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Abstract—The paper presents a method for the co-optimization
of energy storage systems allocation and line reinforcement in
active distribution networks. The objective is to guarantee the
capability of an active distribution network to follow a dispatch
plan by appropriately coping with the high uncertainties of loads
and stochastic renewable generation while ensuring the secure
operation of the grid and minimizing the power grid losses. The
proposed formulation relies on a modified formulation of the
so-called Augmented Relaxed Optimal Power Flow (AR-OPF)
method, which considers the exact (i.e., non-approximated) AC-
OPF in a convexified way (the AR-OPF is proven to provide the
global optimal and exact solution of the OPF problem for radial
power grids). To tackle the complexity and computational burden
of the proposed planning problem, the Benders decomposition
algorithm is used and, in order to enhance the convergence
speed of the numerical solution of the proposed problem, the
Benders decomposition has been suitably modified to determine
the energy storage systems site and size sequentially. To assess the
performance of the proposed method, simulations are conducted
on a real Swiss distribution network composed of 55 nodes and
hosting a large amount of stochastic photovoltaic generation. The
sensitivity analysis with respect to the photovoltaic capacity is also
carried out to assess the effectiveness of the proposed method.

Index Terms—Active distribution networks, dispatchability,
energy storage systems, line reinforcement, optimal power flow,
Benders decomposition.

NOMENCLATURE

Sets and Indices

lel Indices of buses or indices of lines con-
nected upstream

yey Indices and set of years

deD Indices and set of days

teT Indices and set of time intervals

¢ € Byy Indices and set of scenarios for day d and
year y

n € NM1\N2 Indices and set of Benders iterations for

Ist\2nd stage problem of 2nd block problem
m € M\ M, Indices and set of iteration number of the
Ist\2nd stage subproblem of 2nd block

problem
Variables
U, € {0,1} Installation status of the ESS at bus [
G Energy reservoir of the ESS at bus {
R Power rating of the ESS at bus [
X; € {0,1}  Reinforcement status of line [
Ay Updated ampacity of line I
AA; Change in ampacity of line [
c Total investment cost
ICEg Investment cost of energy storage system
assets
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Parameters
Ag
T

Investment cost of line reinforcement
Master problem cost of 1st and 2nd stage of
2nd block problem

Subproblem cost of day d and year y of 1st
and 2nd stage of 2nd block problem
Average of the active load over all scenarios
at: bus [, time t, day d, and year y
Deviation of prosumption from pyq, at: bus
l, scenario ¢, and time ¢

Average of squared longitudinal current
causing losses over all scenarios at: line [,
time ¢, day d, and year y

Deviation of squared longitudinal current
causing losses from fi;4, at: bus [, scenario
¢, and time ¢

Dispatch plan associated with time ¢, day
d, and year y at the grid connecting point
(GCP)

Uncovered dispatch error at: bus [, scenario
¢, and time ¢

Leftover dispatch error rate for scenario ¢,
time ¢

Square of longitudinal current magnitude
causing losses in line [\Auxiliary upper
bound variable

Square of voltage magnitude at bus
I\ Auxiliary upper bound variable
Aggregated prosumption at bus [

Upstream complex power flow to line [
Auxiliary variable of upstream complex
power flow to line I (upper bound of Sf)
Auxiliary variable of upstream complex
power flow to line [ (lower bound of Slt)
Downstream complex power flow to bus [
from line /

Auxiliary variable of complex power flow
to bus [ from line I (upper bound of S?)
Auxiliary variable of complex power flow
to bus [ from line ! (lower bound of Slb)
Complex power flow of ESS at bus [
Energy stored in the ESS installed at bus [,
scenario ¢, and time ¢

Positive\negative unserved active load at:
bus [, scenario ¢, and time ¢
Positive\negative unserved reactive load at:
bus [, scenario ¢, and time ¢

Slack variables representing approximation
of losses deviation value at m?” iteration of
solving subproblem of 1st/2nd stage of 2nd
block problem for scenario ¢ and time ¢

Probability of scenario ¢
Time horizon of the daily OPF problem



At Time duration of dispatch interval

Y Planning horizon

Nay Number of days in day-type d in year y

G Network adjacency matrix

b Half of the total shunt susceptance of line [

z1=ri+jx; Total longitudinal impedance of line [

e Upper limit on the current of line [

Prer\Qpre*  Upper limits of active\reactive power flows
for line I, respectively

p™az\y™in  Upper bounds\Lower bounds of the squared

nodal voltage magnitude
Investment cost parameter for ESS installa-
tion, energy reservoir, power rating

. f e . p
icy, icy, ich

ic] Fixed cost parameter for line reinforcement
of line 1
02,01, 00 Coefficient for quadratic, linear, constant

term of line conductor cost function with
respect to line ampacity, respectively
ol Line length of line [

Amaz\ Amin - Maximum\minimum possible ampacity of
line conductor

AA™OE Maximum possible change in ampacity of
line conductor

Cas\Cn - Maximum\minimum possible ESS energy
reservoir capacity at bus [

Rme®\ R Maximum\minimum possible ESS power
rating capacity at bus [

CR™* Maximum power ramping rate of ESS

Emaz\ pmin Maximum\minimum  allowed  state-of-
energy level

FEini Initial level of ESS state-of-energy level

AT Maximum difference between the final and
initial state-of-energy level with respect to
the ESS energy reservoir capacity

ag, Br, ki Vectors defining the slope and the inter-
cepts, respectively, of the set of lines which
approximate the power capability curve of
ESS at bus [

N, Allowed number of cycles per day chosen
as a function of the targeted ESS lifetime

W, Wi, Wy, Weight coefficient associated to the error
between the dispatch plan and the active
slack power in each scenario, grid losses,
unserved load, respectively

T Discount rate

Function

L(x) Piecewise linearization of x

I. INTRODUCTION

HE progressive connection of stochastic renewable gen-

eration into power distribution systems increases the un-
certainty of the electricity production of the whole generation
mix, posing a severe challenge regarding its reliable dispatch
[1]. Indeed, the stochastic nature of the power generation
connected to distribution systems is propagated into the upper-
level grid, making the power balancing more challenging
for transmission systems operators (TSOs). In this respect,
distribution systems operators (DSOs) have been called for
financial responsibility concerning power imbalances they may
produce [2]-[4]. Accordingly, relevant regulatory changes into
the power market have been proposed with incentive and
penalty mechanisms for DSOs to promote the reliable bal-
ancing and dispatching of their networks [3] while supporting
TSOs’ balancing operation [4].

Several works in the recent literature have tried to address
this problem. In [5], [6], it is proposed to make use of active
controllable resources, such as energy storage systems (ESSs)
connected to active distribution networks (ADNSs) to limit
DSOs’ financial risks caused by power imbalances due to
ADNSs’ unreliable dispatch. In particular, these works used
ESSs to achieve the dispatchability of ADNs, which consist
of tracking a day-ahead computed power profile at the grid
connection point (GCP) with the upper-grid layer (usually
represented by the ADN’s connection to the sub-transmission
grid). This specific setup has been named dispatchability-by-
design in [7] and it is quantified how this setup may reduce
the whole grid’s reserve requirement [7], [8].

Although ADNS dispatchability-by-design is not yet em-
ployed in practice!, the necessity of modifying regulatory
frameworks has been pointed out in several studies [10]-
[12]. In this context, reasonable assumptions can be applied
to DSOs that operate ADNs: (i) the DSO is financially
responsible for the energy imbalance caused by its electric
power systems, (ii) ESSs can be owned and operated by the
DSO to mitigate financial risks in the power market and not
for power arbitrage. Under these assumptions, it is worthwhile
for DSOs to consider the investment and deployment of the
ESSs within their planning strategies.

