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Abstract

Cette thèse est motivée par de récentes expériences sur des systèmes décrits
par des extensions du modèle unidimensionnel d’Ising à champ transverse
(TFI) où (1) des propriétés des phases ordonnées d’Ising – des croisements
de niveaux de l’état fondamental – ont été observées et (2) des transitions
de phase continues liées au modèle ¡¡ p-state chiral clock ¿¿ ont été etudiées,
avec des résultats intéressants mais pas totalement concluants sur la nature
des transitions de phase et l’existence d’une classe d’universalité chirale.

Pour (1), la relation entre les croisements de niveau et les modes de bord
protégés topologiquement des modèles de fermions de Majorana est dis-
cutée, et il est démontré que le temps d’auto-corrélation des spins de bord
peut être infini même pour des systèmes non intégrables, indépendamment
de la température. Ensuite, les croisements de niveaux sont réinterprétés
dans le contexte de la théorie des perturbations dégénérées comme étant
une conséquence de l’interférence quantique destructive entre des proces-
sus d’effet tunnel impliquant différents nombres de retournement de spin. On
montre que ce phénomène est indépendant de la géométrie du réseau et qu’il
est omniprésent dans les modèles de type TFI, se retrouvant aussi dans les
systèmes à spin-S unique, ces derniers ayant déjà été observés dans le do-
maine des molécules magnétiques. L’effet du désordre sur les croisements
est étudié à l’ordre le plus bas.

Pour (2), nous effectuons des simulations de groupe de renormalisation
de matrice de densité pour étudier les transitions de phase quantiques ob-
servées expérimentalement et nous concluons que des points critiques con-
formes existent sur les frontières critiques p = 3 et p = 4 : nous localisons
précisément ces points et caractérisons leurs classes d’universalité (CU), où
nous trouvons que le point p = 3 correspond à la CU du modèle de Potts à 3
états et que le point p = 4 correspond à la CU d’Ashkin-Teller avec ‌ ≃ 0:80

(– ≃ 0:5). Nos résultats sont en faveur de l’existence de lignes de transi-
tion chirale entourant les points conformes, au-delà desquelles une phase
intermédiaire sans gap est attendue.
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Abstract

This thesis is motivated by recent experiments on systems described by ex-
tensions of the one-dimensional transverse-field Ising (TFI) model where (1)
finite-size properties of Ising-ordered phases – specifically, ground state level
crossings – were observed and (2) continuous phase transitions related to the
p-state chiral clock model were probed, with interesting but only partially con-
clusive results regarding the nature of the phase transitions and the possible
existence of a chiral universality class.

For (1), the relation of the level crossings to topologically protected edge
modes of Majorana fermion models is discussed, and the implication is made
explicit that the auto-correlation time of the edge spins may be infinite even
for non-integrable albeit finite systems, and independently of temperature.
The level crossings are then reinterpreted in the context of degenerate per-
turbation theory as being a consequence of destructive quantum interference
between tunneling processes involving different numbers of spin-flip opera-
tions. It is shown that this phenomenon is independent of the lattice geom-
etry, as long as this one is not geometrically frustrated, and is ubiquitous to
TFI-like models, being also found in single spin-S systems, the latter having
already been observed in the field of magnetic molecules. The effect of dis-
order on the crossings is studied in lowest order.

For (2), we perform density matrix renormalization group simulations on
open chains to investigate the experimentally observed quantum phase tran-
sitions and we conclude that isolated conformal critical points exist along the
p = 3 and p = 4 critical boundaries: we accurately locate such points and
characterize their universality classes by determining critical exponents nu-
merically, where we find that the p = 3 agrees with a 3-state Potts universality
class and the p = 4 point agrees with an Ashkin-Teller universality class with
‌ ≃ 0:80 (– ≃ 0:5). Our results are in favor of the existence of chiral transition
lines surrounding the conformal points, beyond which a gapless intermediate
phase is expected.
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Chapter 1

