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Abstract

The topic of this thesis is the development of new algorithmic reconstruction methods
for quantitative phase imaging (QPI). In the past decade, advanced QPI has emerged as
a valuable tool to study label-free biological samples and uncover their 3D structural
information. This unique tool takes advantage of the scattering of light that results from
the complex interplay between the incident electromagnetic wave and the specimen of
interest. Yet, the reconstruction process presents numerous challenges in part due to the
nonlinear nature of light scattering.

In this thesis, we investigate an accurate nonlinear wave-propagation model that relies
on the Lippmann-Schwinger (LiSc) equation and apply it to 3D QPI within a variational
framework. Our first contribution is a proper discretization of LiSc and a computationally
efficient implementation of the nonlinear model.

Using our novel forward model, we formulate an inverse-scattering problem within a
modern variational framework and solve it to recover the 3D refractive-index (RI) map
of a sample when the measurements are complex-valued. In such a setting, the sample
is probed with a series of tilted incident waves, while the complex-valued waves are
recorded for each illumination. Our algorithmic reconstruction involves a nontrivial
proximal gradient-based iterative scheme that requires the Jacobian matrix of the
nonlinear operator, for which we are able to derive an explicit expression. By accounting
for multiple scattering and adding suitable prior knowledge, our results show that we
significantly improve the quality of reconstruction over the state of the art.

We then adapt our LiSc model to intensity-only measurements, which has the advantage
of simplifying the acquisition setup. We solve this harder inverse problem by leveraging
recent advances in proximal algorithms. Our method obtains RI maps with a quality
similar to that obtained from complex measurements.

Finally, we propose an extension of single-molecule localization microscopy. This modality
delivers nanoscale resolution by sequentially activating a subset of fluorescent labels and
by extracting their superresolved position. The emission patterns of each label can be
distorted by the sample, which reduces the localization accuracy if not accounted for.
Here, we exploit those sample-induced aberrations to recover the RI map. We propose
an optimization framework in which we reconstruct the RI map using LiSc and optimize
the label positions in a joint fashion. Our results show that we effectively recover the RI
map of the sample and further improve the localization.

Keywords: Quantitative phase imaging, nonlinear inverse problem, optical diffraction
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tomography, Lippmann-Schwinger equation, computational microscopy, single-molecule
localization microscopy
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Résumé

Le sujet de cette these est le développement de nouvelles méthodes de reconstruction algo-
rithmique pour I'imagerie quantitative de phase (IQP). Au cours de la derniére décennie,
1IQP s’est imposée comme un précieux outil pour étudier des spécimens biologiques sans
marqueur et découvrir leurs informations structurelles tridimensionnelles (3D). Cet outil
unique exploite la dispersion de la lumiere qui résulte de l'interaction complexe entre
l'onde électromagnétique incidente et le spécimen étudié. Cependant, le processus de
reconstruction présente de nombreux défis, notamment en raison de la nature non-linéaire
de la dispersion de la lumieére.

Dans cette these, nous étudions un modele non-linéaire de propagation des ondes de haute
fidélité qui repose sur I’équation de Lippmann-Schwinger (LiSc) et nous I’appliquons &
I'IQP 3D dans un cadre variationnel. Notre premiére contribution est une discrétisation
appropriée de LiSc et une implémentation efficace du modele non-linéaire.

A laide de notre nouveau modéle physique, nous formulons un probléme de dispersion
inverse dans un cadre variationnel moderne et le résolvons pour reconstruire le volume
d’indice de réfraction (IR) 3D d’un spécimen lorsque les mesures sont a valeur complexe.
Dans un tel contexte, le spécimen est sondé avec une succession d’ondes incidentes a
orientations variées, tandis que les ondes a valeur complexe sont mesurées pour chaque
illumination. Notre reconstruction algorithmique implique un schéma itératif non trivial
basé sur le gradient proximal qui nécessite la matrice jacobienne de I’opérateur non-linéaire,
dont nous sommes capables d’en dériver une expression explicite. en tenant compte de la
dispersion multiple et en ajoutant des connaissances préalables appropriées, nos résultats
montrent que nous améliorons considérablement la qualité de la reconstruction par
rapport a I’état de 'art.

Nous adaptons ensuite notre modele LiSc aux mesures d’intensité uniquement, ce qui
présente 'avantage de simplifier la configuration du systéme d’acquisition. Nous résolvons
ce probleme inverse plus difficile en tirant parti des progrés récents des algorithmes
proximaux. Notre méthode permet d’obtenir des volumes d’IR d’une qualité similaire a
celle obtenue a partir de mesures complexes.

Enfin, nous proposons une extension de la microscopie de localisation de molécules
isolées. Cette modalité permet d’obtenir une résolution a 1’échelle nanométrique en
activant séquentiellement un sous-ensemble de marqueurs fluorescents et en extrayant
leur position superrésolue. Les patterns d’émission de chaque marqueur peuvent étre
déformés par le spécimen, ce qui réduit la précision de la localisation. Ici, nous exploitons
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Résumé

ces aberrations induites par le spécimen pour récupérer le volume d’IR. Nous proposons
un schéma d’optimisation dans lequel nous reconstruisons le volume d’IR en utilisant LiSc
et optimisons la position des marqueurs de maniere simultanée. Nos résultats montrent
que nous pouvons reconstruire le volume d’IR du spécimen et que nous améliorons la
localisation.

Mots-clés : Imagerie quantitative de phase, probleme inverse non-linéaire, tomographie
par diffraction optique, équation de Lippmann-Schwinger, microscopie computationnelle,
microscopie a localisation de molécules isolées.
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Notations

Scalars and continuously-defined functions are denoted by italic letters (e.g., n € R,
g € Ly(R)). The complex conjugate of v € C is denoted by v*. Vectors and matrices
are denoted by bold lowercase and bold uppercase letters, respectively (e.g., f € RY,
G € CV*N). For a vector f € RV ||f|| stands for its fo-norm. Other p-norms will be
specified with an index (i.e., || - ||,). The nth element of a vector is denoted as f[n] or
fn. Similarly, the nth column of a matrix X € RM*V is denoted as x, or [X],. The
notation G refers to the conjugate transpose of the matrix G € CN*V,

We denote by F the discrete Fourier transform (DFT) defined in 1D by (Fv)[k] =
SN2 i VInle R (

the 1D DFT along each dimension). The notations f and T refer to the continuous Fourier

The higher-dimension DFT follows by recursive application of

transform of f and the discrete Fourier transform of f, respectively. Alternatively, F{ - }
and F~1{ - } denote the continuous Fourier transform and its inverse, respectively.
The reflection operator of a vector is denoted as f¥. The matrix Iy € RV*V is the
identity matrix and diag(f) € RV*V is a diagonal matrix formed out of the entries
of f € RN, The notation 13, = (1,1,...,1) € RM stands for an M-length vector of ones.
Similarly, 0a; denotes a vector of M zeros.

Finally, %, ®, and © stand for discrete convolution, Hadamard product and pointwise

division, respectively, and [1; N] :=[1...N].






Abbreviations

QPI
3D

RI
oDT
LiSc
LSm
SMLM
FRC
DFT
BPM
IBA
SSNP
MLB
SEAGLE

2D
DHM
FP
DDA
GS

CG
BiCG
NAGD
TV

HS
FBS
SNR
ADMM
LFR
SSIM
RMSE

quantitative phase imaging
three-dimensional

refractive index

optical diffraction tomography
Lippmann-Schwinger
Lippmann-Schwinger based model
single-molecule localization microscopy
Fourier ring-correlation

discrete Fourier transform

beam propagation method

iterative Born approximation
split-step non-paraxial method
multi-layer Born model

series expansion with accelerated gradient descent
on Lippmann-Schwinger equation
two-dimensional

digital holography microscopy

Fourier ptychography

discrete dipole approximation
Gerchberg-Saxton

conjugate-gradient method
biconjugate-gradient stabilized method
Nesterov accelerated gradient descent
total variation seminorm
Hessian-Schatten seminorm
forward-backward splitting
signal-to-noise ratio

alternating direction method of multipliers
light-field refocusing

structural similarity index measure
root-mean-square error
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PUMA
IRTV
CNN
PUDIP
GA

LS
RSNR
SLM
MSE
RMSMD
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phase unwrappping max-flow /min-cut
iteratively reweighted total variation
convolutional neural network

phase unwrapping with deep image prior
Goldstein’s algorithm

Least-squares algorithm

regressed signal-to-noise ratio

spatial light modulator

mean-square error
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Introduction

Computational microscopy is a research field at the intersection of optics and computer
science. It tightly integrates the design of acquisition apparatus with algorithmic re-
constructions to reveal otherwise-inaccessible information. By relying on such synergy,
quantitative phase imaging (QPI) uncovers the three-dimensional (3D) structural infor-
mation of label-free biological samples. The topic of this thesis is the development of
new algorithmic reconstruction methods for QPI. In this introduction, we first give an
overview of the scientific context in which this thesis takes place and we then summarize
our contributions.

Background

Optical microscopes are essential tools for observing objects that are too small to be seen
by the naked eye. Since their rise in the late 19th century, these instruments have played
a central role in scientific discoveries with a tremendous impact on our understanding of
diseases, and are now commonly used in medicine and biology.

These apparatus generate magnified images by illuminating objects with visible light and
by using a system of lenses. There are two main categories: incoherent and coherent
microscopes. Incoherent microscopy relies on fluorescent emitters to generate images.
The ability to label specific structures makes it the main imaging tool for cell biology,
but the usage of exogenous agents and intense illuminations can alter the physiology of
the specimens. On the other hand, coherent microscopy obtains images by collecting
the light shone on the sample, which makes it a label-free microscopy. In the earliest
coherent techniques, image contrast arose from the absorption of light by the sample.
However, most biological cells and tissues are transparent in the sense that they do not
absorb light significantly and thus exhibit very low contrast, i.e., their structures show
little difference from the background.

Transparent objects were rendered visible only after the pivotal contribution of Zernike in
the 1940s [1]. Zernike’s phase-contrast microscope generates images from light scattering.
Instead of absorbing light, structures in biological specimens recess the speed of light
unevenly, which causes light scattering. Therefore, contrast stems from the refractive
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index (RI) inhomogeneity in the specimen, as RI of a material affects the speed of light
through the material. Awarded the Nobel Prize in 1953 for his invention, Zernike may
not have anticipated that phase-contrast microscopy would be the precursor of the active
research field of QPI.

QPI encompasses a family of coherent microscopes that extracts quantitative information
about the sample from light scattering, and has seen exciting applications in neuro-
science and in biomedical studies [2, 3]. It has the ability to reveal nanoscale features
of transparent samples in two or three dimensions [2], which makes it an appealing
and complementary approach to fluorescence imaging modalities [4]. Further, in QPI,
samples can be studied over an arbitrary period of time without the limitations of
photobleaching and phototoxicity. By varying the characteristics of the illuminations,
optical diffraction tomography (ODT)—a subfield of QPI—even uncovers the 3D RI
maps of samples from a collection of 2D complex-valued measurements. ' These 3D RI
maps are algorithmically reconstructed by resolving an inverse-scattering problem [8, 9],
which requires numerical modelling of the acquisition process. This essentially involves
models of light scattering (Chapter 1).

Early works deployed simplified physical models in the search for computational effi-
ciency [8-11], which led to a desirable linear relation between the quantity of interest and
the measurements. However, these models are approximative and thus cannot achieve
accurate reconstructions of more strongly scattering samples (e.g., thicker).

More recent works circumvented this limitation by partially accounting for the nonlinear
nature of light scattering [12, 13]; more specifically, for multiple-scattering events. RI
maps reconstructed from these nonlinear models exhibited remarkable improvements
over the ones obtained from linear models. These results showed that, although these
nonlinear models come at the cost of a computational burden, they can dramatically
improve the quality of reconstruction in QPI. However, the existing methods do not
capture all the multiple-scattering events or reflections, which hinders the imaging of
even more strongly-scattering samples. This calls for more accurate models to achieve
higher quality in such configurations.

Another challenge in ODT is ill-posedness—a common issue in inverse problems—in
the sense that there exist several solutions (i.e., RI maps) that produce similar mea-
surements. The effects of such ill-posedness are exacerbated in ODT by the so-called
missing-cone problem, which results in an axial resolution that is worse than the lateral
resolution (Chapter 2). To circumvent ill-posedness, the standard practice is to promote
solutions with desirable properties by regularizing the RI map. This strategy has been
deployed for QPI with classical regularization schemes [12, 14, 15], but the particular-

In ODT, 2D complex measurements are acquired by interferometric apparatus such as digital
holography microscopy, which requires a careful design of the imaging system. Alternatively, ODT from
intensity-only measurements has the advantage of simplifying the acquisition apparatus [5-7]. However,
this simplification makes the corresponding inverse-scattering problem more challenging (Chapter 2).
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ity of the missing-cone problem offers a unique opportunity to design dedicated and
better-performing regularization techniques.

Contributions

This thesis contributes to the field of QPI at different levels. A central theme is the quest
for higher quality of reconstructions and efficient implementation of the deployed methods.
To achieve this objective, we develop more accurate models of the acquisition process and
efficient reconstruction algorithms including novel learning-based regularization schemes.
We consistently formulate our inverse problems within a variational framework. By doing
so, we are able to leverage strong commonalities between our works, at the mathematical

and implementation levels.

The roadmap of the thesis is displayed in Fig. 1. We hereafter summarize our contributions
and refer to the relevant chapters and related publications.

Accurate Discretization of the Lippmann-Schwinger (LiSc) Equation (Chap-
ter 3)

Under the theory of scalar diffraction, the LiSc equation governs light scattering. We
properly discretize the LiSc equation and propose a computationally efficient implementa-
tion of the obtained nonlinear LiSc based model (LSm). Our method effectively achieves
higher accuracy than existing models while mitigating the computational burden.

Related Publications

E. Soubies, T.-a. Pham, and M. Unser, “Efficient inversion of multiple-scattering model for
optical diffraction tomography”, Optics Express, vol. 25, no. 18, pp. 21 786—21 800, 2017. DOI:
10.1364/0e.25.021786

T.-a. Pham, E. Soubies, A. Ayoub, J. Lim, D. Psaltis, and M. Unser, “Three-dimensional optical
diffraction tomography with Lippmann-Schwinger model”, IEEE Transactions on Computational
Imaging, vol. 6, pp. 727-738, 2020. por: 10.1109/t¢i.2020.2969070

ODT from Complex Measurements (Chapter 4)

Using our novel forward model, we formulate an inverse-scattering problem within a
modern variational framework and solve it to recover the 3D RI map of the sample
when the measurements are complex-valued. Our algorithmic reconstruction involves a
nontrivial proximal gradient-based iterative scheme that requires the Jacobian matrix
of the nonlinear operator, for which we are able to derive an explicit expression. By
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Figure 1: Roadmap of the thesis.

accounting for multiple scattering and adding suitable prior knowledge, we significantly
improve the quality of reconstruction over the state of the art.

Further, we develop a novel adaptive regularization scheme that mitigates the effects
of the missing-cone problem [18]. Our dictionary-learning-based approach learns 2D
features of the lateral planes from the specimen and promotes such features on all the
planes.

Related Publications

E. Soubies, T.-a. Pham, and M. Unser, “Efficient inversion of multiple-scattering model for
optical diffraction tomography”, Optics Express, vol. 25, no. 18, pp. 21 786—21 800, 2017. DOTI:
10.1364/0e.25.021786
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T.-a. Pham, E. Soubies, A. Ayoub, J. Lim, D. Psaltis, and M. Unser, “Three-dimensional optical
diffraction tomography with Lippmann-Schwinger model”, IEEE Transactions on Computational
Imaging, vol. 6, pp. 727-738, 2020. por: 10.1109/t¢i.2020.2969070

T.-a. Pham, E. Soubies, A. Ayoub, D. Psaltis, and M. Unser, “Adaptive regularization for three-
dimensional optical diffraction tomography”, in Proceedings of the Seventeenth IEEE International
Symposium on Biomedical Imaging (ISBI’20), Iowa City 1A, USA, 2020, pp. 182-186

ODT from Intensity-only Measurements (Chapter 5)

We propose a versatile reconstruction framework to tackle the corresponding inverse-
scattering problem with any physical model. We split the optimization task in a way
that decouples the complex-field-based reconstruction from the phase retrieval. This
allows us to take advantage of our previous contributions and of proximity operators
for phase retrieval [19]. In our experiments, we reconstruct RI maps from intensity-only
measurements with quality similar to the ones recovered from complex measurements.
This shows that, in some settings, intensity information is sufficient for recovering RI

maps.

Related Publications

T.-a. Pham, E. Soubies, A. Goy, J. Lim, F. Soulez, D. Psaltis, and M. Unser, “Versatile
reconstruction framework for diffraction tomography with intensity measurements and multiple
scattering”, Optics Express, vol. 26, no. 3, pp. 2749-2763, 2018. por: 10.1364/0e.26.002749
T.-a. Pham, E. Soubies, J. Lim, A. Goy, F. Soulez, D. Psaltis, and M. Unser, “Phaseless
diffraction tomography with regularized beam propagation”, in Proceedings of the Fifteenth IEEE
International Symposium on Biomedical Imaging: From Nano to Macro (ISBI’18), Washington
DC, USA, 2018, pp. 1268-1271

Single-Molecule Localization Microscopy (SMLM) Meets ODT (Chap-
ter 6)

SMLM is an incoherent microscopy technique that delivers nanoscale resolution by
sequentially activating a subset of fluorescent labels and by extracting their superresolved
position algorithmically. The emission patterns of each label can be distorted by the
sample, which reduces the localization accuracy if not accounted for. Here, we exploit
those sample-induced aberrations to recover the RI map. We propose an optimization
framework in which we reconstruct the RI map using LSm and optimize the label positions
in a joint fashion. In our numerical experiments, we effectively recover the RI map of
the sample and further improve the localization—the primary objective of SMLM. Our
results lay the foundation of an exciting and novel extension of SMLM.
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Related Publications

T.-a. Pham, E. Soubies, F. Soulez, and M. Unser, “Optical diffraction tomography from single-
molecule localization microscopy”, Optics Communications, vol. 499, p. 127290, 2021. pDOI:
10.1016/j.optcom.2021.127290

T.-a. Pham, E. Soubies, F. Soulez, and M. Unser, “Diffraction tomography from single-molecule
localization microscopy: Numerical feasibility”, IEEFE International Symposium on Biomedical

Imaging, 2021

Phase Unwrapping with Deep Image Prior (PUDIP) (Chapter 7)

When acquired by an interferometric setup, the phase of 2D complex measurements is
wrapped (i.e., modulo 27). In ODT from complex measurements, we usually have to
unwrap such 2D phase images from their wrapped counterparts. To tackle challenging
cases such as phase images of organoids, we propose an untrained deep-learning-based
method, which incorporates an explicit feedback mechanism. Our comparisons show that
our method significantly outperforms the state of the art. While unwrapping challenging
2D phase images has its own merits, this approach also paves the way for ODT for large
samples (e.g., organoids) with higher reliability.

Related Publication

F. Yang, T.-A. Pham, N. Brandenberg, M. P. Lutolf, J. Ma, and M. Unser, “Robust Phase
Unwrapping via Deep Image Prior for Quantitative Phase Imaging”, IEEE Transactions on Image
Processing, vol. 30, pp. 7025-7037, 2021. por: 10.1109/tip.2021.3099956

Metrics for ODT and SMLM (Chapter 8)

In this chapter, our first contribution is a metric with no ground-truth requirement for
ODT reconstructions, which could be of use for biological samples. Then, we leverage
the unique features of SMLM (i.e., list of estimated positions, image rendering) to
investigate metrics from new perspectives. Building upon a broad benchmarking of
localization software packages [25], we propose a novel optimal-transport-based metric
for SMLM which captures both detection and localization performance and relies on solid
mathematical foundations. Finally, we derive a closed-form expression of the Fourier
ring-correlation (FRC) for the particular case of SMLM, which allows us to investigate
the classical way of computing FRC (i.e., SMLM image rendering and discrete Fourier
transform (DFT)).
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Commaunications, p. 124486, 2019. por: 10.1016/j.optcom.2019.124486
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metric for SMLM?”, in Proceedings of the Eighteenth IEEE International Symposium on Biomedical
Imaging (ISBI’21), Nice, French Republic, 2021, pp. 797-801
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I} Physics of Wave Propagation:
Let There Be Light Scattering

Light scattering plays a key role in QPI. This physical phenomenon is governed by the
Maxwell equations, which describe light as vectorial electromagnetic fields. The theory
of scalar diffraction has the tremendous advantage of simplifying such vectorial fields
to complex scalar fields. Although scalar fields do not provide an exact description
of light scattering in an inhomogeneous medium, this framework remains an excellent
approximation [29], and this thesis is developed within this framework.!

In this chapter, we describe the underlying mathematics of light scattering. In Section 1.1,
we start from the wave equation and derive the equations that dictate light scattering. In
Section 1.2, we present existing numerical models which are derived from these equations.

1.1 Theory of Scalar Diffraction: Continuous-Domain For-
mulation

Let us consider an unknown object of RI 7 : @ — R that lies in the region Q C R
(D € {2,3}) within a medium of RI n, € R, as depicted in Fig. 1.1. This sample is
illuminated by the incident plane wave

u(x,t) = Re (uoej{k’x}_jwt) , (1.1)

where the wave vector k € RP specifies the direction of the wave propagation, w € R
denotes its angular frequency, and ug € C defines its complex envelope (amplitude). The
resulting total electric field u(x,t) satisfies the wave equation

n%(x) 0%u
2 o

Au(x,t) — x,t) =0, (1.2)

Tt is noteworthy that there exist methods that account for the vectorial nature of light, such as the
finite difference time domain [30] or the discrete dipole approximation [31], but at the cost of a higher
computational burden.
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Figure 1.1: A sample of RI n(x) is immersed in a medium of index 7, and illuminated
by an incident plane wave (wave vector k). The interaction of the wave with the object
produces forward and backward scattered waves.

D
where A = 36722 is the Laplacian operator and ¢ ~ 3 x 10%m/s is the speed of light in
d=17"d
free space. By substituting u(x,t) = Re (u(x)e ™) into (1.2), where u(x) is the complex
amplitude of u(x,t), we obtain the inhomogeneous Helmholtz equation

Au(x) + k3n?(x)u(x) = 0, (1.3)

where kg = w/c is the propagating constant in free space. The total field u(x) is the
sum of the scattered field u*(x) and the incident field u'"(x), which is itself a solution
of the homogeneous Helmholtz equation Au'"(x) + k2ul"(x) = 0, where ki, = konp.
Accordingly, (1.3) can be rewritten as [10]

A (x) 4 Eu*t(x) = — f(x)u(x), (1.4)

where f(x) = k3(n*(x) — n?) defines the scattering potential function. It follows that
we(x) = [ glx—x)f(xulx) dx (15)
Q

where g(x) is the Green’s function of the shift-invariant differential operator (A + kZI),
where I is the identity operator. Specifically, g verifies Ag(x) + kZg(x) = —d(x), where
¢ is the Dirac distribution and the minus sign is a convention used in physics. Under
Sommerfeld’s radiation condition, g(x) is given by [32, and references therein]

SO (ky|x]), D=2
g(x) = { A il O, (1.6)
pr D=3.

10



1.2 Numerical Models for Wave Propagation

There, H(()l) is the Hankel function of the first kind. Finally, the total field u(x) is
governed by the LiSc equation—an integral formulation of the Helmholtz equation

w(x) = u(x) + /Q g(x — %) F(x")u(x') dx’. (1.7)

In the next section, we present several approximations of (1.3) or (1.7) that have been
introduced in the litterature.

1.2 Numerical Models for Wave Propagation

Pioneering works developed simplified models which we denote as linear models, because
they yield a linear relation between the RI / scattering potential and the total field. More
recent studies investigated nonlinear models of wave propagation. Although these models
are computationally more expensive than the linear ones, they exhibit a higher accuracy.
Here, we briefly describe several models, with no consideration for their respective validity.
More complete descriptions can be found in [12, 13, 33-37]. Without loss of generality
and to simplify the presentation, we consider that D = 3 and Q = [-L/2, L/2]? for
L>0.

1.2.1 Linear Models
Radon Approximation (X-Ray Transform)

The Radon approximation [33] only accounts for the phase delay of the incident field
that is induced by the scattering potential. Without loss of generality, we consider that
the incident field is a plane wave propagating along the zs-axis (i.e., k = (0,0, kp)). We
first denote the total field by

u(x) = a(x)eker3 (1.8)

where one can interpret (1.8) as a plane wave propagating along x3, modulated by the
complex envelope a : R? — C [12]. Observing that k3n?(x) = f(x) + k2, (1.3) reads as

A ) + () + (160 + K)ulx) = 0 (1.9)

11
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where we explicitly write the Laplacian operators along the x3 direction and along the
transverse directions A | = 8‘9—; + 88—;2. Separately, we have
1 2

92 ) a [0 j
@a(x)ejkbx3 — axS ( ;;3)6]]%503 + a( )ka@”ﬂ)Id)
3
. o2 0
_ o ( a‘g) + 24k ;;’;) = k:%a(x)) : (1.10)

By using (1.10) and substituting (1.8) into (1.9), we obtain

2

82+mm5’+f<>><m=n. (1.11)

jkpxs A
e ( 1+ P 3

The Radon approximation involves two simplifications. The first is the slowly-varying
envelope approximation [29, 38], which allows us to suppress the second derivative of
a with respect to z3, if |8‘9—;a\ < |k‘ba%3 . In the second simplification, the diffraction
part is assumed to be neglig?ble, i.e., the transverse Laplacian operator A | is suppressed.
Then, (1.11) reads as

G = 5 a0, (112)

The solution of (1.12) yields the Radon approximation

a(x )_aoe”ifb "Ly (ml’m’xi‘)d% (1.13)

where ag = a(z1,79, —L/2) = u™(z1,22,—L/2). In (1.13), we see that the phase of

Rz ol
the total field u(xy,xe, L/2) = age?*» f*L/2 f(@rw2.23) "sekbL/2 ig effectively proportional
to the line integral of the scattering potential along the direction of the plane wave

propagation.?

Born Approximation

Born approximation [10, 40] assumes that the sample is weakly scattering and simpli-
fies (1.7) to

u() = () + [ glox %) pu () (1.14)
Q
where u &~ u™™ in the integral of (1.7). Now we see that the total field is linearly dependent

on the scattering potential. The (first-order) Born approximation only accounts for single-
scattering events.

2In 2D, the Radon and X-ray transforms are equivalent. In 3D, the Radon transform integrates along
2D planes while the X-ray transform integrates along lines [39].

12



1.2 Numerical Models for Wave Propagation

1.2.2 Nonlinear Models

Rytov Approximation

We refer the reader to [34] for a complete derivation of the Rytov approximation. Here,
we report the relation between the total field and the scattering potential

o g0 = X) (<" () dx'> |

(1.15)

u(x) = u®(x) + exp ( ()

Note that this (first-order) Rytov approximation only accounts for single-scattering
events.

Beam-Propagation Method (BPM)

In 3D, BPM [12, 41], also known as the multislice model [5, 7, 42, 43], propagates the
wave field along the direction x3 in a slice-by-slice manner. The 2D slice of the total field
u( ©, - ,x3+ 0x3) is obtained from u( -, - ,z3) by computing

U($1, Io,x3 + 51’3) = ejko’n(x)éz?,

2 2
. Wiq +w12 s
J 3

xFUIFa(, )l xe VARG (116)

We see that BPM alternates between diffraction and refraction steps and, by construction,
ignores reflections.

Iterative Born Approximation (IBA)

IBA [13, 44] improves upon the first-order Born approximation by partially capturing
multiple-scattering events. IBA considers the K-term recursive model

uF(x) = u(x) + /Q g(x — x') f(x")uPH(x) dx/, (1.17)

where v =0 and k =1, ..., K. Note that this iterative scheme can diverge for samples
with large RI [13].

Split-Step Non-Paraxial Method (SSNP)

SSNP significantly improves upon BPM by propagating the derivative of the field as well.
We refer the reader to [35, 45, 46] for a detailed description of the method.

13
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Multi-Layer Born Model (MLB)

MLB significantly outperforms BPM by modeling the refraction step more accurately [36],
while conserving the fast computation of BPM. We can interpret the refraction step of
BPM as a simple Radon approximation; in MLB, the authors adopted the first-order
Born approximation instead. More precisely, the total field at each 2D slice acts as the
incident field of the next slice (see (1.14)). Further, they also derive a similar model
which is compatible with a reflective imaging system.

Modified Born Series

In [47-49], the authors improve upon IBA by adopting a modified Green’s function in
the recursive formula. This makes the convergence conditions much less stringent while
conserving the fast computation of IBA. This model accounts for multiple-scattering
events as well as reflections.

Series Expansion with Accelerated Gradient Descent on Lippmann-Schwinger
Equation (SEAGLE)

In [50], the authors numerically solve (1.7) to compute the total field, which accounts
for multiple-scattering events as well as reflections. We will provide a more detailed
description in Chapter 3.

Machine Learning Regularized Solution of the Lippmann-Schwinger Equation

In [51], the authors solve (1.7) by using a recurrent neural network with long short-term
memory. Once trained, the network surprisingly generalizes well to scattering potentials
that differ from the training set.

1.3 Summary

In this chapter, we introduced the Helmholtz and LiSc equations that govern the physics
of light scattering in an inhomogeneous medium. Under diverse assumptions, many
approximate models can be derived from these equations. In general, a more accurate
model comes at the price of a higher computational cost. In the next chapter, we will give
an overview of QPI. We will see that numerical light scattering models play a key role in
QPI; in particular, their accuracy is crucial to the quality of the recovered volumes.
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Imaging (QPI)

QPI encompasses a large family of label-free microscopes. They have emerged as valuable
tools for recovering structural information about cells and tissues. This unique ability
makes QPI a complementary method to fluorescence microscopy, while exhibiting reduced
phototoxicity and no photobleaching. In the past decades, several QPI modalities were
developed, going from two-dimensional (2D) to 3D imaging, with the more recent
variants relying on algorithmic reconstructions. By illuminating the sample with light,
QPI modalities have the ability to reveal structural information without any label. At
the heart of this unique feature lies the complex physics of light scattering which was
detailed in Chapter 1. For most biological specimens, incident light as a complex scalar
field will mainly undergo phase change by the RI inhomogeneity of the sample.

In this chapter, we give an overview of QPI modalities with a particular emphasize on
light-scattering models. We then present a reconstruction framework that is commonly
used in QPIL.

2.1 Two-dimensional (2D) QPI: All You Need Is Phase

2D QPI modalities obtain images that represent quantitative maps of the specimen-
induced phase delays [52].! Since microscope objectives can only record intensities of
wave fields, several techniques have been developed in the past decades to measure phase
images [2]. Here, we briefly present the main modalities in 2D QPI. Note that there exist
a plethora of other variants that are well described in [2, 53-56].

