to generating 3D meshes in a deep learning

context, such as those discussed above [98, 79, 100, 103], yield irregular meshes in which the

vertices can have varying number of neighbors. This makes the computation of the derivatives

required for back-propagation non-trivial. This has been addressed in the ASM context by

introducing finite element-based computations that notably complexify the approach [61] or non-

easily differentiable elements such as quadric fitting in the neighborhood of some vertices [62]. In

this paper, we propose an approach that is back-propagation friendly on potentially large meshes.
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3.3 Method

We first introduce the general formulation of Active Surface Models (ASMs) and then show

how we can apply it to meshes whose vertices can be of arbitrary degree. Finally, we discuss

the integration of ASMs and mesh-deforming Graph-Convolutional Neural Networks (GCNNs),

which produces our Deep Active Surface Models (DASMs).

3.3.1 Active Surface Model (ASM)

An ASM consists of a surface S (Φ) whose shape is controlled by a vector of parameters Φ and

can be deformed to minimize an objective function E(Φ), often referred to as an energy. We first

introduce a continuous formulation and then its discretization, which is the one used in practice.

Continuous Formulation. S is represented by the mapping from R2 to R3

v : (s,r ;Φ) 7→ (vx (s,r ;Φ), vy (s,r ;Φ), vz (s,r ;Φ)) , (3.1)

where (s,r ) ∈Ω= [0,1]× [0,1]. Fig. 3.2 depicts this mapping and its derivatives. Φ is typically

taken to be

Φ∗ = argminΦE(Φ) , (3.2)

E(Φ) = Edat(Φ)+Edef(Φ),

where Edat is a data term that measures how well the surface matches the images and Edef is a

deformation energy that is smallest when the surface is smooth. Edef is often written as

Edef =
∫
Ω

w10

∥∥∥∥∂v

∂s

∥∥∥∥2

+w01

∥∥∥∥∂v
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∥∥∥∥2

+2w11

∥∥∥∥ ∂2v

∂s∂r

∥∥∥∥2

+w20
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∂s2

∥∥∥∥2
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∥∥∥∥∂2v

∂r 2

∥∥∥∥2

dr d s . (3.3)

The surface Φ∗ that minimizes the energy E(Φ)satisfies the associated Euler-Lagrange equation

[20, 53]
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Figure 3.2: Derivatives. Top. The surface is represented by a differentiable mapping v from R2 to
R3. Bottom. After discretization, let v(s,r ) be a vertex. To approximate derivatives with respect to s
using finite differences, we need to estimate quantities such as v(s +δs,r ) where δs is small. To this end,
we estimate the barycentric coordinates λ, λ1, and λ2 of v(s +δs,r ) in the facet it belongs to and take
v(s+δs,r ) to be λv(s,r )+λ1v(s1,r1)+λ2v(s2+r2), where v(s1,r1) and v(s2,r2) are the other two vertices
of the facet. The same operation can be performed for derivatives with respect to r .

F (v) =− ∂

∂s

(
w10

∂v

∂s

)
− ∂

∂r

(
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∂r

)
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∂2s

(
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∂2v

∂s2

)
+ ∂

∂2r

(
w02

∂2v

∂r 2

)
,

where F =−∇Edat.

Discrete Formulation. When S (Φ) is discretized and represented by a triangulated mesh M(Φ),

Φ becomes the 3N -vector built by concatenating the 3D coordinates of its N vertices. Using the

finite-difference approximation described in the appendix, Eq 3.4 can be written in matrix form

as

AΦ∗ = F (Φ∗) , (3.5)

where F is the negative gradient of Edat with respect to Φ. Because A is usually non-invertible,

given an initial value Φ0, a solution to this equation can be found by iteratively solving

22



3.3 Method

α(Φt −Φt−1)+AΦt = F (Φt−1) ,

⇒ (A+αI)Φt =αΦt−1 +F (Φt−1) , (3.6)

where I is the identity matrix. When the process stabilizes, Φt =Φt−1 and is a solution of Eq. 3.5.

The strength of this semi-implicit optimization scheme is that it propagates smoothness

constraints much faster than traditional gradient descent that minimizes energy E(Φ) and at a low

computational cost because A is sparse, which means that the linear system of Eq. 3.6 can be

solved efficiently. In this scheme α plays the role of the inverse of a step size: When α is large

enough for the Froebinius norm of αI to be much larger than that of A, the optimizer performs a

steepest gradient step given by F (Φt−1) with learning rate 1
α at each iteration. Conversely, when

α is small, A dominates and much larger steps can be taken.

In the original deformable contour models [53], the matrix A+αI was never inverted. Instead

Eq. 3.6 was solved by LU decomposition. Instead, to implement this effectively on a GPU

using sparse tensors and to speed up the computations of the losses and their derivatives, we

approximate the inverse of (A+αI) using the Neumann series

(A+αI)−1 ≈
K∑

n=0
(−1)n

(
1

α

)n+1

An . (3.7)

and use it to solve Eq. 3.6. We use K = 4, which yields a sufficiently good approximation of

actually solving Eq. 3.6.

Computing the Regularization Matrix A. In most traditional ASMs, the meshes are either

square or hexagonal and regular, which makes the computation of the derivatives of the mesh

vertices possible using finite-differences and, hence, the regularization matrix A of Eq. 3.5 easy

to populate.

When the mesh is triangular and irregular, vertices can have any number of neighbors and the

computation becomes more complex. Nevertheless the required derivatives, of order 2 and 4, can

still be expressed as finite differences of weighted sums of vertex coordinates where the weights

are barycentric coordinates of small perturbations of the original vertices. This is explained in

more details in the appendix.
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3.3.2 Deep Active Surface Model (DASM)

The update equation in a typical mesh-deforming graph-convolutional neural network (GCNN)

that plays the same role as that of Eq. 3.6 is

Φt =Φt−1 + 1

α
F (Φt−1,Xt−1) , (3.8)

where F denotes the negative gradient of the loss function calculated using the feature vector

Xt−1 associated with the mesh parameters Φt−1. In the case of our deep active surface models, it

becomes

(A+αI)Φt =αΦt−1 +F (Φt−1,Xt−1) , (3.9)

as in Eq. 3.6. In Eq. 3.8, the loss function typically includes a regularization term to keep the

mesh smooth, whereas in Eq. 3.9 our semi-implicit scheme enforces smoothness by solving the

linear equation.

Uniform vs Adaptive DASMs Eq. 3.9 forms the basis of the simplest version of our DASMs,

which we will refer to as Uniform DASMs because the same amount of smoothing is applied

across the whole mesh. This may result in under- or over-smoothing because some parts of the

objects require more smoothing while some parts do not.

To account for this, we also introduce Adaptive DASMs that are designed to smooth only where

necessary, as indicated by an auxiliary metric. Experimentally, adaptive smoothing is required

when the GCNN produces particularly large deformations but only in a very specific part of the

mesh or fails to smooth-out artifacts produced by mesh initialization algorithms. This could be

eliminated by strongly smoothing everywhere but would degrade accuracy in high-curvature

areas.

To solve this problem, we begin by using the approximation of (A+αI)−1 from Eq. 3.7 to rewrite

the evolution equation of Eq. 3.9 as

Γt =Φt−1 + 1

α
F (Φt−1,Xt−1) ,

Φt = (I+
K∑

n=1
(−1)n

(
1

α

)n

An)Γt , (3.10)

= Γt +BΓt withă ăB =
K∑

n=1
(−1)n

(
1

α

)n

An .
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(a) Starting mesh Γt

(b) Uniform DASM (c) Adaptive DASM

Figure 3.3: Uniform vs Adaptative Smoothing. (a) Mesh at time t . In general, |BΓt |q < |BΓt |p . (b)
When using enough uniform smoothing to remove the irregularity at point p, the mesh will typically
be oversmoothed at q . (c) When using adaptative smoothing, the mesh is smoothed around p but not
oversmoothed around q .

