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ABSTRACT

Friction and wear occur at every interface between solid materials. In the design of mechanical
devices, it is desirable to be able to quantify and control the amount of friction and wear, as well
as predict their evolution with time. “Tribology” is the science of interacting surfaces in relative
motion, which involves many phenomena such as friction, wear, lubrication, and corrosion. Phe-
nomenological models can be used to make predictions on tribological behaviors (the Coulomb’s
friction law, for example), but they must be tuned with experimental values, that are not directly
available when developing novel materials or surface treatments. From a scientific point of view,
these models give little to no insight into the mechanisms involved. This thesis aims to enhance

the current understanding of dry friction and wear at a more fundamental level.

All surfaces are rough over a range of length scales, whether they are man-made or natural.
When two rough surfaces are put into contact with each other, only a fraction of the total apparent
area is actually in contact. To study friction and wear in this context, we must go down at the
scale of the smallest asperities of the rough surfaces, where contact happens. The main goal of this
thesis is to acquire an understanding of adhesive wear from the nanoscale, and establish a link with
the larger scales. To do so, we start by working at the asperity scale, using analytical theories and
molecular dynamics simulations to investigate the wear of several interacting micro-contacts. The
elastic interactions enable the emergence of a wear regime featuring large wear volumes that are
not observed when considering the micro-contacts in an isolated manner, predicting the existence
of a severe wear regime. The emergence of severe wear is also found with rough contacts at a
larger scale, solved using the boundary element method. To upscale the dynamical nanoscale
processes of friction and wear uncovered during this thesis, a coarse-grained discrete element model
was formulated. This model is capable of reproducing the adhesive wear mechanisms observed
with molecular dynamics, and it can handle more complex situations involving the creation of
third-body particles and a third-body layer. The temporal evolution of tribological interfaces is
investigated using this model and with the help of physical experiments. We found that the wear
process starts with the formation of small wear particles, whose size is dictated by the material
properties. The particles grow and merge into a third-body layer, responsible for the macroscopic
roughness and providing the sliding resistance. Finally, using some of the knowledge earned along
the way, a practical case was investigated. The tribological influence of an oxide layer on silicon
samples was assessed using experiments and numerical simulations. We found that the presence of

the oxide layer reduces the wear rate of the protected piece, but increases the friction coefhicient.

While this thesis was restricted to the study of unlubricated adhesive wear, its founding

principles and the developed tools could be used to look at abrasion and lubricated contacts.

Keywords: tribology, asperity, severe wear, rough surface, third-body layer, molecular dynamics,
discrete element method, boundary element method, pin-on-disc, silicon






RESUME

La friction et I'usure apparaissent dans toutes les interfaces entre matériaux solides. Lors de
la conception de systémes mécaniques, il est souhaitable de pouvoir quantifier et contrdler ces
phénomenes, ainsi que de prédire leur évolution dans le temps. La "tribologie" est la science traitant
de I’interaction de surfaces en mouvement relatif. De nombreux phénomenes entrent en jeu, tels que
la friction, I'usure, la lubrification et la corrosion. Des modeéles phénoménologiques peuvent étre
utilisés pour émettre des prédictions (par exemple, la loi de frottement de Coulomb), mais ils doivent
étre calibrés sur des mesures expérimentales, indisponibles lorsque I’on développe des matériaux
novateurs. D’un point de vue scientifique, ces modeles donnent peu, voire aucun renseignement
sur les mécanismes physiques en jeu. Cette thése a pour but d’enrichir la compréhension actuelle
du frottement sec et de I'usure d’un point de vue fondamental.

Toutes les surfaces sont rugueuses a plusieurs échelles de longueur. Lorsque deux surfaces sont
mises en contact, seulement une fraction de ’aire totale apparente sera réellement en contact. Pour
étudier la friction et 'usure dans ce contexte, il faut se placer a I’échelle des plus petites aspérités
présentes sur la rugosité des surfaces, 1a ou le contact se produit. Lobjectif principal de cette these
est d’acquérir une compréhension de I'usure adhésive a partir de ’échelle nano, puis d’établir un
lien avec les échelles plus grandes. On commence par étudier I'usure de plusieurs micro-contacts en
interaction. Les interactions élastiques permettent I’émergence d’un régime présentant de grands
volumes d’usure : un régime d’usure sévere. I’apparition de I’usure sévere s’applique aussi aux
contacts entre surfaces rugueuses. Afin de rapporter aux plus grandes échelles les mécanismes nano
dynamiques de friction et d’usure découverts dans cette thése, un modele d’éléments discrets coarse-
grained (grains grossiers) est formulé. Ce modele est capable de reproduire les mécanismes d’usure
adhésive observés avec la dynamique moléculaire. Il peut aussi traiter des situations plus complexes,
mettant en jeu des particules (voire une couche) de troisieme corps. L’évolution temporelle des
interfaces tribologiques est étudiée a I’aide de ce modele ainsi que d’expériences physiques. On
observe que le processus d’usure débute par la formation de petites particules d’usure. Les particules
grossissent et fusionnent en une tribo-couche, responsable de la rugosité macroscopique et de la
résistance au glissement. Pour terminer, en utilisant les connaissances obtenues en chemin, un
cas pratique est abordé. Linfluence tribologique d’une couche d’oxyde présente sur des pieces en
silicium est étudiée a I’aide d’expériences et simulations numériques. On constate que la présence
de la couche d’oxyde réduit la vitesse d’usure de la piece, mais augmente son coeflicient de friction.

Bien que cette these soit restreinte a I’étude de I'usure adhésive non lubrifiée, les principes
sur lesquels elle est fondée et les outils développés pourraient étre utilisés pour se pencher sur le
phénomeéne d’abrasion et sur les contacts lubrifiés.

Mot-clés: tribologie, aspérité, usure sévére, surface rugueuse, tribo-couche, dynamique moléculaire,
méthode des éléments discrets, méthode des éléments de frontiere, pin-on-disc, silicium
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NOMENCLATURE

Frequently used symbols

d* Critical length scale [m]
E Young’s modulus [Pa]
E* Equivalent Young’s modulus [Pa]
G Shear modulus [Pa]
H Hurst exponent [-]
hI/{MS RMS of surface’s slopes [-]
R Elastic/adhesive energy ratio [-]
y Surface energy [N/m]
n Restitution coefficient [-]
7 Friction coefhicient [-]
% Poisson’s ratio [-]
I Density [kg/m3]
Subscripts

‘. Apparent

“ad Adhesive

o Critical

“off Effective

ol Elastic

; of junction

‘mN Maximum in normal direction

‘T Maximum in tangential direction

N Normal

- Tangential

Abbreviations

AFM  Atomic force microscopy

BEM  Boundary element method

DEM  Discrete element method

DFT  Discrete Fourier transform

MD Molecular dynamics

PSD  Power spectral density

RMS  Root mean square

SEM  Scanning electron microscope

TBL  Third-body layer
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CHAPTER

INTRODUCTION

1.1 STATE OF THE ART

1.1.1  Friction and wear at the macroscopic scale

EAR is all around us. We experience it every day in spite of ourselves, with the wear of car
brakes and tires on roads being responsible for more than half of traffic-related air pollution
according to Grigoratos & Martini (2015). Tire wear in particular has a significant impact on the
quantity of microplastics in the environment (Kole ez al. 2017), which comes with all sorts of
respiratory health issues. At larger scales, wear manifests itself in sliding geological faults due to
rock pulverization (Scholz 1987; Reches & Dewers 2005), and is responsible for the creation of
what is called a third-body layer, the two “first-bodies” being the two surfaces sliding on each other.
This third-body layer, also called a gouge by the geomechanics community, directly influences the
frictional properties of the interface (Biegel e al. 1989; Mair et al. 2002), and thus has implications
on the triggering and amplitude of seismic events (Mizoguchi ez al. 2007). Being able to predict
the occurrences of earthquakes calls for an understanding of gouge formation, properties, and

evolution.

On a more practical level, wear is a primary concern in the field of engineering. When designing
mechanical devices, it is desirable to quantify and control the amount of friction and wear, as
well as predict their evolution with time. Most systems comprising of moving parts require low
friction, for efficiency, and low wear, for reliability and greater lifespan. Yet, some devices need
high friction (like brakes), high wear (like machining), or even both (a lighter). As such, it is not
always a matter of minimizing these two quantities (even if it is often the case), but rather, being
able to control them.

The importance of friction and wear is such that there is a word depicting their examination:
“tribology”, from ancient Greek tp{Bw (tribo), meaning “to rub”, followed by the suffix -logy from
-hovyta (-logia), meaning “the knowledge of”. Tribology is the science of interacting surfaces in
relative motion and refers to the study of friction, wear, lubrication and corrosion. Tribological
phenomena have a significant economic impact. Holmberg & Erdemir (2017) estimated that 20%
of the world’s total energy consumption is used to overcome friction, and that implementing new
friction and wear reduction technologies would lead to savings of 1.4% on the gross domestic

product annually.

As all dynamical systems, a tribological system has inputs (geometry, materials, and loading



CHAPTER 1 - INTRODUCTION

2

F
—>

Figure 1.1 - Sliding block with friction. When the tangential force F. overcomes the static friction force
uFy (Coulomb’s friction law) acting between the block and the support, the block starts moving. Other
models exist to estimate the friction forces.

conditions) and outputs (for example friction and wear). To know exactly how to predict the
behavior of such a system would be like finding the Holy Grail of tribology, and it is what
tribologists are after. The study of friction began a long time ago, five centuries from now, with
the work of Leonardo da Vinci (Hutchings 2016). He found in his experiments that the friction
force is proportional to the normal load and independent of the area of contact. His findings are
now well known by the scientific community, being usually attributed to the physicists Guillaume
Amontons (1699) and Charles de Coulomb (1785) under the name “Amontons-Coulomb friction
law?”, or simply “Coulomb’s friction law”:

which arises in situations like shown in Figure 1.1, where Fy is the normal load, Fy is the tangential
load, and u is the friction coefficient corresponding to the interface. The value of © depends on the
materials constituting the interface, but also on surface finish, lubrication, boundary conditions,

etc. It usually evolves during sliding.

For the description of sliding wear, as many as 182 equations have been referenced by Meng
& Ludema (1995), along with more than 300 equations to describe frictional phenomena. Each
model has between 2 and 26 describing parameters. Obviously, not all of the parameters have a
direct physical meaning. They must be fitted again experiments, making each model very specific
to a given case of interface. One of the first derived and simplest model of wear is the Archard’s

wear model (Archard 1953) giving the wear volume V as
V= KE , (1.2)

9

s being the sliding distance, §) the hardness of the softest material, and K a fitted wear coefficient.
Note that, like the Coulomb’s friction law, the Archard’s wear model shows a proportionality
with the normal load Fy. The problem with the formulation of this wear law is the same as for
the other wear models, that is K is a fitted parameter specific to a given situation, ranging from
10~ to 10~ according to Rabinowicz (1984). Rabinowicz classified wear into different forms,
the principal forms being abrasive wear and adhesive wear, both obeying the Archard’s wear model.
Abrasive wear involves a hard surface rubbing against a softer one, while adhesive wear takes place
between two bodies of similar hardness, typically made of metal. In the case of adhesive wear,
various regimes are observed: Jow wear corresponds to K in the range 1072 - 107°, mild wear to
the range 107 - 107, and severe or catastrophic wear to the range 107 - 1072, Wear particles are
formed in the two higher regimes, while in the low wear regime the surfaces are only polished.
The wear coefhicient is usually not constant over time, and transitions can be observed between
different regimes of wear for different sliding durations or different loads (Zhang & Alpas 1997).
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Another feature differentiating mild wear from severe wear is that the wear coefficient £ is not
much dependent on the normal load in the mild wear regime, while it increases with the load in

the severe wear regime.

The physical origins of the friction coeflicient ¢ and the wear coeflicient Kk are not yet fully
understood. To use these equations in practice, ranges of values can be found in tables, but only
for the most usual cases. Therefore, no prediction is readily available without experimentation
when working for example with new materials and systems. The flaws and limitations associated
with the use of empirical models are the motive to move toward acquiring a more fundamental

understanding of tribological processes.

1.1.2  Rough surfaces and contact

We may start with some geometrical considerations. All macroscopically flat-looking surfaces are
in reality rough, whether they are man-made (Mandelbrot et al. 1984; Majumdar & Tien 1990) or
natural (Thom et al. 2017). When put into contact with each other, two rough surfaces create a
number of micro-contacts (or junctions) of various sizes at the interface, depending on the normal
load and the amount of roughness (Greenwood & Williamson 1966). The real contact area is, for
common loading conditions, a small fraction of the apparent area. In an unlubricated contact, the
two surfaces only interact through these micro-contacts, so the friction and wear phenomena must
initiate from those. Consequently, there is a need to characterize surface roughness and the contact

between rough surfaces.

The most common ways of measuring surface roughness, used in industry, give a description
of the surface roughness at only one length scale, which is usually the scale that can be directly
affected by machining, and therefore that is the most relevant for engineers.

Let us consider a discretized surface of 7, X 7, points and size L, x L, (for example acquired
experimentally), described by its height distribution h(x;,y;), withx; =i L, /n,, i =0,1,...n,—
landy; =jL,/n, j=0,1,..,n,—1. We also define the mean value of any discretized function

f(xi’yj)as

1 n,—1 ”y—l

. Z Zf(xiayj)- (1.3)

x™y 1=0 j=0

/)=
For a surface h(x;,y;) with a mean height (5) = 0, the arithmetical mean deviation is defined as

Sa={(|h]), (1.4)

also called Ra. It is the measurement used through this manuscript to quantify roughness amplitude.
Another way of characterizing the mean amplitude of roughness is the root mean square (RMS) of

heights:

hrys = v/ (h?). (1.5)
Alternatively, it is also possible to quantify the gradient of b, with the RMS of slopes:
rs =V (IVAP2). (1.6)

One significant drawback of these measurements is that they depend on the size of the measured
sample. Measuring a smaller sample generally leads to a smaller roughness measurement. When
performed at large scale, the measurements do not necessarily give a sense of the size of the smallest
asperities, which play a major role in the mechanics of contact. There is a need to characterize

roughness over multiple scales at once.
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Figure1.2 - Geometrical interpretation of fractal dimension and Hurst exponent. (a) Fractals are self-similar.
When scaled by a factor a, the measure of the fractal (quantifying its “mass”) is scaled by a? where D is the
fractal dimension. For the Sierpinski triangle shown here, D =log,(3) 2 1.585. (b) Rough surfaces can be
modeled by self-affine surfaces. When looking at a portion of a size scaled by @, the heights are scaled by a
factor @ where #{ is the Hurst exponent.

Hurst exponent

To study rough surfaces over multiple scales, we first need to define the concept of fractal. A fractal
is an object whose structure is invariant by scaling. In other words, it displays a feature called
self-similarity, meaning that a zoomed view on one part of the fractal will be similar to the whole.
Fractals are usually described by their fractal dimension D (see Figure 1.2a). However, in the case
of fractal surfaces (or lines) representing rough surfaces, it is easier to consider their Hurst exponent
H because it can more easily be understood geometrically (Majumdar & Tien 1990), as shown in
Figure 1.2b. Let us consider a rectangular portion of size dx X dy taken from a fractal surface with
a Hurst exponent of #. We call dz the size of its “features” (for example, a mean measurement of
the heights). If we now look at a scaled portion of size @ dx x a dy, the features will have a size
of a”'d z. For a value of # =1, the initial portion and the scaled potion will look the same, the
surface is called self-similar in this case. For more general cases, if 0 < # < 1, the surface is called
self-affine, and the vertical features of a scaled-up portion will look shorter. Besides, the Hurst
exponent can be related to the fractal dimension, as # = 2— D for rough lines and # =3 — D for
rough surfaces.

Self-affinity is a feature observed in real rough surfaces, for example in rocks (Thom et al.
2017) or artificial metallic surfaces (Mandelbrot et al. 1984; Majumdar & Tien 1990). The surfaces
are self-affine over several orders of magnitude and display Hurst exponents usually comprised
between # = 0.2 and # = 0.8. Anisotropy of the Hurst exponent can be observed at large scales,
but isotropy is restored at smaller scales (Candela & Brodsky 2016). When the Hurst exponent

changes across scales in this manner, we qualify the corresponding surfaces as multi-affine.

Spectral measurement of roughness

The computation of the Hurst exponent of a given surface, acquired experimentally or numerically

generated, is done with the help of spectral analysis (Jacobs ez al. 2017).

Let us consider a discretized line profile of 7, points and length L, described by its height
distribution h(x;). The 1D discrete Fourier transform (DFT) of h(x;) is

n,—1
A X

h(q)= D h(x,,)e % (1:7)
m=0
where g, =2k /L, is the frequency, and k is the wavenumber ranging from 0 to [N /2] if we do

A
not consider the redundant periodic and symmetric regions of h(g, ). We also give the definition
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Figure 1.3 - Simplified power spectral density of a rough surface (in logarithmic scale). Its value is zero at
frequencies ¢ < g, and ¢ > g,. The slope 3 between ¢, and g is related to the Hurst exponent #. For 2D
surfaces, the slope is 8 = —2(# + 1) as represented, and for 1D lines, it is 5 = —(24( +1) instead.
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We now consider a discretized surface of 7, X 7, points and size L, X L, described by its
height distribution b(xi,yj). The 2D DFT %(%c’%) of h(xi,y]») is obtained by applying the 1D
DFT (1.7) successively in the x and in the y direction.

The power spectral density (PSD) of a line or a surface is computed from the DFT of h(x):

Clg)=Alh(q)P (1.9)

where A = L /nZin1Dand A= LxLy/ninf in 2D. It is equivalently computed by taking the
DFT of the autocorrelation of 4(x). For a 1D line, we obtain C'®(q, ), which has units of [m?].
For a 2D surface, we obtain C*P(q,, qy), which has units of [m*]. If C2P is radially symmetric,
it means that the surface is isotropic, and the PSD can be reduced to a 1D radial average C*°(g),
with g =|q/|. All the frequencies g,, ¢, and g have units of [1/m] (actually [rad/m]). It is also
possible to compute 1D PSDs of a 2D surface by only taking the DFT along one direction and
then taking the average along the other one. This maneuver can be used to detect an anisotropy of
the surface by comparing a PSD along the x direction against a PSD along the y direction.

Before computing the PSD of a real surface, a window function has to be applied to /(x) in
order to not have an effect of the aperiodicity of the surface arising in the PSD. For example, a
Hann window can be used. If working in 2D, the window has to be radially symmetric to not

introduce artificial anisotropy.

The computed 1D PSD (C™ or C*°) can be used to find the Hurst exponent of a surface.
Typical PSDs of natural rough surfaces have the form shown in Figure 1.3 (Yastrebov ez al. 2015).
They follow a power-law

Clg) o< q” (1.10)

in the higher frequencies g (or smaller wavelengths A = 27t/ q), characterizing the self-affine part
of the surface. The slope 3 between the frequencies ¢, and ¢, is linked to the Hurst exponent,
which is equal to # = —/3/2—1 for 2D surfaces, and to # = —3/2—0.5 for 1D rough lines.
The frequencies ¢, ¢,, and g, correspond respectively to the longest wavelength A, = 27t/¢g;, the
roll-off wavelength A, = 27t/q, and the shortest wavelength A, = 27t/q. For real surfaces, the
longest wavelength is the scale at which the surface becomes macroscopically flat, and the shortest

wavelength is linked to the size of the smallest asperities.
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(b) PSD and fit

(a) Measurements at multiple scales

Figure 1.4 - Measuring the PSD of a rough surface, from Jacobs et al. (2017). (a) Topographic measurements
are taken at multiple scales. (b) The resulting PSD curves span several orders of magnitude. In the case of a
self-affine surface, a linear fit (in logarithmic scale) on the data gives the Hurst exponent.

A PSD curve of a real surface ranging multiple scales can be obtained by taking measurements
of the surface at different scales, and then stitching the PSD curves obtained for each measurement,
as shown in Figure 1.4. One must be careful about the artifacts that a measuring device can create
on a PSD curve. For example, white noise will add a 1/¢? tail to the curve, which should not be
interpreted as self-affinity of the surface. The measuring device can also introduce an artificial
cutoff frequency g, for example the radius of an atomic force microscopy (AFM) tip.

The RMS measurements (hgys and by, o) can actually be computed from the PSD of the
surface by integrating it in a certain way (more details in Jacobs et al. (2017)). This is an indication
that the PSD contains all the information about roughness that we need.

Computer-generated rough surfaces

A rough surface with a desired PSD (like the one shown in Figure 1.3) can be easily created by
first generating a surface with random heights h(x;, yj), computing its 2D PSD, scaling each of its
component to match the desired PSD and finally revert to the spatial domain using the IDFT (1.8).
The surface can additionally be rescaled to match a certain S, byys or by, s Examples of such
generated rough surfaces are shown in Figure 1.5. The rough surfaces can be generated for a chosen
set of Hurst exponent, frequencies and RMS height or gradient. Usually, ¢, is taken equal to ¢g; to
not account for the plateau in the PSD. Also, A, (defining ¢,) cannot be taken smaller than the
discretization size of the surface.

Contact of rough surfaces

When two rough surfaces are put into contact with each other, only a fraction of the total apparent
area is actually in contact, as Figure 1.6 demonstrates. Many techniques exist to relate the normal
load Fy to the ratio A/A, between the real contact area A and the apparent contact area A, being
analytical, numerical or experimental. An overview of these techniques is available in Miiser et al.
(2017). Overall, it is shown that for a small load, the ratio A/A, is roughly proportional to the
load Fy, and that the coefficient of proportionality is related to the roughness of the surfaces (and
their material properties). For larger loads, the relation becomes sub-linear as the ratio A/A,
approaches 1.
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Figure 1.5 - Example of computer-generated rough surfaces. The parameters in commonare L, =L =L =
L, n, X n, =512 x512, and by, =1.5. In all cases, A, = A;. In (a), (b) and (c), only the Hurst exponent
is varied, showing the behavior explained in Figure 1.2. In (a), (d) and (e), the largest wavelength A, is
changed, showing that it controls the size of the largest undulations. Finally, in (a) and (f), only the smallest
wavelength A differs, displaying its effect on the smallest roughness components.
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Figure 1.6 - Evolution of contact area with normal pressure. The figures were generated using our boundary
element software Tamaas. The simulated rough surface has the same properties as the one shown in
Figure 1.5a, with in particular g, =1.5. The contact zones are in black. p,, is the applied normal pressure
and E* is an effective Young’s modulus.
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Analytical rough contact theories have been derived by considering the interaction of asperities
and their statistical distribution on the surfaces (Persson 2006; Bush et al. 1975; Ciavarella 2016;
Greenwood & Wu 2001). The validity of each model depends on the ranges of roughness parameters
(Hyun et al. 2004). Still, all models share the same form in the linear range. For example, Bush

et al. (1975) gives

A
=2z plj , (1.11)
A, E*hgis

where E™ is the equivalent Young’s modulus, enclosing the elastic properties of both contacting

surfaces:
1 1— vlz 1— vz2

Ex E E,

(1.12)

The constant v/ 27 in (1.11) varies between the analytical models.

The different numerical techniques presented by Miiser et al. (2017) are the use of the finite
element method (FEM), boundary element method (BEM) or molecular dynamics (MD). Both
FEM and MD have the limitation that rough surfaces are very costly to simulate when having
a good discretization, especially because a large part of the computational power has to be used
for the simulation of the elastic bulk rather than the surfaces. BEM overcomes this limitation
by only simulating the surfaces of the solids. Even if the typically used BE formulation is only
valid for nominally flat surfaces (surfaces with small slopes), this description is well suited for
macroscopically flat rough surfaces, making BEM the best candidate to study the contact between
rough surfaces. Furthermore, the contact between two elastic rough surfaces with different Young’s
moduli is equivalent to the contact between a rigid rough surface and an elastic flat surface (Johnson
et al. 1971), meaning that only one surface has to be simulated (which is also true for the FEM and
MD).

The proportionality of the real contact area with the normal load can be directly related to
the macroscopic laws of friction and wear (Coulomb’s and Archard’s), which both also show a
proportionality with the normal load Fy. Regarding the case of friction, Bowden & Tabor (1966)
directly linked the tangential sliding resistance to the real contact area and the shear strength of the
junctions. To investigate the case of wear, we can similarly look at the individual junctions formed

by asperities in contact.

1.1.3  ‘Wear at the scale of asperities

Colliding asperities

Inspired by the theories of Rabinowicz (1958), the wear of a single junction was investigated using
MD simulations, leading to a recent breakthrough by Aghababaei et al. (2016) in the modeling
of adhesive wear. Aghababaei ez al. looked at the behavior of two colliding asperities located on
opposed surfaces under sliding motion, using 2D MD simulations of the setup shown in Figure 1.7a.
At the size reachable by current MD simulations, real materials usually exhibit plastic behavior.
The novel use of coarse-grained materials in the MD simulations allows to witness a transition
between plastic and brittle behaviors: for a junction size d between the two asperities smaller than a
critical length scale d; the asperities deform plastically and simply exchange some superficial atoms
(Figure 1.7b), while for a junction size larger than d; a wear particle detaches from the surfaces
(Figure 1.7¢). The critical size d* is found by comparing the elastic energy E,; stored by shearing the
asperities with the adbesive energy E, ; needed to create the new fractured surfaces that lead to the

formation of the wear particle. If £ 2 E_;, there is enough energy to create the new surfaces and
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Figure 1.7 - MD simulations of colliding asperities under shear, from Aghababaei er al. (2016). (a) The
asperities and their junction have an overall size d. Depending on d, the two following outcomes are
possible: (b) The asperities deform plastically and exchange superficial atoms; (c) A wear particle of size

~d is detached.

therefore form a particle, whereas if £ < E,_ j, new surfaces cannot be created and the asperities
can only plastically deform. The expression of the critical size found by Aghababaei ez al. is

2yG
d*=A }/2 (1.13)
%]

where A is a geometrical factor of the order of unity (A = 8/7 in the 2D case of protruding
asperities), y is the surface energy of the material, G is the shear modulus and o; is the shear strength
of the junction. We can note that d* depends mainly on the material properties and not the
geometry (considering the fact that A ~ 1). The expression of d* was later extended (Brink &
Molinari 2019) to take into account a weakened and tilted interface between the joined asperities,
resulting in a correction of the term o;. A distinction is made between having slip or plastic
deformations at the junction, but since we are mainly interested in cases of debris formation, we
will not consider the two regimes separately here. Another study (Milanese et al. 2020) showed that
the surface morphology also affects the minimum wear particle size, and that interfacial adhesion

impacts the wear rate.

The transition between a case where surfaces only plastically smoothen and a case where a
wear particle is formed can be related to the macroscopic manifestations of low wear and mild wear.
For light normal loads, we expect to have a small real contact area between macroscopic surfaces,
meaning that the junction sizes would be small, resulting in no formation of wear particles. For
higher loads, the junction sizes will eventually grow bigger than d; resulting in the formation of

wear particles, namely wear.

Subsequent MD simulations permitted to link the wear volume created via adhesive wear to
the sliding work (Aghababaei ez al. 2017) and the sliding distance (Zhao & Aghababaei 2020) as in
Archard’s wear model. These relations are only accurate near the plastic regime, when asperities

have a size of the order of d* (Aghababaei & Zhao 2021).

From asperities to rough surfaces

Having acquired some understanding of the wear process at the single-asperity level, attempts
were made to go toward larger scales. Frérot et al. (2018) used BEM to numerically simulate the
contact between two rough surfaces and obtain a map of the micro-contacts. Each micro-contact
size is compared to d* to assess if it can result in the formation of a wear particle. Ultimately, an
instantaneous wear coefficient is estimated. However, relying only on d* leads to a contradiction:

the predicted wear volume increases with the material’s hardness, which is opposite to what is
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(a) Separate wear particles formation (b) Combined wear particle formation

Figure 1.8 - MD simulations of two pairs of colliding asperities under shear, from Aghababaei ez al. (2018).
The insets show the initial configurations. The asperities and their junctions have an overall size d = d; the
space between the pairs is A. Depending on A, the two following outcomes are possible: (a) Each pair of
asperities creates a wear particle of size d; (b) A combined wear particle of size d, = 2d + A is detached.

experimentally observed and summarized by Archard’s wear model, predicting a wear rate inversely
proportional to the hardness. Brink ez al. (2021) followed the same principle as Frérot et al. but
added the notion of sliding distance to compute a wear volume over time and get over the hardness
inconsistency. These models give promising results, successfully upscaling the transition between
the low and mild wear regimes, but they fail to show a clear transition toward a severe wear regime.
They assume that each micro-contact can only form a wear particle by itself, and no potential

interactions are considered. Somehow, one ingredient seems to be missing.

Interaction of multiple pairs of colliding asperities

Independently of upscaling attempts, a recent work (Aghababaei et al. 2018) has studied how two
pairs of colliding asperities interact (see insets in Figure 1.8), with each pair having a junction size
d > d; meaning that each junction can result in the formation of a wear particle under shear. It
was shown using 2D MD simulations that when the distance A between the pairs of asperities
is large, each pair of colliding asperities forms its own wear particle of diameter d (Figure 1.8a).
However, when A is smaller than approximately d, a single (larger) wear particle combining the
two pairs of asperities is formed with an effective diameter of d, = 2d + A (Figure 1.8b).

This change of behavior can be an explanation for the transition from mild wear to severe
wear regime at large normal loads, observed at the macroscopic scale, with an increase of the wear
coeflicient. Fracture mechanics were put forward to rationalize the transition (Aghababaei et al.
2018). The stress intensity factors K; of mode I fracture have been analyzed at the corners of
each asperity, revealing a mechanism of crack shielding when the pairs of asperities are put closer
together, preventing the formation of separate wear particles. Crack shielding mechanisms were
later confirmed in the context of finite-element simulations with a phase-field approach to fracture
(Collet et al. 2020). Even though physical insight has been acquired, no theoretical prediction was
given for the critical interaction distance A, and the influence of the asperities size d compared to
d* has not been studied systematically. To this end, the existence of elastic interactions could be
exploited, as even without the presence of cracks, it is known that multiple neighboring asperities
interact elastically over long distances (Block & Keer 2008; Komvopoulos & Choi 1992). It remains
to be seen what happens in more complex situations involving many potentially interacting nearby
micro-contacts, that typically appear in rough contacts.
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Evolution of surfaces and third bodies

All simulations presented until here regarding the wear of asperities only looked at the initiation
of wear, up to the detachment of wear particles. In the upscaling attempt of Brink et al. (2021), the
wear particles are discarded when they are fully detached, to not make strong assumptions on their
evolutionary behavior. Still, the presence of wear particles trapped in an interface must have a
strong effect on its tribological properties. How wear particles and surfaces in contact evolve over
time was studied separately.

Milanese et al. (2019) showed using MD simulations that, at the nanoscale, two rough surfaces
sliding on each other evolve toward self-affine surfaces with properties independent of the initial
roughness profiles. Another feature of these nanoscale simulations is the apparition of a rolling
third-body particle, which seems to be a key ingredient in the evolution of the surface roughness
to self-affine characteristics. The growth of the rolling third body particle was also investigated
analytically (Milanese & Molinari 2020).

The behavior of multiple third-body particles trapped between two sliding surfaces was later
studied by Brink ez al. (2022) using 3D MD simulations. The particles are shown to grow into
rolling cylinders, which have low sliding resistance. The cylinders then agglomerate, increasing the
tangential resistance. This type of simulation is a rich source of insights, but their computational

cost is very high, due to spatial and temporal scales being large for MD simulations.

In both cases, the systems are dynamically evolving. Monitoring this evolution at this scale
and larger ones will be crucial for correctly quantifying friction and wear over time.

1.2 OBJECTIVES

Wear involves many phenomena, such as adhesion, abrasion, lubrication, and corrosion. This
whole family of processes cannot be reasonably explored in a single thesis. Therefore, we focus
solely on unlubricated adhesive wear. Even in this form, we saw that wear can be classified into
multiple experimentally observed regimes: low, mild, and severe. Through the years, contact
mechanics and wear were approached at multiple scales (see Figure 1.9). The macroscale is where
surfaces can look smooth. It is our everyday scale. Then, we call mesoscale the range of scales
where roughness is visible, originating from ancient Greek péooc (mesos) for “middle”. For most
engineering applications, the size of roughness is under 100 pm, whereas in geology, it can be
witnessed at a much larger scale. Finally, the scale of the smallest asperities is the nanoscale! On
the basis of the state of research about adhesive wear modeling, the main objective of this thesis is

"In the case of metals or ceramics, we can expect an asperity size of the scale of a few nanometers. As a recall, the
size of a single atom is around 0.1nm =1A.

_—

(a) Macroscale (b) Mesoscale (c) Nanoscale

Figure 1.9 - Multiscale view of a macroscopically flat interface. (a) Macroscopic scale: the surfaces are
flat, no roughness is visible. (b) Mesoscale: the surfaces are rough over multiple levels of zoom (fractal).
(c) Nanoscale: single asperity. Atoms may be visible
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the following:

Fundamental understanding of wear Acquire a physical grasp of unlubricated adhesive wear

from the nanoscale, and establish a link with the expected behaviors at larger scales.
This principal objective can be broken down into several sub-objectives:

Interaction of micro-contacts The wear behavior of a single micro-contact (at the nanoscale)
is known. An analytical theory of wear must be formulated for several micro-contacts
susceptible of interacting, in order to formalize the emergence of a severe wear regime at the
nanoscale. At the mesoscale, rough contacts innately create many clustered micro-contacts,
prone to interaction. The investigation of the emergence of severe wear for rough surfaces

should naturally follow.

Upscaling All knowledge acquired at the nanoscale, either with analytical or numerical models,
must be cast into larger scales. As MD has been shown to reach a computational limit, other
numerical methods could be used or developed.

Time evolution As the tribological properties of an interface depend strongly on its geometry
(e.g. the surface roughness), how this geometry evolves during sliding and whether it reaches
a predictable (maybe steady) state must be investigated.

All of the objectives above can be addressed with numerical simulations. Ideally, the resulting
models must be applicable to any geometry and material. To give the simulations a practical
backing, experiments can be conducted on realistic materials. In this regard, silicon (Si) is a
material of choice. It is highly used in the industry, both in mechanics and electronics, and it is
also fairly easily simulated using MD, making it an ideal candidate material for our studies. Silicon
is a very brittle material that cannot be used as is in its crystalline form for mechanical applications.
To mitigate this effect, a thin oxide layer can be grown at the surface of the material (Lai et al. 1994),
forming a layer of silica (or silicon oxide, SiO,) by diffusion of oxygen atoms into the surface
(Bongiorno & Pasquarello 2002). A more practical objective follows, which is to define how the
presence of an oxide layer on interacting pieces of silicon affects their tribological behavior (friction
and wear), and to assess the impact of the oxide layer’s thickness. Naturally, the objectives stated
above can also be addressed with experiments.