2.1.1 Digital Holography Microscopy (DHM)

The working principle of DHM stems from the seminal work of Gabor [57], which exploits
interference between the incident and total fields. DHM splits the incident field into an

'From another perspective, the Radon approximation applies here (Chapter 1).
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object beam that illuminates the sample and a reference beam [58]. After its propagation
through the sample, the first beam is distorted by the sample, thus introducing phase
delays. By contrast, the reference beam has a controlled phase perturbation. Both beams
are then rejoined by a beam splitter to interfere and the resulting hologram is recorded
by the imaging system. To understand the rationale behind this technique, consider the
recorded hologram with the incident field u™" : R? — C

I(y1,92) = |u(y1, y2) + u™(y1, yo) P W1v2) |2
= Ju(y1, y2))? + [0 (g1, y2) |* + 2(u(ys, y2), u™ (g1, y2 ) @1:42))
= [u(yr, y2)I* + [u™ (y1, y2)
+ 2lu(yr, y2)[[u™ (y1, y2)| cos(B(y1. y2) — d(y1,42)). (2.1)

where 3 : R? — R is the controlled phase perturbation, and, u : R> = C and ¢ : R? - R
denote the total field and its phase, respectively. Here, the quantity of interest is the
cross-term that contains the phase information. Phase-shifting interferometry acquires
M intensity measurements with incremented phase delays which are spatially constant
in the incident field (i.e., B(y1,y2) = Bm, for m =1,..., M). Generally, ¢ is determined
from four intensity measurements using (3,, = {0,7/2,37/2, 7} [59] and is given by

(2.2)

&(y1,y2) = arctan (I?’”/Q(yl’ y2) = Lnja(y1, y2)>

Io(y1,y2) — In(y1, y2)

Alternatively, off-axis interferometry circumvents the need for several intensity measure-
ments by adding a spatially-varying phase perturbation 8(y1,y2) = a1y1 + asys [60]
instead. By doing so, the cross-term is modulated, which shifts the quantity of interest
in the Fourier domain. Then, a simple filtering allows the recovery of the complex total
field (i.e., in the Fourier domain, the filter is a disk shifted according to 5(y1,y2)). We
display in Fig. 2.1 the different steps in off-axis DHM.

2.1.2 2D Fourier Ptychography (FP)

2D FP is another popular approach to recover phase images [61-65]. FP relies on varying
the illumination angles of the incident field and algorithmically reconstructs a phase
image from multiple intensity measurements. In 2D FP, reconstruction methods assume
that the sample is thin (i.e., 2D) and establish a direct mapping between the intensity
measurements and the Fourier transform of the phase image. For further details, we refer
the reader to the excellent review [53].

16



2.2 Three-dimensional (3D) QPI

Fourier transform of I |u| (zoom)

Figure 2.1: Principle of off-axis DHM. Left: Fourier transform of the acquired intensity
image (log(1 + |Z])). The circle indicates the filter that allows extraction of the complex
field. Middle and Right: Amplitude and phase image, respectively.

2.2 Three-dimensional (3D) QPI

Advanced QPI modalities reveal 3D structural information using a series of 2D measure-
ments [66]. Similar to 2D FP, algorithmic reconstructions exploit the angular diversity
of the illuminations to get 3D RI maps (or equivalently scattering-potentials maps). RI
maps are an intrinsic property of the samples from which other biologically relevant
quantities can be derived [67]. We will see that there exist many variants within this
very rich family of tomographic imaging systems. We draw a distinction between the
class of 2D measurements used to reconstruct the RI map: complex or intensity-only
measurements. In the first category, the imaging modality is usually referred to as ODT.
The measurements are acquired with an interferometric apparatus (e.g., DHM). In the
second category, 3D FP [5] or intensity diffraction tomography [6] rely on intensity-only
measurements, which has the advantage of simplifying the acquisition apparatus. LED
array is a popular illumination system, although other alternatives exist [68]. In this
thesis, we abusively refer to both categories as ODT from complex or intensity-only

measurements.

2.2.1 Reconstruction from Complex Measurements

In the early works [8, 9], RI reconstruction is performed using a suitable variant of the
filtered back-projection algorithm (FBP) [86]. This kind of approach is computationally
efficient, but the underlying model ignores the effect of diffraction. Under the assumption
that the scattered field is weak compared to the incident one, improved methods rely
on the first Born model [10, 69], the first Rytov model [11, 71], or other more advanced
variants [87, 88] (Chapter 1). All are approximations of the LiSc equation. Such simplifi-
cations lead to computationally-efficient back-propagation algorithms for reconstructing
RI maps. Similar to FBP, these algorithms draw a direct mapping between quantities
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Table 2.1:  Summary of existing RI reconstruction algorithms from holographic
(i.e.,complex) or intensity-only measurements. Ref.: Reference. Algo.: Algorithm.
Reg.: Regularization. M.: Modified. §: Chapter. IBA: iterative Born approximation.
BPM: Beam-propagation method. MLB: Multi-layer Born. LSm: Lippmann-Schwinger
(equation). SSNP: Split-step non-paraxial method. PO: Proximity operator. GS:
Gerchberg-Saxton (projection operator). E.: Embedded. HS: Hessian-Schatten norm.
TV: Total-variation constraint. a.h.: ad hoc. 3PIE: Ptychographical iterative engine. GD:
Gradient descent. FBS: Forward-backward splitting. iter: Iterative. ADMM: Alternating
direction method of multipliers.

Complex measurements ‘ Intensity-only measurements
Ref. Model  Algo. Reg. ‘ Ref. Model Phase RI Reg.
8, 9] FBP direct —
[10, 69] Born direct — [61-65, 70] Born  GS direct ~ —
[11, 71] Rytov  direct - [72, 73] Rytov E iter =
[74] Born  GS iter TV
[14] Rytov  iter TV
[43, 75] BPM GS 3PIE -
[5, 76] BPM GS/E FBS a.h.
[77, 78]  LiSc iter - [79, 80] LiSce  E / a.h. iter -
[81, 82] LiSc iter a.h. (83, 84] LiSe E iter a.h.
[12, 85] BPM FBS TV [7] BPM GS/E FBS TV
[13] IBA FBS TV
[36] MLB E FBS TV
[35] SSNP FBS TV
[49] M.IBA FBS TV
[50], §4 LiSc FBS TV/HS
§5 Any PO ADMM TV

derived from the measurements and the 3D Fourier transform of the RI maps [10, 11,
34]. The main difference is that the Born model works directly with the scattered field,
whereas the Rytov model uses the unwrapped phase of the measurements—an inverse
problem which we will detail in Chapter 7. Several studies have shown that the Rytov
model yields more accurate reconstructions than the Born model [14, 71, 89]. Yet, the
validity of these linear models is mainly restricted to weakly scattering samples.

To overcome this limitation, nonlinear models that account for multiple scattering have
been proposed, such as BPM [12, 85], the contrast source-inversion method [90, 91],
hybrid methods [82, 92], the conjugate-gradient method [77, 78, 81], the IBA [13], or
an improved version [49]. Finally, within a regularized variational approach, iterative
forward models that solve the LiSc equation have been recently used in [16, 50, 82].
Note that this is also closely related to the discrete dipole approximation (DDA) and
the methods of moments mainly used in microwave imaging [31], although recent works
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applied DDA to a vectorial imaging system [82]. The reader can refer to [66] for a review
on ODT reconstruction methods for bioimaging.

2.2.2 Reconstruction from Intensity-only Measurements

The more challenging problem of reconstructing 3D RI maps from intensity-only mea-
surements was recently addressed in the context of FP, although related methods were
previously proposed in other domains [70, 72, 73, 76, 79, 80, 83, 84, 93, 94]. In 3D FP,
the acquisition procedure is similar to 2D FP, but algorithmic reconstructions account
for the three dimensionality of the sample instead [5, 75, 95]. The conventional recon-
struction scheme consists of alternating between recovering the measurement phase and
reconstructing the RI of the sample. The phase retrieval is generally performed with
the Gerchberg-Saxton (GS) projection operator [96], while the RI reconstruction step is
essentially the same as in ODT (intensity and phase). Over the years, the forward models
have evolved from “linear” [61, 95] to nonlinear [5, 7, 36, 43, 49, 75]. For more details,
we refer the reader to [97]. In Table 2.1, we have compiled a (non-exhaustive) list of
reconstruction methods for both holographic (i.e.,intensity and phase) and intensity-only
measurements; note that we also refer to the relevant chapters of this thesis in the table.

2.3 Variational Approaches for Optical Diffraction Tomog-
raphy (ODT)

In the variational framework, we estimate the quantity of interest (e.g., scattering
potential f € RY) from the measurements {y, € RM Yqen...q) by solving the optimization

problem
N Q
f i D(H,(f Lf) ;. 2.
€ o i 3 DIEL(0).y0) + TR(L) (23)
The operator H, : RN — RM for ¢ = 1,...,Q models the acquisition of measurements,

which, in ODT, involves numerical models for wave propagation (Chapter 1). The
functional D : RM x RM — Rs( measures the fidelity of the model to the data. The
regularization term R : R® xS _y R>o promotes solutions with suitable properties. For
instance, R = || - ||; promotes the sparsity of the quantity Lf, where L : RV — R x5 g
a linear operator (e.g., the identity, gradient, or Hessian operator). The scalar 7 > 0 is
a tradeoff parameter that balances the effect of these two terms. The set B represents
physical constraints on the scattering potential (e.g., nonnegativity constraint B = RY).

From a Bayesian point of view, we can relate D to the log-likelihood of the noise
distribution. Because the number of measurements M is much smaller than the number

2To be accurate, the actual forward model includes a squared magnitude, which is nonlinear per se.
Here, “linear” solely refers to the underlying light-scattering model.
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of unknowns N, the data-fidelity term D does not generally admit a unique global
minimizer. The regularization term R(L - ) and the set B should thus be chosen in
order to discriminate between candidate solutions using the knowledge that one has on
the observed sample.

2.3.1 Limited Angles of Illuminations: Missing-Cone Problem

Figure 2.2: Cone of illuminations. The arrows represent the direction of propagation of
the illuminations which are limited to a cone around the optical axis.

In general, the illumination angles are limited to a cone due to the numerical aperture
of objective lenses (Fig. 2.2). This restriction has strong implications on the quality of
recovered RI maps, which is usually referred to as the missing-cone problem. This gener-
ates anisotropic artifacts, which effects are more prominent along the axial direction (i.e.,
the axis of the cone). Put simply, the lateral resolution is better than its axial resolution.
To circumvent this issue, reconstruction methods usually rely on regularization to fill the
missing axial information; this strategy was shown to significantly improve the quality of
the reconstruction [14, 71]. More recently, deep-learning methods were designed for that
specific problem [98-101].

It is noteworthy that there exist other imaging systems which circumvent such issues by
rotating the sample instead of (or in addition to) varying the illumination angles [66,
102-104].

2.4 Summary

In this chapter, we presented the basics of QPI and its numerous 2D and 3D variants.
To recover 3D RI maps of the sample, ODT—a subfield of QPI—usually relies on solving
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2.4 Summary

an optimization problem. We described the mathematical formalism which underlies
such variational approaches. We also characterized a common issue met in 3D QPI:
the missing-cone problem. Stemming from the design of imaging systems, this problem
generates artifacts which are more prominent along the optical axis. This chapter
allows us to emphasize the determining role of two elements: the forward model H
which simulates light scattering and the regularization term R that imposes some prior
knowledge on the reconstructed volume. Higher accuracy of H usually improves the
quality of reconstruction and the prior knowledge alleviates the negative effects of the
missing-cone problem and other mismatches.

In the next chapters, we will present our contributions on new algorithmic reconstruction
methods for ODT. We start in the following chapter with an accurate nonlinear physical
model based on the LiSc equation, and our tricks to alleviate the inherent computational
burden.
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8] Accurate Discretization of the

Lippmann-Schwinger (LiSc) Equa-
tion
3.1 Introduction

In this chapter, we propose an accurate and efficient model for wave propagation that is
based on the LiSc equation and accounts for multiple-scattering events (both reflection

and transmission).!

3.2 Contributions

Our contributions are twofold. First, we properly discretize the LiSc equation to obtain
a linear system; second, we devise efficient numerical to solve this linear system. In
particular, we efficiently handle the singularity of the Green’s function with the help
of a truncation trick and a memory-saving strategy described in Sections 3.5 and 3.6,
respectively. In Section 3.7, we compare the accuracy of the proposed model with other
models for wave propagation. In Section 3.8, we compare different algorithms for solving
the obtained linear system.

3.3 Continuous-Domain Formulation

Here, we briefly recall the 3D continuous-domain formulation for the sake of complete-
ness (Chapter 1). Let n: Q@ — R denotes the continuously-defined RI of a sample whose
support is assumed to be included in the region of interest Q C R3. Without loss of
generality and to simplify the presentation, let us consider that Q = [-L/2, L/2]? for
L > 0. The interaction of the sample with a monochromatic incident field u™ : R* — C
of wavelength A\ produces a scattered field u*° : R®> — C. The resulting total field

!The content of this chapter is based on [16, 17].
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Accurate Discretization of the LiSc Equation

u = u*° + u™ is governed by the LiSc equation
u(x) = () + | glx—2)f(2)u(z) dz. (31)

where f(x) = ki (n(x)?/n2 — 1) is the scattering potential. Here, k, = 27mm;,/) is the
wavenumber in the surrounding medium and 7, the corresponding RI. Finally, g : R? — C
is the free-space Green’s function which, under Sommerfeld’s radiation condition, is given
by [32]
exp (jkp|/x
s — 2 LRulx])

Inllx] 3.2)

3.4 Discrete Formulation

Let us discretize  into N = n3 voxels.? Then, the computation of the total field u*® € CV
in the volume is given by [16, 50, 105]

u = (I — Gdiag(f)) ' u™ (3.3)

where T € RV*V is the identity matrix, diag(f) € RV*V is a diagonal matrix formed
out of the entries of f, and f € RV, u™ € CV, and u € CV are sampled version of f, u'™,

(CNXN

and u within €, respectively. The matrix G € is the discrete counterpart of the

continuous convolution with the Green’s function in (3.1).

One will have noticed that (3.3) requires the resolution of a linear system. This can
be efficiently performed using a conjugate-gradient method [16] (CG) or a biconjugate-
gradient stabilized method [106] (BiCG) as we shall see. Needless to say, the matrices
G and P are never explicitly built. Instead, we exploit the fact that the application of
the corresponding linear operators can be efficiently performed using the fast Fourier
transform (FFT). Is is worthy to mention that we assume that the incident field is
perfectly known within €2 in this chapter.

3.5 Green’s Function Discretization Inside the Support

Because of the singularity of the Green’s function (3.2) as well as of its Fourier transform
(i.e., §(w) = 1/(k — |w]||?) with w € R?), G in (3.3) cannot be defined through a naive
discretization of g. In this section, we describe how G has to be defined in order to
minimize the approximation error with respect to the continuous model (3.1).

First, let us recall that we aim at computing the total field u only inside {2 and that
the support of f is itself assumed to be included in €. Hence, (3.1) can be equivalently

2The generalization to the case where there is a different number of points in each dimension is
straightforward.
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supp(g:( -+ — o))

VDL

L

Figure 3.1: Illustration in dimension two (i.e., D = 2) of the equivalence between (3.1)
and (3.4). gi( - — xp) denotes g; shifted by xo = (L/2, L/2).

written as, Vx € (),

u(x) = () + [ gu(x =) f(D)u(z) dz, (3.4)

where g is a truncated version of the Green’s function. More precisely, g; is defined by

an(x) = xect (S5} ), (3.5)

where rect(x) = {1, |z| < 1/2; 0, otherwise}. With this definition, one easily gets the
equivalence between (3.1) and (3.4), as illustrated in Fig. 3.1.

To the best of our knowledge, this observation has to be attributed to Vainikko [107] but
has then been revitalized by Vico et al. [108]. It is essential to a proper discretization of
the LiSc equation (3.1). Specifically, we have that

Gi(w) = Hszl—kg <1 - ej‘/ngb(cos(\/gLHwH) + jkpV3L sinc(ﬂL!w[))) (3.6)

for ||w|| # k1, which can be extended by continuity as

~ (V3L V3Lks
Gi(w) =

2k, 2k

gn(v§[$%)> (3.7)

when ||w|| = kp,. The practical outcome is that (3.4) can now be discretized in the Fourier

domain since g; is a smooth function.

We now show how g; * v, for v € Ly(IR?), can be numerically evaluated using FFTs and
we provide error bounds on the approximation. The proof is provided in Appendix A.3.2.
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Theorem 3.5.1. Let v € Lo ([—%, %]3) and v € CN be the sampled version of v using
n > knL/m sampling points in each dimension (N = n3). Let v, be the p-times zero-
padded version of v. Define h = L/n and § = 2r/(Lp). Then, considering a trapezoidal
quadrature rule for (3.4), we get that Vk € [ + 1; 2]3

(GV)[K = (F (g 0 %))k, (3.8)
where g = (g}(éq))qe[[%npﬂ;%ﬂg and v, = Fv,,.

Moreover, if v has (q—1) continuous derivatives for ¢ > 3 and a qth derivative of bounded
variations, we have the error bound

Otr Cal Ctp
ot (3.9)

nd = ni—2

(g0 * v)(hk) — (Gv)[K]| <

where C*, C*, and C*® are positive constants that are associated to the errors due to
the aliasing in v, the truncation of the Fourier integral, and the trapezoidal quadrature
rule used to approrimate this integral, respectively.

Remark 3.5.1. Equation (3.8) is hiding a cropping operation. Indeed, the result of
Fl(g ©V,) is defined on the grid [=52 + 1; "2]® but we only retain the elements that
belong to [5 + 1; 2]°.

Remark 3.5.2. The assumption that n > kyL/m < ky < 7/h ensures that the “peaks”
of |Gs(w)| for ||w|| = ky are included in the frequency domain associated to the DFT (i.e.,

[—7/h,7/h]?). This is a natural and minimal requirement to reduce the approzimation
error.

From Theorem 3.5.1, one sees that the number of sampling points n controls both the
aliasing error and the error due to the truncation of the Fourier integral. It is noteworthy
that these bounds decrease with the smoothness of v (i.e., ¢). On the other hand, the
padding factor p controls the error that results from the trapezoidal quadrature rule.

Remark 3.5.3. A simple argument suggests that the padding factor should be at least
p = 4 to properly capture the oscillations of g;. Indeed, in the spatial domain, the diameter
of the support of g, is 2v/3L ~ 3.4L. Hence, in order to satisfy the Shannon-Nyquist
criterion, the considered spatial domain should be at least of size 4L, which corresponds
to a padding factor p = 4.

To assess the accuracy of the implementation of G provided by Theorem 3.5.1, we
consider the convolution of the Green’s function with a 3D Gaussian source v(x) =
exp(—||x||2/(202)) /(o3 (2%)3) For this particular setting, an analytical expression of
g *v is known [108]. In Fig. 3.2, we report the relative error

exact T G
€rel = u7 (310)

| | Vexact | ’
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Figure 3.2: Relative error (3.10) as a function of the number of discretization points n per
side of Q2. The truncated Green’s function approach is compared to a naive discretization
of the Green’s function in the spatial domain. The standard deviation of the Gaussian
source is set to 0 = 0.4, the size of the domain L = 1, and the wavenumber k;, = 1.5.
For the truncated Green’s function approach, we set p = 4.

where Vexact = ((g * U)[hk])ke[[%” 41;2]3 contains the samples of the analytical solution.
We compare the proposed discretization (Theorem 3.5.1) with a naive discretization of g
in the spatial domain (by “cropping” the singularity). Clearly, the truncated Green’s
function approach is by far superior to a naive discretization of ¢ in the spatial domain.

3.6 Memory Savings

According to Theorem 3.5.1, an accurate computation of the field inside €2 requires one to
zero-pad the volume v. From Remark 3.5.3, we should set at least p = 4. This can lead
to severe computational and memory issues for the reconstruction of large 3D volumes.
Fortunately, as mentioned in [108], this computation can be reformulated as a discrete
convolution with a modified kernel that only involves the twofold padding p = 2. We
summarize this result in Proposition 3.6.1 and provide a detailed proof in Appendix A.3.3.
Moreover, we provide an expression of the modified kernel that reveals how one can build
it directly on the grid [—n + 1;n]3.

Proposition 3.6.1. Let p € 2N\ {0}. Then, Vk € [ + 1; 2]*, we have that

(FlEow)k = (F ' ow)K, (3.11)
where vy is a twofold zero-padded version of v, and gt is the modified kernel
—2jmy Tg

gilkl=— > Fl(gl5 —shkle 7 (3.12)

se[0;Z—-1]3
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Analytical solution Born

33838

Figure 3.3: Simulated scattering of a monochromatic wave (A = 532nm) by a bead
embedded in water (n, = 1.3388). The bead has a diameter of 3\ and a RI of 1.4388.
The reported total fields are obtained through the analytical solution, the Born model,
and the proposed model for p =4 and h = \/16 (i.e., n = 144).

3.7 Comparison of Models Accuracy

To conclude these comparisons, we compare the accuracy of the LiSc-based model (LSm)
with the popular Born approximation and BPM. To that end, we consider the interaction
of a plane wave with a bead since an analytical expression of the total field is known for
this setting [109]. The total fields computed by the three approaches are displayed in
Fig. 3.3. In addition, we provide the theoretical total field. One can appreciate the gain
in accuracy that the proposed method brings over the standard approximations used
in ODT.

3.8 Solvers for LiSc-based Model

There exist many quadratic optimization algorithms to solve (3.3) [110]. Liu et al [50,
105] used the Nesterov accelerated gradient descent (NAGD), which allowed them to
auto-differentiate through the steps of the solver (as we shall see in Chapter 4). In
a non-optical regime, several works suggested that Krylov-based methods [110] were
suitable alternatives [82, 111, 112], such as the CG [113]. We now provide numerical
evidence that GC is more efficient than NAGD for solving (3.3). To this end, we consider
a 2D circular object (bead) of radius 7heaq and RI nyeaq immersed into water (np, = 1.333),
as presented in Fig. 3.4 (top-left). In such a situation, an analytic expression of the total
field is provided by the Mie theory [109, 114]. Hence, at each iteration k, we compute
the relative error e, of the current estimate u* to the Mie solution uy;. as

||uk - uMieH2

[t ||

Ek — (3.13)
In our experiment, the bead is impinged by a plane wave of wavelength A = 406 nm.
The region of interest is square with a side length of 16\ (see top-left panel of Fig. 3.4).
It is sampled using 1,024 points along each side. We used a fine grid in order to limit
the impact of numerical errors related to discretization. The wave source corresponds
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Bead Setting Mie Solution

—dA 0 S5 —5A 0 S

Figure 3.4: Forward-model solution for a bead with radius 3\ and a contrast of 1 using
CG (bottom-left) and NAGD (bottom-right), as well as the Mie solution (top-right). The
setting used for this experiment is presented in the top-left panel. The colormap is the
same for each figure.

to the bottom border of this region. Then, as in [50, 105], we refer to the RI npeaq by
its contrast with respect to the background medium, defined as max(|f|)/(k3nZ). We
show in Fig. 3.5 the evolution of k.,, which is the number of iterations needed to let
the relative error (3.13) fall below eg = 1072. One can observe that CG is much more
efficient than NAGD, in particular for large contrasts. Our comparison in terms of a
number of iterations is fair because the computational cost of one iteration is the same for
both algorithms. Note that the descent step of NAGD was adapted during the iterations
following the same rule as in [50, 105].

Finally, the solution obtained with the two algorithms for rpeaq = 3\ and a contrast of 1
are shown in Fig. 3.4. The analytic Mie solution is also provided for comparison. From
these figures, one can appreciate the high accuracy obtained by solving (3.3), as first
demonstrated in [50, 105].
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Figure 3.5: Evolution of the number of iterations k., needed to let the relative error (3.13)
fall below e9 = 1072 as function of bead radius (left) and bead contrast (right).

3.9 Green’s Function Discretization Outside the Support

As we will see in the next chapters, we are also interested in evaluating the total
field outside of 2 at M points, which involves another discretization of the Green’s
function G € CM*N_ In that case, we do not need to evaluate the Green’s function
at its singularity. In 2D settings, G € CM*N ig gometimes accessible explicitly [16, 50,
115]. By contrast, the scale of 3D settings prevents this approach. Fortunately, we are
interested in particular 3D settings in which the M points lie on a regular grid embedded
in a plane I'. By exploiting such planarity, we can significantly reduce the memory and
the computational burden of the evaluation of Gv.

Let xp > 0 be the axial position of the plane of interest T" (i.e., Vx € I', 23 = ). Then,
letting v = f - u and expressing the integral in (3.1) using a numerical quadrature along
the third dimension, we get, Vx = (x1,z2,2r) € T,

%
(g %) (x) = h/[_L o 90— 28)0) iy (3.14)
2

2
where z = (2, , 2k,, kh).

From (3.14), g x v is computed as a sum of 2D aperiodic convolutions. Considering that
the sampling step at the plane I is identical to that of the volume €2, the 2D convolutions
in (3.14) is evaluated in the same way as described in Theorem 3.5.1. This strategy
reduces the computational complexity of the application of G to O(nM log(M)). Note
that, if the sampling step at the plane is ¢ times that of the volume (i.e., ' = gh, ¢ € N),
one can simply downsample the result of the above procedure by gq.
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3.10 Summary

In this chapter, we presented a model to simulate wave propagation that accounts for
multiple-scattering events. We properly discretized the LiSc equation and assessed the
accuracy and numerical efficiency of the obtained model. Our comparisons show that
the proposed model (LSm) achieves high accuracy while mitigating the computational

burden.

Now that we are equipped with our accurate and efficient physical model, we will tackle
the challenging case of inverse-scattering problems in the next chapter.
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1 ODT from Complex
Measurements

4.1 Introduction

In this chapter, we present a reconstruction framework for ODT from complex measure-
ments using our LiSc based model (LSm, see Chapter 3).! We recall that, in ODT, the
acquisition setup sequentially illuminates the sample from different angles. For each
illumination, the outgoing complex total field (i.e., the scattered field) is recorded by a
DHM [58, 116]. Then, from this set of measurements, one reconstructs a 3D RI map by
solving an inverse-scattering problem. To understand better the contributions of this
chapter, we first present the challenges one typically faces in 3D ODT.

4.2 Challenges in 3D ODT

So far, the use of the more sophisticated LiSc based models and DDA? has been mostly
limited to microwave imaging [77, 117, 118] (see also the numerous references listed
in [119]). Although led by the same underlying physics, ODT differs from microwave
imaging on several aspects that further increases the difficulty of the reconstruction
problem.

e The direction of propagation of the incident wave is restricted to a small cone
around the optical axis (Fig. 4.1), resulting in the well-known missing-cone prob-
lem [14] (Chapter 2).

e In typical ODT applications such as biology, the size of the sample is significantly
larger (e.g., 100x) than the wavelength of the incident wave. This requires a fine
discretization that entails very large memory requirements.

e The large size of the detector leads to numerical challenges for the computation of

'The content of this chapter is based on [16-18].
2The DDA is a model that accounts for polarization—the vectorial nature of light.
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the far-field.

e The benefit of a theoretical expression of the incident wave field, as used in
microwave imaging [119], is made unlikely in ODT due to unknown distortions that
are inherent to the system.

These challenges have hindered the adoption of sophisticated models in ODT, with
notable exceptions [82, 120] that focused on the reflective mode and considered relatively
simple non-biological samples.

4.3 Contributions

This chapter builds upon the prior works [16, 50, 115] that are dedicated to the resolution
of the 2D inverse scattering problem using an LiSc-based model. We extend these works
to the 3D ODT problem. Our main contribution is the development of an accurate
and efficient implementation of the forward model in 3D. This is crucial to obtain good
reconstructions while keeping the computational burden of the method reasonable for
large-scale volumes. More precisely, we provide a description on how to implement a
LiSc-based model for inverse scattering by tackling these challenging difficulties. These
contributions complete the ones of Chapter 3—a detailed description of the discretization
of the Green’s function (inside and outside £2).

o FEstimation of the incident field (Section 4.4.3). We build the volume of the incident
field by numerical propagation of a real acquisition of it at the detector plane. In
particular, we propose a strategy that results in significantly reduced numerical

€rrors.

o Efficient computation of the gradient (Section 4.5.3). We rely on a gradient-based
optimization scheme to reconstruct the RI map, which requires the Jacobian matrix
of our nonlinear physical model. We derive an explicit expression of the Jacobian
matrix and this allows us to reduce the memory and computational burdens.

Finally, to deal with the missing-cone problem, we deploy a regularized variational
reconstruction approach (Section 4.5). In Section 4.6, we present reconstructions of
biological samples for both simulated and real data, and compare them to those from
baselines methods. Further, in Section 4.7, we propose a novel regularization scheme
designed to mitigate the missing-cone problem.
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4.4 Accurate and Efficient Implementation of the Forward Model

Figure 4.1: Principle of ODT. The arrows represent the wave vectors {kfln}ff:l € R3 of

the @) incident plane waves {u;“}?zl which are limited to a cone around the optical axis.

4.4 Accurate and Efficient Implementation of the Forward
Model

For the sake of completeness, we briefly recall the LiSc equation in the continuous domain.
Let n : © — R denotes the continuously-defined RI of a sample whose support is assumed
to be included in the region of interest {2 C R3. Let us consider that Q = [~L/2, L/2]3 for
L > 0. The interaction of the sample with a monochromatic incident field v : R? — C
of wavelength \ produces a scattered field u*¢ : R — C. The resulting total field
u = u*° + u™ is governed by the LiSc equation

u(x) = w™(x) + /Q 9(x — 2) f(2)u(z) dz, (4.1)

where f(x) = k2 (n(x)?/n? — 1) is the scattering potential. Here, ki, = 27,/ is the

wavenumber in the surrounding medium and 7, the corresponding RI. Finally, g : R? — C

is the free-space Green’s function which, under Sommerfeld’s radiation condition, is given
by [32]

exp (k|| x]))

(x) = ————=.

Ar[x|

(4.2)

Equation (4.1) completely characterizes the image formation model in ODT. Using
an interferometric setup, the total field u is recorded at the measurement plane I' =
[~L/2,L/2]?, L > L, of the camera. This measurement plane lies outside Q at a distance
denoted by xr > 0. Finally, we denote by M = m? the number of pixels of the detector.
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4.4.1 Discrete Formulation

To numerically solve the ODT inverse problem, (4.1) has to be properly discretized. To

3

do so, we first discretize Q into N = n? voxels.? Then, the computation of the scattered

field y*¢ € CM at the camera plane IT' follows a two-step process [16, 50],

u = (I — G diag(f)) ' u™ (4.3)
y* = PG diag(f)u,

where T € RV*¥ is the identity matrix, diag(f) € RV*¥ is a diagonal matrix formed
out of the entries of f, and f € RY, u™ € CV, and u € CV are sampled version of f,

CN*N js the discrete counterpart of

u™, and u within €, respectively. The matrix G €
the continuous convolution with the Green’s function in (4.1) (Section 3.5). Similarly,
G e CM*N js a matrix that, given u and f inside Q, gives the scattered field at the
measurement plane I' (Section 3.9). Finally, P € CM*M models the effect of the
pupil function of the microscope and can also encode the contribution of a free-space

propagation to account for an optical refocus of the measurements.

As discussed in Chapter 3, (4.3) requires the resolution of a linear system, which we
perform efficiently using BiCG [106]. Yet, (4.3) carries the main computational complexity
of the forward process (4.3)-(4.4). To obtain the scattered field at the camera plane T',
a naive approach would be to compute the total field u in (4.3) on a large region that
includes T'. Here, the introduction of G allows one to restrict the computation of u to
the smaller region € as soon as it fully contains the support of the sample [16, 50]. This
significantly reduces the computational burden of the forward process.

The first step (4.3) actually corresponds to compute the (discrete) total field in €2, which
was thoroughly described in Chapter 3. Notably, we dealt with the singularity of the
Green’s function g via a simple yet elegant truncation trick. The second step (4.4) involves
the discretization of the Green’s function for the measurements G and requires us to
model the pupil function. The discretization of the Green’s function for the measurements
is addressed in Section 3.9. Here, the plane of interest is simply the camera plane with
M voxels. In addition, the acquisition setup for real data provides only 2D measurements
of the incident field at the focal plane. However, LSm needs a 3D incident field. We will
now describe efficient and accurate methods to tackle those problems.

4.4.2 Free-Space Propagation and Pupil Function

The last matrix to describe in (4.4) is P. It models the lowpass filtering behavior of the
microscope and can also be used to perform a free-space propagation of the field. For
instance, this is required for the acquisition setup described in Section 4.6.2. Hence, P

3The generalization to the case where there is a different number of points in each dimension is
straightforward.
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Figure 4.2: Propagation of the incident field. Top: Scheme of the numerical experiment
(left) and phase (arg( - )) of the expected propagated field (right). Bottom: Error
map |ufl,e — Uyl Of the angular spectrum (AS) method [29] without and with tilt
transfer (left and right respectively).

corresponds to the discrete convolution operator associated to the continuously defined
kernel p € Lo(R?) that depends on the point-spread function (PSF) of the system as well
as the considered propagation kernel. Although the output of G (scattered field on T) is
not compactly supported, it enjoys fast decay, which allows us to apply P via a FFT
with suitable padding.

