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Abstract. We prove the vanishing of the bounded cohomology of lamplighter groups
for a wide range of coefficients. This implies the same vanishing for a number of
groups with self-similarity properties, such as Thompson’s group F. In particular,
these groups are boundedly acyclic. Our method is ergodic and applies to “large”
transformation groups where the Mather-Matsumoto-Morita method sometimes
fails because not all are acyclic in the usual sense.

1 Introduction

The initial goal of this note is to prove the following, answering a question of Grig-
orchuk [Gri95, p. 131].

Theorem 1. Thompson’s group F is boundedly acyclic.

This statement means that the bounded cohomology H}!(F') vanishes for all n >
0, where H!(—) denotes the bounded cohomology (of Gromov [Gro82] and Johnson
[Joh72, §2]) with coefficients in R viewed as a trivial module. As for the group F,
it appeared in many different contexts [CFP96, CF11] since its 1965 definition by
Thompson [Tho65] but the main outstanding question seems to be whether it is
amenable.

One motivation for Theorem 1 is that bounded acyclicity is a necessary condition
for amenability, although far from sufficient. In fact, amenability is equivalent to the
vanishing of Hj!(—, E) with coefficients in all dual Banach modules E, see [Joh72,
Thm. 2.5]. In that context, Theorem 1 is a special case of the following.

Theorem 2. The vanishing HY(F, E) = 0 holds for all n > 0 and all separable dual
Banach F-modules E.

This is the first known example of acyclicity for such general coefficients — except
of course amenable groups.

However we caution the reader that this statement does not answer the amenabil-
ity question. Indeed, our proof also works for many groups that are similar to F' but
known to be non-amenable. For instance, the proof holds unchanged for all piecewise-
projective groups introduced in [Mon13].
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In fact, we reduce Theorem 2 to a general result on “lamplighter” groups defined
as (restricted) wreath products:

Theorem 3. Let G be any group and consider the wreath product

W:Gzz:<@G)>4Z.

Then H (W, E) vanishes for all n > 0 and all separable dual Banach W-modules E.

In particular, the case of the trivial module £ = R shows that W is boundedly
acyclic, answering Question 1.8 in [L6h17]. The vanishing statement of Theorem 3
fails if we drop either the separability or the duality assumption.

The connection between this general result for lamplighters and the particu-
lar case of Thompson’s group F' comes from the fact that F' contains co-amenable
lamplighter subgroups. This condition will be further discussed in the proof, but for
now we point out that this situation is by far not limited to F'. Indeed, after co-
amenability has been applied, the following is not much more than a reformulation
of Theorem 3:

Theorem 4. Let G be a group and Gog < G a co-amenable subgroup. Suppose that
G contains an element g such that Gog commutes with its conjugate by gP for every
p= 1

Then HY (G, E) = 0 holds for alln > 0 and all separable dual Banach G-modules
E.

Ignoring for a moment the definition of co-amenability, this result can be applied
under general algebraic conditions that we think of as a form of self-similarity:

COROLLARY 5. Let G be a group and Gy < G a subgroup with the following two
properties:

(i) every finite subset of G is contained in some G-conjugate of Gy,
(ii) G contains an element g such that Gy commutes with its conjugate by gP for
every p > 1.

Then HY (G, E) = 0 holds for alln > 0 and all separable dual Banach G-modules E .
This conclusion holds more generally if (5) is required only for finite subsets of
the derived subgroup G' of G, or of any (fixed) higher derived subgroup G®) of G.

Beyond F', these conditions are satisfied by many generalisations of this group,
including all non-amenable groups introduced in [Mon13] and their subgroups stud-
ied in [LM16].

We obtain perhaps more intuitive conditions with the following special case,
stated for groups appearing as transformations of some underlying space. Recall
that a transformation is said to be supported on a subset if it is the identity outside
that subset.
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COROLLARY 6. Let G be a group acting faithfully on a set Z. Suppose that Z contains
a subset Zy and that G contains an element g € G with the following properties:

(i) every finite subset of G can be conjugated so that all its elements are supported
m Z(),’
(i) gP(Zo) is disjoint from Zy for every integer p > 1.