1.3 APPROACH

This thesis follows a bottom-up approach, starting from the identification of processes at the scale
of asperities, the nanoscale, all the way up to the macroscale.

The nanoscale study of the interaction of micro-contacts is conducted by analytical means, to
obtain theoretical predictions, and by using MD simulations, to challenge the predictions. The
theory is formulated following the principles laid by Rabinowicz (1958) and Aghababaei ez al.
(2016) by calculating the effect of elastic interactions between multiple junctions on the energy
stored by the system under shear, energy available for the creation of wear particles. The MD
simulations use the same numerical models as Aghababaei et al. to observe the ductile-brittle
transition in a fictitious material at a scale reasonable for MD simulations.

At the mesoscale, BEM is used to compute the contact between rough surfaces. From the

quantities computed by a BE solver, it is possible to apply the wear principles uncovered at the
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nanoscale to see their effect on a rough contact, where many micro-contacts susceptible to interact
are formed. BEM can also be used at the macroscale by not directly modeling surface roughness,
and instead hiding the concepts of roughness and real contact area in field variables. The issue
of going for BEM at larger scales is that mechanisms inherently captured by MD, like yield and
fracture, are not easily reproduced in BE models. The models obtained with BEM are either static
or must include strong assumptions about the formation and evolution of third-body to model
dynamic effects. One way of getting around this problem is by using another method for upscaling.
To this end, a discrete element (DE) model is formulated to coarse-grain the MD simulations,
by merging groups of atoms into larger particles with similar mass and interaction properties,

lowering drastically the computational cost of the numerical simulations.

To complement and ground numerical simulations, studying the evolution of tribological
systems is also done experimentally at all scales, although with some limitations for the smallest
ones. Wear initiation and evolution are observable by optical means, but for a more precise

evaluation, the DE model is also used at the nanoscale and up.

Experiments are performed on the silicon samples to measure the effects of the presence of
an oxide layer. This approach is backed up by quantitative MD simulations of the materials of

interest (Si and SiO,) at the nanoscale, and BEM simulations at the macroscale.

1.4 OUTLINE

The chapters of this manuscript are organized into three parts. Each section is briefly described
below. In the first part, which includes this introductory chapter, the framework of the thesis is

presented.

Chapter 2 The numerical methods used during this thesis are presented, namely: molecular
dynamics (MD), the discrete element method (DEM), and the boundary element method
(BEM).

The second part focuses on the formulation of analytical theories, numerical results, and the

development of new numerical models.

Chapter 3 A 2D theoretical model is formulated to predict whether multiple nearby micro-
contacts deform plastically, create separated small wear particles under shear, or merge into a
single larger wear particle, formalizing the emergence of the three macroscopic wear regimes
at the nanoscale. The model is then verified using BEM (in static configurations) and MD

simulations (dynamical).

Chapter 4 The theoretical model formulated in the previous chapter is extended to the third
dimension to investigate the case of two interacting circular junctions. The analytical
problems found in 2D (e.g. infinite energy of deformation) are automatically fixed in 3D. A
wear map is produced from the analytical model, linking the geometrical configuration and

material properties to the expected wear behavior of the system.

Chapter 5 This chapter is a natural continuation of the previous one. The analytical model
is implemented into a numerical BE model. After verifying that both the analytical and
numerical models yield the same results for two micro-contacts, the numerical model
is applied to rough surfaces. Wear maps predicting the three different wear regimes are

computed.
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Chapter 6 To tackle dynamically evolving systems, a coarse-grained DE model is developed, hav-
ing cohesive forces between the particles to model fracture and reattachment of matter, like
in MD. The inter-particular forces are tuned to match target elastic and fracture properties.
The model is shown to replicate the adhesive wear mechanisms at the nanoscale.

Chapter 7 Three short DEM studies are carried in this chapter. In the first one, a link between
nanoscale and macroscale strengths is found. In the second study, the wear of rough surfaces
at different scales is investigated. Finally, in the last study, the transition between two

frictional regimes (caused by the presence of wear particles) is explored.

In the final part, experimental campaigns are presented, along with some numerical models
supporting the observations.

Chapter 8 Pin-on-disc experiments are run on SiO, samples. We show how surface roughness is
created from flat surfaces, starting with the creation of wear particles at the scale of asperities,
which are merging into a rough third-body layer. We demonstrate that, for the explored
range of loading conditions, the surface roughness evolves toward a common steady state

regardless of the initial surface roughness.

Chapter 9 The same experiments as in the previous chapter are performed on Si samples, com-
prising of an SiO, oxide layer of variable thickness. The effect of the oxide layer on the
friction coeflicient and the wear volumes is uncovered. To explain the observed behaviors,
MD simulations are employed to identify the properties of Si and SiO, having a tribological
interest, followed by macroscale BEM simulations taking into account the evolution of
surfaces.

Material developed during the thesis, but not used in the remaining chapters, is presented in the
Appendix.

Appendix A In this section, a BEM contact solver with friction is described. While not being used

in the other parts of this thesis, it can prove useful for future works related to this one.

The manuscript is concluded by a summary of the main results and a discussion of the potential
future works that can be carried out on the basis of this thesis.
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CHAPTER

NUMERICAL METHODS

N this chapter, the various numerical methods used throughout the whole thesis are presented.
They are: molecular dynamics (MD), the discrete element method (DEM), and the boundary
element method (BEM). We do not aim to present a full course on each subject, but rather to give
just enough information so that the reader could, in principle, be able to implement a rudimentary

version of each method.

2.1  MOLECULAR DYNAMICS

2.1.1  General principles

The first chapters of Rapaport (2004) give a nice introduction to MD. In the simplest forms of
MD systems, each atom is represented as a point particle, having a position x; in 2D or 3D} and a
mass 7;. The way of describing the interaction between the atoms is via interatomic forces or
interatomic potentials. The best known pair potential is the Lennard-Jones (L]) potential. For a
pair of atoms 7 and 7, having the respective positions x; and x ;, the potential energy is

U(Tij): 4E[<%>12_<%>6] ifrl-]-<rc, (2.1)

0 otherwise,

where 7;; = [|x; — x|| is the interatomic distance, 7, is a cutoff distance, ¢ is a parameter
governing the strength of the interaction, and o is defining a length scale. A minimum is reached
atr;; = 2/65 2 1.220. At close range, the resulting force is repulsive, and attractive at high
range, dropping to zero above the cutoff distance. The interatomic force is obtained by deriving
the potential:

Fl]:—VUl](rl]). (2.2)

The force acting on each atom is the sum of all the pair forces acting on this atom, which obeys

Newton’s second law: N
mi%; =F;=> F,, (2:3)

j=1

J#i

"In more complex systems considering dipolar particles, they would have additional rotational degrees of freedom.
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CHAPTER 2 — NUMERICAL METHODS

where N is the number of atoms. To numerically simulate a system governed by these equations
of motion, we must resort to a numerical integration method. A popular method is the second-
order leapfrog method (also called central difference scheme), which has good energy conservation
properties, despite its low order. The scheme is the following:

A F.
v; <t+—t>=vi<t—£>+—1At, (2.42)
At
xi(t+At):xl-(t)+vi<t+7>At, (2.4b)

where At is the integration time step. The name “leapfrog” comes from having the velocities
computed at time steps in-between the positions. The velocity at time ¢ can be obtained by
updating the velocity by only half a time step:

At F; At
>+——. (2.5)

v;(t)=wv; <t— —

2 m; 2

During this thesis, we used the open source software LAMMPS (Plimpton 1995), which relies
on the velocity-Verlet method:

F.
2 m; 2
At
xi(t+At):xi(t)+vl-<t+7>At, (2.6b)
F. A
v,(t+At)=wv, <t+£>+M£. (2.6¢)
2 m; 2

1

It only differs from the leapfrog method in the instants where the velocities are stored (¢ and
t + At), otherwise being strictly equivalent. Note that the future force term F;(t + At) in (2.6¢c)
depends on the updated position x;(# + At), obtained from (2.6b). In the presence of velocity-
dependent forces (for example velocity damping), the future force term shoud in principle also
depend on the future velocity v, (¢ + At ), which is not yet available. To keep the computation
explicit (not needing the solving of implicit equations), this velocity term can be replaced by the
already computed intermediate velocity v;(t + At/2) in the evaluation of F;(t + At). Thit is
the solution opted by LAMMPS.

2.1.2  Computable quantities

Energy
The total kinetic energy K of the system is obtained by simply summing the contribution of each
atom:
1y,
K:EZmi’”i' (2.7)
1=1

From the expression of the force potential (e.g. (2.1)), one can also compute the total potential
energy of the system.

Temperature

The absolute temperature 7 of the system is directly linked to its kinetic energy. Each transla-
tional degree of freedom contributes by k7 /2 to the kinetic energy on average, where kj is the
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2.1 MOLECULAR DYNAMICS

Boltzmann constant. For a three-dimensional system, where each atom has 3 translational degrees

of freedom, the total kinetic energy is therefore

3Nk T
K= TB (2.8)

and the temperature can be expressed as a function of the kinetic energy:

2K
3Nky

(2.9)

Following these expressions, it is possible to initialize a system with a given temperature by
randomly assigning initial velocities to the atoms, such that the total kinetic energy matches the
desired temperature.

The MD systems simulated throughout this thesis are prone to have local heating due to large
localized deformations. In a real system, the temperature would dissipate in the rest of the body,
but MD simulations are limited in size. To prevent heat from building up, thermostats can be
added at the simulation’s borders to regulate the temperature. For example, a Langevin thermostat
(Schneider & Stoll 1978) adds to each atom a damping force

mivi
Fi=— (2.10)
c
and a force in a random direction
kB Tml
Fooc\| ———, (2.11)
cAt
where ¢ is a damping coeflicient. This thermostat is the one used in the MD simulations of this
thesis.
Stress

A stress tensor can be computed for each atom by factoring the interactions it has with its neighbors.

The virial stress is a commonly used measure. For an atom of index 7, each of its components are

defined as
N

n

0, =—m(v; —9,)(v;, —9,)+ > (% (2.12)
J

5
where a and b can be the directions x, y or z, ¥ is the average velocity, N, is the number of
interacting neighbors, and F';; is the force acting between atoms 7 and ;. The left hand term is the

kinetic energy contribution.

Strain

In this thesis, the open source software OVITO (Stukowski 2009) is used to visualize the outputs of
MD simulations. In this program, the atomic strain can be computed between a current (deformed)
configuration and a reference (initial) configuration. From the initial and current positions x, and
x of each atom, the atomic deformation gradient tensor

dx
F= a_xo (2.13)

is computed by averaging the relative motion of neighboring particles around each atom up to a
cutoff distance. From F, the atomic Green-Lagrange strain tensor

E= % <FTF —1) (2.14)
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is computed, which can be decomposed into a shear component and a hydrostatic component.
Looking at strain distributions can help distinguish between ductile and fragile damage processes,
as the fragile case will have more localized strains (where cracks are formed).

2.1.3  Silicon and silica

Silicon

Silicon (S1) is known to have an atomic structure which is not fully captured by the widely used L]
pair potentials when working with MD. As for carbon atoms in diamond, silicon atoms arrange
into a diamond-like structure, where each atom has four neighbors arranged at the corners of a
tetrahedron. Using a pair potential like L], each atom can get surrounded by up to 12 neighbors,
leading to the incorrect structure. A potential modeling three-body interactions must be considered
to account for angles of the bonds, which is achieved for example by the Stilinger-Weber (SW)
potential (Stillinger & Weber 1985; Stillinger & Weber 1986). Silicon is also known to exist in
an amorphous state, that is also well reproduced using the same SW potential (Vink ez al. 2001).
In this thesis, we use the potential parameters given in the original papers, which are shown to
give quantitatively acceptable properties for both the diamond-structure crystalline phase and the
liquid amorphous phase.

Silica

Silica (SiO,) can take many stable atomic configurations at usual working conditions, both
crystalline or amorphous (Vashishta et al. 1990). A layer of oxide grown on an initial sample of
silicon is known to have an amorphous configuration. We use the potential by Vashishta ez al.
(1990), which is capable of simulating both crystalline and amorphous forms of silica, taking into
account three-body interactions and the presence of two types of atoms (oxygen and silicon). A
cutoff parameter of 7, = 8 A is used in place of the one given in the original paper (Luo et al. 2016).

Other potentials exist to model silica more accurately (e.g. Sarnthein ez al. (1995), an ab-initio
model), but they are computationally costly.

We are interested in modeling silica in its amorphous state. Initializing a system comprising
of atoms arranged in an amorphous fashion is not trivial. To do so, we follow the procedure of
Luo et al. (2016), starting from a B-crystobalite structure. The system is heated and cooled by
equilibrating it for 90000 time steps of 0.5 fs at S000, 4000, 3000, 2500, 2000, 1500, 1000, S00
and 300 K, with cooling periods with a rate of 166 K/ps between each constant temperature step,
except when going to 300K where a rate of 13K/ps is used. The pressure is always kept at 0
using a Berendsen barostat. The isotropic material properties of the obtained material at 0K are
E =120GPa, v = 0.22 and G = 49GPa. One sample of 100 x 100 x 100nm? was created this

way, for it to be used in subsequent simulations involving silica.

Material properties

The known material properties of silicon and silica at room temperature are given in Table 2.1.
Since silicon is crystalline, the given properties are either averages or the most critical regarding
failure. Being of main interest for tribology, the ideal strengths were sought. They are the strength
measured at small scale, when no defects are present in the materials (which would decrease the
measured strength).

Finally, in order to not get confused with the name of the materials, we will refer to silicon

and silica as Si and SiO, in the remainder of this document. For readers speaking other languages
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2.2 DISCRETE ELEMENT METHOD

Table 2.1 - Material properties of silicon (Si) and silica (SiO,). For silicon, taken in its crystalline state,
some values are averaged or taken in one specific direction. Silica is taken as amorphous. p is the density, y
the surface energy, o,  the ideal tensile strength, and o, 1 the ideal shear strength.

Material  E[GPa] v[-] plkg/m’] y[N/m] o, [GPa] o, 1[GPa]

Silicon 150 0.27! 2330 1.2* 213 113
Silica 73 0.17 2200 1.5 164 95

"From Hopcroft et al. (2010). Values averaged from multiple directions.

*From Jaccodine (1963). Taken in the {111} direction, where it is the smallest compared to other directions.

3From Dubois et al. (2006). Also taken in the {111} direction for the same reason as above.

4From Luo ez al. (2016).

SEstimated using von Mises yield theory (assuming SiO, is ductile at small scale, where the ideal strength is measured)
to be smaller than the tensile strength by a ratio of 1/4/3 & 0.577.

Table 2.2 - Silicon and silica names in various languages

Si SiO, Some celebrities
English  silicon  silica silicone
Frangais  silicium  silice silicone

Deutsch  Silicium  Siliziumoxid  Silikone

Ttaliano  silicio silice siliconi

than the one used to write these lines, you may find useful to refer to Table 2.2 for translations.

2.2 DISCRETE ELEMENT METHOD

DEM is similar to MD in the sense that both methods deal with systems made of particles. The
main difference between MD and DEM is that DE particles have a finite size, with three additional
rotational degrees of freedom, for a total of six (instead of three).

In their simplest and original form (Cundall & Strack 1979), DE particles are often modeled
with normal and tangential springs acting at the contact points between the particles (see Figure 2.1),
along with some velocity damping forces. It is also common to replace the linear contact spring by

a non-linear Hertzian force, analytically derived for modeling contact between spheres.

(a) Normal spring (b) Tangential spring

Figure 2.1 — Simple contact in the discrete element method. Each spring can be complemented with a
dampener. (a) The particles repel when they interpenetrate. (b) The spring resists against relative tangential
motion, which depends on the history of the rotations of the particles.
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DEM is a popular method to model the flow of granular media in general, and in particular
rocks and gouge in geomechanics (Pande et al. 1990). It is also used to model third-body rheology
(Fillot et al. 2005; Fillot et al. 2007), while including other physical effects (e.g. thermal in Renouf
et al. (2011)). The discrete particles are commonly modeled with breakable bonds (Cundall 1971)
to represent crushable material. To the best of our knowledge, damage is most often irreversible in
DE models modeling plasticity (Nguyen ez al. 2017), fatigue or fracture (Nguyen et al. 2019), and
the reattachment of matter is not considered. The particles can be modeled with adhesive/cohesive
forces such as JKR (Johnson et al. 1971), but the resulting systems made of many particles have
elastic properties which are dependent on a confinement pressure and are challenging to predict
(Cheng et al. 2020; Voisin-Leprince et al. 2022).

DEM is also (less commonly) used to model continuum media. However, the link between the
particles’ interaction properties and the macroscopic elastic properties of the assembly of particles
is not straightforward when simple spring forces are used between the particles (Hentz ez al. 2004;
Jerier & Molinari 2012). To exactly match some desired elastic properties, the forces between
particles must take into account the neighborhood of each particle (Celigueta et al. 2017), making
their formulation more complex. Capturing the Poisson’s effects is also shown to be challenging
using only linear spring forces. Alternatively, spring forces can be replaced by deformable beam
elements (Leclerc er al. 2017), and even non-spherical particles filling the whole space can be
considered (André ez al. 2019).

We can apply on DEM simulations what is called the coarse-graining procedure. It is typically
used in the modeling of granular flows (Queteschiner ez al. 2018; Kanjilal & Schneiderbauer 2021;
De et al. 2022), possibly coupled with fluids (Jiang ez al. 2021; Lehuen et al. 2020). Multiple
small particles are substituted by a larger particle by following principles of scaling similarity
(conservation of mass, energy and forces). Some coarse-graining formulations involve dynamically
refining or coarsening crucial parts of a system (Queteschiner et al. 2018; De et al. 2022). It is
naturally possible to have multiple coarse-graining ratios in one simulation, which can prove useful
when modeling poly-disperse systems (Kanjilal & Schneiderbauer 2021).

2.2.1  Simulation

As for MD, the DE systems are also updated using the velocity-Verlet method in LAMMPS. For
any given particle, the integration scheme between steps 7 and 7 + 1 can be summarized as

F, At?
xn+1:xn+‘vnAt+;n_2 ) (2.152)
F +F
Vyp1 =V, + — o A, (2.15b)
T,+T
wn+1:(1)n+nTn+lAt, (2.15())

where x,, v, and w,, are respectively the position, the velocity and the angular velocity of the
particle, F, and T, are the force and the torque acting on the particle at step 7, m is the mass
of the particle, and 7 is its moment of inertia. This scheme is equivalent to the commonly used
central difference scheme (Cundall & Strack 1979). In order for the simulation to be numerically
stable, we must define a critical time step.
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2.2.2  (Critical time step

Let us consider a system of two particles of radii 7; and 7}, interacting in linear Hookean regime

with a stiffness by and a velocity damping cy. We only consider normal relative motion, so that

the system can be reduced to only one dimension. The dynamical equations of the system are:

Both equations can be combined into one by subtracting one to the other and taking x = x; —x;
as the new variable:
Mgk + cgX +kyx =0, (2.17)
where m g is the effective mass of the system:
Mmg—=——"1. (2.18)
ml' + m]

In DEM simulations, it is usual to choose a time step proportional to 4/ 7 /ky;, with a safety
factor that ensures stability (Burns et al. 2019). The exact expression of the critical time step
guarantying stability was derived for the central difference scheme (O’Sullivan & Bray 2004). For

completeness, we present a derivation for the velocity-Verlet scheme we are using.

To compute the critical time step of the system, numerically integrated using equations (2.15),
we can drop the velocity damping force? so that the remaining force is simply F = —kyx. The
one dimensional integration scheme becomes

kynx, At?
N n
X, =X, +v, At — —_— (2.19a)
meﬂ' 2
kX, + kyx
N n N n+1 At

(2.19b)

Vyy1 =V, —
n+1 n
2m.g

Replacing x,,; in the expression of v, ; and rearranging the terms, we obtain a fully explicit

scheme:
= N pp A
Xy =|(1——At" |x, + At v, (2.20a)
Zmeff
k k k
V1 = 1— N A2 vn——NAt 1— — Ag? X, - (2.20Db)
2meﬁ Mg 4meff
To check for the stability of the system, we can monitor the total energy of the system
1, - 1 2
E,= Ekan + chﬁ‘vn (2.21)

and make sure that it does not grow unbounded. The expression of the energy prompts us to

perform the substitutions

A /eN

X, = \ —x, (2.22)
2E,

and 7, = \ %vn (2.23)
0

*We expect the damping force to be sufficiently low, such that it does not significantly affect the critical time step. A

safety factor is used afterward, anyway.
Yy yway.
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for the expression for the initial energy (at 7 = 0) to become

1= fcg + 733 . (2.24)
Using these substitutions and
A k
At =1 XAt (2.25)
Meg
the integration scheme (2.20) becomes
A2
A At A A A
X1 = <1 5 > X, +At9,, (2.26a)

A2 A2
A A A
6n+1:<1—7t>73n—At <1——t>£n, (2.26b)

which can be written in matrix form:

A2
At %
: -2 Ar |14
|:’in+1i| — R 2 £ "2 [’i”] , (2.27)
Unt1 —Afé—"%> 1—5- | L%
or
P =AP,» (2.28)

which in turn can be expressed directly as a function of the initial conditions:

p,=A"p,. (2.29)

Equation (2.24) tells us that the initial adimensionalized position-velocity vector p, has a norm of
1. For the integration scheme to be stable, we must ensure that the norm of p, is not growing
toward infinity under the repeated application of A in (2.28). From the eigendecomposition of A,
we know that

A" =QA"Q71, (230)
where Q is the matrix of the eigenvectors of A and A is the diagonal matrix with the eigenvalues:

A2 A A2
2—At AtV A: —4
Ap= 5 .

(2.31)

For A” to stay bounded and thus have stability, we must have max(|4,],|4,|) <1, which is true
when At < 2 (the eigenvalues become complex numbers), or

m
At <24| 1, (232)
kx
where we have [4)| = |4,| = 1. Taking m; = m; = m, we have m 4 = Z and the stability
condition becomes
2m
At < —. (233)
kN

This is the same stability condition as for the central differences scheme (O’Sullivan & Bray 2004).
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2.2.3  (Critical damping

The system of two particles described by (2.17) is a conventional damped harmonic oscillator.
Depending on the value of the damping coeflicient ¢y, the system will either oscillate with a
decreasing amplitude (underdamped regime) or slowly decay toward the equilibrium position
without oscillating (overdamped regime). Between these two regimes lies the critically damped
regime, where the system decays as quickly as possible toward its equilibrium. The corresponding
critical damping coeflicient is

¢, =24/ kg (2.34)

2.3 BOUNDARY ELEMENT METHOD

BEM is similar in principle to its more commonly used cousin, the finite element method. When
modeling an elastic solid, instead of discretizing its whole volume, only its surface is discretized.
The BEM formulation simplifies even further when the considered volume is a half-space (a
semi-infinite volume delimited by an infinite plane). Being able to model a single deformable
semi-infinite solid is sufficient for solving the contact between two elastic rough surfaces, thanks to
the Jonhson’s assumption (Johnson 1985), stating that the frictionless contact between two nominally
flat (having small slopes) elastic surfaces of profile /,(x,y) and h,(x,7) is equivalent to the contact
between a flat deformable surface and a rigid rough surface, with a roughness of b = b, — b,.

2.3.1  ‘Elastic deformation

Modeling an elastic half-space using BEM first comes down to looking at the effect of a single point
load applied on its surface. Let us consider the volume €2 shown in Figure 2.2. The effect of a
vertical point load P applied at the origin can be calculated using the theory of potential, as it was
done by Boussinesq (Johnson 1985). The vertical load induces displacements inside of the solid. At

the surface (at z = 0), these displacements are

P x
ey :_E(l_z")ﬁ’ (2.352)
___P y
I/ty = —R(l — ZV)ﬁ ’ (235]3)
P 1
= 2(1—v)—, .
u, = o 21—)- (2.35¢)

E,v

Figure 2.2 - Elastic half-space with point loads applied at its origin
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(a) One point load (b) Multiple point loads (c) Distributed load

Figure 2.3 - Different loading condition on an elastic half-space

where G is the shear modulus of the material, and » = 4/x2 4 y2 is the distance of a point on the

surface from the origin (see Figure 2.3).

The surface displacements caused by a tangential force Q acting on the origin in the x direction
were derived by Cerruti (Johnson 1985). They are:

. Q 1 x?
%x = % 2(1— V); + ZV; N (2369.)
_ Q. xy
I/ty = 47-EG2V; s (236b)
__Q X
z = —%(1 — 2\/); . (2360)

From the displacement fields, it is also possible to derive the stress fields caused by the point
loads. Full expressions are given in Johnson (1985).

Knowing the effect of a single point load is enough to deduce the effect of several point loads
or of a load distribution, thanks to linear elasticity and the superposition principle. Figure 2.3a
shows the vertical deflection of the surface caused by a single point load, given by equation (2.35¢).
In Figure 2.3b, two point loads are present, and the surface deflection is obtained by summing the
contribution of each point load. Finally, in Figure 2.3¢, the surface is subject to a distributed load
P,(x,7). Similarly, the surface deflection is obtained by integrating the contribution at each patch
of surface:

(1) = f f W (e —Evy— ) pu(Ean)dE di (237

[”ge—iz *px](x,y), (2.38)

ker
Z—Z

direction caused by a unit load in the z direction. We can call it a kernel. According to (2.35¢), it is

defined as

which is a convolution (denoted by the * symbol). Here, # is the displacement in the z

1 1
K
u,e, = %2(1 — V); , (2.39)

and has units of [m/N]. Loads in the other directions affects the different components of the

surface displacements in the same way. In general, we can write

w;(%,9) =[5, 5 p;1(x,), (2.40)

where the Einstein’s summation convention applies, and  and ; are the directions x, y or z. The

expanded form is

ker ker ker
;=[x pe ]+ [ py 1+ [0,2, % p, ] (2.41)
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The other superposable quantities, such as strains and stresses, behave the same way as the
displacement do, and can be calculated with the convolution of a kernel function with the function
defining the distributed load.

To numerically use BEM for flat elastic half-spaces, the surface of the solid must be discretized,
for example in an uniform grid. The pressure and displacement fields are also discretized on this
grid. Using the kernel expressions, one can easily map the application of a load on one cell to
the resulting displacement field created in the remaining cells. A (dense) stiffness matrix can be
constructed, directly linking the pressure field to the displacement field, and it can be used to
solve elasticity problems with the desired boundary conditions (as done for example in Crouch &

Starfield (1983)).

2.3.2 (ontact

We use the open source software Tamaas (Frérot ez al. 2020b), developed at our laboratory, to solve
contact problems using BEM. It works with periodic surfaces, allowing the use of efficient Fourier
transforms to compute the necessary convolutions (Rey ez al. 2017). The kernel function are a bit

different from the ones presented earlier, to take into account the periodic boundary conditions.

The contact problem is a minimization problem. In the case of a frictionless contact, only
the z components of the displacements and pressure, # and p, are relevant. The functional to
minimize is

](p):%f pudx, (2.42)
r

which is the elastic energy of the system. If the rigid surface making contact with the elastic surface
has a height profile h(x) the gap between the two surfaces is g(x) = #(x)— h(x) (see Figure 2.4).
The constraints of the minimization problem are the Hertz-Signorini-Moreau orthogonality

constraints:

p(x)=0, (2.432)
g(x)=0, (2.43b)
p(x)g(x)=0. (2.43¢)

The physical meaning of these constraints is that the elastic surface can only be under compression
(2.43) (here without adhesive forces), there is no interpenetration between the surfaces (2.43b),
and the rigid surface can only put pressure on the elastic one when they are touching (2.43c).
The pressure field must match a target mean pressure p,. The minimization problem is solved in
Tamaas using a conjugate gradient algorithm (Polonsky & Keer 1999).

Figure 2.4 - Normal contact with BEM
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2.3.3  Contact with friction

A tangential contact solver with Coulomb or Tresca friction was implemented. A detailed descrip-

tion is given in Appendix A.
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CHAPTER

INTERACTION OF MICRO-CONTACTS IN 2D

Disclaimer

This chapter is reproduced in part from S. Pham-Ba ez al. (2020), “Adhesive wear and interaction of
tangentially loaded micro-contacts”, International journal of solids and structures 188-189, with permission
from all authors. My personal contribution was developing the theory, running the simulations, post-

processing the results, and writing.

INTRODUCTION

T HE objective of this chapter is to derive an analytical description of the transitions between
different regimes of wear at the scale of asperities colliding, following the works of Aghababaei
et al. (2016) and Aghababaei et al. (2018). To ease the analytical derivation, we consider flat
perfect junctions, or micro-contacts (Figure 3.1a), which are shown to have equivalent properties to
colliding asperities regarding the transition between a plastic smoothing regime (Figure 3.1b) and a
debris formation regime (Figure 3.1c) at a length scale d* (Aghababaei et al. 2016). An analytical
theory for the interaction of multiple micro-contacts is derived in 2D, predicting the transition
between a mild wear regime (Figure 3.1c) and a severe wear regime (Figure 3.1d) at the scale of
the micro-contacts. The various assumptions are verified using BE simulations, and the analytical
theory is then validated against MD simulations by simulating perfect adhesive junctions between

two solids using model potentials (the same as Aghababaeti ez al.) in quasi-2D setups.
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M I P Cog
N
(b) (©)

Figure 3.1 - Schematics of sheared micro-contacts and possible outcomes. (a) Initial state. The contact
between two solids (top and bottom) viewed at small scale results in the formation of perfect adhesive
junctions (micro-contacts) between the two bodies, shown with dotted lines. We consider equally-spaced
micro-contacts of identical sizes. The system is under shear. (b) Plastic smoothing. (c) Formation of separate
wear particles. (d) Formation of a combined wear particle.

3.1 THEORETICAL MODEL

We derive an analytical prediction for the outcome of the system shown in Figure 3.1a. An energy
balance criterion has been effective to predict the transition from plastic shearing to single debris
particle creation for both numerical simulations and experimental data (Aghababaei ez al. 2016),
therefore the same argument will be used here. The elastic energy is calculated for systems of
increasing complexity, starting from a simple point shear loading. We take advantage of the
symmetry of the system by only considering the loaded bottom solid, knowing that the top one
will be under a symmetric stress state and thus store the same amount of elastic energy. The
adhesive energy corresponding to the different outcomes is derived and compared to the stored
elastic energy to obtain an energy criterion for the formation of wear particles.

3.1.1  ‘Elastic energy

Point load

Let us consider a semi-infinite solid in 2D, defined by 2 = {(x,z) € R,z > 0}. We call B the
thickness of the solid in the y direction (see Table 3.1 for a list of symbols used in this chapter). E
and v are respectively the Young’s modulus and the Poisson’s ratio of the material.

A tangentially loaded micro-contact of negligible size can be modeled as a tangential point load

of magnitude Q (in units of force per length) applied at the surface of €2, as shown in Figure 3.2.

Figure 3.2 - 2D semi-infinite solid under a single tangential point load. Since the point load Q would be
represented by a line load in a 3D equivalent setup, Q has units of force per length.
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Table 3.1 - List of symbols

Symbol  Description

d Size of micro-contact
dSd,d  Critical, apparent and real contact size

h Height of micro-contact in the MD simulations

a Distance between point loads

A Distance between uniform loads

N Number of loads

Q Point load

q Uniform load

o; Shear strength

0,0, Two dimensional semi-infinite solid, continuous and discretized
E,G,v  Young’s modulus, shear modulus and Poisson’s ratio
y Surface energy

B Thickness

L H Length and height of discretized domain

N, N, Number of discretization points in x and z direction
M Spatial discretization factor

E,, E,  Elastic and adhesive energy

R Ratio between elastic and adhesive energy

K Ratio between real and apparent contact size

For a load applied at x = z = 0, the stresses inside (2 are (Johnson 1985)

O (312)
T
2Q xz?
0, =222 (3.1b)
Tor
2Q x*z
Ty === "> (3.1¢)
Tor
where 7% = x% + z? In plane strain conditions, the strains are
€y 14y -y —v 0 0,
e, |=—7—] —v 1—v 0 o, (3.2)
E
€y 0 0 1| |7,
The expression of the elastic energy stored in €2 is
1
Ej==| o0:edQ (3.3)
2Ja
I+v (=% 2, 2
= EL f [A—v)(o7 +072)
—00
—2vo,0, +27iz:|de dz, (3.4)

where o : ¢ is the inner product defined as 3; ; 0; For a load in 2D, the elastic energy is

E’ s,
1y
infinite. We can still integrate only along the x direction and keep the infinite term within the
integral, which for a tangential point load gives:

(1—v*)BQ? J°° dz
E = —. .
el1Q T . (3-5)
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Subsequent expressions of elastic energy can be compared with each other by looking at the factor

in front of the integral term. In this case, we notice that the elastic energy is quadratic to the load
Infinite integral term

The fact that the elastic energy stored in a loaded semi-infinite medium is infinite can be explained in
several ways. Since the stored elastic energy is equal to the work of the load, it can be calculated by
multiplying the magnitude of the load by the displacement of the loaded point in the direction of the
load. In 2D, the displacement caused by a load on the surface is O(log ), meaning that imposing
a zero displacement at 7 — o0 as a boundary condition will lead to an infinite displacement under
the load (Johnson 1985), therefore to an infinite elastic energy. Also, by looking at the stresses in
Eq. (3.1), we see that they are O(1/7), which has a singularity at » = 0 and creates the 1/z term in
the integral of (3.5), decaying too slowly to make the integral finite. The problem of the slow decay
is no longer an issue when dealing with systems of finite size. Moreover, the stress singularities
disappear in real systems due to plasticity, as well in simulated systems due to the discretization
size. Therefore, (3.5) can be rewritten as

(1—v*)BQ?
Eg10= 7 M (3.6)

where M is a number replacing the infinite integral term, which, again, is finite for a given
simulation domain size and discretization size.

Note also that the problem of the infinite elastic energy does not exist in a 3D system (in the
absence of stress singularities) because the stresses are O(1/7?), making the integrals of (3.3) finite,

and the displacements are O(1/7), allowing the application of the boundary condition of zero

displacement at » — oo.

Two point loads

We now consider two tangential point loads, each one of magnitude Q, located at x = 4 and
x =—a, z =0, as shown in Figure 3.3.

A A

Figure 3.3 - 2D semi-infinite solid under two tangential point loads. The distance between the two point
loads is 2a.