In this regard, the authors of this work have proposed in
[13] a planning methodology to optimally site and size ESSs
in ADNs to achieve their dispatchability while accounting
for the grid constraints and scenarios modeling the stochastic
generation and loads over the planning horizon. In [13], it
is shown how the allocation (determining sites and sizes) of
ESSs may be largely influenced by binding grid constraints
with a particular reference to line ampacity. In view of the
above, the planning considering ESSs as the sole resource
for DSOs may result in a sub-optimal solution. Instead,
the ADNs asset investments may also take into account the
line reinforcement. Conventionally, DSOs have tackled the
operational issues associated with ADNs hosting capacity 2
by standard line reinforcement schemes as presented in [14],
[15], [16]. However, these works have considered neither the
possibility of installing other active resources such as ESSs nor
the coupling of the ADNs’ planning with their dispatchability.
Indeed, the exploitation of ESS assets to achieve the ADN’s
dispatchability may affect the power flows within the network
hosting high renewable generation capacities and thus impact
the operation and planning decisions of the DSOs. Therefore,
this paper aims at bridging this gap by developing a dedicated
planning strategy that co-optimizes the investments associated
with both line reinforcement and ESS deployment while taking
into account the uncertainties of prosumption® to achieve
ADNSs dispatchability.

II. LITERATURE REVIEW

The existing literature has already proposed joint planning
strategies considering ESSs and network reinforcement. The
associated works can be grouped according to DSOs’ op-
erational objectives, namely: (i) minimization of grid losses
[17], (i1) maximization of grid reliability [17]-[20], (iii) min-
imization of distributed generation (DG) curtailment [17] (iv)

The European Union’s regulatory directive is currently prohibiting DSOs’
ownership of ESSs used in purpose of balancing and congestion management
in order to prevent distortion of competitive market for energy storage [9].

2The hosting capacity of a power grid corresponds to the amount of loads
and generation that can be hosted without violating any operational constraint.

3Prosumption is defined as the load consumption minus the locally gener-
ated power.



minimization of electricity and operation costs of both DG and
ESSs [19]-[22], (v) minimization of maintenance costs [19],
[20]. In addition to the above-listed operational objectives,
controllable ESSs may also be used to procure flexibility
services to the local distribution system, such as peak shaving
[18], [21], [23] as well as ancillary services to the upper-level
grid [23]. Furthermore, ESSs and DG may also be controlled
with the objective of reducing carbon emissions of power
generation [22]. Yet, to the best of the authors’ knowledge,
the objective of achieving ADNs dispatchability has not been
addressed by the existing joint planning of ESSs and line
reinforcement, and it is the aim of this paper.

Given that the system operation largely influences the ADN
planning, evaluating the network’s compliance with the grid
constraints is indispensable for each investment decision made
in the planning stage. In this regard, the operational character-
istics of the network including active components should be
modeled accurately to ensure the reliability of the planning
solution [24]. The planning method proposed in [21] fully
considered the AC power flow and associated grid constraints,
making the embedded operation problem non-linear and non-
convex. The problem is solved by employing particle swarm
optimization, but high solution quality cannot be guaranteed
by employing such a meta-heuristic solution approach.

Alternatively, the non-linearity of the AC-OPF model may
be tackled by linear approximations of power flow equations
and constraints. In this way, the planning problem was formu-
lated as a mixed-integer linear programming (MILP) problem
in [17]-[20]. The multi-stage joint planning model proposed in
[18] considered replacing/adding lines while integrating ESSs
for peak shaving and enhancing the power supply reliability.
Kirchhoff’s laws are used to linearize the voltage drop in the
power flow formulation. However, the main drawback of linear
OPF models lies in the approximation accuracy of physical
quantities in the power flow as it depends on the operating
point, possibly resulting in solutions characterized by a quality
that can vary with the operating condition.

Another approach convexifies the AC-OPF model to a
second-order cone programming (SOCP) problem [25]. The
joint planning of line and DGs proposed in [26] utilized
the SOCP model of power flow and grid constraints, and a
stochastic programming planning problem is solved by em-
ploying commercial solvers. In [27], Haghighat et al. proposed
a two-stage stochastic mixed-integer SOCP (MISOCP) model
and its chance-constrained variant to make the problem more
tractable. However, the stochastic prosumption was modeled
with a load duration curve, making it difficult to accurately
include the operational aspect of the ADN along with the
prosumption changing with time. The SOCP model employed
in [26], [27] neglected the presence of branch shunt elements
and, as a consequence, the exactness of the solution cannot
be guaranteed in case of reverse power flow and binding line
ampacity and upper voltage-magnitude limits.

In this respect, this paper proposes a co-optimization method
for the allocation of ESSs and lines reinforcement based
on a scenario-based stochastic MISOCP model. Prediction
uncertainties of seasonal prosumption are modeled through
representative time-series prosumption scenarios. Grid opera-
tional constraints are described by the augmented relaxed OPF
(AR-OPF) model, initially proposed in [28] and modified in
[13]. In [28], Nick et al. proved that the AR-OPF outperforms
the SOCP model proposed in [25] in terms of exactness of
the solution especially in the case mentioned above. The AR-
OPF model has been suitably modified in [13] for the specific
problem of ADNs dispatchability achieved by the use of ESSs,

while complying with the fundamental feature of guaranteeing
the exactness of the OPF model. Hereafter, such a modified
AR-OPF is referred to MAR-OPF model.

Along with binary and continuous decision variables repre-
senting ESSs investment decisions [13], in this paper the line
reinforcement is modeled by incorporating binary and con-
tinuous decision variables associated with the line candidates
for reinforcement and their conductors’ size. The proposed
planning framework is general enough to give the modeler the
choice of planning options of ESSs and line reinforcement by
quantitatively assessing the ESSs’ influence on the network
reinforcement. The line reinforcement is incorporated into the
grid constraint associated with the line ampacity, while the
corresponding change in the line parameters is considered
within the ADN operation.

The Benders decomposition is widely used to reduce the
computational complexity of large-scale optimization prob-
lems, such as planning problems. For instance, in [27], the
planning problem is decomposed into two stages by employing
the Benders decomposition methods. In the master problem,
the decision variables associated with substation and capacitor
investment are determined based on the system operation
evaluation assessed through solving the subproblem. Likewise,
the Benders decomposition is employed to tackle the ESS
allocation problem in [13], while binary and continuous deci-
sion variables are assigned to the ESS location and the ESS
capacity, respectively, and their optimal values are obtained
together in the master problem. In this paper, to better tackle
the increased complexity caused by the additional introduction
of numerous binary variables associated with the line rein-
forcement, the planning problem is reformulated to employ
the Benders decomposition separately to determine the site
and size of the assets investment in sequential stages. This
non-trivial structural change reduces the computation time for
solving the planning problem while maintaining the optimality
of the obtained solution. Consequently, it enables the scalable
application of the proposed planning methodology to radial
distribution networks of generic sizes.

To summarize, the contributions of the paper are given
below.

1) A joint planning problem considering ESSs and line
reinforcement is proposed to achieve ADNs dispatch-
ability while ensuring sufficient hosting capacity for
increasing stochastic prosumption.

2) The line reinforcement investment is suitably modeled
along with corresponding adjustments on the network
admittance matrix and the grid constraints in order to
be incorporated in the MAR-OPF model.

3) The reformulation of the planning problem is proposed
to determine the siting and sizing of the investment
assets sequentially, thereby accelerating the convergence
of the Benders decomposition algorithm.