Γt represents Φt−1 incremented by the negative gradient of the loss function F (Φt−1) but not yet

smoothed. In other words, we have rewritten the smoothing operation that transforms Γt into Φt

as simply adding BΓt to Γt . This gives us the freedom to decide where we want to smooth and

where we do not by introducing a diagonal matrix Λ and rewriting the update rule of Eq. 3.10 as

Φt = Γt +ΛBΓt . (3.11)

This update rule is similar to the one of the Adagrad algorithm [26]. Here, each diagonal

component λi ,i of Λ rescales the corresponding component (BΓ)i of BΓ. In Adagrad, adaptive

re-scaling is a function of past gradients. Here we take it to be a function of current surface

gradients because we have observed that |BΓt |i tends to grow large when the facets increase in

size and smoothing is required, and remains small otherwise. We therefore take the diagonal

values of Λ to be

λi i =σ(|BΓt |i ;β,γ) , (3.12)

where σ is the Sigmoid function and β,γ are its steepness and midpoint. In this way, for small

values of |BΓt |i , there is almost no smoothing, but for larger ones there is. Fig. 3.3 illustrates this

behavior.
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(a) (b) (c) (d) (e) (f)

Figure 3.4: Performing multiple smoothing steps. (a) Ground truth (b) Input (c) ASM 1-step (d) ASM
3-steps (e) ASM 5-steps (f) ASM 7 steps. We start with a very noisy mesh produced by the algorithm
of [38] run without regularization. We have colored front-faces and back-faces of the meshes in blue and
pink respectively for better visualization. After running one step of surface evolution given by Eq. 3.6, we
obtain the mesh of Fig. 3.4 (c). Subsequent meshes shown in Fig. 3.4 (d,e,f) are obtained by continuing
the surface evolution for 3, 5, and 7 steps respectively. In these subsequent steps we set F (Φt−1) to zero.

Recursive smoothing Any single DASM step given by Eq. 3.11 can only rectify a finite amount

of deformations. To mitigate this, we perform more than one adaptive-smoothing step in-between

gradient updates. During these additional smoothing steps no gradient update is done and we use

F (Φt−1,Xt−1) = 0. In practice we perform these steps until ∥Φt −Φt−1∥ < ϵ, where ϵ is a preset

constant. Fig. 3.4 illustrates this process.

Loss terms In architectures such as Mesh R-CNN [38] and Voxel2Mesh [103], a loss term is

used to supervise the output of each mesh-refinement stage. We follow the same approach and

add a loss term at the end of each DASM module. We write it as

L =Ld at a +λLr eg . , (3.13)

Ld at a =λc f .Lc f . +λn.di st .Ln.di st . ,

Lr eg . =λed g eLed g e +λLap.LLap. +λn.cons.Ln.cons. .

Here LC f .,Ln.di st . are Chamfer and Normal distances [38] and Led g e ,LLap.,Ln.cons. are edge

length loss, Laplacian loss and normal consistency loss, respectively [98]. All these loss terms

are used in Voxel2Mesh [103] except LNor m.. Similarly, they are all used in Mesh R-CNN [38]

except LLap. and LNor m..

3.4 Experiments

In this section, we test DASM’s ability to predict 3D surfaces from 2D images on Shapenet [10]

and to extract 3D surfaces from electron microscopy image stacks.
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3.4.1 From 2D Images to 3D Surfaces

For prediction of 3D surfaces from 2D images, we benchmark our Adaptative DASM, which we

will refer to as Ad.-DASM, on the ShapeNet dataset [10].

Baselines. We use Mesh R-CNN [38] both as a baseline and as the backbone of our network

because, among methods that use explicit surface representations, it is currently reported as

yielding the best results on ShapeNet. We also compare against Pixel2Mesh-3D [98].

Dataset. ShapeNet is a collection of 3D textured CAD models split into semantic categories. As

in the Mesh R-CNN experiments, we use ShapeNetCore.v1 and corresponding rendered images

from [18]. They are of size 137×137 and have been captured from 24 random viewpoints. We

use the train / test splits of [38], that is, 35,011 models seen in 840,189 images for training and

8,757 models seen in 210,051 images for testing. We use 5% of the training data for validation

purposes.

Metrics. We use the same metrics as in Mesh R-CNN. They are the Chamfer distance, Normal

distance, and F 1τ at τ= 0.1,0.3 and 0.5. For the Chamfer distance a lower value is better while a

higher value is better for the others.

Implementation. We use the publicly available Pytorch implementation of Mesh R-CNN and

incorporate Adaptative DASM layers after each mesh-refinement stage. We also add a Uniform

DASM layer after the cubify operation to make the input to mesh refinement stages smooth. We

train the networks for 12 epochs using Adam optimizer [57] with a learning rate 10−4. We set

α= 1,β= 6000 and γ= 15.

Mesh R-CNN only uses the Led g e term of Eq. 3.13 for regularization purposes when training on

ShapeNet and turns off the term LLap. because, according to remarks on Github by the authors,

it has not helped to improve the results. For a fair comparison, we therefore do the same. In this

setup, Led g e , which penalizes increases in edge-length, is the only other source of geometric

regularization besides the one we provide with our DASM layers. We will therefore experiment

with different values of λed g e , the weight parameter in Eq. 3.13 that controls how much influence

it is given.

Results. We provide qualitative results in Fig. 3.5 and report quantitative results in Table 3.1

for λed g e = 0.2. Ad.-DASM outperforms Pixel2Mesh-3D and boosts the performance of Mesh

R-CNN. Furthermore, the meshes it produces are of much a better visual quality.
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Table 3.1: Comparative results on ShapeNet.

Chf. (↓) Normal F 0.1 F 0.3 F 0.5

Pixel2Mesh-3D 0.241 0.701 31.6 77.3 91.3
Mesh R-CNN 0.189 0.691 32.8 80.4 92.6
Ad.-DASM 0.183 0.727 33.5 81.0 92.6

Table 3.2: Results on ShapeNet as a function of λed g e .

λe. Chf. (↓) Norm. F 0.1 F 0.3 F 0.5

1.0 Mesh R-CNN 0.232 0.684 29.7 76.6 89.4
Ad.-DASM 0.231 0.691 29.3 76.6 89.3

0.6 Mesh R-CNN 0.212 0.681 30.6 79.2 91.4
Ad.-DASM 0.206 0.693 31.4 79.5 91.4

0.2 Mesh R-CNN 0.189 0.691 32.8 80.4 92.6
Ad.-DASM 0.183 0.727 33.5 81.0 92.6

0.0 Mesh R-CNN 0.144 0.713 35.8 85.1 94.2
Ad.-DASM 0.167 0.718 34.3 84.3 93.9

Table 3.3: Ablation study on ShapeNet.

Chf. (↓) Normal F 0.1 F 0.3 F 0.5

PostProc-ASM 0.249 0.673 28.5 75.3 88.1
Uniform-DASM 0.201 0.699 31.4 78.3 91.3
Ad.-DASM 0.183 0.727 33.5 81.0 92.6

In Table 3.2, we report similar results for different values of λed g e , which are depicted

qualitatively by Fig. 3.6. The trend is the same for λed g e = 0.6 and 1.0. However, for λed g e = 0.0,

the Chamfer distance for Mesh R-CNN is lowest even though the resulting meshes are extremely

noisy, as can be seen in the leftmost column of Fig. 3.6. Our interpretation for this somewhat

surprising result is that, in this regime, the meshes produced by Mesh R-CNN are so noisy that

DASM smoothing takes them away from the data they are trying to fit and degrades the Chamfer

distance. In any event, even though the Chamfer distance is low, this can hardly be considered as

a good results, hence confirming the observation made in [38, 98] that this metric might not be

the best to evaluate the quality of a mesh. When λed g e = 1.0, the difference between DASM and

Mesh R-CNN performance is not statistically significant and this is because, when using higher

λed g e , there are not many anomalies for the DASM to fix.
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(a) (b) (c) (d) (b) (c) (d)
View 1 View 2

Figure 3.5: ShapeNet Results. (a) Input images (b) Mesh R-CNN results from two different viewpoints.
The orange arrows highlight commonly seen Mesh R-CNN artifacts. (c) DASM results in the same two
views. The meshes are much smoother and most artifacts have disappeared, except for a few highlighted
by blue arrows.

Ablation Study It could be argued that we would have gotten similar results by simply

smoothing our meshes as a post-processing step. To demonstrate this is not the case, we

implemented PostProc-ASM that starts with Mesh R-CNN model trained with λed g e = 0.2 that is

then adaptively smoothed by running several times the surface evolution update of Eq. 3.11. In

Table. 3.3, we compare PostProc-ASM against Ad.-DASM and the results are clearly worse. We

also compare Ad.-DASM against Uniform-DASM, which clearly shows the benefit of the

adaptive scheme of Section 3.3.2.

Failure modes The main source of failures are anomalies produced by the GCNN that are too

large to be rectified. Remaining ones are denoted by blue arrows in Fig 3.5.

3.4.2 From 3D Image stacks to 3D Surfaces

In this section we benchmark our approach on CortexEM dataset and compare DASM against

Voxel2Mesh [103] and several other baselines.
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Figure 3.6: Influence of the regularization term. As λr eg increases, the output of both methods becomes
smoother but only DASM completely eliminates the artifacts. Note that in the case λr eg = 0, the output of
Mesh R-CNN is an extremely irregular mesh that nevertheless scores well on the Chamfer metric.