By superposition of (3.1), the stresses are simply

2Q x> x3
oy =—— <—14 + —i) , (3.72)
T\t o7,
2Q [ xz*  x,7*
o, =——= <1—4+2—4> (3.7b)
o\ 7 7,
2Q [xtz  xiz
Txz =" <1_4 + 2_4> > (3'7C)
w\ 7 r)
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2
1

using these new stresses in (3.3), giving:

2 2 es} e}
Egpq= a=rpe [2 i ZJ - dz] (3-8)
0 0

wE z a4 z2

where x; =x —a, x, =x +a, v/ =x] + z* and r; = x5 + z? The elastic energy is obtained by

which is dependent on 4, the half spacing between the two point loads. If 4 goes to o, the two
integral terms are the same and the expression of elastic energy is reduced to

Eel,ZQ 'a:O = 4'E"el,lQ ’ (39)

where £, is the elastic energy of a single point load Q given by (3.6). This is consistent with the
fact that this situation is equivalent to having a single point load of magnitude 2Q (Saint-Venant’s
principle), the elastic energy being quadratic to the load. If @ goes to infinity, the right integral

term vanishes, leading to

ﬂli)rgo Eel,ZQ = 2’Eel,lQ (3.10)

which corresponds to the case where the two point loads are so far apart that they are not interacting,
so the total elastic energy is the sum of their individual elastic energy if they were taken separately.
Since a always has a finite value compared to the infinite size of the medium, a is dominated by z
and the 1/z behavior of z/(a* 4 z?) at infinity, such that 4 has no effect on the integral if it is not
infinite. Therefore, we can assume that we are in the case where a goes to o, which means that
E, 5 =4E - This equality will of course not be exactly matched when performing simulations
of finite size, where 4 will no longer be infinitely small compared to the simulated medium.

N point loads

We consider N tangential point loads of magnitude Q. Following the assumption that the distance
a between the loads has a finite value compared to the infinite size of the medium, the setup is
equivalent to having a single point load of magnitude NQ. The elastic energy being quadratic to
the total load, it is also quadratic to the number of point loads:

Egng=N ZEel,lQ . (3.11)

Equation (3.11) is subject to the same limitations as (3.9) regarding the simulations of finite size.

Uniform load

A single tangentially loaded micro-contact is better modeled by a uniformly distributed load. We
consider a tangential load g (in units of pressure) applied on a region —d /2 < x < d /2, 2 =0, as
shown in Figure 3.4, where d is the size of the micro-contact.

q
x:—d/z e e x:d/z

v %ﬂzl %0,

’

’

AN

Figure 3.4 - 2D semi-infinite solid under a uniform tangential load g of size d. Since the load ¢ would be
represented by a load on a band in a 3D equivalent setup, ¢ has units of pressure.
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Integrating (3.1) on this region, the stresses are

2 L2
ax:1[210g<ﬁ>—<x—12—x—22>] ) (3.122)
7 7, rtor,

2 2
q(* X
=_2(L_72) .12b
b=t (55) o
Xz X,z
Txz = 1 |:(‘91 —0,)— <1—2 - %>] ) (3-12c)
T 7 75

where x; =x—d /2, x, =x+d 2, r} =x} 42z} r} =x;+z} tan0, = z;/x; and tan 0, = z, /x,.
For the calculation of the elastic energy, the integral (3.4) cannot be fully evaluated for this
distribution of stresses using analytic functions. However, numerical integration shows that the
elastic energy is of the form

1—\Bd2a? [
e e eNCr (59
T 0

where f(z) is a function dominated by the term 1/z when z 3> d. It means that the elastic energy
is the same as the one for a point load of equivalent magnitude Q = dg:

Eel,lq = Eel’1Q|Q=dq ) (3.14)

in the case where d is small compared to the size of the medium.

N uniform loads

Using the same assumption as for the N point loads, we can finally derive an expression for the
elastic energy of N non-overlapping uniform tangential loads of magnitude ¢ and diameter d:
(1—v*)BN?d*q*

—_ AJ2 _
Eel,Nq =N el,lg — nE M. (3'15)

This is the expression that will be used to compare with the adhesive energy.

3.1.2  Adhesive energy

Figure 3.5 - Formation of a debris particle of size d due to the tangential load g. Newly created surfaces are
shown in red dashed lines.

The creation of a debris particle under a micro-contact assuming brittle failure involves the creation
of new surfaces. To detach a semi-circular particle of diameter d as shown in Figure 3.5, two

surfaces of area B7rd /2 have to be created, which requires an adhesive energy of

E =mnyBd (3.16)

a
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where y is the surface energy of the material. The distribution of the stresses forces the crack to
initially move into the volume below the surface. We thus assume that the semi-circular path of
the crack is close to the minimal path that would relieve the stresses in the solid and allow the
pivoting of the forming debris particle. Considering another general crack path would only change
the adhesive energy up to a small geometrical factor. This assumption is consistent with what is
observed in MD simulations (Aghababaei et al. 2016; Aghababaei et al. 2017).

We now consider N equally spaced micro-contacts of size d, with A the distance between the
edges of two adjacent micro-contacts, as shown in Figure 3.6.

1 @4 @19
—__ s e —

E, v,y
d '"A" d d
d

a

Figure 3.6 - N equally-spaced uniform loads g of size d and spacing A. The total contact size is d, = Nd
and the apparent contact size is d, = Nd + (N —1)A.

Two cases of debris formation can arise. Either N separate debris particles of diameter d are
formed, requiring an adhesive energy of

Ead,scp = ﬂder’ (317)

where
d.=Nd (3.18)
is the real size of the contact, or in other words the sum of the sizes of all the micro-contacts.

The other possible case of debris formation is to create a single debris particle combining all
micro-contacts, having an apparent diameter of

d,=Nd+(N—-1)A (3.19)
and requiring an adhesive energy of

E d,comb — ﬂdea : (3'20)

a

Since we always have d, > d,, E g ., 1s always larger than E 4 ..

3.1.3  ‘Energy criterion for debris formation

Critical micro-contact size

The formation of debris particles is possible if the stored elastic energy is greater than the adhesive
energy required to create the particles (Aghababaei ez al. 2016). In other words, the ratio

Eel
R=— (3.21)
Ead
has to be greater than one to enable the process of debris formation. For a single micro-contact
(N =1) of diameter d and uniform load ¢, the energy ratio is equal to

1—v?

_ 2
= P dg"M. (3.22)

R
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If R <1, no debris particle can be formed under tangential load, so the micro-contact slips or
flows plastically. If ® > 1, there is enough energy to create a debris particle. This allows us to
define a critical size d* for a single micro-contact, which is the size above which a debris particle
can be created:
. n*yE
(=)

If we set the tangential load g to be equal to the shear strength of the micro-contact oy, it becomes

(3-23)

clear that d* is a function of the material parameters, similarly to the critical junction size derived
by Aghababaei et al., see (1.13). Aghababaei et al. derived the critical junction size for two spherical
colliding asperities, assuming that the elastic energy is stored inside the volume of the asperities
and is therefore independent of the system size. The existence of d* given by (3.23) means that,
as for colliding asperities, flat junctions also have a ductile-to-brittle transition at a length scale d;

even if the stored elastic energy is radiated into the bulk.

Note that the expression of d* (3.23) is dependent on the number M, which is linked to the
spatial discretization and the size of the domain and therefore is not a physical parameter. We recall
that M disappears in a three-dimensional formulation. In reality, d* is thus a material parameter,
to first-order independent of geometry. The following arguments will therefore be made in terms
of d* rather than M. The material properties £, v, y and o; will all be contained within d*

Separated debris particles

To study the possibility of forming separated debris particles from a distribution of N micro-
contacts, we have to calculate from (3.15) and (3.17) the ratio

Eel,Nq _ dr
E

R = ==, (3-24)
P ad,sep dr

where all material parameters are included in d: Note that & . does not depend on the distance

sep

between the micro-contacts. Forming N particles is possible if ® .., 21, or, in terms of d_, if

sep

d.=zd". (3.25)

Combined debris particle

To study the possibility of forming a combined debris particle from a distribution of N micro-
contacts, we calculate from (3.15) and (3.20) the ratio

Eel Ng d?
= - =—". .26
Kcomb Ead,comb dad* (3 ¢ )

Forming a combined particle is possible if ® ., =1, or, in terms of 4, if

2
d, < % . (3.27)

Transition between behaviors

In summary, the three different behaviors described in Figure 3.1 depend only on the values of the
real contact size d, (3.25) and the apparent contact size d, (3.27) and their relation to d Transitions
between behaviors are summarized in the wear map shown in Figure 3.7, giving regions where
each behavior is energetically plausible. The vertical dashed line shows the transition between
a plastic behavior and the formation of separated debris particles, as dictated by (3.25), and the
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Figure 3.7 - Wear map of the different outcomes for the system of Figure 3.1a. The horizontal axis
corresponds to the real contact size d, and the vertical axis corresponds to the apparent contact size d,.
The hatched area is not accessible because d, > d_, and its boundary represents systems with a single
micro-contact (thus having d, =d,).

second dashed line shows the transition to the formation of a single combined debris particle, as
dictated by (3.27). The hatched region is inaccessible because d, > d..

Our wear map is compatible with the initial definition of a critical length d* (1.13), found for
a single pair of colliding hemispherical asperities (instead of a flat junction of negligible volume,
in our case). However, our wear map is not directly applicable to the geometry of colliding
asperities when N 2 2, because the elastic energy will not only be stored in the volume under the
asperities like we assumed, but will mainly be stored in the protruding hemispherical volume of
the deforming asperities, which is not taken into account in our model. Therefore, we will expect
less elastic interaction in the case of colliding asperities than established for (3.9), since a large part
of the energy is contained in the asperities themselves. This results in a lesser likelihood of the
formation of combined debris particles. If the asperities are flatter, as expected in many cases of
real contacts, the present theory is expected to apply.

Partial contact

The wear map may be used to define what an asperity is. This definition is far from obvious as, due
to the fractal nature of real surfaces, each asperity in contact can be in turn subdivided into smaller
contact zones (Archard & Allibone 1957). What appears as a fully compact contact junction at a
given scale, becomes fragmented into smaller contact patches at a smaller scale. Yet, interactions
between these divided contact spots may be homogenized into a single apparent contact junctions
if elastic interactions prevail, which is precisely what Figure 3.7 can help assess. For a contact
junction of apparent diameter d,, we can define the fraction of the real contact size to the apparent

contact size as

K=— (3.28)

satisfying « < 1. We establish a criterion to determine if this weakened contact can form a single
debris particle of size d, by rewriting the condition for combined debris particle formation (3.27)

using k, leading to the condition

(3-29)
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which is the minimum fraction of contact size necessary to be able to detach a single debris particle.

This minimum fraction is only reachable if 4/d*/d, <1, or if
d,>d". (330)

It implies that a large contact of apparent contact size d, 2 d* can be broken down into smaller
micro-contacts of total real contact size d, = kd, with x > 4/d*/d, and still form a single debris
particle from an energetic point of view. It also shows that only the total contact size d, matters
to determine the formation of debris particles, and not the individual sizes of each micro-contact

(assuming full elastic interaction between the micro-contacts).

Limits of the energy criterion

One may have noticed that we always have ® ., = K. o, meaning that forming small individual
debris particles is always more energetically favorable than forming a single, combined one, even
if R .,mp = 1. In this case, the energy criterion will only suggest that both cases are energetically
possible, but will not indicate which one will happen. The outcome can be predicted by looking
at the locations of stress concentrations in the material, which indicate the places where cracks can
nucleate and thus where debris formation can occur. It implies that in the wear map (Figure 3.7), a
separated debris particle formation can energetically happen in the “combined” region.

3.2 VALIDATION USING SIMULATIONS

3.2.1  ‘Boundary element method

Before validating the wear map (Figure 3.7), BEM is used to verify the effects of a finite size system
on the computation of the elastic energy Eel,Nq (3.15), which was derived assuming an infinite
medium. Instead of a semi-infinite plane €, a region Qy ={|x| < L/2,0<z< H}ofn, xn,
points is considered. The BEM simulation is periodic in the x direction. Desired loads are applied
at the nodes located at z = 0, and the elastic energy is computed by discretizing the integral of

(3-3) as

n,—ln,—1

1 L H
Eel:EZZo(xi,zj):e(xi,zj)n——. (3-31)

1=0 j:O x nZ

The stress and strain tensors o'(x;,2;) and &(x;, z;) are evaluated using a code based on the
application of Green’s functions defined for a tangential point load applied at the surface of a
semi-infinite medium (Polonsky & Keer 1999; Rey ez al. 2017). The comparison of the results
from the BEM with the analytical expression of £, y, is shown in Figure 3.8. H is chosen to be
large compared to the maximum d, (with H /d, > 45) to match the assumption of a large medium
made for the analytical prediction. Having periodicity in the x direction and computing the elastic
energy only between —L/2 and L /2 does not seem to affect the match between the analytical and
numerical E . even if d, is not significantly small compared to L (we always have L/d, > 2.8).

No improvement was found by increasing the value of L.

Overall, there is a good match between the analytical predictions and the numerical values.
The discrepancy between the computed and theoretical values is the smallest for lower values of
Aand N (low d,). The decrease of the elastic energy recorded when A increases can be seen as a
transition between a complete interaction of the N loads at A = 0, and an absence of interaction for
A — o0o. At complete interaction, £, 4 18 verified to be quadratic to N, while for no interaction,
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Figure 3.8 - BEM simulations of the elastic energy E v, of N equally-spaced uniform loads g compared to
analytical prediction. The values were computed with L =128, H =2048, B=1,n, =n,=2048,d =1,

E =1,v=0.3, ¢ =0.001. The energies are normalized by E

ol1¢> computed with a single uniform load, to

check the validity of (3.11). The agreement is better when the apparent contact size d, is small compared to

Land H.

it should decrease to become proportional to N, which is not seen in Figure 3.8 because of the

small value of A.

The theoretical elastic energy slightly overestimates the value computed inside a finite domain,
but it still provides a good approximation. Therefore, the criteria for debris formation we derived

using the analytical expression of elastic energy can reasonably be applied for systems of finite size.

3.2.2  Molecular dynamics

We use MD simulations of perfect junctions to check the validity of the predictions for debris
formation, (3.25) and (3.27). A model potential (P4 in Aghababaei et al. (2017)) is used to simulate
a material brittle enough to have a critical length d* observable at the scale of the simulations
while maintaining a reasonable size. We have d* ~ 357 in all our simulations, where 7, is the
interatomic distance at absolute zero temperature. The size of all the simulations is kept constant
at L = 9007, in the x direction and H =12007, in the z direction. The atoms are arranged in a
face-centered-cubic lattice with a thickness of three close-packed layers of atoms in the y direction
to stay in a quasi-2D plane strain representation. The [111] lattice direction is aligned with the
y axis and the [110] direction is in the (x, z) plane at an angle of 15° with the x axis, so that the
junctions are not aligned with weak crystal planes. Periodic boundary conditions are used in the
x and y directions and the possible lattice mismatch at the boundary is resolved using a step of
energy minimization. The temperature of the system is kept constant using Langevin thermostats
at the non-periodic boundaries of the simulation. Instead of applying a shear force, a constant
velocity is imposed on the boundary of the top solid, and a small constant normal load is applied
to prevent the system from drifting apart. The maximum resultant shear force is limited by the
shear strength o; of the material. All the MD simulations are performed with LAMMPS (Plimpton
1995) and visualized with OVITO (Stukowski 2009).

The critical length d* is first found by simulating single junctions of increasing sizes d. The
perfect junctions are modeled by rectangles of width d and fixed height 5 = 67,. The observation

of a transition between plastic behavior and debris particle formation validates the existence of the
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Figure 3.9 - Distribution of the MD simulations’ outcomes on the wear map (Figure 3.7). Each symbol
corresponds to one MD simulation. Empty and color-filled symbols are simulations with sharp corners and
rounded corners respectively, sometimes leading to a different outcome. Rounding the corners has the effect
of slightly increasing d, shifting the symbol to the right in the diagram. The highlighted areas show the
different values of N used for the simulations.

sliding distance:

0.4d 1.6d EL 2d 3.6d

Figure 3.10 — Formation of a debris particle from a single micro-contact of size d =1.7d: The red arrow
indicates the shear direction. The bottom boundary is fixed. The colors show the first principal stress o;
(if positive: maximum tensile stress) in reduced dimensionless Lennard-Jones units, with brighter regions
corresponding to higher values. Regions of stress concentration are visible near the tips of the growing cracks
and at the locations of crack nucleation. The smaller bright spots are mismatches in the crystallographic
structure propagating in the material, which is the nanoscale manifestation of shear plasticity. Notice that
the cracks extend way past the necessary length before closing at the formation of the debris particle, which

is due to an excess of stored elastic energy (R > 1).
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3.2 VALIDATION USING SIMULATIONS

(a) d =0.43d* (b)
A=2.67d
d*
(c) d =1.14d* (d)
A=4d
—_ .o
W
é*
(¢) d = 1.14d" h o1
/1 =2d ( . >
—_—
2
i*
0

Figure 3.11 - Three different outcomes from two sheared micro-contacts. (a), (), and (e) show the initial
states of (b), (d), and (f) respectively. (b) Case of slip. (d) Case of separated debris particle formation. The
left one is detached and the right one is under formation. (f) Case of combined debris particle formation.
The length of the cracks is a characteristic of this behavior.

critical size d* (3.23), which is defined as the value of d at which this transition occurs. The points
in Figure 3.9 show that these simulations are located on the line d, = d_ and are highlighted in light
blue. An example of debris particle formation is shown in Figure 3.10. Two types of damaging
processes are witnessed during the formation of the debris particle: cracks are opened under tensile
stress, and dislocations move across the material, which is a nanoscopic manifestation of plastic
shear deformations. When varying d, the length reached by the opening cracks becomes larger
when d increases relative to d This phenomenon is enabled by R increasing with d (and being
greater than 1 because d > d*), meaning that more elastic energy is stored than what is needed to
create the minimal crack path. This excess energy can be used in the formation of larger cracks.

Several simulations were performed with N = 2 (highlighted in green in Figure 3.9) and N =3
(highlighted in orange) with different values of d and A. Examples of the three possible outcomes
are shown in Figure 3.11 for N = 2. We recall that it is possible to observe the formation of
separated debris particles even when the formation of a combined debris particle is energetically
possible (R s, 2 R comb)- Therefore, when an MD simulation leads to the formation of separated
debris particles, it is relaunched with the same geometric parameters but adding rounded corners
where the cracks forming separated debris particles can initiate, in order to prevent their formation,
leading to a different outcome if energetically possible (shown by color-filled symbols in Figure 3.9).
This shows that the outcome is also controlled by the presence or absence of stress concentrations.

Some simulations reach an asymmetric end-state even if the initial state seems symmetrical, as

shown in Figure 3.11d. This is due to the system being very sensitive to stress concentrators (sharp
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corners) where even the presence or absence of a single atom can make the system’s evolution
asymmetrical. This is a side effect of using a brittle interatomic potential for the simulations. The
fact of imposing a shearing velocity only on the upper half of the system can also contribute to the
asymmetry. This is still consistent with our model since particles form as predicted.

The prediction of the transition between a separated and a combined debris particle formation
behavior (3.27) is well matched by the N =2 and N = 3 simulations, as no combined particles
are ever formed outside of the “combined” region of the wear map. Some simulations with sharp
corners lead to a behavior consuming less energy, but their rounded corners counterparts are in

agreement with the wear map.

The prediction of the transition between a plastic behavior and the formation of separated
debris particles (3.25) is however not perfectly matched by the N = 2 simulations when d, increases,
as seen in Figure 3.9 near the d. = d* dashed line. It means that when the distance between the
micro-contacts A gets bigger, there is not enough energy to create the separated debris particles. The
decrease of the elastic energy for increasing values of A was identified with the BEM simulations
(Figure 3.8) and is also present in the MD simulations because they both take place in a finite
discretized medium. In the wear map (Figure 3.9), taking the decrease of elastic energy into
account for increasing values of A, thus increasing values of d,, would be represented by shifting
the dashed lines (showing the transitions between behaviors) to the right for the higher values
of d,. The disagreement of the MD simulations with our theory near d, = d* might also be an
effect of having the sizes of the individual micro-contacts d ~ 0.5d* being close to their height
h =0.17d; enabling unwanted geometrical effects like the concentration of elastic energy in the
now non-negligible volume of the micro-contacts, resulting in even less elastic interaction between

the micro-contacts.

In general, the criteria (3.25) and (3.27) work well to predict the transitions of behavior, and
the transition between the separated and combined debris formation is especially well matched by
the MD simulations.

CONCLUDING REMARKS

We derived and validated analytical criteria for the formation of separated or combined debris
particles in an adhesive wear regime at the microscale, leading to a wear map of the different
behaviors. The outcome is dictated by the sum of the sizes of the micro-contacts (the real contact
area), and by the total length covered by all of them (the apparent contact area), in comparison
to the critical length scale d* of the material, at which a ductile-to-brittle transition occurs. The
different microscopic behaviors of debris particle formation give a physical interpretation for the
different regimes of macroscopic unlubricated adhesive wear, and the emergence of a regime of
severe wear can be physically explained by the energetic feasibility of forming combined debris
particles under multiple micro-contacts. The next chapter generalizes these findings to a 3D setting,
which has the notable benefit of getting rid of the infinite energy issue, that led to the presence of

the unphysical M factor in some expressions (like the expression of the critical size d* (3.23)).
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CHAPTER

INTERACTION OF MICRO-CONTACTS IN 3D

Disclaimer

This chapter is reproduced in part from S. Pham-Ba and J.-F. Molinari (2021a), “Adhesive wear regimes on
rough surfaces and Interaction of micro-contacts”, Tribology letters 69.3, with permission from all authors.
My personal contribution was developing the theory and writing. This paper was highlighted in the
Tribology & lubrication technology magazine (November 2021) in the Editors’ Selections: Best from STLE’s
research community.

INTRODUCTION

IN the previous chapter, elastic interactions between nearby micro-contacts were explored an-
alytically in a rather academic two dimensional setting. Using an energy balance criterion,
a wear map was obtained to predict how a set of multiple tangentially loaded micro-contacts
transition from multiple small wear particles to a single larger wear particle. This chapter extends

the two-dimensional analytical model to three dimensions.

Before diving into the contact between two rough surfaces, we take a look at a simplified
contact between two flat surfaces, joined at a small number of cold-welded perfect junctions that
we call micro-contacts. To study the elastic interaction between multiple micro-contacts during
adhesive wear, we model them with uniform loads of magnitude g acting along the x direction at
the surface I of a semi-infinite solid 2 (see Figure 4.1). Out of the two solids in contact, only the

Figure 4.1 - Micro-contacts under uniform tangential load on a semi-infinite solid
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bottom one is considered because of symmetry.

In this chapter, adhesive wear is incorporated into this model by introducing two wear criteria,
one energy-based and one stress-based, which are then both used to find the definition of a critical
size of micro-contact d* for the geometric configuration of Figure 4.1. We then study analytically

the interaction between two circular micro-contacts and produce a mechanism wear map.

4.1 ENERGY BALANCE CRITERION

Elastic energy

When loaded, the solid € of Figure 4.1 accumulates elastic energy of deformation. If it is made of a
linear elastic material, no energy is dissipated in the loading process, which implies that the elastic

energy is equal to the work of the load on the surface:

1
Eelzzfr”'[’dr> (4.1)

where # and p are respectively the displacement and traction fields on the surface I'. In our case,

the imposed tractions are only in the x direction, so (4.1) reduces to

1
E,= > Jr u,p.dl. (4.2)

Here, the field p, describes the distribution of the tangential tractions in the x direction on T,
which are equal to g wherever there is a micro-contact, and 0 otherwise (see Figure 4.1). The surface
displacements in the x direction #, are determined from the fundamental solution established by
Cerruti (Johnson 1985):

1 1 x?
ker
u =—|2(1—vy)— +2v— .
X /mG[( )r 73] (4.3)

which is the displacement field in the x direction caused by a unit point load at the origin of €2,

also in the x direction. G is the shear modulus of the material, v the Poisson’s ratio, and r is the

2

distance from the origin: 7* = x* +y* + z%. The full displacement field # is obtained by linear

superposition of the contributions of all tractions:

(oy)= f f W (e — €y — ) pul ) dE diy (+4)
=[u * pe)(x,9), (4-5)

which is a convolution (denoted by the * symbol). The tractions p, in the x direction also induce

displacements in the y and z direction, but they do not intervene in (4.2). We can rewrite (4.2) as

Eel:_fr[ )lc{ix px]pxdr (46)

In order to be calculable analytically for simple cases, the convolution can be turned into a cross-
correlation. Following the definition of #, caused by p,. (4.5), we can find any component : of

the displacement as

)= | | = E =) pyEmd dy (47

= [ p ), (+8)
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which is a convolution, where 7 and j can be either of the three coordinates x, y or z and the

Einstein summation convention is used. The full expression of the elastic energy can be written as

1
Ed:—Jr[ u o p; ] pidl, (4.9)

now taking into account the components of # and p in all directions.

ker

Alternatively, the integrand [# ], + p; ] p; of the elastic energy can be written as

(k1= [ [ = Ey—n) € ) dE dy (410)
= [[ W@ mne—eo—mipendear, G

which, injected into the E,j expression, gives

ff ]kirw *p;] pydx dy (4.12)

”” (&) pi(x =& sy =) pilx,y) dx dy dE' df (4.13)

f f (L py* p)(E ) dE dyf (4.14)
which now contains a cross-correlation, denoted by the x symbol. Using a lighter notation:

1

_ ker

Adhesive energy

To detach a wear particle from 2, new surfaces have to be created, requiring adhesive energy (or
fracture energy). We assume a simple spherical geometry. Therefore, the detachment of a single
particle of diameter d requires the creation of two hemispherical surfaces, needing an adhesive
energy of

Eg,1= ryd?®. (4.16)

Criterion

When a wear particle is detached from the bulk, it can no longer carry a tangential load applied
at the surface. If a particle is detached where micro-contacts were present, those micro-contacts
get unloaded and no longer contribute to the traction field p,, resulting in a decrease AE, of the
elastic energy. This energy does not disappear, and in fact contributes to the formation of the
cracks resulting in the particle detachment. Therefore, to determine if the particle can be fully

detached, we consider the energy ratio

2 AE, (417)
=—, 1
E, 4.17
and the particle can be detached if
R =1, (4.18)

which is the energy balance criterion.
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Effect of normal load

The creation of micro-contacts between two surfaces often results from the application of a normal
load, which means that all the terms p., p,, #, and #, contribute to the elastic energy (4.1).
Nevertheless, the change AE | in elastic energy due to unloading can still be solely attributed to
the change of p, and #,, neglecting the effect of the constant p,. A proof is given below.

Let us consider a surface with micro-contacts, loaded tangentially and vertically. The traction

field is
p=pe.tpe,, (4.19)

and the elastic energy, obtained with (4.15), is therefore

1 k er k k
Eq=3 f (:Zalpw P18, e x ]+ w200 % p )+ 2 [0, )T (4:20)
T
When the micro-contacts are unloaded, they can no longer carry the tangential load, so p, goes to

0. However, the normal load remains, so that the unloaded elastic energy is

1 er er er
AE =3 f (oo pd S [ per p ]+ S o x p D)0, (42)
T
where ) .
W, = inC [(1 — 2")5] =—uy, (4.22)
and #*¢"_is given by (4.3). In the particular case where p_(x,7) = p (—x,—y) and p,(x,y) =

p,(—x,—y), we have p,. x p, = p, » p.., so that the unloaded elastic energy becomes

1
AE, = —J i dl, (4.23)
2J)r

which is independent of p,. Therefore, in this particular case, the unloaded elastic energy does
not depend on the normal load, if it is conserved during the unload of the tangential load. The
symmetry conditions on p,. and p, are fulfilled in the simple analytical cases derived in this chapter,
and they are also satisfied (approximately) in the case of a contact between rough surfaces, which
should be statistically similar upon axial symmetry.

4.2 CRACK INITIATION CRITERION

Since the formation of wear particles results from the formation of cracks, their creation must
start with the nucleation of such cracks, which can only be initiated at a point on a surface if

01205 (4-24)

where o7 is the first principal stress at this point, which is the maximum tensile stress if it is positive,
and o, is the tensile strength of the material.

Until now, we only considered the bottom solid to simplify the problem. Let us also reconsider
the top solid for a moment. In order to detach a spherical wear particle, two diametrically opposed
cracks have to be initiated, as shown in Figure 4.2 as thick red lines at locations (a) in the bottom
solid and (b’) in the top one. The cracks can be nucleated if the tensile stress at those points, shown
by red arrows, is sufficiently large. Thanks to the symmetry of the loading, we can state that the

maximum tensile stress at the point (b’) in the top solid is equal in magnitude to the maximum
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4.3 SINGLE SHEARED MICRO-CONTACT AND CRITICAL SIZE

Figure 4.2 - Cross section view of the required crack nucleation sites for the formation of a spherical wear
particle at a micro-contact. Points (a) and (b) are slightly below the junction, and points (2”) and (b’) slightly
above. The thick red lines show the cracks which must be nucleated in order to detach the particle. Tensile
stresses (red arrows) must overcome the tensile strength of the material. Equal and opposite compressive
stresses (blue arrows) appear by symmetry.

compressive stress at the point (b) in the bottom solid, so that the conditions for crack opening can
be defined by looking only at the bottom solid. In summary, when considering only the bottom
solid, a particle can be detached if it has a sufficiently large tensile stress at its trailing edge (a) and
a sufliciently large compressive stress at its leading edge (b). The crack initiation criterion can
therefore be written as:

o= 0, atpoint (a), (4.252)

oy S —o,, atpoint (b). (4.25b)

In the way our micro-contacts are defined (Figure 4.1), the tangential traction field at the
interface oriented in the x direction has discontinuities from 0 to ¢ at the borders of the micro-
contacts, which leads to stress singularities (regions of infinite stresses) in the other directions
inside the solid around those places (Johnson 1985), also leading to infinite principal stresses.
Therefore, the crack initiation criterion (4.25) can always be satisfied somewhere on the borders of

the micro-contacts.

4.3 SINGLE SHEARED MICRO-CONTACT AND CRITICAL SIZE

In order to define a critical junction size as in Aghababaei ez al. (2016), we consider a single circular
micro-contact of diameter d. The stored elastic energy stored by tangentially loading the micro-
contact can be calculated analytically from (4.6). Only the component p, of p is non-zero, and

we can write p,. as
px(x,9) =c,(x,7)q (4.26)
where g is the value of the uniform tangential load and ¢, (x, ) is a function describing the shape

of the micro-contact, in this case equal to 1 when r = 4/x2+y2 < d /2 and 0 otherwise. p, * p,
ker

is easier to calculate than #;%

* p.., which means that we can use (4.15) to calculate the elastic

energy. We have
2

pe* P =(cxc))q (4.27)
which is an autocorrelation, calculable geometrically. As ¢, isacircle of diameter d /2, [c,xc, ](x,y)
is equal to the area of the intersection between two circles of diameter d/2 with a distance

7 = 4/ x% + 2 between their centers:

d?.
Cley)=le, *e)(ey) =5 cos( 5 ) = 2v/d2 =7, (428)
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where we called C the autocorrelation of ¢, In (4.15), this autocorrelation multiplies M};ix (4-3)

1 1 x?
ker

uker — | 2(1—v)=+2v |,
Y 4nG [ =) r 73 ]
which has a 1/ component and a x?/73 component. Using polar coordinates and with the help
of the Python symbolic library Sympy (Meurer et al. 2017), we get the integrals of the products
with the components:

1 2rd?
—cdl'= : (4-29)
T’ 3
x? rd?
—Cdl'=—. .30
L pe 3 (4.30)
From those, we easily recover the expression of the elastic energy for a single circular micro-contact:
E lf L[t 10X | eqrar (431)
=—| — —V)—+2v— 31
T ) 4nG r -3 |1 43
1 2ntd? rd®7] ,
=—12(1—v +2y— 32
yve [ (1=v) 3 }f] (432)
(2—v)d3q*
=1 (4-33)

12G

The corresponding adhesive energy required to detach a hemispherical wear particle under
this circular micro-contact is given in (4.16). From these two expressions, we obtain the energy
ratio from (4.17):

—Nda?
sz- (4-34)

R2nyG

The maximum tangential load ¢ which can be applied on the micro-contact is equal to the

shear strength 0 of the junction between the two surfaces in contact. After setting g = o; in the

expression of R, we look for the value of d which makes R satisfy the energy balance criterion
(4.18). We find a critical diameter:

. 12nyG

C(2— v)a].2

(4-35)

which only depends on material parameters. The energy balance criterion is satisfied whenever
d > d* Note that the expression of d* found in this geometrical configuration is in accordance
with the expression found by Aghababaei ez al. (1.13) with a newly defined geometrical factor. The
infinite factor M found in 2D (previous chapter) is now absent from the expressions of ® and d*.

A single sheared micro-contact of diameter d can result in the detachment of a wear particle if
d = d* and otherwise flows plastically.

4.4 INTERACTION OF TWO MICRO-CONTACTS

To study the elastic interactions between multiple micro-contacts in the same manner as the
two-dimensional model of the previous chapter, we start by considering two tangentially loaded
circular micro-contacts of diameters d and having a distance / between their centers, as shown in
Figure 4.3. They are tangentially loaded in the x direction with a pressure of magnitude o; and the
line going through both of their centers makes an angle & with the x axis.

50



4.4 INTERACTION OF TWO MICRO-CONTACTS

Figure 4.3 — Two circular contacts under uniform tangential load. d, is the “apparent” diameter of a
hemispherical particle that would encompass both micro-contacts, and @ is the angle between the direction
of the load and the line going through the centers of the micro-contacts.

Elastic energy

Again, we use (4.15) to calculate the stored elastic energy by hand. In this case, following the

notation of Section 4.3, ¢, is made of two circular regions of diameter d with a space / between

q
their centers and having the line connecting their centers making an angle ¢ with the x axis.
The autocorellation ¢, of ¢, in this case can be written as a function of C (4.28) for a single

micro-contact:
G (x,y)=2C(x,y)+ C(x — Il cos@,y — [ sin0)+ C(x + L cos O,y + [ sinb), (4.36)

which has a centered component 2(C(x,y) and two side components. The centered component

simply gives a 2E,; contribution to the total elastic energy. The integrals of the products of the
ker

side components with the terms 1/7 and x*/ 7> of u _

have to be approximated by assuming
that x and r do not vary much in the region where the side components of ¢, are non-zero. We

have :
f %C(x +/cosf,y+/sinf)dl ~ %J C(x £l cosB,y £ 1sin6)dl (4-37)
r r
2,44
= % (4-38)
x? ) cos’ 6 .
EC(x:I:lcosﬁ,y:I:lsm@)dF% i rC‘(x:l:lcos@,y:I:lsm@)alf (439)
r
r*d* cos® 0
=g (4-40)
Using (4.15), we finally get:
1 1 1 x? )
Eap=3 Jr G [2(1 v+ 2";] Gq-dl (4-41)
1 w*d* rn*d*cos’ 7 ,
N2y +2—= [2(1 N T ] q (4-42)
1 2d* 2d*(cos* 6 —1
:2Eel,1+32nG[”l A ] )]612 (4-43)
_ (2—v)diq? N rnd*q?® 1—vsin® 0 (448)
GE 326 1 ot

The approximation (4.44) is only exact in the limit when / > d, but is still very accurate when

[ reaches [ = d, which is when the two micro-contacts are adjacent. The accuracy is verified by
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2.8

== numerical integral
= analytic approx.