Then H (G, E) = 0 holds for alln > 0 and all separable dual Banach G-modules E.
In particular, G is boundedly acyclic.

Many classical “large” transformation groups satisfy these conditions, starting
with the group of compactly supported homeomorphisms of R"™ which was proved to
be boundedly acyclic by Matsumoto—Morita [MMS85]; the latter result was recently
widely generalised in [L6h17] and [FFLM21a].

Corollary 6 has the following advantage in comparison with the strategy behind
the classical Matsumoto—Morita [MMS85] theorem and its generalisations, a strategy
rooted in Mather’s acyclicity theorem for ordinary (co)homology [Mat71]. Namely,
the latter relies ultimately on pasting together infinitely many compactly supported
transformations (which Berrick describes as occasionally “difficult to substantiate”
[Ber02, 3.1.6]). In our approach, only finitely many elements need to be pasted
together at any one time, according to the definition of lamplighters, recalling the
Aristotelian distinction between actual and potential infinity.

This makes it possible to apply Corollary 6 to less flexible situations, such as
diffeomorphisms or PL homeomorphisms, see [MN21]. By contrast, in ordinary co-
homology, the acyclicity of these less flexible groups is often not true or unresolved.
We refer to [MN21] for applications.

In this context, we mention that Kotschick introduced in [Kot08] a commut-
ing conjugates condition which resembles one half of our hypothesis in Corollary
6 and hence holds more generally. He used it to prove the vanishing of the stable
commutator length [Cal09], which according to Bavard’s result [Bav91] follows from
the vanishing of H%(—,R). There is no reason, however, that Kotschick’s groups
should all be boundedly acyclic or satisfy the vanishing with coefficients. Similar
comments hold for the very recent “commuting conjugates” criterion for the vanish-
ing of HZ(—, R) given in [FFL21].

2 Lamplighters

We shall first work towards the proof of Theorem 3 for the case of a countable group
G. This restriction will be lifted in Sect. 2.4.

2.1 Ergodicity. In order to handle non-trivial coefficients, we recall the notion
of ergodicity with coefficients introduced with M. Burger in [BM02]. The reader only
interested in bounded acyclicity can transpose the next few bars down to ordinary
ergodicity.
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Consider a group G with a non-singular action on a standard probability space
(X, ). We recall here that a measurable G-action on (X, u) is called non-singular
if every g € GG preserves the measure class of i, or equivalently preserves the notion
of null-sets for u. For us, only the class of u is relevant and the measure space is
usually simply denoted by X. Note that L>°(X) is a Banach G-module which is dual
(but not separable).

Recall that usual ergodicity is equivalent to the statement that every G-invariant
measurable function (class) f: X — R is (essentially) constant. There is no differ-
ence if instead f: X — FE ranges in a separable Banach space, or indeed any polish
space. However, if F is endowed with a non-trivial G-representation, then the require-
ment that every G-equivariant measurable function class f: X — FE be essentially
constant is much stronger. This is called ergodicity with coefficients in F.

A standard fact is that ergodicity with coefficients in separable Banach modules
follows from the ergodicity of the diagonal action on X?2. It is important here to
recall that Banach modules are always assumed to be endowed with an isometric
G-representation. The proof then consists in observing that f: X — E as above
must satisfy that || f(z) — f(2)| is essentially constant by equivariance, and that
this constant must be zero because E is second countable. Indeed, if that constant
were some 7 > 0, then we could cover F with countably many r/3-balls and hence f
would range in one such ball on a subset of positive measure in X, which contradicts
the definition of 7. (See [GW16] for more context.)