Baselines. We use Voxel2Mesh both as a baseline and as the backbone of our network. We

also compare our performance against several architectures popular in the biomedical imaging

community [19, 73, 49, 88, 55].

Dataset. CortexEM is a 500×500×200 FIB-SEM image stack of a mouse cortex. From this 26

sub-volumes with dimension 96×96×96 were extracted so that each one contains a synaptic

junction that is roughly centered. 14 sub-volumes in the first 100 slices in the image stack are

used for training and the remaining 12 in the next 100 slice are used for testing. The task is to

segment the pre-synaptic region, post-synaptic region, and synaptic cleft as shown in Fig. 3.7.

Metrics. As in [103] and many other papers, we use the intersection-over-union (IoU) as a

measure of quality for volumetric segmentation. To compare the meshes, we use the Chamfer

distance as in [103]. We repeat our experiments 3 times for each model and report the mean and

the standard deviation.

Implementation. As we did with Mesh R-CNN in Section 3.4.1, we incorporate Ad.-DASM

layers into a Voxel2Mesh backbone. We train the networks for 150000 iterations using Adam

optimizer [57] with a learning rate of 10−4. We set α= 1,β= 6000 and γ= 45.

To match the conditions in [103], Ad.-DASM was trained using λed g e =λLap. =λn.cons. = 0.25 in

Eq. 3.13. For comparison purposes, we also use λed g e =λLap. =λn.cons. = 0.025. To differentiate

two versions, we add the regularization coefficients as a subscript to model names. This gives us
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(a) (b) (c) (d) (b) (c) (d)
View 1 View 2

Figure 3.7: Modeling Synapses from Electron Microscopy Image Stacks (a) Representative slice from
the input volume. (b) Voxel2Mesh results seen from two different views. (c) DASM results seen from
the same two views. The pre-synaptic region, post-synaptic region, and synaptic cleft are shown in blue,
green, and red, respectively. The DASM results are much smoother and without artifacts, while also being
more accurate.

Table 3.4: Comparative results on CortexEM. We use the IoU metric to compare volumetric
segmentations.

Pre-Syn. Synapse Post-Syn.
TernausNet [49] 73.5 ±1.3 64.4 ±0.5 78.4 ±1.3
LinkNet34 [88] 72.3 ±0.5 63.2 ±1.2 78.2 ±1.1
ResNet50 [55] 70.3 ±0.8 63.3 ±0.6 76.2 ±1.4
ResNet50-SE [55] 71.3 ±0.6 63.6 ±0.7 76.3 ±0.9
V-NET [73] 64.3 ±0.7 65.2 ±1.3 74.1 ±0.7
U-NET [19] 73.6 ±1.3 67.2 ±0.8 78.2 ±0.9
Voxel2Mesh0.25 77.3 ± 1.2 65.3 ±1.2 83.2 ±1.6
Voxel2Mesh0.025 76.8 ± 0.9 65.4 ±1.6 81.2 ±1.4
Ad.-DASM0.25 77.7 ±0.8 65.3 ±0.7 83.3 ±0.8
Ad.-DASM0.025 79.4 ±1.4 65.3 ±0.9 85.5 ± 1.2

Table 3.5: Comparative results on CortexEM. We use the Chamfer distance (×10−2)

Pre-Syn. Synapse Post-Syn.
Voxel2Mesh0.25 1.62 ±0.4 0.19 ±0.2 2.41 ±0.7
Voxel2Mesh0.025 1.53 ±0.6 0.18 ± 0.4 2.35 ±0.4
Ad.-DASM0.25 1.59 ±0.5 0.19 ±0.3 2.39 ±0.8
Ad.-DASM0.025 1.47 ± 0.6 0.18 ±0.5 2.31 ± 0.6
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Voxel2Mesh0.25, Ad.-DASM0.25, Voxel2Mesh0.025, and Ad.-DASM0.025.

Results We report quantitative results in Table 3.4 in IoU terms and in Table 3.5 in Chamfer

distance terms. Fig. 3.7 depicts qualitative results for Ad.-DASM0.25, and Voxel2Mesh0.025.

Ad.-DASM0.025 easily outperforms Voxel2Mesh when segmenting pre and post synaptic regions.

For the smaller synaptic junction, Voxel2Mesh and DASM are statistically equivalent because,

unlike for the other two regions, their shapes are simple and there is not much improvement for

DASM to make. In fact, the best result is obtained by a vanilla U-Net.

Table 3.6: Run times. We report the time required to perform a forward and backward pass. |V | is the
number of mesh vertices.

Time (sec.) |V |
Voxel2Mesh 1.06 ±0.04 1534 ±4
Ad.-DASM 1.47 ± 0.06 1535 ±2

Computation time We report average execution time for a single forward and backward pass

for Voxel2Mesh and DASM in Table 3.6. We run this test on a single Tesla V100 GPU. We have

implemented the ASM module using custom CUDA kernels and uses sparse tensors. Assembling

the regularization matrix and performing the update of Eq. 3.11 adds a 40% overhead, which is

reasonable giving how large the matrices we deal with are.

3.5 Conclusion

We have developed an approach to incorporating Active Shape Models into layers that can be

integrated seamlessly into Graph Convolutional Networks to enforce sophisticated smoothness

priors at an acceptable computational cost. By embedding the smoothing directly into the update

equations, we can deliver smoother and more accurate meshes than methods that rely solely on a

regularization loss term.

In future work, we will further improve our adaptive DASM scheme. Currently, it relies on a

hand-designed metric to detect where to smooth and where not to. We will replace it by an

auxiliary network that predicts where smoothing is required, given the current state of the mesh

and the input data.
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4 Weakly Supervised Volumetric
Image Segmentation with Deformed
Templates
4.1 Introduction

State-of-the-Art volumetric segmentation techniques rely on Convolutional Neural Networks

(CNNs) operating on image volumes [19, 88, 73]. However, their performance depends critically

on obtaining enough annotated data, which itself requires expert knowledge and is both tedious

and expensive.

Weakly-supervised image segmentation techniques can be used to mitigate this problem. They

typically rely on tag annotations [46, 37, 36, 28] or coarse object annotations in the form of point

annotations [3, 83, 110], bounding box annotations [45, 59, 91], scribbles [110] or approximate

target shapes [56]. However, these techniques have been mostly demonstrated in 2D. For 3D

volume segmentation, the dominant approach is to fully label a subset of 2D slices [19, 25]. This

is referred to as weak supervision in the literature, even though it requires full supervision within

each slice.

By contrast, we propose an approach to 3D segmentation that is truly weakly-supervised in the

sense that we only need to provide a sparse set of 3D points on the surface of the target objects,

which can be done quickly and easily. To this end, we introduce the Weak-Net architecture

depicted by Fig. 5.2. It comprises two U-Net-like networks. The first one is the core network that

takes an image volume X as input and produces a segmentation map Ŷ. The second one is the

reconstruction network that takes Ŷ as input and outputs X̂, which should reproduce the original

image X as exactly as possible. During training, we jointly minimize the mean squared error

(MSE) from X to X̂ and the binary cross entropy between Ŷ and the mask volume Y defined by

the annotations. We obtain Y by iteratively deforming a simple template, such as a sphere, to fit
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Chapter 4. Weakly Supervised Volumetric Image Segmentation with Deformed Templates

Figure 4.1: Weak-Net architecture. A first U-Net takes the image X as input and outputs a segmentation
Ŷ, which is in turn fed to a second U-Net that outputs a reconstructed image X̂. Training is achieved by
jointly minimizing Lmse and Lce . This encourages X̂ to resemble the original image and Ŷ to be similar to
Y, a roughly aligned version of a template.

point annotations provided by an annotator, as shown in Fig. 4.2. The mesh is then rasterized

to obtain the voxel ground truth. When the user only provides few annotations, the deformed

template does not match the target object closely. Hence, minimizing the binary cross-entropy

only provides coarse supervision. However, minimizing the MSE loss so that the reconstructed

image resembles the original one provides the additional supervision required for good accuracy.

We evaluate the performance of Weak-Net on Computed Tomography (CT), Magnetic Resonance

Imagery (MRI) and Electron Microscopy (EM) image datasets. We will show that it outperforms

the standard approach to weak-supervision in 3D at a reduced supervision cost. More specifically,

we can deliver the same accuracy as when fully annotating 2D slices for less than a third of the

annotation effort. This is important because annotators typically are experts whose time is both

scarce and valuable. Furthermore, it creates the basis for interactive annotating strategies that

deliver the full accuracy at a lower cost than full supervision.

(a) (b) (c) (d) (e)
Figure 4.2: Deformed templates. (a,b,c,d,e) Deformed template using N = 25,50,125,250, and 3661
user-supplied 3D points when segmenting a liver. N = 3661 corresponds to full annotations in all slices.