4.4.3 Computation of the 3D Incident Field

The evaluation of the forward model (4.3) and (4.4) at a given point f € RV requires
the knowledge of the 3D incident field u™ € CV. In real data, we only acquire a 2D
measurement of each incident field. Here, we propose to build this volume through the
free-space propagation of the 2D measurement y'™ € CM of this field at the detector
plane I'. This is possible as the area of I is assumed to be larger than that of a face of
the volume € since L < L.
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Let us denote by y™ : I' — C the continuous version of y™ to simplify the presentation.
Then, we get from the angular spectrum method [29] that, Vx = (21,22, z3) € Q,

(%) = (pay * ™) (1, 22). (4.5)

There, p,, is the propagation kernel that is defined in the Fourier domain by

P2(w) = exp (—j(:z:r — 2)\/kp — (W2 + w%)) , (4.6)

where xp denotes the position of the measurement plane I'.

Because both the propagation kernel and the measured incident field are not compactly
supported, a naive computation of the aperiodic convolution in (4.5) would introduce
significant errors within the estimated volume w™. The difficulty lies in the way of
properly extending the measured field 4™ outside I' to ensure that the result of the
convolution inside (2 is valid. For instance, a zero padding or a simple periodization are
not satisfactory as they would introduce large discontinuities in the amplitude and/or
the phase of y™™.

Instead, let us inject in (4.5) the expression of ™ (x) = a(x) exp(jx'k™), where a : I' — C
is the complex amplitude of the field and k'™ = (kin, ki) corresponds to the restriction
of the wave vector k'™ € R? to its first two components, leading to

u"(x) = (pay *a( ) EY) (%)
1 = ~ 1in\ jw' X
= W/Rme(w)a(w—k )e! "X dw
eiiTRin = 1.in\ ~ jw' x
_W/Rme(w—l—k Ja(w)e *dw

= I (@ (e ) (3), (47)

with X = (21, 22) and w = (wy,ws) € R%. Hence, (4.5) can be equivalently expressed as a
2D aperiodic convolution of the complex amplitude a with the kernel p,,( - )e (" )Tkin,
followed by a modulation in the space domain. This approach is called tilt transfer
because the shift of ™ in the Fourier domain is transferred to the propagation kernel [121,
122]. The advantage of this formulation is that, by contrast to ¢, the complex amplitude
a is not far from a constant signal, up to some noise and optical aberrations. Hence,we
compute (4.7) using a periodic convolution with minor discretization artifacts.

The advantage of this approach is illustrated in Fig. 4.2 where we propagate a slice of

an ideal tilted plane wave y™™ using the angular spectrum method with and without tilt
in
true

transfer. The difference between the expected incident field ui . and the propagated field

U is depicted in the bottom panel. Clearly, the tilt transfer allows one to significantly

m
prop
reduce the discretization errors and attenuate the aliasing artifacts.
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4.5 Reconstruction Framework

4.5.1 Problem Formulation

Following the formulation in Section 2.3, we adopt a standard variational approach

Q

to recover the scattering potential f from the () scattered fields {ygC q—1 that are

recorded when the sample is impinged with the incident fields {uiqn}(?:l. Specifically, the
reconstructed f* is specified as

Q
S {arg min (Z #HHq(f) —¥IP + TR(LE) + izo(f)) } (4.8)

rerv \ & 2y

In (4.8), H, : RY — CM denotes the forward model described by (4.3) and (4.4) for
the ¢th incident wave ufzn. Let us recall that R : RS — R>g is a regularization
functional, L : RN — R5%9 ig a linear operator, and 7 > 0 balances between data
fidelity and regularization. The term i>o(f) = {0,f € (R>0)"; +oo, otherwise} is a
nonnegativity constraint that is suitable for our applications. For other applications
that involve inverse scattering, this term is modified to constrain the scattering potential
to a given range of values. Such priors have been shown to significantly improve the
quality of the reconstruction [14, 71]. Finally, we consider as regularizer R(L - ) either
the total-variation seminorm (TV) [123] or the Hessian-Schatten seminorm (HS) [124].
It is noteworthy to mention that we proposed other alternatives well suited for ODT. In
Section 4.7, we describe an adaptive regularization based on convolutional dictionary
learning.

4.5.2 Optimization

Following [16, 50, 115], we deploy an accelerated forward-backward splitting (FBS)
algorithm [125, 126] to solve the optimization problem (4.8). The iterates are summarized
in Algorithm 1, with some further details below.

o We implemented a stochastic-gradient version of the algorithm by selecting a subset
of of the measurements {yzc}?zl at each iteration (Line 5). This allows us to reduce
the computational burden of the method.

 Line 6 corresponds to the evaluation of the gradient of W > geo [IHqg( - )=y,
q
We provide its expression in the Section 4.5.3. We will discuss different strategies
about its computation as well.

e For both the TV and HS regularizers, no known closed-form expression exists for
the proximity operator of 4, 7R(L + ) +i>o (Line 7). However, there exist efficient
algorithms to evaluate them. Specifically, we use the fast gradient-projection
method for TV [127] and its extension to the HS regularizer [124] (A.2.2).
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Algorithm 1 Accelerated FBS [125, 126] for solving (4.8)
Require: f* ¢ RN, (v, > 0)tem\{0}

1. vi=f0
2: a1 =1
3 t=1
4: while (not converged) do
5: Select a subset Q C [1...Q)]
1
6: dt = Z WRQ (J;Iq (ft) (Hq(ft) — y(S]C))
qeQ Yq
T = prox, rw - )4is, (V- ed’)
14+ /14 40?
& g e — v

9: vitl = ft ¢ <at — 1) (£t — £
Qi1
10: t+—t+1

11: end while
12: return f?

o We set the sequence of step sizes to v, = Yo/ Vk for v9 > 0. This is standard and
ensures the convergence of incremental proximal-gradient methods [128].

The whole reconstruction pipeline is implemented within the framework of the Global-
Biolm library [129] and is available online (Appendix A.1).

4.5.3 Efficient Computation of the Gradient

Proposed Methodology

Let us first denote &(f) = D(H,(f),y;°) and the data-fidelity term in (4.8) as

Eiot(£) = D Eq(F)

qeQ
S H ) -y (4.9)
=52yl
The gradient of &t is given by
Vi (F) = > VE(F), (4.10)
qeEQ
with 1
VE,(f) = e Re (I (6)G™(G diag(f)uy(f) - v5)) (4.11)
q
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where Jj, (f) denotes the Jacobian matrix of

hq : £ — diag(f)u,(f). (4.12)

The computation of J fq (f), required in (4.10), is challenging. The existence of a closed-
form solution is made unlikely by the fact that the forward model in (4.3) itself requires
one to invert an operator. We distinguish two distinct strategies.

1. SEAGLE [50]: Build an error-backpropagation rule from the NAGD algorithm
used to compute the forward model (4.3).

2. Ours: Derive an explicit expression of Jj, (f), as given below (Proposition 4.5.1).

The error-backpropagation strategy used in SEAGLE to compute J th (f) implies that one
must store all the forward iterates. This consumes memory resources and compromises
the deployment of the method for large 3D data. Instead, Proposition 4.5.1 reveals that its
computation requires one to invert the operator (I — diag(f)G*). This operator has the
same form (and size) that the operator we invert within the forward computation in (4.3)
and both can be computed in a similar way, using an iterative algorithm. Moreover, it
allows us to decouple the forward and gradient computation in Algorithm 1, which has
the two following advantages:

e choice of any iterative algorithm for computing (4.3), and computing J th (f).
o reduction of the memory consumption (no needs for storing forward iterates).
Proposition 4.5.1. The Jacobian matriz of the function hy in (4.12) is given by

I, (F) = (I +diag(f)(I- G diag(f))*lG) diag(u,(f)). (4.13)

Proof. We use the Gateaux derivative in the direction v € RY given by

Ay (£:v) = Tim G188+ V)ug(f + =v) — diag(f)u, (f)

e—0 IS

uy (£ + 2v) — uy ()

= diag(u,(f))v + ;g% diag(f) 5 (4.14)
Then, from (4.3), we get that
ufln =(I - Gdiag(f +ev))uy(f +ev)
=(I — Gdiag(f))u,(f + ev) — eG diag(v)uy(f + ev) (4.15)
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and
(I - Gdiag(f))uy(f) = ul™. (4.16)

Combining (4.15) and (4.16), we obtain that
(I — Gdiag(f))(uy(f +ev) —uy(f)) = eG diag(v)u,(f + ev). (4.17)
Finally, we get that
dhy(f;v) = (I +diag(f)(I- G diag(f))_lG) diag(u,(f))v (4.18)
and, thus, that
I, (f) = (I +diag(f)(I- G diag(f))_lG) diag(u,(f)), (4.19)

which completes the proof. O

Numerical Validation

This section is devoted to simulated numerical experiments that illustrate the two main ad-
vantages of the proposed method over SEAGLE, which consist in a reduced computational
cost and a reduced memory consumption. Both algorithms share the implementation
of the overall FISTA algorithm as well as inner procedures such as the computation of
the proximity operator of the regularization term (Appendix A.2). The only difference
between the two methods resides in the computation of the forward model in (4.3) and
J ﬁ (f). For SEAGLE, this is performed using the NAGD algorithm (Section 3.7) and an
error-backpropagation strategy. For our method, (4.3) and J th (f) are computed using
the CG algorithm, in accordance with Proposition 4.5.1. Note that no parallelization is
used. Reconstructions are performed with MATLAB 9.1 (The MathWorks Inc., Natick,
MA, 2000) on a PowerEdge T430 Dell computer (Intel Xeon E5-2620 v3).

Memory Requirement Here, we elaborate on the memory consumption of the
proposed method in comparison with SEAGLE. First, let us state that gradient based
methods, such as NAGD or CG, have similar memory requirements. It corresponds
roughly to three times the size of the optimization variable which is the part that is
common to both algorithms. The additional memory requirement that is specific to
SEAGLE relies only on the storage of the NAGD iterates during the forward computation.
Suppose that Knagp € N iterations are necessary to compute the forward model with (4.3)
and that the region Q is sampled over N € N pixels (voxels, in 3D). Since the total
field uy(f) computed by NAGD is complex-valued, each pixel is represented with 16
bytes (double precision for accurate computations). Hence, the difference of memory
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consumption between SEAGLE and our method is
Apem = N X KnagD X 16 [bytes], (4.20)

which corresponds to the storage of the Knyagp intermediate iterates of NAGD. Here,
we assumed that V& was computed by sequentially adding the partial gradients V&,
associated to the @) incident fields. Hence, once the partial gradient associated to one
incident angle is computed by successively applying the forward model (NAGD) and the
error-backpropagation procedure, the memory used to store the intermediate iterates
can be recycled to compute the partial gradient associated to the next incident angle.

To speedup the process, these computations can easily be parallelized by performing the
computation for each illumination on a separate thread. Here, the memory requirement
would be mutiplied by the number Npppeads € N of threads, so that

AMem =N x KNAGD X NThreads x 16 [bytes]' (421)

Indeed, since the threads of a single computer share memory, computing Nrpreads partial
gradients in parallel requires Nrpreads times more memory.

For illustration, we give in Fig. 4.3 the evolution of Ayem as a function of N for different
values of Knagp and Nrnreads- One can see with the vertical dashed lines that, for
3D volumes, the memory used by SEAGLE quickly reaches several tens of Megabytes,
even for small volumes (e.g., 128 x 128 x 128), to hundreds of Gigabytes for the larger
volumes that are typical of microscopy (e.g., 512 x 512 x 256). This shows the limitation
of SEAGLE for 3D reconstruction in the presence of a shortage of memory resources and
reinforces the interest of the proposed alternative.

Reconstructions of RI—Simulated Data Here, we reconstruct RI maps on simu-
lated data to illustrate the advantages of the proposed method.

Simulation Settings: The Shepp-Logan phantom of Fig. 4.4 has the contrast max(|f])/
(k%) = 0.2. It is immersed into water (m, = 1.333). The wavelength of the incident plane
waves is A = 406 nm. We consider thirty-one incident angles, from —60° to +60°. The
sources are placed at the bottom side of the sample, at a distance of 16.5\ from its
center. Moreover, we consider two detectors placed on both top and bottom sides of the
object, also at a distance of 16.5)\ from its center. Hence, the overall region is a square
of length 33\ per side. Data are simulated using a fine discretization of this region, with
a (1024 x 1024) grid that leads to square pixels of surface (3.223 - 1072))2. We used a
large number of CG iterations to get an accurate simulation. Then, the measurements
were extracted from the first and last rows of each total field associated to the incident
fields. This lead to a total of (31 x 2 x 1024) measurements. Finally, we defined three
ODT problems by downsizing (using averaging) the (31 x 2 x 1024) measurements to

43



ODT from Complex Measurements

192x192 256 X256 X256
128 x 128256 x 256 128 x128x 128 512x512x256
TT T T T TTTTTT] T T T 7T 1T T T %7}

1061 ! ' o —— Knagp = 120 Nrpreads = 1
= i - - - Knagp = 200 NThreads = 1
RN 1 —— KnaGgD = 120 Nrpreads = 8

10° === |- K =200 NV =8
ot (IEa [I88s NAGD — Threads —

= AR (A b
| I |
€ 10% ==l | 200
s e o
| | | | .
5108 i i g
<] - 1| 1 - -
I (I ] |
;I :/ L | : : * 50 :

102 E '/’/ il | I 25
L : =

101 ;\ \;\H;\H\ Ll \: Ll :\ | \u:uT 20 ‘ 4 ‘4 ‘ 4‘7‘ 4

210 - 10 10
104 10° 109 107 108

N

Figure 4.3: Predicted evolution of Ayjem as function of the number N of points for two
values of Knagp and Nrpreads- The vertical dashed lines give examples of 2D and 3D
volumes for a range of values of N. Finally, the three crosses correspond to values of
Azem measured experimentally.

grids with size of (31 x 2 x 512), (31 x 2 x 384), and (31 x 2 x 256).

This setting corresponds to an ill-posed and highly scattering situation. Moreover,
the detector length is only two times larger than the object, which results in a loss
of information for large incident angles. This makes the resulting inverse problem
challenging.

Algorithm Parameters: For each simulated OTD problem, we considered a square region
of interest 2 with sides half the sources—detector distance. That corresponds to images
of size (256 x 256) with pixels of area (6.445 - 1072))2, (192 x 192) with pixels of area
(8.839 - 1072))2, and (128 x 128) with pixels of area (1.289 - 10~')\)2. The support of
the phantom is fully contained in €.

Then, to compute the gradient (stochastic-gradient strategy), we selected eight angles
over the thirty-one that were available and changed this selection at each iteration.

The NAGD or CG forward algorithms are stopped either after hundred-twenty iterations
or when the relative error between two iterates is below 1074, Finally, two-hundred
iterations of FISTA are performed with a descent step fixed empirically to v =5 - 1073.
We used the regularization parameter 7 = 3.3 - 1072.

Metrics: We compared the two methods in terms of running time and memory con-
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—5A 0 S5A

Figure 4.4: Shepp-Logan phantom and RI of the gray levels. The contrast is 20%.

Table 4.1: Proposed method vs. SEAGLE [50, 105] in terms of running time and memory
consumption. The reconstructed RI maps are presented in Fig. 4.5.

ROI Q size (128 x 128) (192 x 192) (256 x 256)
Method Ours  [50] Owurs [50] Ours  [50]
Time (min) 9 35 12 72 19 110
Memory (Mb) 138 169 224 295 337 460
SNR (dB) 43.96 43.76 45.44 4548 46.96 46.99

sumption, as measured by the peak memory (maximum allocated memory) reached by
each algorithm during execution. The outcome is reported in Table 4.1. Once again,
due to the use of our inverse-problem library [129], the comparison of the two methods
is fair because their implementations differ only by the forward algorithm and by the
computation of J {jq (f). Moreover, CG and NAGD are implemented in the same fashion
since they inherit the same optimization class of our inverse-problem library GlobalBiolm.
Finally, we also provide the signal-to-noise ratio (SNR) of the reconstructed RI and
observe that the computational gain comes at no cost in quality.

Reconstructions of RI—2D Experimental Data We further evaluated our method
using the FoamDielEzt target (TM polarisation) of the Institut Fresnel’s public database
[130]. The data were collected for the 2D inhomogeneous sample depicted in the left
panel of Fig. 4.6. The permittivity of the ground truth was measured experimentally and
is subject to uncertainties [130]. The object is fully contained in a square region of length
15 cm per side, which we discretize using a 256 x 256 grid. Sensors were distributed
circularly around the object, at a distance of 1.67 m from its center, and with a step of
1°. Eight sources, uniformly distributed around the object, were sequentially activated.
For each activated source, the sensors closer than 60° from the source were excluded.
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Figure 4.5: Reconstructions obtained by the proposed method and by SEAGLE for
the (256 x 256) ODT problem with 7 = 3.3 - 1072. The colormap is identical to that
of Fig. 4.4. For comparison, we provide the TV-regularized Rytov reconstruction with
T=3-1075.

Thus, 241 detectors among the 360 available were used for each source. Frequencies from
2 to 10 GHz with a step of 1 GHz are available in the database but we used only the 3
GHz measurements (i.e., A = 10 cm).

The NAGD or CG forward algorithms are stopped either after two-hundred iterations or
when the relative error between two iterates is below 1076, Hundred iterations of FISTA
are performed with a descent step v =5 - 1073. We used the regularization parameter
T=16-10"2

Discussion Our proposed alternative to SEAGLE allows us to reduce both time and
memory. Moreover, we have measured the peak memory difference Ayfenm between the
two methods and superimposed it on the predictions of Fig. 4.3 where the adequacy
between the theoretical curves and the measured points is remarkable. Hence, although
our experiments are restricted to 2D data, where the gap between the two algorithms is
moderate, the evolution of Aper, for 3D data can be extrapolated from Fig. 4.3. This
shows the relevance of our method when size increases.

The SNR values given in Table 4.1 as well as the reconstructions presented in Fig. 4.5
suggest that the two methods perform similarly in terms of quality. This is not surprising
since the overall algorithm is the same, the differences residing merely in the computation
of the forward model in (4.3) and the Jacobian Jj,(f). Moreover, one can observe that
the quality of reconstruction decreases when the discretization grid becomes coarser.
Indeed, the model is insufficiently accurate when the discretization is too poor. For
instance, in the case of the (128 x 128) grid, one wavelength unit is discretized using
eight pixels, which is clearly detrimental to the accuracy of the forward model.
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Figure 4.6: Reconstructions (permittivity) obtained by the proposed method and by
SEAGLE for the FoamDielExt target of the Institut Fresnel’s database [130] with 7 =
1.6 - 1072, The SNR values (computed from the experimentally measured permittivity
of the ground truth) are 25.13 dB (Ours) and 25.15 dB (SEAGLE) while the computing
times are respectively of 6 min and 93 min.

Reconstructions for the (256 x 256) problem are presented in Fig. 4.5 for completeness.
Besides the difficulty of the considered scenario, the two methods are able to retrieve
most details of the object in comparison with the Rytov approximation. Artifacts are
mainly due to the missing-cone problem and to the limited length of the detector. This
corroborates the findings of [50].

We further validate our method on real data. In Fig. 4.6, we see that both methods provide
good reconstructions that are essentially indistinguishable (also SNR values provided
in the caption of the figure). This corroborates the simulated numerical experiments of
Section 4.5.3. The main point here is that, for this setting, the proposed method was 15
times faster than SEAGLE.

4.6 Results for 3D Data

In this section, we validate our computational pipeline on 3D simulated data (Sec-
tion 4.6.1). Then, we deploy the proposed approach on real data (Section 4.6.1). For
both cases, we provide comparison with existing algorithms.

4.6.1 Simulated Data

Simulation Setting

We simulated red blood cells (RBCs) with a maximal RI of 1.05 (Fig. 4.7 top row) [35].
This sample is immersed in air (n, = 1) and is illuminated by tilted plane waves with
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wavelength A = 600nm. To simulate the ODT measurements, we used the DDA on a grid
with a resolution of 50nm. To probe the sample, we generated 40 views within a cone
of illumination whose half-angle is 45°. This corresponds to severely restricted angles
of view and makes the reconstruction problem very challenging. Each view has 5122
measurements (resolution of 150nm). Finally, we have simulated, independently for each
view, an acquisition of the incident field on T'.

BPM Rytov Ground truth

LSm

Figure 4.7: RI reconstructions of the simulated RBCs by Rytov, BPM, and the proposed
method (LSm).
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Table 4.2: Relative error of the RI RBCs reconstructions.

Method |  Rytov BPM LSm

[mel | 1.8231 x 104 | 2.4585 x 10° | 9.0120 x 10~

Comparisons

We compare our LSm reconstruction method with the direct back-propagation algorithm
that is based on the Rytov model. In addition, we do compare it to BPM. For each iterative
method (BPM and ours), we used TV regularization together with a nonnegativity
constraint. Finally, the regularization parameter 7 > 0 was optimized through grid
search in each scenario to maximize the performance with respect to the ground truth.
BPM took about 31 seconds per iteration (proximity operator of TV included) for a
reconstruction size of 512 x 512 x 150 (200 iterations). The proposed method took about
112 seconds per iteration (proximity operator of TV included) for a reconstruction size
of 144 x 144 x 144 (300 iterations).

In Fig. 4.7, one observes that our method faithfully recovers RBCs at several orientations.
In comparison with the considered baselines, we observe that LSm allows to recover
more accurately the RBCs shape (and RI) as pointed out by the white arrows. In
Table 4.2, we present the relative error of the RBCs reconstructions. As expected, the
more sophisticated LSm obtains the lowest relative error.

4.6.2 Experimental Data
Acquisition Setup

We acquired real data using the experimental tomographic setup described in [26] (Ap-
pendix A.4). The sample is a yeast cell immersed in water (7, = 1.338) and is illuminated
by tilted incident waves with wavelength A = 532nm. As in our simulation setup, we ac-
quired 61 views within a cone of illumination whose half-angle is 35°. The measurements
lie on a plane that is centered and perpendicular to the optical axis. The complex fields
with and without the sample were acquired for each view, thus providing the total and
incident field, respectively. The pixel size is 99nm.

The reconstructions are performed on a grid of the same resolution than that of the
measurements. We used the HS regularization as we found it more suitable for this type
of sample. Finally, we model P as the composition of a linear filtering by an ideal pupil
function (binary disk in Fourier domain with radius 2NA /), NA = 1.45) and a free-space
propagation to the center of the sample. BPM took about 33 seconds per iteration
(proximity operator of the HS included) for a reconstruction size of 150 x 150 x 100
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z1 = —1.092um | 29 = 1.48
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Figure 4.8: RI reconstructions of the yeast cell with Rytov, BPM, and the proposed
method (LSm). The first column corresponds to the central XZ slice of the sample. Then,
from left to right: XY slices at depths z; = —1.092um, zo = —0.496wm, and z3 = Owm.

(200 iterations). The proposed method took about 38 seconds per iteration (proximity
operator of the HS included) for a reconstruction size of 96 x 96 x 96 (200 iterations).

Reconstruction Results

The reconstructed volumes obtained with the Rytov method, the BPM, and the proposed
approach are presented in Fig. 4.8. Once again, nonlinear models clearly outperform the
(linear) Rytov reconstruction. Moreover, the reconstruction of the RI obtained by LSm
does not suffer from the artefacts indicated in BPM slices z9, z3 with thick white arrows.
Also, the areas with higher RI are better resolved (z1, z2, thin red arrows) when LSm
is deployed. Finally, one can appreciate in Fig. 4.9 that the inner areas with higher RI
(green) are more resolved for LSm than for BPM.

4.7 Adaptive Regularization with Dictionary Learning

As we could see in the previous sections, the missing-cone problem yields artifacts which
are more prominent along the optical axis (Chapter 2), which can be circumvented by
regularization [12, 14, 71]. However, these regularization approaches do not take into
account the anisotropic resolution of ODT.
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BPM LSm

Figure 4.9: Iso-surface color renderings of the RI reconstructions of the yeast. The
isovalues are 1.35, 1.38, and 1.46 for the blue, red, and green color channels, respectively.

In this section, we propose to go one step further and leverage such anisotropy to improve
the quality of the reconstructions. Our motivation is to learn highly resolved features
from lateral planes and use them to enhance the quality in the axial direction. Hence,
inspired by the strategy proposed by Soulez [131] for the deconvolution of fluorescent
microscopic images, we deploy a dictionary-based regularizer that is learnt from the
lateral planes of an initial reconstructed volume.

Three-step reconstruction

In the spirit of [131], we designed a three-step reconstruction scheme.

1. TV-regularized reconstruction.
2. Dictionary learning (DL) from lateral planes.

3. Final reconstruction using the learnt dictionary.

TV-Regularized Reconstruction The first step consists in solving the nonnegative
TV-regularized problem

>0

Q
e {““g By (Z IF,(5) - v 13 + mufuw) } e
q=1

where H, : CV - CM denotes the two-step forward model described by (4.3) and (4.4)
for the gth incident wave w}, || - [[rv = |V - ||2,1 is TV (Section 2.3), and 7pv > 0
is the regularization parameter which balances between the data-fidelity term and the
TV term. As done previously, we deploy FBS, implemented using the GlobalBiolm
library [129] (Appendix A.1), to obtain fTV.
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DL from Lateral Planes Given the nonnegative TV solution fTV, our goal is to learn
a dictionary D € RV»*X formed out of K atoms of size N, < N such that fTV can be

represented as
TV X XY\T
V=Y (R}Y) Doy, (4.23)
p=1

where R;,(Y : RN — R is an operator that extracts a 2D patch of size N, centered on
the pth element of the input vector (its adjoint inserts the patch at the pth position), Pxy
denotes the number of patches, and {ay, € RE }5?{ are sparse vectors. The superscript XY
in RXY denotes the fact that the operation only extracts 2D patches from lateral planes.

We formulate the DL problem as

2
Pxy Pxy
{D,a,} € {arg min ( Z(R;(Y)TDap — VI + oo Z ||ap||1) }, (4.24)
DeR™YP p=1 9 p=1

a,€RE
where mp1, > 0 controls the sparsity level.

Our formulation is fundamentally different from the pioneering approaches [132, 133]
where the solution was such that each extracted patch had a sparse representation in D.
Our representation f = Zfi‘f (R;(Y)TDap is related to convolutional dictionary learning
(CDL) [134-136], as shown by Papyan et al. [137, 138]. As opposed to traditional DL,
CDL accounts for global information in the image such as shift invariance. Hence, (4.25)
not only enjoys the global sparse representation of CDL but also benefits from the local
(patch-based) processing of DL [137, 138].

By introducing the auxiliary variable s, = Da, in (4.24), we can deploy the alternating-
direction method of multipliers (ADMM) to minimize the augmented-Lagrangian func-

tional
2
R Pxy Pxy P w12
L(D, oy, sp, Wp) = Z(R;W)Tsp — £V 4 Z 2|5~ Do, + 717 + 7ol a1,
p=1 2 p=1 2

(4.25)

where {w, € RN» }5;“{ are the dual variables and p > 0 is the Lagrangian multiplier.
Using the CDL terminology [138], the auxiliary variable s, is referred to as the pth slice.
The ADMM is implemented using the SPAM toolbox.* [139]

Final Reconstruction Using the Learnt Dictionary Equipped with the dictionary
D € RY»*K Jearnt from lateral planes in Section 4.7, we now consider the optimization

“http://spams-devel.gforge.inria.fr/
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4.7 Adaptive Regularization with Dictionary Learning

Algorithm 2 Proposed algorithm to solve (4.26)

Require: y € CMQ 0 c CN, D e RN*K 4 > 0,75 > 0
1: Define F = Y20 [H R - ) = y57|3 + Rpos(RT )
2 s0 = anQRfO
t=1

4: while (not converged) do

5: z! =s! —yVF(s)

6

7

8

9

sttt =C_ 5(2), Vpe{l,...,P}

Tsc, D\ P

t«—t+1
: end while
. return f* = R7s!!

problem
f* = RTs",
* - d T sc|2 T (4.26)
s e darg min (30 IH,RTS) - yyl3 + Ryw(RTS) + Rp(s) | 1.
S q:1

where s = [sT ... sE]T € RMP is the concatenation of all the slices, P = Pxy + Pxz + Pyz
is the total number of slices, and R = [RLy RL, R, T € RMP*N with Rxz (Ryz)
the counterpart of Rxy for the XZ (YZ, respectively) sections of the volume. We use

the differentiable functional Ry : RY 5 R

N
Rpos(£) = 3 AM log (exp(—puf) + 1) (4.27)

n=1

to favor nonnegative solutions. Here, A,os > 0 is a weighting factor and p > 0 shapes
the tolerance to negative values. Finally, the functional Ry : RNoP — R in (4.26) is
a regularization term designed to enforce the slices s, to have a sparse representation
in D. Denoting F = Zqul [H(RT - ) —y5[13 + Rpos(RT - ), we can deploy the FBS
algorithm whose iterates are given by

sttt = ProX,R . (St — 7V]:(st)) : (4.28)

where v > 0 is a descent parameter and prox.z_. denotes the proximity operator of the
D

functional Rg. Here, we follow the plug-and-play prior philosophy [140-142] and replace
prox.,z_. in (4.28) by the “denoising” operator
D

C = :RVP —RM
Tst

s +——Da*, (4.29)
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TV

Y

Figure 4.10: TV-regularized solutions obtained with regularization parameters 7oy =
{0.15,0.3,0.5} /963 (from left to right, respectively).

where 75 > 0, and

1 ~
* : 2
a” € {arg min <2Hs — Dal5 + TSCH(1H1>} . (4.30)

Numerous solvers exist to solve (4.30) [133, 143]. Again, we use the GlobalBiolm library
together with the SPAMS toolbox for this step. Finally, we summarize the complete
reconstruction scheme of this section in Algorithm 2.

Results

We validate our method on the yeast cell shown in Fig. 4.8 and used the same setting
described in Section 4.6.2. In particular, the size of the reconstructed volume is (96 x
96 x 96) with a sampling step of 99.3nm (9.53um in each dimension).

TV-Regularized Reconstruction We first reconstructed the sample using the method
described in [16] by minimizing (4.22). The initial guess was the solution provided by
the Rytov model [11]. We used diverse regularization parameters v for TV (Fig. 4.10).
When the regularization is weak, artifacts due to model mismatch are hindering the
quality of reconstruction. On the contrary, over-regularization results in cartoon-like
solutions.

Learning the Dictionary We learned the dictionary by minimizing (4.25). We

used patches of size (8 x 8) (N, = 64) and K = 64 atoms. We set mp, = 1//8 and

p=0.5 maX(fTV)Np2. The learnt atoms of the dictionary D are shown in Fig. 4.11.
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Figure 4.11: Dictionary D learnt from lateral planes of the TV regularized solution (
dotted rectangle in Fig. 4.10).

TV
£,

Final Reconstruction We solved the optimization problem (4.26) and encouraged
the nonnegativity of the solution with Apes = 1/96% and p = 5 in (4.27). The initial
guess was f1V. The denoising operator (4.29)—(4.30) was used with regularization
parameter Ty, = 1074

We observe that the Rytov-based solution suffers from the missing-cone problem whereas
the regularized solutions (i.e., TV and the proposed one) mitigate its effect. In addi-
tion, some features are enhanced with the proposed solution in comparison to the TV
solution (Fig. 4.12). Finally, the proposed method is able to recover features in deeper
axial position whereas the TV-regularized solution is over-regularized (Fig. 4.12, right
column).