The paper is organised as follows: in Section II, we intro-
duce the structure of the optimization problem and explain
the key parts. In Section III, the proposed problem and
the associated solution are described. Section IV contains a
detailed application example referring to the co-planning of
ESSs and line reinforcement on a real ADNs. Finally, Section
V concludes the paper discussing the main findings.

III. SYSTEM DESCRIPTION

The targeted network is assumed to have a radial topology.
All the buses (excluding the slack bus) are connected to the
upstream ones with only one line. Therefore, the bus and the



line connected upstream to each bus can be indicated with
the same index, [€L. The joint optimal allocation of ESS and
network reinforcement are determined based on the operation
of the ADN over the planning time horizon Y. The load
consumption is assumed to grow annually over the planning
horizon with a constant rate ry;. The seasonal variation in
the prosumption profile is represented by typical day-types
indexed with deD. The uncertainty of the prosumption power
profile for day d and year y€) is modeled by scenarios
indexed with ¢€®g4,,, where 4, is defined VdeD and Vye).
The probability associated to the occurrence of each scenario
is given by Ag. In each day-type, the active power through
GCP of ADN (assigned with the bus number [=1) is dis-
patched following a day-ahead determined daily dispatch plan
(DPyay, VteT:={1,...,T}) derived thanks to the support of
a forecasting tool*. T is the number of dispatch intervals,
and t is the index of time intervals separated by a constant
timestep At¢. Multiple operational objectives are taken into
account: achieving the dispatchability of the targeted ADN
while minimizing the grid losses and ensuring the feasibility
of the ADN operation. ESSs and line reinforcement are the
assets to be planned to cope with this problem.

Each bus of the ADN is assumed to have non-dispatchable
aggregated complex power prosumption where the stochas-
ticity of the prosumption is modeled by a set of scenarios
(s1¢t=D1gt +qiet) defined at each time interval. The objective
of the dispatch problem is to make the active power flow
through the ADN GCP in all scenarios (Pi4¢) follow the
daily dispatch plan over the operation horizon 7' by mini-
mizing the observed active dispatch error, thereby avoiding
a corresponding imbalance penalty. In this regard, ESSs are
allocated within the ADN (i.e., U;=1, where U;€{0, 1} is the
ESS installation status at bus [ with the ESS energy capacity
of C; and the power rating of R;). Their active power (pﬂt)
is dispatched to compensate for the gap between the dispatch
plan and active power flow of scenario ¢ at time interval ¢ at
the GCP. The reactive power (qﬁ;t) is dispatched to support
the reactive power flows to keep the system operating point
within all imposed constraints.

Meanwhile, the large amount of stochastic distributed gen-
eration increases the risk of line congestion and reduces the
power supply reliability. In this respect, we determine the
lines to be upgraded among the existing ones (i.e., X;=1,
where X;€{0, 1} indicates whether to upgrade the line ). The
required change in line ampacity is decided to minimize the
load curtailment, which serves as the reliability indicator of
the power supply of the ADN loads.

A specific complexity of the targeted planning problem is
associated with the fact that the change of line conductors
produces a change of the line parameters. As the line ampacity
increases, the line resistance and the reactance decrease, while
the line susceptance increases. The dependence of the line
parameters on its ampacity is modeled through a linear fitting
for line reactance and susceptance and a hyperbolic fitting
for the line resistance. The sensitivity coefficients of the line
parameters computed from the fitted curves are introduced
within the OPF to accurately model the effect of line rein-
forcement on the line parameters (see Sec. V for the graphs
of the line parameters). In view of the above, the proposed
ESS allocation and line reinforcement problem can be seen
as a two-stage decision process: the first stage deals with the
binary decision variables on the location of the ESS (U;), the
lines to be upgraded (X;) and the continuous decision variables

“In the rest of the paper, we assume a suitable forecasting tool to be
available and with known prediction uncertainties.

1st Block Problem
Solve MILP

with Obj: investment cost +
penalty cost regarding
dispatchability

2"d Block Problem

with Obj: investment cost + grid losses +
unserved load to satisfy the LDER

1t stage
Solve MISOCP

ESS allocation *
Linetobe [HEE . o

Fig. 1. Solution algorithm overview of the proposed method.

2 stage
Solve SOCP

on the capacity of the ESSs energy reservoirs (Cj), their
power rating (R;), and the line ampacity (A;), whereas the
second stage deals with daily dispatch problems, determining
the decision variables on the ESSs active and reactive power
for all operating scenarios.

IV. PROBLEM FORMULATION

The objective of the problem is to maximize the DSO
benefits associated to the co-optimization of ESSs and line
reinforcement in a given ADN. The operational objective
is to maintain a sufficient level of the ADN dispatchability
while complying with the network constraints in a (potentially)
highly congested network due to significant penetration of
uncontrollable DG units and load consumption. The planning
problem is decomposed in two blocks. In the 1st block,
the economical benefits/penalties associated with the network
dispatchability are obtained by quantifying the trade-off be-
tween the ESSs allocation costs vs. the avoidance on the
power dispatch imbalance penalties. In the 2nd block, the
ESSs allocation and the line reinforcement investment are
determined by employing the AR-OPF model to satisfy a
dispatch error level obtained from the 1st block, while comply-
ing with the network operating constraints. Such a two-block
problem structure is essential to abide by the pre-requisite
condition for the AR-OPF model to guarantee exactness [13].
In view of its complexity, the 2nd block of the problem is
further decomposed in two stages to separately determine the
solutions of the binary and continuous variables regarding
the investment decisions. In the Ist stage, the sites for the
ESSs and line reinforcement are determined. Then, with these
sites, the values of the continuous variables are determined
by the 2nd stage. The algorithm of the proposed approach
is illustrated in Fig. 1. All the variables in this section with
subscript [, ¢, t, d, y are defined for [€L, p€®q,, t€T, deD,
ye).

A. The Ist block problem

In the 1st block, the planning problem is modeled as a MILP
one. It determines the optimal ESSs allocation and the grid
dispatchability level by evaluating the operational benefit of
ESSs for all operating scenarios. The problem minimizes the
investment and total penalty costs over the planning horizon
while employing the linear Distflow model. In this OPF model,
the shunt elements of the lines are taken into account’, whereas
the grid losses and the line ampacity constraints are ignored.

1) Modeling of the ESSs investment: the ESSs invest-
ment is modeled through (1a)-(1c). Power ratings and energy
capacities are governed by geographical restriction related
to the candidate location for ESS investment. (1a) models
the minimum and maximum of possible ESS power rating

SIn this way, the reactive power generated by the shunt impedance of the
line is taken into account in the nodal voltage constraints.



capacity while (1b) models the minimum and maximum of
possible ESS energy reservoir capacity at bus [, respectively.
CR™*" is the maximum value for the rate at which ESS is
discharged relatively to its maximum energy capacity. The
power rating and energy reservoir is determined considering
this relationship as shown in (1c). The ESS investment cost
is denoted as IC'g and defined by (1d), where icé,ic%,ic%
are cost parameters for the ESS installation, power rating, and
energy reservoir, respectively.