One of the earliest examples of an ergodic action is the Bernoulli shift, defined
as follows. Let X be a standard probability space and consider the countable power
Y = XZ. Then the shift of coordinates is an ergodic Z-action on Y'; this is essentially
the same statement as Kolmogorov’s zero-one law. It follows that the diagonal action
on any power Y¢ is also ergodic, because Y¢ = (XZ%)? can be identified with (X%)%
in a Z-equivariant manner. Considering 2d instead of d, we can therefore upgrade
this classical ergodicity to ergodicity with separable coefficients, using the argument
recalled above.

2.2 Amenable actions and co-amenable subgroups. In the proof of The-
orem 3, we shall use the terminology of amenable actions in Zimmer’s sense in the
setting of a countable group G with a non-singular action on a standard probability
space X.

To give context for Zimmer’s definition, we first recall that the group G is
amenable if and only if every convex compact G-set K # & (in a Hausdorff locally
convex G-module) has a G-fixed point; we can moreover assume that the ambient
space is the dual of a Banach G-module in the weak-* topology, and for countable
G it suffices to consider duals of separable spaces; see e.g. [Zim78, Prop. 1.5].

Zimmer’s definition of the amenability of the G-action on X is the corresponding
fixed-point property for the following specific subclass of G-sets K depending on
X. We refer to [Zim78] or to [Zim84, §4] for background and underlying technical
definitions (but we use left actions and cocycles where Zimmer works from the right).
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Start with a measurable field of convex weak-* compact K, # @ (over x € X) in
the unit ball of some dual of a Banach space and with a cocycle action over G x X
instead of a G-action. Thus, for every g € GG and a.e. x € X there is a continuous
affine transformation «a(g,z): K; — Kg;. We then obtain a convex compact G-set
K = L*(X, K,) of measurable sections s, where the topology is the weak-* topology
and the G-action is the a-twisted action (g.s)(z) = a(g~t,z) " ts(g~ ).

By definition, the non-singular G-action on X is amenable in Zimmer’s sense if G
has a fixed point in any convex compact G-set K = L (X, K,) as above. The point
here is that a section is a G-fixed point exactly when it is a-equivariant as a map;
compare [Zim84, 4.3.1]. The following are standard properties of these definitions.

LEMMA 7. (i) Consider Zimmer-amenable actions of G; on X; for i = 1,2. Then
the product action of G1 X G2 on X1 X Xo is Zimmer-amenable.

(ii) Suppose that G is the union of an increasing sequence of subgroups G, < G,
n € N. A non-singular action of G is Zimmer-amenable if the corresponding action
of every Gy, is Zimmer-amenable.

Proof. Both statements follow readily from Zimmer’s original definition. They also
both follow from the equivalent characterisation given in [AEG94, Thm. A(v)]. O

Next, we combine these two facts and consider infinite products of non-singular
G-spaces. Some care is required since an infinite product of non-singular transforma-
tions is a priori singular, unless the measure is actually invariant, which is never the
case in our context unless G itself is amenable. We avoid this obstacle by endowing
the infinite product of spaces with an action of the restricted product of groups.

COROLLARY 8. For each integer n, let G, be a countable group with a Zimmer-
amenable non-singular action on a standard probability space X,,. Then the action
of the restricted product €@,, Gy, on the (unrestricted) product [], X, is a Zimmer-
amenable non-singular action on a standard probability space.

Proof. The action is indeed non-singular since any given group element acts on only
finitely many coordinates. Consider first a product of finitely many G, acting on the
full product ], X,. This action in Zimmer-amenable by the first point of Lemma
7, grouping together all coordinates X, without action into a single factor. Next,
view @,, G\, as an increasing union of finite products and apply the second point of
Lemma 7. O

We now observe that there is a nice interplay between Zimmer-amenability and
Eymard’s notion of co-amenability [Eym72]. Recall that a subgroup H < G is co-
amenable in G if there is a G-invariant mean on GG/H; another equivalent condition
is recalled in the proof below.