Discussion

We designed an adaptive regularization that allowed us to improve the quality of ODT
reconstructions in the axial direction using features learned in lateral planes. The
proposed regularization relies on a dictionary that is learnt from the lateral planes of
an initial TV reconstruction. This dictionary is then used in a final step to enhance the
quality of the reconstruction in all XY, XZ, and YZ sections. We applied this strategy to
the reconstruction of real ODT measurements. Our results show the superior performance
of the proposed pipeline over conventional regularization.

4.8 Summary

3D ODT reconstruction is a challenging inverse problem. Its success depends on the
accuracy of the implementation of the physical model. In this chapter, we used our
model LSm (Chapter 3) to reconstruct 3D RI maps. To that end, we tackled important
difficulties that are related to the computational and memory burden, as well as the
calibration of the incident field. Finally, we showed on both simulated and real data that
the use of the proposed model improves the quality/faithfulness of the reconstructions.
In addition, we designed a new regularization scheme based on dictionary learning that
improves the axial resolution by exploiting the superior lateral resolution in ODT. In a
similar context, we also developed a deep-learning projector for ODT [98].

Until now, we have worked with complex-valued measurements; a setting that requires
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Rytov

TV LSm

Proposed DL LSm

Figure 4.12: Yeast reconstructions. Views of the reconstructed sample at the XZ plane
and three different XY positions. The Rytov-based solution (Rytov), the TV-regularized
solution (TV LSm), and the proposed regularized solution (Proposed DL LSm) are
displayed in the top, middle, and bottom rows, respectively. The TV-regularized solution
was obtained with 71y = 0.3/963.

an interferometric apparatus. ODT from intensity-only measurements is a popular
alternative to simplify the acquisition setup and reduce its cost. However, this comes
at the price of a harder inverse-scattering problem. In the next chapter, using our LSm
model, we will present a reconstruction framework adapted to the challenging setting of
intensity-only measurements.
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51 ODT from Intensity-only
Measurements

5.1 Introduction

In this chapter, we use our LiSc-based model (LSm, see Chapter 3) for ODT from
intensity-only measurements.! This setting allows us to get rid of the interferometric
system required to record holographic data (Chapter 4). The price to pay, however, is
that the reconstruction problem becomes more challenging. In practice, this task usually
addressed by alternating between phase retrieval and RI estimation [5, 43, 61, 75].

5.2 Contributions

Our contribution is the design of a versatile reconstruction framework which permits
the use of any physical model (Chapter 1) and leverages recent advances in proximal
algorithms. In Section 5.3, we present the versatile framework and comparisons between
2D reconstructions from intensity and complex measurements. In Section 5.5, we extend

our comparisons to the 3D setting.

5.3 Unified Regularized Reconstruction Framework

5.3.1 Problem Formulation

Let us define the operator H*! : RNY — C¥ that, given the scattering potential f € R,
gives the total field on the detector region I' (Fig. 5.1). Note that in Chapter 4 H referred
to our LiSc based model (LSm) which computes the scattered field on the detector
region.? In addition, H*" can be any model of wave scattering. Two specific models will
be used in the experiments of Section 5.4: BPM (Chapter 1) and LSm (Chapter 3). The

'The content of this chapter is based on [20, 21].
2The computation of the total field is then trivial, since we just have to add the incident field on the
detector region to the scattered field.
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Optimization with ADMM

intensity-only measurements {y, € RM }qE[l...Q] are related to the model by

yq = [HE)? + &4, Vg e[1...Q), (5.1)

where the notation HEIOt( - ) refers to total field obtained with the incident field uiln,
& € RM | Vg € [1...Q], represent noise and | - |? is a component-wise squared magnitude.
Similar to Chapter 4, we adopt a variational approach to estimate the scattering potential
f € RY from the measurements {y, € RM }qel1...q) by solving the optimization problem

Q
R ; tot 2
fe {arg min qgl D(H, ()%, yq) + TR(Lf)} . (5.2)

Let us recall that the functional D : RM x RM — R+ measures the fidelity of the model
to the data and that, from a Bayesian point of view, we can relate D to the log-likelihood
of the noise distribution.

5.3.2 Optimization with the Alternating Direction Method of Multipli-
ers (ADMM)

In this section, we leverage recent advances in phase retrieval, nonlinear physical mod-
els, and modern regularization. We propose a unified framework that can cope with
forward models at various levels of sophistication (e.g., Born [10], BPM [144], LiSc-based
models [16, 105]) and with various sparse regularizers (e.g., TV [123], HS [124]). This
is possible because of the modularity of the proposed approach, which comes from an
adequate splitting of the initial problem into simpler subproblems. Moreover, our method
can be easily adapted to different types of noise by the way of specific data-fidelity terms
for which an explicit expression of the proximity operator is available. Finally, we validate
the proposed method on several simulated and real datasets using both BPM and LSm
together with a TV regularizer.

Splitting Strategy

Inspired by the success of ADMM [145], we propose to split the optimization task in a
way that decouples the complex-field-based reconstruction from the phase retrieval. To
that end, we introduce the auxiliary variables v, € CM qe[l...Q], and reformulate
the problem in (5.2) as

Q
(f,vi,...,vQ) € § arg min ZD(|Vq\2,yq) +7R(LE) p, (5.3)
(fvi,...,vQ)eX =1
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Figure 5.1: ODT setup (intensity-only). A sample with the RI n € RY is immersed
in a background medium of index 7, and impinged by an incident plane wave with a
given orientation (wave vector ky,). The interaction of the incident field with the object
produces a scattered field. The squared magnitude of the total field, which corresponds
to the sum of the incident and scattered fields, is recorded by the detector.

where
X={(f,v1,....,vg) € BxCM? st v, =H{'(f) Yge[1...Ql}.  (5.4)

The augmented-Lagrangian form of this problem is

Mo

LIEvi,. v, Wiy, wq) = D D(vgl*,yg) + gHHZOt(f) = vg+wg/pl3 + TR(LE),

1

! (5.5)

where w, are the Lagrangian multipliers and p is a positive scalar. Then, (5.5) is
minimized using ADMM, which results in the procedure given in Algorithm 3. The
problem is now reduced to three simpler subproblems: a phase retrieval that requires
the computation of the proximity operator of D(| - |2,y,), an RI reconstruction problem
from complex measurements (Chapter 4), and the Lagrangian update of w,.

Proximity Operator for Phase-Retrieval

At Step 5 of Algorithm 3, we must compute the proximity operator of %D(| 2, y,), like
in
PrOX1ip( - 2y, (%) = arg min o v —x]l + p (V% ¥q)- (5.6)

Here, we benefit from the closed-form expressions that have been recently derived for
Gaussian likelihood in [19]. In the present work, we consider the weighted quadratic
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Algorithm 3 ADMM for solving (5.5)

Require: {yq}qe[l”_Q], fe RJZVO, p>07>0

1 £fO =
2: W,(JO) =0cm, Vg€ [1...Q)]
3t=0
4: while (not converged) do
Wt .
5: Vit = ProXip| - |27yq)(HfI°t(ft) + 1), Vae[l...Q] > Phase retrieval

Q
6: £l — arg gréig g qz:l ||Hf1°t(f) - VZ—H + wfl/pH% + 7R(Lf) > RI reconstruction

S tot (pt-+1 t+1 :
: w, = w, + p(HH () v, ) Vg e [1...Q) > Update Lagrangian
8: t+—t+1

9: end while

10: return f!

data-fidelity term
1 2
2 _ 2 2
D(vIyq) =5 HIVI Yquq’ (5.7)

where W, = diag(w{,...,w},) is a diagonal matrix and || - ||w, a weighted ¢3-norm
such that HVH%VQ = vI'W,v. This scheme can be tuned to two scenarios.

1. Log-likelihood for Gaussian measurement noise: We set wd, = 1/02, where o2 is
the variance of the noise.

2. Log-likelihood for Poisson measurement noise: We set w, = max(yg.m,b) !, where
the minimal value b > 0 accounts for background emission and the dark current of
the detector.

Following [19], the proximity operator of D(| - |?,y,) given by (5.7) is computed

component-wise according to
V€ OV, [proxyp - oy (0)] = g (5.8)
P ’ m
where o,, is the positive root of the cubic polynomial in o

44 44
16(0) = 25 + o (1 - pmyq,m) ~ [t (5.9)

which can be efficiently found with Cardano’s method. Note that a closed-form expression
has also been derived for an exact model of Poisson noise [19].

60



5.4 Results for 2D Data

Reconstruction from Complex Fields

The minimization over f (Step 6 of Algorithm 3) can be achieved by deploying an
accelerated FBS algorithm [125, 126, 146] (see Chapter 4 for details).

5.4 Results for 2D Data

We first assess the suitability of our framework to reconstruct simulated samples using
two physical models: BPM (Chapter 1) and LSm (Chapter 3). Then, we validate our
approach on experimental data. Finally, we evaluate the performance of the method for
limited measurements.

We compare the solutions of our framework to those obtained with the light field
refocusing (LFR) method [147] which were also used as initial guesses for Algorithm 3.
For the regularizer R(L - ), we use the TV seminorm, known to attenuate the missing-
cone problem. Moreover, we enforce a nonnegativity constraint on the scattering potential
by setting B = Révo. Because the RI reconstruction step can be computationally intensive,
we adopted acceleration strategies. Similar to Chapter 4, the gradient required in FBS
was computed for a subset of the angles [1...Q]. This subset was changed at each
iteration while keeping a constant angle difference between them. We implemented the
algorithms using an inverse-problem library developed in our group [129] (Appendix A.1).

5.4.1 Simulated Data

Simulation setup

We consider the three samples presented in Fig. 5.2 (top row). They are immersed in
water (np, = 1.33) as well as the source and the sensors. They were impinged by thirty-one
incident waves with angles ranging from —45° to 45°. These waves were propagated
from the bottom to the top of the (33\ x 33\) domain with A = 406 nm. Simulations
were performed on a fine grid (1024 x 1024) with a pixel area of (0.03)\)? using the LSm
forward model. The 1024 sensors are evenly placed on a straight line of length 33\
above the sample at 16.5\ from the center. Finally, these measurements were reduced
to M = 512 using averaging.

Reconstruction parameters

The regularization parameter 7 was selected in order to minimize the relative er-

ror Hé - £trueH2/H£true”2-

The outer loop in Algorithm 3 (inner FBS at step 6 in Algorithm 3, respectively) was
stopped when the relative change between two iterates is below 1078 or after 20 (50,
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4 and

respectively) iterations. The step size in the FBS algorithm was set to 5 - 10~
5 - 1073 for BPM and LSm, respectively. The penalty parameter was set to p = 1075.
Finally, the reconstructions were performed on a (512 x 512) grid. The regularization

parameter 7 was tuned by hand for each sample.

Observations

As shown in Fig. 5.2, the proposed framework is able to reconstruct the samples despite
the lack of phase information. Both forward models obviously perform better than LFR
which only relies on geometrical optics. We observe that the LSm forward model yields
better reconstructions than the BPM forward model. Our framework with LSm is able
to retrieve most details of the object. The shape as well as the RI of the samples are well
estimated. These observations are quantified by the relative error presented in Table 5.1.

Table 5.1: Reconstruction performance. The relative error € = W

proposed method with BPM was 3 to 6 times faster than with LSm.

is shown. The

€ Three fibers Cell Shepp-Logan

LFR 14 -1072 1.36 - 1072 | 2.06 - 1072
BPM 4.74 - 1072 | 6.05 - 1073 | 1.28 - 1072
LSm 1.33-103|4.04 - 103 | 1.02 - 102

5.4.2 Experimental Data

We validate our framework using the publicly available experimental datasets of the
Institut Fresnel [130]. We used the same setting than in Chapter 4 (i.e., TM polarization
at 3 GHz (A = 10 cm), eight sources (F1_g), 241 sensors (S241) per source) We recon-
structed the three targets FoamDielExt, FoamDiellnt, and FoamTwinDiel using the TM
polarization at 3 GHz (i.e., A = 10 cm). Each 2D inhomogeneous sample is depicted in
Fig. 5.4 (top row). The indicated permittivities were experimentally measured and are
subject to uncertainties [130].

For the reconstruction, we consider a (15 x 15 cm?) area discretized over (256 x 256)
pixels. This yields a pixel area of about (0.0586 cm)2. We reconstruct these samples
with the LSm forward model and compare the results with the RI reconstruction from
holographic measurements [16].

The chosen regularization parameters 7 were tuned by hand for both algorithms. The
penalty parameter p was set to 5. We initialized both algorithms with the background

value.
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Figure 5.2: RI map for three fibers, a simulated cell, and the Shepp-Logan in the first,
second, and third column, respectively. The ground truth and the reconstructions from
the LFR, BPM, and LSm proposed methods are shown in Row 1 to 4, respectively. The
samples are immersed in water (np, = 1.33). Thirty-one views were acquired with a tilted
plane-wave illumination. The angles ranged from —45° to 45°. The sample is illuminated
from below. The 1024 sensors are evenly placed on a straight line of length 33\ above the
sample at 16.5\ from the center. The measurements were reduced to 512 using averaging.

The results presented in Fig. 5.4 suggest that the two methods perform similarly in terms
of quality. The shape and the permittivity of the samples are both remarkably well
recovered despite the high contrasts. Furthermore, the bottom graphs in Fig. 5.4 show
that the retrieved phase corroborates the measurement data for each sample. The similar
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Figure 5.3: Acquisition setup for the Institut Fresnel’s dataset. The sensors (dots in
the inner circle) correspond to the illumination angle of 0° (i.e., E1). The measurements
are restricted either by reducing the number of sensors (sensors sets Sa41, .. .,S91) or the
number of acquired views (emitters F1, ..., Eg).

performances observed for these samples suggest the intensity-only measurements still
contain some phase information due to the diffraction.

Reducing the number of measurements

In this section, we assess the effect of a reduction in the number of measurements (Fig. 5.3).
To that end, we combined two methods. On one hand, we incrementally ignored illumi-
nation angles. On the other hand, we reduced the number of sensors, starting from no
restriction (i.e., S241) to the smallest set of sensors Sg; (Fig. 5.3). This strategy allowed
us to explore the missing-cone problem. By progressively limiting the available measure-
ments, we converged to a setup similar to that of tomographic phase microscopy [66]. The
reconstruction obtained for the easiest scenario (i.e., 8 views and S241) was considered
as a reference. Then, the regularization parameter 7 was tuned in order to minimize the
relative error with respect to this reference.

As shown in Fig. 5.5, the quality of the reconstructions is remarkable, even in extreme
cases. This is due to the use of modern regularization.
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Figure 5.4: Permittivity reconstruction of the Institut Fresnel’s datasets by LSm. From
left to right: FoamDielExt, FoamDiellnt, and FoamTwinDiel. From top to bottom: ground
truth, reconstructions from complex (using [16]) and intensity-only (proposed method)
measurements, respectively, and magnitude and phase of the predicted (solid curve) vs
true (dashed curve) measurements (0° illumination angle). The two curves often overlap.
For the solutions from complex measurements, the regularization parameters were set at
1.6 - 1072,3 - 1072, and 9 - 1073 for FoamDielExt, FoamDiellnt, and Foam TwinDiel,
respectively. For the solutions from intensity-only measurements, the regularization
parameters were set at 7 - 1072, 9 - 1073, and 4 - 102 for FoamDielExt, FoamDiellnt,
and FoamTwinDiel, respectively.

5.4.3 Discussion

We have proposed a variational formulation of the reconstruction of RI from intensity-only
measurements. It allows us to take advantage of efficient algorithms to solve subproblems.
Our framework is able to handle several forward models and any regularization. Notably,
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Figure 5.5: Permittivity reconstructions of the Institut Fresnel’s dataset with a limited
number of measurements. From left to right: Q = 3,5,7, and 8 views were used to
reconstruct the sample FoamDielExt. From top to bottom: The sensors were included
in the sets Sa41, S181, 9151, 5121, and Sg1, respectively. The reconstruction error with
respect to the best solution (i.e., Eg, S241) is shown at the top left of each image.

we showed that LSm combined with TV regularization reconstructs highly scattering
samples from intensity-only measurements, even in ill-posed configurations. Furthermore,
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our results suggest our method can reconstruct RI samples in even more difficult cases
where few measurements are available.

5.5 Reconstruction Framework Revisited

5.5.1 Optimization for 3D Data

Despite its appealing features, our unifying framework does not scale well with 3D
optical setting. In particular, the update of the Lagrangian in Algorithm 3 involves the
computation of all the forward models, a time-consuming step when many views are used.
We could not adopt strategies similar to the previous chapter which have alleviated the
computational burden. For instance, the counterpart of a stochastic FBS algorithm for
ADMM did not show satisfying results in our preliminary experiments.

Similar to the previous chapter, we then deploy a stochastic FBS algorithm to mini-
mize (5.2); here, it is closely related to the Wirtinger flow techniques used in FP [63, 65,
148, 149].

Computation of the Gradient for Intensity-only ODT

Similar to Section 4.5.3, let us first denote £ (f) = D(|HL (£)|?, y,) and the data-fidelity
term in (5.2) as

ot (£) = Y & (F) (5.10)
qeQ

For D(|H[*'(f)|?,y,) = m > gco IIHEH(E)]? — yql?, the gradient of (5.10) is given by

VER(E) = > VEE), (5.11)
qeQ
with 5
VE () = e (T (O digF O)H OF -v0) . (12

where J Hgot(f ) denotes the Jacobian matrix of the physical model. For instance, the
Jacobian matrix of BPM is provided in [12]. The forward model for LSm for the total
field is simply

yq = Hy(f) +uf,, (5.13)

where Hy(f) is defined in (4.3)-(4.4) and uiﬁq € CM is the incident field on the measure-
ments plane. Then, the Jacobian matrix is given by

o (F) = I3 (£)GH, (5.14)
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Table 5.2: Relative error of the RI RBCs reconstructions.

Method ‘ Wolf transform ‘ LSm (complex) ‘ LSm (intensity)

% \ 3.004 x 104 \ 9.0120 x 10~ \ 1.954 x 10~5

with Jth (f) defined in Proposition 4.5.1.

Computation of the 3D Incident Field

Let us recall that our forward model LSm requires the knowledge of the 3D incident
field u™ € CV, but we only acquire 2D intensity measurements for each view in real data.
We then assume that the phase of the incident fields is an ideal tilted plane wave and
proceed as described in Section 4.4.3 to obtain the 3D incident field. In case where the
angles are approximately known, a simple yet efficient tool can estimate them from the
intensity-only measurements [68].

5.6 Results for 3D Data

To recover a good 3D RI map with nonlinear models, we have observed that the initial
guess plays a key role in the quality of the RI map obtained by our method. From complex
measurements, Rytov model often provides a good initial solution. From intensity-only
measurements, the LFR method [147] fulfilled this role for our 2D experiments but failed
to provide a satisfying initial guess in our 3D experiments. As an alternative, Ayoub et
al recover more accurately sample features via the Wolf transform from intensity-only
measurements [150]. To obtain an initial guess of RI map, we post-process the non-
quantitative solution obtained by their method (Wolf transform). In all our experiments,
we compare with the solutions obtained from complex measurements (Chapter 4).

5.6.1 Simulated Data

We used the same simulation setting than in Section 4.6.1. We regularize our solution
with TV.

We display in Fig. 5.6 the reconstructed 3D RI maps and their obtained SNRs are reported
in Table 5.2. As expected, the reconstruction method from complex measurements obtains
the best quality (Table 5.2). However, the 3D RI map recovered from intensity-only
measurements remains fairly impressive (Fig. 5.6, fourth row), given the quality of the
initial guess (Fig. 5.6, second row).
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LSm (complex) Initial Ground truth

LSm (intensity)

Figure 5.6: RI reconstructions of the simulated RBCs by the Wolf transform (Initial),
LSm (complex), and LSm (intensity).

5.6.2 Experimental Data

We used the same real data than in Section 4.6.2, which allows us to compare between
reconstructions from complex and intensity-only measurements. We took the intensity of
the holographic measurements to simulate intensity-only measurements. Here, we used
HS as regularizer.

69



Optimization with ADMM

We display in Fig. 5.7 the RI maps obtained with LSm from complex and intensity-only
measurements (second and third row, respectively).

z1 = —1.092um | z9 = —0.496um 23.= Opm 1.48

Initial

1.338

LSm (intensity) LSm (complex)

Figure 5.7: RI reconstructions of the yeast cell with the Wolf transform (Initial), LSm
(complex), and LSm (intensity) from top to bottom, respectively. The first column
corresponds to the central XZ slice of the sample. Then, from left to right: XY slices at
depths z1 = —1.092um, zo = —0.496wm, and z3 = Opwm.

5.6.3 Discussion

As expected, the loss of phase information can impact the quality of reconstruction.
Despite the decrease in quality, the RI maps reconstructed from intensity-only measure-
ments still recover features similar to the ones of the RI maps obtained from complex
measurements. Here, our illumination angles are restricted to a cone, which leads to a
strong missing-cone problem. Such challenging settings seem to strongly benefit from
the phase information in the measurements. For instance, we ignored other optical
aberrations in the phase of the incident field for the 3D real data, since we assumed an
ideal plane wave. This probably explains the observed difference in quality between the
RI maps reconstructed from complex-valued and intensity-only measurements.

Furthermore, we have observed that the initial guess plays an essential role in the
quality of reconstruction for the real data, which emphasizes the importance of the Wolf
transform and Rytov method for the success of nonlinear models.
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5.7 Summary

In this chapter, we applied our novel LSm model to the challenging inverse-scattering
problems involving intensity-only measurements. To solve the inverse problem in 2D,
we proposed a variational framework which splits the original optimization problem
into simpler subproblems. Thanks to this modular approach, our framework can handle
any forward model and any regularization. We have illustrated the advantages of the
proposed framework by reconstructing highly-scattering samples from intensity-only
measurements. Here, the quality of the reconstructed 2D RI maps is similar to that of
the RI maps obtained from complex measurements.

To solve the 3D inverse-scattering problem, we adopted a computationally-efficient
proximal gradient-based optimization technique. Given the lack of phase information,
the 3D RI maps obtained from intensity-only measurements are of quite remarkable
quality. However, the quality of reconstruction decreases in comparison to the 3D RI
maps obtained from complex measurements. This slightly contrasts with our observations
for the 2D experiments. Although the experimental conditions remain different (beyond
the obvious additional dimension), this calls for further investigation in future works. In
particular, we shall study the effects of the initial guess, the missing-cone problem, and
the optical aberrations.

In the next chapter, we will apply our reconstruction framework for intensity-only
measurements to fluorescence-based SMLM.
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Single-Molecule Localization
Microscopy (SMLM) Meets ODT

6.1 Introduction

In this chapter, we capitalize on our previous contributions to propose a novel extension
of SMLM.! SMLM delivers nanoscale resolution by sequentially activating a subset of
fluorescent molecules and by extracting their super-resolved positions from the microscope
images. The emission patterns of individual molecules can be distorted by the RI map of
the sample, which reduces the accuracy of the molecule localization if not accounted for.
By building upon the previous Chapters 3-5, we show that one can exploit these sample-
induced aberrations to recover the RI map. To that end, we propose an optimization
framework in which we reconstruct the RI map and optimize the positions of the molecules
in a joint fashion. The benefits of our method are twofold. On one side, we effectively
recover the RI map of the sample. On the other side, we further improve the molecule

localization—the primary purpose of SMLM.

6.2 Context

SMLM is a method of choice for the observation of biological phenomena at nanoscale
resolution [151-153]. SMLM is a prime example of computational microscopy where
suitable acquisitions and algorithmic reconstruction are combined in order to enhance
the capabilities of traditional systems. Although SMLM acquisitions are 2D, innovative
point-spread functions (PSF), whose shapes vary with depth, have been designed to
encode the axial position of molecules. These include the popular astigmatism [154]
or double-helix [155] PSFs. Therefore, in addition to efficient localization algorithms,
well-calibrated models of these PSFs are essential to reach the promised nanoscale
resolution [25].

The standard practice is to estimate these PSFs from acquisitions of sub-resolved objects

!The content of this chapter is based on [22, 23].
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(e.g., fluorescent microspheres) [156, 157]. However, this strategy ignores sample-induced
distortions. Indeed, the heterogeneity of biological specimens—through variations in their
RI—induces scattering of the emitted light. This distorts the recorded emission patterns
and compromises the accurate localization of molecules. To mitigate this effect, Xu et
al. [158] proposed an algorithm to jointly localize fluorescent molecules and estimate an
in situ PSF model that has the ability to capture sample-induced aberrations and, hence,

improve localization accuracy.

If we could estimate both the RI and the position of molecules from the SMLM acquisition
stack alone, then we would have a unique combination of structural (RI) and functional
(fluorescence) information about the sample [2]. To our knowledge, such a reconstruction
of both RI and fluorescence density from the same fluorescent dataset (i.e., without
phase measurements) has been investigated only recently by Xue and Waller [159]. They
consider two-layers samples where the bottom layer contains fluorescence-labeled objects
and the top layer contains non-labelled objects. In this context, they demonstrated
that the 3D RI map of the non-labelled objects can be reconstructed from defocused
fluorescence images that are collected by sequentially stimulating small regions of the
fluorescence-labeled layer of the sample. Moreover, they showed that the reconstructed
RI map can be exploited to obtain the scattered PSF and improve the fluorescence
signal through deconvolution. This setting differs in two ways from the exploitation
of the individual emission of fluorophores in SMLM that we propose here. First, RI
and fluorescence objects are mixed (i.e., no two-layers samples). Second, fluorescence
measurements are recorded at two distinct focal planes (i.e., biplane SMLM modality).

In SMLM, the recovery of the RI has been addressed in [160]. This work exploits the
fact that SMLM data can be seen as measurements of an ODT system with point-source
illuminations inside the sample. In [160], the authors assumed that the phase of the
measurements was accessible, an assumption which is not met in practice. Moreover,
their proposed approach relies on a linear model whose validity is limited to weakly

scattering samples [10].

6.3 Contributions

In this chapter, we introduce a RI-reconstruction approach from (intensity) SMLM
measurements. We consider a realistic image-formation model (described in Section 6.4)
that integrates background fluorescence as well as the shot noise inherent to fluorescence
microscopy. Importantly, we consider that the positions of the molecules are known only
approximately, and then take advantage of our model-based scheme to refine them.

To cope with this challenging scenario, we propose a joint-optimization framework (Sec-
tion 6.5). Our method simultaneously reconstructs the RI and refines the positions and
amplitudes of the molecules. The benefits of our framework are twofold. On one side, we
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Q Optical
System

Figure 6.1: Biplane SMLM. A fluorophore emits fluorescent light which scatters through
the sample. Then, an optical system records the intensity of the total field at two different
focal planes.

accurately estimate structural information (RI) from SMLM acquisitions. On the other
side, we significantly improve the localization of the molecules—the primary objective of
SMLM. We validate our framework on simulated data in Section 6.6.

6.4 Image-Formation Model

6.4.1 SMLM: Perspective from ODT

The space-varying RI of the sample under consideration is represented by the func-
tion 7 : Q — R with Q C R3. The sample is populated with L fluorophores located at
spatial position {x; € Q}£ ;. Without loss of generality, we consider an SMLM acquisition
stack where a single fluorophore is activated on each frame. Indeed, because fluorophores
are incoherent sources, the image produced upon activation of multiple emitters is simply
the sum of the individual contribution of each emitter [29].

When activated, the [th fluorophore at position x; € € emits a spherical wave with
intensity a; > 0, which leads to

exp (jkbllx — xi(|2)
4r||x — xq|2

u (x5 %, ap) = (6.1)
where j is the imaginary unit and k, = 2”% is the wavenumber determined by the
emission wavelength A and the RI 7, > 1 of the surrounding medium. The spherical
wave acts as an “incident” field that illuminates from within the sample. As such, it
scatters through the sample and produces a field u; : R? — C that satisfies the LiSc
equation—which we recall here with the explicit dependence on x;, a;—

w(x) = u™(x; %7, ) + /Qg(x —z)f(z)u(z)dz, (6.2)
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Algorithm 4 Joint-Optimization Framework
Require: f' € RY;, [x}---x0] € QF, a% € R
1: t=0
2: while (Not converged) do
3: Select a subset £ C {1,...,L}
> Update amplitudes and positions
: for l € £ do
5: (ai™,xIT1) = Refine (7 (£, -, - );al,x})
end for
> Update the scattering potential:
T £ = accel FBS (Sie  Ji( %t o) )
8: t+—t+1
9: end while
10: return f*, X' a’

where f(x) = ki (77(7]’{2)2 - 1) is the scattering potential and g : R? — C is the Green’s
b

function that corresponds to the centered spherical wave u®(x;0,1) [161]. The intensity
of the field u; at the camera plane I' is then recorded by an optical system to form the
Ith SMLM frame y; € R™. Formally, we have, VI € {1,..., L}, that

yi = Pois (|Pu| > +by), (6.3)

where Pois denotes Poisson’s distribution (shot noise), ul’r denotes the restriction of

to I', and b; € RM is a background signal that can originate from autofluorescence or
spurious out-of-focus fluorophore emissions. Finally, P : C2 — RM is a linear operator
that models both the effect of the optical system (i.e., pointwise multiplication with the
pupil function in the Fourier domain) and the sampling on the M camera pixels.

6.4.2 Discrete Forward Model

Let us rasterize €2 into N voxels of length h. Similar to our previous chapters, we define
the discrete forward model by

HSMIM RY) x Q x Ryg — RY

(£.x1.01) = B[P [A(£). Ty, )| (6.4)

with
A(f) = G diag(f) (Iy — G diag(f)) ", (6.5)
sin(xz, @) = [(™)7, (™) """ (6.6)
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Here, f € RY is a sampled version of f within . The vectors u%n’Q e CN and u%n’r ecM
are the sampled versions of u'™( - ;x;,a;) within Q and T, respectively. We denote
by {x2}_; and {x},}M_, the sampling points within  and I'. Similar to previous
chapters, the matrix G € CN*V encodes the convolution with the Green’s function
in (6.2). Similarly, G € CM*N is a matrix that, given the total field within €, gives the

CMxM jq the discrete version of

scattered field at the measurement plane I'. Next, P €
P and | - |? denotes the pointwise-squared magnitude. A full description of G, G, and
P is provided in Chapter 4. Finally, the matrix B € RM*M encodes a convolution with
a Gaussian filter of length o3 = 0.7h. It accounts for the mismatch between our physical
model derived from the scalar diffraction theory and the vectorial nature of light [162,

163).

In this work, we adopt a biplane configuration [164] that involves two pupil functions
with separate focal planes. To keep the notation simple, we shall use a single matrix P to
represent the effect of the two pupil functions (i.e., two focal planes). Given the discrete
forward model (6.4), the image formation model (6.3) writes as, VI € {1,..., L},

yi = Pois(HSMM™M (£ %, a;) + by). (6.7)

Remark 6.4.1. Although we consider a biplane modality in our experiments, the proposed
joint optimization framework (Section 6.5) can be deployed with any number of focal planes.
In this proof-of-concept work, we considered two focal planes because i) it corresponds to
a standard SMLM modality ) it helps to compensate for the lack of phase measurements.