R <R <RM™*U;, Vi (l1a)
cminy <Ci<Crery;, vl (1b)
At-Ri<CR™<.Cy, Vi (1c)
ICp=> (ichUrticy Ri+ic5Ch) (1d)

lel

2) Modeling of the ESS operation: the ESS power (Slb;tz
pﬁ;t + qulf;t) is governed by the operational constraints of
ideal ESS as shown in (2a)-(2f). Efﬁt is the state of energy
(SoE) of ESS installed at bus [ for time ¢ and scenario ¢.
The typical circular capability curve defined by the maximum
complex power of a given ESS is linearized and modeled by
the vectors of coefficient parameters «y, 5;, x; as shown in (2a)
[29]. The SoE changes with the charge/discharge power of the
ESS at every time interval, as described in (2b). According to
(2¢), the SoE should be within the minimum and maximum
allowed SoE level. As indicated in (2d), the initial SOE is set
as Fjp; - 100(%) of the installed energy reservoir capacity for
each day-type (in this paper, the value for F;,; is set to 0.5).
The final SoE is set to be within (A - 100)% of the given
initial SoE as in (2e) to assure the continuous operation over
consecutive days (the value of A7 is set to 0.1). To minimize
the ageing linked to the ESS daily cycling, as shown in (2f),
the energy exchange of ESS is kept within a threshold obtained
from the battery ageing-aware control strategy proposed in
[30]. N, is the allowed number of cycles per day and w is
a positive parameter that depends on pfj;t. The ideal ESSs
operation is implemented in the 1st block problem and the 1st
stage of the 2nd block problem. In the following 2nd stage
problem (i.e., when sizing the ESS capacity), however, the
ESSs charging/discharging efficiency is considered by adding
a virtual resistive line adjacent to the node with ESS® [31].

alpﬂt+5qujf;t<f<&le7 Vi,Vo,Vt (2a)
Ef i1y =Elp+At - ply, ViV, ¥t (2b)
Em™nC<EE,<E™C, VIV, Yt (2c)
Ef1y=EmiC, VI,Ve  (2d)
EE ) ~AN C<BE g <BE G +ATCr, VLY VE (2e)
At | g
CT) ; |wpl | <NCy, VI, V, Vi
(2f)
For the sake of brevity, (2a)-(2f) are indicated by =(n)>0

where n={p¥,q¢¥, E¥ R,C} is the set of variables. The no-
tation without subscript corresponds to the vectors of variables
for all buses/lines, all timesteps and all scenarios.

3) Modeling of the ADN operation: p;¢; and g4 represent
the complex prosumption for bus [, scenario ¢, and time t.
Ditdy 1S the active prosumption prediction for bus [, time ¢,

The resistances are updated in proportion to the ESS capacity using the
reference value in [31].

day d, and year y respectively. The prosumption scenarios
are generated based on the assumption that the prosumption
follows a normal distribution. Therefore, the prosumption
prediction at node ! (pj:4y) is equivalent to the average of the
prosumption over the scenarios. The dispatch plan (DP,gq,)
follows the prosumption prediction, as modeled by (3a). As
shown in (3b), the aggregated prosumption deviation from the
prosumption prediction is compensated by the ESS power, and
thus €;4; represents the residual dispatch error that cannot
be covered at bus [, scenario ¢, and time ¢. The upstream
bus of bus [ is noted as [. G is the adjacency matrix of the
network, where Gy is defined for k,leL and Gj;=1 if k=l
or 0 if not. S, =P}, + jQj,, indicates the complex power
injected into line ! from node ! at scenario ¢ and time f.
Sp=Pp,, + Q1,4 is the complex power injected into node /
from line [. v, and v represents the squared nodal voltages
at node [ and [, respectively. ; indicates the shunt susceptance
of line . v™" and v™*" represent lower and upper limit of
squared nodal voltage, respectively. In the lossless Distflow
model, the power flows from the sending end to line [ and
from line [ to the receiving end including the ESS power are
expressed via (3c)-(3e), respectively. The active power at the
sending/receiving end for line [ are determined by (3c), while
the reactive power at the sending/receiving for line / are given
by (3d)/(3e), respectively. Equation (3f)’ computes the nodal
voltage, which is governed by the voltage constraint (3g).

DPay=>_ preay, Vt,¥d, Yy (3a)
el
DPiay =Y piot=_(€1ot+0), V6, 9,¥d, Yy (3b)
leL lel
Bt¢t:]'jll:;5tzpl¢t+pfbt+ Z Gim Plt¢ta VIV, Vi (3¢)
meL
Qlpr =Tt + i+ Z Gim Qg — (Vigs+vige)bi, V1,9, Vit
meL
(3d)
Qlyr=tsr+alpt Y GimQlyr VIL,V$, Yt (3e)
meL
Ot =iy 2R (2 Sty Gvpeht) ), VILVNE (3
VM gy <OMOT, VI, Vo, vt
(32

The optimization problem of the 1st block is given below. The
objective function is defined to minimize the ESSs investment
cost (/Cg) and the annual penalty cost regarding the uncov-
ered dispatch error over the planning horizon. The penalty cost
of day d and year y is the uncovered dispatch error over the
operating scenarios for day d and year y multiplied by wy,
which is the cost coefficient for the imbalance. Ng, is the
number of days in year y that have the same prosumption
profile as that of typical day d. r; is the discount rate. €y
and ) represents the set of control variables in the first and
second stage decision process, respectively (See Sec. III.)

1
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subject to

791(.) represents the real part of a complex number and Z; represents the
complex conjugate of z;.



By solving this problem, the optimal allocation of ESSs along
with the dispatch plan are both obtained, and the daily leftover
dispatch error rate (LDER) is calculated by (7)® for each day
with index deD and all years with index y€).
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B. 2nd block problem

The objective of the 2nd block problem is to determine the
ESS allocation as well as the line reinforcement scheme in
order to minimize the load curtailment and the grid losses. The
dispatchability level is incorporated into the 2nd block problem
as a constraint governed by the dispatchability index LDER.
The investment decision is optimized based on the investment
cost for the ESS allocation and the line reinforcement given by
(8). ic; is the fixed cost parameter of the line reinforcement
for line I. p; is the line length of [. The line reinforcement
cost, modeled by (9), consists of two parts: fixed cost, which
is invariant with the conductor size and accounts for the
construction, labor, etc., and the conductor cost, which varies
with line ampacity and line length. Based on the line cost
data from [32], the line cost per kilometer is modeled as a
quadratic function of the line ampacity, where 02,61, are
the coefficients for the squared, linear and constant terms in
the quadratic function.

IC=ICE +1C}, ®)
ICLZZ(Z'C{XI + pu(02 A7 + 5141 + 60 X1)) ®)
lec

The system operating condition during the operation horizon
with each set of investment decisions is evaluated through
solving the daily convexified AC-OPF problem, or MAR-
OPF problem. Therefore, the 2nd block problem is formulated
as a MISOCP problem. Regarding the investment decisions,
we tackle binary (U, X) and continuous investment decisions
(R, C, A) separately in the Ist stage and the 2nd stage prob-
lems, by formulating them as a MISOCP problem and a SOCP
problem, respectively. The approach is depicted in the block
diagram shown in Fig. 2. We apply the Benders decomposition

st /" Initialization of : /" Initialization of : "\ 9nd
1st stage B2re ) Mg ) 2 stage
I 2 2
Master Problem (MP1): Master Problem (MP2) :
Solve MILP Solve QP
with Obj: Fixed cost+Y, ), Xig a4y, with Obj: Variable cost+.,, ¥ Bay
2 2
Update LB, Update LB,,
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Form reinforcement line ampacity
Benders cuts 2 3

Subproblems (SP1) :
Solve SOCP
with Obj: ESS capacity cost
+Conductor cost
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Solve SOCP
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+ Unserved energy to satisfy the /,’—,‘
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Fig. 2. Detailed structure of the 2nd block problem.

to both stages obtaining a master problem and several parallel
subproblems. In the 1st stage, the master problem determines
the site of the ESS allocation and the line reinforcement.

8(.)* represents the optimal value of the variable.