4.2 Related Work

We first briefly review current approaches to weak-supervision for segmentation in 2D images and

3D volumetric images. We then discuss the use of atlases for 3D segmentation in a biomedical
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context.

4.2.1 Weakly-Supervised Image Segmentation

Segmenting 2D Images.Tag annotations are among the weakest forms of annotations that have

been used to segment natural images [46, 37, 36, 28] and medical images [30]. However, they

rarely provide enough supervision for accurate results. Furthermore, they can only be used when

segmentation can be formulated in terms of an object classification problem, which is not the

case when attempting to segment a hippocampus or a liver that is present in every image. Box

annotations have also been used [45, 59, 91]. In terms of localization, they are more effective

than tags but still provide little information about the precise shape of the target objects. By

contrast, point annotations [3, 83, 110], scribbles [110], and approximate shape annotation [56]

can be used to provide useful shape information.

The annotation process can be sped-up using dynamic programming [75] or deformable

contours [53], also known as snakes. This makes it possible to mark only a subset of points along

a contour and have the system refine their location while following the target object boundary.

Unfortunately, these algorithms are hard to deploy effectively in medical imagery because there

are many contours besides those of interest and they can easily confuse the semi-automated

algorithms, which greatly reduces their usefulness. This is addressed in [81] by introducing deep

snakes that only need a simple approximate contour for initialization purposes. In [2, 65], the

annotator is brought into the loop by giving corrective clicks when necessary, which results in an

effective approach to annotation. However, these deep snakes require fully labelled data for their

own training and have only been demonstrated in the 2D case.

Segmenting 3D Volumetric Images.By far the most prevalent approach to weak-supervision

for 3D segmentation, is to fully annotate subsets of slices from the training volumes [19]. Even

though this reduces the segmentation effort, the annotator still has to carefully trace the object

boundary in those slices. The effort can be reduced by using scribbles in individual slices [25] or

any of the semi-automated techniques described above. Unfortunately, the effectiveness of those

that do not require training [75, 53] is limited while the others [2, 65, 81] require full supervision

and are not applicable in our scenario.

Part of the problem is that these annotation techniques operate purely in 2D without exploiting

the 3D nature of the data. We will show that by so doing we only need a comparatively small

number of point annotations for effective training.
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4.2.2 Template Based Approaches

Shape priors have long been used for image segmentation [32, 21], well before the rise to

prominence of deep networks, and more recent work use shape priors in conjunction with deep

nets [103, 74] In the field of medical imaging, these priors are usually supplied in the form

of sophisticated templates known as Probabilistic Atlases (PAs) that assign to each pixel or

voxel a probability of belonging to a specific class. They are typically built by fusing multiple

manually annotated images and incorporated in to CNN architectures as auxiliary inputs to

provide localization priors that help the network find structures of interest. The PAs can be either

very detailed, as in [92, 93, 112, 60], to model structures that are known in detail or very rough,

as in [101], to deal with 3D structures whose shape can vary significantly.

PAs designed by point annotations have also been used in medical imaging [51, 86] as well as

in natural image segmentation as a source of prior information [108, 8, 68, 99]. They are often

referred to as seed layers and come in two main flavors, Gaussian priors [108, 8, 68, 99, 86] or

binary seed layers [51]. These seed layers either indicate points inside the object [108, 51] or

points on the boundary of the object [68, 99].

However, within the field of deep learning, PAs have been mostly used in fully-supervised

approaches. An exception is the work of [93], but here they are only used for pre-training

purposes.

One-shot and Few-shot learning based segmentation algorithms [109, 22, 94] can also be

considered as template-based and semi-supervised approaches, as they still require at least one or

a few fully annotated target objects as the atlas(es). In this work, we demonstrate another use for

templates, that is, supplying rough annotations we use to train a weakly-supervised network.

4.2.3 Image Reconstruction

Image reconstruction is used for semi-supervised [27, 14, 66, 31] and unsupervised [105, 11, 9]

image segmentation as an auxiliary task to improve the results. In this work, we demonstrate that

this idea also applies in a weakly-supervised setting to improve the segmentations produced by

the core-network trained with rough annotations. In our framework, the image reconstruction

network helps refine the rough initial shapes we obtain from the annotations. There are alternative

approaches to boundary refinement [1, 12, 40] but they are designed for 2D segmentation and

extending them to 3D would be non-trivial.
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(a) (b)

Figure 4.3: Using a secondary task to improve segmentations. (a) X is the input image and Ytr ue is the
ground-truth segmentation. Y is the atlas that is roughly correct but in which the boundaries of the target
object are inaccurate. (b) When λ is too large, Lmse dominates and the resulting segmentation features a
spurious region shown in red that corresponds to image boundaries that are not those of the target structure.
When λ is zero, only Lce is minimized and minimizing produces boundaries that are also those of the
atlas, which are not at the right place as the denoted by the red lines. For appropriate values of λ, the
boundaries are correct and the spurious region is eliminated.

4.3 Method

Our approach to 3D segmentation is weakly-supervised in the sense that, for training, we only

need to provide a sparse set of 3D points on the surface of target objects for each image volume,

which we use for training purposes. These points are used to deform a template, such as the one

depicted by Fig. 4.2, to provide a rough indication of where the target object boundary is. It is

exploited by our network to learn weights that yield accurate object boundaries. In short, we

provide minimal human input at training time so that, at inference time, the trained network can

be used without human intervention.

In this section, we first describe our Weak-Net architecture and the loss functions that allow it to

effectively exploit the weak supervision provided by our rough templates. We then discuss our

approach to deforming simple spherical templates given only a few user-supplied 3D points.

4.3.1 Network Architecture and Losses

Fig. 5.2 depicts the the Weak-Net architecture. It relies on two U-Net networks [19]. The first

takes as input an image volume X of D ×H ×W , where D, H , W stand for depth, height and
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Figure 4.4: Impact of the λ parameter in the loss of Eq. 4.1 and the thresholding parameter γ. (Col. 2-4)
When λ= 0, the segmentation is very similar to the template. When λ is large, there are many spurious
values. (Col. 5-8) We set λ to 10−4 and vary γ.

width. It outputs a tensor Ŷ of dimension D ×H ×W that stores the probabilities of each voxel

belonging to the foreground. The second takes Ŷ as input and yields X̂, which is of the same

dimension as X. Ideally, Ŷ should be the desired segmentation and X̂ should be equal to X.

To train these two U-Nets we minimize a weighted sum of two losses

L =Lce +λLmse , (4.1)

Lce =− ∑
i , j ,k

Yi , j ,k log(Ŷi , j ,k ) ,

Lmse =
∑

i , j ,k
Wmse

i , j ,k (Xi , j ,k − X̂i , j ,k )2 ,

where Y is the rasterized template that has been fitted to the target object and λ is a scalar that

controls the influence of the second loss. Lce is a standard cross entropy loss whose minimization

promotes similarity between the rasterized template Y and the segmentation Ŷ. Lmse is a voxel-

wise mean squared error in which the individual voxels are given weights W mse
i , j ,k whose value is

high within a distance d from boundaries in Y and low elsewhere.

In this scheme, the primary task is to minimize Lce to guarantee that the segmentation is roughly

correct and, at inference time, we only use the first U-Net, which we will refer to as our core

network. To obtain the final segmentation, we threshold Ŷ using a threshold γ.

However, because the template can only be expected to provide a coarse depiction of the object,

the Lce loss does not suffice on its own. To train this core network to produce accurate boundaries,

we also minimize Lmse , which serves as a secondary task. As depicted by the bottom and top

rows of Fig. 4.3, minimizing Lce alone (λ=0) would result in boundaries in Ŷ that are exactly

those of the template while minimizing Lmse alone (λ=1000) would produce boundaries that

exist in the image but are not necessarily those we are looking for. Minimizing a properly

weighted sum of the two yields segmentations that conform to the template while matching actual

image boundaries, as shown in the middle row of Fig. 4.3 (λ=0.0001).
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Figure 4.5: Iterative annotation strategy. The annotator provides a few 3D points, which are used to
deform the template. The result is rasterized and overlaid on the images. The annotator can then add
more points and deform again until the deformed template is close enough to the desired shape. For the
hippocampus, shown here, this takes about 150 points to achieve 80% of the maximum accuracy that could
be obtained using a fully annotated ground truth which consist of 1509 points on average.

Fig. 4.4 illustrates the influence of the γ and λ parameters on a real image. In practice, the results

are insensitive over a wide range to how they are chosen, which we will demonstrate in the results

section.

4.3.2 Template Deformation

Recall from Section 4.3.1, that the template Y of Eq. 4.1 should approximately match the target

structure. Hence, the annotator should supply points that are distributed across the object surface.