PROPOSITION 9. Let G be a countable group with a non-singular action on a stan-
dard probability space X . Let H < G be a co-amenable subgroup. If the corresponding
H-action on X is Zimmer-amenable, then so is the G-action.
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Proof. At the beginning of this section, we recalled the characterisation of amenabil-
ity in terms of convex weak-* compact G-sets K in dual Banach G-modules. We
further recalled that for countable G it suffices to consider duals of separable spaces.
All this generalises to co-amenability: a subgroup H < G is co-amenable if this con-
dition holds for the subclass of those G-sets K which have an H-fixed point (this
follows from [Eym72, no. 2 §4]).

If we combine this with the definition of Zimmer-amenability recalled above, then
we obtain precisely the conclusion of the proposition. O

Since we just recalled the definition(s) of co-amenability, we can see how this
notion is relevant to condition (5) in Corollary 5:

ProprosiTION 10. Let G be any group and Gy < G a subgroup.

If every finite subset of G is contained in some conjugate of Go, then Gq is
co-amenable in G.

This holds more generally if every finite subset of a fized co-amenable subgroup
G1 < G s contained in some G-conjugate of Gy.

The more general form above is relevant to the additional statement in Corollary
5 by setting G; = G®); indeed G®) is co-amenable in G since it is normal with
soluble quotient.

Proof of Proposition 10. Let K be a convex compact G-set containing some Gy-fixed
point k. We need to prove that K has a G-fixed point, but it suffices to show that
it has a G1-fixed point since the latter is co-amenable in G. Given any finite subset
F of Gy, let gr € G be an element conjugating F' into Go. Then grk is fixed by the
group generated by F. Consider grk as a net indexed by the directed set of all finite
subsets F' of G1. Then any accumulation point of this net in the compact space K

will be fixed by G. O

The connection between co-amenability and bounded cohomology is the following
basic fact. A proof can be found e.g. in [Mon01, Prop. 8.6.6] and actually it provides
a characterisation of co-amenability, see [MP03, Prop. 3]. (There is a countability
assumption in [Mon01, Prop. 8.6.6] but it is not needed nor used.)

ProprosITION 11. Let G be a group, Go < G a co-amenable subgroup and E a dual
Banach G-module. Then the restriction map

H}(G, E) — H} (G, E)
18 injective. O

2.3 Vanishing for countable wreath products. Let G be a countable group,
W = G Z the (restricted) wreath product and E a separable dual W-module.

Let further X be any standard probability space with a non-singular G-action
which is amenable in Zimmer’s sense. One can for instance simply take X to be G
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itself, endowed with any distribution of full support. The countable power Y = X% ig
a standard probability space with a non-singular action of @,,., G which is Zimmer-
amenable by Corollary 8. We let Z act on Y by shifting the coordinates; that is, Y
is the X-based Bernoulli shift. Combining the two actions, we have thus endowed Y
with an action of the (restricted) wreath product W = G Z.

The subgroup €p,,.z G is co-amenable in W since it is a normal subgroup with
amenable quotient. Therefore, the above discussion allows us to apply Proposition
9 and conclude that the W-action on Y is Zimmer-amenable.

According to [BM02, Thm. 2] or to [Mon01, Thm. 7.5.3], the bounded cohomology
of W with coefficient in E is realised by the complex of W-equivariant measurable
bounded function classes

0— LY, E)Y — LY BV — L®(Y3 E)Y — ...

with the usual “simplicial” Alexander—Kolmogorov—Spanier differentials. (The gen-
eral references above specify that measurability is in the weak-* sense, but this is
irrelevant here, see [Mon01, Lem. 3.3.3].)

The discussion of Sect. 2.1 shows that the Z-equivariant elements of L= (Y%, E)
are essentially constant, and hence so is every element of LOO(Yd, E)YW . 1t follows
that the latter space consists of all essentially constant maps ranging in E". Since
the simplicial differentials are alternating sums of the map omitting each variable, we
conclude that the above complex of W-equivariant maps is acyclic except possibly
in degree zero, where its cohomology is E"'. This completes the proof of Theorem
3 when G is countable.