Then, each subproblem, which is represented by a daily OPF
problem, determines the ESS capacity and the upgraded line
ampacity specific to each day-type and year to minimize the
unserved load and comply with the dispatchability constraint.
The unserved load takes values to ensure the feasibility of
the subproblem regardless of the investment decision. Once
the convergence of the Benders decomposition is reached, the
binary solutions of the 1st stage are passed to the 2nd stage
problem. The master problem considers the ESS capacity for
the buses chosen to have ESSs investment and the line ampac-
ity for the lines identified to be reinforced. The subproblem
deals with the fitness evaluation of the determined allocations
in terms of the same operational requirement and objectives
as in the Ist stage subproblem.

1) Modified Augmented Relaxed Optimal power flow: In
this section, the MAR-OPF model including ESS assets for a
radial power network is described. As only a brief description
of the power flow equations is provided, readers are referred
to [28] for detailed explanation.

a) Power flow equations: the feasibility of system op-
eration is assessed by the unserved energy due to load cur-
tailment. As indicated in (10a), we introduce positive and
negative unserved active and reactive load terms (upl'*'fupl_
and uq;“—uql_ ). Therefore, sj=p] + jq; can be described as
complex prosumption required for the feasible operation of
the considered ADN. Henceforth, s; is replaced with 52 in the
power flow equations.

All the variables and parameters shared in the Distflow
model and the AR-OPF model are already explained in Sec.
IV-A3. One of the essential differences between the two
models is the representation of current and line losses. Let f;
be the square of the longitudinal current through line [ which
produces grid losses through the line longitudinal impedance
z1=r; + jx; of a II two-port model. The branch power flow
equations including ESS power dispatch at the sending end and
the receiving end of line [/, squared nodal voltage magnitude,
and line current through longitudinal element are described for
the set of state variables ((10b)-(10e)), respectively. As shown
by (10e), the equations for the longitudinal line current are
relaxed to second order cone constraints.

Pl + g =(pi+up —up; ) + j(qtug —ug ), VI (10a)
St=si+si’+ > GimSi+a fi—j(v+v)b, VI (10b)
meL
St=si+ Y _ Gim S}, Vi (10c)
meL
v=vp—2R <zl (S;+ jughy ) ) a2, VI (10d)
fror > |SE+jvby)?, Vi (10e)

The contribution of the AR-OPF is to ensure the exactness
of the solution of convexified OPF by introducing auxiliary
variables f;, S;=P,+jQ;, ©; and S;=P,+j(Q;, which stand
for the upper bounds for squared longitudinal current, com-
plex power, squared nodal voltage and lower bounds for the
complex power of line , respectively. I} and I, lb are the square
of the line current injected into line [ from node I and from
line [ into bus [, respectively. I;"** indicates the ampacity
value of line [. P/"** and Q]"** are the upper limits of active
and reactive power flows for line [, respectively. The lower
bound branch power flow equations from the sending and the
receiving end of line [ are given by (11a) and (11b), followed
by (11c), which defines the squared upper bound nodal voltage
magnitude. The branch upper bound power flow equations at
the sending and the receiving end of line [ are given by (11d)



and (11e). Egs. (11f) and (11g) express that the upper bound
of the current f; is decided by the maximum of absolute
complex power flow from both sides of line [. Eq. (11h) is
imposed on upper bound power variables for the exactness of
the solution. The voltage constraint is modeled as (11i). The
ampacity constraint from the sending end and the receiving
end are modeled as in (11j)-(111).

Si=si+s7+ Y GumS{—j(vr+0,)bi, VI (11a)
meL

St=si+s{+ > G}, VI (11b)
meL

@lzﬁl——2m(zl(éf+j@l—bl)), Vi (1lc)

St=si+sf+ > GunSi+afi—j(vrto)b, VI (11d)
meL

St=si+s{+ > GimS}, VI (11e)
meL

fro=| max {|PY|, || }|? (116

+|max{|@§’—j17;bl|, |Q?—jvlbl\}|2, Vi

fro>| max {|Pf], | P |} (11g)

+| max {|Qf+jorbul, |Qf +ivibl } 1, vl

Pi< P, Qi< Q7 vl (11h)

V™I <y, T < 0™ vl (11i)

o= max {| B[, | B[} +| max {|Qf, |Qf[}?, ¥I (1))

o> max {| B[, | B[} >+ max {|Q|, |Q7|}[*, VI (11k)

II<(Imem)?) 1P <(Ime)?, vl (111)

For the sake of readability, the equations regarding the AR-
OPF model are grouped and represented by ©(p)>0 where
o={S" v, f,5, 0, f, 5" s sP €} is the set of variables. The
notation without subscript corresponds to the vector of vari-
ables for all buses/lines.

b) Defining the dispatch error: Several modifications are
made to the AR-OPF model to consider the ADN operation
while achieving the desired level of dispatchability of the
distribution feeder. Any further explanation of the formulation
of the modified AR-OPF (MAR-OPF) model can be found in
[13]. The prosumption scenarios can be written as the sum of
the prosumption prediction and the deviation of prosumption
Ap] ot given by (12a). In order to include the grid losses into
the dispatch error calculation, the grid losses corresponding
to the prosumption prediction are expressed by the losses
prediction 7 fiq, and the prediction error 7 A fi4; given by
(12b). In this context, the dispatch error with no dispatchable
resources in ADN is formally defined as the total deviation
of the prosumption and the line losses over the buses/lines
as given by the left-hand side of (12c). The ESSs active
power dispatch compensates for the total deviation of power
from the dispatch plan. To improve the accuracy of the grid
losses calculation, two slack variables g and (g (meM;,
for 1st stage and meM, for 2nd stage problem), which
approximate the grid losses deviation for scenario ¢ and time
t, are introduced. The approximated grid losses deviation is
updated as shown in (12d) throughout the iterative algorithm
used to solve the MAR-OPF problem. The iterative loop
terminates when (g; becomes lower than the tolerance value.
(12e) indicates that the residual dispatch error should comply

with the defined dispatchability level index, or LDER (64:).

p;qst:Z;/ltdy—ApEw, VIV, vVt  (12a)
71 fiot="1firdy =11 fige, VI,Vo,Vt  (12b)
D (Apig A fig) =Y (€orpip)+Ch, Yo, 9t (120)

el leL

> AP+ (VAT =D (s tpin), V6,V (12d)
lel el

> ot <O0st] Y Apigal,

lel leL

2) Ist stage - Determination of the ESS site and line for
reinforcement: the problem structure of the Ist stage problem
is illustrated on the left side of Fig. 2. As already mentioned,
the nodes for ESS and line for reinforcement are determined in
the master problem. The optimal ESSs size and change of lines
specific to the each day-type, and resulting operational benefit
is evaluated within each subproblem. As the goal of this stage
is to determine the best solution for the set of binary variables,
the different ESS and line conductor sizes determined for each
day-type are not the final solutions.

a) Master problem: the formulation of the master prob-
lem is given in (13). The master problem only deals with the
cost determined by binary variables regarding the nodes for
ESS installation and line reinforcement. The objective function
value of the master problem is computed by summing the fixed
investment cost plus a portion of the conductor cost associated
with the binary variables, and the lower approximation of the
expected subproblem costs. g, represents the subproblem
cost for day-type d for year y. It is initially bounded by
«, which is the parameter given as the lower bound for the
subproblem cost. n€N] is the index of the Benders iterations
of the 1st stage problem. In every nth iteration, the Benders
multi cuts represented by Fg;), VdeD,ye), are added, as
shown in (13c). The lower bound of the total cost, so-called
LBy, is the optimal objective value of the master problem (i.e.,
LB,=MC™).

min : MC'= icgUl + Z(zc{ + p10) X,

Vo, Vt (12e)