6.5 Joint Recovery of the Molecule Localization and Re-
fractive Indices (RI)

6.5.1 Joint-Optimization Framework

Our goal is to jointly recover the distribution of the RI and the localization of fluorescent
molecules. To that end, we propose to solve the minimization problem

L

(fi, Xs,a,) € arg min Z Ji(f,x;,a;) + TR(LE), (6.8)
feRY,, =1
XeQk aeRt,

where, for all f € Rgo, x € 2, and a > 0,
Ji(f,x,a) = Dk, (HSMLM(f,X,a) + bl;yl) . (6.9)

The matrix X = [x1---x] € QL and the vector a = (a1,...,a;) € RL are the
concatenation of positions and amplitudes of the fluorophores, respectively. In this
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Algorithm 5 Refinement procedure for the [th molecule
Require: x? € Q, a? >0, Twol €N
1: t=0
2: while (Not converged or ¢t < Ty,01) do
3 al™! = NewtonUpdate (7;(f, x, - );af)
4: x}”‘l = GradientUpdate (.ﬁ(f, . ,af“);xf)
5
6
7

t+—1t+1
: end while
: return xf, af

work, we use a TV regularization [123], although alternatives such as HS [124] or learnt
regularizers [98, 165-167] can be easily plugged into our framework. The data-fidelity
term Dk, is the Kullback-Leibler divergence [168] defined as, V(z,y) € R% X R%,

DkL (z;y) =2 1y —y ©log(z + B), (6.10)

where S > 0 is a stabilizing parameter. Note that the Kullback-Leibler divergence
corresponds to the Poisson negative log-likelihood up to some constant term.

To optimize (6.8), we alternate between an update of the RI and an update of the ampli-
tudes and positions of the fluorophores (Algorithm 4), inspired by the self-calibrating
reconstruction techniques developed for other modalities [169, 170]. Updates are per-
formed on a subset of molecules (Line 3) in a stochastic fashion. In Algorithm 4,
accel. FBS (Zlec Ji( - ,xf“, a}f“); ft) refers to the minimization of 3, » Ji( - ,xf“, af“)
with the accelerated FBS initialized with f!. We use the same notation for the refinement
step at Line 5. Details on the algorithms deployed for each sub-problem are provided
in Sections 6.5.2 and 6.5.3. We implemented the method within the GlobalBiolm
library [129].

6.5.2 Update of Molecule Amplitudes and Positions

For the refinement procedure in Line 5 of Algorithm 4, we again adopt an alternating
scheme between an update of the amplitude and the position, as summarized in Algo-
rithm 5. In the Sections 6.5.2 and 6.5.2, we describe the Newton and gradient update
steps used to refine the amplitude and position, respectively.

Amplitudes
Let f € RZZVO and X € QF be fixed. First of all, one can see from (6.4) that, for a; > 0,
HSMIM(f %) ;) = a?HSMEM(F %, 1), (6.11)
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which is very helpful to reduce the computational cost of our joint-optimization procedure.
Indeed, denoting d; = HSMMM(f x;. 1), we have that

Ji(£, %1, ;) = Dk (a7d; + by y)) (6.12)
= (ald; + b)) 1y
—y; ®log(ald; + by + f). (6.13)

The function J; is twice differentiable with respect to a. Its first derivative is given by

M
Yim
Ou Ty (£, %1, ag) = 2 1= . 6.14
Ji(£, %, 1) almzzzlvz < P ,6’) (6.14)

Its second derivative reads as

M
Yim
82 f =2 m 1-—
a\7l( 7Xlaal) Z vl ( a%vlm+blm+5>

m=1
M (2a,v1m) %y
+ mz_om 6.15
mzzl (aZVim + bim + B)% (6.15)

As such, we can perform a Newton update on q; as

1t Saatjl(faxlaa;)

— Nl
WoT T TR g, %, al)’ (6.16)

where s is the length of a step computed via line-search so as to satisfy Wolfe’s condi-
tions [171].

Positions

Let f € R>0 and a € RL <o be fixed. We want to perform a gradient update on the
position x; of the {th molecule. However, one can see that the spherical wave in (6.1) is
not differentiable whenever x = x;. Consequently, we prefer to consider the smoothed

version of the spherical wave

exp (jkbl|x — xq]2,¢)

6.17
4rl]% — 1] (6.17)

Ugaen (X3 X1, 01) =

where || * |l2.c = +/|| * |3 + € with 0 < € < 1. Then, the gradient of J; with respect to x,
evaluated at xi, is given by
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Algorithm 6 accel. FBS

Require: fO € RY,, Tr1 € N, v > 0,a € [0, 1]
1: t:O,WO:fa,vozl
2: while (Not converged or t < Tg1) do
3 8= VA X, @) (W)

4 " =prox, g - (W -8
5 il — 1+\/12+‘th)2

6: witl = ft ¢ a:};:ll(ft _ ft+1)
7 tt+1

8: end while
9: return f*

Vadi(fx1,ar) = 232 [A(8),Tys] PTPA(E), Tar]sia,

Sin,1

© BTV, Dyr, (HMM(E,x,,01) + by ), (6.18)

where sin; = sin(x;, ;) € CN*+M_ The gradient of Dkr, in (6.10) with respect to the first
variable z is given by

V. DxL(zy) =1y —y1@(z+3). (6.19)

Finally, it remains to provide the expression of the Hermitian transpose of the Jacobian
matrix of sip( -, q;), evaluated at x;, which we denote Jgn s C3*(N+M) Tt gth column
is given by

) 1 (ry — xp)
I 00 = (sl [ 3k + a : 6.20
[ s,n,l]q [ ln,l]q (-] b ”rq - Xl||2,e> ||rq - XlHZs ( )

Let us emphasize that r, = xsq2 (2 sampling points) for ¢ < N and ry = x(l;_ n (I sampling
points) for N < ¢ < N 4+ M. Equipped with this closed-form gradient, we can deploy a
projected-gradient update on x; as

X =P (xf = sVRIilf, Xt 1)) (6.21)

where s is a step-size computed via a backtracking line-search [172]. The projector Pq :
R3 — Q constrains the fluorophore positions to remain in €.
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6.5.3 Update of the RI

When the positions X € O and amplitudes a € RQO are fixed, the RI update consists in

solving
L
f* carg min > J(f,x;, )+ TR(LE). (6.22)
feRJZ\’O =1

It corresponds to an inverse-scattering problem from intensity measurements [5, 20]. To
solve (6.22), we deploy a relaxed variant [115] of the accelerated FBS algorithm [125,
126] (Algorithm 6). It requires the computation of two quantities.

1. The gradient of J;( - ,x;, ;) which involves the Jacobian of A(f) in (6.4) whose
expression is provided in [16].

2. The proximal operator of R(L - ) which, for TV, can be efficiently evaluated by
using the fast gradient-projection algorithm [127].

6.5.4 Initialization Strategies
Initialization of the RI

In ODT from intensity-only measurements, the LFR method is a standard tool to obtain
an initial guess of the RI distribution [5, 62]. However, this initialization requires coherent
light sources with known geometry, which prevents its use on SMLM data. We therefore
adopt an alternative approach that comprises two steps. We first replicate the widefield
image (sum of the SMLM stack) along the axial direction and then blur the obtained
volume with a Gaussian filter. The rationale behind this choice is that we can only
expect to recover the RI where fluorophore emissions have propagated, that is, at the
vicinity of fluorescent molecules. We then define f° as a scaled version of this filtered
volume so that its values belong to an admissible range of RI (Fig. 6.3).

Single-Molecule Localization

Any SMLM localization software can be used to compute the initial positions {x?}le.
However, we found that existing software packages for a biplane modality were not
performing well on our simulated dataset. We believe that this is due to the high
thickness of the sample together with the small number of acquisitions.

Therefore, we adopted a simple yet efficient method. We localize the position of the [th
fluorophore based on cross-correlations between the measurements y; and a set {kp}]f:l
of PSF models in € RM. We define them as the the output of the forward model with
no scatterer, like in

k, = HMM (0, xP5 1), (6.23)
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where the positions ngf = (0,0,pAz) for p = {—P,..., P} vary along the axial direction.
We then initialize
x) = (rh, ih, pAz) (6.24)

where
(h, 0, p) = arg max [y * k;/]mvn, (6.25)

Once localized, we initialize the amplitude as

1

1) (6.26)

af = (Mo (v = Bo) 11/ Il

where Mx? € RF*M crops a region-of-interest centered at X? and b; denotes the estimated
background (Section 6.5.4).

Background Estimation

To estimate {b;}~ |, we apply a simple algorithm suitable for a background that slowly
varies in space and time. In SMLM, this is a common assumption [173]. Our procedure

proceeds in two steps.

1. For each measurement y;, we mask an area around the estimated position x; and
inpaint it using the function regionfill of Matlab? to obtain y;.

2. We apply a spatio-temporal (3D) median filter along the stack of masked and
inpainted measurements Y = [y; - -- ¥ ] to take advantage of the spatio-temporal
smoothness of the background.

6.6 Results on Simulated Data

6.6.1 Simulation Setting

We created an RI map immersed in water (1, = 1.339), fully included in the region €2 of
size (7.2 x 7.2 x 3.2)um?® (Fig. 6.2). This sample presents small features with RI values
that are lower or higher than their surroundings. Then, we populated this sample with
fluorophores randomly placed on a structure that is composed of an outer membrane as
well as inner compartments. The smallest distance between two fluorophores is 20nm.
We simulated L = 1000 SMLM acquisitions with a biplane modality, each corresponding
to the activation of a single fluorophore. The two focal planes were set at £300nm.
The amplitude q; of each fluorophore emission was drawn from a Poisson distribution
with mean A = 1000 and the wavelength of the emitted light is set at A = 647nm. In

2Matlab’s command regionfill performs a smooth interpolation inward from the pixel values that
are on the outer boundary of the mask.
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Labeled Region Fluorophores

FP1 FP2
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SMLM frames
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Figure 6.2: Simulation setup. The RI map, immersed in water (n, = 1.339), is depicted
on the left orthoviews. The sample is populated with fluorescent molecules that belong
to the labeled region. They sequentially emit a spherical wave which is then propagated
through the sample using LSm (Chapter 3). Two focal planes (with pupil functions)
are acquired. The widefield images are generated by summing all SMLM frames. The
fluorescence images were satured for visualization purpose. We display the labeled region
with partial transparency so as to make the inner compartments visible. Scale bars:
500nm.

addition, we simulated a pupil function for each focal plane with NA = 1.45 and 25
Zernike coefficients. Their values were drawn from the uniform distribution U(—0.5,0.5),
except that the three first coefficients were set to 0 and that the fourth coefficient was
drawn from U(—0.1,0.1) to better match the PSFs observed in real SMLM acquisitions.
The background signals b; for [ € {1,100, 200,...,1000} were simulated by convolving
a Gaussian kernel with a random image generated from a uniform distribution. We
then scaled the obtained images so that their pixel values belong to the range [350, 450].
Backgrounds for intermediate frames were then obtained through interpolation. We set a
large width for the Gaussian kernel so as to obtain a slowly varying background in both
space and time. Finally, to control the noise, we scaled the noiseless measurements with a
factor r € (0, 1] before applying the Poisson noise so that (6.4) writes as, VI € {1,..., L},

y1 = Pois(r(HSM™M(f, x;, a;) + by)). (6.27)

By doing so, r can be interpreted as the product between the excitation photon flux
and the integration time. A small r yields a higher level of noise, which increases the
difficulty of the localization of molecules and the RI reconstruction.

We compare our joint-optimization framework with two baselines. They consist on the
sole RI reconstruction with i) perfectly characterized molecules (i.e., true amplitudes
and positions) or ii) the initial estimation of the amplitudes and positions obtained as
described in Section 6.5.4. By doing so, we somehow obtain the worst-case and best-case
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scenarios. For each case, we obtained the best reconstruction by performing a grid search

on the regularization parameter 7.

For our joint-optimization framework, we set the parameters Ty, = 4, T = 1, and
a = 0.85. In our implementation, w” and v° in Line 1 of Algorithm 6 are initialized
from the previous call. We ran our optimization on a PowerEdge ¢4140 equipped with
Intel Xeon Gold 6240 CPUs (2.60GHz) and a GPU NVIDIA Tesla V100 SXM3 (32 GB).
An iteration of Algorithm 4 took 20 seconds on average. We used up to 2000 iterations,
which corresponds to about 10 hours of computation.

Initial Guess (f°

Ground Truth

Joint Optimization True Pos./Amp.

Initial Pos./Amp.

28098 6.32 x 1073

L ——

1.339 1.506

Figure 6.3: Reconstructions of the RI Map. From left to right: Ground truth, initial guess,
reconstruction with positions and amplitudes fixed to their initial values (Section 6.5.4),
reconstruction with the proposed joint-optimization framework, and reconstruction with
positions and amplitudes fixed to their true values (gold-standard). The SSIM and
relative errors are displayed in the first row at the left and right corners, respectively, of
each corresponding reconstruction. Scale bar: 500nm.
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z z z
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Figure 6.4: Observable region of the sample. Illustration of the region of the sample
that is “illuminated” by a fluorophore far from (left) and close to (middle) the detection
system. The right scheme illustrates the fact that SMLM data carry more information
about RI regions that are close to the detection system (positive z).

6.6.2 Metrics and Visualization

To assess the quality of the reconstructed RI map, we compute the relative error as
well as the structural similarity index measure (SSIM) [174] with respect to the ground
truth. To assess the accuracy of the localization of the molecules, we compute the
root-mean-square error (RMSE) with respect to the true positions. Note that we do
not report detection metrics such as true/false detections as they are not really relevant
in our setting where we consider only frames containing one molecule. Finally, given
a list of molecule positions, we generate a 3D image through the Gaussian rendering
technique [25]. To that end, we represent the fluorophore positions as a sum of shifted

Dirac
L

s(x) = Z 0(x —xy). (6.28)

=1
Gaussian rendering then consists in convolving s with an isotropic Gaussian kernel and
sample the result on a grid. Here, we set the standard deviation of the Gaussian kernel
to 10nm and the grid step to 2/10 = 10nm.

6.6.3 Results

We first fix the noise level to r =1 in (6.27).

Reconstructed RI

We display the RI maps in Fig. 6.3 and report there the relative errors and SSIM. When
the positions and amplitudes of the molecules are perfectly known, we recover most
of the details of the ground truth. On the contrary, the reconstruction obtained with
the initial positions and amplitudes is unsuccessful. This highlights the importance of
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Table 6.1: RMSE for the estimated positions and amplitudes. First row: Initial positions
and amplitudes from our standard single-molecule localization. Second row: Positions
and amplitudes from our joint-optimization framework. Third and fourth rows: Positions
and amplitudes refined with the RI map fixed to the initial guess f® and the ground
truth (GT), respectively. Amp.: Amplitude. Lat.: Lateral. Ax.: Axial.

‘ 3D [nm)] ‘ Lat. [nm] ‘ Ax. [nm] ‘ Amp.

Initial 163 69 148 109
Joint 74 15 72 76
with £° 142 38 136 194
with far 72 18 70 76

refining molecule positions and amplitudes jointly with RI reconstruction. We effectively
see that our joint-optimization framework is able to recover an RI map that is visually
similar to the best-case scenario. The metrics confirm the visual assessment. Yet, one
can observe some high frequency artifacts (ringing) on the reconstruction obtained with
the joint optimization framework (plane z = —0.2um). They are due to few badly refined
molecule positions (outliers in Figure 6.8) that lead to a mismatch in the model. Finally,
it should be noted that we could expect that the quality of the reconstruction varies
with the axial position z. The reason is that an SMLM frame (from the activation of one
molecule) carries information about the part of sample that lies between the activated
molecule and the optical system (Figure 6.4). As such, there are more SMLM frames
that carry information about z-planes with positive z than frames that carry information
about z-planes with negative z. Moreover, waves produced by fluorophores with negative
z-positions propagate through a larger layer of the sample, inducing more scattering.
These facts make that i) fluorophores with negative z-positions are harder to localize,
and ii) z-planes of RI with negative z are harder to reconstruct.

Mbolecule Localization

It is noteworthy to recall that the primary objective of SMLM is to localize the flu-
orescent molecules with nanometric precision. It follows that another benefit of our
joint-optimization framework is an improvement of this localization. Indeed, our model ac-
counts for sample-induced distortions that usually compromises the accurate localization
of molecules [158].

We report in Table 6.1 the RMSE of the initial and refined positions, as well as the
RMSE of the initial and refined amplitudes. In addition, we provide the RMSE of the
refined positions and amplitudes when the RI map is fixed to the initial guess f° or the
ground truth (best-case scenario).

There is a gain of 89nm in the 3D RMSE for our joint-optimization framework. One sees
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Initial Pos.

Ground Truth Joint Optim.

Figure 6.5: Rendering of localized molecules (Y-projection). Region-of-interest of the
projection along Y of the rendered fluorescent volume. From top to bottom: Initial
positions, positions refined with the joint-optimization framework, ground truth. Field-
of-view (XZ): (3600 x 600)nm?. The images were satured for visualization purpose. Scale
bar: 200nm.

that the lateral and axial RMSE are improved by 54nm and 76nm, respectively. Not
only does our joint-optimization framework successfully recover the RI map, but it also
improves significantly the localization of the molecules. The proposed joint-optimization
framework performs better than the refinement of the positions and amplitudes with
the RI map fixed to f°. Moreover, it performs similarly to the refinement with the RI
map fixed to the ground truth. Those observations confirm that the joint-optimization
framework is necessary to improve the localization and can even reach similar performance
to the best-case scenario.

In Figure 6.5, we display a Y-projection of the fluorescent volume rendered from the
molecule positions, where one can visually appreciate the gain in accuracy. The estimation
of the amplitudes is improved as well. This can help to better estimate the uncertainty
of localization [175, 176].

Influence of the Distribution of Fluorophores

Table 6.2: RMSE of the estimated positions and amplitudes for the four distributions of
fluorophores depicted in Figure 6.6 (Panel A). Amp.: Amplitude. Lat.: Lateral. Ax.:
Axial. Dist.: Distribution.

‘ #Fluo ‘ 3D [nm] ‘ Lat. [nm] ‘ Ax. [nm)] ‘ Amp.

: 1000 74 15 72 76
2 100 80 13 79 76
j 1000 85 3 85 77
2 100 82 3 82 55
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A: Distribution of fluorophores B: RI reconstruction
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Figure 6.6: Reconstructions of the RI map with different fluorophore distributions. A:
The four considered fluorophore distributions. B; Reconstructed RI maps. The SSIM
and relative errors are displayed in the XZ view at the left and right corners of each
reconstruction, respectively. The SNR is displayed at the bottom-left corner for each
noise level. Scale bar: 500nm.

From the phenomenon illustrated in Figure 6.4, one can expect that the quality of the
reconstructed RI map is closely related to the spatial distribution of the fluorescent
probes. In this section, we investigate this question by comparing the reconstructions
obtained with the four fluorophore distributions illustrated in Figure 6.6 (Panel A).
These include the rather homogeneous distribution depicted in Figure 6.2 and a more
concentrated distribution, both with two different numbers of molecules (i.e., numbers of
frames).

As expected, the reconstructed RI map is significantly degraded when the distribution of
fluorophores is more concentrated (Figure 6.6B, right column). Indeed, the emitted light
has mainly propagated through a restricted area of the sample, limiting the information
on the RI map carried by the measurements. On the contrary, the quality of the
reconstructed RI map seems less sensitive to the number of fluorophores. Although some
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Ground Truth

1.506

1.339

Figure 6.7: Reconstructions of the RI map with different noise levels. From left to
right: Ground truth, reconstruction with the proposed joint optimization framework
for r = 0.1,0.5, and 1. The SSIM and relative errors are displayed in the first row at
the left and right corners of each reconstruction, respectively. The last row contains
two examples of SMLM acquisition (ROI) for two different molecules at axial positions
z = 440nm (top) and z = Onm (bottom). The SNR is displayed at the bottom-left corner
for each noise level. Scale bar: 500nm.

details are lost, the RI maps reconstructed with 100 frames remain qualitatively similar
to their counterparts reconstructed from 1000 frames (Figure 6.6B).
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Figure 6.8: Box plots of the localization (left) and amplitude (right) error for different
noise levels. Three noise levels are displayed with » = 0.1,0.5, and 1. For each case, the
left box plot (hatched) corresponds to the initial positions/amplitudes and the right box
plot (solid) corresponds to the refined positions/amplitudes. Note that the estimated
amplitudes were scaled by r~! to compare with the same ground truth. For the box plots
of the localization error after refinement (solid), we set the upper whiskers to 50nm so as
to consider any larger error as outliers. This is in line with the expected 3D localization
error in SMLM [25]. This bound is not relevant for the initial errors (hatched) as they
are too large. For the hatched box plots, we thus set the default upper whiskers to
@3 + 1.5IQR, where IQR = (Q3 — Q1) is the interquartile range and Q1, @3 are the
25th and 75th percentile, respectively. Finally, the lower whiskers are always set to the
smallest error among all molecules. Outliers are indicated by X.

Finally, we display in Table 6.2 the RMSE obtained after the joint optimization. Inter-
estingly, the refinement of the positions and amplitudes of the molecules remains stable
when reducing the number of frames. For the concentrated distribution, the axial RMSE
is slightly degraded and, on the contrary, the lateral RMSE is drastically reduced, which
might be due to the concentration of the distribution.

Robustness to Noise

Next, we are interested in the robustness of our framework to the measurement noise.
To that end we vary the parameter r in (6.27) from 0.1 to 1. Some examples of obtained
measurements are shown in Figure 6.7 (last row), where one can observe that the noise
is stronger when 7 is smaller.

The RI reconstructions for each noise level are displayed in Figure 6.7. Although the
quality of reconstruction degrades when the noise increases, the shape and the most
prominent features are recognizable even for » = 0.1. This suggests that our method is
quite robust to noise.
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The box plots of the localization errors are displayed in Figure 6.8. For each noise level,
we show the box plot for the initial and refined positions to illustrate the improvement.
We again observe a certain robustness to noise, even for the case r = 0.1 where the
amplitudes were badly initialized.

It is noteworthy to mention the presence of outliers in the displayed box plots even for
r = 1. For some molecules, we observed that the joint-optimization could not refine the
positions and amplitudes well. In few cases, the estimates did even worsen. Fortunately,
the number of such failures is limited (e.g., 60 over 1000 molecules for » = 0.1).

6.7 Summary

In this chapter, we presented a joint-optimization framework to estimate both the RI
map and the position of fluorescent molecules from an SMLM acquisition stack. Our
method takes advantage of the sample-induced aberrations to unveil the map of the RI
of the sample. Such structural information ideally complements fluorescence imaging [2].
In addition to this unique feature, our framework is able to improve the accuracy of
molecule localization. Our work shows that additional information about the sample
can be recovered from SMLM data. This is a first step towards an exciting and novel
extension of SMLM.

In the next chapter, we come back to ODT from complex measurements described
in Chapter 4), and are interested in a processing step of the measurements—phase
unwrapping. We will present a deep-learning based method to unwrap challenging phase
images, with many prospects for 2D and 3D QPI.
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fd Phase Unwrapping with Deep
Image Prior (PUDIP)

7.1 Introduction

In Chapter 4, we presented a reconstruction framework for ODT with complex mea-
surements. The phase of these complex images was acquired by DHM. In practice, the
measured phase suffers from wrapping (i.e., modulo 27 of the original phase), which
introduces non-representative discontinuities in its distribution. Once recovered from
the measurements, the unwrapped version provides quantitative information on the
sample [177] or is used for tomographic reconstruction (Rytov model) [11]. This process,
known as phase unwrapping, is an important step for phase imaging. However, its appli-
cation to biological specimens such as organoids is challenging; in particular, the advent
of thick and complex samples calls for advanced methods. Classical methods, largely
optimized for the analysis of 2D samples, exhibit important unwrapping artifacts and
thus remain unreliable for these complex samples (Fig. 7.1). In this chapter, we propose
a phase unwrapping method based on untrained convolutional neural networks (CNN) to
solve this challenging task.'

7.2 Context

7.2.1 Classical Methods

In the past decades, numerous 2D phase-unwrapping algorithms have been proposed.
These approaches generally fall into four categories: path following [178, 179], minimum
Ly-norm [180-182], Bayesian/regularization [183, 184], and parametric modeling [185].

Most of the path-following algorithms perform a line integration along some path
established by techniques such as the branch-cut algorithm [178]. Generally, the path-
following methods encounter issues of consistency as the resulting unwrapped phase

'The content of this chapter is based on [24].
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Wrapped Phase Baseline Methods Proposed Method

-7 rad ™ —12 rad 17

Figure 7.1: Example of phase image of organoids. First column: measured (wrapped)
phase image. Second to fifth columns: baseline methods (LS, IRTV, and PUMA) and
the proposed method (PUDIP). First row: reconstructed phase. Second row: zoomed
inset. The size of the unwrapped phase image is (200 x 350). For the sake of clarity, we
removed te non-flat (smooth) background of each unwrapped phase.

depends on the path.

By contrast, the minimum-norm methods are global. They estimate the unwrapped
phase by minimizing an Ly-norm. When p = 2 (least-squares methods) [186], there
exist approximate solutions which can be obtained by fast Fourier transforms or discrete
cosine transforms [181]. However, the Ly-norm tends to smooth image edges, especially
at the discontinuities [180]. The drawback associated to p = 2 can be overcome by
setting 0 < p < 1, which usually increases the computational cost. Bioucas-Dias and
Valadao [187] introduced a specific energy-minimization framework for phase unwrapping
that is solved via graph-cut optimization (PUMA). Recent works have extended this
method for other imaging modalities [188, 189]. In the same spirit, Condat et al.
recover the wrap-count with a convex relaxation of the original integer-optimization
problem [190]. In [191], the authors describe a weighted energy function combined with
an HS regularization [124]. They optimize the minimization problem with an iterative
algorithm (IRTV) based on ADMM [145].

Bayesian approaches take into account a data-acquisition model and statistical prior
knowledge on the phase. Such approaches are usually computationally prohibitive, but
an efficient algorithm was proposed in [184] using a series of dynamic-programming
procedures connected by the iterated conditional-modes algorithm [192].

The parametric-modeling algorithms constrain the unwrapped phase to a parametric
surface, usually a low-order polynomial [185], which makes the unwrapping method
computationally efficient. These approaches yield excellent performance only if the
parametric model accurately represents the true phase.
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Importantly, an assumption considered by most phase-unwrapping approaches is that
the absolute value of the unwrapped phase difference between neighboring pixels is less
than 7, the so-called Itoh condition [193].

It is worthy to note that there exist alternative methods for quantitative phase-imaging
methods that rely on multiple wavelengths or broadband sources [194-197]. An imaging
system with multiple wavelength sources typically acquires several images so that the
wrapping events occur at different locations, thus facilitating the unwrapping task. While
our work mainly focuses on a single-wavelength source, our proposed framework can be
adapted to the multi-wavelength setting. For more information, we refer the reader to
recent reviews on QPI [2, 198].

7.2.2 Deep-Learning-Based Approaches

Recently, deep-learning methods, in particular, CNN, have achieved unprecedented perfor-
mance in a variety of applications. They have surpassed conventional methods in diverse
fields such as image reconstruction [199, 200], superresolution [201], x-ray computed
tomography [202], and others [203—205]. Overall, deep learning in computational imaging
is an emerging and promising field of research [206, 207].

To address the 2D phase-unwrapping problem, several works based on deep learning
have been proposed. In [208], the authors used a supervised feedforward multilayer
perceptron to detect the phase discontinuities in optical Doppler tomography images.
More recently, a residual neural network using supervised learning [209] was adopted
in [210] to approximate the mapping between the wrapped and the unwrapped phase in
the presence of steep gradients. In [211], a CNN-based framework, termed PhaseNet, has
been designed. It predicts the wrap-count (integer multiple of 27) at each pixel, similar
to the task of semantic segmentation. Furthermore, a clustering-based postprocessing
enforces smoothness by incorporating complementary information. Similar ideas were
also proposed in [212, 213]. In [214], the authors improved upon [211] by integrating a
network to denoise the noisy wrapped phase. In [215], a generative adversarial network
was introduced to effectively suppress the influence of noise. In addition, a framework [216]
composed of a residual neural network and of the objective function in [191] was proposed
to unwrap quantitative phase images of biological cells.

The aforementioned works rely on supervised learning to learn the mapping between the
input-output data pairs. This paradigm needs a large representative training dataset
composed of the measured phase and the corresponding ground truth, which may not be
available in many practical applications. In addition, the solutions obtained by direct
feedforward networks might be inconsistent with the measurements due to the lack of a
feedback mechanism [98,; 166, 217]. Nevertheless, these works suggest that CNNs are an
appealing solution to the peculiar challenges of phase unwrapping.
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Figure 7.2: Schematic diagram of the proposed PUDIP, for 2D phase unwrapping. The
architecture of the generative network is fully described in A.5.1.

7.3 Contributions

In this work, we introduce a framework based on untrained CNNs for 2D phase unwrapping.
Our approach uses the concept of deep image prior recently introduced by Ulyanov et
al. [218]. We incorporate an explicit feedback mechanism and do not require prior training
of the neural network. Taking advantage of these features, we propose a robust and
versatile method for phase unwrapping with deep image prior (PUDIP).

The original formulation of phase unwrapping is a non-convex integer-optimization
problem, which is different from the usual restoration problems to which deep image
priors (DIP) have been applied [218, 219]. In this work, we show that DIP is also suitable
for phase unwrapping, a difficult ill-posed inverse problem. To the best of our knowledge,
this is the first time that DIP is combined with an adaptive loss, which makes our method
a sequence of DIPs instead. Not only does this approach improve the reconstructions,
but also avoids the destabilization (i.e., significant loss increase and blurred image) that
was reported in [218].

In Section 7.4, we introduce the physical model and formulate the computational problem
in a variational framework. In Section 7.5, we describe the proposed scheme based on
untrained deep neural networks. In Section 7.7, we compare the proposed method against
other state-of-the-art (e.g., IRTV, PUMA) approaches on experimental data of organoids.
In Section 7.6, we quantitatively assess PUDIP on several simulated datasets with diverse
configurations. We extensively compare our framework with other methods such as the
recent deep-learning-based PhaseNet method. Our results show that PUDIP improves
upon other approaches by taking advantage of the model-based and deep-learning worlds.
Our work shows that QPI can be applied to large and complex 3D samples with higher
reliability.

96



7.4 Problem Formulation

7.4 Problem Formulation

In this section, we formulate the problem of phase unwrapping in a variational framework.
Let the region of interest 2 C R? be discretized into N pixels. To represent the phase of

our specimen, we consider the observation model
® =W + 21k, (7.1)

where ® = (¢,,) € RY and ¥ = (¢,,) € [-7, 7)Y denote the vectorized unwrapped and
wrapped phase images, respectively; k € ZY represents the integer multiple of 27 referred
to as “wrap-count” to be added to the wrapped phase to recover the unwrapped phase.
The wrapping process is represented by a function W applied on the nth component of
(7.1) as

b = W(dn) = (¢, + 7) mod(27)) — 7 € [—7, 7). (7.2)

The discrete gradient operator V : RY — RV*2 ig given by
Vo=V V@, (7.3)

where Vy : RV — RY and V,: RY +— RY denote the horizontal and vertical finite-
difference operations, respectively. The phases ® and W are related by the equality

W([Ve]) = W([VE]), (7.4)

where W is applied component-wise. For 2D phase-unwrapping problems, the phase ®
satisfies the Itoh continuity condition [193] if

I[V®]nsl3 <72 nell...N], (7.5)

where [V®],,. £ ([Vx®],, [Vy®],) represents the nth component 2D vector of the
discrete gradient (i.e., the nth row of the matrix V®). If (7.5) is satisfied, then (7.4)
simplifies as

[V®|,.=W(V¥],,), nell...N]. (7.6)

Under the hypothesis that a great majority of pixels in ® satisfy the constraint condition
in (7.5), we can reconstruct the unwrapped phase by minimizing the weighted energy

function [191]
N

b= i n(®)[[[V — W(VE)], .l 7.7
arg@xglllgr}v;w( il (V®)]nll2 (7.7)

where w,(®) € R> is the adaptive nonnegative weight for the nth component of the
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Algorithm 7 PUDIP
:wd=1forn=1,...,N
2: k=0
3: while (not converged) do

N
. k+1 _ ; k _
4: 0" = arg molnnzz:lwnH[V (fgk (z)) W(V®)], .2
Update w1 using (7.8)
k< k+1
end while

return fgi(z) + W(¥ — for(2))

cost to relax the restriction. It is defined as

s min < lelnall2 < émax
wn(®) =1 oo elnallz > emax (7.8)
e,rl.in’ H[E]W*HQ < €min;,

where € = (V® — W(VW)), and where €y, and ey, are the user-defined minimum
and maximum boundary weights, respectively. Note that (7.7) can be seen as a shifted
isotropic TV and other variants could be of interest for future works [220]. In addition,
the solutions can be improved by imposing prior knowledge (i.e., a regularization term)
such as HS [124] in an attempt to compensate for the ill-posed nature of the problem.