2.4 To Ny and beyond. We imposed a countability assumption on our groups
in order to be able to apply standard ergodic methods straight out of the shipping
box. There does not appear to be a deeper reason that countability should be needed.
In any case, the following general principle will allow us to reduce Theorem 3 to the
countable case.

PRrOPOSITION 12. Let G be any group and E a separable dual Banach G-module.
Suppose that every countable subset of G is contained in a subgroup G1 < G such
that HY(G1, E) vanishes for all n > 0.

Then Hy (G, E) vanishes for all n > 0.

Since the classical examples of boundedly acyclic groups were precisely large,
uncountable, groups, we single out the following particular case of Proposition 12.

COROLLARY 13. Let G be any group. Suppose that every countable subset of G is
contained in some boundedly acyclic subgroup of G.
Then G is boundedly acyclic. O

Proof of Proposition 12. Consider a group J and a separable Banach J-module FE
which is the dual of some Banach J-module F. The key claim is that H}(J, E)
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vanishes for all n. > 0 if and only if the £'-homology HY (.J, F') vanishes for all n > 0.
This fact then implies the proposition when we apply it to both G and Gy, viewing
E also as a dual Banach Gi-module, because any given ¢'-chain is supported on a
countable set.

The claim is established as [MMS85, Cor. 2.4(iii)] in the special case of E trivial,
which is sufficient for Corollary 13.

In the general case, we recall first that H(J, E) vanishes for all n > 0 if and
only if the following two conditions hold: first, HY (J, F) vanishes for all n > 0;
second, Hél(J, F') is Hausdorff. This equivalence relies on the closed range theo-
rem and was already established by Johnson [Joh72, Cor. 1.3], see also [MMS5,
Cor. 2.4(i),(ii)]. Moreover, the second condition is equivalent to H (.J, E) being Haus-
dorff, see [MM85, Thm. 2.3]

In conclusion, it certainly suffices to prove H%(J, E) = 0. This amounts to showing
that every affine isometric action with bounded orbits on a separable dual Banach
space admits a fixed point. That statement is a variant of the Ryll-Nardzewski
theorem. Specifically, it is the case (c) in Bourbaki’s account, Appendix 3 to part IV
of [Bou87]. Warning: the English translation incorrectly requires first countability
for the norm of E, which is both empty and insufficient, whereas the proof and the
French original correctly use second countability, which here is just the separability
of E that we assumed. O

End of proof of Theorem 3. Let G by an arbitrary group and S C G{Z a countable
subset of the wreath product. Then there is a countable subgroup G of G such that
GG11Z contains S. In consequence, Proposition 12 allows us to reduce the general
case to the case of wreath products of countable groups. O

3 Self-Similar Situations

It is shaped, sir, like itself; and it is as broad as it hath breadth: it is just so
high as it is, and moves with its own organs

Shakespeare, Antony and Cleopatra, Act 2, Scene 7

We now consider the situation where a group contains a suitable supply of copies
of a given co-amenable subgroup; in particular the case of Corollaries 5 and 6 where
the replicating subgroup also progressively swallows the entire ambient group, eating
it up from the inside.

Proof of Theorem /. Let G be a group, Gy < G a co-amenable subgroup and suppose
that G contains an element g such that Gy commutes with its conjugate by ¢” for
every p > 1. Let further F be a separable dual Banach G-module.

Let W1 < G be the subgroup generated by Gy and g. Then Wj is co-amenable
in GG since it contains Gy. Therefore, by Proposition 11, it suffices to show that
H}(Wy, E) vanishes for all n > 0.
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There is a natural map from the wreath product W = Gyl Z onto W1 mapping
1 € Z to g. Indeed, the commutativity assumption implies that the conjugates of
G by ¢P and by ¢g?¢ commute for all p # ¢ in Z. Therefore, there is a natural map
from the restricted product @, Gy to the subgroup of G generated by all those
conjugates. If we further map Z to the subgroup generated by g with 1 — g, then
the definition of semi-direct products yields the desired morphism of W onto Wj.