U, X« 7 7
(13a)
+2.D au
Yy d
subject to:  agy>a, vd, Yy (13b)
ay>TGY, Vd, ¥y, ¥n. (13¢)

b) Subproblem: in the subproblem associated with day-
type d and year y, a daily MAR-OPF model, with the time-step
discretization At, sizes the ESSs capacity and lines ampacity
while evaluating the investment plan based on its operational
advantages on the system conditions. The optimization prob-
lem is modeled by the MAR-OPF as discussed in Sec. IV-BI.
On top of that, the constraints modeling the line ampacity and
the ESS capacity are included in the subproblem. The possible
range of ampacity is modeled by (14a), while A™"/Amae
represent minimum/maximum possible line capacity, respec-
tively. However, as the line ampacity constraint is given with
the the squared current variable (see (111)), we need to model
the squared ampacity to impose the ampacity constraints on the
current variable. The approximated value of the squared am-
pacity (L(A?)) is used. The piecewise linearization technique
is employed to approximate the squared ampacity as shown
in (14c), while k is the step index and K is the number of
discretization steps. The possible range of squared ampacity
is modeled as (14b). The ampacity constraint is modified



accordingly from (111) to (14d), and (14e). The variables
regarding the line for reinforcement and the squared ampacity
are introduced in the right-hand side of (14d) and (14e).

AN X <A <A X, vl (14a)
(A™M)2 X <L(A?)<(A™*®)2 X, Vi (14b)
L(A})>ap Ay + b, Vke{l,.., K}, Vi (14¢)
0<I}<(1—Xi) - (I/"*")* + L(A}), VI (14d)
0<IP<(1— X)) - (I"*)? + L(A}), VI (14e)

By incorporating the constraints related to the line reinforce-
ment described above and the ESSs investment constraints
(see (1)) into the OPF constraints described in Sec. IV-B1,
we can define the subproblems of the 1st stage as follows.
The objective function of the subproblem is defined by (15a).
It consists of the capacity cost of the ESS energy reservoir
and power rating, as well as the conductor cost with respect
to the upgraded ampacity caused by the line reinforcement.
Also, it includes the operational cost, which consists of grid
losses cost and the unserved energy cost. Eq. (15e) describes
how the ESS location and line to be reinforced are fixed to the
optimal solution values of the master problem. 754, and Xiqy
are the duals of constraints related to the fixed ESSs locations
and the lines for reinforcement

1
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1 figt

min :
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(15a)

subject to: (1), (12), (14),
O(pe)>0, Vo, Vt (15¢)
E(n¢t)>0, Vo,vt  (15d)
Uiay=U"Tiay, Xiay=X["Xi1ay, VI,¥d,Vy (15e)
where p={S%, v, f, S, v, f, 5,5, sF €} is the set of vari-
ables of MAR-OPF, and UL={up™,up™,uq™,uq™} is the
set of variables related to the unserved load. w; and w,

are the weight coefficients associated with the grid losses
minimization and unserved load, respectively.

(15b)

T =[SCY— 3 (riay (Ui~ U7)

lel
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The Benders multi cuts for the master problem for the next
iteration are built with the dual variables and the objective
value of the subproblem as shown in (16). The upper bound
of the total planning cost, or UDB;j, is calculated summing
the optimal investment cost and the subproblem costs (i.e.,
UB1=Y, ichUs+ 3, (ici +pido) X; + > ey 2aep SCay).

3) 2nd stage - Determination of the ESSs size and rein-
forced lines ampacity:

a) Master problem: In the 2nd stage of the 1st block
problem, based on the site for the ESS allocation and line
reinforcement obtained from the 1st stage problem, we solve
another optimization problem using the Benders decomposi-
tion to determine the optimal size of the ESS capacity and the

(16)

line ampacity. Eq.(17) shows the total investment cost, while
expressing the updated ampacity (A;) as the sum of original
ampacity (I;***) and the change of ampacity (AA;). The pos-
sible range for the change of ampacity is given by (18c). The
2nd stage master problem is modeled only with continuous
variables, keeping the installation status (U;, X;) fixed to the
Ist stage solution (U}, X}"). Therefore, the variable parts of the
ESS investment cost (the part associated with energy reservoir
and power rating) and the conductor cost (the part associated
with the ampacity change) are only included in the objective
of the master problem. The anticipated subproblem cost is
approximated by Bg,. Starting from lower bound subproblem
cost value 3, 84, is updated by the Benders cuts \Ilg;) defined
for VdeD, VyeY, VneNs, where N is the Benders iterations
of the 2nd stage problem as given by (18d). The lower bound
of the 2nd stage cost, L B>, is the optimal objective value of
the master problem (i.e., LBo=MC>*).
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lel
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leL
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+ ) pi(Ga(AA) (20,17 + 51) AA)
lel
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Yy d
(18a)
subject to: (1la) — (le), (18b)
0<AA<AA™T, Vi (18¢)
Bay>B: Bay=VG),  Wd,Vy¥n  (18d)

b) Subproblem: The subproblem of the 2nd stage eval-
uates the system operational condition under the investment
decision given by the master problem. The optimization prob-
lem is defined with the similar set of operating constraints
as in the subproblem of the Ist stage. The squared change
of line’s ampacity is modeled through piecewise linearzation
as shown in (19c), while the number of discretization steps
(K>) can be very small as the optimal value of the ampacity
is already given from the master problem solution as shown in
(19f). The changed ampacity limits are expressed as (19d) and
(19e). As shown in (19a), the objective function is to minimize
the total grid losses and unserved load to satisfy the LDER
constraint, and the operation period spans all days grouped
into each day-type over the planning horizon.

VJB},?JL: SCay= Ndyz Z Z Ag(wi Z rifigt
teT ¢pcdqy lel (192)
+wy Y (uplly, + uppy, +ugl, + ugy,))
leL
subject to: (12), (15¢), (15d), (19b)
L(AAD>ar AA+by, Vee{1, ..., Ko}, VI (19¢)

0<I} <(I"")2 421 A A+ L(AA?), VI (19d)

0<IP<(I*®)24+2I" AAj+L(AA?),VI (19)
Riay=R;uay, Cray=C} Y14y, (199)
AAldyZAAZFZley, Vl,Vd, Vy
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The ESS power ratings, the ESS energy reservoirs, and
the change of ampacity are fixed to the optimal solu-
tion values of the master problem as shown in (19f).
tidy> Vidy, tdy are the corresponding dual values, which
are used to construct the Benders cut as shown in (20).
The variables with subscript d,y,n are defined for VdeD,
Yye), VneNs, respectively. The upper bound of the 2nd
stage problem, or UB-, is calculated summing the vari-
able investment cost and the subproblem costs (i.e., UBy=
e i CrHic RO+ S m(Ga(AAT)>+(20, 1% +01)
AAD+ Y ey Yaen SCH)-