It is worthy to note that the solution obtained by iteratively minimizing the objective
function (7.7) offers no guarantee regarding the consistency between the rewrapped
phase W(®) and the wrapped phase ¥ [191]. This is because (7.7) relies on continuous
optimization to solve the discrete-optimization problem (7.1). Therefore, we adopt the
single postprocessing step [221]

=3+ WU -d), (7.9)

where @ is the final solution, congruent with the measurement ¥.

7.5 Phase Unwrapping with Deep Image Prior

Deep image prior (DIP) is a scheme recently introduced in [218]. Rather than learning
the mapping between input and output with a large training dataset, DIP handles the
inverse problem by assuming that the unknown image can be represented well by the
output of an untrained generative network. Recent works have shown the effectiveness of
DIP for computational imaging [15, 219, 222, 223]. In the spirit of this approach, we
propose a framework where we restore the unwrapped phase based on this implicit prior.
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The unwrapped phase is generated by the CNN given by

® = fy(z), (7.10)

where f denotes the neural network and @ stands for the network parameters to be

RC’XN

learned. The fixed randomly-initialized vector z € acts as input to the generative

network, while C' is the number of input channels.

Plugging (7.10) in (7.7) leads to the optimization problem

0~ axzimin > w (ol (9 (Fole)) ~ (W)l (7.11)
n=1

In our optimization approach, we aim at minimizing this loss function by taking advantage
of the family of stochastic gradient-descent methods. The schematic diagram of PUDIP
is shown in Fig. 7.2.

Finally, we achieve congruence with the single step
& = f5(2) + W(® = fy(2)). (7.12)

The process is described in Algorithm 7, where one can see that PUDIP consists in a
sequence of minimization problems.

7.5.1 Architecture

We design a CNN based on the U-Net-like encoder-decoder architecture [218, 224]. The
setup includes skip connections with convolution and concatenation. This enables the
network to reconstruct the feature maps with both local details and global texture.
We set a constant number of channels (i.e.,128) in all the convolutional layers, except
for those included in the skip connection whose channel number is 4. We chose the
parametric rectified linear unit [225] as the nonlinear activation function. Furthermore,
the downsampling operation is implemented by convolutional modules with strides of 2,
so that the size of the feature map is halved in the contracting path. The upsampling
operation doubles the size through bilinear interpolation. The scaling-expanding structure
makes the effective receptive field increase at deeper layers [224]. As last stage, we have
set one layer that subtracts a scalar value from the image. This scalar takes care of
the bias intrinsic to phase unwrapping, which can recover phase only up to a constant.
For simulated data, we subtracted the minimum value of the entire image to enforce
nonnegativity. For real data, we subtracted the mean value of a top-left area whose
dimension is (30 x 30) and corresponds to a background region (see A.5.1 for detailed
architecture).

99



Phase Unwrapping with Deep Image Prior

7.5.2 Optimization Strategy

In our experiments, we adopt the following strategy: The input variable z is a random
vector filled with the uniform noise ¢(0,0.1). To avoid undetermined gradients with
respect to @ in (7.11), we offset the norm there by the small constant 6 = 10718, In
practice, the adaptive weights w,, are updated every N,, iterations to enforce sparsity
in the loss function (7.11) [191]. We optimize (7.11) by using the adaptive moment-
estimation algorithm (Adam, 8; = 0.9 and 2 = 0.999) [226]. The optimization is
performed on a desktop workstation (Nvidia Titan X GPU, Ubuntu operating system)
and implemented on PyTorch [227]. In our experiments, the random initialization of
the input variable did significantly impact neither the performance, nor the time of
computation.

7.5.3 Parameter Setting

We set the maximum number of iterations as 2000 (A.5.2). The hyperparameters of
the network were initialized to default values by PyTorch. We used a learning rate of
0.01. The weights w,, were updated every N,, = 100 iterations with [€min, €max] = [0.1, 8].
During a typical optimization, the weights w,, will be large in the area around sharp
edges [191]. The parameter ey, prevents that the weights from becoming too large in the
early iterations of the global optimization, which would force the corresponding pixels to
be irreversibly set to zero. Similarly, €.« ensures that the weights do not become too
small.

To optimize over the synthetic samples, we updated the weights w, with [€min, €max]-
We tried [€min, €max] = [0.1, 10], [0.05,20], [0.02, 50], and [0.01,100], choosing the best
performance. The weights were updated every N, = 200 for the first sample, 100
otherwise. As we randomly initialized the parameters of the network 8, we repeated each
experiment five times and report the average performance.

7.6 Results On Simulated Data

In this section, we quantitatively assess the quality of our proposed method. To that end,
we simulated the acquisition of phase images of organoid-like samples. In addition, we
generated diverse artificial data which are similar to those found in [187] and [213] (see
the details in A.5.4).

7.6.1 Baseline Methods

We compare the proposed method with other state-of-the-art conventional or CNN-
based methods such as Goldstein’s algorithm (GA) [178], unweighted least-squares
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Table 7.1: Baseline methods. CNN'! denotes the supervised-learning method, while CNN?
denotes our method with untrained network.

Method  Reference Regularization Optimization

GA [178] - branch-cut
gl
LS [181] - least-squares %
3
IRTV [191] HS [124] ADMM [145] “é
PUMA  [187] - graph cut
g
PhaseNet [211] - CNN! z
Q0
; Z
PUDIP - CNN Z.
@)

algorithm (LS) [181], IRTV [191],2 PUMA [187],> and PhaseNet [211] (Table 7.1).
Goldstein’s algorithm is a path-following method that adopts the branch-cut strategy
based on the phase residues and needs the knowledge of a phase-reference point. By
contrast, the LS, IRTV, and PUMA approaches aim at minimizing an objective function
and belong to the minimum-norm category. Note that the original LS method, which relies
on a continuous optimization, may result in an inconsistent solution, while GA, IRTV,
and PUMA always return consistent solutions. To enforce measurement consistency for
LS, we adopted the strategy defined by (7.9). We also compare PUDIP to the recently
proposed PhaseNet [211]. We adopted the strategy of [213] to generate a training dataset
in two steps. First, the elements of a square matrix whose size varies between (3 x 3)
and (11 x 11) were randomly generated following a uniform distribution U (0, 1) for half
of the samples and a Gaussian distribution A(0, 1) followed by the subtraction of the
minimum of the matrix for the other half. Then, we multiplied the matrix by a scalar
randomly generated following a uniform distribution U (3w, 127) and upsampled the
matrix to a (256 x 256) image using bicubic interpolation [228]. The obtained data had
a maximum value ranging from 27 to 407. In addition, we only kept the central disk of
the generated phase images and filled the background with 0. The training dataset is
composed of 9,600 samples; the size of each image is (256 x 256). The wrap-count in the
training data varies between 0 and 20, which makes it a 21-class problem (see the details
in A.5.3). We set the other hyperparameters as in [211] and trained PhaseNet with this
generated dataset for all the experiments.

All model-based methods were run on a desktop computer (Intel XeonE5-1650 CPU, 3.5
GHz, 32 GB of RAM) and implemented in MATLAB R2019a. For their implementation,

2The source code for IRTV is available from https://cigroup.wustl.edu/publications/open-source/
3The source code for PUMA is available from http://www.lx.it.pt/~bioucas/code.htm
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Figure 7.3: Unwrapped phases of two simulated samples. From left to right, the results
are obtained by GA, LS, IRTV, PUMA, PhaseNet, and our approach (PUDIP). The
ground truth images are presented in the last column. The corresponding RSNR [dB] is
showed at the left bottom of each subfigure.

GA LS

we initialized the unwrapped phase with 0 € RY. All parameters were set and optimized
according to the guidelines provided by the authors. Specifically, the regularization
parameter for the HS regularization in IRTV was set between 10~3 and 10~!. In PUMA,
we set the non-convex quantized potential of exponent p = 0.5, the quadratic region
threshold as 0.5, and the high-order cliques [1,0], [0, 1], [1, 1], and [—1,1].

PUDIP takes about 100 seconds on GPU to unwrap a (256 x 256) image with 1000
iterations. In comparison, PUMA and IRTV take about 2 and 380 seconds on CPU,
respectively.

7.6.2 Quantitative Evaluation

We quantitatively evaluate the quality of the reconstructed phase ® with respect to the
ground truth ®. Our first metric is the regressed signal-to-noise ratio (RSNR) defined as

s Hm’b
RSNR(®, ®) = max [ 201 - : 7.13
(®, %) = max ( 810 (||(<I>+b) — ®||; (7.13)

where || - ||2 denotes the Ly norm and where b adjusts for a potential global offset. This
adjustment is used in the interest of fairness, because phase unwrapping can only recover
the phase up to a constant. When the RSNR is more than 100 dB, the recovered phase
image differs from the ground truth because of numerical imprecision and not because of
wrong unwrapping. We therefore set the corresponding value to infinity. In addition, we
compute the SSIM [174].
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Table 7.2: RSNR [dB] and SSIM of the reconstructed-phase images versus the angle
of cropping. The RSNR and SSIM of our method (PUDIP) are the average of five

experiments.

|Angle] GA LS IRTV PUMA PhaseNet PUDIP

0° 00 00 o0 o0 24.79 %)
45° 6.80 5.15 8.61 10.20 14.10 15.99
2| 90° 2.70 2.86 3.15 3.87 22.14 37.75
% 135° | -0.56 1.32 2.46 2.06 22.01 43.52
~|180° | -5.15  -0.13 0.84 00 19.33 00
225° | -6.70 -0.43 -0.24 2.21 19.96 41.44
270° | -8.00 -1.85 -1.66 2.01 21.23 o0
0° |1.0000 1.0000 1.0000 1.0000 0.9799 1.0000
45° 1 0.8975 0.8346 0.9429 0.9595 0.9680 0.9866
= 90° | 0.9074 0.7180 0.7337 0.7418 0.9772 0.9995
==| 135° | 0.8360 0.5716 0.6510 0.5576 0.9769 1.0000
92 180° | 0.4863 0.4772 0.4893 1.0000 0.9771 1.0000
225° | 0.4269 0.3411 0.3225 0.1183 0.9858 1.0000
270° | 0.3655 0.2395 0.2246 0.0838 0.9907 1.0000

Table 7.3: RSNR [dB] and SSIM of the reconstructed-phase images versus the maximal
value. The RSNR and SSIM of our method (PUDIP) are the average of five experiments.

|Max value| GA LS IRTV PUMA PhaseNet PUDIP

6 5.69 13.12 00 00 -5.71 00
12 1.02 -0.39 11.31 00 1.25 00
et 18 145 120 3.22 00 5.62 00
UZD 24 3.85  0.21 4.99 5.69 8.95 78.54
A~ 30 5.20 1.04 7.38 7.62 8.35 28.53
36 4.62 0.48 8.71 9.18 10.13 25.70
42 1453 094 437  10.52 12.46 27.74
6 0.9299 0.9834 1.0000 1.0000 0.7105 1.0000
12 0.9258 0.5989 0.3616 1.0000 0.7788 1.0000
= 18 0.9311 0.5539 0.6481 1.0000 0.8067 1.0000
7 24 0.9453 0.5312 0.6411 0.5873 0.8298 0.9990
e 30 0.9551 0.5160 0.6435 0.5866 0.8168 0.9977
36 0.9532 0.5044 0.6416 0.5796 0.8224 0.9957
42 0.9782 0.4951 0.6364 0.5784 0.8597 0.9959

7.6.3 Simulated Phase Images of Organoid-Like Sample

In order to obtain a physically-realistic ground truth, we simulated the wave propagation
through the sample with BPM [41] (Chapter 1). From the 3D simulation, we directly
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Figure 7.4: Organoid-like reconstructions. The images were saturated for visualization
purpose. The size of the unwrapped phase image is (159 x 159). The first two columns
are orthographic slices of the 3D distribution of RI. All slices include the center of the
volume. From the third to fifth column, the text gives the method used to unwrap. The
wrapped phase resulting from 3D simulation and the ground truth ®g, are displayed in
the last column (from top to bottom). Wr. Ph.: Wrapped Phase.

obtain the wrapped phase (A.5.4). Under the straight-ray approximation [33], we expect
that the unwrapped phase is proportional to the integral of the RI differences. We
therefore refer to the straight-ray approximation ®g. as the ground truth. As shown in
Fig. 7.4, the phase unwrapped by PUDIP is consistent with ®4.. The solutions of the
other methods have wrongly unwrapped areas. The entanglement of several elements
complicates the wrapping events in those areas (Fig. 7.4 top right panel). The fact that
some parts are defocused adds to the challenge since ripples are present around the
border. The slightly defocused parts are wrongly estimated by baseline methods, which
impacts the whole unwrapping result. It is worthy to note that real data also have ripples
around the border, which might partially explain the difficulty to unwrap phase images
of organoids (Section 7.7). We provide more examples in A.5.5.

7.6.4 Phase Unwrapping of Artificial Images

We generated three kinds of samples similar to previous works [187, 213]. The first and
second categories consist of ellipses. In the first type of sample, we cropped the ellipses
with angles ranging from 0° to 270° with an increment of 45°. In the second type of
sample, we scaled the phase image (i.e., an ellipse cropped with a fixed angle) so that its
maximum was in the range of 6 to 42 with an increment of 6. The last kind of sample is
the same as the one we used to train PhaseNet (Section 7.6.1). We use these images to
test our method on samples usually seen in other modalities [187].

When the unwrapping task is relatively simple, all the baseline methods, as well as our
method, perform well (see the first row in Tables 7.2 and 7.3). When the phase images
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are more complex (e.g., when a few pixels violate the Itoh condition), all the conventional
methods lead to blocky errors. As expected, PhaseNet wrongly estimates the unwrapped
phases when they differ from the training set. On the contrary, our framework based on
untrained CNNs faithfully unwraps the phase for nearly all configurations (Tables 7.2
and 7.3). In Fig. 7.3, one can observe some typical unwrapping behavior of the different
methods, as well as the obtained RSNR.

For the last type of samples, deep learning techniques perform better than the conven-
tional techniques (Table 7.4). Since the training and testing sets match, PhaseNet is
quantitatively more accurate than PUDIP. As reported in [218], supervised schemes tend
to outperform unsupervised approaches when the training and testing sets are consistent.
It is noteworthy that PUDIP commits errors only at the border of the disk and that the
large discrepancy in the RSNR between PhaseNet and PUDIP mainly comes from the
fact that any error is likely to be a multiple of 2w. The SSIM metric is less sensitive to
isolated erroneous cases and the discrepancy is much smaller. However, for some samples,
PhaseNet wrongly estimates the phase over large areas inside the object (third column
of Fig. 7.5). Our method is more stable in its ability to unwrap the phase due to its
feedback mechanism.

Let us observe that the results of PUDIP are still imperfect, in the sense that a few
pixels of the output deviate from the ground truth. However, these are inconspicuous.
Based on our experiments, it appears that the results of PUDIP are generally superior
to those of the other methods when the conditions are difficult, and otherwise equivalent,
which should make PUDIP of interest for practitioners. Note that when the task of phase
unwrapping is extremely difficult, there are few failure cases. However, the failed results
obtained by our approach are not worse than other methods. We provide all the results
in A.5.5.

7.6.5 Phase Unwrapping in Presence of Structured Noise

In DHM, the noise is mainly characterized by speckle noise [229] that corrupts the image
before the wrapping operation. To assess the robustness of our method, we perturbed
the (unwrapped) first kind of sample (cropping angle 135°) with speckle noise [230]. We
added three levels of noise {11.8,15.7,22.8} dB (Fig. 7.6) and computed the metrics with
respect to the perturbed images.

The performances of the baseline methods are affected by the structured noise and fail to
correctly unwrap the images (Table 7.5). Note that their poor performance mainly comes
from the blocky errors mentioned in the previous experiments of Section 7.6.4. The noise
exacerbates the difficulty to recover the edges of the cropped ellipses. In the presence
of noise, the performance of PhaseNet collapses, which is expected as this supervised
method was trained on a noiseless dataset. PUDIP is stable, in that it correctly unwraps
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Table 7.4: RSNR [dB] and SSIM of the reconstructed-phase images versus the size of
the random matrix. The metrics are averaged over four samples for each size. For each
sample, we repeated five times the reconstructions of our method. The reported RSNR
and SSIM of PUDIP are then the average of twenty experiments for each size.

| Matrix size] GA LS IRTV PUMA PhaseNet PUDIP

(3x3) | 418 384 360 372 36.30 21.94
= (5x5) | 557 555 487 539  31.89 2151
Zl (Tx7) | 532 628 572 541 21.97  19.98
= (9x9) | 553 619 547 599  39.71  20.80
(11x11) | 571 688 6.82 6.88 23.63 18.65
(3x3) ]0.7361 0.7222 0.7253 0.7065 0.9920 0.9699
=| (5x5) |0.6828 0.6506 0.6502 0.6478 0.9567 0.9588
Sl (7x7) |0.6636 0.6495 0.6348 0.6403 0.9576 0.9530
@ (9%9) [0.6511 0.7020 0.6579 0.6872 0.9637 0.9294
(11 x 11) |0.6532 0.6481 0.6574 0.6557 0.9234 0.9344

(7x7) (9x9) (11x11)

3.14

Wrapped Phase

-3.14
17

PhaseNet

PUDIP

Figure 7.5: Unwrapped-phase images of simulated samples with diverse random distri-
butions. From top to bottom: wrapped phase, results obtained by PhaseNet and our

approach (PUDIP). The ground truth images are presented in the last row. The numbers
give the corresponding RSNR [dB].

Ground-truth
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Wrapped Phase GA Ls IRTV PUMA PhaseNet PUDIP

22.8dB

15.7 dB

11.8dB

Figure 7.6: Reconstructed unwrapped-phase images of simulated samples with diverse
speckle noise. From left to right: wrapped phase, results obtained by GA, LS, IRTV,
PUMA, PhaseNet, and our approach (PUDIP). The noisy ground truth images are
presented in the last column.

Table 7.5: RSNR [dB] and SSIM of the reconstructed-phase images versus the noise level.
The RSNR and SSIM of our method (PUDIP) are the average of five experiments.

| Noise level (dB)| GA LS IRTV PUMA PhaseNet PUDIP

o 22.80 -3.58  1.67 232 234 3.24 20.51
OZQ 15.70 -3.21 201 284 272 0.95 20.94
A~ 11.82 281 236 313 3.13 2.45 20.80
= 22.80 0.0072 0.1488 0.1619 0.1638 -0.2946 0.9895
7 15.70 0.0081 0.1260 0.1493 0.1502 -0.1402 0.9913
A 11.82 0.0023 0.1022 0.1195 0.1318 0.2046 0.9905

the phase, at the possible exception of few pixels at the border. It is worthy to mention
that the robustness to noise is different from denoising, since we do not target at reducing
the noise during the unwrapping process. This happens to other methods as well. When
unwrapping is successful, one can then denoise the recovered phase image with any
state-of-the-art denoising algorithms.

7.7 Results on Experimental Data

Thick and complex samples present complicated wrapping events and potentially contain
a few sharp edges at which the Itoh condition may not hold in the true phase. These
combined factors increase the difficulty to unwrap their phase. To illustrate these
challenges, we acquired images of organoids with DHM and unwrapped their phase using
the proposed method as well as other baseline methods. The quality of unwrapped images
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will impact the subsequent steps of image analysis. Hence, we additionally illustrate how
segmentation—a typical image processing for QPI [231]—can be altered by the outcome
of phase unwrapping.

7.7.1 Experimental Setup

Mouse organoids of the small intestine were released from Matrigel® (Corning) and
dissociated into single cells. After centrifugation, the cells were re-suspended at the
appropriate density in ENR-CV medium supplemented with Thiazovivin (ReproCell)
and seeded to deposit about 100 cells per microwell onto imaging bottom Gri3D hydrogel
microwell array plates (SUN bioscience) of 300 micrometer in diameter. The cells
were then let to sediment for 30 minutes as such and 150uL of self-renewal medium
supplemented with 2% Matrigel. The stem cells were expanded in self-renewal for 3 days,
and the organoids were differentiated for another 3 days in differentiation medium (ENR)
[232]. Once the stem cells underwent morphogenesis and formed fully matured organoids,
the organoids were imaged using a DHM (T1000-Fluo, LynceeTec). The holograms,
phases, and amplitudes were acquired for downstream reconstruction with a pixel of
physical length of 6.45um (NA = 0.3, magnification 10x, and wavelength 684.6nm). The
time interval between each frame was 1 minute for the time-lapse measurements.

7.7.2 Post-Processing of the Unwrapped Phase

The microwells in which the organoids are loaded induce a non-flat (smooth) background.
For the sake of clarity, we removed the background of each unwrapped phase. We
estimated the background by fitting a polynomial of degree 3 in background areas. To
detect the background, we applied a (3 x 3) standard-deviation filter on the unwrapped
image. We defined the background as any pixel below a certain threshold T, € [0.5, 1].

7.7.3 Phase Unwrapping of Organoids

The results of various methods are shown in Fig. 7.7. The LS method yields inaccurate
results over large areas, such as non-flat background or disrupted structures. In compar-
ison, the three other approaches perform better. However, some areas pointed out by
the rectangle exhibit sudden breaks in the phase unwrapped by IRTV and PUMA. The
phase is expected to be relatively smooth since the epithelium of the organoids consists
in a continuous layer of cells, forming then the border of the sample [233]. By contrast,
PUDIP better recovers it for all samples.

PhaseNet failed to reconstruct the unwrapped phase in all cases (A.5.6), most probably
because the training set is not adequate for our experimental data. Likewise, GA was
unable to recover the samples. The solutions found by PhaseNet and GA exhibit several
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Wrapped Phase LS IRTV PUMA PUDIP

[

Figure 7.7: Reconstructed phase images of organoids. First column: measured (wrapped)
phase image. Second to fifth columns: algorithms using LS, IRTV, PUMA, and the
proposed method (PUDIP). First row: reconstructed phase. Second row: zoomed inset.
The size of the unwrapped phase image is (350 x 450), (260 x 250), and (360 x 350),
respectively. For the sake of clarity, we removed the non-flat (smooth) background of
each unwrapped phase.
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Figure 7.8: Time-lapse reconstructions. The images were saturated for visualization
purpose. The size of the unwrapped phase image is (280 x 390). For the sake of clarity,
we removed the non-flat (smooth) background of each unwrapped phase.

areas with values higher than their surrounding, which does not accurately represent
the characteristic features found in intestinal organoids, such as the epithelium and the
lumen.

In the first row of Fig. 7.7, the unwrapped phase might deviate from the phase image
predicted by the straight-ray approximation [33] in the center part where it is non-smooth.
The approximation is accurate if the wavelength is much smaller than the features of the
sample (e.g., local inhomogeneity of the RI). The mismatches are then likely to occur in
the areas where the features are, which suggests that local inhomogeneities are present
in the inner part.

In addition, we computed the relative error between the rewrapped phase W(@) and the
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Frame 7 Frame 5 Frame 3 Frame 1

Frame 9

Figure 7.9: Segmentation of time-lapse reconstructions. We thresholded at 20% of the
maximum value of the image.

wrapped phase W defined as

- - W(P
AW (@), &) = ¥ = W( @)z (7.14)
1% 1l2
The relative errors of all methods are lower than 10~ which indicates that the results

are congruent with the measurements up to rounding errors.

7.7.4 Phase Unwrapping of Time-Lapse Measurements

Further, we acquired time-lapse measurements of organoids to validate the benefits of
our approach in sequential imaging. In the last frames, the size of the organoids increases
and the intra-organoid composition becomes visibly more heterogeneous. It is noteworthy
that the intestinal organoids are absorbing water as they grow over time [234], which
explains that the phase value gets closer to the background value. Because of more
complex wrapping events, the unwrapping task becomes even more challenging. By using
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PUDIP, we show here that the borders as well as the flatness of the background are well
preserved (Fig. 7.8). On the contrary, the unwrapped phase of the other methods either
result in a background with unlikely 27 jumps or borders with sudden breaks.

7.7.5 Segmentation of Time-Lapse Measurements

Image segmentation is a step that one would usually perform on the unwrapped phase [231].
Our aim now is to illustrate how unwrapping can affect the segmentation results. To
that end, we simply thresholded the images obtained from the different methods with a
threshold set at 20% of the maximal value.

In Fig. 7.9, we observe that the segmentation is especially impacted at the borders where
sudden breaks occur in the unwrapped phase. In all frames, the segmentation of PUDIP
solutions preserves the integrity of the boundaries better than the other methods.

7.8 Summary

In this chapter, we proposed a general iterative framework PUDIP that takes advantage
of model-based approaches and deep priors for 2D phase unwrapping. The iterative
inversion algorithm is based on a forward model that ensures consistency with the
measurements and a prior knowledge implicitely induced by an untrained CNN, which
overcomes the limitation of conventional supervised-learning strategies which need large-
scale or tailored training datasets. We have validated our approach on simulated data
with diverse challenging settings in which the unwrapped phase has many discontinuities.
Our numerical experiments have shown that the proposed method outperforms state-of-
the-art conventional or network-based methods in many configurations. In addition, we
have also applied our framework to single and time-lapse measurements of organoids,
which are particularly large and complex samples. PUDIP can help in all instances of
optical imaging that acquire wrapped phase data, 2D QPI as well as ODT. We believe
that PUDIP should be of interest to practitioners. The substantial improvement in the
quality of reconstruction by PUDIP effectively allows the application of QPI to thick and
complex 3D samples, and also allows subsequent image processing tasks to be carried
out with higher reliability.
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8.1 Introduction

In this chapter, we study metrics that assess the quality of reconstructions in compu-
tational microscopy.! As such, our contributions in this chapter complement well the
previous chapters. Beyond the classical SNR, there are a plethora of metrics that each
account for different characteristics of an algorithm’s performance. We consider two cases:
metrics with or without requirement of ground truth. The latter category is applicable to
any sample, which is an appealing feature since the ground truth is usually not available
for biological samples.

8.2 Contributions

In Section 8.3, our contribution is a metric with no ground-truth requirement for ODT
reconstructions using structured illumination.

Next, we are interested in SMLM; in particular, we leverage the unique features of
SMLM (i.e., list of estimated positions, image rendering) to investigate metrics from new
perspectives. In [25], we quantitatively assess 2D and 3D SMLM software packages with
a large panel of quality metrics on realistic simulated datasets. Building upon this broad
benchmarking, we propose a novel optimal-transport-based metric for SMLM which
captures both detection and localization performance and relies on solid mathematical
foundations (Section 8.4). Finally, in Section 8.5, we derive a closed-form expression of
the FRC for the particular case of SMLM, which allows us to investigate the classical
way of computing FRC (i.e., SMLM image rendering and DFT).

!The content of this chapter is based on [26-28].
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8.3 Assessment Tool for ODT using Structured Illumina-
tion

A fundamental challenge in ODT is the difficulty of comparing different reconstruction
methods on real data. Excluding samples for which we have a priori knowledge (i.e., 3D
printed samples), we generally lack information about the ground truth of 3D samples in
ODT. This can have particularly serious issues in biomedical applications since accurate
characterization is necessary for diagnosis and cure. For example, in cellular imaging,
this uncertainty leads to miscalculated intracellular protein concentrations [67], which
are derived from RI values. One way to quantify this uncertainty is through the use of
phantom objects such as beads or microspheres. However, this way cannot be generalized
to biological samples since their ground truth is not available. In this section, we describe
a metric that allows us to quantitatively compare between reconstruction algorithms
with no ground-truth requirement.

8.3.1 Context

As shown in the previous chapters, an optical field that propagates through an inhomoge-
neous medium will be distorted. If there is negligible absorption, such distortions can be
undone if the transmitted field is holographically recorded and the phase-conjugate recon-
struction of the hologram is made to propagate backwards through the sample [235-238].
This is conveniently done in the optical domain by illuminating the recorded hologram
with a plane wave counter-propagating to the plane wave used to record the hologram.
When the incident beam that illuminates the object is spatially modulated by a 2D
pattern (an image), the field arriving at the hologram plane is a distorted version of the
2D illumination pattern. Through phase conjugation, this distortion is removed and the
field arriving back at the input plane is ideally an exact replica of the original image.
Deviations from this ideal condition can occur due to limited spatial bandwidth, absorp-
tion or other losses in the optical path. Any imperfection in the holographic recording
and play-back of the hologram (including speckle) also contributes to deviations of the
phase-conjugate reconstruction from the original image projected through the sample.
In a carefully designed optical system in which the coherent noise is minimal,? we can
generally obtain excellent phase-conjugate reconstructions since the medium where the
beam propagates through is well defined. The phase-conjugate image is also strongly
affected by any changes in the 3D object over time between the recording of the hologram
and the play-back. If the noise effect is negligible, any distortions in the phase-conjugate
image can be attributed to changes in the object itself. This effect has been used for
many applications including imaging through diffusing media [235], turbidity suppression
in biological samples [236, 237] and imaging through turbid media [238].

2Coherent noise are usually due to dust particles or multiple reflections from optical elements
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Figure 8.1: Overall scheme of the proposed metric for ODT.

8.3.2 Proposed Metric

We exploit this effect to assess the accuracy of the reconstructed 3D RI map. Fig. 8.1
shows the overall idea behind the proposed assessment technique. First, a classical ODT
acquisition procedure is performed (Chapter 4 and Appendix A.4). From this collection
of measurements, we can reconstruct 3D RI maps using well-known algorithms (e.g.,
Radon [86, 239], Born [10], and Rytov [11, 109, 240, 241]). To comparatively assess the
accuracy of the reconstructed 3D RI map, we perform a numerical phase conjugation

using a four-step procedure:

1. Using the same setup and sample, we experimentally illuminate a known pattern
onto the sample with structured illumination, which is performed by recording a
pattern on the spatial light modulator (SLM). The pattern gets distorted as it
propagates through the 3D sample along the optical path. We holographically
record the resulting field.

2. We take the complex-conjugate of the experimentally-measured field.

3. We numerically back-propagate this field through the reconstructed 3D RI map.
We use our accurate forward model LSm described in Chapter 3. After this step,
we obtain a digital reconstruction of the pattern.

4. We compute an image-based metric (e.g., mean-square error (MSE)) between the
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original and reconstructed patterns. The differences are imputed to inaccuracies of
the 3D reconstruction.

This procedure provides a quantitative metric that permits comparisons between re-
construction methods. Next, we provide a case study by applying our metric to three
commonly used reconstruction algorithms: Radon [86, 239], Born [10], and Rytov [11,
109, 240, 241]. Comparisons between Born and Rytov have been performed in literature
in different optical regimes [242, 243]; however, such studies cannot be directly translated
to arbitrary samples such as biological ones. Note that the proposed method can act as
a reconstruction assessment tool for other reconstruction method as well [71, 235-238,
242-248].

8.3.3 Materials and Reconstruction Methods

The experimental setup is described in the Appendix A.4.

Samples

We used two samples of HCT-116 human colon cancer cells and Panc-1 human pancreas
cancer cells which were cultured in McCoy 5A growth medium (Gibco) supplemented
with 10% fetal bovine serum (Gibco). #1 coverslips were treated with a 5 pg/mL
solution of fibronectin (Sigma) in phosphate-buffered saline (PBS) and let to dry at room
temperature. Cells at passage 18 were removed from culture flasks using trypsin, seeded
directly onto the fibronectin-treated coverslips, and incubated 24 h in a 37°C/5% CO2
atmosphere until cells adhered and spread on the coverslips. Each sample was fixed for
10 min at room temperature in 4% paraformaldehyde in PBS, rinsed twice with PBS,
and sealed with a second coverslip.