Figure 4.4 - Comparison of the numerical integration and the analytical approximation of the elastic
energy stored under two tangentially loaded circular contacts. Here, v = 0.3 and & = 0. The analytical

approximation is more accurate when / is large.

(a) One separated (b) Two separated (c) Combined

Figure 4.5 - Different cases of wear particle formation with two micro-contacts. The red surfaces show the
surfaces created when a particle is detached. The case where no wear particle is detached is not shown. In
case (a), either one of the junctions is equally likely to form a particle, as the stress state is symmetric (when
also considering the sliding body on the top).

numerically integrating (4.6) for fixed values of d and / and comparing the results with (4.44), as
shown in Figure 4.4.

The expression (4.44) consists in the sum of two terms. The left term is equal to 2E,
(4.33) and represents the energetic contributions of each circular micro-contact. The right term
is proportional to 1// and represents the effect of the elastic interactions between the two micro-
contacts. When / is large compared to d, the right term vanishes and the two micro-contacts do
not interact: the total energy is just the sum of their energies taken separately. When / decreases,

the two micro-contacts get closer and the interaction term increases (see Figure 4.4).

Note that if the two micro-contacts were to be superimposed into a single circular micro-contact
loaded at 24, the resulting elastic energy would reach 4E,, ;, as (4.33) has a quadratic dependence
on g. This would not happen in practice when g = o; since the tangential load is limited to o;,

)
but it explains why the £, , is necessarily bounded between 2E | and 4E ;.

Adhesive energy

With two loaded micro-contacts, several cases of wear particle formation may arise, as shown in
Figure 4.5. There can be either zero, one or two separated wear particles at each micro-contact,
or a single combined wear particle encompassing both micro-contacts. We call d, (for apparent

diameter) the diameter of the potentially formed combined wear particle. We have d, =d + /.

In the case of the formation of a single separated particle; the required adhesive energy to

"When there is enough energy to form only a single particle, a slight asymmetry in the system would select one of
the two contact junctions and the other junction would deform plastically.
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detach the particle is the same as (4.16):

Ead,lsep = ﬂydz . (445)

In the case of the formation of two wear particles, the required adhesive energy is twice as big:

E

ad,ZSep = 27777/612 ) (446)

and in the case of the formation of a combined wear particle, it is

Ead,comb = ﬂydaz . (4-47)

‘Energy balance criterion

Assuming that both micro-contacts get unloaded when the two separated wear particles or a single
combined one are formed, the decrease of elastic energy AE, in (4.17) is equal to E,, (4.44).
From the expression of AE and the different expressions of the adhesive energy for each case, we
get the energy ratio

37 d\ d
= Cy+—Cee> ) - C 48
K’ < n + 8 inter l > d* case (4 4 )
where C, =2, and
1—vsin*0
Coter = ———— :
inter 5 (4-49)

is a constant controlling the amount of interaction, which only depends on the Poisson’s ratio
and the angle 6 and has always a value between 1/3 and 2/3. Choosing v = 0.5 and = 0 (micro-
=2/3,
whereas @ = 7/2 (line of the micro-contacts perpendicular to the direction of the load) gives

contacts aligned with the direction of the load) provides the most interaction with C,

the least amount of interaction with C, ... =1/3. We will discuss the implications of this in the

mter

next sub-section. The constant C_, . has a value which depends on the case of particle formation.

From the different adhesive energies E, 4 25ep (4-46) and E g omp (4-47), we have C_,, =1/2 or

case

C..e = d?/d? respectively. Note that the material parameters G, o; and y do not appear directly
in (4.48) and were conveniently replaced by the critical diameter d* (4.35) which contains all those

missing terms.

When only one micro-contact out of the two forms a wear particle and gets unloaded, the elastic
energy goes from E , (4.44) to Ej; (4.33) with g = 0;, as the remaining micro-contact, flowing
plastically, still carries a load of o;. Therefore, the decrease of elastic energy is AE; = E,, —E, ;,
which with the expression of the adhesive energy Ead,lsep (4-45) gives the energy ratio (4.48) with
C,=land C_ =1

case —

4.5 WEAR MAP

When we derived the energy ratio for a single micro-contact and the formation of a single wear
particle (4.17), we were able to find a critical diameter d* which easily defines which behavior is
expected (plastic flow or formation of a particle). The expressions of the energy ratio ® for two

micro-contacts (4.48) are more complicated, as they now depend on d, [, d* and C, ...

Figure 4.6 shows our best attempt to represent the different possible scenarii of wear particle
formation as a function of model parameters. We refer to Figure 4.6 as a wear map. Each colored

region shows where ® 2 1 for a selected value of C_,., and therefore tells that the indicated behavior
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plasticity

d*

2 separated

combined

0 Ly sy 2 !
4

Figure 4.6 — Wear map of the different cases of wear particle formation under tangentially loaded two
micro-contacts. The colored regions are computed at maximum possible elastic interaction (v = 0.5, § = 0).
The dashed colored lines show the boundaries the regions would have at minimum interaction (v = 0.5,

0=rm/2).

is energetically feasible, depending on the contact junction size d and the critical junction size
d; both expressed relative to /. The colored regions in Figure 4.6 are computed at maximum
interaction with C, .
would have if C, . =1/3, that is at minimum interaction. Clearly, increasing elastic interactions

favors wear particle formation.

=2/3. The dashed colored lines show the boundaries that those regions

The black dotted line d = d* in Figure 4.6 is given for comparison with the single micro-contact
case. Indeed, such a system would be in a plastic regime when d < d; which is the whole region
above the dotted line, and it would allow the formation of a wear particle when d 2> d; which is
the region below the line. The wear map predicts that with two interacting micro-contacts, it is
possible to form one and even two wear particles, even if the size of each micro-contact is smaller
than the minimum required d¥ Once more, we emphasize that this is because of elastic interactions,

which make the available stored elastic energy larger than trivially expected, as explained by (4.44).

The wear map hints toward the emergence of multiple wear regimes. The “plasticity” region
corresponds to theoretically no wear volume, as the sliding surfaces only get plastically remodeled.
This behavior can be linked to the experimental observations of low wear. In contrast, the jump
in wear volume between the “2 separated” and the “combined” regions is significant and can be

related to the transition between a mild and a severe wear regime.

CONCLUDING REMARKS

It is possible to derive wear maps for larger numbers of micro-contacts and other arrangements,
following the same derivation for the analytical approximation of the elastic energy. Molinari &
Pham-Ba (2022) takes this idea even further by optimizing a distribution of micro-contacts on
a surface that leads to a maximized stored elastic energy under shear. We will show in the next
chapter that more interesting results involving wear can be obtained using numerical simulations

with generic rough surfaces while following the same energetic principles.
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Disclaimer

This chapter is reproduced in part from S. Pham-Ba and J.-F. Molinari (2021a), “Adhesive wear regimes on
rough surfaces and Interaction of micro-contacts”, Tribology letters 69.3, with permission from all authors.
My personal contribution was developing the model, designing and performing the numerical study, and

writing.

INTRODUCTION

ELASTIC interactions between a large number of micro-contacts with varying sizes and shapes,
as occurs during loading of self-affine surfaces, is largely unexplored and is the focus of the
present chapter. As already briefly mentioned in the introduction of this document, Frérot et al.
(2018) and Brink et al. (2021) used BEM to simulate the contact between two rough surfaces
and obtain a map of the micro-contacts. Each micro-contact size is compared to d* to assess
if it can result in the formation of a wear particle. Frérot et al. estimate an instantaneous wear
coefhicient, while Brink et al. (2021) added the notion of sliding distance to compute a wear volume
over time. These models give promising results, but their downside is that they do not take
into account elastic interactions and assume that each micro-contact is isolated from the others,
overlooking the potential transition to a severe wear regime. An interesting study by Popov &
Pohrt (2018) also relies on BEM to compute the contact between rough surfaces. They use an
energy balance criterion to determine if a wear particle can be detached, therefore accounting for
elastic interactions. However, we will discuss how the approximation that was made in the released
energy, while allowing for high computational efficiency, does not capture the full effect of the
elastic interactions. As a consequence, they obtain wear particles that can enclose several junctions,
but do not observe a transition to a severe wear regime.

This chapter explores a mesoscale mechanistic model for adhesive wear. In the context of
self-affine surfaces in contact, the model aims to explain the emergence of different wear regimes as
a function of normal load. The model of the previous chapter, formulated for only two micro-
contacts, is numerically extended to the contact between self-afhine rough surfaces, resulting in
the description of three well-identified regimes of wear. A salient feature of the model is that
the produced wear maps are function of well-defined physics-based model parameters, including

material properties, surface roughness, and load.
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51 NUMERICAL MODEL FOR RANDOM ROUGH SURFACES

Distribution of micro-contacts

We use our software Tamaas to generate discretized self-affine rough surfaces 5 (x,y) with the PSD
shown in Figure 5.1. The rough surfaces are discretized on a grid of 7 x 7 points, with » =512, and
of side-length L. Their parameters are the root mean square (RMS) of slopes by, = v/ ([V5]?),
the Hurst exponent # and the frequencies ¢, and g, corresponding respectively to the largest
and smallest wavelengths contained in the spectrum, where a frequency of the surface is given
by g =2k 7/L, also called wavenumber, and k is a number ranging from 0 to [72/2]. We set the
roll-off frequency ¢, at ¢, = ¢;.

Tamaas, primarily a BEM software, is used to efficiently solve the elastic contact between
two rough surfaces, equivalently considered as the contact between a rigid rough surface (with
equivalent roughness) and a flat deformable elastic solid. Figure 5.2 shows distributions of the
contact pressure on a rough surface with # = 0.8, ¢, = 8 and g, = /8 for different normal loads.

We normalize the normal load (Hyun et al. 2004):

_V2mpy

N= nE (5.1)
Pis £
where py; is the normal load and
. E
E'=— (5.2)

is the effective Young’s modulus. At low normal loads, the normalized normal load py is a good

approximation of the ratio between the real and the apparent contact area.

For given rough surface parameters ¢, ¢, and #, the normalized load py is the only free
parameter for the description of the rough contact, and it combines the effect of the normal load
and the RMS of heights. In the contact simulations, all the grid points where the local normal

pressure is non-zero are in contact. They give the needed locations of micro-contacts.

Detachment of wear particles

We use the energy balance and the crack initiation criteria on the distribution of micro-contacts to
determine the potential wear particle formation sites. Assuming a constant tangential load o; in
the contact areas, the elastic energy can be numerically computed with (4.6). The procedure to

find the maximum wear volume is the following:

1. Consider largest particle fulfilling crack initiation criterion;

In(PSD(q))

—2(H +1)

In
I(g)  Ing)  Ing) "4V

Figure 5.1 - Target PSD of generated rough surfaces. Its value is zero at frequencies ¢ < ¢, and g > ¢,. # is
the Hurst exponent, g, g,, and ¢ are respectively the frequencies corresponding to the largest, roll-off and
smallest wavelengths.
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(a) pn =0.02 (b) pn =0.05 (c) iy =0.1

Figure 5.2 - BE simulations of the micro-contacts and local contact pressures for increasing normal load.
The normalized normal load is indicated, which also corresponds to the ratio of real contact area to apparent
contact area. Brighter color corresponds to a higher local pressure. For increasing normal load, the number
and size of the micro-contacts increase, until micro-contacts become large enough to merge together, resulting
in a drop in the number of contacts but a sharp rise of their average size. The surface roughness parameters
are n =512, H = 0.8, gy =8 and g, = n/8.

2. Unload corresponding region C (remove tangential loads) and compute the drop in elastic
energy AE;

3. If AE, greater than needed E,; (for a given d*), save this particle removal; Else, try next
largest particle;

4. Repeat until no more particles can be added.

After those steps, the remaining elastic energy should be small and insufficient to allow the creation
of further particles. The position and size of each created particle are recorded for analysis.

As a result of this procedure, a list of wear particles (position and size) is obtained for any given

value of py (controlling the micro-contacts) and d* (controlling the ductile to brittle transition).

Note that this algorithm requires many consecutive explicit calculations of AE for testing
the unloading of each possible particle (according to the crack initiation criterion) and is com-
putationally expensive. Indeed, the creation of a particle unloads a portion C of the domain €2,
affecting the displacements, going from #, to #., (computed with (4.5) for each possible ), with
. < u, at every point of ) (by the principle of superposition, less tractions are applied after
unloading). The resulting expression of elastic energy release is therefore:

1 1
AEel:_»f px”xd . px%;dﬂ
2Ja

2Ja\c
1 1 /
:—f pxuxdﬂ—}-—( Pyt dQL— pxuxdﬂ>
2J)c 2\Jay¢ a\¢
1 1
:_J Dy deﬂ"r‘_ px(”x_%;/c)dﬂ (5~3)
2 c 2 Q\c

In comparison, to find at each iteration a detached particle, the approach of Popov and Pohrt
(Popov & Pohrt 2018) estimates the energy release by integrating the local elastic energy density,
without computing #,,. In this case, the drop in elastic energy takes the form:

1
AEelz_f Px deﬂ’
2 c

which misses the additional positive term present in (5.3). While less computationally intensive,
the procedure adopted by Popov and Pohrt leads to an underestimation of elastic interactions.
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a) Plasticity (b) 1 separated ) 2 separated (d) Combined

Figure 5.3 - Different cases of wear particle formation with two micro-contacts in the numerical model.
The blue regions are the micro-contacts. The red circles are the wear particles that can be detached. The
small brighter spots are the regions of tensile and compressive stresses where the crack initiation criterion

can be fulfilled.

1073

plasticity 107

d*

- —S5
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f’ -
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Normalized wear volume

combined

107¢
Ly 1 3
2 4

(a) Wear map (b) Wear volume

Figure 5.4 — Numerical wear maps for two circular micro-contacts. Here, = 0 and v = 0.3. The jagged
edges of the regions are due to the coarse discretization of the simulated surface. (a) Wear map deduced
from the number of formed particles (o, 1, or 2) and their volume. The four regions of the analytical wear
map (Figure 4.6) are recovered, and the analytical boundaries are shown with dashed lines. (b) The wear
volume is normalized by L} where L is the side-length of the discretization surface.

As a consequence, a single power-law between wear volume and the applied pressure is found.
There is no visible transition to severe wear, which only arises with proper accounting of elastic

interactions.

5.2  VERIFICATION

The computation of the detachment of wear particles in the numerical model was tested with a
setup consisting of two micro-contacts, for which we previously derived an analytical theory and
constructed a wear map. We are choosing the micro-contacts to be aligned with the load (6 = 0).
Figure 5.3 shows the effect of increasing d for constant values of / and d: Looking at the wear
map (Figure 4.6), this means moving on a horizontal line from left to right. As predicted by the

wear map, there is a transition between all the possible behaviors of wear particle formation.

The numerically generated wear maps are shown in Figure 5.4. They are generated by varying
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the values of d and d* and by computing the possible detachment of wear particles. Figure 5.4a
shows the different behaviors deduced by the number of formed particles and their volume. It agrees
with the analytical wear map (Figure 4.6) superimposed by dashed lines. Figure 5.4b indicates
the corresponding wear volumes. It shows that in the lower right region of the wear map, a
much higher wear volume is created, which corresponds to the “combined” behavior of particle
formation. Note that the transition to this behavior is quite sharp.

5.3 WEAR MAPS AND WEAR REGIMES

The numerical model was run on five randomized rough surfaces with the roughness parameters
H =0.8, gy =28 and g, = n/8 (with n = 512). Examples of wear particle distributions are shown
in Figure 5.5 and the averaged computed wear maps are given in Figure 5.6. Regions similar to
the ones of the wear map for two micro-contacts can be found. The “plasticity” region is where
no wear particles are detached. Then, for a constant d* (i.e. for a given material), the number of
particles increases with the load until reaching a maximum value, defining a region “separated”
where separated particles can be formed, as shown in Figure 5.5a to g. Then, the number of particles
decreases with the higher loads, entering the “combined” region, where large wear particles can
encompass multiple micro-contacts. The wear volume increases monotonically with the load and
reaches a plateau (the crossed areas in the wear maps), which is a non-physical numerical artifact
caused by the fact that wear particles reach the size of the discretized system.

The effects of the material parameters can also be read on the wear maps since they are contained
into d* According to our model, a material with a lower d; that would be harder or more fragile,
should form smaller particles. The model also predicts that harder materials are more prone to
generate combined particles from neighboring contact junctions.

However, the full volume of debris production is higher for a harder material, which seems in
opposition to Archard’s wear model. This is a limitation of not accounting for the sliding history,
as we discuss further below. It is also a consequence of assuming that our junctions all carry the
material-specific shear strength o;, implying that harder materials are loaded tangentially with a
larger force. As more mechanical work is imparted to the interface for hard materials, this results
in larger wear volume production. The exact distributions of shear forces at micro-contacts should
be examined in future work.

For an easier interpretation, the wear maps can be represented as curves (Figure 5.7), where
each curve corresponds to a constant value of d* and vary with the imposed load. Every point
of each curve is the average between five measurements done with different randomized rough
surfaces, and the standard deviation is indicated. To find the maximum number of particles reached
by one curve without being sensitive to the statistical noise, a smoothed version is first computed
using a Savitzky-Golay filter of degree 3 on a window of 11 points, and the maximum is determined
on the filtered smooth curve. A study of the evolution of the wear volumes (Figure 5.7b) reveals

the emergence of three wear regimes:

- There is no wear particle production until the normal load reaches a critical value. This range
is the “plastic” region: the surfaces are only deformed plastically. This would correspond to
the regime of low wear.

- Above a critical load, wear increases monotonically. This range goes roughly up to the point
of maximum number of particles and would correspond to the regime of mild wear.

- For loads higher than the point of maximum number of particles, the slope of the curves
increases quickly. This drastic increase of the wear volume would correspond to the regime
of severe wear.

59



CHAPTER 5- FrROM MICRO-CONTACTS TO WEAR REGIMES

() & = 0.04, pyy=0.02

(f) & = 0.04, p, =0.05

da* .
(g) T =0.04, py=0.1

(h) & =0.04, py=0.2

Figure 5.5 - Different cases of wear particle formation in a rough contact. (a)-(d) When the normal load

increases, the number and size of wear particles increase, following the trend of the micro-contacts. (e)-

(h) With a lower d; particles are generated at lower loads. Also, at high loads, elastic interactions promote

the formation of less numerous and larger particles encompassing multiple micro-contacts, even if the

distributions of micro-contacts are the same as above.
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(b) Wear volume

Figure 5.6 - Wear maps of the contact between rough surfaces. The map of the number of particles shows

clearly distinct regions. Between the “separated” and “combined” regions, the number of particles decreases

but the wear volume increases. The wear volume spans multiple orders of magnitude. The crossed area is

the region where the numerical simulation validity is not guaranteed because the size of the wear particles

becomes comparable to the size of the simulated system.
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Figure 5.7 — Wear curves of the contact between rough surfaces. Each curve follows a horizontal line in the
wear maps of Figure 5.6. The filled areas represent the standard deviation. The first non-zero value of each
curve is shown by a star. The maximum number of particles reached by each curve is shown by a dot. The
invalid parts of the curves (shown crossed in the wear maps) are cut. (b) The evolution of the wear volume
with Py notably shows the transition between a regime with zero wear volume (to the left of each star) to a
regime where the wear volume increases with the load. All the curves follow the same trend, although with
a horizontal shift. For a given curve, between the star and the dot, the wear volume increases steadily. The
slope increases drastically around the dot, indicating a transition to a severe wear regime.

The ability of our model to predict a regime of severe or catastrophic wear is novel among the
similar existing models (Frérot et al. 2018; Brink et al. 2021), as these models limit the formation of
each wear particle to occur under a single micro-contact. The maximum instantaneous wear volume

is thus limited by the size and number of micro-contacts, whereas our model takes into account

elastic interactions and permits the creation of wear particles larger than a single micro-contact.

One advantage of the model of Brink et al. is that it simulates the sliding process, and reaches a
steady-state wear rate. This procedure is unfortunately not applicable for our model because of the
high computational cost to compute even a single pixel of a wear map. In consequence, our model
can only predict an instantaneous wear volume and has no notion of sliding distance. Brink et
al. showed that simulating the sliding history is key to recovering Archard’s model, stating that
harder materials wear less. The current model gives the opposite trend. A computationally efficient
procedure to account both for the sliding history, as in Brink et al., as well elastic interactions for

wear particle generation, will be the topic of future work.

It is also worth noting that our model predicts the possibility of forming wear particles smaller
than d; as shown by Figure 4.6 and Figure 5.5a to d, which is surprising since d* is generally
thought of as the minimum possible wear particle size. This effect can also be related to sliding
not being considered in our model. As sliding dissipates energy, it would affect the remaining
energy available for the creation of such small wear particles. The possibility of forming wear
particles smaller than d* in the absence of sliding is worthy of investigation either experimentally
or numerically using FE or MD simulations. In the case where the possibility of creating wear

particles smaller than d* were to be invalidated, our results would not be significantly impacted.

The “plasticity” zone in Figure 5.6 would simply extend on a larger range of normal load, and the

three identified wear regimes would remain present.
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Figure 5.8 - Effect of the roughness parameters on the wear curves. Here, d*/L = 0.07 and » = 512. Only
the curves with the sets of parameters # = 0.8, ¢, =8, ¢, = n/8 and # = 0.3, ¢, = 8, g, = n/8 were
computed with five repetitions, so their wear curve is averaged and a standard deviation is shown. The
curves for the other sets of parameters are computed from only one rough surface and thus are more subject

to statistical noise.

5.4 ROUGHNESS PARAMETERS

The wear maps and curves of the previous section were computed for a unique set of roughness
parameters, namely # = 0.8, g = 8 and ¢, = n/8. The efects of varying the parameters #,
q, and g, is assessed by running the simulations listed in Table 5.1 and comparing the curves of
number of particles and wear volume. The Figure 5.8 shows such comparison for a single value
of d*/L = 0.07 in order to not overload the plots. Note that the RMS of slopes by, is also a

roughness parameter, but its effect is already taken into account in the normalized imposed load
Pn-

Table 5.1 - List of roughness parameters for the production of wear maps and curves

H g q,  Repetitions

08 8 n/8 5
05 8 /8 1
03 8 n/s 5
08 4 n/8 1
08 16 n/8 1
08 8 n/4 1
0.8 8 n/16 1
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5.4 ROUGHNESS PARAMETERS

The Figures 5.8a and d show the effect of the Hurst exponent #. One physical interpretation
of # in the context of self-affine rough surfaces is that a surface of size L with a roughness of
characteristic height H can be viewed on a window of size aL, and the new roughness viewed on
this window would have a roughness with characteristic height @™ H. It means that for # =1,
the surface roughness always look the same in the range of self-afhnity (z.e. with ¢, < g < ¢,)
regardless of the scale of observation. A surface with a smaller # will look flatter if zoomed-out
and rougher if looked at from a smaller scale. In Figure 5.8a, we see that the rough surfaces with a
lower # can produce more wear particles, but smaller, as the overall wear volume (Figure 5.8d) is
surprisingly independent of #.

The frequency parameters g, and g, control the region (scaling) of fractal self-affinity of a
rough surface. g; controls the lower frequencies, so a lower value means higher large-scale features.
g, controls the smaller length scales, so a higher value means smaller rough features. The trends
shown by the Figures 5.8b and ¢ are in accordance with this description: at higher values of ¢}, a
rough surface look flatter because the lower frequency shapes are absent, which promotes more
contact on the smaller “bumps” on the surface and thus the creation of more wear particles. The
trend is the same when ¢ decreases, as more smaller bumps appear and contribute to the rise of
the number of wear particles. Still, the total wear volume remains only weakly affected by the
change of these roughness parameters.

Overall, while the number of produced particles varies with the roughness parameters, the wear
volumes remain relatively unaffected. The three previously identified wear regimes also remain
untouched. This invariance with the roughness parameters implies that the wear mechanisms are
supposedly not affected by the details of the fractal description of the rough surfaces in contact,
and that they can be described solely by d which includes the material parameters E, v, 0; and
¥» and by py;, which is linked to the imposed normal load py and the RMS of slopes by, s of
the rough surface. However, this only takes into account an instantaneous measurement of the
total wear volume. Actually, the size of the produced wear particles is dictated by the fractal
parameters, and the size of the detached particles may dictate how the surface roughness evolves
over time (effectively changing hp, o, thus py). The wear particles themselves may contribute to

the tribological properties of the interface, so that their size would be a matter of importance.

CONCLUDING REMARKS

A model of adhesive wear was developed analytically and implemented numerically. The model
takes into account elastic interactions between several nearby micro-contacts and allows for the
formation of combined wear particles encompassing multiple micro-contacts. A salient result
is that a wear particle is not necessarily formed under a single junction, which challenges the
definition of what amounts to a contact junction in the context of adhesive wear. The model is
based on two criteria: an energy balance and a crack initiation criteria. It predicts the transition
from a regime of low wear (with zero wear volume) to a regime of mild wear, and finally to a regime
of severe wear, emerging thanks to the consideration of the elastic interactions. The instantaneous
wear volume is predicted from the material parameters, the loading conditions, and roughness
parameters. Hard materials favor elastic interactions and combined wear particles.
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CHAPTER

BRIDGING SCALES WITH A COARSE-GRAINED
DISCRETE ELEMENT MODEL

Disclaimer

This chapter is reproduced in part from S. Pham-Ba and J.-F. Molinari (2022), “Adhesive wear with a
coarse-grained discrete element model”, Computer methods in applied mechanics and engineering 397, with
permission from all authors. My personal contribution was developing and implementing the model,
running the simulations, post-processing the results, and writing.

INTRODUCTION

OLECULAR dynamics simulations were used to study systems ranging from the wear of a
M single asperity (Aghababaei et al. 2016; Aghababaei et al. 2017; Zhao & Aghababaei 2020
Aghababaei & Zhao 2021) to the growth of multiple third-body particles trapped between two
sliding surfaces in three dimensions (Aghababaei ez al. 2018; Milanese et al. 2019; Brink et al. 2022).
The latter simulations show that the rolling particles grow into rolling cylinders and merge together
into a gouge layer, with a noticeable effect on the macroscopic tangential force resisting the sliding
motion. The formation of rolling cylinders and of a gouge layer from third-body particles is also
observed experimentally (Chen et al. 2017; Pham-Ba & Molinari 2021b), showcasing the importance
of modeling multiple third-body particles and their interactions during sliding. However, the
largest adhesive wear MD simulations (e.g. by Brink et al. (2022)) start to reach a computational
barrier, having around 35000 000 atoms per simulation. Due to the very small size of the atoms
simulated in MD (order of 1A), the simulations are limited both in space and in time (the time

step must also be small, of the order of 1ps).

Having possibly reached the maximum capabilities of MD regarding scale, other methods
must be used to further increase the size of the simulated worn systems and explore the effects of
collective mechanisms, as these mechanisms are ultimately responsible for the macroscopic wear
response. Despite the small scale disadvantage, the benefit of MD simulations is to seamlessly model,
with simple force potentials, particle rearrangements such as fracture and mixing of materials,
which is much more challenging to achieve in continuum methods like the widely used finite
element method. To preserve the advantages of MD while going to larger scales, we propose to
resort to DEM to coarse-grain the particle interactions. The current capabilities and usages of
DEM are enumerated in Section 2.2.
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To perform the same kind of adhesive wear simulation as with MD but using DEM, we aim
to model a solid with known elastic and fracture properties, and the fracture process must be
reversible to capture the growth of rolling third-body particles in a sheared interface, which involves
reattachment of matter due to adhesive forces. We formulate a DE method suited for this problem,
with relatively simple pair forces to remain computationally inexpensive. The interaction forces
have a repulsive part and a reversible cohesive part, inspired by the most simple MD pair forces (e.g.
Lennard-Jones). However, instead of applying coarse-graining to atoms with known properties,
the parameters of the pair forces are directly expressed in terms of macroscopic material properties
and particle size. In Section 6.1, we present our formulation of pair forces and explain how its
parameters are tuned to match elastic and fracture properties with an assembly of many particles.
Then, in Section 6.2, the model and the choice of its parameters are validated using simple patch
tests. Finally, we show in Section 6.3 an example of application of the adhesive wear of a single
junction between two sliding surfaces, similar to what was done using MD (Aghababaei ez al. 2016).

6.1 METHOD

The three dimensional physical system is discretized into many spherical particles (each identified
by an index 7) of radius 7; and density p (see Table 6.1 for a list of used symbols). Forces of
interaction are acting between every pair of distinct particles, and the particles’ velocities and
positions are updated accordingly using the second-order velocity-Verlet with a time step Az. For
any given particle, the integration scheme between steps 7 and 7 +1 is

F, At?
xn+1:xn+vnAt+;"T, (6.12)
FotFon
vn_‘_l:vn—k#At, (61b)
T +T
wn_,_l:o)n—i-n—nHAt, (6.1c)

21

where x,, v, and w,, are respectively the velocity, the position and the angular velocity of the
particle, F, and T, are the force and the torque acting on the particle in step 7, 7 is the mass of the
particle, and 7 is its moment of inertia. This integration scheme is the one currently implemented
in the open-source software LAMMPS (Plimpton 1995) we are using.

Table 6.1 - List of symbols used for lengths and sizes

Symbol Description

d Particle diameter

d_. Minimum acceptable particle diameter

d. Critical particle diameter

d, Average particle size

d,, d, Smallest and largest bounds in size distribution
d* Critical material length scale

D Junction size

iy 7S Particle radii

]
N O7  Normal and tangential particle separations
Elastic separation

o

S O O

-

Fracture separation
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6.1 METHOD

Figure 6.1 - Two interacting particles

For each pair of particles (7, /), we define the normal distance &y between their surfaces,
and the tangential sliding distance & (see Figure 6.1). The normal distance is simply equal to
d;;—r;—rj, with d;; being the distance between the particles’ centers. We have Sn = 0 when the
particles are touching and &y < 0 when they are interpenetrated. The tangential sliding distance
8 is only defined when the particles are within their range of interaction (shaded area around
particles in Figure 6.1, more details later). &'y is equal to O when the particles start interacting, and
is updated using the relative rolling velocity (Wang et al. 2015). &' is always positive (or equal to

Zero).

6.1.1  Forces between particles

The force F acting between a given pair of particles is the sum of a normal component Fy, a

tangential component F, and velocity damping forces:
F =—(Fy+ exon)nn — (Fr + crop)ny, (6.2)

where ny; and 7. are the unit vectors pointing respectively in the normal and tangential directions,
the latter being computed using the evolution of the rolling velocity (Wang et al. 2015), v and vy
are the corresponding relative velocities at the point of interaction, and ¢ and ¢ are damping
factors. Since the total force F acts on the surface of the particles, it also induces torques T (when
seen from the centers of the particles), computed directly from F and the appropriate moment
arms. In order to model an elastic solid with discrete particles, cohesive forces between particles
are needed in addition to the usually modeled repulsive contact forces, all of which are defined

thereafter.

Normal force

The normal component of the pairwise force depends on the inter-particular distance &y and has
the profile shown in Figure 6.2. When the particles are interpenetrating (S < 0), they feel a
Hookean repulsive force Fy; = ky Sy, Where ky is the normal stiffness. When the particles are not
touching (8 > 0), we model a cohesive force by keeping the Hookean force up to a separation

Figure 6.2 - Normal force between two particles as a function of inter-particular distance &y There is
interpenetration when 8y < 0. The force has a cohesive part when &8y > 0.
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&, until which the interaction between the particles is elastic (hence the subscript letter “e” in &',).
The fracture process is modeled by a linear weakening zone between the elastic separation &, and
a fracture separation O (see Figures 6.1 and 6.2). When 8y > &}, the particles are not interacting,
and the total force is zero. The full expression of the normal force is

kNiNé\ if &y < 8.,
Fy={—-N% (8. —8) ifS8.<8y<5, (6:3)
8f - 86
0 otherwise.

The value of the normal force Fy is independent of the history of &Y. Therefore, the fracture
process is fully reversible, and particles can create or recreate new “bonds” with neighboring
particles. We make the simplifying assumption that newly created bonds have the same properties
(stiffness, strength) as previously existing bonds, which is not always the case in reality, as some

phenomena can weaken the reattachment (e.g. surface roughness or oxidation).

Tangential force

The tangential component of the force depends on the sliding distance &' and has the profile shown
in Figure 6.3. When the particles are interpenetrating, the force has the expression Fy = kS'p
up to a maximum value of F, . When the particles are not touching but still in their range of
interaction (0 < &y < &), the maximum reachable force F, 1 1s decreased from its original value
(at 8y = 0) toward zero at &y = &} The full expressions of the tangential force Fy and the

rescaled maximal tangential force F! .. are

Fr =min(kr S, Fy, 1), (6.4)
F;T:min<m,l>FmT. (6.5)
, 5, ,

The considered tangential force is not a frictional force, typically used in DEM. It is instead an
elastic force, originating from the attraction between the atoms constituting the discrete particles.
This explains how a non-zero tangential force can exist even if the particles are separated (8 > 0).

List of force parameters

In summary, there are 7 parameters, listed in Table 6.2.

Figure 6.3 - Tangential force between two particles as a function of sliding distance 8. When the particles
are in contact (& < 0), the tangential force is bounded by F,, -, whereas when they are not touching but
still in their range of interaction (0 < 8 < &Y), the force is bounded by F[;’T. The corrected bound force
FI;’T is equal to £, + when &y =0 and decreases linearly down to 0 when &y = &%

68



6.1 METHOD

Table 6.2 - List of force parameters

Name Symbol
Normal stiffness ky
Tangential stiffness o
Elastic separation S,
Fracture separation S
Maximum tangential force £,
Normal damping N
Tangential damping Cr

Simulations’ time step

In equations (6.1), we stated the integration scheme used with our model, which depends on a time
step At. In order for the simulation to be numerically stable, we define the critical time step for
our particular integration scheme (derived in Section 2.2.2)

At, =14 — (6.6)

which is the maximum time step at which a simulation comprised of two particles in contact in the
linear Hookean range (& < &,) remains stable. For a system with many particles, we typically
choose a time step being a fraction of the critical time step.