V. SIMULATIONS

The performance of the proposed methods is assessed on
an existing Swiss 21kV distribution network with 55 nodes
characterized by a large renewable generation capacity (see
Fig. 5(a)). 2.7MWp of PV generation and 805kVA of hydro
power generation are installed. The detailed information of
the network can be found in [33]. The planning horizon is set
to 10 years and we assume that the load consumption grows
annually by 7% over the planning horizon (i.e., r4=0.07).
The considered ESS assets for the ADN are Li-ion batteries.
The battery cost parameters and possible ranges of ESS
energy reservoir and power rating are shown in Table I. The
candidate nodes for ESS installation are set according to the
indications of the operator of this grid. In Table II, the fixed
costs associated to the line investment are given differently
depending on the type of connection, considering that the
estimated cost for constructing underground cables is roughly
4 times higher than overhead lines [34]. Fig. 3 shows the
fittings of conductor cost and line parameters according to
the line ampacity. As shown in Fig. 3(a), a quadratic function
exhibits a better fit quality for the data of conductor cost
versus the line ampacity than a linear function. Thus, the
conductor cost is modeled as the quadratic function of line
ampacity and the associated equation and coefficients (62, 01,
and dg) are indicated on the graph. In Fig. 3(b), the equation
of hyperbolic curve best fits to the line resistance data and
associated coefficients (a5, af, and «f) are shown. Likewise,
the linear sensitivity coefficients (Ax and Ab) for the change
in reactance and susceptance are indicated in Fig. 3(c) and (d),
respectively. The penalty cost for the dispatch error is assumed
to be $897/MWh, which corresponds to the 99.9th percentile
of the real imbalance price settled from 2018 to 2019 in
the Swiss energy market [35]. The chosen price coefficient
is notably higher than a typical price settled in the energy
markets to secure a sufficient level of ADN dispatchability.
The weight coefficients for grid losses and unserved energy are
given as 6k/MWh and 100k/MWh, respectively. The seasonal
variation of the prosumption over a year is modeled by 8
typical day-types. A prosumption forecast is assumed to be

TABLE I
ESS PARAMETER AND CANDIDATE NODES FOR SIMULATION

Max.lmum power AMVA Max1ml._1m energy TMWh

rating per site Teservoir per site
1}nstallanon cost $200/kVA Installation cost $300/kWh

or power rating for energy reservoir
Capital investment cost per site $0.1M

ESS candidate nodes 4,16, 27, 41, 45

TABLE I
PARAMETERS RELATED TO LINE REINFORCEMENT

Fixed cost
for overhead lines
Fixed cost
for underground cables

$0.12M/km [36]

$0.48M/km [37]
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Fig. 3. Fitting of line parameters by the function of ampacity

provided by a reliable forecasting methodology for each day-
type. To model the prediction uncertainties for each day-type
prosumption forecast, 1000 scenarios are generated with equal
probabilities based on the assumption that the prosumption
profile follows a normal distribution [6]. Then, by applying
the K-medoids clustering technique [38], the scenarios are
clustered into 10 scenarios’. We solve a planning problem
using the determined operating scenario set to achieve the
optimal level of dispatchability of ADNs by allocating ESS
assets. Moreover, the line reinforcement is co-optimized along
with the ESS allocation to consider the grid losses and the
expected energy not served (EENS) while complying with
the grid constraints such as nodal voltage limits and the line
ampacity constraints. The optimization problems are solved
using the solver MOSEK via the MATLAB interface YALMIP.
The simulations are carried out on a desktop PC equipped with
an Intel® Xeon® Gold CPU at 2.1GHz and with a physical
system memory of 128 GB.

First, we show the performance of the planning tool con-
sidering both ESS assets and line reinforcement and analyze
the trend of investment decisions with respect to varying
PV penetration levels. Then, the performance of the solution
approach based on the modified Benders approach is demon-
strated by comparing it in terms of computation time and the
planning result with the solution approach used in [39] and
[13]. Moreover, the planning tool is tested on networks of
different sizes ranging from 25 nodes to 123 nodes to show
its scalable applicability.

9The number of reduced scenarios is set considering the similarity of
the original scenarios and the reduced scenario sets based on the algorithm
suggested in [13].
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Fig. 4. Dispatch result of Day 1: (a) Aggregated prosumption scenarios
and prosumption prediction, (b) Power flow through GCP of scenarios,
prosumption prediction and dispatch plan (Imbalance price : $897/MWh).

A. Planning results with different levels of PV capacities

We solve the planning problem considering various levels
of PV capacities, while 100% of PV capacity corresponds to
the existing PV capacity in the considered network. Fig. 4
shows the dispatch operation result of day-type 1 considering
100% of PV capacity. Fig. 4(a) demonstrates the aggregated
prosumption scenarios along with the aggregated prosumption
prediction, whereas Fig. 4(b) represents the dispatch result
after investing both on ESS installation and line reinforcement.
Thanks to the proposed planning strategy, the dispatch result
shows that the power flow at the GCP of all scenarios follows
the dispatch plan with the dispatch error determined by the
optimal dispathability level of ADN. To address the impact of
the PV generation uncertainty, different levels of PV capacity
(i.e., 0-500% of the existing PV capacity within the ADN)
are given to the planning problem. The locations of ESSs
and lines to be reinforced are determined as Fig. 5(a). As
shown in Fig. 5(b), the ESSs allocated at Node 4 and Node
27 increase in their power ratings and energy reservoir with
PV capacity. The capacity of ESS at Node 27 enlarges more
with respect to the increasing PV levels than the ESS at Node
4, in order to compensate for the uncertainty of PV generation
mostly attributed to Node 15, where the PV panels with the
biggest capacity are located (1.6MWp at 100% of the existing
PV capacity). In Fig. 5(c), the ampacity changes of the lines
indicated with bold-colored lines in Fig. 5(a) are shown. A
decrease in ampacity change is observed in the line between
Node 48 and 12 (Line 48-12) and Line 49-48 as the PV pen-
etration level increases. This is because the load consumption
is mainly satisfied locally by the generation from nearby PV
generation units, rather than by the power infeed from the
main branch. On the other hand, four lines connecting the
main branch (leading to GCP) and Node 15: Line 27-42, Line
42-3, Line 3-10, and Line 10-15, get updated starting from
300% and 200% of PV capacities, respectively, to support the
increasing reverse power flow fed by the PV generation from
Node 15. Lastly, the ampacity change of Line 2-27 decreases
until the PV penetration level reaches 300% thanks to the
local generation satisfying the load consumption. As the total
PV generation level grows to more than 300%, the excessive
PV generation as well as the increased dispatch of bigger
ESS at Node 27 increase the power flow through the main

© 21kVnode 1 ESS candidate node ESS allocation -

PVl PV @ ESSallocated node = 6000 N
< 2500

@ Hydro power < 5000 S
$ 4000 2000 =
3 3000 1500 §
>.2000 1000
2 E
2 1000 500 &
w

0
0 100 200 300 400 500
Relative PV capacity
w.r.t. the real capacity (%)

(b)
< Line reinforcement
S 300
2250
&
a 200
3
150 /
=
=100
B
> 50
& (=" ——a.
o 0 100 200 300 400 500

Relative PV capacity
w.r.t. the real capacity (%)

Fig. 5. (a) Topology with ESS allocation and line(%inforcement, (b) ESS
allocation (2nd block problem), (c) Line reinforcement (2nd block problem)

branch, increasing the required ampacity change of Line 2-
27. Finally, Fig. 6(a) and Fig. 6(b) show the comparison of the
total cost related to the operation (imbalance, grid losses and
unserved energy) and investment under different PV capacities.
Fig. 6(a) demonstrates the cost of imbalance penalty and
investment with and without ESS allocation (Noted as 'EX’
and "EO’ which represent the planning case without ESS and
with ESS, respectively) determined in the Ist block problem.
The imbalance penalty cost without ESS installation increases
drastically along with the level of PV capacity within the
ADN. As a result of optimized ESS allocation, the imbalance
cost is expected to be less than one-tenth of the default case in
all PV capacities cases. Indeed, the investment cost associated
with ESS allocation increases with larger PV capacity to
achieve the optimal level of dispatchability. As shown in Fig.
6(b), the investment cost related to the ESS allocation and the
line reinforcement increases with the increasing PV capacity.
The cost related to EENS stays negligible until PV capacity
of 300% but increases distinctively by curtailing excessive PV
generation at the PV capacities of 400% and 500%.
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Fig. 6. Obtained optimal cost value of (a) First block problem, (b) Second
block problem