Tomographic Reconstruction Methods

We display in Fig. 8.2 two examples of unwrapped phase images. We unwrap the phase
images of the recorded holograms using a classical algorithm [187] (i.e., for the Radon
and Rytov methods). The accumulated phase of the studied samples (i.e., HCT-116
cells and Panc-1 cells), whose thickness is around 8 pum, exceeds 27 at some regions,
depending on the proteins distributions as shown in Fig. 8.2. As previously said, we
compare three reconstruction methods: Radon [86], Born [10], and Rytov [11] methods.
Both Radon and Born methods fail to reconstruct the 3D RI map due to considerable
diffraction, and high phase accumulation, respectively. We display in Fig. 4 the XY and
XZ slices of the 3D reconstructions of the two samples. Notice that the Born and Rytov
approximations produce significantly different 3D RI maps.
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(b)

Figure 8.2: Unwrapped phase images of (a) HCT-116 cell and (b) Panc-1 cell for normal
incidence. Phase unwrapping was done using PUMA algorithm [187]. Color bars are in
Radians.

Cancer cells usually have a RI of cytoplasm that range between 1.36-1.39 due to excess
of RNA and protein [8, 249-252]. As observed in Fig. 8.3a, this index range is probably
under-estimated by the Born method (i.e., around 1.32), because the high phase delay
violates the model assumptions. On the contrary, the Rytov approximation shows better
agreement with the expected biological values (around 1.365). Similarly, high-RI valued
islets which are composed of fats, sugars and highly-concentrated proteins are visible in
the Rytov reconstructions but not in the Born reconstructions. In Fig. 8.3b, we clearly see
that Born underestimates the RI value of the nucleus since the surrounding media (i.e.,
water) should have a much lower RI [8, 249-252].

8.3.4 Assessment Results

To compute the proposed metric, we modulated the phase of the incident beam with an
image of Einstein or the 1951 USAF resolution test chart via the SLM (Fig. 8.4). We
adopted structured illuminations instead of plane waves since structured illuminations
can be thought of as many plane waves propagating at the same time; hence, such
illuminations probe a larger portion of the 3D spectrum of the object. In addition,
assessment using structured illumination ensures fairness as these patterns were not
used in the tomographic reconstruction. To obtain an unaltered pattern (i.e., original),
we measured the incident field by repeating the holographic measurement without the
sample (i.e., clear PBS liquid between two coverslips). Following the procedure described
in Section 8.3.2, we computed our metric for the 3 recovered 3D RI maps by using the
MSE for the step 4 (Table 8.1).

We display in Fig. 8.5 the retrieved Einstein and 1951 USAF resolution test chart for
the case of Radon, Born, and Rytov approximations and the original pattern. For both
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Born

Rytov

Figure 8.3: 3D reconstruction based on Radon, Born, and Rytov techniques for (a)
HCT-116 cell and (b) Panc-1 cell.

Table 8.1: MSE percentage for Radon, Born and Rytov based reconstruction techniques
for Einstein and 1951 USAF resolution test chart.

‘ Radon ‘ Born ‘ Rytov

Einstein 8.83% | 34.73% | 6.39%
1951 USAF | 16.19% | 24.58% | 7.97%

samples, the MSEs for the Born method are the largest (3 times larger than the MSEs
for the Rytov method). This significant difference comes from the fact that both Radon
and Rytov rely on the unwrapped phase, while the Born method is not. However, the
Radon method ignores diffraction, which limits its performance. The Rytov method
has the best performance as it take advantages of phase unwrapping and accounts for
diffraction (but not multiple scattering).

8.3.5 Discussion

In this section, we have proposed a new metric without ground truth for ODT. Here, SLM
was used for both angular scanning (classical ODT) and structured illumination (proposed
metric). The latter has allowed us to assess the performance of different reconstruction
schemes. Sharing the experimental setup for angular and structured illumination has
alleviated the burden of alignment and/or mechanical instabilities. Our metric relies
on a four-steps procedure. Using the phase-conjugated measured field as an numerical
incident field, we numerically back-propagate it through a reconstructed 3D RI map. If
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Figure 8.4: Wrapped phase images of Einstein/USAF chart after propagating through
the HCT-116/Panc-1 cell.

perfectly reconstructed, the distortions that the real incident field has undergone would
be undone. Otherwise, we ascribe any deviation to inaccuracies in the reconstructions.
We have illustrated the advantages of our metric on two real biological samples and three
different reconstruction algorithms. Our results have shown that the Rytov method is
more accurate than the Born and Radon methods, which is consistent with previous
observations [242, 243].
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Original

-3

Figure 8.5: Retrieved projected fields using Radon, Born, and Rytov for (a) Einstein
through HCT-116 cell, and (b) USAF chart through Panc-1 cell.
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8.4.1 Context
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Figure 8.6: a) Flat Metric (low: good). b) Efficiency (low: bad). These metrics take into
account a continuum in both localization and detection errors in SMLM. Locations (100)
were uniformly drawn to create ground-truth points and modified to create artificial
sets of detections with 100% precision, recall ranging from 0% to 100%, and localization
errors uniformly sampled in a circle of a given radius. c) High degree of correlation
between efficiency and Flat Metric on four datasets from the SMLM 2016 Challenge.

In SMLM, it is crucial to have at one’s disposal an objective evaluation of the recovery
performance of available reconstruction algorithms. Similar to the assessment performed
in the previous section, the present section studies this topic, under the hypothesis that
a ground-truth reference for every captured frame is available. Metrics that do not
require ground-truth information also exist [253-256], even some using optimal transport
concepts [257]. However, these are outside of the scope of this section, and our proposal
is completely new. Similarly, simpler optimal-transport-based metrics were used before
in other point-source localization problems [258, 259].

The localization of point sources is traditionally assessed using either detection metrics,
such as precision, recall, and the Jaccard index; or localization metrics, such as the
RMSE or the root-mean-square minimum distance (RMSMD) [260]. In the SMLM 2016
Challenge [25], a large panel of metrics was computed for performance assessment. The
participating localization algorithms typically focused on one of two main key metrics:
the Jaccard index (J) or the RMSE. To encompass both, Sage et al. proposed the
efficiency, a metric born from the analysis of the empirical results in [25] and designed to
evaluate the SMLM 2016 Challenge. It is computed as

efficiency = 100 — /(100 — J)? + a2;RMSE. (8.1)
The parameter ae.g was introduced to regulate the tradeoff between localization and
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detection. It was set to aeg = 1 nm~! for the 2D (lateral) efficiency after analysis of the
results for the best algorithms. With this empirical choice, an improvement of 1nm in
RMSE is equivalent to a 1% improvement in J.

In this section, we propose to use Flat Metric, also known in the literature as the flat
norm or the Kantor-Rubinstein norm [261-264] , to assess the recovery performance
of algorithms for SMLM. This metric has already been used to assess the recovery
performance of point source signals [265]. It can be related to optimal transport which is
a well-studied field both on a theoretical [266, 267] and numerical [262] standpoint. By
using a valid metric on the space of Radon measures, in which detections and ground-
truth data lie, we expose the natural connection between the localization-detection
performance tradeoff and the radius of tolerance used to judge a detected location as
correct or incorrect. Furthermore, like other metrics introduced recently for SMLM [260],
Flat Metric does not require arbitrary pairing decisions between detected and ground-
truth locations. Nonetheless, in opposition to RMSMD, Flat Metric still resolves pairings
implicitly, thus yielding interpretable and explainable assessments.

The part is structured as follows: First, we introduce Flat Metric mathematically, expose
its link with unbalanced optimal transport and explain how to compute it numerically.
Then, we illustrate its behavior on a simple example. Finally, we compare it to the
efficiency (8.1) on both synthetic data and the SMLM 2016 challenge data.

8.4.2 Flat Metric for SMLM
Mathematical Definition

Without loss of generality, we assume that the ground-truth and detected locations are
in X = [0,1]7, for D € {2,3}. We use the Euclidean distance d(z,y) = ||z — y||, to
measure the distances between two points. We denote by M(X) the space of Radon
measures defined on X. Mathematically, M(X') is the continuous dual of the space C(X)
of continuous functions on X endowed with the uniform norm || - ||,. The canonical
norm on M(X) is thus

Ve M(X), lully = sup / fdu, (8:2)
rec) |l <1/

and is known as the total-variation norm or M norm. The Banach space M(X') contains
point-source signals, referred to as the Dirac masses 6, = §( - — x) for * € X. This
makes it particularly well-suited for SMLM because individual fluorescent emitters can
be seen as Dirac masses, which suggests the representation of SMLM data as sums of
Dirac masses.

The total-variation norm is not a good candidate metric for SMLM because, for all  # vy,
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Figure 8.7: a) Example of two discrete measures in X = [0, 1]?, y = a164, and v = b1y, ,
where a; and b; are represented by the opacity of the @ marks. b) Dependence of the
metric Fy(u,v) on |1 — yi||2 from a) for fixed values a; > by, growing linearly with
|le1 — y1]|2 and saturating at ||@; — y1]j2 = 2.

|6z — dyll ,, = 2. Instead, we build our metric from the flat norm on M(X) given in
Definition 8.4.1.

Definition 8.4.1 (Flat norm [263]). The flat norm of a given p € M(X) is defined as

Il £ sup ({ [ s € C@). 171 < ALin(r) < 1}), (.3)

where Lip(f) is the Lipschitz constant of f. This definition induces a norm on M(X).

Using the flat norm to measure the difference between two Radon measures leads to Flat
Metric.

Definition 8.4.2 (Flat Metric). Flat Metric is defined for any two u,v € M(X) as

Fa(, ) 2 [l — vl (8.4)

Flat Metric is linked to unbalanced optimal transport [262, 268]. This makes Flat Metric
interpretable, which is key for its application to SMLM.

Proposition 8.4.1 (Interpretation of Flat Metric - [268], Prop. 2.26). For all u,v €
M(X),

F = i d d .
(1) ﬂeMDﬁgxx){ /. d@yire.y) (35)

R e

where 7 € M4 (X x X) is a nonnegative Radon measure over [0,1]P x [0, 1] that specifies
the transport plan between the marginals pryym = [y dr( - ,y) and pry T = Jydr(z, -)
of m (which can be made arbitrary close to u and v, respectively, by setting A — +00).

The first term in the minimization problem (8.5) penalizes the cost of transporting pr,, LT

to pr, 7 (or vice versa). This is, in fact, the same cost function as in the 1-Wasserstein

Y#
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distance, one of the classical optimal-transport problems. Optimal-transport metrics
quantify how different two measures are by assessing the cost of transforming (in other
words, transporting) one measure onto the other. Unlike in standard optimal transport,

the marginals Pryum to pr, ,m need not be equal to the measures of interest u and

v. Instead, the constraintsya#;e relaxed using the second and third discrepancy terms
in (8.5) which involve the total-variation norm. This relaxation allows for the creation
and destruction of mass before transport and, therefore, for an optimal transport between
measures with different total mass. This key feature is essential for SMLM, as it accounts
for the errors both of localization (by the cost of transport) and of detection (by the
cost of creation or destruction of mass). Their balance is controlled by the physically
interpretable parameter A > 0 [nm], as illustrated in Fig. 8.7. When the two Dirac masses
are at the same position, the cost is proportional to the difference of weights. Then, it
grows linearly with |1 — y1||, as the Dirac mass b1d,, is transported to the position ;.
This keeps happening until |21 — y1|, > 2\, where the masses are no longer moved and

the cost results from the pure creation and destruction of mass.

It is also important to note that Flat Metric is homogeneous to nanometers so that it can
be physically associated to a specific scale (in nanometers for the SMLM problem). Hence,
when the number of locations is estimated correctly, Flat Metric represents the mean
error in terms of localization, similar to the RMSE (see Fig. 8.6). When A — 400 and
p and v have the same mass, we recover the 1-Wasserstein distance (|| - ||w,). Finally,
when A — 0, we recover the total-variation norm. Consequently, Flat Metric is an
interpolating distance between || - [y, and || - ||\,

How to Compute Flat Metric

The ground-truth data can be represented as the discrete Radon measure
N
f= anby, € M(X) with a, >0z, € X, (8.6)
n=1

which contains the locations of the fluorescent emitters in a frame. The reconstructed
locations given by any software can also be represented as the discrete Radon measure

M
v="> bnly, € M(X) with bp >0,yn € X. (8.7)

m=1

In this discrete setting, we simplify the computation of Flat Metric F(p,v) in (8.4) as
detailed in Proposition 8.4.2.

Proposition 8.4.2. When p and v are discrete Radon measures, one can compute (8.4)
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as

F)\(M,V) = - f? _C>7 (88)

min
fERN+M st LfecBxC

where L : RNTM 4 RNXM o RN+M s defined by

1<n<N,1<m<M’-f) ) (8.9)

Lf = ((#a = Fvm)

where ¢ = (a,—b) € RN+M - and B and C are hyper-rectangles such that B = {G €
RN M. |G| < d(@p,Ym)} and C = {f € RNFM . vk e {1,2,...,N + M}, |fu] <A},

In fact, (8.8) holds because the dual problem of that minimization is exactly the unbalanced
optimal transport problem (8.5) for discrete measures, and strong duality holds.

Therefore, to compute Fy(u, ), one simply needs to solve the minimization problem
given in (8.8), which is a finite-dimensional linear program. This problem is then solved
using any standard linear programming toolbox.

Note that if one considers only the first part of the operator L in (8.9) then (8.8) is
exactly the dual problem of the 1-Wasserstein optimal transport problem, see [262, ch. 6].
The second part accounts for the relaxation allowing creation and destruction of mass,
as explained above.

8.4.3 Results on Simulated Data

In this section, we first propose an example to illustrate the behavior of Flat Metric.
Then, we detail how we generated Fig. 8.6, which confirms that Flat Metric has a behavior
similar to that of the efficiency [25] and that it provides a continuum between detection
and localization errors. Finally, we report Flat Metric as obtained by 31 participants
of the SMLM 2016 Challenge on the 2D dataset and compare it with their efficiency
and RMSMDs. Note that, in all our experiments, the weights of the ground truth are
uniform and the obtained scale is applied for the reconstruction, with a,, = b,, = 1/N.
We use the normalizing scaling of the ground truth for the reconstruction as it provides
a coherent way to compare different software which do not detect the same number of
point sources.

Interpretation of Flat Metric

We show in Fig. 8.8 an example of a ground-truth dataset (@), and its reconstructed
dataset (), and how Flat Metric accounts for the difference between these two measures.
Ground-truth locations were chosen randomly in the rectangle [0, 1] x [0, 0.5] with weights
an = by, = 1/N with N = 15. Here, A = 0.1, which constrains the maximal transport
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Figure 8.8: Illustration of how Flat Metric (here equal to 0.125) is computed. When
an estimated location (©) is linked by a line to a ground-truth location (@), the cost
(d(x,y)/N) comes from moving the former to the latter. The presence of a cross (x)
means that the point has been destroyed, at the cost of A\/N. A ground-truth location
with a plus sign (+) means a mass has been created at this position to match it, also at
the cost of A\/N.

distance between two isolated point sources to 0.2 (see Fig. 8.7). Our interpretation of
Flat Metric comes from its link with unbalanced optimal transport (see Proposition 8.4.1).
As a metric, it is symmetric. Therefore, we arbitrarily choose to interpret it as the cost
of transporting the estimation towards the ground truth (GT). As a result, we have the
following behaviors.

o Transport: A Dirac mass d,/N of the reconstruction is moved towards one in the
ground-truth data d,/N. The cost of this transport is d(x,y)/N.

e Destruction of mass: A Dirac mass d,/N of the reconstruction is destroyed because
there is no corresponding ground-truth location nearby. The cost of this destruction
of mass is A [|0y /N||,, = A/N.

o Creation of mass: A Dirac mass d,/N is created at a position ¢ to match a ground-
truth location when there is no corresponding Dirac mass in the reconstruction.
This cost is A/N.

Note that we have only these three alternatives because of our choice of weights. To have
more complex phenomena such as simultaneous transport, creation, and destruction of
mass, discrete measures with Dirac masses of different weights should be used. This could
certainly be of interest to the evaluation of other point-source localization problems.

Synthetic Experiments on Flat Metric and Efficiency

We show in Fig. 8.6 how Flat Metric, just as efficiency, interpolates between detection
and localization metrics. To its benefit, Flat Metric has strong foundations in the theory
briefly presented in Section 8.4.2, by contrast with the efficiency measure which is based

126



8.4 Optimal-Transport-Based Metric For SMLM

on empirical results. Consistently, Flat Metric is also well-defined for 0% recall, thus
being a more robust tool for any use-case.

In order to exhibit this link in conditions relevant to SMLM, we chose to focus on recall
as a detection metric. Indeed, recall is typically the most relevant factor to characterize
detection in SMLM, as most leading algorithms achieve very high precision [25]. We
modeled this situation by randomly sampling 100 ground-truth locations uniformly in a
square of (6.4 x 6.4) um, and simply removing the corresponding percentage of locations
to initialize the set of recovered locations.

For the joint evaluation of detection and localization effects, we modeled localization
errors in detected locations as independent and identically distributed uniform vectors in
disks of radius up to 250 nm.

The results in Fig. 8.6 were generated by averaging 50 randomized trials for each
combination of radius and recall, using A = 125 nm. Finally, the expectations of Flat
Metric and efficiency are shown on the planes with 100% recall and vanishing perturbation
radius, respectively. They are related to the expectations of J and RMSE in those cases,
where ¢ = 2/3/2.

Application to the 2016 Challenge

We compare efficiency, a thoroughly validated empirical metric for SMLM, to both Flat
Metric and RMSMD, on four 2D datasets from the SMLM 2016 Challenge.® As shown
in Figs. 8.6 and 8.9, Flat Metric is strongly correlated with efficiency, while RMSMD is
not. Indeed, one only observes few outliers on the efficiency vs. Flat Metric comparison,
mainly for reconstruction methods that work rather poorly on the datasets MT3 and
MT4.

8.4.4 Discussion

We proposed Flat Metric to quantitate SMLM reconstruction errors when ground-truth
data are available. Here, we have presented and exemplified the strong links between
Flat Metric and unbalanced optimal transport problems, which underpin this robust
metric. We also provided exhaustive evidence that Flat Metric is conceptually similar
to efficiency, a very well established empirical metric designed in the organization of
the SMLM 2016 Challenge. Consequently, we provided a robust and practical metric
for SMLM evaluation. We have also exemplified and explained how Flat Metric works
internally, providing intuition on how this optimal assessment is obtained. Further, we
have emphasized the interpretability of Flat Metric, which can be read as an equivalent
localization accuracy.

3http://bigwww.epfl.ch/smlm/challenge2016/index.html?p=results
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Figure 8.9: Low degree of correlation between efficiency and the RMSMD on four
datasets from the SMLM 2016 Challenge.
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8.5 Closed-Form Expression of the Fourier-Ring Correla-
tion (FRC) for SMLM

8.5.1 Context

In SMLM, once the localization task is performed, it is customary to render an image
from this set of estimated positions. The rendering process usually involves a kernel that
determines the contribution of each position to the reconstructed image [269, 270]. Since
the emergence of SMLM, the determination of image resolution has become a primordial
matter as the reconstructed image is a combination of optics and numerics.

The FRC [271] or, equivalently, the spectral SNR [272] is a standard tool for resolution
assessment in electron microscopy. It has been recently extended to SMLM [253, 254]
and quickly adopted by the community as a standard indicator of resolution. The FRC
is computed from discretized rendered images. It therefore depends on experimental
parameters such as the pixel size or the choice of density estimator.

Here, we take into consideration the specificity of SMLM to derive a closed-form ex-
pression of the FRC. It is noteworthy to mention that, in the current development
of localization microscopy, doing post-analysis directly on the coordinates itself and
bypassing the image binning step is popular [273, 274]. We first proceed by introducing
the mathematical definition of the FRC (Section 8.5.2) and its conventional (discrete)
computation, for which we derive an error bound (Section 8.5.3). We then derive the
closed-form expression in the continuous domain and we address specific points of imple-
mentation (Section 8.5.4). Finally, we assess the difference between a FRC computed in
a conventional way (discretized) and the proposed closed-form expression with a dataset
from the SMLM challenge [275] (Section 8.5.5).

8.5.2 Notations and Definitions

Definition 8.5.1 (SMLM image rendering). Given the set P = {p, € R*}\_; that
contains the positions of N € N molecules, we define the image fp € Lo(R?) by

N
fr(x) = Z(q)n *0( © —pn))(x), X € RQa (8.10)

n=1
where the elements of {®,, € La(R?)}_, are called the rendering kernels.

n=1

Assumption 8.5.2. The rendering kernels are compactly supported radial functions (i.e.,
there exist compactly supported 1D functions ¢, € La(R>o) such that ®,(x) = ¢n(||x]])).
Hence, their Fourier transform is also radial, so that we write ®p,(w) = dn(||w]]).

From Definition 8.5.1, each molecule can be rendered using a different kernel. For
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instance, one can use truncated Gaussian kernels whose variances are related to the
number of detected photons [175, 276-280]. From Assumption 8.5.2 and Definition
8.5.1, we readily deduce that the rendered image fp is compactly supported. Using the
translation property of the Fourier transform, we also get that

N
frw) =" &, (w)e v, (8.11)
n=1

Definition 8.5.3 (FRC [253, 254]). Let f € Lo(R?) and g € Ly(R?). Then, the FRC
between the images f and g is defined Vp > 0 as

<fa f])cp
FRCyy.g (p) = ——, (8.12)
<f7 f>Cp <g7g>Cp
where C, == {w € R?: ||wl|2 = p} is a circle of radius p > 0 and
(F.dde, = §, Fr(@)ile) dw. (8.13)
P

8.5.3 Conventional FRC Computation in SMLM

To compute the FRC, the standard practice is to sample the continuously rendered
images fp € Lo(R?) and fg € La(R?) as

fp € RX such that [fp], = fr(xk) (8.14)
fo € RF such that [folp = fo(xk), (8.15)

where {xj € R2}§:1 is a set of sampling points on a uniform Cartesian grid. We denote
by s > 0 the spatial sampling step. The size of the grid is chosen such that the (compact)
support of fp (fo, respectively) is fully contained within the discrete image fp (fo,
respectively). Then, the FRC is computed from the DFT of fp and fg (which are denoted
fp and AfQ), using numerical integration and interpolation. Henceforth, we shall refer to
this approach as discrete FRC. From the Poisson summation formula, we have that

ple = > fr(wk +27s 'm), (8.16)
meZ2

A

where wy, is the pulsation that corresponds to [fp]x. As a result, the sampling procedure
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yields the error

A

[

Pk — fP(wk)‘ < Y ‘f?’(wk + 27rs’1m)‘
mez2\{o}

<Z Z‘ (wi +2ms™ m)’ (8.17)

mez2\{0} n=1

Because the kernels ®,, are compactly supported (Assumption 8.5.2), their Fourier
transforms @, are not. Hence, the accuracy of the discrete FRC is related to the
sampling step s as well as the decay of |<i>n| They have to be tuned so as to minimize
the aliasing (i.e., minimize the bound in (8.17)). In particular, the sampling step must
be sufficiently small and ]@n] must decrease fast enough. This will be further discussed
along with the numerical experiments (Section 8.5.5).

8.5.4 Closed-Form Expression of The FRC in Continuous Domain
Main Result

We present our main result in Proposition 8.5.1 where we derive a closed-form expression
of the FRC in the continuous domain. Henceforth, we shall refer to our approach as
closed-form FRC.

Proposition 8.5.1. Let fp € L2(R?) and fg € Lao(R?) be the rendered images of
= {pn € R?}_, and Q = {q., € R2}M_,  respectively. Then, the FRC is given
by (8.12) with

N M
(fp.fa)e, = D D (6ndh)(p)JollPn — dmll2p), (8.18)

n=1m=1

where Jo is the zero-order Bessel function of the first kind. The kernels qgn follow the
conditions in Assumption 8.5.2.

Proof. Injecting (8.11) into (fp, fg)cp, we obtain that

o NM o ' .
(Frofade,=f D (@ady)(@)e P07 du, (5.19)

C, n,m=1
By definition, we have that Vw € C,, |w|2 = p. Combining that fact with Assump-
tion 8.5.2 and the linearity of the integral comes to

o NM o .
Fpofale, = 3 (Gudi)(0) 7§ eI me o, (8.20)

n,m=1 P

where r,,;, = (Pn — Q). By converting to polar coordinates, i.e., Tpnm = Tnm (cos(Onm),
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sin(fpm,)) and w = w (cos(0),sin(f)), we have that

rl W = rpmw(cos(Bpm) cos(f) + sin(by,,) sin(6))

= rpmw cos(0 — Op). (8.21)

The integral in (8.20) becomes
% e—irz;mw dw :/ﬂ- e—irnmpcos(G—Gnm) do
Cp -7

:/ﬂ- e—irnmpsin(ﬁ) do

—T

=21 Jo(Tpmp)- (8.22)

The second equality comes from the fact that cos(f — 6,,,,) = sin(0 — 0, + 7/2) and
that sin is a 27m-periodic function. By inserting (8.22) into (8.20), we obtain (8.18). O

This continuous-domain expression allows for computing the FRC over circles, while in
the discrete case it must be computed over annuli (circles with a certain “width”). A
direct consequence of Proposition 8.5.1 is that, when the same rendering kernel @ is used
for all the molecules, the FRC does not depend anymore on ®.

Corollary 8.5.2. Let ® € Ly(R?) be a rendering kernel that fulfills Assumption 8.5.2
and let &, = ®,, = ® for alln € [L...N], m € [1...M]. Then, the FRC does not
depend on P.

Proof. Because ® fulfills Assumption 8.5.2, we have that & = ¢(|| - ||) for a given ¢ €
Ly(R>p). Hence, (8.18) becomes

N,M
(fpfa)e, = 18(0)1° D= Jo(llpa — amll20)- (8.23)

n,m=1

The term |$(p)|? is ultimately cancelled by the denominator in (8.12), which completes
the proof. 0

Practical Implementation

To compute the closed-form FRC, we must compute three instances of an expression of
the same type as (8.18). Each instance requires the calculation of the Euclidean distance
between each point of one set of positions with each point of another set of positions (or
itself). This yields a computational cost of O (N2 + M N + M?) for one value of p. For
illustration, we report running times with and without GPU in Table 8.2.
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Table 8.2: Running time to compute the closed-form FRC. The two sets have M = 3647
and N = 5514 positions respectively. Three hundred samples of the closed-form FRC
were computed. As a reference, the running times for the discrete FRC (three hundred
points, image size 3200 x 3200) was 0.3 s on CPU.

CPU 283s
GPU 6.6s

8.5.5 Results on Simulated Data

Continuous vs. Discrete FRC

Here, we compare the conventional FRC computation (Section 8.5.3) to the proposed
closed-form expression (Section 8.5.4).

We consider the MT1.N1.LD dataset of the 3D SMLM challenge* and we denote by P* the
set containing the positions of the ground-truth molecules. The second set, P, contains
the positions of the molecules which were localized by one of the participants [157] for
the MT1.N1.LD dataset. We use a unique rendering kernel for all the molecules and
define it as the truncated Gaussian

Do (x) = oo ([Ix]]) (8.24)
where, for o > 0,
2
1 —x_
bo(x) =4 avame 7 |zl <bo (8.25)
0, otherwise.

We computed some discrete FRC with different sampling steps (s = 2,4,6,8 nm) and dif-
ferent widths of the kernel (o = {0.42,0.85,1.27,2.12,4.25,8.49} nm). These values were
computed from arbitrary chosen full width at half maximum (FWHM = 2/2log 20 =
{1,2,3,5,10,20}). In Fig. 8.10, we show some of these curves for the sake of visibility.
We observe that the conventional FRC curve reaches the closed-form FRC for some
values of the sampling step of the discrete rendered image, as well as the parameters of
the rendering kernels.

“SMLM software benchmarking, http://bigwww.epfl.ch/smlm/challenge2016/, accessed Octobre 16,
2018.
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Figure 8.10: Comparison of the closed-form FRC curve with discrete FRC curves obtained
using different sampling steps s and rendering kernels ®,. The discrete FRC curves

reach the closed-form FRC curve when the width of the kernel and the sampling step are
appropriately set (e.g., s = 2nm and o = 8.49nm).

Quantitative Discrepancy of the Discrete FRC

In Fig. 8.11, we compute the relative discrepancy between the discrete FRC and the
closed-form FRC defined as

disc. c.f.

{vafP*}

_ (8.26)
IFRCYE, g5 ll2

Relative discrepancy =

We observe that a smaller sampling step yields a better approximation, as expected. In
addition, for each sampling step, there exists a range of widths of kernel for which the
discrepancy is minimized. Finally, we can relate these observations to the error bound
derived in Section 8.5.3. Indeed, when the step size is small enough, small values of o
are sufficient to minimize the error to the closed-form FRC. However, if one chooses a
larger step size, the parameter ¢ has to be larger as well in order to reduce the aliasing
effect and minimize the error.
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Figure 8.11: Relative discrepancy between the discrete and the closed-form FRC for
different values of kernel width o. For any sampling step, there exists a range of
parameters for the discrete FRC which minimizes the discrepancy.

8.5.6 Discussion

In this section, we obtained a closed-form expression to compute the FRC in the continuous
domain for SMLM. Our method allows us to compute a parameter-free FRC. We showed
that the conventional FRC computation reaches the closed-form FRC when the sampling
parameters are set appropriately. Moreover, our approach could allow for an accurate
computation of the local FRC [255].

8.6 Summary

In this chapter, we presented our contributions on metrics for computational microscopy.
We proposed a metric with no ground-truth requirement for ODT. By illuminating the
sample with a known pattern, we leveraged phase conjugation to assess the quality of
3D reconstructed RI maps. Actually, we performed digital phase conjugation by back-
propagating the complex-conjugated measured field through the sample via our forward
model LSm (Chapter 3). By doing so, the illumination pattern should be recovered
unless the reconstructed RI maps are inaccurate. The proposed metric confirmed the
superior performance of the Rytov model over the Born and Radon models for biological
samples.

Further, we investigated metrics for SMLM by taking advantage of its particular outcome,
i.e., a list of estimated positions. Our first contribution was an optimal-transport-based
metric (Flat Metric) which assesses the performance of both detection (Jaccard Index)
and localization (RMSE). The main outcome is a robust and practical metric for SMLM
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evaluation with an intuition on how we can achieve an optimal assessment, which stems
from solid mathematical grounds. Our second contribution was the derivation of a
closed-form expression of the FRC for SMLM. Since this metric was originally built
for pixel-based images, users have to render an SMLM image with arbitrary choices of
hyper-parameters. By obtaining a tailored closed-form expression, our work provides
instructions on optimal choices of such hyper-parameters.
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Conclusion

In this thesis, we have focused on developing novel computational methods for improving
the quality of reconstructions in QPI. To achieve this objective, we have developed
highly accurate models of the acquisition process and efficient algorithmic reconstruction
methods. We have also proposed novel learning-based regularization schemes. In what
follows, we summarize our contributions and discuss future prospects of QPI.

Summary of Results

Accurate Discretization of the LiSc Equation We derived an accurate and efficient
model of light scattering that accounts for multiple-scattering events (both reflection and
transmission). We properly discretized the LiSc equation and obtained a linear system,
which we solved with the help of a Krylov-based method. In particular, we handled the
singularity of the Green’s function using a truncation trick and a memory-saving strategy.
In our experiments, our model LSm achieved high accuracy and outperformed existing
models.