6.1.2  Matching macroscopic material properties

For each pair (z, 7) of particles, the parameters of the interaction forces can be tuned such that the
assembly of many particles exhibit the desired mechanical properties. The choice of the normal
and tangential stiffnesses ky and k- determines the macroscopic Young’s modulus £ and the
Poisson’s ratio v. The elastic domain extends up to the interparticular distance &y =&, so &,
controls the macroscopic tensile strength o, . In the same manner, the maximum tangential
force F, - controls the macroscopic shear strength o 1! The interaction distance & defines the
surface energy y, which is linked to the fracture energy (shaded area in Figure 6.2 under the force-
displacement curve). Finally, the damping factors ¢y and ¢ influence the restitution coefficient 7,
which is the ratio between final and initial relative velocities when two particles collide. The list of

material properties needed to fully determine the force parameters is given in Table 6.3.

Table 6.3 - List of target material properties

Name Symbol
Young’s modulus E
Poisson’s ratio %
Tensile strength OmN
Shear strength O
Surface energy y
Restitution coefficient n
Density o

"This is a simplified view. In fact, in an assembly of many particles, a tensile stress will displace the particles both in
the normal and in the tangential directions relative to each other, so that both the tensile and the shear strength will
contribute to the actual strength of the assembly. The same is true for a shear motion.
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Choosing the right force properties to obtain some desired macroscopic material properties
is a knowingly challenging task for this kind of DEM model. As a first guess in the process of
calibrating the parameters, they can be expressed in terms of material properties.

Derivation of force parameters

Let us consider two particles of indexes 2 and ;. They interact via normal forces Fy and tangential
forces Fp. These forces can be converted into stresses by dividing them by effective contact cross
sections Ay, and Ay in the normal and tangential direction, respectively:

K
O-N:lq_Ny (67)
N
FT
= —. 6.8
or A, (6.8)

The value of the cross sections will be derived later.

The equilibrium distance between the particles is equal to 7; + 7;. From it, we can convert the

normal separation &Y into a normal deformation:

8N
en= —N (6.9)
r; + 7j
In the elastic range, we must have
on =FEey (6.10)

where E is the target Young’s modulus of the material to model. From this relation, we find the

expression for the normal stiffness in the elastic range:

F
by = N (6.11)
8N
Ano
— NN (6.12)
(ri+7))en
= (6.13)
(ri+75)
We give a similar expression to the tangential stiffness:
AE
k= . (6.14)
(ri+7;)
In our model, the elastic limit is found from the maximum tensile stress of the material:
O-m,N
£, = —z (6.15)
from which we deduce the elastic limit in terms of normal separation:
(7 +7))0mN
— J/m
Se= =L (6.16)
The maximum tangential force is obtained directly from the maximum tangential stress:
Loy =Ar0n - (6.17)
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We can compute the energy needed to break the bond between the two particles, which is equal to

the area under the force-separation curve (Figure 6.2):

1
U, = zskaSe (6.18)
A S
_ @ (6.19)

This energy can be linked to the surface energy of the material (two surfaces of area Ay are created
during fracture):

y=—. (6.20)

S = 4—}/ . (6.21)

O-m,N

To compute the expressions for the damping coeflicients, we can express the dynamical equation
of the system as in (2.17). One solution to this equation is the motion

Uy —-Np |
x=—2¢ 7’ sin(wt), (6.22)
w
. Cn U N, _ N
i =—— 20 "’ sin(ewt) +vpe e cos(wt), (6.23)
2com g

where w is the natural frequency of the system in the linear elastic range:

SN T PR A (6.24)

“= \ Mg 4leNrnef'f o

~ \ k—N (6.25)
Mg

when ¢y is small. This particular solution is the motion of an impact between two particles
happening at a time ¢ = 0 with a relative velocity of v, (neglecting the cohesive range, when the
particles are not touching). The duration of the impact is approximately #; = 7t/ when ¢y is
small (half of a period of oscillation). The final relative velocity after impact is therefore

Vf = x(tf) (6.26)
TN

= ‘er_zwmeﬁ . (6.27)

The restitution coeflicient is defined as the ratio between the initial and the final velocity:

=2 6.28
n=_ (6.28)
i
_ N
=e O (6.29)
7TC
~1— N (6.30)
2com g
7TC
Nl —— N (6.31)

2 V kNmeff ’
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from which we obtain the expression for the damping coeflicient

2(1—
N R =) V kngs (6.32)

T

which can also be expressed as a fraction of the critical damping:

N~ C.- (6.33)

|

We give a similar expression to the tangential damping coeflicient:

2(1—
or & ( n)vameff' (6.34)

7T

Effect of particle size

Almost all the force parameters depend on the size of the particles, except for the fracture separation
distance & (6.21). In particular, we can focus on &, (6.16) and &}, which are represented in
Figure 6.2. Since &, increases with the size of the particles while &; remains fixed, there is a point
at which &, becomes larger than 8, which happens when 7, +7; > d,, where

4y E
d,=1 (6.35)
Um,N

is a critical diameter. For large particles (bigger than d_), we are in the situation shown in Figure 6.4,
with &, > &}. The plot shows that the elastic limit (8 = &) is not reached, and the fracture
energy (shaded area) is smaller than expected, meaning that neither the target tensile strength o,
nor the target surface energy y will be matched.

Figure 6.4 — Normal force when 7; + ;> d.

To mitigate this undesirable behavior, we rescale the fracture separation distance &} to

, Ti + 7j -
8f = 8e < 7 > ) (6.36)

C

where s is a scaling factor, resulting in the force plotted in Figure 6.5.

Iy

, 5, 01870n

Figure 6.5 - Normal force when 7; + 7, > d_ with corrected S
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By tuning the scaling factor s, we can choose to either match the correct elastic limit (s =0,
implying 8; = &), match the target surface energy (s = 0.5), or have another behavior. The
tensile strength resulting on the choice of s is plotted in Figure 6.6.

Figure 6.6 - Matched tensile strength with corrected &;

Effective cross sections

The magnitude and the balance between the normal stiffness (6.13) and the tangential stiffness
(6.14) are controlled by the effective cross sections Ay and A, and they directly influence the
obtained elastic properties (i.e. Young’s modulus and Poisson’s ratio). The effective cross sections
must be chosen accordingly.

Following the two-dimensional analysis of Griffiths & Mustoe (2001), we must express the
strain energy stored when deforming a body made of many particles. We start by considering
only two particles of the body, both having a radius 7. The center of one particle is taken as the
origin of an arbitrary frame, and the other particle has the spherical coordinates (27,8, @) in this
frame (6 is the polar angle, ¢ is the azimuthal angle). The deformation of the whole body ¢, and
¢, in the x and z directions (z is the zenith direction) directly influence the separation vector &
between the two particles, which can be expressed in the Cartesian frame:

8, =2re, cospcosl (6.37)
8, =2re,sind, (6.38)
and in the spherical frame:
8, =38 cospcost+8,sinb (6.39)
Sg=—8,cosppcost + 8, cost (6.40)
8y =—0,sin0. (6.41)
Note that &, = &Y. In the linear elastic range, the strain energy of the single pair of particles is
U= %kNaﬁ + %kT(ag +82). (6.42)

The total strain energy stored by all possible pairs with neighbors surrounding a single particle is
obtained by integrating the strain energy of a single pair:

1 27 g
UZEJ_ f_ ﬂUPaircosedeng, (6.43)
$=0J0=—3

where the leading 1/2 factor distributes the energy between the single considered particle and its
neighborhood. This energy assumes that one particle can be fully surrounded by 47t neighbors,
while the number of neighbors in the most densely packed arrangement of particles (e.g. HCP) is
12. We can rescale the strain energy to take this into account:

12
U=-—-U. (6.44)
471
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In an HCP lattice, the particle is surrounded by 12 neighbors positioned at the edges of a cube of
side length 24/27 (or at the centers of the faces of a rhombic dodecahedron). Each particle can be
assigned a piece of the deformable body having a volume of

V =4v2r3, (6.45)

which is a bit larger than the volume of the spherical particle itself, 47172 /3 (the ratio between
the two volumes is around 74%). From the volumetric strain energy, we can make the elastic
constants of the granular body appear:

igU/
V de,

Plugging all the expressions of & into this last equation and identifying the leading factors of ¢,

=Cye, +Cpe, (6.46)

and ¢, we obtain the expression of the elastic constants:

V2

Cy= 5_r(3kN +2k1), (6.47)
2
Cp= SJ_;(kN —kr). (6-48)

Inverting these, we get the expressions for the stiffness coefhicients (expressed directly in terms of
the Young’s modulus and the Poisson’s ratio):

_ V2Er
N7 o1—2v)’
b V2Er(1—4v)
T7o0+v)1—2v)

Expressing these in terms of the effective cross sections ((6.13) and (6.14)), we finally obtain the

(6.49)

(6.50)

expressions for the latter:

A= V2r? (6.51)

1—2v’
Ap= \/zrzi . (6.52)
1—2v)Q1+v)
From these expressions, we note that the target Poisson’s ratio can only take values up to v =1/4,
and values between 1/4 and 1/2 cannot be modeled. Having such a restriction on the allowed
Poisson’s ratios is a known issue when working with only pair forces between particles (Celigueta
et al. 2017). This problem also notably arises in the field of peridynamics (Trageser & Seleson
2020). To mitigate this drawback, more complex forces involving more than two particles should
be considered, which is out of the scope of this work.

Henceforth, all force parameters have been identified. For now, the effective cross sections are
defined for particles all having the same radius of 7.

Effective particle radius

In the expressions of the effective cross sections, we can replace the particle radius r by an effective
radius 7.4 to take into consideration the two different radii of the pair of particles for which the
force is being computed. There are many ways to define the effective radius. Since the projected

contact area between the particles is necessarily bounded by the size of the smallest one, we choose
Vo = min(7;, rj) , (6.53)

which results in the macroscopic elastic and strength properties to be controlled by the presence

of large particles in the system (as demonstrated in Section 6.2.3).
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Expression of force parameters

In summary, the force parameters take the following expressions:

AGE
by = ——, (6.54)
Tl‘ + 7']‘
A+E
by = —1— | (6.55)
7'i + 7']‘
(ri + r')a-mN
S =2 1 6.56
e I3 (6.56)
4
_}/ lf 71‘ + 7j < dC’
o
S = m,Nri T\ (6.57)
S e< > otherwise,
d,
For=Aro,1, (6.58)
2(1—
oN= ( - 7 R (6.59)
2(1—
o= ( ~ ) g . (6.60)

Ay and A are effective contact cross section defined by (6.51) and (6.52) and by an effective particle
radius (6.53). In (6.59) and (6.60), 74 is the effective mass of the oscillatory system comprised of
the two interacting particles:
Mmg—=——". (6.61)
ml' + m]
In the expression of the fracture distance &} (6.57), d. is a critical diameter, defined by (6.35), and
s 2 0 is a scaling parameter.

Choice of particle size

Note that nearly all parameters depend on the size of the particles. In particular, 8; takes two
different expressions depending on the particles’ sizes. When the particles are smaller than the
critical diameter (7; +7; < d), it is possible to capture both the shear strength o, \ and the
surface energy y of the target material. In this lower range of particles’ sizes, & has a constant
value. However, the particles cannot be given an arbitrary small size. Since & represents the size
of the neighborhood of a particle (see Figure 6.1), it indicates from how far a particle can feel a
force from another particle. In the case where the diameter of a particle becomes smaller than the
neighborhood size 8, the particle will be able to “communicate” with others located further than
its closest neighbors, increasing a lot the computational cost of the simulation. Therefore, it is
reasonable to keep the particles’ sizes over a minimum value of

d. = Ay (6.62)

Um,N
(which is the maximum value of ;). Note that for physically realistic target properties, d,;  can
be comparable to the size of atoms, for which the interaction distance is roughly the same as their
size. Having the lower limit on the size of the discrete particles bounded by the size of an atom is
consistent with our coarse-graining approach. On the other side of the spectrum of particle sizes,

when 7; +7; > d., the shear strength o \ and the surface energy y of the target material cannot
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be both matched at the same time. Depending on the value of the scaling parameter s, the tensile

strength will be matched to a lower value of

, 7'1' + 7’]' =S
Om,N = Om,N d . (663)

C

When s = 0, the matched tensile strength remains constant, but the matched surface energy is
larger than it should be. With s =1/2, the surface energy stays constant, but instead, the matched
tensile strength decreases with the size of the particles. The decrease of the strength between
the particles can be related to the same decrease of the strength of a material when tested with
samples of increasing sizes, where the larger samples have a higher chance of containing defects
and thus have a lower strength. If one wishes to use this model in both the lower sizes range

doin S 75+ 7; < d and with the larger sizes, the target tensile strength o, \; can be taken as the
ideal tensile strength of the material to model, which is the strength measured at a small scale when
no defects are present in the tested sample, and the scaling parameter s can be chosen to represent

the desired behavior.

It is worth noting that d_ (6.35) shares the same expression (ignoring a geometrical multipli-
cation factor) with the critical length scale of the target material, established by Aghababaei et al.
(2016), under which the material has a ductile behavior and exhibits a higher strength (Luo ez al.
2016).

6.2 VALIDATION

The choice of force parameters given by equations (6.54) to (6.60) does not ensure that the resulting
macroscopic properties will be exactly equaled since they strongly depend on the coordination
number, which in turn is dependent on the volume fraction and the size of the neighborhood
of the particles. To eliminate these unknowns, we first perform patch tests on systems made of
particles arranged in a hexagonal close-packed (HCP) lattice, so that the coordination number is

fixed.

We are interested in adhesive wear, which can be regarded as a fracture process at small scale.
Ordered systems may have preferential planes for fracture propagation, and we ultimately want
to model isotropic materials. Consequently, we also build amorphous systems of particles and
perform the same kind of patch tests, this time without full control over the coordination number.

The force parameters are chosen to match the material properties listed in Table 6.4. No units
are specified, so any coherent system of units can be considered. The value of the target v is varied

for the lattice tests. From the material properties, we compute the minimum allowed particle size

d_.. = 30 (6.62) and the maximum particle size d_, =150 (6.35) over which the tensile strength
and the surface energy cannot be both equaled. For particle sizes greater than d_, scaling factors of

s = 0 (constant strength) and s = 1/2 (constant surface energy) are investigated.

The elastic properties are determined by applying a unidirectional compressive load of 0.01 on
a confined sample (see Figure 6.7a), up to a deformation of the order of ¢ ~ 0.01, and measuring the

Table 6.4 - List of target material properties for patch tests

E v o.n Our ¥ 17 P
1 0.15 0.2 0.1 1.5 095 1
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________ 0.10 1
0.2 1
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0.0 T T T 0.00 T T T
0 S 10 15 20 0 S 10 15
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a) Crystalline (HCP) system for patch b) Tensile strength test ¢) Shear strength test
Y Y p g g

test

Figure 6.7 - Example of patch test’s system and outputs. (a) White particles are part of rigid walls. The
bottom wall is fixed and a stress or displacement is imposed on the top wall, depending on the type of
test. Boundaries are periodic in the x and z directions. To measure E and v, a small compressive stress
0,y 1 applied, then o, and €, are measured. (b)-(c) A displacement is imposed on the top wall in the
appropriate direction to deform the system, and the stresses are monitored. The strengths are defined as the
peak measured stresses (dashed lines).

stiffness coefficients Cj; and C),, from which E and v are deduced. The loading is performed with
a time step of Atz = 0.1 At_ and a global damping of ¢ = 0.2 c_, where At_ and c_ are respectively
the critical time step (6.6) and the critical damping

¢, =/ 2kym (6.64)

for a system of two particles (see Section 2.2.3), evaluated for the smallest particle present in the

system (leading to the most restrictive time step).

The tensile and shear strengths are determined by deforming the system in the appropriate
direction using rigid walls moving at a constant rate of ¢ = 107> /A¢ (with periodic boundary
conditions) and measuring the peak stress before failure (see Figures 6.7b and 6.7¢). The stresses
are obtained by computing the average virial stress (Morante et al. 2006) inside the deformable
part of the system. The simulations are performed with a time step of Atz =0.1A¢_ and a global
damping of ¢ = 0.01c,.

6.2.1  Crystalline lattice

Different particle sizes (diameters) are tested, ranging from dy; = 0.6d,_ to d, = 76.8d_. The
target Poisson’s ratio is also varied from v = 0 to v =1/4 (which is the maximum Poisson’s ratio
acceptable by our model). The size of each tested sample is equal to L x L x W, with L =254,
and W =34,

The measured Young’s moduli and Poisson’s ratios match the target properties, with an
acceptable deviation (low enough to allow for an easy later adjustment of the force parameters).
The error is smallest when v is near 0 and reaches a maximum of 12% when v =1/4. Figures 6.8
and 6.9 depict the actual deviations. Since the organization of particles is always an HCP lattice
regardless of the size of the particles d,), the latter has no influence on the measured elastic properties

measured at small strain.
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Figure 6.10 - Effect of d, s and target v on the measured tensile strength o . Colored curves show

simulations and black curves are target values. There is one set of curves for s = 0 (continuous lines) and

one set for s = 0.5 (dashed lines). For both values of s, the measured ¢\ matches the target one when

v = 0. For higher values of v,the strengths are larger than the target ones, but their dependence on d,

remains the same.
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Figure 6.1 - Effect of d), s and target v on the measured shear strength o,_ ;. The behavior of the measured
shear strength is mostly the same as the tensile one, except for d; < d_ where the measured strengths are
lower than the target ones.

The measured tensile and shear strengths are shown in Figures 6.10 and 6.11. They depend on
v, djy, and the scaling parameter s. For a scaling of s = 0, the target tensile and shear strengths
(shown by the black dash-dotted curves) are constant with respect to d,,, whereas for s = 0.5,
the target strengths (black dotted curves) decrease with respect to d,, as described by (6.63). The
measured strengths match the target ones when the target Poisson’s ratio is equal to 0. Otherwise,
the strengths are higher than the target ones, while following the same trend with respect to the
value of d,. For the shear strength, the measured values are instead lower than the target ones
when d; < d_. We did not try to analytically predict the gap between the target and measured
strengths. To accurately capture the measured strengths, the values of the target strengths must be
adjusted according to the target v and to the plots (Figures 6.10 and 6.11).

6.2.2  Amorphous sample

Particles’ size distribution

In order to obtain an amorphous sample, the particles must have various sizes. Otherwise, particles
of identical sizes would arrange into a crystalline lattice or crystalline grains with weaker grain
boundaries. We distribute the particles’ sizes around a diameter of d,,, within the bounds d (the
smallest diameter) and dj (the largest). The particles’ diameters are distributed along a log-normal
distribution of mode d,, (most frequent value) and standard deviation 0.2 (d,—d,). The distribution
is truncated between d and dj. When d; is at the midpoint between the bounding diameters,
the log-normal distribution is similar to a Gaussian distribution. In other cases, this particular
distribution allows us to choose a larger d; to add a small amount of larger particles inside the
sample, while keeping the smallest diameter d and the average diameter d,, the same. The particles
are inserted into the system at random positions until they fill it up to a given volume fraction of
0.75.
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Figure 6.12 - Effect of d and s on the relaxed volume fraction. The volume fraction of HCP lattice systems
is shown for comparison. The relaxed volume fraction is independent of d, when the target shear strength
is kept constant (s = 0). When the target shear strength decreases with d, (s = 0.5), the relaxed volume
fraction also decreases.

Relaxation

The system of randomly placed particles is relaxed in two phases by simulating it dynamically with
a global velocity damping until an equilibrium state is reached. In the first phase, only normal
repulsive forces are considered in addition to the global damping forces, allowing the particles to
rearrange into a state with no completely overlapped particles. This phase is run for 3000 time steps
of At =0.1At, with a damping of ¢ = ¢, inside a system with fixed periodic boundaries. For the
second phase, the adhesive normal forces are added, and the periodic boundaries are allowed to
move in order to adapt to the internal stresses of the system. No tangential forces are considered to
avoid the formation of stable holes in the system. This phase is run with a damping of ¢ = 0.02 ¢,
until all the internal stresses become lower than 107#E, where E is the target Young’s modulus.
Typically, around 20000 time steps are required for this phase. At the end, the mass of all the
particles is adjusted such that the density of the whole system matches the target one. The final
volume fraction is likely to change during the relaxation process, along with the movement of the

system boundaries.

Patch tests results

We test samples of size L x L x W, with L =100d,,, W =3d,, and d,, ranging from d, = 0.6d,
to dy = 76.8d.. The bounds of the particles’ size distribution are chosen as d, = 0.75d,, and
d; =1.25d,,. For each relaxed system, the final volume fraction is measured (see Figure 6.12). The
scaling parameter s starts to play a role whenever d, > d,. When s = 0, the ratio between the
interaction distance & and the particles’ diameter d,, remains constant, so the particles can get
organized in the same fashion regardless of d,,. However, when s = 0.5, this same ratio gets smaller
when the particles are larger. Less interaction are allowed between the particles, resulting in a

system being less densely packed.

The decreased volume fraction has a direct impact on the coordination number of each particle,
and thus on the macroscopic elastic properties of the system, as shown by the drastic effect of d,
on the measured Young’s modulus when s = 0.5 (Figure 6.13). As d,, increases, the distance of
interaction becomes comparatively smaller, resulting in fewer links between particles and a more

fragile network. When d,, > 20d_, the system no longer resists the compression stress of 0.01
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Measured E
S
()Y
1

Figure 6.13 - Effect of d, and s on the measured E. The measured Young’s modulus follows the same trend
as the volume fraction (Figure 6.12). For d, > 20d_, the system fails under the compression used to measure
the elastic properties.

imposed to measure the elasticity parameters, which is why no values are reported beyond this
value of d,. The measured Poisson’s ratio stays constant at v & 0.20 regardless of s (see Figure 6.14),
which is higher than the target value (v = 0.15).

Finally, the measured strengths follow the correct trends with respect to d, and s (see Fig-
ures 6.15 and 6.16). However, the tensile strengths are reduced to 50% of the target one, and the
shear strengths are at 56%. This is likely due to the particles not being in direct contact with
their neighbors (& = 0), therefore not benefiting from the whole adhesive range 0 < 8y < &,
resulting in a decreased strength in both normal and tangential directions. This phenomenon is

not present in the lattice systems.

6.2.3 Discretization

We saw that when the scaling factor s is not equal to 0, the measured mechanical properties of
simulated systems are significantly affected by d,,. If one desires to simulate multiple samples
having the same size but different discretizations by varying d,, the obtained samples will have
different elastic properties because of d,. To mitigate this effect, the distribution of the particles’
sizes can be adapted by having the largest bounding diameter dj constant throughout all samples
(i.e. dy =1.25 max(d,)). The larger particles act like defects in the samples, keeping the strengths as
low as when all particles are large. The effect of keeping a constant dj for multiple discretizations
is presented in detail below. This method is shown to work well to harmonize the strengths across
multiple samples of the same size when s =0.5.

We test samples of size L X L x W, with L ranging from L = 60d,_ to L = 7680d,. The
discretization of each system is determined by d,, chosen such that the coarsest systems have
dy = L/25, and the finest have d; = L/100, while keeping d,, between 0.6d, and 76.8d_. The
smallest bound of the particles’ size distribution is chosen as d, = 0.75 d,), and the largest bound is
set to d; = 0.05 L, such that it remains fixed with respect to the system size and is not affected by
d,y. The thickness of the systems is fixed at W = 3d,. The measured tensile strengths are plotted
in Figure 6.17. The simulations show that, given one system size L, having the same largest size

particle d| for all discretizations results in the systems exhibiting roughly the same tensile strengths.
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Figure 6.17 - Effect of dj, and s on the measured tensile strength o, 1 for systems of various sizes and
discretizations. Each color corresponds to a fixed system size. The semi-transparent curves correspond to a
varying d; = 1.25 d,;, whereas the fully-visible ones have a fixed d, = 0.05 L.
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6.2.4 Calibration

As already known (Cheng et al. 2020; Hentz et al. 2004) and witnessed once more here, obtaining
the correct continuum behavior with DEM is a challenging task. Nevertheless, we have shown that
our estimates for the force parameters (equations (6.54) to (6.60)) result in measured elastic and
fracture properties being approximately at the target value, especially for a scaling factor of s = 0.
The force parameters can be further adjusted if necessary, after running the relevant patch tests.

6.3 APPLICATION: NANOSCALE ADHESIVE WEAR

MD simulations of adhesive wear have been performed (Aghababaei et al. 2016) by modeling two
surfaces being in contact at a single junction of a given size and moving in a shear motion relative
to each other. In accordance with theoretical predictions (Rabinowicz 1958), it was shown that
junctions smaller than a critical size d* are subjected to plastic smoothening, while junctions larger
than d* can detach and form a wear particle. The critical size d* at first order only depends on

material parameters, and defines the boundary between ductile and fragile behaviors in a material.

We use our coarse-grained model to perform the same kind of nanoscale adhesive wear simula-
tion and see if we can reproduce both the ductile and the fragile behaviors for a given material. We
choose to model amorphous silica (SiO,), which has the material properties listed in Table 6.5.

The coarse-grained model was implemented in LAMMPS (Plimpton 1995).

Table 6.5 - Amorphous silica properties. The ideal (atomic scale) tensile strength o,  1s from Luo ez 4l.
(2016) and the shear strength is estimated from the tensile one. The restitution coefficient 7 is arbitrarily
chosen.

E v am,N am,T Y n /O
73GPa 0.17 16GPa 9GPa 1SN/m 0.9 2200kg/m?

From the material parameters, we compute the critical length scale from the expression of
Aghababaei et al. (2016) for the geometrical configuration we will use:
32yG
d’ =~ 3/ =18nm. (6.65)
Um,T

We simulate systems of 60 x 40 X 40 nm? made of two solids linked by a cylindrical junction
of diameter D =10 nm or 20 nm and of height / = D /2 (see Figures 6.18a and 6.18c). The two
values of D are chosen to have one smaller than d* and the other one larger.

From the material properties of SiO,, we compute the minimum allowed DEM particle size

dmin
DEM particles of size d, =1.5nm, 3 nm and 6 nm. For comparison, the bond lengths between
atoms in silica are (Vashishta et al. 1990) SiO,: 0.16 nm, SiO,: 0.26 nm and SiO,: 0.31 nm. DEM
particles are therefore at least 10 times larger than atoms. For each average particle size d,,, we take

the bounds of the particles’ sizes distribution as d; = 0.75 d,, and d} fixed to d; = 7.5 nm, so that

= 0.37nm (6.62) and the critical particle size d, = 1.7 nm (6.35). From those, we chose to use

every system has the same mechanical properties regardless of d,. We chose the scaling parameter
s = 0.5 for the dependence of strength on d,,.

The amorphous systems are created and relaxed using the same procedure as for the validation
tests, resulting in boxes fully filled with particles. The systems are then carved by removing
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(a) D =10 nm, initial (b) D =10nm, 36 nm of sliding

(¢) D = 20nm, initial (d) D =20nm, 32 nm of sliding

Figure 6.18 - Sheared junctions with d, = 1.5 nm. The colors of the particles indicate to which body they
initially belong to. The bottom surface is fixed and the top one is dragged from left to right. The system
length is 60 nm with periodic boundary conditions. (a)-(b) The smaller junction deforms plastically and gets
squished. (c)-(d) The larger junction detaches into a rolling wear particle. The two mechanisms observed
with MD simulations are remarkably recovered with the coarse-graining method.

particles to obtain the desired shapes (two surfaces with one cylindrical junction). Two rigid
walls of width equal to 1.5 d,, are used to impose a shear motion on the systems, with the bottom
one remaining fixed and to top one moving with a constant shear velocity of 10 m/s, which is
sufficiently small compared to the pressure wave velocity in the medium ¢ = m =5760m/s.
A constant normal load of 100 MPa is applied on the top wall to prevent it from drifting apart,
but similar results are obtained with smaller normal loads. The time step is At = 0.1A¢,.

The results of the simulations are shown in Figure 6.18 for the finest discretization (d, =
1.5 nm), Figure 6.19 for the medium discretization (d, = 3nm), and Figure 6.20 for the coarsest
(d, = 6nm). All visualizations were rendered using OVITO (Stukowski 2009). For all levels
of discretization, the same behaviors emerge. The small junction (D = 10 nm) gets deformed
plastically and squished under the imposed shear, because it is smaller than the critical size d*
of the material. In turn, the large junction (D = 20 nm), which is larger than the critical d; is
detached (by fracture) from the surfaces and starts rolling. The coarse-grained DEM approach
is able to reproduce both the ductile and brittle behaviors of the simulated material. From the
simulations, we deduce that the critical size of the material is in the bounds 10nm < d* < 20 nm,

which is consistent with the theoretical estimate (6.65).

We can assume that the ductile behavior D < d* can only be observed if the DEM particles are
sufficiently smaller than d; which is the case with all our discretizations. Taking larger particles
would result in losing the ability to model the ductile behavior.

Our method is successfully able to reproduce results that are obtained using MD while having
to simulate fewer particles and with a larger time step. In addition, silica is a relatively complex
and costly material to simulate in MD. For example, the potential of Vashishta ez al. (1990) can
be used, taking into account 3-body interactions to accurately simulate the bounds between SiO,
atoms. Table 6.6 compares the estimated computational cost of MD and coarse-grained DEM

simulations to perform a simulation equivalent in size and duration to the sheared junction of
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(a) D =10 nm, initial =10nm, after sliding
(¢) D =20nm, initial (d) D =20nm, after sliding

Figure 6.19 - Sheared junctions with d; = 3nm. The observed behaviors are the same as with the finer and
coarser discretizations of d, = 1.5 nm and d, = 6 nm (Figures 6.18 and 6.20).

(a) D =10 nm, initial (b) D =10nm, 80 nm of sliding
(c) D = 20nm, initial d) D =20nm, 32 nm of sliding

Figure 6.20 — Sheared junctions with d, = 6nm. The observed behaviors are the same as with the finer
discretizations of d, = 1.5 nm and d; = 3nm (Figures 6.18 and 6.19).
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D =20nm. The computational time for MD simulations is estimated by scaling the time needed
to simulate a smaller system on a shorter period of time (from Section 8.2.1). The coarse-grained
DEM simulations show a definite advantage. However, it should be clear to the reader that the
coarse-grained approach results in losing atomistic details (such as three-body interactions and the
presence of two types of atoms), and that we only aimed to capture rough material properties, in
particular for the ductile to brittle transition.

Table 6.6 - Estimated time for a simulation of 100000 nm? 10 ns, on 28 2.6 GHz CPUs. N is the number of
atoms/ particles. The simulations are equivalent in size and duration to the sheared junction of D =20 nm.

d, N At Time

MD =~0.2nm 7800000 1fs 530 days
DEM 1.5nm 6000 20fs 4 min
DEM 3nm 2600 40fs 2 min
DEM 6nm 600 80fs 25s

In more general terms, the time and length scales reachable by our model are controlled by
the critical time step (6.6) and the critical particle diameter (6.35), which, in turn, depend on the
material parameters. For example, going back to the case of silica, we could choose a particle
diameter near d, = 1.7nm and simulate three-dimensional systems of 200 nm wide (around
120 x 120 x 120 atoms) for 1ps (50 million time steps), which is sufficient to observe interesting
adhesive wear behaviors over time.

6.4 EXAMPLES OF APPLICATION

The newly developed coarse-grained DEM model was successfully used to model a macroscopic
process (Ghesquiere et al. 2022). A scooping tool was optimized (Molinari & Pham-Ba 2022)
and tested using a robotic arm (Mikelis & Molinari (2021), see Figure 6.21) to scoop into kinetic
sand, a material mimicking the properties of wet sand, but that never dries out. The experiment
was reproduced using DEM, fitting the measured properties of kinetic sand, which resulted in a
stunningly similar qualitative behavior (see Figure 6.22).

The Section 9.3.3 briefly presents another application, at the nanoscale, directly related to the
study of Si and SiO,. The simulations can reach a size of 220 x 220 x 75 nm?3, with around a
million particles, while modeling realistic materials, which would be unreasonable to try using
MD simulations.
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() Initial position (b) Scooping (c) End

Figure 6.21 - Scooping experiments on kinetic sand. The material behaves like wet sand or ice cream. The
imposed motion is vertical at the beginning, then purely horizontal during scooping.

(a) Initial position (b) Scooping (c) End

Figure 6.22 - DEM scooping simulations. The experiment shown in Figure 6.22 is remarkably well
represented.

CONCLUDING REMARKS

We formulated a pair force to be used with DEM, featuring a reversible cohesive part mimicking
the simplest pair potentials used in MD. We derived expressions for the parameters of the pair force
to match the elastic and fracture properties of a chosen isotropic and homogeneous material and
showed that the calibration process can be greatly helped by using these expressions. Restricting
our model to rely only on pair forces limits the achievable Poisson’s ratio to values under 1/4.
Solids can be modeled with an organized (crystalline) or amorphous arrangement of particles.
Finally, we showed that our model can be used to perform coarse-grained simulations of adhesive
wear at the scale of asperities, with particles having a diameter 10 times larger than the atoms they
replace, and with a computational cost reduced by at least 5 orders of magnitude. This method can
be used to perform simulations at a scale inaccessible to MD, for example involving the evolution
of rough surfaces and third-body elements at a tribological interface.
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CHAPTER

FRICTION AND WEAR FROM NANOSCALE UP

WE are now equipped with a method able to reproduce the microscopic behavior of brittle
or ductile material, and capable of reaching scales orders of magnitude larger than MD. The
method is therefore suited to help us find a link between the microscopic and macroscopic behaviors
of a material. In Section 7.1, DEM simulations are used as a basis for the establishment of a model
linking the nanoscale shear strength of a material to a macroscopic strength. In Sections 7.2 and 7.3,
rubbed rough surfaces are simulated, and the friction and wear behaviors are examined. Section 7.3
focuses on an identified transition of frictional regime, dependent on the type of third-body. The
newly developed DEM model being still quite young, the informations shown in this chapter are
still preliminary results.

71 LINKING LOCAL AND MACROSCOPIC STRENGTHS

The most interesting material property for us in tribology is the shear strength, which plays a
key role in adhesive wear when viewed from the atomic scale. At the smallest scale, when no
defects are present in a material (typically at a size smaller than the critical size d* of the material),
the measured shear strength of a sample (measured experimentally or numerically) is equal to its
ideal shear strength o 1. In contrast, when two surfaces are put into contact, the resultant shear
strength will be a fraction of the ideal shear strengths of the materials constituting the surfaces.
We show in this section how the resultant shear strength can be estimated from the ideal strength,
the normal load, and some geometrical parameters.

7.1 Simulations

As we have already established, two surfaces put into contact will meet only at a fraction of their
total apparent area of contact. Small junctions are created between the surfaces, where asperities
are touching. The imposed normal and shear stresses can only be carried by those junctions.