These points can then be used to deform the template so that its boundaries roughly correspond

to those of the target structure. In practice, structures of genus 0 are the most common. For these,

we start from a simple spherical template but more complex ones are possible, eg those discussed

in Section 4.2.2. We do this because creating complex atlases would require fully annotated data

and it would go against the objectives of this work. As we increase the number of points, we get

increasingly refined templates, as shown in Fig. 4.2.

To perform this deformation interactively and in real-time, we developed the GUI interface

depicted by Fig. 4.6, which relies on a recent approach to Active Surface Models (ASMs) [102]

that makes full-use of GPUs and is therefore fast. It is implemented as an MITK [104] plugin.

It lets the annotator supply a few points by clicking on 2D cross sections of the input image

volume. The ASM then deforms the template, which is overlaid on the image data, both as 2D

cross sections and a 3D surface rendering. The annotator can then add more points wherever the

deformed template is too far from the target organ’s boundary and iterate as often as necessary.

This effectively puts the human in the loop in a painless and practical way. We illustrate this in a

video that can be found in the supplementary material.
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Figure 4.6: Annotation GUI A user can place points by clicking in the 2D image cross sections.
A template is then deformed to fit the points and the user can place corrective clicks. The fitting
takes less than one second so the process can be done interactively.

4.4 Experiments

4.4.1 Datasets

In our experiments, we use three datasets acquired using different modalities to highlight the

generality of our approach.

Hippocampus DatasetThe dataset consists of 260 labeled MRI image volumes from the Medical

Segmentation Decathlon [89]. The task is to segment the hippocampus and we re-sample and

pad them to obtain 64×64×64 volumes. We use 130 volumes for training and the other 130 for

testing. We use half of the test set as the validation set which we use for our hyper-parameter

tuning and the remaining half to evaluate the final performance.

Synaptic Junction Dataset.We extract 25 96×96×96 sub-volumes centered around a synapse

from a 500×500×200 FIB-SEM image stack of a mouse cortex. We use the first 12 for training

and the remaining 13 for testing, the task being to segment the synaptic cleft that separates the

pre- and post-synaptic regions. In our experiments, we use the same hyper-parameters as for the

hippocampus dataset.
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Liver dataset.The dataset comprises 20 labeled CT image volumes from the CHAOS challenge

[55]. The task is to segment the liver and we re-sample and pad them to obtain 64×64×64

volumes. We use 10 image volumes for training and the other 10 for testing. In our experiments,

we also use the same hyper-parameters as for the hippocampus dataset.

4.4.2 Metrics and Baseline

We aim to produce segmentations that are above a given quality threshold using as few annotations

as possible. To formalize this goal, we use two metrics, one for quality and the other for annotation

effort.

Intersection over Union.We use the standard IoU metric [19] to quantify segmentation quality.

Annotation Effort.We use the number of points provided by the annotator as a proxy for amount

of effort. When the annotator provides individual points, this is clearly proportional to the

time spent. When the annotator outlines contours on 2D slices, it could be argued that this

overestimates the amount of effort because it is an easier task. However, in our experience it is

not because precisely outlining a contour requires deliberation. The best way to do it is to use a

graphics tablet and a pen, and thus requires additional hardware.

BaselineAs discussed in Section 4.2.1, the generally accepted way to provide weak-supervision

for 3D image segmentation is to fully annotate a small number of 2D slices [19]. To provide

a baseline, we therefore use this approach to train a 3D U-Net, as described in [19]. For a fair

comparison, we use the same U-Net as in Weak-Net.

4.4.3 Providing Annotations

Recall from Section 4.3.2 that the annotator is expected to provide 3D points spread across

the surface. As discussed in Section 4.3.2 and depicted by Fig. 4.5, we exploit the real-time

performance of active shape models to allow the annotator to provide a few points, deform the

template accordingly, and then add more points where the deformed shape is not satisfactory. In

this section, we explore different approaches to supplying the annotations.
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Randomized Annotations

Setup.To eliminate subjectivity from our experiments, we take advantage of the fact that our

datasets are fully annotated to simulate this process in the following steps.

1. Random selection. N points are randomly selected across the 3D surface. Ideally, they

should be uniformly distributed across the surface but there is no guarantee of that. To

emulate the behavior of a conscientious annotator trying to achieve this, we repeat the

operation P times and select the set of N points that exhibits the largest intra-point variance.

As we increase P , so does the probability that the selected points will indeed be uniformly

distributed. We will refer to P as the Point Spread variable.

2. Improved selection. We simulate the fact that a skilled annotator will provide the most

informative points possible by performing K random annotations as described above, using

each one to deform the template, and selecting the one that yields the highest IoU with

the ground truth. As K increases, so does the probability that the deformed template will

match the ground truth well. We will refer to K as the Annotator Skill variable because it

reflects the annotator’s ability to select a fixed number of points to obtain the best possible

result.

Hence our simulations are driven by three numbers, N the number of points per sample, P

the number of samples we select to guarantee a good spread of the points, and K the number

of attempts made to obtain a template shape that matches the ground-truth. To visualize their

influence, we plot in Fig. 4.7(a) the average IoU in the liver dataset between the deformed

template and the ground-truth as a function of P and K for a fixed value of N = 50. In Fig. 4.7(b),

we plot the IoU as function of N for P = K = 100. Clearly, the larger P , K , and N the higher the

IoU. Interestingly, even if we use all the ground-truth points to deform the template, the IoU does

not reach 100% because more sophisticated techniques that include sub-division of facets would

be required to achieve a perfect fit. In any event, with P = K = 100, we obtain an average IoU

between 80 and 90% that represent good but far from perfect fits, which is representative of what

a real-life annotator might do. We will therefore use these values in our experiments.

For the baseline, we randomly pick a number of slices from three image planes to be annotated

and use the ground-truth annotations for these slices. When selecting slices, we make sure the

slices contain the target object.

42



4.4 Experiments

(a)

(b)

Figure 4.7: Annotation simulation on the Liver dataset (a) Reconstruction accuracy (IoU)
variation for different values of K and P . (b) Reconstruction accuracy (IoU) variation as a
function of the number of annotated points. The black-dashed line indicates the accuracy that
would be achieve by annotating all points in each sample, that is 3661 points per sample on
average for the liver dataset.

(a) (b) (c) (d) (e) (f) (g) (h)
(i) (j)
Figure 4.8: Segmentation results. (a+f) A slice from the input volume from top to bottom (b+g)
Ground truth (c+h) U-Net with full-supervision (d+i) Corresponding Baseline (e) Weak-Net
trained with 25 points per sample. (f) Weak-Net trained with 125 points per sample.

Comparative Results.Given the setup described above, we now present results on the testing

sets of our 3 datasets, after training with different amounts of annotations, as depicted by Fig. 4.8.

When evaluating our method, we take P = K = 100 and vary N , the number of annotated points

per sample we provide, from 25 to 100 and S the number of samples we annotate. When

evaluating the baseline, we vary the number of slices we use and the number of samples we

annotate. In this case, the number of annotated points per sample is the sum of the contour lengths

in every slice.

In Fig. 4.9(a,b), we plot the average IoUs we obtain in this manner on the hippocampus dataset as

a function of the number of points per sample and the number of annotated samples. In Fig. 4.9(c),
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(a) (b) (c)
Figure 4.9: Results on the hippocampus dataset. (a) Baseline (b) Weak-Net (c) Annotation
effort required to achieve 65% and 70% IoU. The blue and red arrows indicate the effort reduction
our approach delivers.

we plot the total annotation effort, that is the product of the number of points per sample and the

number of samples, required to attain a target IoU, either 65% or 70%. As there are many ways

to achieve a given IoU by increasing one number while decreasing the other, we draw iso-IoU

curves. The baseline ones are dashed and ours are full and clearly to the left of the dashed ones.

In other words, we need significantly less effort to achieve a similar result.

In Fig. 4.10, we report our results on the other two datasets that contain fewer samples. Hence we

used all the train samples and plot the IoU as a function of the number of points per sample. For

the same number of points, our approach consistently outperforms the baseline. Note also, that in

the baseline method it is not possible to annotate less than one slice and therefore to reduce the

annotation effort below a certain level given by the size of the contours in the annotated slice.

Because we can annotate points randomly, we can actually annotate fewer, which is why the blue

curves extend further to the left than the yellow ones.

Human Annotations

In practice the ground-truth will not be available and the annotations will be provided by people.

We test this more realistic scenario on the Hippocampus and Liver datasets.

Setup.We used the GUI interface of Fig. 4.6 to manually annotate a subset of images using the

following protocol. The annotator first supplied an initial 4 points before fitting a template and

then additional ones where the fitted model seemed most distance from the target organ. As

it only takes 150 to 900 ms to perform the fit, the template was updated after each new point.