ODT from Complex Measurements Using our novel forward model, we formulated
an inverse-scattering problem within a modern variational framework and solved it to
recover the 3D RI map of the sample when the measurements are complex-valued. Our
algorithmic reconstruction involves a nontrivial proximal gradient-based iterative scheme
that requires the Jacobian matrix of the nonlinear operator. We were able to derive
an explicit expression for the Jacobian matrix, which helped in alleviating the memory
and computational burdens. To deploy our framework on real acquisitions, we built
the volume of the incident field by numerical propagation of a real acquisition of it at
the detector plane. In particular, we proposed a strategy that resulted in significantly
reduced numerical errors. Further, we developed a novel adaptive regularization scheme
to tackle the missing-cone problem. Our dictionary-learning-based approach learns 2D
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features of the lateral planes from the specimen and promotes such features on all the
planes. By accounting for multiple scattering and adding suitable prior knowledge, we
significantly improved the quality of reconstruction over the state of the art.

ODT from Intensity-only Measurements We proposed a versatile reconstruction
framework to tackle the corresponding inverse-scattering problem with any physical
model. We split the optimization task in a way that decouples the complex-field-based
reconstruction from the phase retrieval. This allows us to take advantage of our previous
contributions and of proximity operators for phase retrieval [19]. In our experiments,
we reconstruct RI maps from intensity-only measurements with quality similar to the
ones recovered from complex measurements. This shows that, in some settings, intensity
information is sufficient for recovering RI maps.

SMLM Meets ODT In SMLM, the emission patterns of each fluorescent label can be
distorted by the sample, which reduces the localization accuracy if not accounted for. We
then exploited these sample-induced aberrations to recover the RI map. We proposed an
optimization framework in which we reconstruct the RI map using LSm and optimize the
label positions in a joint fashion. In our numerical experiments, we effectively recovered

the RI map of the sample and further improved the localization—the primary objective
of SMLM.

PUDIP We addressed the unwrapping of 2D phase images from their wrapped coun-
terparts. To tackle challenging cases such as phase images of organoids, we proposed an
untrained deep-learning-based method, which incorporates an explicit feedback mech-
anism. Our comparisons showed that our phase unwrapping with deep image prior
significantly outperformed the state of the art.

Metrics for ODT and SMLM In this chapter, our first contribution was a metric
with no ground-truth requirement for ODT reconstructions. We illustrated its adequacy
for biological samples. Then, we leveraged the unique features of SMLM (i.e., list
of estimated positions, image rendering) to investigate metrics from new perspectives.
Building upon a broad benchmarking of localization software packages [25], we proposed
a novel optimal-transport-based metric for SMLM which captures both detection and
localization performance and relies on solid mathematical foundations. Finally, we derived
a closed-form expression of the FRC for the particular case of SMLM, which allowed
us to investigate the classical way of computing FRC (i.e., SMLM image rendering and
DFT).

138



Future Prospects

QPI is a powerful tool for studying label-free biological samples. Precise knowledge
of the acquisition parameters is decisive for the success of the reconstruction. For
instance, miscalibration of the illumination angles generates structured artifacts in the
reconstruction [68]. In Chapter 5, the 3D RI map of the Yeast cell reconstructed from
intensity-only measurements is likely to suffer from optical aberrations which were not
accounted for in this setting.

Self-calibration algorithms [68] constitute an interesting solution to such issues. Alterna-
tively, deep learning methods can be trained to remove optical aberrations [281].

In this thesis, we developed our methods under the theory of scalar diffraction. Future
directions of research could consider the polarization (i.e., vectorial nature) of light and
the dielectric tensor (the equivalent RI in Maxwell’s equations), which would result in a
four-dimension reconstruction problem [31, 282, 283]. We expect the research field to
adopt highly-accurate models while mitigating the high computational burden.

Alternatively, the RI maps depend on the wavelength of the incident wave. Our techniques
for ODT could be easily applied to hyperspectral ODT [284], which varies the wavelengths
to acquire valuable information about the sample.

Further, supervised deep learning can be used to accelerate the computation of the
physical model [51, 285] or the resolution of inverse-scattering problem [286].

In spite of being a fluorescence microscopy technique, our extension of SMLM described
in Chapter 6 involves tools from QPI. Similar approaches open new avenues for devel-
oping novel multi-modal imaging [287]. The benefits are numerous and range from a
precise calibration of the acquisition process to the recovery of new and complementary
information about the sample.
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A.1 Short Remark on the GlobalBiolm Library

In this thesis, many of our contributions relied on efficient methods which were im-
plemented in MATLAB® using the open-source library GlobalBioIm developed in our
group [129]. This library exploits the strong commonalities between imaging modali-
ties to enable the implementation of many forward models from elementary modules.
Thanks to this modular philosophy, we could rapidly reuse operators between chapters.
Simultaneously, this library has guided the implementation of new methods as to remain
compatible with the modular approach of GlobalBioIm.

A.2 Proximity Operators

In this section, we describe how we can compute the proximity operator of the regular-
ization term R (see (4.8)). Proximity operators act as a generalization of the notion of a
projection operator on a convex set [146]. The proximity operator [288] of a functional 7R,
with 7 > 0, is defined as

prox, (v) = arg min ||f — v||3 + 7R(f). (A1)
ferRN
Here, we are interested in
R(f) = ||Lf[| +ip(f), (A.2)
where || - || : RS — Ry is a (mixed) norm or seminorm, L : RY — R5*5 ig

a linear operator (e.g., discrete gradient, Hessian), and the functional i = {0, f €
B; 0o, otherwise} constrains the solution to lie in the convex set B such as B = RY,.
We then leverage this structure to solve (A.1) efficiently. In this thesis, we deploy two

different strategies.
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A.2.1 Proximity Operators via ADMM

In Chapter 4 (Section 4.5.3), we used the ADMM algorithm [289] to solve (A.1). More
specifically, we tackled 2D ODT regularized with the anisotropic TV and the set constraint
on the convex set B

R(f) = [IVE[21 +in(f) (A-3)

where V : RY — RV*XP encodes the discrete gradient operator for the dimension
D € {2,3}. Below, we explicitly describe a solver for the proximity operator of (A.3) via
ADMM, but the procedure is generic for (A.2). Let us start by reformulating (A.1) as

. 1 2 . )
rox,r(v) =arg min ( -|[f —v|5+ 7 +1 ,
prox(v) = arg min (5[1€ = VI3 + 7l 2 +in(a)
s.t. q1 = Vf,
q =f, (A.4)
which admits the augmented-Lagrangian form

2

1 W
‘C(fa Cl17CI2aW17W2) - §Hf — VH% + % Vf — q + 711
2
2
W .
+ %2 f—a+ 722 +7llaill2,1 +is(az), (A.5)
2

where p; and po are positive scalars, and where w; € RN*D and wy € RY are the
Lagrangian multipliers. Then, one can minimize (A.5) using ADMM. The iterates are
summarized in Algorithm 8.

Algorithm 8 ADMM for solving (A.1).
Require: f ¢ RN, 7 >0, py >0, p2 >0

1: A= ((1 + p2)I + plvTV)

2. q) = VI, q) =°

3 W1 =d1, W2 = Q2

4: t=1

5. while (not converged) do

. t+1 _ t, Wi

6: ar = ProXzj -, (Vf 4 p11>

1 t
7 qéJr = proxpg (ft + %)
t

8: fitl = A1 (V +m V7T (qli+1 - %) + paghtt — Wé) > Fourier division
9: W?_i =wi + py (V! —thI'H)
10: whtl = wh + po(FIT — ™)

11: t=t+1
12: end while
13: return f?
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Steps 6 and 7 compute

Vq € RY, [proxg(q)] = proj(q), (A.6)
Y
Vg € RV*P lprox. . 1o (@) =gna|l——— | . AT
[ ol ||2,1( )}n,d » qu . ||2 . ( )
of proxp and PLOXy| + |5, where
proj(q) := arg min [x — g2 (A.8)

is the orthogonal projection onto the convex set B. For instance, if B = Rgo, the
projection becomes the elementwise operation

[proj(q)]n = maX(‘]na 0) (AQ)

A.2.2 Proximity Operators via the Fast Gradient-Projection (FGP)
Method

Although efficient in 2D settings, we observed that proximity operators via ADMM
do not scale well to 3D settings. We then deployed the fast gradient-projection (FGP)
method to solve the dual formulation of the proximity operator of (A.2) [124, 127]. This
dual approach is possible if one can formulate the dual of |Lf||. For instance, TV or HS
fulfill this condition. The dual problem of (A.1) with (A.2) is defined as

1
g* = arg min — —||v — 7L"g — projz(v — 7L7g)|%
geP 2
+|v—7LTg|3, (A.10)

where the set P depends on the regularization term. For the anistropic TV, we have P =
{g € RVXD  |[gn]lle < 1,Vn € [1,...,N]}, and, for HS, we refer the reader to [124].
The iterates of FGP are summarized in Algorithm 9. In Step 4, the operator projp is
the orthogonal projection onto P. For the 3D anisotropic TV, the operator is given by
91,0
max(|gn,ol,1)

projp(&)ln = | maxtler | » (A.11)
9n,2
max(|gn,2[,1)

forn=1,...,N. Once (A.10) is solved, the primal solution is then given by

f* = projg(v — 7LTg"). (A.12)
Note that, in this thesis, FGP is embedded in one iteration of FBS. By using few iterations
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of FGP, we obtained an approximate solution of (A.10) at each iteration of FBS, but
this was sufficient to converge in our experiments.

Algorithm 9 FGP for solving (A.10).

Require: f' ¢ RY, 7 >0, g%
. d' =g a® =1,y =1/|L|?
=0
while (not converged) do
gl = projp (dt +~L (projB (v - TLTdt)>)

1+4/14+4(at)?
attl — (a*)

artl — gt 4 %(gt—f—l —g)
t=1t+1

end while

return g

= Wy

A.3 Proofs for Chapter 3

A.3.1 Preliminary Lemmas

Lemma A.3.1 (Smoothness of a function and decay of its Fourier transform in R?).
Let v € Lo(R3) have (q — 1) continuous derivatives in La(R3) for some ¢ > 1 and a qth
derivative of bounded variations. Then,

Ly st wl| > O, (A.13)

P <

where C and Co are positive constants.

Proof. Tt is an extension of the well known result in one-dimension, see for instance [290,
Theorems 6.1 and 6.2]. O

Lemma A.3.2 (DFT aliasing for compactly supported functions in R?). Let v €

Lao([—L/2,L/2]3) be compactly supported, have (¢ — 1) continuous derivatives in Lo(R?)

for some q > 3, and a qth derivative of bounded variations. Let v € RN (N =n3) be a

sampled version of v with sampling step h = L/n. Finally, denote by 6 = 2w /(hn) the
. ~ - . 3

frequency sampling step of v, the DF'T of v. Then, for all q € [5* + 1; 5]

[0(5a) — h*9la]| < Cho*! (A.14)
for a positive constant C > 0.

144



A.3 Proofs for Chapter 3

Proof. From Poisson’s summation formula and the compact support of v, we have that
—jhkTw
> vlkle™ 3 Z O(w + 2rm/h). (A.15)
ke[2+1;2]3 meZ3

Setting w = 0q = 2wrq/(hn) in (A.15), one recognizes that the left-hand side is the DFT
of v. Hence, we obtain that

o(6q) = h*9a) — 3 @ (5q+2rm/h). (A.16)

meZz3
m#0

Then, from Lemma A.3.1, we obtain that there exists C' > 0 such that

o >
= 1
o(69) — 791l < AT T
m;éO
Chat! 1
< = = (A.17)
@it 2= fa/n+ml¢
m=#0
Let us now study the convergence of the series in (A.17). Using the fact that || - ||2 <
| - 1 £VNJ| - ||2, we obtain that
1 N
Yo e ¥ (819
meze la/n+mly™ — =7, lla/n + mi[]
m#0 m#0
Then, for q € [5* + 1; 2]* and m € N we introduce the set
S(T:{mEZ?’:mS lla/n + ml; <m+1}. (A.19)
Using the fact that g € [52 + 1; 2]* = q/n € (—1/2,1/2]3, we have that
Iml[ly —3/2 < llq/n+ ml; < [jml|; +3/2, (A.20)
which implies that
m+2 ,
[Sql< > 18]
m/'=m—2
<5195 =5 (4(m +2)* +2), (A.21)

where | - | stands for the cardinality of the set. Using the inequality (A.21), we can
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bound the right-hand side of (A.18) as

VN NSyl

la/n+ml|{"h = o= mett

2.

mcZ3
m#0
+o0 2
5V/N (4(m +2)% +2)
<> movES] : (A.22)
m=1
which is a convergent series when g > 3. This completes the proof. 0
A.3.2 Proof of Theorem 3.5.1
From the Fourier-convolution theorem, we have that
(35 0)x) = | gu(x — )u(z) dz
_ 1 N R iwTx
_@m%&%@WWW dw. (A.23)

Let n € 2N\ {0} and h = L/n be the spatial sampling step of the volume 2 in each
dimension. It follows that the frequency domain that is associated to the DFT is
Q= [~7/h,7/h]3. Then, the padding factor p € N5 enlarges the spatial domain to
[~pL/2,pL/2)3, resulting in the frequency sampling step § = 2 /(hnp) = 2r/(Lp), so
that € is sampled using np equally spaced points in each dimension.

We are now equipped to discretize the integral in (A.23). To that end, we use a trapezoidal
quadrature rule on € and write that

53 R N saTx
(gt *v)(x) = (2m)? Z wq Gt (09) 0 (dq) eta’x (A.24)
qc[ =2 5P]3

There, the weights wq are equal to 1, 1/2, 1/4, and 1/8 when q belongs to the interior,
the interior of the faces, the interior of the edges, and the corners of the cube [—%; %]]3,
respectively.

The approximation we made in (A.24) generates two error terms.

1. The error €' that is due to the trapezoidal quadrature rule used to approximate
the integral over the domain 2. This error is well documented in the literature [291].
For integrand that are twice differentiable, such as w — §i(w)d(w)el* X, we have
that

27\ 2
< os?=0C(= A2
%] < o C(M) (A.25)
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for a positive constant C' > 0.

2. The error e that is due to the truncation of the integral in (A.23) to the domain
), bounded as

C 2
< dw, A.26
S @ /Rs\a (Tl = ) ol ® 4 (4.26)

for a constant C > 0.

The last inequality in (A.26) has been established in two steps. First, the assumption
that k, < m/h implies that Vw € R*\ Q, ||w|| > kp. Then, one gets from (3.6) that,
Vw e R3\ Q,

2
(lwll = k)]l

Second, Lemma A.3.1, along with the fact that v has (¢ — 1) continuous derivatives with

gt (w)] < (A.27)

a gth derivative of bounded variations, implies that its Fourier transform decays as

. C
for a constant C' > 0. Combining these two bounds with [¢"*| = 1 finally leads
o (A.26).

A further refinement of the bound (A.26) is needed to recover the statement of Theo-
rem 3.5.1. Denoting by B?r/h = {w € R?: ||w| < m/h} the fo-ball of radius 7/h, one sees
that the integral in (A.26) is upper-bounded by the integration of the same integrand over
the larger domain R3\ Bfr Jht This bound is easier to evaluate using spherical coordinates,
as in

o < 20/ 1 e
- (27T)3 '8z, ([l = k)llwl]|+2

2m pm oo p2gin ()
///ﬂ/h e Ardf g

- /ﬂ/h 7(7”_ P dr. (A.29)

To evaluate (A.29), we use the partial fraction decomposition

1 = 1 qz_:l 71 (A.30)
(T — kb)rq B kg(r — k’b) o) kg_mrm—i-l' ’
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Hence, we have that

c(1 too g +oo
¥ < = ( log(r — k) — — log(r)
7['2 ]{?g r:% kg r—%
-1 ) < . ) -l—oo>
m=1 kgim mr' o
=%
—C Ebh\ 21 /fkyh\™
= (log (1 - ) mz — ( ) (A.31)
C =1 /kh\™
_ R X A.32
k{2 2_: m ( T > ( )
m=q
C  [kph\7 &2 /kph\™ 1
LA T A.33
e (7)) 2 () o (33

To obtain (A.32) from (A.31), we used the fact that kph/7m < 1 together with log(1—z) =
(=t 2™ /m) for |z| < 1. Finally, we get the bound C% /n? from the convergence of
the series in (A.33) and h = L/n.

Let us focus on aliasing. As opposed to ¢ for which we have access to an explicit
expression in (3.6)—(3.7), the samples 9(dq) in (A.24) have to be approximated by the
DFT coefficients of a p-times zero-padded version of the sampled signal v € CV, denoted
v, € CNP* | and defined by, Vk € | =2+ 1; 223,

vik] =wv = .03

We then replace 6(dq) in (A.24) by h3¥v,[q] and obtain that

(gt *v)(x) = (n;) Y wq i (6q) Vp[gled . (A.35)

qe[=2z;me]3

This approximation introduces an error term £ that is due to aliasing. More precisely,
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we have that
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where (A.36) comes from Lemma A.3.2.

To complete the proof, it remains to recognize an inverse DFT within (A.35). Let {q;}5_;

denotes the eight corners of the cube [=52; %2]3. Then, because g is radially symmetric

(see (3.6) and (3.7)), and by periodicity of v,, we have that

Gt (0a;) Vplai] = g (6ar) vplan], Vi e {2,...,8}. (A.38)

Hence we can factorize the corresponding terms in (A.35) as

1 — ~ —
> g9 (0i) Vplai] = g (da1) Vplau]. (A.39)
qe{(h'}lszl

Finally, using the same arguments for points within the faces and edges of the cube

=2, %]]3, and sampling (A.35) at points hk, k € [5* + 1; % 3, we obtain that

<mla>3 S Elalvlaem (A.40)

qe[=Z2+1;78]3

(Gv)[K] =

where g = (g}(éq))qe[[—%p“;% 5. We recognize an inverse DFT, which completes the
proof.
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A.3.3 Proof of Proposition 3.6.1

First, let us introduce the notation Q, = [5* +1; 5 3. Then, we have that, for all
k € Q,,

(F—l@ © %)) [K]

2jm Tk
i Ly S slanlae
q4EQnp

—2jm & T, 2jm (T

5 > &lal Y vplajes T e

/—\

qeﬂnp qEan
2% (k—g)Tq

p ey, qunp

2T e ~\T (P

o ZVQ Z g2 enp(k 4)" (5a-s)
q€Q2n  se0;5-1]3
qEQ?n

—2jm
23 vl S F G - —sl)k—gle kD" (A.41)

quzn se[0;5-1]3

where we have used the fact that supp(v,) = supp(v) € Q, C Qy,. Hence, we have shown
that (F~1(g © %)) o
between vo, defined as v padded with p = 2, and a modified truncated Green function
given by, Vk € Qo

can be obtained as the valid part of the discrete convolution

S F NGl —s])kle (A.42)
se[[O;g—l]}P’

8
g k| =—
t[] pg

which completes the proof.

A.4 Experimental Setup

The optical system shown in Fig. A.1 used a diode pumped solid state (DPSS) 532nm laser.
The laser beam was first spatially filtered using a pinhole. A beam-splitter separated the
input beam into a signal and a reference beam in an off-axis geometry. The signal beam
was directed to the sample at different angles of incidence using a reflective liquid crystal
on silicon (LCOS) SLM (Holoeye PLUTO VIS, pixel size: 8 pum, resolution: 1080 x 1920
pixels) that modulates the phase of the incident beam. Different illumination angles
were obtained by displaying blazed gratings on the SLM. In the experiments presented
here, a blazed grating with a period of 25 pixels (200 wm) was rotated a full 360° with a
resolution of 1 degree for a total of 361 projections, including normal incidence to be able
to measure the shift of the k-vectors with respect to it. Two 4f systems between the SLM
and the sample permitted filtering of higher orders reflected from the SLM (due to the
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Vs Waveplate — leeeeeeesee

Higher Orders Removal Filter

Iris Diaphragm

Reference Beam

Figure A.1: Experimental tomographic setup. (M: Mirror, L: Lens, OBJ: Objective
lens, BS: Beam splitter). Pinhole-based spatial filter cleans out the beam spatially.
The higher-orders cleaning filter removes the unneeded higher orders, which prevents
interference at the image plane on the sample and image deterioration.

pixilation of the device) as well as 240x angular magnification of the SLM projections onto
the sample. Using a 100X oil immersion objective lens (OBJ1) with NA 1.4 (Olympus),
the incident angle on the sample corresponding to the 200 um grating was about 37°. A
third 4f system after the sample includes a 100X oil immersion objective lens (OBJ2)
with NA 1.45 (Olympus). The sample and reference beams were collected on a second
beam-splitter and projected onto a scientific complementary metal-oxide-semiconductor
(sCMOS) camera (Andor Neo 5.5 sCMOS, pixel size: 6.5 pm, resolution: 2150 x 2650
pixels).

A.5 Supplementary Materials for Chapter 7

A.5.1 Architecture of the Generative Network

We choose a U-Net-like architecture based on the work of deep image prior [218] (Fig-
ure. A.2). It consists of repeated applications of four blocks of operations.

1. A (3 x 3) 2D convolutional layer with stride (2 x 2) for downsampling followed
by a batch normalization (BN) [292] layer and a parametric rectified linear unit
(PReLU) [225] layer.

2. A (3 x 3) 2D convolutional layer with stride (1 x 1) followed by a BN and a PReLU
layer.

3. A (2 x 2) bilinear interpolation layer for upsampling followed by a BN layer.

4. A skip connection which contains a (1 x 1) 2D convolutional layer that concatenates
the left-side encoder path to the right-side decoder path.
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Figure A.2: Architecture of the network. Each box corresponds to a multichannel feature
map. The number of channels is shown at the top of the cube. The height of the output
is as same as that of the input. The size of the single-channel feature map is halved after
the downsampling and doubled after the upsampling. The skip connections combine
convolution and concatenation, which differs from a traditional U-Net [224].

A.5.2 Stability of PUDIP

Deep image prior (DIP) is known to be unstable when a large number of iterations is
used [218]. Our method can be seen as a sequence of DIPs with an adaptive loss. We then
assessed whether our method suffers from such a destabilization. As shown in Fig. A.3,
for the simulated data with 180° cropped angle, PUDIP shows a stable and converging
cost and SNR with respect to the iterations. This allows us to set an arbitrary maximum
number of iterations without risking any destabilization.

<10t Loss versus iterations SNR versus iterations
25 T T T T T T T 160 T T T T T
—— 10000 iterations 1o [T a
B —— 5000 iterations ]
——1000 iterations 120 200
—— 500 iterations
100
— 100
1.5 m
# 5 80
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1+ 1500 0 400 800 1200 1600 2000
40
1
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051 500 ] 20 5000 iterations
o~ 400 800 1200 1600 2000 —— 1000 iterations
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A, e " -
o ! ; ; : : ; n n : 20 . . . . . . . .
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Figure A.3: Loss function (left) and SNR (right) with respect to iterations.
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Figure A.4: Uniformly and Gaussian-distributed random square matrices (first row) and
the corresponding unwrapped-phase images (second row), wrapped-phase images (third
row), and the wrap-count images (last row). For training, the wrapped-phase images
are the inputs and the wrap-count images are the ground-truths. From left to right,
the size of the random matrix is (3 x 3), (5 x 5), (7 x 7), (9 x9), and (11 x 11). The
unwrapped-phase images vary in the range 0 to 407. The image size is (256 x 256).

A.5.3 Training Dataset of PhaseNet

Samples of training data for PhaseNet [211] are shown in Figure. A 4.

A.5.4 Simulation Setup
Simulation of Phase Images of Organoid-like Sample

We simulated the acquisition of phase images of organoid-like samples. We first created
3D volumes made of overlapping ellipsoids of uniform RI n;, to which we added an
external layer of RI ne. Then, we simulated the propagation of a plane wave through
the sample by using BPM [41]. We propagated the wave with a square voxel of length
0.2um in a square window of length 102.4pum. We refocused the complex total field at
the center of the volume (i.e., free-space propagation). We then downsampled the field to
match the pixel size of the camera (i.e., 0.645um). Finally, we extracted the (wrapped)
phase from the ratio between the total field and the incident field. The straight-ray
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approximation ®, the expected phase [33] as

2w [
b, = —
S \ -

(n(21, x2, x3) — Mp)das, (A.43)
where 1(z1, 72, 23) : R® — R is the distribution of RI of the 3D volume, and n,, > 0 is
the RI of the medium (i.e., water).

Ellipses with Varying Cropping Angles

As shown in Figure. A.7, we first simulated one phase surface with the shape of an ellipse
of radii 80 pixels and 110 pixels along the vertical and horizontal dimensions, respectively.
The ellipse was filled with a Gaussian function whose maximum is 15 and standard
deviation is randomly generated o ~ U(0.30,0.65). The area outside the ellipse was set
to 0. We select the horizontal left-to-right direction as the x-axis and set the coordinate
axes to be left-handed. The ellipse was cropped with angles ranging from 0° to 270°
with an increment of 45°. Similar to [187, 191], these croppings introduce a variety of
discontinuities and shapes.

Ellipses with Varying Maximum Phase Values

For this numerical experiment (Figure. A.8), we generated elliptical phase surfaces with
radii 102 pixels and 120 pixels along the vertical and horizontal dimensions, respectively.
The cropped part was kept constant, with an angle set at 135°. We scaled the phase so
that its maximum was in the range of 6 to 42 with an increment of 6. For this case, the
high values induce several wrapping events. By controlling their number, we could tune
the difficulty of the unwrapping task.

A.5.5 Phase Unwrapping of Simulated Data

Supplementary Reconstructions of Organoid-like Samples

We simulated supplementary organoid-like samples and unwrapped their corresponding
wrapped phase. As shown in Figure. A.5 and A.6, similar behaviors are observed. The
slightly defocused parts are wrongly estimated by baseline methods, which impacts the
whole unwrapping result. The phase unwrapped by PUDIP matches the straight-ray
approximation P, .

Unwrapping of Ellipses with Varying Cropping Angles

The reconstructions obtained by different methods for the ellipses with varying cropping
angles are shown in Figure. A.7. In this experiment, the cropping angle was gradually
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Figure A.5: Organoid-like reconstructions. The images were saturated for visualization
purpose. The size of the unwrapped phase image is (159 x 159). The first two columns
are orthographic slices of the 3D distribution of RI. All slices include the center of the
volume. From the third to fifth column, the text gives the method used to unwrap. The
wrapped phase and the straight-ray approximation ®4, are displayed in the last column
(from top to bottom).

increased. All methods except PhaseNet are able to recover the correct unwrapped phase
in the absence of cropping. When the phase image is cropped, all conventional methods
lead to blocky errors, especially at large angles. For the 180° case only, PUMA [187] and
the proposed method accurately unwrap the phase.

In general, CNN-based approaches perform better than the model-based methods. Both
PhaseNet and PUDIP are able to reconstruct more accurate shapes and values, especially
over the cropped region. For PhaseNet, we observe that the clustering-based postpro-
cessing strongly improves the final results but still introduces undesirable values along
the contours of clusters. By contrast, our method recovers well the samples in all cases,
including the few over which PhaseNet fails.

Unwrapping of Ellipses with Varying Maximum Phase Values

We obtained similar results with the second experiment in which we increased the
maximum value instead (Figure. A.8). When the height is low (first and second columns),
IRTV [191] and PUMA perform well. When the height is higher, all the other baseline
methods wrongly estimate large portions of the images.

PhaseNet always fails to recover the phase, which points out the sensitivity of this
supervised-learning method to the mismatch between the training and testing set. On
the contrary, our learning framework always unwraps the phase with few errors and
without prior training.
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Figure A.6: Organoid-like reconstructions. The images were saturated for visualization
purpose. The size of the unwrapped phase image is (159 x 159). The first two columns
are orthographic slices of the 3D distribution of RI. All slices include the center of the
volume. From the third to fifth column, the text gives the method used to unwrap. The
wrapped phase and the straight-ray approximation ®4 are displayed in the last column
(from top to bottom).

Unwrapping of the Training Dataset of PhaseNet

As the samples are randomly generated, we simulated the samples from the training
dataset of PhaseNet four times. In general, model-based methods fail to restore the
correct background in most cases, as well as the inner structures for several samples (see
second to fifth rows of Figures. A.9-A.12). By contrast, both PhaseNet and PUDIP yield
better phase reconstructions for different configurations (see sixth to seventh rows of
Figures. A.9-A.12).

A.5.6 Experimental Data
A.5.7 Reconstructions by Goldstein’s Algorithm and PhaseNet

In Figure. A.13, GA [178] and PhaseNet failed to reconstruct the unwrapped phase for all
real data. GA solutions exhibit several rectangular areas that cover both the background
and the organoids. Their phase differs from their surrounding, which is inconsistent with
the expected features of the sample. PhaseNet solutions similarly show jumps along
vertical stripes and are likely to be artifacts of unwrapping. For PhaseNet, this behavior
is expected since the network was trained on (mismatched) simulated data.
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Figure A.7: Reconstructed unwrapped-phase images of simulated samples with diverse
cropping angles. From top to bottom: wrapped phase, results obtained by GA, LS, IRTV,
PUMA, PhaseNet, and our approach (PUDIP). The ground-truth images are presented

in the last row.
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Figure A.8: Reconstructed unwrapped-phase images of simulated samples with diverse
maximal values. From top to bottom: wrapped phase, results obtained by GA, LS, IRTV,
PUMA, PhaseNet, and our approach (PUDIP). The ground-truth images are presented
in the last row.
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Figure A.9: Unwrapped-phase images of simulated samples with diverse random distri-
butions (1st batch). From top to bottom: wrapped phase, results obtained by GA, LS,
IRTV, PUMA, PhaseNet, and our approach (PUDIP). The ground-truth images are
presented in the last row. The numbers give the corresponding RSNR [dB].
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Figure A.10: Unwrapped-phase images of simulated samples with diverse random dis-
tributions (2nd batch). From top to bottom: wrapped phase, results obtained by GA,
LS, IRTV, PUMA, PhaseNet, and our approach (PUDIP). The ground-truth images are
presented in the last row. The numbers give the corresponding RSNR [dB].
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Figure A.11: Unwrapped-phase images of simulated samples with diverse random dis-
tributions (3rd batch). From top to bottom: wrapped phase, results obtained by GA,
LS, IRTV, PUMA, PhaseNet, and our approach (PUDIP). The ground-truth images are
presented in the last row. The numbers give the corresponding RSNR [dB].
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Figure A.12: Unwrapped-phase images of simulated samples with diverse random dis-
tributions (4th batch). From top to bottom: wrapped phase, results obtained by GA,
LS, IRTV, PUMA, PhaseNet, and our approach (PUDIP). The ground-truth images are
presented in the last row. The numbers give the corresponding RSNR [dB].
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Figure A.13: Reconstructions of experimental data obtained by GA and PhaseNet.

Supplementary Time-Lapse Measurements and Segmentations and Recon-

structions by PhaseNet

We acquired other time-lapse measurements (Figures. A.14-A.16). We observe that
the unwrapped phases exhibit similar artifacts at the borders of the organoids. The
subsequent segmentation is also impacted, especially at the border, as pointed out by
arrows. We provide the reconstructions by PhaseNet in Figure. A.17.
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Figure A.14: Time-lapse reconstructions for supplementary real data of size (380 x 270)
and their corresponding segmentation. Left: the images were saturated for visualization
purpose. Right: segmentation of time-lapse reconstructions. We thresholded at 20% of
the maximum value of the image.
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Figure A.15: Time-lapse reconstructions for supplementary real data of size (320 x 380)
and their corresponding segmentation. Left: the images were saturated for visualization
purpose. Right: segmentation of time-lapse reconstructions. We thresholded at 20% of
the maximum value of the image.
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Figure A.16: Time-lapse reconstructions for supplementary real data of size (300 x 320)
and their corresponding segmentation. Left: the images were saturated for visualization
purpose. Right: segmentation of time-lapse reconstructions. We thresholded at 20% of
the maximum value of the image.
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Figure A.17: Time-lapse reconstructions by PhaseNet for all real data and corresponding
segmentation. For each panel of time-lapse measurements, Left: the images were
saturated for visualization purpose. Right: segmentation of time-lapse reconstructions.
We thresholded at 20% of the maximum value of the image. T.-L.: Time-Lapse; Fr.:
Frame.
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