A single one of these junctions can be modeled as shown by Figure 7.1. The choice of the
parameters of the pair-forces defines the intrinsic shear strength of the material. A shearing motion
is applied on the system, with an imposed normal load, and the resultant tangential load is measured.
The size of the junction relative to the size of the system reflects the fraction of real contact area

that would appear between two rough surfaces in contact.
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Figure 7.1 - DEM model of a junction between two sliding surfaces. Different materials can be attributed
to each set of colored particles. White particles are part of rigid walls. The bottom wall is fixed. A normal
load and a tangential displacement are applied on the top wall, and the tangential resistance is measured.

We model systems of size 37.5 x 37.5 X 2.4nm? with an initial junction having a size ranging
from D =5 nm to the full length of the system (D = L =37.5nm). The normal imposed load
ranges from py =0 to pyy = 6GPa. The material properties of SiO, are still used, with particles
of size d;y = 1.5 nm arranged in a crystalline HCP lattice. The top wall of the system is displaced
in the y direction with a velocity v =10m/s. The simulations are performed with a time step
of At = 0.1At, and no global damping (internal damping between the particles, due to the
restitution coeflicient, are still present). As with the patch tests, the peak virial shear stress p is

measured for each case.

The results are shown in Figure 7.2. The general tendency is to have a larger shear resistance
pr when the junction is wider. At D = L, the resistance is equal to the shear strength of the
material. Junctions smaller than L usually detach into a rolling particle, and the maximum measured
resistance seems to be proportional to the initial size of a junction. Meanwhile, junctions with
the smallest initial sizes (D = 5nm and 10 nm) deviate from this general trend by sometimes
exhibiting higher resistances. This is caused by the junctions being smaller than the critical size d*
of the material (order of 10 nm) and not being detached into a rolling particle, but rather being
flattened into a wider junction, therefore increasing their size and their ability to resist shear. The
same crushing phenomenon happens to larger junctions when the normal load py is greater, and
is responsible for all the points lying above the dashed line in Figure 7.2, representing pp = py.
An explanation can be found by analytically modeling the system, as we do in the next section.

Only the largest measured shear stress is reported here. During sliding, the rolling particles
originating from the junctions are less resistant to tangential motion. For simplification, we report
in the next section only the modeling of the initial shear resistance. The resistance met during the
rolling regime can be estimated following the same principles.

7.1.2  Model

The simulations show that there is a strong link between the system’s shear resistance and the
actual size of the junction between the surfaces (which can be different from its initial size). As we

established earlier, the junction must carry all the normal and tangential loads between the two
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Figure 7.2 - Shear resistance of DEM systems with one junction. The size of the system is L = 37.5nm in
the direction of sliding. The initial junction size is indicated in the legend. Overall, the larger junctions give
a higher resistance. The resistance is maximal when D = L and is equal to the shear strength of the material.
Junctions with a small initial size get wider under the normal load py, resulting in a higher resistance. All
the points seem to lie above the p = py line.

sliding surfaces.

The external normal pressure py acts on a surface of size
Ay=LxB, (7.1)

where L and B are respectively the length and the width of the system in the x and z directions.
We can refer to A, as the apparent contact area. The imposed load is therefore equal to

=4y pn- (7-2)
The imposed load is transmitted through the junction, having a surface area

A=D xB, (7.3)
which is the real contact area. The normal pressure felt locally by the junction is then

F,
loc _ N
NE=y (7-4)

The junction can only resist (keep its shape) to a normal pressure lower than its compressive

crit

strength o , meaning that there exists a critical normal pressure pi"* above which the junction

m,c?
gets crushed, up to the point where its new contact area A gets large enough to accommodate for
the normal load Fy; and have a local pressure pll\?c not larger that the compressive strength o, . In
the general case where the compressive strength is dependent on the local normal pressure (we

will write it as o, ( pll\?c)), the critical pressure is defined as

PRt =0 (PR, (7.5)

and can be found by solving this equation (which could be non-linear, depending on the chosen
expression of o, ( pll\‘fc)). Knowing the critical local pressure, we can deduce the minimum contact
area the junction must have to resist being flattened, which is simply

F
Amin = Cljit :AO pcljt . (76)
PN PN
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The size D of the junction will grow under the normal load to have at least this contact area
(see (7.3)). Let us assume that the amount of tangential resistance the junction can withstand is
proportional to its area A and to its local shear strength o 1( pll\?c), which in the general case can
be dependent on the local normal pressure. The resistance can be expressed as a tangential force

1
Fr=A0,1(PN)> (7.7)
and since the junction area A has a minimum value A ; , the tangential force also has a minimum
value of |
T (PN°)
FT,min = . crit FN . (78)
12N

When viewed from the whole system perspective, this force translates into a tangential stress:

A A,
pr= A—OUm,T <ZPN> , (7:9)
with a minimum value of
PTimin = %Um,T(PIC\fit)a (7.10)
Px
where pll\?c has been replaced by its definition (7.4).

Equations (7.5), (7.9) and (7.10) summarise the model for estimating the macroscopic tangential
resistance py from the normal stress py, the contact area ratio A/A,, and local material properties,

the later being the shear strength o, 1 and the critical crushing pressure pyi*

To apply this new model to the simulated system of the previous section, we must define
the shear strength o, 1 and the critical crushing pressure pf\lri.t Looking at the simulation data in
Figure 7.2, the shear strength seems to have a value around o,  =7.5GPa, independent of the
local normal pressure. To find the critical normal pressure, we must first define the compressive
strength of the material, which can be approximated as being equal to the shear strength, thus
0 = 7-5GPa. Solving the trivial equation (7.5), we obtain the critical pressure pf\?t =7.5GPa.

Injecting these values in (7.9) and (7.10), we obtain the fitted model

A
pr= T x 7.5GPa, (7.11)
0

pT,min = pN . (7'12)

The model is plotted in Figure 7.3 using the same values for py and A/A as in the simulations.
Two main behaviors previously observed in the simulations are recovered with the model:

- The resistance is proportional to the initial size of the junction and is maximal when D =L
(7.9

- There is a minimum value for the resistance, which depends on the normal load py (7.10).
In the tested case, the limit follows the p = py; line.

We did not take into account the effect of the material’s critical size d*, responsible for pulling
up the resistances of junctions initially smaller than d*. In fact, our simple model also applies
to systems where multiple junctions are present. Only the contact area ratio A/A, needs to be
monitored. The downside is that using A/A,, does not give any information about the actual
size of each junction, which in turn cannot be compared to d¥ So, we chose to let the effect of
d* aside in this model. Besides, the model predicts resistances which are overall higher than the

ones measured in DEM simulations. We can attribute this to the central assumption made at the
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pr [GPa]

P [GPa]

Figure 7.3 - Predicted shear resistance of systems with one junction. Points are shown wherever the set of
parameters has been tested with a DEM simulation (see Figure 7.2). The model predicts the same trend as
the results of DEM simulations. In particular, it shows that the p; = py line indeed is the lower limit for
the resistance pr.

establishment of equation (7.7), neglecting the effects of geometry and the potential presence of

stress concentrations, which could both be responsible for lower resistance.

The established simple model, described by equations (7.9) and (7.10) can be used to predict
the tangential resistance of a sliding system when the normal load and the real contact area are know.
The local shear strength has to be given as an input to the model, ideally along with its dependence
on the normal pressure. For tribological systems, it makes sense to provide the dynamical shear
strength. The compressive strength must also be provided, but can be reasonably approximated by
the shear strength. While this model can only output rough estimates for the tangential resistance,
it is worth noting that it does not rely on any empirical parameter.

7.2 WEAR OF ROUGH SURFACES AT MULTIPLE SCALES

In this study, we leave the single-asperity scale to move up to the scale of surface roughness.
Two SiO, rough surfaces are considered. The average size of the discrete particles is varied from
dy = 1.5nm up to 96 nm. For each particle size d,, three system sizes are tested: L = 25d,,,
L =50d,, and L =100d,,. The initial roughness of the surfaces is set to Sa =0.01L, 0.02 L and
0.04 L. The systems are sheared with a sliding velocity ranging from v = 0.1m/s to 10 m/s. A
constant normal pressure is applied on the system, taking values from py = 0.1GPa to 1GPa.
The effect of each parameter on the friction force and the wear process (wear volume and surface
roughness) is investigated. To know whether a particle is “worn”, its list of current neighbors is
compared to the list of neighbors it has at the initial step. If more than half of the initial neighbors
are no longer in the current list, the particle is considered as worn. It is given a red color in the

post-processed images.

7.2.1  Qualitative results

The system’s behavior is dependent on its size and on the average size of particles d,,. Sizes can

be compared to the material’s critical length scale di which is around 18 nm for the simulated
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(a) dy=2nm (b) dy =4nm (c)dy=8nm

Figure 7.4 - Formation of wear particles from rough surfaces in DEM. Worn particles are shown in red.
The size of the systems is L =200 nm, the initial surface roughness is S = 2nm, and the current sliding
distance is s = 480 nm. For comparison, d* & 18 nm.

(a) dy=2nm (b) dy =4nm (c)dy=8nm

Figure 7.5 - Growth of wear particles trapped between sliding rough surfaces. The sliding distance is now
s = 4pm. Ultimately, all rolling particles merge into a single one (not shown here).

material (SiO,). At small scale, when d;; < d wear particles are formed (see Figure 7.4) and
then grow with the increasing sliding distance (Figure 7.5). They usually merge into larger rolling
particles after some time. The same behavior is recovered using different levels of discretization. At
large scale, when d|, is significantly larger than d; the formation of wear particles is not observed
anymore. Instead, a growing shear band appears (Figure 7.6).

7.2.2  Quantitative results

The evolution of the tangential force is tied to the qualitatively observed regime (see Figure 7.7).
When wear particles are formed, the tangential force drops to a low value, whereas the opposite
behavior is measured when a shear band is formed. Note that for systems having the same size L
but different particle sizes d,,, the quantitative measurements only match if the method stated in
Section 6.2.3 is applied (have the same largest particle size dj in all systems regardless of d,).

The normal pressure py affects the regime reached by a given system. At low pressure, the
wear particles formation regime is favored. No system featuring a transition between having rolling
wear particles and forming of a shear band was found, motivating the study reported in the next
section.

The sliding velocity does not affect any measured quantity, which may not seem physical,
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Tangential force [N]

7.2 WEAR OF ROUGH SURFACES AT MULTIPLE SCALES

(a) s =1.28pm (b) s =8.96pm (c) s =35.84pm

Figure 7.6 — Growth of a shear band. The average particle size is d, = 64nm, the size of the systems is
L =1.6pm, and the initial surface roughness is Sa = 16 nm.
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Figure7.7 - Tangential force measured in both frictional regimes. The multiple curves correspond to systems
with different discretizations (d,), having otherwise identical geometrical parameters (largest particle size
d,, system size L, and initial Sa roughness). Keeping d, constant for different discretizations leads to
quantitatively matching forces. (a) Regime where rolling wear particles are formed and merge together. The
rolling motion gives a low resistance against sliding. (b) Formation of a shear band, with large tangential

resistance.
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since higher velocities should involve heating effects. However, temperature is not implemented
in our DEM model, so it cannot represent these effects. The fact that shear bands seem to grow
unbounded (see Figure 7.6) is also likely due to the lack of temperature effects. Indeed, it is known
that materials are subject to thermal softening, which has the effect of keeping the strain localized

in shear bands (Fleitout & Froidevaux 1980; Lewandowski & Greer 2006).

Initial surface roughness does not affect the frictional force. In fact, it evolves toward a similar
Sa value regardless of the initial one, which explains why the frictional force does not differ after
the running-in period. The evolution of surface roughness is explored in more depth in Chapter 8,

with experiments.

73 TRANSITION BETWEEN FRICTIONAL REGIMES WITH WEAR PARTICLES

This study is motivated by the previous one, where two frictional regimes arise, but no transition
between them is observed. To answer this issue, the same kind of simulations are run, but
without initial surface roughness, and with circular particles already present initially between the
surfaces. Between 7 = 2 and 7 = 4 particles are inserted. The normal pressure is still varied from

pn = 0.1GPato 1GPa.

As before, two regimes can be reached (see Figure 7.8). However, this time, a transition is
observed, as shown in Figure 7.9, at a specific normal load, and when 3 or 4 particles are initially
present in the system. Having multiple evenly sized loose particles trapped in the systems seems
to be the main ingredient allowing the transition between the two regimes. The transition also
happens at a very specific normal load. In the previous study, all systems where particles formed
ultimately resulted in them merging into a single rolling wear particle.

Whether rolling particles remain or get crushed into a shear band seems to depend on the
normal load and the compressive strength of the material. When multiple particles are present,
they share the compressive stress applied on the system. When two loose particles merge together,
the compressive force felt by the resulting particle is multiplied by 2, but its contact area with the
first-body surfaces is only multiplied by /2. In the right conditions, multiple surviving rolling
particles can merge into a single one that cannot withstand the compressive stress, making the
transition toward the shear band. On the other hand, when a single rolling particle is present, its
size will grow upon sliding, but the compressive stress does not, meaning that the particle can

survive indefinitely. It explains why no transitions were observed in the study of previous section.

CONCLUDING REMARKS

We showed that our coarse-grained DEM model is capable of tackling dynamic wear systems at the
nanoscale and up. It is possible to simulate the apparition of wear particles when the discretization
size is smaller than the material’s critical size d; and the formation of a shear band under a larger
normal load. d* and the material compressive strength seem to play an important role in the
evolutionary behavior of the systems, which calls for a more extensive and systematic study. While
all simulations were performed in quasi-2D setups (3D but with a small thickness), they can be
naturally run in 3D. One ingredient missing in the DEM model is temperature (and heat transfer),

which should play a role when modeling larger scales.

96



73 TRANSITION BETWEEN FRICTIONAL REGIMES WITH WEAR PARTICLES

() Initial rolling particles. (b) Fusion into one particle. (c) Shear band.
pn =0.1GPa, s =600 nm. Pn=0.3GPa, s =7.2pm. pny=1GPa, s =7.2pm.

Figure 7.8 - Reaching two frictional regimes from trapped wear particles. The average particle size is
d, = 3nm and the initial system size is L =300 nm. (a) 3 loose particles are initially present. (b) When
the normal load is low, the particles ultimately merge into a single one. (c) With a higher normal load, the
particles are crushed into a growing shear band.
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Figure 7.9 - Evolution of frictional force during a transition of regime. For low normal loads py < 0.3GPa
(blue and purple curves), the initial wear particles fuse into a single larger one, inducing low tangential
forces due to the rolling motion. At an intermediate load py = 0.6GPa (in orange) and for » = 3, the
system evolves with rolling particles for some time, and then transitions to a regime with a shear band, with
a much higher tangential resistance. All other cases (high load or few particles) directly go to the shear
band state. Note that in the case with py = 0.6GPa and 7 = 4 (mixed orange curve), the system should in
principle be able to sustain a rolling particles regime. However, having more closely spaced particles allows
them to merge earlier, rapidly transitioning toward a shear band regime.
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CHAPTER

CREATION AND EVOLUTION OF ROUGHNESS

Disclaimer

This chapter is reproduced in part from S. Pham-Ba and J.-F. Molinari (2021b), “Creation and evolution
of roughness on silica under unlubricated wear”, Wear 472-473, with permission from all authors. My
personal contribution was planning and performing the experiments, making the measurements, running
the numerical simulations, post-processing the results, and writing. We thank Tobias Brink" for sharing his
expertise in MD simulations and for providing insightful discussions.

INTRODUCTION

FRICTION coefhicients and the way they evolve over time are currently hardly predictable. To bet-
ter understand friction, it is useful to relate it to known geometrical and physical characteristics
of the tribological system. As the most simple friction laws suggest, like the Coulomb’s friction
law, friction forces are mostly independent of the apparent contact area, and are instead linked
to the real contact area (Bowden & Tabor 1966). Indeed, contacting rough surfaces only touch
where protruding asperities meet, resulting in a real contact area being only a fraction of the total
apparent contact area in most operating conditions. The ratio between real and apparent contact
area is positively correlated with the normal load and is smaller for increasing surface roughness.
Since frictional processes can only take place at the contact spots in an unlubricated contact, this
highlights a direct relation between friction and surface roughness. This relation applies to all
engineered (Mandelbrot ez al. 1984; Majumdar & Tien 1990) or natural surfaces (Thom et al. 2017),
as they all display some roughness within a certain range of length scales.

Surface roughness itself can evolve thanks to wear. MD simulations of adhesive wear (Mi-
lanese et al. 2019) show that, at the nanoscale, two rough surfaces sliding on each other evolve
toward fractal self-affine rough surfaces with the same fractal dimension regardless of the initial
roughness. Another feature of these nanoscale simulations is the apparition of a rolling third-body
particle, which seems to be a key factor behind the evolution of the surface roughness to self-affine
characteristics.

At the engineering scale, experiments show that wear leads to the modification of the rubbed
surfaces, with the formation of a third-body layer made of sintered worn material (Wirth ez al.

"Department of Structures and Nano/Micromechanics of Materials, Max-Planck-Institut fiir Eisenforschung, 40237
Diisseldorf, Germany
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1994; Meierhofer et al. 2014), also called tribo-layer (Riahi & Alpas 2001) or tribofilm (Gosvami
et al. 2015; Kato & Komai 2007), which contributes to a change in the frictional properties of the

interface.

The same evolutionary behavior is found at the geological scale. Gouge formation is om-
nipresent in brittle faults (Scholz 1987; Wilson ez al. 2005). It is made of crushed and worn rock
particles and dictates the frictional properties of the interface, as seen experimentally (Starfield &
Cundall 1988; Biegel ez al. 1989; Mair et al. 2002) and numerically (Morgan 1999; Guo & Morgan

2007).

Studies also considered the evolution of surface roughness due to wear, for example in engi-
neering applications using pin-on-disc setups, where metallic samples can go through multiple wear
regimes over time (Kubiak et al. 2011) and settle down to a steady state after a certain amount of
time. At steady state, the worn surfaces of the samples are seen to exhibit identical geometrical
characteristics (wear track and surface roughness) regardless of the initial surface roughness for the
same operating conditions (Yuan et al. 2008). Other studies reproducing or looking at geological
phenomena observe a steady-state self-affine roughness upon sliding after a running-in period
(Power et al. 1988; Brodsky et al. 2011; Candela & Brodsky 2016; Thom et al. 2017). However,
overall, the mechanisms of the onset of wear and their link with following wear processes are not
studied in detail. A direct non-empirical relation between material properties and wear processes

remains to be found.

Here, an experimental study of friction and wear was performed on amorphous silica (Si0,)
using a rotating tribometer in a pin-on-disc configuration. From observations of worn surfaces after
various sliding distances, we deduced the steps giving rise to the creation of surface roughness from
comparatively flat initial surfaces — from the formation of the first third-body particles, often
overlooked in the literature, to the full third-body layer — while attempting to directly relate the
very first events of wear to material properties. The observations linked to the onset of wear are
complemented by MD simulations. We also assessed the evolution of the friction coeflicient and
the surface roughness given different initial surface roughnesses, and we provide a mechanistic

description of the factors behind surface roughness evolution.

8.1 EXPERIMENTAL SETUP

The tribological tests have been performed using 6 mm spheres of amorphous SiO, sliding (rotating)
on discs made of the same material (see Figure 8.1). A Bruker UMT 3 tribometer was used. The
sliding velocity of the ball was 8 mm/s and it followed a circular path of radius 1 mm with a normal
load of Fy =1N. Using Hertz contact theory, we get that in the elastic case the diameter of the
contact zone between the unworn ball and the disc is 78.2 pm and the maximum pressure (reached

normal load

——SiO, ball
wear track

Si0O, disc

rotation

Figure 8.1 - Experimental setup on tribometer. The disc is fixed to a rotating motor. The ball can only
move vertically and is kept against the disc with a constant normal load.

102
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Table 8.1 - Duration and initial roughness of the tests. The table is subdivided into three sections according
to the polishing of the discs. The latter are manually polished using sandpaper with the indicated grain
sizes. Each test has a duration and a corresponding sliding distance, known from the fixed sliding velocity of
8 mm/s. The third column indicates the number of repetitions for each set of parameters, and the multiple
initial disc Sa are indicated for each repetition when they differ significantly.

Duration Distance Rep. Polishing Disc Sa [pm]

1s 8§ mm 1

15s 12cm 1

30s 24 cm 1

1 min 48 cm 1

15 min 7.2m 1 none ~ 0.01

30 min 14.4m 1

1h 28.8m 3

2h30 72m 2

Sh 144 m 3

2h30 72m 3 0.78, 0.91, 0.74
Pi1z20

Sh 144 m 3 0.79, 0.63, 0.58

2h30 72m 3 1.54, 0.75, 1.51
P8o

Sh 144 m 3 1.51, 1.56, 1.58

at the center of the contact zone) is 312 MPa.?

For comparison, the compressive strength of SiO, is o, = 1150 MPa. The initial untreated
surface roughness of the balls and the discs has been identified using atomic force microscopy
(AFM) and is around Sa & 10 nm, which is very small from an engineering point of view. Some
discs have been manually polished using P120 and P80 sandpaper, resulting in roughened surfaces
with Sa = 0.74pm and Sa = 1.41 pm in average respectively (see Section 8.1.1 for details about the
computation of the Sa surface roughness). Only the discs were treated to have an initial surface
roughness, while the balls were kept flat, with their initial roughness of Sa &~ 10 nm. It is indeed
difficult to polish the SiO, balls in the same way as the discs without disrupting their spherical
shape. Shot peening or sandblasting could have been used to roughen the balls, but having them
initially smooth is not very important for this study since a surface roughness (dissimilar to the
one on the discs) eventually develops on them.

Table 8.1 lists the tests that were performed. The initial Sa of the discs are indicated. Some
variation in the Sa roughnesses can be seen amongst the discs which were polished with the same
grain size. This is in part due to the inherent variability of the manual polishing process. The fact
that those roughness measurements were only performed in a single small window on each disc

can also imply some uncertainty.

For each test, the Sa roughness of the disc is measured before and after the experiment (details
in the following section). The vertical reaction force F, and the lateral force F, parallel to the
direction of sliding are recorded during the whole test, from which a dynamical friction coefhcient
u =F,/F, is deduced. Roughness measurements cannot be similarly performed over the whole

*The material properties of SiO, are £ =73GPa and v = 0.17. The contact radius  is given by (Johnson 1985):

3R . . .
a=1q 2 = 39.1pm, where R = 3mm and E* is the equivalent Young’s modulus: £* =

=37.6GPa.
4E* 2(1—12)

. . 3
The maximum pressure reached at the center of the contact zone is: p, = z_Nz =312 MPa.
na
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duration of a test because they are not iz situ measurements. Finally, scanning electron microscope
(SEM) images of the wear tracks and wear particles formed on the initially flat discs were taken

after various durations.

8.1.1  Sa roughness measurement

Surface topography measurements are acquired using a Sensofar S-Neox confocal microscope on a
117 pm X 88 pm window of 1360 px X 1024 px, resulting in data points A (x,y) with discrete x and
y. Missing data points are filled by iteratively solving a Laplace equation at those points:

%h %

m'i'g—yz—o. (8.1)

A plane is fitted by least-squares minimization and subtracted to the points to obtain a zero-mean
topography hy(x,y). The Sa roughness is defined as:

1 —
Sa= NZ|h0(x,y)—bo| (8.2)
x,y

where N is the number of data points and 5, is the mean value of 5.

Since the value of $a is dependent on the size of the measurement site due to the fractal nature
of the rough surfaces, all measurements of Sa roughness have to be performed at the same window

size to be comparable. Usually, the Sa roughness decreases when the window size gets smaller.

To obtain the Sa roughness of the unpolished and polished discs before the tests, only one
topographic measurement is performed at the center of the sample. For the Sa of the circular wear
tracks left on the discs, four locations on the track are measured and the computed Sa are averaged.

8.2 RESULTS AND DISCUSSION

8.2.1  Initial wear particle size

Figure 8.2 shows SEM images of wear particles found on a flat disc after only 1s of sliding,
corresponding to a sliding distance of 8 mm. The images were obtained using a Zeiss SUPRA s5-VP
SEM. The formation of wear particles is the first and only evidence of wear found on the disc at
this stage (there is no wear track). An adhesive nickel patch was rubbed against the surface of
the worn disc to capture the wear particles in order to more easily observe them with SEM. No
particle smaller than 30 nm was observed. Whether this size depends on the material properties

or the loading conditions is discussed thereafter.

Recent theoretical work (Aghababaei et al. 2016) has confirmed the existence of a critical length
scale d* which governs a transition between ductile and brittle behavior for any given material.
The expression of d* for the detachment of spherical wear particles is

. 12¢yG
d'=—, (8.3)

0.
)

where y is the surface energy of the material, G is the shear modulus and o; is the shear strength
(or flow stress) of cold-welded junctions. Note that d* is mainly dependent on material parameters

and weakly depends on geometry and loading conditions (which influence the “12” factor), thus
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70 nm

140 nm

200 nm

(c) (d) The silica was discriminated from the nickel background using
energy-dispersive X-ray (EDX) spectroscopy

Figure 8.2 - SEM images of wear particles taken from a flat disc after 1s (8 mm) of sliding. The particles
were collected from the disc using an adhesive nickel patch for an easier observation.

it can be itself considered as a material parameter. A sheared junction between two surfaces can
only be detached into a wear particle if its size d is larger than d Otherwise, it flows plastically.
It implies that no wear particles smaller than d* should be observed in wear experiments, because

they cannot be created.

Using MD simulations, we computed estimates for the unknown material parameters of
amorphous SiO, using a potential by Vashishta et al. (1990) taking into account three-body
interactions, using a cutoff parameter of 7, = 8 A. The amorphous SiO, MD system is prepared
following the procedure of Luo et al. (2016), as described in Section 2.1.3. A shear strength
of o; = 7.2GPa is obtained from a bulk shear test without fracture, with periodic boundary
conditions, at a strain rate of 4 x 10" s™*. A surface energy of 1.5 N//m is estimated by cutting the
sample at 10 random planes and averaging the results, while the charge neutrality is being preserved
by keeping periodic boundary conditions. Using (8.3) with those material parameters leads to the
estimate:

d*~15nm.

Luo et al. (2016) observed a similar ductile-to-brittle transition size of 18 nm in MD simulations of
glass SiO, nanofibers, also using the Vashishta potiential. It is also shown that this potential can
provide quantitatively correct values for Young’s modulus and tensile strength, so that the value

found for d* is likely to also be quantitatively accurate.
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() Initial configuration (b) After collision (c) Shear strain (cross section)

Figure 8.3 — MD simulation of a collision between two amorphous SiO, asperities of diameter d =7 nm.
The initial simulation size is 20.2nm x 21.0nm x 11.8 nm (in the figures: length x height x depth). The
non-localized shear strain (brighter is higher) shows a plastic deformation of the asperities, indicating that

d<d*.

() Initial configuration (b) After collision (c) Shear strain (cross section)

Figure 8.4 - MD simulation of a collision between two amorphous SiO, asperities of diameter d =10 nm.
The initial simulation size is 30.3nm X 21.0nm X 16.0 nm. The behavior is in-between ductile and brittle,

indicating that d ~ d*.

() Initial configuration (b) After collision (c) Shear strain (cross section)

Figure 8.5 - MD simulation of a collision between two amorphous SiO, asperities of diameter d = 20 nm.
The initial simulation size is 50.5nm X 31.6nm x 27.5nm. The presence of clear cracks (regions of high

strain) indicates a brittle behavior, implying that d > d*.
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To confirm that the estimated d* really corresponds to the transition of interest for amorphous
Si0,, we simulated a setup equivalent to Aghababaei et al. using the Vashishta potential in
LAMMPS (Plimpton 1995). The setup consists of two hemispherical asperities of diameter d,
each attached to a flat body (as shown in Figure 8.3a). The amorphous SiO, structure is created
following the same procedure as before. A periodic cubic unit cell of side & 10 nm containing
amorphous SiO, was generated and used to build the whole setup by tiling the space with the
SiO, cells and carving the desired shapes by removing the atoms, while making sure to preserve
charge neutrality. A constant lateral velocity of 10 m/s is applied on the upper body to make the
asperities collide. Normal loads are applied on the top and bottom bodies to obtain pressures of
100 MPa to 200 MPa on the loaded surfaces, which prevents the system from flying apart. Periodic
boundary conditions are applied in the horizontal directions. Langevin thermostats are applied
at the non-periodic boundaries to keep the temperature of the system constant at 300 K with a
damping constant of 0.01 ps. A timestep of 1{s is used. The simulation results are shown in the
Figures 8.3 to 8.5, visualized using OVITO (Stukowski 2009), for the asperity diameters d =7 nm,
d =10nm and d = 20 nm. These values were chosen around the theoretical estimate d* & 15 nm.
The atomic shear strain (computed relative to the initial configuration) is used to determine
whether the wear regime is ductile or brittle. In the ductile case (Figure 8.3), the colliding asperities
are plastically deformed, resulting after the collision in high permanent shear strains between
all the atoms located in the plasticized region. In the brittle case (Figure 8.5), a wear particle
combining the two asperities is formed, and high strains only remain in the fractured regions,
whereas inside the wear particle, the strains increase during the collision and return to a low value
after the formation of cracks, since the atoms retain their original configuration. According to
Aghababaei et al., the critical length scale d* is defined as the size of the junction between the
colliding asperities corresponding to the transition between ductile and brittle behaviors. In our
case, instead of measuring the size of the junction, we assume for simplicity that it has a size
roughly equal to the diameter of the asperities d. The simulations show that the d* of amorphous
SiO, is indeed located between 7 nm and 20 nm. Note that there is no sharp transition between
the ductile and brittle behavior (see Figure 8.4 which shows an in-between behavior), which is
why d* is called a length scale rather than a definite length.

The theoretical estimate d* & 15nm and the lower and upper bounds (d* > 7nm and
d* < 20nm) found using simulations for the value of d* for SiO, are in line with the minimum
size of wear particles found experimentally (no particles smaller than 30 nm were observed). This
supports the idea that no wear particles smaller than d* can be created, which is expected because
a junction smaller than d* cannot be detached into a wear particle. Due to the nature of d* being
mainly dependent on material parameters and only weakly on geometry or loading conditions, we
can infer that the minimum size of wear particles formed when rubbing two surfaces together is
equal to d* and similarly only dependent on the materials of the two surfaces.

Having established the notion of minimum wear particle size, we know that wear particles can
be formed when two asperities located on rubbed surfaces and having a diameter greater than d*
collide with each other. Therefore, wear particles can understandably form from rough surfaces.
The formation of wear particles is still possible if the surfaces are flat and free of protruding
asperities. When put in contact under a normal load, the surfaces will meet at some points
and create adhesive junctions. A tangential load applied on an adhesive junction will enable the
formation of wear particles if the size of the junction is greater than d If it is smaller, the junction
may grow in size due to plastic deformations, if the adhesive forces are strong enough, until reaching
the critical size when a wear particle can finally be detached.
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Figure 8.6 — SEM images of wear tracks on flat discs after different amounts of time

8.2.2  Roughness formation

Figure 8.6 shows SEM images of the wear track left by a ball on flat discs after various sliding
durations in chronological order. From an initially almost flat surface of the disc, the process of
creation of surface roughness goes through different steps. At first, small spherical wear particles
of minimum size d* are created in the way described in the previous section (see Figure 8.2 and
8.6a). The newly created particles enter a rolling motion between the two rubbed surfaces and start
growing in size by chipping away some material from the flat surfaces thanks to adhesive forces
(larger particles in Figure 8.2). The increase of the diameter of the rolling spherical particles is
limited by the normal pressure applied by the opposed surfaces, so that the spherical particles will
instead continue to grow by elongating into rolling cylinders. With the current loading conditions,
the cylinders reach a maximum length of about 500 nm and a maximum diameter of 100 nm (see
Figure 8.6b). When the cylinders become numerous and meet each other, they agglomerate into
larger aggregates. The accumulation of aggregates takes the form of large flakes being left on the
initially flat disc, creating a third-body or gouge layer and resulting in the macroscopic surface
roughness. The flakes have an average width of 20 pm (see Figure 8.6c). The same mechanisms of
wear formation continue to take place on top of the already formed third-body layer, as seen in
Figures 8.6d and 8.6e, where cylinders are visible on top of the large aggregated flakes.

While the creation of wear particles and their accumulation into a third-body layer is commonly
seen in engineering (Ajayi & Ludema 1990; Kato & Komai 2007; Kirk ez al. 2019; Kirk et al. 2020)
or at geological scales (Reches & Dewers 2005), the formation of rolling cylinders is interesting
in itself and subject to recent discussions in literature. Rolling cylinders have been observed in
lubricated (Varga et al. 2019) and unlubricated (Zanoria & Danyluk 1993; Zanoria et al. 1995) wear.
In the latter case, the cylinders are believed to decrease the interfacial tangential stresses. Chen ez al.
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(2017) have conducted rock friction experiments and observed the formation of rolling cylinders
along the sliding direction. They believe the occurrence of these worn cylindrical bodies is a
mechanism that leads to slip weakening, with implications in earthquake physics.

8.2.3  Roughness evolution

Figure 8.7 shows topographic images of disc surfaces with different initial roughnesses (one in each
category of Table 8.1) acquired using a Sensofar S-Neox confocal microscope, before and after an
experiment with a sliding duration of S h. Initially, the roughened samples exhibit strong rough
features, also revealing the direction of polishing. After the experiments, a wear track is left on
each disc, which is visible in the topographic images as well as to the naked eye. When the disc is
initially flat, the resulting wear track is comparatively rougher (Figure 8.7c). Conversely, when the
disc is initially very rough, the roughness inside the wear track is decreased by the flattening of the
high features (Figure 8.7¢). In-between, when starting from relatively moderate surface roughness,
the created wear track keeps the same roughness, resulting in a topographic image with uniform
heights (Figure 8.7d).

This observed trend in the evolution of surface roughness can be complemented by more
accurate topographic computations. Figure 8.8 shows measurements of friction coeflicient and of

the two-dimensional Sa roughness of the wear tracks left on the discs for all the tests listed in the

Table 8.1.

The evolution of the friction coefficients indicates that an almost steady state is reached after a
running-in period. The running-in period itself does not seem to last a constant time between the
different tests. For example, the wear track on the disc can start to become visible to the naked eye
on the initially flat discs after 30 seconds or only after 5 seconds of sliding for two repetitions of
the same test. The running-in period may be very dependent on small non-controlled variations
of the initial conditions (like dust, temperature, or hygrometry). The friction coefhcient still
increases slowly in the “steady” region, which is probably linked to the non-constant contact area
between the worn ball and the disc, which increases as the ball wears out.

The dashed curves of the Figure 8.8a are fitted to all the evolution curves of a given category
of initial surface roughness of the disc (corresponding to the three categories of the Table 8.1).
Functions of the form 24 bx + ce?* are empirically chosen, only for visual comparison purposes,
as they can represent a steadily increasing regime with the 2 + bx terms and an exponential
convergence to this regime with the ce?* term. The friction coefficient is on average higher when
the initial surface roughness is higher. However, the fitted curves are within a standard deviation

apart from each other, so this trend is not statistically significant.