For the hippocampus, at most 100 points could be specified, and the liver 250. However, the

annotator could stop before entering all the allowed points. To ensure errors are only caused by
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(a)

(b)
Figure 4.10: IoU as function of the number of points used (N). (a) Synaptic Junction dataset.
(b) Liver dataset. The dashed line denotes fully supervised results.

poor template fitting and not by annotator mistakes, the ground truth labels are overlaid on the

image for visual inspection while placing the points. In the end, 2 different annotators annotated

16 hippocampus images and 5 liver images. To estimate the time for full 3D annotation, xy-slices

in one Hippocampus image and one Liver image were manually delineated. For Hippocampus,

all xy-slices were annotated. For Liver, 5 evenly spaced slices were annotated and the average

time was multiplied with the span of the liver along the z-axis. The annotations were performed

at the original resolution of the datasets and the IoUs were also computed at this resolution.

Table 4.1: Human annotation results. Values are given as mean±std. Times are in minutes.

Hippocampus Liver

Annotator 1 Max. IoU (%) 78±3.0 89±1.5
Time 3.66±0.60 9.17±1.75

Annotator 2 Max. IoU (%) 81±2.6 92±0.7
Time 5.72±1.31 15.5±1.47

Est. Full Annot. Time 6.65±0.65 125±19.3

Comparative Results.In Fig. 4.11 and Tab. 4.1, we report IoU as a function of the number of

points supplied. The performance is roughly comparable to what we obtain with the simulated

annotations of Section 4.4.3 but human-generated consistently deliver a higher IoU. However, in

the early part of the annotation process the IoU achieved by human annotators varies significantly

from dataset to dataset and annotator to annotator. Regarding time, as the Hippocampus volumes

are small, point annotation is only ∼1.5x faster than annotating the full volume. For the large
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Figure 4.11: Template accuracy as a function of the number of human or simulated point
annotations (N). (a) Hippocampus. (b) Liver.

Liver volumes however, point annotation is ∼10x faster, which is significant.

4.4.4 Limitations

It could be argued that even 25 or 50 points per sample is significant annotation effort. More

sophisticated templates that are parameterized by low-dimensional latent vectors can therefore be

deformed by specifying even fewer 3D points than we do now and can be developed as future

work.

4.4.5 Ablation Study

In this section, we first study the influence of the λ and γ hyper-parameters introduced in

section 4.3 and then compare our results against those obtained using full supervision.
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4.4 Experiments

(a)

(b)
Figure 4.12: Influence of λ and γ. IoU (%) as a function of λ in (a), γ in (b) on the Synaptic
Junction dataset with N = 25.

Table 4.2: Comparative results

Hippo. Liver Syn. Junction
Baseline 71.2 ± 0.9 81.2 ± 0.8 68.2 ± 0.9
Weak-Net 73.4 ± 0.8 83.1 ± 1.1 71.2 ± 1.2
Full anno. 79.3 ± 0.4 87.3 ± 0.3 73.3 ± 0.6

Impact of Hyper Parameters

We plot the variation of IoU against different values of λ and γ for the Synaptic Junction dataset.

As can be seen in Fig. 4.12, λ can be chosen in the range 10−6 to 10−3 without any major change

in performance. In practice, we used λ = 10−4 to produce the results shown Section 4.4 unless

otherwise specified. Similarly for γ, we observe a peak in the range of 0.9 to 0.99. In practice,

we used γ = 0.95.

Weak vs Full Supervision

We compare Weak-Net and the baseline against a U-Net trained with full supervision and report

the results in Table 4.2. Our approach delivers 92 to 95% of the accuracy that can be achieved

with full supervision with only 2 to 10% of the annotation effort for all 3 datasets.
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4.5 Conclusion

We have presented a weakly supervised approach to segmenting 3D image volumes that

outperforms more traditional approaches that rely on fully annotating individual 2D slices.

It relies on deforming simple spherical templates that incorporate no shape prior. In future work,

to further reduce the annotation burden, we will develop more sophisticated templates that are

parameterized in terms of low-dimensional latent vectors and can therefore be deformed by

specifying even fewer 3D points than we do now.
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5 Probabilistic Atlases to Enforce
Topological Constraints

5.1 Introduction

Probabilistic atlases (PAs) are widely used for multi-atlas based segmentation[48]. With the

advent of deep learning, there has been a push to incorporate them with Convolutional Neural

Networks (CNNs) as well [6, 47, 92, 93]. The published techniques relying on deep learning

share a number of features: They work best for structures featuring relatively small variations in

shape and position; the atlases are often created by fusing multiple manually annotated images;

the atlases must also be pre-registered to the target images to align them with the structures of

interest.

Thus, the PAs have been mostly used to segment structures such as the brain or heart for which the

above requirements can be met. In this paper, we propose an approach to design and handle PAs

that makes them usable in complex situations where the shape and position can vary dramatically,

such as those shown in Fig. 5.1. Our PAs are coarse and only encode the relative position and

topology of the structures we expect to find. To register them, we rely on affine transforms whose

parameters are estimated at the same time as the segmentations themselves using the end-to-end

trainable encoder-decoder architecture depicted by Fig. 5.1, which we will refer to as PA-Net.
The affine transforms are used to warp the atlases and feed the features of the warped atlases to

the decoder. This differs significantly from earlier approaches [92, 93] that rely on pre-registered

atlases.

We validate our approach on segmentation of synaptic junctions in Electron Microscopy (EM)

images and optic nerve head segmentation in retinal fundus images. A synaptic junction has an

arbitrary shape but always features a synaptic cleft sandwiched between a pre-synaptic bouton
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(a) (b) (c) (d)

Figure 5.1: Eliminating topological mistakes. (a) A small FIBSEM image stack featuring a
synaptic junction and a retinal fundus image. (b) Ground-truth segmentations. The pre-synaptic,
synaptic-cleft, and post-synaptic regions shown in green, red, and blue respectively. Similarly,
the optic disk and cup shown in green and red, respectively. (c) U-Net segmentations with orange
arrows pointing to topological mistakes. (d) Our error-free result (best viewed in color).

belonging to the axon of one neuron and a post-synaptic dendritic spine belonging to another. In

this case, the shape complexity and unpredictability precludes the use of standard PAs. Optic

nerve head consists of an optic disk and optic cup. Even though their shape does not vary

significantly, there are significant variations in the size of the optic cup and the position of the

optic nerve head.

We will show that PA-Net eliminates most of the topological mistakes its unaided V-Net [73] or

U-Net [85] backbone makes on the EM and retinal images, while being generic and potentially

applicable to other segmentation tasks. Our contribution is therefore a novel approach that makes

it possible to use probabili- -stic atlases even in situations where shape variability is too great

for existing approaches and methods to integrate the atlas registration process directly into the

network. The code is publicly available1.

5.2 Related Work

PAs are commonly used in standard atlas-based segmentation approaches. In their piplines, CNNs

are indirectly used to perform segmentation. These include using a CNN to infer deformation

maps to register target images to atlas images [7] and using it to implicitly infer the segmentation

masks[23, 44]; using CNNs to improve the selection of best atlases from a library [54]. As this is

1https://github.com/cvlab-epfl/PA-net.git
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5.3 Approach

Figure 5.2: PA-Net architecture. The network takes as input an image and a list of PAs. Given
the decoder output, the fully connected layers estimate the parameters of the affine transformation
that registers the PAs to the input. The registered PAs are then concatenated with the features
computed by the convolutional decoder at each scale.

not the focus of this paper, we will not discuss them further and will concentrate on methods that

directly use the PAs to assist a CNN that perform segmentation.

A PA can provide localization priors to help a network find the target of interest. Such PAs are

often referred to as seed layers. They come in two flavors, Gaussian priors [8, 108] or binary seed

layers [51]. Another popular way to focus the attention of the network is to provide an attention

mask [29], which then serves the same purpose as a PA. However, the attention masks are derived

from the input data itself and does not act as an external knowledge source.

PAs built by fusing multiple manually annotated images can be used to introduce even more

prior knowledge about shape and topology of structures. In [92, 93], this is done to improve

segmentations of human brain by having the CNN take pre-registered PAs as input. In our work,

we extend the idea by demonstrating that PAs can be used to introduce topological knowledge

even when the structure of interest exhibits large shape variations and without pre-registration

that the whole system is end-to-end trainable.

5.3 Approach

5.3.1 Network Architecture

The architecture of the proposed PA-Net is depicted in Fig. 5.2. Its backbone is an encoder-

decoder architecture similar to the one used in popular networks such as U-Net [85] or V-Net [73].