Introduction

This thesis is based on three articles published during the course of the PhD,
the first two being closely related in their subject matter [1, 2], with the last
one being a separate line of research [3]. Each of them is presented in its
own chapter with some adaptations, and this introduction aims to connect
the three chapters by contextualizing them in the broader picture of statistical
physics and condensed matter, both theoretical and experimental. While this
introduction is not essential in the sense that each chapter could stand on
its own, here we present some of the concepts used throughout the thesis
as they were introduced historically and with a focus on their impact and/or
limitations, without going into details and exact definitions, as only a thorough
survey through the cited literature would do justice to these complex subjects.
Review articles and books are cited as [–, Review].

In this introduction, we start with a review of some of the theoretical ad-
vances in the subject of continuous phase transitions, which will be especially
relevant for Chapter 4. We then briefly review the experimental techniques
which made the research in this thesis relevant, and we present the main top-
ics of this thesis in the context of such experiments.
1.1 Continuous phase transitions

1.1.1 The Ising model One of the paradigmatic models in statistical and
condensed matter physics is the Ising model [4]. Introduced to explain the
emergence of ferromagnetism from the interaction of individual microscopic
degrees of freedom, it failed to show a continuous phase transition at a fi-
nite temperature in 1D [4]. Years later, the Ising model on a 2D square lattice
was solved [5]: Its partition function was analytically determined and it was
the first exactly solved model featuring a continuous phase transition, this
one between a (anti-)ferromagnetic phase and a disordered phase at high
temperatures, demonstrating that the partition function formalism is suffi-
cient to describe critical phenomena, provided it can be computed exactly.

1



2 Introduction

The proof also demonstrated the asymptotic scale-free behavior of thermo-
dynamic quantities like the order parameter (magnetization) as we approach
the non-analytic critical point.
1.1.2 Renormalization The properties of critical points and their surround-
ing were further elucidated by the renormalization group formalism [6, 7][8,
9, Reviews], in which critical points are fixed points of a renormalization group
flow in a possibly infinite space of Hamiltonians. The correlation length can
only decrease along the renormalization flow lines, so the fixed points of the
renormalization group flow must necessarily have zero correlation length for
attractive fixed points or infinite correlation length when they have at least one
flow line that points outwards from the fixed point, the latter corresponding
to critical points. The scale invariance at the critical point lets us determine
most critical exponents from a linearization of the recursive flow equations at
the critical point. Renormalization also explains the origin of the scaling re-
lations between critical exponents, and provides a partial explanation for the
universality of the families of critical exponents, as some Hamiltonians might
flow out of their parameter space through irrelevant perturbations towards
the critical fixed point of a simpler model.

However, renormalization does not fully explain universality: Assuming all
the scaling relations hold true, they leave room for a 2-dimensional space of
two independent critical exponents, all others being determined by the scaling
relations, and yet most of this space is never realized, while a few points of
this space appear everywhere in physics. Also, the renormalization group
procedure cannot be applied exactly except in a few cases, so most of the
time we are left without accurate exponent predictions.
1.1.3 Conformal invariance Another line of progress started when it was
realized that the full emergent symmetry at the critical point of most theo-
ries was conformal symmetry [10], which extends scale invariance. In that
case, the Hamiltonian at the critical point is connected through a continuum
limit to a conformal field theory (CFT). CFTs in two dimensions are special
in that the 2D conformal group spans all the analytic functions on the com-
plex plane, which are locally-conformal, so the group has an infinite number
of generators. This imposes a large restriction in the form of the correlation
functions and leads to many more exact results on 2D CFTs than in higher
dimensions [11]. 2D CFTs are characterized by their central charge c and
the scaling dimensions of the associated primary fields. All the possible CFTs
with a finite number of primary fields have been determined and classified