In contrast, the evolution of the surface roughness of the discs over time has an interesting
dependence on the initial disc roughness: when the initial roughness is in the explored range (from
S§a=0.01pm to Sa =1.58 pm), the roughness evolves toward a common value of Sa & 0.65 pm
(the black dashed line in Figure 8.8b) irrespective of the initial value.

Note that the average values of initial roughnesses of Sa &~ 0.74pm and Sa ~ 1.41 pm were
chosen after witnessing that initially almost flat discs evolved toward a roughness of Sa & 0.65 pm.
The grain sizes of the sandpapers used in the creation of the rough discs were selected to obtain a
roughness being around 1 time and 2 times the value Sa & 0.65 pm after polishing.

While convenient at larger scales, one drawback of the Sa roughness measurement is its

dependence on the scale of measurement for fractal surfaces. Typically, the measured Sa roughness
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Figure 8.7 — Topographic images of discs’ initial surfaces and wear tracks after 5 h of sliding. In (a) and (b),
the captions indicate the Sa roughnesses when measured on a window of size 117 pm x 88 pm like in the
rest of the text. The portions of circular wear tracks shown in (c), (d), and (e) have a radius of 1 mm. Note
that the pairs of images (a)-(d) and (b)-(e) were taken on the same discs, before and after the experiment,
but not at the exact same location. The wear track is clearly visible on (c) because it is rougher than the
initial surface surrounding it (completely smooth at this scale). The situation is reversed in (e): the wear
track exhibits less dramatic heights than the rougher initial surface. In (d), the surface roughnesses are
similar and the wear track boundaries are harder to distinguish. Note that in (c), the value of Sa roughness

may look smaller than expected. Actually, the roughness averaged over four locations on the wear track is
Sa=0.77pm.
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Figure 8.8 - Evolution of friction coefhicient and surface roughness from initially smooth and rough SiO,
surfaces. Errors bars show the standard deviation. (a) Empirical functions of the form a + bx + ce™ (thick
dashed lines) are fitted to the measurements (all thiner curves) for visual comparison. (b) The roughnesses
converge toward the black dashed line placed at Sa = 0.65 pm. Dotted lines are added to guide the eye and
are not representative of the actual evolution paths. The Sa roughnesses are computed from 117 pm x 88 pm
topographic images of 1360 px x 1024 px (details in Section 8.1.1).
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(a) Example of computation of Hurst exponent on a (b) Hurst exponent of the wear tracks on the discs
disc with an initial roughness of S& = 0.79pm after
5 h (144 m) of sliding

Figure 8.9 - Example of computation of the Hurst exponent and its evolution from initially smooth and
rough SiO, surfaces. (a) Three radial PSDs are obtained using three different magnifications on a sample,
centered on the same spot. The black dashed line is fitted to all the three curves, leading to the Hurst
exponent H = 0.17 in this case. The transparent parts of the curves are above the cutoff frequency and
do not contribute to the fit. The PSD obtained from the lowest magnification (20 %) gives low-frequency
information while the one obtained from the highest (150x) provides high frequencies. Numerical data for
the three PSD curves shown here and for other cases can be found in Supplementary material S1. (b) The
Hurst exponents start scattered and evolve toward a similar value. Errors bars show the standard deviation.
Dotted lines are added to guide the eye and are not representative of the actual evolution paths.
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is lower at smaller scales. Instead, the computation of the PSD of the surface heights’ (one
example shown in Figure 8.9a) shows that all PSD curves follow a power-law over several orders
of magnitude, which is typical of self-afhne surfaces, meaning that all initial and worn surfaces
in our experiments are remarkably self-affine. Our results reveal that the resulting surfaces are
self-affine on over two orders of magnitude (Figure 8.9a). For such self-affine surfaces, another
measure of roughness besides the Sa roughness is the Hurst exponent, which is independent of the
measuring scale and is related to the slope of the PSD in a logarithmic plot (Jacobs et al. 2017).

The PSD C(gq) of a self-affine surface takes the form
C(q) oc g2+ (8.4)

in a certain range, where ¢ is the radial spatial frequency and # is the Hurst exponent. The
Hurst exponent of a self-affine surface is related to its fractal dimension, and it describes how the
roughness changes when viewing the surface from a larger or smaller perspective (Mandelbrot ez al.
1984).

The Hurst exponent of the rough surfaces is computed from topographic measurements. Three
measurement are made using the three magnifications 20X, 50x and 150X, leading to images of
1360 px X 1024 px on windows of size 877 pm X 660 um, 351 pm X 264 pm and 117 pm X 88 pm
respectively. Note that when performing a measurement for a wear track at the lowest magnification
(the largest scale), the wear track does not fill the whole image (see Figure 8.7), so it has to be
cropped.

For each topographic data 5(x,y), a radial Hann window is applied and the discrete Fourier
transform /(g,,q,) of the windowed data is computed, as well as the PSD:

L.L, ,

) 2
h(q.q,)]"> 8.
n%nyzl (29l (8.5)

C(qx>q,) =

where g, and g, are the spatial frequencies, L, and L, are the window size and 7, and 7, are the
window resolution. The radial PSD C(q) with ¢* = ¢ + q; is computed form the cartesian PSD
C(q,>q,) by binning into 512 linearly spaced bins. Due to physical limitations in the measuring
hardware, higher frequencies of the PSDs are not representative and have to be dropped. A cutoff
of 0.05 m™ times the magnification (20, 50 or 150) is applied to the radial PSDs. A line is fitted to
the three PSDs in a log-log graph, ignoring the values after the cutoff frequencies. The slope of the
line is —2(# +1), where # is the searched Hurst exponent. The Figure 8.9a shows an example of
Hurst exponent computation from three radial PSDs obtained at the different magnifications.

Figure 8.9b shows measurements of the Hurst exponent of the wear tracks left on the discs for
the tests listed in the Table 8.1. Remarkably, while the initial Hurst exponents differ depending
on the initial roughness, all our measured Hurst exponents converge toward a common value of
H ~0.25.

The different behaviors of surface roughness evolution can be qualitatively explained with
a simple physical intuition like shown in Figure 8.10. When the surface roughness is low, wear
particles can be chipped away from the contacting surfaces thanks to adhesive forces, as described
in Section 8.2.1. The cracks created by the detachment of particles contribute to increasing the
surface roughness. Conversely, when the surface roughness is large, high peaks on the surfaces
can meet and knock each other out, and created wear particles can fill up holes in the surfaces,

31t is defined as the squared norm of the two-dimensional Fourier transform of the surface heights. See Section 1.1.2
for details.
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Figure 8.10 - Schematics of roughness evolution behaviors. The vertical bars on the sides of each panel
represent the total height contributing to surface roughness. (a) Starting from low initial roughness. An
adhesive junction forms between the two surfaces. (b) Formation of a wear particle. The roughness increases
with the newly formed cracks. (c) The particle attaches itself to one surface, increasing again the roughness.
(d) Starting from high initial roughness. (e) Formation of a wear particle from the colliding asperities. The
roughness decreases with their destruction. (f) The particle falls into a hole, decreasing again the roughness.

reducing the surface roughness. The two mechanisms continuously happen simultaneously over
the contacting surfaces, balancing each other. Thus, stable surface roughness can be reached after a
running-in period. Nonetheless, this simple description does not explain the remarkable finding

that the final roughness profile does not seem to retain any memory of the initial roughness.

Note that while the surface roughness of the worn parts obtained after a running-in period
appears to be independent of their initial surface roughness, the final steady-state friction coefficient
and surface roughness are likely dependent on the loading parameters (normal load, turning radius,
and sliding velocity) and the material properties. Thus, the particular value of Sa & 0.65pm is
specific to the current set of parameters. A change in those parameters might change the target
value of Sa, a behavior that has not been studied here.

All of our analyses on roughness evolution and formation were performed on the discs and
not on the spherical pins. The loading conditions (pin-on-disc) imply that the pins are more locally
solicited than the discs, resulting in an asymmetric evolution of the worn surfaces. Overall, the
worn caps of the balls have a Sa surface roughness two orders of magnitude lower than their disc
counterparts, so that the most interesting features created by wear could only be found on the discs.
The third-body layer is indeed only deposited on the discs, creating the macroscopic roughness.

CONCLUDING REMARKS

We performed tribological experiments on amorphous SiO, samples of different surface rough-
nesses. We found that for the employed loading conditions (load, sliding velocity), a self-affine
surface roughness emerges from initially comparatively flat surfaces via the following steps:

1. Formation of small spherical wear particles, whose minimum size is mainly dependent
on the material properties. These initial wear particles are the fundamental bricks in the
formation of the third-body layer;

2. The wear particles grow into rolling cylinders and larger aggregates;

3. The large aggregates take the form of flakes, creating a third-body layer and the macroscopic

roughness.

Alternatively, when starting with an initially high surface roughness, the latter gets reduced by
wear to a value similar to the one obtained from initially flat surfaces. The initial surface roughness
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does not influence the state (surface roughness) and behavior (friction coefficient) of the worn
parts attained after a running-in period. Thus, a stable value for the coefficient of friction could
be achieved by machining an initial surface roughness that matches the expected final roughness,
which depends on the materials and loading conditions. Further studies can be considered to
explore the effects of the loading conditions and material properties (and therefore the minimum
wear particle size) on the steady-state values of surface roughness and friction coeflicient, if such
steady state can be reached, which could be conducted either experimentally or using computer
simulations.
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CHAPTER

ADDING AN OXIDE LAYER

THE previous experimental campaign involved samples made of bulk (or plain) SiO,. The
same experiments are run, but this time we are interested in how mechanical pieces made of
Si behave in dynamical contact, and how the presence of an oxide layer can impact this behavior,
depending on its thickness. In Sections 9.1 and 9.2, the experimental setup and results are presented
and discussed. Then, in Section 9.3, numerical models are devised to physically support the

experimental findings.

9.1 EXPERIMENTAL SETUP

For this second experimental campaign, the setup remains essentially the same. The SiO, discs are
switched with monocrystalline Si discs treated to have an amorphous oxide layer of controlled
thickness (up to 3 pm). Untreated discs also have a native oxide layer caused by a mere exposition
to ambient air, measuring only a few nanometers. Plain SiO, balls are still used because of the
difficulty to manufacture monocrystalline Si spheres. They can nonetheless be considered as objects
coated with a very large thickness of SiO,. The surface of the crystalline discs making contact
with the spheres has the direction (100).

We keep a sliding velocity of 8 mm/s, a turning radius of 1 mm and a normal load of Fy =1N.
The durations of the tests and the thicknesses of the discs’ oxide layers are given in Table 9.1. The
initial roughness of all samples is left untreated and has been identified using AFM measurements
to be less than S4 =20nm.

For each test, the vertical reaction force F, and the lateral force F, parallel to the direction of
sliding are recorded, from which a dynamical friction coefficient 4 = F,./F, is computed. The
surface topography of the worn discs and pins is measured at the end of each experiment, from
which we compute the Sa roughness and an estimation of the wear volume coming from each
part. Finally, SEM images of the wear track are taken after sliding, viewed from the top and as a

cross-section.
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Table 9.1 - Duration and oxide layer thickness for experiments. Each test has a duration and a corresponding
sliding distance, known from the fixed sliding velocity of 8 m/s.

Oxide Duration Distance Repetitions

; 2h30 72m 3
nattve sh 144 m 3
0s 2h30 72m 3
. m
s 5h 144m 3
Lo 2h30 72m 3
. m
H 5h 144 m 3
2h30 72m 3
2.
Opm 5h 144m 3
0 2h30 72m 3
Hpm 5h 144m 3

9.2 RESULTS AND DISCUSSION

Figures 9.1 and 9.2 show the measurements of friction coefhicient ¢ and final surface roughness
Sa for each tested oxide thickness, as well as for tests performed on initially flat (S4 ~ 10nm)
samples of bulk SiO, (taken from the previous experimental campaign). Figure 9.3 shows the same

measurements regrouped in a single graph for comparison.

9.2.1  Friction coefficient

The friction coeflicients (Figures 9.1 and 9.3a) evolve toward a steady state after a running-in period,
whose duration is variable and very dependent on uncontrolled initial parameters. It is more
interesting to look at the final values reached at the steady state. The averaged curves represent
the mean behavior for each oxide thickness. They show the following trend: as the oxide layer’s
thickness increases, the coeflicient of friction increases toward the value for bulk SiO,, which is
expected since the Si beneath a thick layer of oxide will not be felt at the surface, therefore acting
like a plain SiO, surface. The friction coeflicients obtained on samples with an oxide layer between
Pjyyer = O pm (native) and 1.0 pm are all within a standard deviation from each other, so that it is
not statistically possible to tell whether one specific oxide thickness leads to a minimal friction
coeflicient.

Figure 9.4 shows two empirical curves fitted to the friction coeflicients measured at the end of
each test (after 2h30 and S h). One fit is performed on the measurements from oxidized Si discs,
while the other one also accounts for the tests performed on bulk SiO,, for which an arbitrary

value of /., = 6pm is assigned to permit the fitting of a function. The empirical fits are

= 0.337+0.070h;,., » (9:1)
{7 0.33140.092hy, , —0.008h; ., (9:2)
(9:3)

with root-mean-square (RMS) errors of respectively 0.065 and 0.058. The models are equivalent

in the region where the first one has been fitted. Overall, u is increasing monotonically with
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Figure 9.1 — Evolution of friction coeflicient for each oxide thickness and averaged curves. The thinnest

curves are the experimental measurements, and the thick curves are averages, obtained by taking the mean

of all available measurements at every sliding distance, and applying a moving average filter on the resulting

curves to smoothen the oscillations. The shaded area around the averaged curves represents one standard

deviation.
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Figure 9.2 - Evolution of surface roughness for each oxide thickness. The points are averages and the error

bars are ranges from minimum to maximum value. The measurements are only taken at the end of each

test, after a sliding distance of 72 m or 144 m, since real-time in-situ measurements were not possible with

our equipment. Samples with an oxide layer have the largest deviations.
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Figure 9.3 — Evolution of friction coeflicient and surface roughness from initially flat oxidized Si samples.
(a) The curves are averages from measurements, and the shaded area represents one standard deviation for
the “native” curve, which has larger deviations compared to the other (see Figure 9.1). Overall, the friction
coeflicient increases with the thickness of the oxide layer, toward the value obtained with plain SiO, discs.
(b) The points are average measurements, and lines are drawn to guide the eye. All final roughnesses are
similar, except for the non-oxidized samples which evolve toward a lower one.
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Figure 9.4 - Friction coeflicient as a function of oxide layer thickness and empirical fits. The bulk measure-
ments are arbitrarily set to A}, = 6pm. One curve is linear and the other is quadratic. They indicate a
monotonous increase of & with Ay, and a saturation for large layer thicknesses.
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Figure 9.5 — Wear track on an Si disc after 5 hours.
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Figure 9.6 - Topographies (top) and cross-sections (bottom) of a worn pin and an oxidized disc at multiple
locations after the experiment. All the dimensions are in pm. The shape of the worn region of the pin
(leftmost) conforms to the wear track on the disc. The red lines are estimated initial surfaces and the black
dashed lines show the thickness of the oxide layer.

hy

been found. Moreover, u has no significant influence on sliding duration, which is an indication

ayer- Even when including higher-order terms, no model having a significant' local minimum has

of reached steady states. We will show later that the friction coeflicient is correlated with other
measurable quantities.

9.2.2  Surface roughness

The measurements show that all samples evolve from having a relatively flat surface to being rough.

The discs made of only one material (Si with negligible native oxide layer, and bulk SiO,) are those
with the smallest amount of variation in the roughness measurement (we can also include the
samples with the thickest 3.0 pm oxide layer). The non-oxidized samples exhibit the lowest surface
roughness with statistical significance. The large variance observed for the oxidized samples can be
explained by the diverse topography of the wear tracks on which the roughness measurements
are performed. Indeed, the wear tracks on the non-oxidized Si discs are smooth, as shown in
Figure 9.5, and the wear tracks on the bulk SiO, discs are rough (see Figure 8.6c). The wear tracks
left on the oxidized discs have both smooth and rough regions. The topographic measurements in
Figure 9.6 are an example of wear track created on an oxidized disc, and Figure 9.7 shows schematic
cross-sections of typical wear tracks in all cases. The wear tracks on the oxidized discs are similar

to those on the SiO, discs but with multiple grooves (up to three) reaching the Si underneath the

oxide layer. The grooves have the same appearance as the wear tracks on non-oxidized Si discs.

The physical explanation for the formation of grooves, which only happens with discs made of
layered materials, is not trivial. It could be caused by irregularities initially present on the surfaces
of the samples, but the reason we found (revealed in the numerical simulations section) is more
unexpected, and we challenge the reader to find it prior to reading.

The presence of a third body layer (TBL) of worn SiO, is verified using SEM. The observation
of a cross-section of the TBL can be carried out using an SEM equipped with EDX. Thanks to
the latter, the chemical contrast between Si and SiO, can be associated with a color (brightness)
contrast in the images obtained using back-scattered electrons. Figures 9.8 and 9.9 show such
images, with different colors given to parts made of Si and those made of SiO,. Figure 9.8 shows a
TBL formed in the oxide layer of a disc, having not yet reached the Si beneath. The roughness

created by the accumulation of debris in the TBL is clearly apparent. Figure 9.9 shows a groove,

where the underlying Si has been worn out. The surface finish inside the groove is much smoother.

"For the fitting of empirical models, terms are added until the improvement of the RMS error drops under 5%.

Further terms are labeled as statistically non-significant.
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Figure 9.7 — Schematic cross-sections of the wear tracks on the different discs. The vertical scale is largely
exaggerated for visualization. The wear tracks in Si are smooth compared to those in SiO,, where the visible
roughness is inherent to the formed plates represented in thick dashed lines. The regions marked with “third
body” are where third body layers (TBL) can form under local contact spots.

Note the presence of a thin layer of SiO, on top of the Si inside the groove.

9.2.3 Wear

The evolution of the wear volume on the discs and on the pins is shown in Figure 9.10. It is
estimated by comparing the final surface topography to an idealized initial surface (a sphere for
the pins and a plane for the discs). The total wear volume seems to evolve linearly with the
sliding distance, which is in accordance with Archard’s wear model. The nature (oxidation) of the
disc’s surface does not significantly affect the evolution of the total wear volume. However, the
comparison of the wear volumes on the pins and on the discs indicates that the discs with a thicker
layer of SiO, wear more slowly, which is compensated by having the pins wearing more against
those surfaces. The bulk SiO, discs look like they were almost not worn out, which is not the
case considering the surface roughness created on them (see Figure 9.2f). Actually, the wear and

the reattachment of matter are such that not much material is carried outside of the wear track.

The data shows that the presence of an oxide layer on the discs lowers the volume of wear

debris they emit.

A simple empirical model for the friction coefhicient can be fitted to the measurements to
establish its link with the contact areas between the worn pins and the discs. By looking at the
topographic images of the worn part of a pin (see Figure 9.6, leftmost), we can extract the projected
contact area Ag; between the pin and the Si parts of the wear track, and the projected contact
area Ag;o between the pin and the SiO, parts of the wear track, using the knowledge that the
salient rails on the pin are in contact with the Si grooves in the disc. The total contact area is
Ao = Ag; +Agio,- We can assume that there is one (dynamical) friction coefficient for each of

two kinds of interface:

- Mg at the interface between the SiO, pin and the Si part of the disc’s wear track;
- and ugo, at the interface between the SiO, pin and the SiO, part of the disc’s wear track.

With these friction coeflicients, the tangential resistance to sliding under a supposedly uniformly

distributed normal load Fy is

2 F
Fy = Agps = + Aso, tsio, 7 » (9-4)
AtOt 2 2 AtOt
so that the resulting homogenized friction coefficient is
Agi ASiOz
M= Hsit —— Usio, - (9:5)
AtOt AtOt :
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Figure 9.8 - Colored SEM image of a TBL in a portion of the wear track of a worn oxidized Si disc. Si is in
blue and SiO, in red. The full wear track (about 500 pm long) contains multiple occurrences of TBL zones.
The colors are obtained by superimposing images obtained using back-scattered electrons. The initial oxide
thickness is 1.0 pm.

Figure 9.9 - SEM image of the cross-section of a groove in the wear track on an oxidized disc. Si is in blue

and Si0, in red. The initial oxide thickness is 3.0 pm. A TBL of approximately 1 pm is visible on top of it.
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Figure 9.10 - Evolution of wear volume from initially flat oxidized Si samples. The points are average
measurements and the shaded areas are ranges from minimum to maximum measured values. (a) All curves
statistically evolve the same way. (b) The pins wear more on discs with a thicker oxide layer. (c) Conversely,
the discs with an oxide layer wear less. The pure SiO, discs seem to not wear away, which is due to the

worn material remaining attached inside the wear tracks.

Using least-squares regression on the friction coeflicient and contact areas measurements, the
following estimate is obtained:

Ag Asio,
YR —= s+ = Hsi0, » (9:6)
AtOt AtOt 2
Ug; =0.326, (9.7)
/usloz = 0.548, (9.8)

with a RMS error of 0.077. The fitted model and the measured friction coeflicients are represented
in Figure 9.11. As we could expect from the observed relation between oxide thickness and
evolution of friction coeflicient, the coeflicient for the SiO,-Si interface is lower that the one for
the Si0,-Si0, interface.
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9.3 NUMERICAL SIMULATIONS
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Figure 9.11 — Measured friction coeflicients as function of contact areas and fitted model. The dotted lines
represent the distance between the measurements (colored dots) and the empirical model (grey surface).
The RMS error is 0.077. The contact between SiO, and Si (obtained from mostly blue points) has a fitcted
friction coeflicient of g, = 0.326, whereas the contact between SiO, and SiO, (mostly from yellow points)
has a g =0.548.

9.3 NUMERICAL SIMULATIONS

With the experiments, we captured the effect of the oxide layer on the friction coeflicient and the
wear volumes. In essence, adding a SiO, layer on a Si sample increases its resistance to wear, but
as a trade-off, also increases friction. We were able to establish a simple empirical model for the
friction coeflicient, depending solely on the contact area between the pin and the disc, taking into
account the types of material in contact. However, the contact zone evolves toward a singular
shape (with grooves) on samples possessing an oxide layer, which could not be explained from
our observations. This shape is influencing directly the frictional and wear properties. Using
numerical simulations, we attempt to uncover the processes leading to the formation of this kind
of contact zone.

As a first step, we use MD simulations to find the shear strength properties of Si and SiO, at
the atomic scale. Then, using the simple model established in Section 7.1, we project the small
scale strengths into a BEM model at the experimental scale to simulate the wear process.

9.3.1  MD: tangential strength at the atomic scale

From the experimental measurements, we found that the Si0,-SiO, interface is stronger (delivers
more tangential resistance) than an interface involving Si. This fact can intuitively be attributed to

a discrepancy in the shear strengths of the two materials.

The ideal strengths® of Si and SiO, can be found in the literature, obtained either with
experiments, theoretical calculations, or numerical simulations. In its crystalline state, Si does not

*As a reminder: the ideal strengths are the ones measured when no defects are present in the material, typically at a
small scale.
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have the same properties in all directions. The smallest shear strength has a value of 11 GPa, in the
{111} direction (Dubois et al. 2006). For SiO,, the ideal shear strength is not easily found, but the
ideal tensile strength is reported at about 16 GPa (Luo et al. 2016), and the shear strength can be
estimated from the tensile one using the von Mises yield theory (assuming SiO, is ductile at small
scale, where the ideal strength is measured) to be smaller by a ratio of 1/4/3 ~ 0.577. We find a
shear strength of 7 GPa for SiO,.

The found shear strengths seem to contradict our initial findings, since the shear strength of Si
is larger. But those strengths are static strengths, measured or computed from unperturbed samples,
where a dynamical strength would be more at stake in a tribological interface. Another factor not
taken into account in these estimates is the confinement pressure, which can reach several GPa
in our experiments? We found no studies linking directly pressure and strength for Si and SiO,.
But in more general terms, the strength of materials was shown to be meaningfully dependent on
pressure and temperature (Towle 1967), following the empirical estimate

0. =0, __€ex <—a r > (9.9)
m ~_ “ m,0 p Tm(P) > 9:9

where o, is the unconfined strength, p is the pressure, T is the temperature, 7, is the melting
temperature (dependent on pressure), and 4 is an empirical parameter. From this equation, we
deduce that an increase in the melting temperature leads to an increase in the strength. For SiOz,
we find that increasing the pressure also increases the melting temperature (Gonzalez-Cataldo
et al. 2016), which by inference also increases the strength. This is a typical behavior. For Si,
increasing the pressure has the opposite effect of decreasing the melting temperature (Yang ez al.
2003), consequently decreasing the strength.

In summary, our current knowledge on the shear strength properties of our materials is the
following:

Si: shear strength o,  =11GPa, decreases under pressure;

SiO,: shear strength o,  =7GPa,  increases under pressure.

The dynamical and pressure effects are more likely to have a noticeable effect on Si, whose crystalline
structure might be disturbed. To gather more quantitative information on the shear strengths, we
resort to MD simulations.

Setup

We simulate systems of 10 X 10 x 10 nm3. At the top and bottom, 0.4 nm rigid walls are used
to impose loads and displacements on the system, and Langevin thermostats are put on adjacent
layers of 0.4 nm to keep the temperature of the systems at 300 K, using a damping factor of 0.01.
The bottom rigid wall is fixed. A normal pressure py; between 0 and 50 GPa and a shear motion
are imposed on the top wall, with a shear rate of 10 m/s, and up to a shear deformation of 0.5.
The lateral boundaries are periodic. A time step of 1fs (107 s) is used. During the simulation, the
tangential resistance is measured on the top wall, from which a tangential stress p is computed.

max

e and the dynamical

The evolution of p over time gives us the maximum (static) shear stress o

40 fter failure.

shear strength Tt

Si potential
To model Si in MD, we use the Stillinger-Weber potential (Stillinger & Weber 198s; Stillinger &

Weber 1986), which takes into account three-body interactions to correctly model the crystalline

3The initial pressure is around 400 MPa, but the real contact area between the roughened surfaces is a few percent of

the total apparent area, cranking up the local pressure acting on asperities.
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Figure 9.12 - MD measurements of the shear strength of Si under pressure. All systems reach a maximum
shear stress, then drop to a dynamical regime with a lower resistance. The static strength drops for
compressions higher than py =20GPa.

phase of Si, having a diamond structure, where each atom has four neighbors arranged at the
corners of a tetrahedron. We use the potential parameters given in the original paper, which are
shown to give quantitatively acceptable properties for both the diamond-structure crystalline phase
and the liquid amorphous phase.

Si results

The shear strength of Si is tested for compressions ranging from 0 to 30 GPa. The resulting

evolutions of tangential stress are shown in Figure 9.12. At low compression (up to 20 GPa), the

tangential stress increases up to shear strength of o ™’% & 11GPa independent on compression, and

then suddenly drops to a much lower value of dynamical shear strength Uiy; ~ 1.5GPa. Looking

at the arrangements of atoms during sliding (Figure 9.13), we see that it transitions from a fully
crystalline structure to becoming amorphous in a shear band. The lowered tangential resistance

can be attributed to the transition from crystalline to amorphous state. For larger compression

max

m,T
the same transition to a dynamical shear strength of o

(from 22 GPa and above), the maximum strength o™ gets lower, dropping to around 4 GPa, and

dyn
m,T
seems caused by the atomic structure becoming amorphous under the compression alone, as shown

~ 2GPa follows. The lower strength

in Figure 9.14.

Si0, potential

The MD modeling of SiO, is performed using the potential by Vashishta et al. (1990), using a
cutoff parameter of 7, = 8 A (Luo et al. 2016). The amorphous system is prepared following the
same procedure as Luo ez al., by heating and progressively cooling an initial crystalline sample (see
Section 2.1.3 for more details).

Si0, results
The shear strength of SiO, is tested for compressions ranging from 0 to 50 GPa. The results are
shown in Figure 9.15. In all compression cases, the system transitions from an elastic loading

to a dynamical regime, with a change in the measured tangential resistance. Overall, a higher

compression force leads to a larger strength (both the maximal strength 0% and the dynamical one

ai}jfrl). During the elastic phase, the strain is homogeneously distributed in the system (Figure 9.16a),
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G igiged
e
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(a) Initial configuration (b) After shearing

Figure 9.13 — Atomic structure of a sheared Si system without external pressure. Blue atoms are in a diamond-
like structure (4 neighbors arranged tetrahedrally) and yellow atoms are unstructured (amorphous). The
sheared system forms an amorphous shear band, responsible for the lower strength measured in the dynamical

regime.

Figure 9.14 - Atomic structure of an Si system under a pressure of 25 GPa. The normal pressure forces
the system into an amorphous structure, reducing the strength to a value similar to the dynamical shear

strength.
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Figure 9.15 - MD measurements of the shear strength of SiO, under pressure. All systems reach a maximum
shear stress, then transition into a dynamical regime. The strength increases under compression.

whereas in the dynamical phase, the strain is localized inside a shear band (Figure 9.16b). The non-
equilibrium state of the atoms inside the shear band, being attached to less than their ideal number
of neighbors, is responsible for the decrease of strength when transitioning to the dynamical regime.
For high compression forces, the system is already disturbed during the static phase, reducing the
difference with the dynamical phase.

Tangential strengths

The maximum and dynamical tangential strengths and their dependence on the compression stress
can be extracted from the plots of tangential resistance evolving with shear (Figures 9.12 and 9.15),
resulting in the summarizing curves in Figure 9.17. The empirical tendencies we established prior
to the MD simulations are verified, and we have obtained numerical estimates for the strengths.

9.3.2  BEM: modeling experiments

The BEM can be employed to model the contact between the pin and the disc used in the experi-
ments, providing the distribution of local pressures between the two objects and their deformation.
In this section, we explain in detail how the tangential resistance is computed from the BEM
outputs and how the contacting surfaces are evolved by simulating the wear process.

Pressure distribution

The pin and the disc are represented respectively as a portion of a sphere hpin(x,y) of radius
R =3mm and a plane / (x,y). The two surfaces have a size of L X L, and are discretized into
n x n cells. Each cell has an area of A; = (L/n)* Since layered systems cannot be currently
modeled in our BEM software Tamaas, both surfaces are given the properties of SiO, for solving
contact. The BEM outputs the normal pressure py(x,y) applied on each discretized cell.

Tangential resistance

Thanks to MD, we have obtained quantitative tangential strength measurements for Si and SiO,, at
the atomic scale. Using the model established in Section 7.1.2, we can link the newly found small
scale properties to macroscale strengths, for them to be used in a model of wear at the experimental
scale.
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(a) Elastic loading (b) After shearing

Figure 9.16 — Atomic stain in sheared SiO, system without external pressure. The stain is uniform during
elastic loading and localises into a shear band in the dynamical regime. The same behavior is observed for
SiO, systems under pressure.

Figure 9.17 - MD measurements of maximum and dynamical shear strength for Si and SiO, under pressure.
(a) Si has a large drop of strength when entering the dynamical regime. Pressure decreases the shear strength.
(b) The maximum and dynamical strength are close to each other. Pressure increases the strength.
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Figure 9.18 - Simplified models of maximum and dynamical shear strength for Si and SiO, under pressure.
(2) The maximum strength goes from 10.6 GPa to 4 GPa and the dynamical strength from 1.5 GPato 1.8 GPa,
with a transition at pyy = 20GPa. (b) The maximum strength begins at 8.5 GPa and starts increasing from
Pn = 20GPa with a slope of 0.096. The dynamical strength starts at 6.3 GPa and increases with the same
slope.

We start by introducing simplified governing laws for the strengths and their dependence
on compression, shown in Figure 9.18, based on the MD results, but which can be more easily

implemented in a macroscopic model.

Since the compressive strength o, . of the materials was not assessed, it can be reasonably
approximated by the maximum shear strength of each respective material:

loc) max( loc) ,

O e(PN) = ot (PN (9.10)

plotted in blue in Figure 9.18, where pll\?c is the pressure measured at the asperity level. We input

the compressive strengths in (7.5) to obtain the critical pressures, which are pf" =10.6 GPa for Si
and p"* = 8.5GPa for SiO,. These are the maximum pressure an asperity can withstand before
collapsing, therefore increasing its contact size.

To use the scale-linking model, the ratio between real contact area A and apparent contact area
A, in each discretized BEM cell must be identified. In a physical tribological system, this ratio
A/A, is constantly changing with the wear of the contacting asperities. When wear particles are
detached, holes are left in the surfaces, increasing the surface roughness and decreasing the contact
ratio A/A,. Conversely, when A/A, is small, the asperities collapse to reach the critical pressure,
increasing A/A,,. We saw experimentally that the evolution of the surface roughness (and therefore
of A/A,) eventually reaches a steady state, where the two mechanisms of increase and decrease are
at an equilibrium. The minimum value of the contact ratio (which satisfies that the local pressures

do not exceed the critical pf\lﬂt) is given by (7.6) and depends on a macroscopic normal pressure:

A
Zoin _ PN (9.11)
Ay py"

Since we cannot reasonably model the micromechanics of asperity wear in a macroscopic model,
we make the broad assumption that the contact area ratio remains at a steady-state value, chosen
as (9.11), while keeping in mind that the steady-state ratio in a real system could be larger. With
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this contact ratio, the resulting tangential resistance is given by (7.10), using the dynamical shear

strength:
pN dyn ri
pr= R, (0:12)
N

and a steady-state friction coeflicient is deduced:

dyn  cric
_ Pr _ O-m’T(pN )
MPo="—=——- (9-13)
PN pN
This friction coeflicient is independent on the loading conditions and geometrical configuration
(bearing in mind our assumptions) and can be read directly from the shear strain curves (plotted

in orange in Figure 9.18), giving

Ug; = 0.14, (9.14)
Msio, = 0.84. (9-15)

The coefhcient ug; is calculated for an Si-Si interface, but we can expect the same resistance from
an S10,-Si interface, since the more fragile Si underneath the interface is the first that will give up

under a tangential stress.

The friction coeflicient estimates we just obtained deviate from the experimental computations
(9.7) and (9.8), which is not surprising considering the very simplified nature of our model. Still,
the higher friction coeflicient obtained in SiO,-S10, interfaces is qualitatively recovered. In order

to not introduce any empirical parameter in our model, we will stick to the newly derived values.

As a side note, (9.11) can be compared to the equation linking the contact ratio to the normal
pressure and the surface roughness in an elastic rough contact:

4 _ Y2y (9.16)
A Ehly '

from which we deduce the alleged steady-state roughness

;Y 2Rt
RMS = 7 o ¢ (9.17)

The estimated stead-state RMS of slopes amounts to by, = 0.57 for $iO,-SiO, interfaces and to
s = 0.71 for SiO,-Si interfaces. The experimental measurements show that in the $i0,-SiO,
case, this value is around 1.