B. Numerical assessment on the effect of separation of siting
and sizing problems

In this section, we compare the planning result as well as
the computational performance of the two solution approaches:
Approach 1, where the siting and sizing decisions are made



TABLE III
THE PLANNING RESULTS COMPARISON (APPROACH 1 VS. APPROACH 2

Approach 1 Approach 2
ESS allocation
(Node #) 4 27 4 27
Power rating
(KVA) 700 341 673 387
Energy reservoir
(kWh) 967 1202 1028 1151
Reinforced lines 48-12 [ 2-27 [ 48-49 48-12 [ 2-27 | 48-49
Aampacity (AA) 36 [ 133 ] 85 37 [ 133 [ 85
Total cost ($M) 8.794 8.799

together (i.e., the Benders decomposition approach used in
[39] and [13]), and Approach 2, where the siting and sizing
decisions are made sequentially (i.e., the proposed approach in
this paper.) As shown in Fig. 7(a), by employing Approach 1,
the evolution of the total cost over Benders iterations shows
an unstable trajectory with the change of binary investment
variables, which leads to slow convergence. On the other hand,
in Approach 2, the Benders cut built in the Ist stage of 2nd
block narrows down the binary solution space more effectively
based on the evaluation of the best possible investment and
operation decision with the given site decisions. Then, with
the fixed sites, the 2nd stage problem converges faster to the
best size solution. In this way, the zigzagging behavior in
the evolution of the total planning cost is notably reduced as
shown in Fig. 7(b) and Fig. 7(c). The texts on the graphs show
the comparison of the computation time between Approach 1
and Approach 2. The average computation times for solving
a subproblem of Approach 1 are similar to those of the
Ist and 2nd stages in Approach 2. On the other hand, the
average computation time of master problems for Approach 1
is significantly bigger than those for Approach 2 due to the sets
of benders cuts accumulatively added with the large number
of benders iterations for Approach 1. The sum of the Benders
iteration number of the 1st and 2nd stage of Approach 2 is
smaller than the iteration number of Approach 1, verifying the
superior performance of Approach 2 in the convergence speed
of the algorithm. Indeed, as shown in Table III, the planning
results obtained from both approaches show a negligible differ-
ence in terms of the ESS allocation, line reinforcement results,
and objective costs. Based on the result, it can be concluded
that the Approach 2 is computationally more efficient than
Approach 1 when numerous binary investment decisions have
to be tackled.

C. Scalability analysis regarding the network size

The proposed method has been applied to distribution
networks of various sizes to analyze its scalability. The number
of dispatch intervals was 24, and 4 day-types were considered.
Other parameter settings for the analysis are the same as the
ones adopted in Sec. V. All the network data can be found
in [33] and [40]. Fig. 8 reports the average computation time
per Benders iteration (denoted by 'BI’ in the figure) and the
number of Benders iterations (including both 1st and 2nd stage
of the 2nd block problem) to solve the planning problems
for available IEEE benchmark feeders with the number of
nodes ranging from 25 to 123. Fig. 8.(a) and Fig. 8.(b) show
respectively the trend of the average computation time per
Benders iteration and total computation time concerning the
system sizes. The results verify the tractability of the planning
model for distribution network feeders of a realistic size.

In each Benders iteration, solving the subproblem (i.e.,
operation problem) takes the most computation time due to
numerous operational variables and constraints determined by
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Fig. 7. Convergence of Benders decompostion: (a) Approach 1, (b) 1st stage
(Approach 2), (c) 2nd stage (Approach 2)

the system size. However, as shown in Fig. 8.(a), the average
computation time per Benders iteration does not increase
linearly with the system size. It implies that the computation
time depends not only on the system (i.e., problem) size
but also on the solution space, which is largely affected by
the network’s operating condition. Furthermore, Fig. 8.(b)
shows that the total computation time depends on the number
of Benders iterations. For example, the difference in total
computation time of 25-node system versus 55-node system
is very small (i.e., around 5% of the total computation time
for 25-node system) compared to that in average computation
time per Benders iteration (i.e., around 115% of the average
computation time per Benders iteration for 25-node system). It
is attributed to the smaller number of total Benders iterations
for the 55-node system in comparison to the 25-node system.
Meanwhile, the total computation time for the 69-node system
increased to more than 4 times compared to the 55-node
system. In contrast, the total computation time for the 123-
node system was 2.22 hours shorter than that with 69 nodes.
The results indicate that the convergence speed of the proposed
method is influenced by how the set of Benders cuts narrow
down the solution space to identify the optimal solution. Given
that the Benders cut is determined by the dual values obtained
from solving the subproblems, the system operating condition
significantly influences the optimal investment solution and the
convergence speed.
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Fig. 8. (a) Average computation time per Benders iteration (BI) for distribu-
tion networks with different sizes, (b) Total computation time for distribution
networks with different sizes



VI. DISCUSSION ON THE LIMITATION
OF THE PROPOSED METHOD

The investment decisions are influenced by how accurately
the scenarios model the stochasticity of the prosumption
uncertainty and the seasonal variability. However, it is worth
noting that the modeling of uncertainty is beyond the scope
of this paper. In practice, the modeler should have a reliable
forecasting and scenario generation tool.

Another limitation of the work is that the proposed method
is specifically designed for radial networks. It is already proven
that, for radial networks, if an optimal solution is obtained
from the SOCP-relaxed OPF while the equality holds for (10e)
(i.e., the inequality constraint associated with the line current),
then it is equivalent to the optimal solution of the Branch flow
model. Note that the phase angles of nodal voltages are relaxed
in the Branch flow model. The phase angles can be recovered
through the known angle recovery algorithm [25].

For meshed networks, the so-called cyclic condition, stating
that the sum of the voltage angle differences for adjacent nodes
should be zero (mod 2) for any loop in the meshed network,
must hold to recover an optimal solution of the original
OPF from the optimal solution of its SOCP-relaxed model
[25]. Hence, the application to meshed networks requires
appropriate changes in the OPF formulation. This specific
aspect constitutes our future work.

VII. CONCLUSION

This study presents a tool for the co-optimized planning
of ESSs and lines reinforcement for ADNs to achieve their
dispatchability. ESSs are employed to compensate for the
uncertainty of the prosumption such that the realized power
flow at the GCP can track a day-ahead computed dispatch
plan. The line reinforcement is considered for investment
to help satisfying the grid operational constraints. The line
characteristics and the grid constraints associated with the line
ampacity in the MAR-OPF model are adjusted with the change
of line ampacity to reflect the impact of line reinforcement on
the grid operation. The planning problem is reformulated such
that the siting and sizing problems of ESSs and lines reinforce-
ment are tackled sequentially by Benders decomposition. We
assessed the performance of the proposed method on a real
Swiss ADN with substantial levels of installed PV capacity.
The results demonstrate that the proposed co-optimization
framework can successfully guarantee the optimal level of dis-
patchability while securing the proper hosting capacity of the
ADN under increasing load consumption and a large amount
of distributed stochastic renewable generation. Moreover, the
benefits associated to the separation of the siting and sizing
in the planning problem of ESSs and lines reinforcement are
numerically assessed by comparing the computation time and
investment solution to the original planning problem. The
computation time for solving the reformulated problem was
one-third of that for the original problem while the difference
between the investment solution and the total planning and
expected operating costs of the two problems were negligible.
Moreover, the simulations conducted on IEEE test networks
and the real network of various sizes demonstrate that the
proposed planning method is sufficiently scalable to be applied
to networks of generic sizes.
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