This turns E into a W-module and Theorem 3 implies the vanishing of HY (W, E).
It only remains to justify that the inflation

HY (W1, B) — H(W. E)

is injective. By construction, the kernel of the projection W — Wj is metabelian
and hence amenable. This implies that the inflation is an isomorphism (see [Nos91,
Thm. 1] or [Mon01, Rem. 8.5.4]) and thus Theorem 4 follows. O

Proof of Corollary 5. Let G be a group, E a separable dual Banach G-module and
Gy < G a subgroup. To prove the general case of Corollary 5, we can assume the
following.

(i) Every finite subset of a (fixed) co-amenable subgroup G; < G is contained in
some G-conjugate of Gy.

(ii) G contains an element g such that Gy commutes with its conjugate by ¢? for
every p > 1.

In view of Proposition 10, the first condition implies that Gg is co-amenable in
G. Therefore, we are in a position to apply Theorem 4 and hence Corollary 5 is
established. 0

Proof of Corollary 6. We are given a group G acting faithfully on a set Z, an element
g € G and a subset Zy C Z such that:

(i) every finite subset of G can be conjugated so that all its elements are supported
in Zo;
(ii) ¢gP(Zy) is disjoint from Zy for every integer p > 1.

Define Gy < G to be the subgroup consisting of all elements of G supported
in Zy. The first assumption implies that every finite subset of G is contained in
some conjugate of Gg. Since G acts faithfully, the second condition implies that Gg
commutes with its conjugate by ¢ for all p > 1. Thus Corollary 6 follows indeed
from Corollary 5. a

We can now apply this result to the case of Thompson’s group F. Since this
group has a number of very different descriptions linking it to interesting objects in
homotopy, algebra and combinatorics, we should specify which description of F' we
work with. We consider F' to be the group of piecewise affine homeomorphisms of
[0, 1] with dyadic breakpoints and slopes in 2%. We refer to [CFP96] for background.
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Proof of Theorem 2 and hence also of Theorem 1. We work with the derived sub-
group F’ of F, which is sufficient by Proposition 11. Recall that F’ consists of all
elements of F' with trivial germs at 0 and 1 [CFP96, Thm. 4.1].

Choose a non-trivial element g € F’ and choose a dyadic point g € (0,1) not
fixed by g. Let Z be the F’-orbit of 2y (which happens to consist of all dyadic points
of (0,1)). Define Zy to be the open interval determined by xg and g(zp), which is
non-empty by construction.

The first condition of Corollary 6 is satisfied by the transitivity properties of the
F'-action: any interval strictly contained in (0, 1) can be shrunk into Z (compare e.g.
the proof of Cor. 2.3 in [CM09]). More precisely, F' acts transitively on increasing n-
tuples of dyadic points in (0,1) [CFP96, Lem. 4.2]; in particular, F’ acts transitively
on increasing pairs of dyadic points in (0, 1), which implies the claimed shrinking.

The second condition follows from the fact that g preserves the order on (0,1).
In conclusion, we are in a situation to appeal to Corollary 6 and thus complete the
proof of Theorem 2 and hence also of Theorem 1. O

(The reader might notice that this reasoning, when brought all the way back to
the underlying wreath product subgroup of F', is an improvement of our comments
in Section 6.C of [Mon10].)

The above argument hold for a group of similar self-similar groups since it only
relies on the abstract statement of Corollary 6; as mentioned in the introduction,
this includes all piecewise-projective groups of homeomorphisms of the line that have
sufficiently transitive orbits.

4 Further Comments

4.1 More acyclicity. First, we should recall that many examples of boundedly
acyclic groups (with trivial coefficients) have been discovered, starting with the
theorem of Matsumoto—Morita [MMS85]. Recent examples include, among others,
[Loh17], [FFLM21a], [FFLM21b], [MN21]. A very nice general criterion, but for
degree two only, is given in [FFL21].