Wear volume

To build a model with surface evolving over time, the instantaneous wear volume must be computed.
According to Archard’s assumption (Archard 1953), a contact junction of size a4 X a is detached
into a wear particle after a sliding distance of ds = a, creating a wear volume of dV = a>. The

increase in wear volume can be expressed as a function of sliding:
dV =ads. (9.18)

For multiple contact junctions, each having a size 4; X a;, the increase of wear volume is just the

sum of the contributions of each junction:

dv :Zaf ds, (9-19)
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which can be written as

dV =Ads, (9.20)

where A is the contact area formed by all the junctions. This last equation is reminiscent of Archard’s
wear model, where the wear volume is also proportional to the sliding distance. According to
(9.11), the contact area A can be replaced by its assumed steady-state value, leading to

dv = pcl:LAO ds . (9.21)

N

The reattachment of worn particles and the effect of wear on the contact area A are not taken into
account in the equation, meaning that the predicted wear volume will be greater than what we
would observe in a real system. Therefore, we should not expect quantitatively correct results
regarding timescales using this simple model. This complements the assumption made earlier that
the contact area ratio A/A, remains at a steady-state value.

The instantaneous wear rate dV'/ ds is computed at each discretized cell of size A, from their

current pressure py(x,y). The resulting change in surface height is

dh = 1%062—\:71 dt (9.22)
= %vd , (9.23)
Px

where v is the sliding velocity and dt is the discretized time step. Depending on the type of
interface (510,-Si0, or SiO,-Si), the worn surface height is applied to the pin or to the disc. For
S$i0,-S10, interfaces, since both materials in contact are the same, the change in height is applied
equally to the two surfaces:

dhy, =0.5db, (9.24)
dhy. =—0.5dh. (9.25)

For SiO,-Si interfaces, since Si is more fragile, we set the wear to

dbpin =0, (926)
dhdisc =—db. (9-27)

To know the nature of the interface, we simply compare the current worn disc height b (x,y)
with the initial height of oxide layer /. For now, we assume that the worn volume is ejected
from the contact zone and no longer contributes.

The length Ly, of the path of the pin on the disc can be different from the size L of the
system considered with the BEM (to lessen the computational cost). To account for this difference,

dh ;. is multiplied by L/L

Instead of shifting the two surfaces relative to each other to simulate sliding, the surface of the

path*

disc by (x,y) is simply averaged at every time step along the sliding direction, chosen as the y
axis, so that Ay, is always invariant with respect to y.

Model summary

Let us sum up the working of the model. At each time step dt:

1. Solve for the contact between the current surfaces using BEM. We get the pressure distribu-

tion pr(x,7);

131



y [mm]

CHAPTER 9 — ADDING AN OXIDE LAYER

1.0 0
0 0 - ____\_ “/"-I___.
0.5 s
0 oo - é —10 -
—10 = \o/
—40 —0.5 —20 1 === layer disc
15 —— pin
—60 —1.0 —30 - T T
—1 0 1 —1 0 1 —1 0 1
x [mm] x [mm] x [mm]
(a) Ball. The heights are in pm. (b) Disc. The heights are in pm. (c) Disc cross-section

Figure 9.19 - Example of surface topographies obtained with the BEM model. The oxide layer has an initial
thickness of 1 pm. Parts of the SiO, pin are in contact with the SiO, oxide layer while the rest is in contact
with the disc’s Si beneath the layer. A single groove is formed in the disc.

2. Compute the tangential resistance p at each cell using (9.12);
3. Compute the worn heights from py using (9.11), (9.21) and (9.23), and update the surfaces

accordingly;

The friction coeflicient is obtained by integrating the tangential stresses pp(x,y) of every cell
and dividing by the imposed normal load Fy.

Setup
We consider a system of size L = 2mm with a discretization of # = 128. The length of the pin’s
pathis L, = 6.28 mm. The sliding velocity is v = 8 mm/s, the time step is d# = 0.02s, and the

simulations are run up to a sliding distance of 0.5 m. For solving contact, a constant normal load
of Fiy = 1N is imposed. The oxide layer thickness is varied from hlayer =0 to 3pm, like in the

experiments, and an infinite layer is also considered, reproducing experiment on bulk SiO,.

Results

Examples of outputs for an oxide layer of 1 pm are shown in Figure 9.19 and 9.20. As in some
experiments, a single groove is created in the disc. The pin has parts in contact with the SiO, oxide
layer, and a rail in contact with the underlying SiO,. The evolution of the friction coeflicient
clearly displays an initial phase where the pin is in contact with the SiO, layer, with a high value
near (i, , and a transition to a phase where the pin starts contacting the Si beneath the layer, with
 progressively decreasing toward ;. The two phases are also visible in the wear rates dV'/ ds,
with the wear rate of the pin suddenly decreasing when reaching the Si. The total wear rate remains

almost constant.

The dependence of the friction coeflicient and the disc wear with the oxide layer thickness is
shown in Figure 9.21. The same two phases of wear are identifiable on the plots, with a transition
happening later for thicker layers. Looking at temporal averages, the presence of an oxide layer
increases the average friction coeflicient and decreases the wear rate on the disc. It seems that with
a longer sliding distance, all systems would converge to the same behavior of contact on an Si disc
without any oxide layer, which is expected since the oxide layer is worn out.

All simulations result in the formation of a unique groove in the disc, whereas in experiments,
the wear tracks left on oxidized Si discs most often feature several grooves. Introducing initial

irregularities on the surfaces does not result in the formation of multiple grooves, as the wear
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Figure 9.20 - Friction coefficient and wear volumes obtained with /. = 1pm. In both plots, two phases
are identifiable. The first phase spans from s = 0 to s = 0.03m, and corresponds to the moment when the
pin is only in contact with the SiO, layer of the disc, resulting in a high friction coefficient and an equivalent
wear between the pin and the disc. The second phase follows with the pin starting to make contact with
the Si beneath the SiO, layer. The relative contact area with Si progressively increases, resulting in a lower
friction coeflicient and a stronger wear of the disc. (a) The transparent curve shows the unfiltered noisy
data. A moving average filter is applied, with a window just large enough to remove the noise, resulting in
the fully visible curve.
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Figure 9.21 — Effect of oxide layer thickness on friction coeflicient and wear volume. (a) Plain Si ( blayer =
Opm) and SiO, discs simply result in constant friction coeflicients. The presence of an oxide layer increases
(. All curves for oxidized discs seem to converge toward the same value of ug;. (b) The presence of the
oxide layer decreases the wear of the disc. All curves for oxidized discs seem to converge toward the same

wear rate (dV / ds slope).
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Figure 9.22 - Effect of rotating non-planarity on surface topographies. Two grooves are created in the disc,
with corresponding rails on the pin. The rails are in contact with the Si, while the rest of the pin is in
contact with the SiO, layer. The relative contact area with SiO, is larger than in the perfectly planar case.

process has a smoothening effect.

Non-planarity

In the experiments, the planarity of the disc on the tribometer was not ensured nor measured.
Oscillations in the raw measurements of normal and tangential forces during the tests hinted at the
presence of this non-planarity. It can easily be implemented in the model by adding a tilted plane
to by, when solving the contact, with the direction of the slope rotating at the desired frequency.

Figure 9.22 shows an example of surface topographies obtained with an oxide layer of 2 pm
and with an added slope of 0.01 on the disc, rotating with a period equivalent to 0.05 m of sliding.
Two grooves have emerged from the presence of the rotating non-planarity!

The presence of non-planarity also has a noticeable effect on the evolution of the friction
coefficient (see Figure 9.23) and on the final behavior at steady state. Without slope, all systems
with an oxidized Si disc reach a state where the majority of the contact between the pin and the
disc is made of an SiO,-Si interface, with a friction coeflicient converging toward ug;. Here, the
friction coefhicient converges to a higher value when the slope is larger. This is explained by the
pin keeping a larger contact area with the top of the SiO, layer of the disc thanks to the alternating
slope. The wear volume is not significantly impacted.

The dependence on the oxide layer thickness is assessed again, adding a non-planarity with
a rotating slope of 0.02. The results are shown in Figure 9.24. As observed with the single
Pjayer = 2 pm case, the two phases have disappeared, and the friction coefficients are higher than in
the planar case. Overall, the trends are the same: having a thicker oxide layer increases the friction
coefhicient and decreases the wear rate on the disc.

All the final friction coefhicients obtained in the planar and non-planar cases are compared
between themselves and to the empirical experimental model in Figure 9.25. This figure does
not have the purpose of quantitatively comparing the data, since we called earlier that the BEM
model is not quantitatively accurate. Still, it clearly shows the effect of non-planarity, and the
experimentally observed trend is recovered with the model.
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Figure 9.23 - Effect of the slope of a rotating non-planarity on friction coeflicient and wear volume. (a) The
transparent curves show the unfiltered noisy data, oscillating with the rotation of the non-planarity. The
fully visible curves have a moving average filter applied, with a window size equal to the period of rotation.
The presence of non-planarity increases the friction coeflicient, and the presence of two phases is less evident
at larger slopes. (b) There is not much effect on the wear rate.
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Figure 9.24 - Effect of oxide layer thickness with the presence of a non-planarity of slope 0.02. The same
trends as in the planar case are observed, although with overall higher friction coefficients. Contrary to the
planar case, the curves do not seem to converge toward a unique value.
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Figure 9.25 - Comparison of friction coeflicient between experiments and simulated planar and non-planar
cases. The bulk measurements are arbitrarily set to /4, = 6pm. The dashed curve is an empirical
experimental fit. All sets of data have the same qualitative behavior, with y increasing monotonously with

h

layer- | he presence of non-planarity significantly increases 1 (doubling it in this case).

9.3.3  Going further with coarse-grained DEM simulations

The assumption of steady-state surface roughness was made mainly because there is no knowledge
of the nanoscale and mesoscale wear processes happening at the interface. To address this issue, it
is conceivable to use the coarse-grained DE model developed during this thesis to model a dynamic

interface at the scale of asperities with accurate material properties.

Figure 9.26 shows an example of what is achievable, with a system of size 150 x 150 X 75 nm?
made of 400 000 particles. Si can be modeled with an ordered arrangement of particles to replicate
(to a certain extent) the differences in strength between the initially crystalline structure and the
weakened amorphous structure. Si0, is represented with an amorphous arrangement of particles.
Here, we simulate an initially cylindrical SiO, loose body, of size 50 nm (in green in Figure 9.26).
It is trapped between an upper SiO, surface (actually rigid) and a lower Si surface, overlayed with
an oxide layer of thickness S nm. An average particle size of d, = 1.5 nm was chosen to correctly
capture the surface energy and the strength of both Si and SiO, (see definitions of minimum and

critical particle diameters in Section 6.1.2).

With a sliding motion imposed on the top surface, the loose cylinder rolls and deforms. It
picks up particles from the oxide layer and grows in size. It eventually reaches the Si underneath
the layer, leaving a trench in its path. The wear particle growth and the creation of a wear track

match experimentally observed phenomena.

Modeling the same system with MD would be totally untractable. Atoms have a size roughly
10 times smaller than the current d,), so around 400 million atoms would be needed. Moreover, the
time step would drop from 20 fs (femtoseconds) to the usual 1fs used in our other MD simulations.
Methodically running more DEM simulations of this kind is unfortunately out of the time frame
available for this thesis. We leave this task to the future minds that would find an interest in

pursuing it.



9.3 NUMERICAL SIMULATIONS

(a) s =0pm (b) s =0.44pm (¢)s =7.7pm

Figure 9.26 - DEM simulation of asperity wear on oxidized Si. Green and beige particles are amorphous
SiO,, white and yellow particles are crystalline Si. The system size is 150 x 150 x 75 nm3. The average
particle size is d, = 1.5 nm. The shear motion is caused by a rigid plate made of SiO, particles (not shown).
A pressure of 100 MPa is applied on the system. (b) The rolling wear particle rolls and grows by taking
SiO, particles from the surface. (c) The wear particle reaches the Si underneath the layer, creating a trench.

CONCLUDING REMARKS

Both the experiments and numerical simulations show that the presence of an oxide layer on Si
samples increases the friction coefficient while decreasing the wear volume originating from the
oxidized piece. In the experiments, the measured friction coeflicient goes from u ~ 0.33 for non-
oxidized samples to ¢ & 0.55 for fully oxidized ones (made completely of SiO,). MD simulations
reveal that the lowest tangential resistance offered by Si, despite its higher static strength, is caused
by a transition between the initial crystalline state of the material toward a weaker amorphous
state.

The wear tracks left on oxidized samples feature multiple grooves reaching the Si underneath
the oxide layer. Such grooves were not observed in the previous experimental campaign involving
only SiO,. BEM simulations revealed that the grooves originate from a non-planarity in the
pin-on-disc experiments. They are therefore specific to this kind of test and should not be expected
in every tribological system involving oxidized Si pieces. The presence of the non-planarity is
shown to increase the friction coefficient (e.g. up to 2 times for a slope of dh/dx = 0.02) without
significantly impacting the wear rate.

The BEM model is able to qualitatively reproduce the experimentally observed phenomena
without the need for any empirical parameter. However, the predicted wear volumes are higher than
the experimental ones by three orders of magnitude. Indeed, strong assumptions were formulated
for this BEM model. Still, there is one ingredient missing in the model, whose presence could
mitigate this discrepancy: it is the modeling of the TBL. It was shown in the previous chapter that
the TBL stays inside the contact zone thanks to the adhesive reattachment of matter, creating the
surface roughness. Keeping the third-body in the simulation instead of directly removing it as
worn volume should greatly reduce the simulated wear rate, potentially bringing it closer to the
experimentally measured values.

137






CONCLUSION

T HE main objective of this thesis was to obtain a physical understanding of unlubricated adhesive
wear across scales. The first sub-objective was the study and formalization of interactions be-
tween multiple micro-contacts. Following the approach of Rabinowicz (1958) based on competing
energies, we first studied the interactions of nanoscale junctions in two dimensions. Fundamental
contact mechanics solutions were used to evaluate the elastic energy stored by shearing the micro-
contacts, and the stored energy was compared to the energy needed to detach a single joined wear
particle or multiple wear particles under the micro-contacts. The model provides simple criteria to
evaluate the energetic feasibility of the different wear formation scenarios. The sheared system
is either in a plastic regime, a “separated wear particles formation” regime, or a “combined wear
particle formation” regime. The predicted behavior depends on material properties (all grouped
into a single quantity, the material’s critical length scale d*) and geometrical parameters (the
apparent contact area and the real contact area). MD simulations were used to test the predictions
of the outcome for various sets of parameters. Each asperity-scale regime can be associated with a
macroscopically observed wear regime. The plastic regime, where surfaces only deform without
creating wear debris, corresponds to low wear; the separated regime relates to mild wear, with the
wear volume being proportional to the real contact area; and the existence and predictability of
the combined regime formalize the transition toward severe wear, with much larger wear volumes.

Working in two dimensions came with some flaws. For example, the elastic energies evaluated
in the theoretical model are infinite. This issue was resolved when moving toward three-dimensional
systems. Using the same energetic approach, a “wear map” was derived to predict the wear behavior
of two nearby circular micro-contacts. The predicted nanoscale wear regimes remain unchanged
and still depend on the material critical length scale d* and the geometrical parameters (size
of junctions and distance between them). The 3D analytical model was easily adapted to the
case of rough contact. In such contact, the application of a normal load makes more and more
micro-contacts appear, grow, and cluster together, all being events favoring elastic interactions.
The wear map devised for rough contacts now expresses the wear behavior as a function of d* and
the real contact area (function of the normal load and surface roughness). Three regions are clearly
identifiable in the wear map. The first region is a “plasticity” region, with zero wear volume. The
second is a “separated” region, where both the wear volume and the number of generated particles
increase with the normal load. The last region is a “combined” region, existing thanks to the
presence of elastic interactions. In this regime, under normal loading, the number of wear particles
decreases and their volume increases drastically with the formation of wear particles encompassing
several micro-contact zones (contrasting with the “separated” regime). One drawback of the
model is that it only predicts an instantaneous wear volume, with no notion of sliding distance,
like Brink et al. (2021) is including. Our model is limited by its computational cost, making the
implementation of sliding not straightforward. Since the model was implemented in serial, a

parallel approach could be used instead.
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The second sub-objective of the thesis was the development and usage of upscaling techniques.
The study of elastic interactions at the scale of rough surfaces was already a form of upscaling
the asperity-scale model, but the resulting model is static. The wear behavior is predicted, but
not realized nor verified. To serve as a tool to model adhesive wear dynamically at scales larger
than MD, a coarse-grained DE model was developed, with particles having contact and reversible
cohesive forces in order to model fracture and reattachment of matter. The pairwise forces are
tuned to obtain a solid with reasonably approximated elastic and fracture properties. The nanoscale
ductile-brittle transition, observed with MD, is reproducible with the DEM simulations using
particles having a diameter at least 10 times larger than atoms, and therefore for a fraction of the
computational cost. The model is also able to replicate macroscopic experimental tests realized
with a cohesive material mimicking wet sand. The newly developed model helped us establish a
link between a material’s ideal strength (measured at small scale) and the macroscopic strength of
a tribological interface featuring this material, showing that the tangential strength of an interface
depends on the real contact area, the material ideal shear strength, and its compressive strength.

Other preliminary numerical studies were conducted using the coarse-grained model, demon-
strating that its usage is suitable for the study of dynamical adhesive wear mechanisms at a scale
larger than reachable by MD. Looking at dynamical effects was part of the third sub-objective of the
thesis. The model is capable of simulating the creation, growth, and interaction of wear particles
originating from rubbed rough surfaces. To keep the details of the nanoscale, the size of the discrete
particles must not exceed d*. In accordance with a previous work conducted with MD (Brink ez al.
2022), two frictional regimes were uncovered: one has rolling and growing wear particles, with
low sliding resistance, and the other one features a shear band, with a higher tangential resistance.

Still, in the assessment of dynamical behaviors, the evolution of surface topography due to
wear was observed experimentally on SiO, samples using a pin-on-disc tribological setup. We
showed that roughness is created from flat surfaces with the building up of a TBL, aggregated from
nanoscale wear particles whose size is related to d* The small wear particles grow into rolling
cylinders, and then accumulate into a TBL, taking the form of flakes, and crating the macroscopic
roughness. The history of the creation of the TBL is backed up by experimental observations
and numerical simulations. Conversely, initially rougher surfaces are smoothed. In all cases, the
surface converges toward obtaining a self-affine surface roughness independent of the initial surface
state, and persistent over time. Since friction and wear are shown to be primarily dependent on
the real contact area, it is sensible to assert that reaching a steady state of surface roughness means
also keeping a controlled friction coefhicient and constant wear rate.

Finally, similar experiments were run on Si samples to investigate the effect of an oxide layer
on tribological properties, which was the last and more applied objective of this thesis. The
experiments showed that the presence of an oxide layer increases the friction coeflicient while
protecting against wear. MD simulations of Si and SiO, were performed to find the physical origins
of this macroscopic tribological behavior, revealing that crystalline Si, while having a higher static
strength than SiO,, becomes amorphous under stress and loses its strength, thus explaining its
lower frictional resistance. Macroscopic BEM simulations were used to input the MD computed
material properties into a model reproducing the experimental setup. The friction and wear trends
were successively recovered. The numerical simulations also uncovered the high sensibility of the
tribological system to small disturbances, with for example a non-planarity of 2% in the setup
leading to friction coeflicients twice as large. Ultimately, we found no optimal oxide layer thickness
leading to the best tribological behavior (lowest friction and wear), so engineers working with
such material must engage in a trade-off. In any case, the presence of the oxide layer is known to
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enhance other mechanical properties.

OUuTLOOK

A phenomenon that is inherently present in MD/DEM simulations but lacking in our BEM
simulations is plasticity, which plays a big role in rough contacts. Weber ez al. (2018) compares an
experimental method and a FE-based method to get the contact area of a rough sphere pressed
against a flat surface as a function of the normal load. It shows that the FE model considering
only elastic deformations is not sufficient to reproduce the experimental results, as the contact
area is significantly underestimated. A model considering plastic effects must be used to match the
experimental data. Simplified plasticity models, like saturation models, can be used with BEM
to better predict the contact area. However, this is not sufficient in the context of wear, as it
was shown that saturation plasticity models underestimate the number of crack nucleation sites,
compared to “real” plasticity models (Frérot et al. 2020a). Von Mises plasticity was implemented
in our BEM software Tamaas to meet this need (Frérot ez al. 2019). In principle, plasticity is also
inherently present in coarse-grained DEM simulations. The effect of plasticity on the prediction
of wear on rough surfaces may be an object of future analysis.

The study of tribology should not be limited to unlubricated and adhesive wear. When two
materials with different hardnesses are put in contact, mostly the softest body will wear out,
enabling a regime of abrasive wear. This phenomenon has been studied using AFM scratching
experiments (Gnecco et al. 2002) and MD simulations (Kato 2003), showing that a work similar to
the one carried out during this thesis can be conducted for abrasive wear. The outcomes could be
adapted to more practical matters, such as the process of material removal (Molinari & Pham-Ba
2022). The other tribological phenomenon that can be studied with our tools is lubrication, which
can be modeled at the nanoscale with MD simulations (Eder et al. 2011), or at the mesoscale with
an appropriate BEM formulation (Akchurin et al. 2017). The DEM model we developed can model
materials with contrasting properties, and being a discrete method, it can by nature represent flows.
Therefore, it could be used to upscale the works on abrasive wear and lubrication performed with

MD.

Even though we were able to prove that elastic interactions are of crucial importance for the
emergence of macroscopic wear regimes, we were not able to validate our model dynamically. With
the rise of experimental methods capable of 7 sitx measurements during sliding of rough surfaces
(Petrova et al. 2018; Sahli et al. 2018; Weber ez al. 2018; Garabedian ez al. 2019), one could imagine
verifying experimentally the effects of micro-contacts’ interaction on the creation of wear particles.
While the newly developed coarse-grained DE model could be used to verify the analytical theory
of wear for several micro-contacts, simulating 3D rough surfaces in dynamical sliding motion
would not be computationally manageable. To model rough surfaces with the same resolution as
in the BEM model of Chapter 5, one would need at least 500 x 500 x 100 particles per body, for a
total of 25 million particles. This is where the coupling methods can shine. The computational
cost can be reduced by modeling the continuum domain beneath the rough surfaces using the finite
element method (FEM) instead of using discrete particles everywhere. The coupling happens in a
region between the DEM domain and the FEM domain. Coupling is already well developed for
linking MD with FEM. The two main families of coupling methods are the edge-to-edge methods,
where boundary conditions are applied to the atomic and the continuum domains at their interface
(Broughton et al. 1999), and the overlapping methods, in which, as the name suggests, the two
domains overlap. A classical example of overlapping method is the bridging method (Belytschko &
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Xiao 2003). The coupling method is also applicable to coarse-grained MD (Rudd & Broughton
1998), as well as DEM (Wellmann & Wriggers 2012). Correctly matching the material properties
of an amorphous DEM domain, a FEM domain, and their interface is a current topic of research in
our group (Voisin-Leprince et al. 2022). With such coupling methods, it would be manageable to
simulate the formation and evolution of a TBL in three dimensions, from the creation of the very
first wear particles of size d: As the material properties of a numerical simulation can be tuned at
one’s liking (unlike in physical experiments), it would be possible to tackle the following question:
Does the actual value of d* influence the macroscopic tribological properties of an interface, or
is it buried inside the nanoscale, having no more effect than the size of atoms on our seemingly

continuous macroscopic world?
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APPENDIX

FRICTIONAL CONTACT WITH THE BOUNDARY
ELEMENT METHOD

boundary element code based is available at our laboratory: Tamaas (Frérot et al. 2020b).

The BE formulation used in the code allows to solve normal contact problems with normal
adhesion between the surfaces. For use in problems involving sliding, we implemented frictional
contact with tangential forces.

Bugnicourt et al. (2018) shows a way to implement a BE solver able to solve contact problems
with a tangential load and Coulomb friction at the interface between the surfaces. Since both a
normal contact problem and a tangential contact problem have to be solved at the same time, the
Poisson’s ratio v has to be set at v = 0.5 in order to decouple the normal and tangential components,
meaning that a normal pressure applied on a point of the surface will not induce any tangential
displacement around this point, and the same will be true between a tangential pressure and normal
displacements. Khajeh Salehani et al. (2018) shows that they can solve a coupled problem while
having normal and tangential adhesive forces instead of Coulomb friction. Unlike Coulomb
friction, these adhesion forces are not directly dependent on the normal load. Such formulations
are more suited for a nanoscale point of view of friction, where the strength of an interface is
directly linked to the strength of bonds between atoms. Conversely, Coulomb friction is more
suitable at mesoscale or macroscale.

Despite the problem of contact with friction being known for not having unique solutions
even in the simplest cases (Hild 2003), we attempt to formulate a method to solve it in the general
uncoupled case (v not necessarily equal to 0.5). The method was implemented in Tamaas and
validated against analytical solutions of frictional contact.

A.1  FORMULATION

Since the contact between a rigid rough surface and an elastic flat surface is equivalent to the contact

between two elastic rough surfaces with different material properties, the former case is considered,
as shown in Figure A.1. The elastic material is given an effective Young’s modulus E* defined as

1 1— vlz 1— v22

i + (A1)

Ex* E, E,

where E,, v;, E, and v, are the Young’s moduli and the Poisson’s ratios of the materials of the two

surfaces initially considered. The height profile h(x;, yj) of the new surface is taken simply as the
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difference of the heights of the initial surfaces. Our solver can handle problems where the normal

and tangential quantities (loads and displacement) are decoupled (v = 0.5) or coupled (v < 0.5).

At each contacting point, the rigid surface is applying a normal pressure py; on the elastic surface.
One contacting point can support a tangential pressure ||pr|| up to pr . I |[pr]] < pPrmayo the
point of the elastic surface in contact with the rough surface sticks to it, and if ||p-|| = pr e
sliding can occur by having a relative tangential displacement of the point of the elastic surface.
Two friction laws have been implemented: the Coulomb’s friction law

pT,max = lupN <A'2)

where w is the friction coeflicient of the interface, and the Tresca’s friction law

pT,max = O-m,T (A3)

where o, 1 is the shear strength of the interface. Coulomb friction is more suited to represent a
macroscale or mesoscale contact, while Tresca friction portrays more properly nanoscale (asperity
level) phenomena.

A.1.1  Continuous formulation

BEM is based on a fundamental solution linking the displacement field to the pressure field:

u(x) :J F(x—x"\p(x")dx’, VxeTl, (A-4)
r
where F is the elastic surface deflection caused by a concentrated load applied at the origin.

Frictionless case

Solving the contact problem amounts to solve an optimization problem (Rey et al. 2017). Given

the rough surface shape /4 (x) and the target mean pressure p,, the following functional must be

minimized: .
](p):—fp-udx—fp-hdx, (A.5)
2 )r T
—E.(p)
under the constraints
Pn=0, VYxel, (A.6)
Pr=0, Vxerl, (A.68B)
1
dx=7p,, 6
meS(r) frp X pO (A C)

where E_ is called the complementary energy.

l pN, o
rigid

— P16

5

elastic l Vp (%)

Figure A.1 — Tangential contact setup



A.1  FORMULATION

Coulomb friction

In the formulation with Coulomb friction, a term is added in the minimized functional and one of

the constraints is modified. The following functional must be minimized:

1
9p)=5 | pewds— [ pbdet [ upligaldx. (17
T T T
1(p)

under the constraints

pn=0, VxeTl, (A.84)
upn—llprll =0, VxeT, (A.8B)
1
= .8
mes(I) erdx bo> (a.8¢)

where j is the frictional work, and g = # — b is the gap between the surfaces.

Tresca friction

In the case of Tresca friction, the frictional work and the constraints are appropriately modified.

Minimize
1
5p) =5 | pudv—| pbdst [ oalgrlax, (x9)
2 )r T r
J(P)

under the constraints

=0, Vxel, (A.10A)
Um,T_||pT||>O, VxerTl, (A.10B)

1
mes(T) frp dx=p,. (A.100)

A.1.2  Discrete formulation

In the following text, we only present the algorithm for Coulomb friction. The derivation for
Tresca friction is very similar. Every instance of u py would be replaced by o, 1.

The surface I is discretized as a grid 7 of N x N points. The continuous problem is sampled.
The fundamental solution (A.4) becomes discretized:

u(x)= ZF(x —x")p(x")Ax’, Vxel. (A.11)

x'el

The functional to minimize (A.7) is also discretized:

p)=5 >opeu—p b+ ppyllgall, (a12)

xel xel xel

and the constraints remain identical to those in the continuous formulation (A.8).

147



APPENDIX A — FRICTIONAL CONTACT WITH THE BOUNDARY ELEMENT METHOD

by
27|l A
A [ J
\ \ e / M pN
' °
\
\ S >
\\ \ ._f px
[ ] \\ ........... M . . )
\ “““““““ e e
~ PN
(a) Side view (b) Front view

Figure A.2 - Friction cone for constraints enforcement. The red dots show the initial value of p, and the
arrows (if present) indicate how the inequality constraints are solved. Points lying outside of the cylinder
are brought to the closest point on its surface.

A1.3  Minimization

The solving of the discretized problem is based on the conjugate gradient algorithm (Polonsky &
Keer 1999). During solving, the functional does not need to be explicitly computed, as only its
gradient is used:
99(p)
op
where g(x) = g(x)— g, is the gap shifted to be zero in the region of sticking contact
L={xel|py>0and||py|| < upn}, with g  being the mean value of the gap g in I,. Note

(x)=8(x)+ ullgr(x)llen,  Vxel, (A.13)

that in the case of Tresca friction, the derivative of the functional would only be equal to g(x).

The inequality constraints (A.8a) and (A.88) are enforced by projecting the pressure p on a
friction cone (see Figure A.2). The equality to target mean pressure p, (a.8c) is ensured by rescaling

P and shifting p.

Monitoring the convergence of the minimization is done by evaluating a cost function

GF(Pag):ZPNgN+Z(HPN_||PT||)||3T||- (A.14)

xel xel

The full procedure is given in Algorithm 1.



A.2  VALIDATION

Algorithm 1: Computation of p(x) minimizing 7(p)

Input: h(x),p,,¢ and 7,
Output: p(x) and u(x)

1 Ry« 1; t(x)—0; n<0; // initialization
2 do

s | Py e P(R)

o | o) = B2 p(x): polx) e pr(x)— byt P // enforce mean
s | 8(x) Xy Flx—x)p(x")Ax"—h(x) ;

6 Ap(x)hag—(;»(x); // compute gradient using shifted gap
7| Re e Ap*(x);

8 t(x)<—Ap(x)+ ]%t(x); // update search direction
9 Ryg—R;

10 r(x)ezx,elF(x—x’)t(x’)Ax’; // projected search direction
wo| 7o g e (%)

12 r'(x)«—r(x)—7;

b | T (et AP (S ¥ (X)) // compute step size
14 p(x)<—p(x)—7t; // update pressure
15 prOjeCt p(x) on friction cone ; // enforce inequality constraints
16 f —Gr(p.8)s

17 n—n-+1;

8 while f >candn <n_, ;
19 w(x) — e Fx —x')p(x)Ax’ ;

A.2  VALIDATION

Our solver has been validated with analytical contact solutions, valid in the uncoupled case v = 0.5.
The contact with a rigid spherical indenter of radius R (Figure A.3) was validated with the Hertz
solution in the frictionless case and with the Mindlin solution (Johnson 1985) in the case with
Coulomb friction (Figure A.44). Denoting by 24 the diameter of the contact zone, L=L, =L,
the size of the simulation and 7 = n, = n, the number of discretization points (see Figure a.38),
we find that the numerical solution only matches the analytical solution if the contact diameter
is small enough compared to the simulation size (2a < L/10), because the solver accounts for
periodic boundary conditions which is not the case for Hertz and Mindlin theories, and the grid
size must also be small compared to the contact diameter (L/7 < 24/10). The solver was also
validated for the contact of a 2D sinusoidal (therefore periodic) line of wavelength L and amplitude
D with the solutions presented in Block & Keer (2008) at different levels of friction (frictionless,
partial slip and sliding) (Figure A.4B). In this case, there is no limitation on the maximal contact

size compared to the simulation size.
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Figure A.3 - Spherical tangential contact. (b) The darker area is the contact zone.
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Figure A.4 - Validation of the BE solver at partial friction in the uncoupled case. (a)-(b) # =243, E =1Pa,
v=0.5, 4 =0.5. (a) L=1m, R=10m, py, =15x10"*Pa, p,_; =4 x 107 Pa. The slice y =0 is
plotted for a limited range of x, and only one of every two points of the simulated output pressures is
shown for clarity. The analytical solutions are from (Johnson 1985). (b) L =27m, D =1m, py , =2Pa,
P10 = 0.7Pa. The full range of x is plotted. Only one of every six points of the simulated output pressures
is shown for clarity. The analytical solutions are from (Block & Keer 2008).
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A3 COMPUTED QUANTITIES

A.3 COMPUTED QUANTITIES

For a given shape of rigid indenter /(x) and a targeted mean pressure p, the BE solver outputs a
distribution of pressures p(x) = p(x;,y;) applied onto the elastic surface. From these pressures, it
is possible to compute the displacements #(x;,y;,2) and the stresses o'(x;,7;,2), at the surface
and in the elastic bulk. We define the gap g(x;,y;) between the two surfaces as gy = #y — h
and g = uy. The pressures also tell us for each point of the surface if it is in contact with the
indenter (py > 0 <> gy = 0) and if it is sticking (||p|| < prmy € lIgrll = 0) or sliding
(D1 = Prmax > 118711 > 0). An example is shown in Figure a.5A.

From the stress tensor ¢ (x;,7;,2), it is possible to compute the three principal stresses oy,
oy and oy, as well as their directions, for each point of the elastic bulk. The value of oy at a
given point is the maximum tensile stress at this point, and the maximum shear stress is given by
7., = (07— 0yy)/2. The maximum tensile stresses on the surface are of prime interest, because
they tell if a crack can be initiated, which is the case if oy 2 0, where o is the tensile strength
of the material. The values of oy in the bulk are also interesting because they can give the SIF K;
of mode I fracture at a point of concentrated stress. Examples of plots of o and 7y are given in
Figures A.5B and A.5C.
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Figure a.5 - Elastic tangential contact of a rough sphere. The parameters of the simulation are » =729, L =
500pm, £ =70GPa, v =0.17, 0,, =500 MPa, 0, = 250 MPa (using Tresca friction), Pno =10MPa
and p, , = 2MPa. The sphere has a radius R = 6 mm. The rough surface has the parameters Sa = 0.01pm,
A=A, =10pm, A, =1.37pm and H = 0.8.
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