These networks are designed to learn to approximate the distribution p(Y|X), where X is the input

image and Y is the output segmentation. We extend the idea by learning the joint distribution
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(a) (b)

Figure 5.3: Probabilistic atlases. (a) For synaptic junction segmentation, they are cubes and we
show a single face. (b) For optic optic disk and cup segmentation, they are regular 2D arrays.
The color hues denote the same areas as those in Fig. 5.1. The color saturation is proportional to
the probability at a given location (best viewed in color).

p(Y,Tq(A)|X,A). The function Tq(·) applies affine transformations to the set of PAs A given the

pose vectors q. We factorize this joint distribution as

p(Y,Tq(A)|X,A) = p(Y|X,Tq(A))p(q|X,A) (5.1)

PA-Net models it using a primary stream, the encoder-decoder backbone at the top of Fig. 5.2,

and a secondary stream, the fully connected layers at the bottom of Fig. 5.2. The secondary

stream F(·,θ f ) originates from the latent vector produced by the final stage of the encoder E (·,θe ),

estimates the affine parameter vector q, uses it to warp the atlases, and feed them to the various

layers of the decoder D(·;θd ) after rescaling them to the resolution of feature vectors at each

stage. Here θe ,θd and θ f are the learned weights that control the behavior of E ,D and F. Given

the encoder output, F and D model p(Y|X,Tq(A)) and p(q|X, A), respectively. This guarantees

that these two distributions are learned from the same features. Training the encoder to produce

features that are effective for both tasks yield improved performance.

5.3.2 Atlas Design

Fig 5.3. depicts the topological atlases we use to segment synaptic junctions and optic disks and

cups. In the first case, they are cubes and in the second, ordinary 2D arrays. They encode the

probability of any pixel of voxel to belong to one of the possible classes—pre-synaptic, cleft, or

post-synaptic for synapses and optic disk or cup for retinas—given its pose.

5.3.3 Atlas Registration

Parameters necessary for PA registration is computed by estimating the pose vector q . When

working with image cubes such as the one shown at the top of Fig. 5.1, we take the pose vector
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5.4 Results and Discussion

Table 5.1: Comparative results for synaptic junction segmentation.

Jaccard index (%)
TER

Pre-synaptic Synaptic junction Post-synaptic Mean
V-Net 63.0 56.0 80.6 66.5 5/15
PA-VNet 59.5 57.8 83.1 66.8 1/15
U-Net 73.6 59.7 79.1 70.7 7/15
Naive PA-UNet 73.4 58.0 78.4 69.9 7/15
PA-UNet 72.6 62.8 87.0 74.1 3/15

to be q = [tx , ty , tz , sx , sy , sz ,rx ,ry ,rz ], where t{x,y,z} represent translations and s{x,y,z} scalings in

the x,y , and z directions, respectively. We represent the orientation using the angle-axis vector

[rx ,ry ,rz ], whose direction is the axis of rotation. When working with 2D images, we drop tz , sz ,

and rz from q.

5.3.4 Loss Functions

Following standard practice, we formulate the loss terms as the negative log likelihood of the

joint distribution p(Y,Tq(A)|X,A) of Eq. 5.1. This yields the composite loss

L =Lseg +Lpose . (5.2)

Lseg is the standard cross entropy loss that evaluates segmentation performance and take Lpose

is the least square error in estimating the pose q.

5.4 Results and Discussion

5.4.1 Datasets

Synaptic Junction Dataset:

It is a 500×500×200 FIB-SEM image stack of a mouse cortex. We used 50 xy slices for training,

50 for validation, and 100 for testing. From each set, we cropped 96×96×96 image volumes

containing a synaptic junction such as the one shown in the top row of Fig. 5.1(a) and they

are zero-padded as necessary. This gave us 13, 10 and 15 volumes for training, validation and

testing, respectively. The synapse is not necessarily perfectly centered and the task is to segment

pre-synaptic region, post-synaptic region, and synaptic cleft.
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Table 5.2: Comparative results for fetinal fundus image segmentation.

Jaccard index (%)
TER

Optic disk Optic cup Mean
V-Net 78.4 72.5 75.5 7/200
PA-VNet 79.0 73.0 76.0 3/200
U-Net 81.3 73.8 77.6 18/200
Naive PA-UNet 80.8 74.1 77.3 16/200
PA-UNet 81.6 74.6 78.1 5/200

Retinal Fundus Image Dataset:

It comprises 400 2124×2056 retinal fundus images acquired using a Zeiss Visucam 500 camera

[77], which we resize and pad to be 512×512. We use 100 for training, 100 for validation, and

200 for testing.

5.4.2 Quantitative and Qualitative Results

We evaluate segmentation performance in terms of the standard Jaccard Index and of an additional

metric we dub the Topological Error Ratio(TER). We define TER as the ratio of segmentations

containing topological errors to the total number of test images. A segmentation is considered

to contain a topological error if it violates the expected topology of the target structure, that is,

it features semantic labels appearing where they should not given the topological constraints.

We compute this value by finding the connected components of the final segmentation and then

finding instances that violate the topology.

We tested two versions of PA-Net, one based on the U-Net [85] architecture and the other

based on the more recent V-Net [73]. We compare the results against those of the standard

U-Net and V-Net. We report our comparative results on our two datasets in Tables 5.1 and 5.2.

Figs. 5.4 depict them qualitatively (see supplementary materials for further results). Using the

atlas consistently improves over baseline performance. The gains are most visible in TER terms

because our PA-Nets truly come into their own when the standard U-Net and V-Net fail, which is

only a fraction of the time, as would be expected of architectures that are as popular as they are.

Even when it fails to eliminate topological errors, it reduces the size of the errors as shown in

the second row of Fig. 5.4). The one exception is the pre-synaptic region, for which the Jaccard

numbers decrease. A closer inspection of the results show that the atlas sometimes encourages

the segmentation to leak from weak boundary regions in few instances. We plan to address this

issue by introducing an additional stream that specifically focus on predicting object boundaries
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and combining its results with PA-Net.

To demonstrate the importance of using the same features to compute the segmentation and the

pose parameters, we implemented a naive version of our approach that uses two separate streams

to compute the pose and the segmentati- -on features, which we denote as Naive PA-Unet in

Tables 5.1 and 5.2. The naive version fails to resolve the topological mistakes in the datasets.

In the synaptic junction dataset, this occurs because the naive version has a mean orientation

estimation error of 80.6o in contrast to the PA-Net’s error of 10.4o . In the retinal fundus image

dataset, the naive version has a mean localization error of 26.5 pixels compared to a 3.9 pixel

error for PA-Net. As a result, in both instances, network fails to properly register PAs.

5.5 Conclusion

We have proposed an encoding-decoding architecture that can exploit rough atlases that encode

the topology of structures that can appear in any pose and have arbitrarily complex shapes to

improve the segmentation results. One of its crucial components is that it relies on the output of

the encoder to compute both the pose parameters used to deform the atlas and the segmentation

mask itself, which makes it effective and end-to-end trainable. As future work, we plan to extend

PA-Net by introducing an additional stream to produce edge maps and using it to address the

minor loss in accaracy that occur when the structures have weak boundaries.
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(a) (b) (c) (d)

Figure 5.4: U-Net vs PA-Net. Top three rows depict results from synaptic junction segmentation.
The bottom three rows depict results from retinal fundus image segmentation. (a) Input images,
(b) Ground-truth, (c) U-Net results (d) PA-Net results. The color hues denote the same areas as
those in Fig. 5.1 (best viewed in color).
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6 Conclusion

In this thesis, we propose methods to incorporate object priors in volumetric image segmentation

models and demonstrate its effectiveness in improving the accuracy, quality and the speed of

annotation in volumetric image segmentation. In this chapter, we present a brief summary of this

thesis and discuss future research directions.

6.1 Summary

In chapter 2, we propose Voxel2Mesh, an end-to-end trainable architecture that can produce

surface meshes from input image volumes. We demonstrate the effectiveness of the approach

to easily introduce topological priors that improve the accuracy of the predictions compared

to state-of-the-art methods that only use voxel representations. Furthermore, we demonstrate

that, the method can directly produce surface meshes useful for surface analyzing downstream

tasks, instead of having to perform post-processing steps to obtain the surface meshes from voxel

representations.

In chapter 3, we focus on enforcing object priors related local surface properties. We propose

DASM, an alternative mechanism inspired by Active Surface Models to enforce priors on

smoothness, tension and skewness which let us achieve better trade-offs between the accuracy

and the quality of the surface meshes produced. We demonstrate the effectiveness of the approach

with Voxel2Mesh which produce surface meshes from volumetric images. We also demonstrate

its effectiveness with Mesh R-CNN[38] which is a state-of-the-art method in producing surface

meshes from 2D images.