Furthermore, boundedly acyclic groups can be used as a tool in results aiming
to determine non-trivial bounded cohomology of larger groups. This has recently
led to the complete computation of the bounded cohomology of some groups that
are not boundedly acyclic [MN21]. These methods, or the methods of [FFLM21a,
§6], can now leverage Theorem 1 above to establish that the bounded cohomology
of Thompson’s circle group T is generated by the bounded Euler class, in perfect
analogy to the result of [MN21] about the entire group of (orientation-preserving)
homeomorphisms of the circle. By contrast, the usual cohomology of T' (and of F')
is richer and completely described in [GS87].

4.2 More lamplighters. In the proof of the vanishing for wreath products, the
only properties of Z that we used were that it is infinite and amenable. Therefore,
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the same results holds more generally for all (restricted) wreath products G T as
long as I is infinite amenable.

A closer examination of the proof also shows that it holds for suitable permuta-
tional wreath products where Z is replaced by an amenable group with a permuta-
tion action having only infinite orbits; the ergodicity of the corresponding generalised
Bernoulli shifts is recorded e.g. in [KT08, Prop. 2.1].

These generalisations can in turn be used to extend the statements of Theorem 4
and of Corollary 5. Specifically, instead of a single element g and the corresponding
commuting conjugates Ggp, it suffices to assume there is some infinite amenable
subgroup I' < G such that the I'-conjugates of Gy commute pairwise. We can proceed
similarly to generalise Corollary 6.

4.3 No more coefficients.  As recalled in the introduction, Theorem 3 does
not hold without the separability assumption on the dual module F. Indeed, in that
case the vanishing of H!(—, F) for all n > 0 is equivalent to amenability. (Theorem
3 does hold for some very specific non-separable modules such as the semi-separable
case introduced in [Mon10], but only because they can be reduced to the separable
case.)

A very concrete example, not relying on the huge coefficient module witnessing
non-amenability in general, is as follows. Choose a group G with HZ(G) # 0, for
instance a free group of rank two. Then, by inflation, H%( D, G) is also non-zero.
It follows by cohomological induction [Mon01, §10.1] that

H(G12.6(2)) A0,

where G Z acts on (°°(Z) by translation via the quotient morphism G1Z — Z.
The only circumstance preventing a contradiction with Theorem 3 is that the dual
Banach module ¢*°(Z) is not separable.

We mention here that Grigorchuk asked about the vanishing of H(F, E) for all
n > 2 and all dual E, see Problem 3.19 in [Gri95]. This is a priori a weakening of
amenability, first considered by Johnson in §10.10 of [Joh72]. However, it was shown
in [Mon06, Cor. 5.10] that this condition is in fact also equivalent to amenability;
this result relies on the Gaboriau-Lyons theorem [GLO09].

The condition that E be dual cannot be removed either (even when keeping
it separable). Indeed it is well-known that the vanishing of H] (G, E) for all Ba-
nach modules characterises finite groups G. This follows by applying the cohomo-
logical long exact sequence (for bounded cohomology) to the submodule inclusion
0§(G) — (1(G), where £}(G) denotes the summable functions with vanishing sum.
This module is separable when G is countable.

4.4 Amenability vs. Ergodicity. It is a remarkable fact (in the author’s opin-
ion) that every group admits a Zimmer-amenable space X which is doubly ergodic
with separable coefficients. An early proof is found in [BM99, BM02] and the most
luminous argument is in [Kai03]. This cannot be extended to higher ergodicity in
general precisely because non-trivial bounded cohomology provides an obstruction.
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This fact, together with the observation that the amenability of F' is equivalent
to the Zimmer-amenability of the T-action on the circle, has prompted us to ask
whether non-amenable groups can have Zimmer-amenable actions that are multiply
ergodic far beyond two factors, see Problem H in [Mon06]. The construction of
Sect. 2.3 shows that this is indeed possible.
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