In chapter 4, we continue using surface meshes and use its ability to easily introduce object priors

57



Chapter 6. Conclusion

on topology and smoothness to propose Weak-Net which consist of an interactive annotation tool

for obtaining weak annotations with less effort and a 3D CNN architecture that can be trained

with the produced annotations. With the proposed approach, the annotator only has to click a

small subset of points on the surface of the target object and we use the Active Surface Model

proposed in chapter 3 to deform a template mesh to fit to the given set of points.

In chapter 5, we focus on voxel representation and propose a new use case for PAs within the

context of deep learning. Traditionally they have been used with structures that has relatively

small variance in shape between samples. But, in this work we demonstrate how we can use

PAs to introduce object priors even when we observe relatively larger variations in the shape and

achieve better performance.

6.2 Future Work

Object priors and prior knowledge in general will continue to play an important role in volumetric

image segmentation. Given the limitations in training data, prior knowledge will remain as one

of the approaches to further improve the accuracy, reliability and the quality of the segmentations

so that they can have a significant real world impact.

If we focus on approaches proposed in this thesis, one direct avenue of future work is in improving

the proposed architectures to further improve their performance and applying them in different

settings. The other avenues is to explore alternative mechanisms to introduce object priors in to

volumetric image segmentation. Next, we discuss these two avenues.

Voxel2Mesh performance can be further improved by introducing better mesh-division techniques

that achieve better trade-offs between accuracy and the number of vertices in the mesh which

determines the memory consumption of the model. In terms of different applications, Voxel2Mesh
could be trained with sparse partial annotations and could be developed into a model that could

be trained with partial labels. Extending Voxel2Mesh to segment high resolution images is also a

possibility since mesh representation is less memory consuming compared to voxel representation.

Another direction is extending Voxel2Mesh to segmenting structures with varying topology and

thin structures.

In DASM, adaptive smoothing can be further improved to achieve more accurate meshes. Instead

of the current metric used to determine the amount of smoothing, it could also be learnt from

data. This has been done with Active Contours [69] and it could be extended to DASM as well.

The principal in DASM could also be extended to volumetric meshes.
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6.2 Future Work

Interactive annotation tool in Weak-Net can be improved by introducing mesh sub-division in

between mesh deformation steps. This will enable obtaining more accurate annotations when the

annotator inputs larger number of points. Furthermore, a latent code corresponding to a target

object can be optimized so that the surface mesh is indirectly moved to fit to a given set of points

instead of directly moving the surface mesh as it is done now. This can help to reduce the number

of points user has to input to reach a given accuracy, specially when working with smaller number

of points.

One of the alternative avenues that could be explored for introducing object priors is using

implicit surfaces for volumetric image segmentation. Implicit surfaces can also introduce most of

the object priors that could be introduced with surface meshes. At the same time, recent works

by [90] demonstrate the ability of the implicit surfaces to capture very high frequency details of

objects. Therefore, it could be applied for volumetric image segmentation and might be able to

surpass the accuracy of the meshes produced by methods such as Voxel2Mesh.
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A Appendix - Deep Active Surface
Models

A.1 Appendix

A.1.1 Active Surface Model: Continuous Formulation

Our objective is to minimize the total energy E in Eq. 3.2. There is no analytical solution for the

global minimum of E. But, as mentioned in Section 3.3.1, any local minimum must satisfy the

associated Euler-Lagrange equation given in Eq. 3.4. To find a surface that does this, surface

evolution is used by introducing a time t parameter into 3.4 and writing

∂v(s,r, t ;Φ)

∂t
+L(v(s,r, t ;Φ)) = F (v(s,r, t ;Φ)) , (A.1)

where L(v(s,r, t ;Φ)) is the R.H.S of Eq. 3.4.

Solving A.1, requires specifying an initial surface. Earlier approaches [20, 53] used a manual

initialization, whereas in [69, 15] another model is used to predict the initial curve. To ensure the

reached local minima corresponds to the desired curve, these approaches require the initialization

to be close to the target shape. In DASM, we rely instead on the graph-convolution layers to

provide a good initialization.

A.1.2 Active Surface Model: Discrete Formulation

In the continuous formulation of Section 3.3.1, computing the solution to Eq. 3.4 requires
computing the derivatives of order 2 and 4 for the mapping v of Eq. 3.1. To compute them in
practice, we discretize the surface and use finite difference equations to estimate the derivatives.
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Figure A.1: Finite Differences. Relative positions of (s +k1δ,r +k2δ) terms w.r.t (s,r ) which is at the
center and its 1-ring neighbors from degree 4 to 10.

Given a small value of δs, finite-difference approximations for the derivatives w.r.t s can be
written as,

∂v

∂s
≈ 1

δs
[v(s +δs,r )− v(s,r )] ,

∂2v

∂s2 ≈ 1

δs2 [v(s +δs,r )−2v(s,r )+ v(s −δs,r )] ,

∂3v

∂s3 ≈ 1

δs3 [v(s +2δs,r )−3v(s +δs,r )+3v(s,r )− v(s −δs,r )] ,

∂4v

∂s4 ≈ 1

δs4 [v(s +2δs,r )−4v(s +δs,r )+6v(s,r )−4v(s −δs,r )+ v(s −2δs,r )] ,

Similarly, we can write finite difference equations w.r.t r as well.

Now to compute these approximations, we need to compute v(s+δs) and other similar terms. Let

us therefore take (s,r ) be the 2D coordinates that v maps to the coordinates of a specific vertex.

In an irregular grid, (s,r +δr ), (s +δs,r ), or any of s,r coordinates that appear in the derivative

computations will in general not be be mapped to another vertex for any choice of δs,δr . Fig. A.1

illustrates their actual positions depending on the number of neighbors the vertex has.

We can nevertheless compute the 3D coordinates they map to as follows. Let us first consider the

3D point v(s +δs,r ) that (s +δs,r ) gets mapped to and it is depicted by orange circle in Fig. 3.2.

For δs small enough, it belongs to a facet of which v(s,r ) is a vertex and let v(s1,r1) and v(s2,r2)

be the other two. We can compute the barycentric coordinates λ, λ1, and λ2 of v(s +δs,r ) in that
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facet by solving


s +δs

r

1

=


s s1 s2

r r1 r2

1 1 1



λ

λ1

λ2

 . (A.2)

Given these barycentric coordinates, we can now estimate v(s +δs,r ) as

λ∗ v(s,r )+λ1 ∗ v(s1,r1)+λ2 ∗ v(s2,r2) , (A.3)

which allows us to estimate ∂v
∂s according to the above finite-difference equations. For this

approximation to be valid, we pick δs such that all terms in finite-difference expressions lie

within the 1-ring neighborhood of v(s,r ). We can repeat the process for all the other expressions

involving δs in these equations and, hence, compute all required derivatives. Regular square and

hexagonal grids are special cases in which these computations can be simplified.

A.1.3 Matrix Inversion using Neumann Series

We are approximating the inverse of (A+αI)−1 using the Neumann series given in Eq. 3.7. In

Fig A.2, we plot both RMSE in estimating the inverse and the time it takes to perform the

estimation as a function of K . Given the trade off between running time and accuracy, we pick

K = 4 for the estimation.

Figure A.2: Neumann Series Approximation. RMSE between the approximated inverse and the true
one in blue and computation time in red as function of K . K = 4 gives an acceptable trade-off between the
two.
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A.1.4 Quantitatively Measuring Mesh Regularization with Consistency Metrics

All the metrics used in Sec. 3.4 evaluate the accuracy of the meshes. We use them because they

are the standard metrics used in the literature. But to get a better understanding of the quality of

the meshes, we provide two more metrics; mean edge length and mean surface Laplacian. We

observe that around abnormalities such as those highlighted by orange arrows in Fig. 3.5, 3.7,

the edge lengths and surface Laplacians tend to increase significantly. This increases mean edge

length and mean surface Laplacian and its effect can be seen in Table A.1.

Table A.1: Results on ShapeNet as a function of λed g e . Note that this is an extension of Table 3.2.

λe. Chf. (↓) Edg. Length Surf. Lap.

1.0 Mesh R-CNN 0.232 0.023 ± 0.011 0.033 ± 0.031
Ad.-DASM 0.231 0.022 ± 0.009 0.023 ± 0.019

0.6 Mesh R-CNN 0.212 0.024 ± 0.015 0.045 ± 0.045
Ad.-DASM 0.206 0.023 ± 0.011 0.029 ± 0.020

0.2 Mesh R-CNN 0.189 0.028 ± 0.021 0.066 ± 0.075
Ad.-DASM 0.183 0.025 ± 0.015 0.037 ± 0.049

0.0 Mesh R-CNN 0.144 0.141 ± 0.142 0.708 ± 0.671
Ad.-DASM 0.167 0.070 ± 0.072 0.254 ± 0.276
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