Continuous phase transitions 3
as a series known as the minimal models [11, 12]. All the minimal mod-
els have c < 1, and there is no undetermined parameter that continuously
tunes the central charge and scaling dimensions: these quantities are fixed
at certain rational numbers. If one further requires unitarity, then the central
charge and the scaling dimensions are all non-negative fractions [13]. The
unitary minimal models can be uniquely classified and ordered in a sequence
of increasing central charge, and the first few CFTs of the series have been
identified as the universality classes of several well-known statistical models
[11, 14, 13], the Ising critical point corresponding to the first non-trivial CFT
in the series. Thus, on the two-dimensional space of possible conformal uni-
versality classes, enough restrictions can be imposed through 2D CFT such
that isolated universality classes appear, and the Ising universality class is
an extreme case in this space, and this last point also seems to hold in three
dimensions [15, 16]. There are also important unitary CFTs with c ≥ 1, but in
this case a continuum of universality classes can be found, as is the example
of the Ashkin-Teller universality class with c = 1, which is parametrized by a
coupling –.

While conformal field theory seems to be a definitive answer to a lot of the
critical behavior we observe, conformal phase transitions do not amount to
all the possible and relevant phase transitions. For example, in models which
break rotational symmetry either explicitly in the Hamiltonian or through emer-
gent chiral degrees of freedom, the full conformal symmetry on critical points
is lost, although scale invariance remains. We shall see some examples of
these models in Chapter 4. Other phase transitions show unconventional (or
no) signs of emergence of order, as we will see next.
1.1.4 Topological order Some phase transitions are still critical, in the sense
that correlations become power-law at the critical point, but don’t completely
fit with the regular picture of continuous phase transitions. For example, in
the Kosterlitz-Thouless (KT) transition [17] of the 2D classical XY model the
correlation length diverges exponentially and remains infinite below the crit-
ical temperature, while no symmetry-breaking occurs across the transition
[18].

Another famous example of irregular phases of matter is the gapped Hal-
dane phase of the spin-1 Heisenberg chain [19], where open chains have four-
fold degenerate ground states while no local order parameter is finite [20, 21],
although a non-local order parameter can be defined [22]. The ground state
degeneracy of open chains can be understood as a consequence of effective
spin-1/2 degrees of freedom that are localized at both edges of the chain,
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which are exactly decoupled in the AKLT limit of the spin-1 chain [20, 21]. In
contrast, when the chain is closed into a ring, the now interacting spin-1/2s
at the edges will form a singlet [20] and thus a single ground state is observed
in this phase when the boundary is periodic.

The Haldane phase was the first example of a symmetry-protected topo-
logical (SPT) phase [23]. In such phases, the ground state is guaranteed to
be degenerate due to the existence of zero energy excitations (zero modes)
which are symmetry-protected and are localized at the edges of systems with
open boundaries. Surprisingly, while no such modes are present for periodic
boundaries, in fermionic systems one can instead define an integral of some
geometric function of the dispersion relation over the Brillouin zone that can
only take discrete values and which indicates the number of edge excitations
observed for open boundaries [24, 25, 26], thus both approaches (periodic or
open) can lead to the identification of such phases. This connection between
a geometric bulk quantity and edge excitations is known as the bulk-edge cor-
respondence [27][28, Review]. Perturbations of the model that preserve its
symmetry will also preserve the number of existing zero modes. For such per-
turbations, only if the Hamiltonian becomes gapless (quantum critical point)
can the number of zero modes change.
1.1.5 The transverse-field Ising model The model which is at the basis for all
the work in this thesis, the one-dimensional transverse-field Ising (TFI) model
[29], is right at the intersection of conventional ordered phases and of topo-
logical order. All the models we will be concerned with are extensions of this
model, which is an important minimal model in that it can be exactly solved in
terms of free fermions and also features a continuous quantum phase transi-
tion, that is, a zero temperature phase transition that is driven by a quantum
coupling instead of the temperature or other thermodynamic quantities. The
TFI phase transition is in fact in the 2D classical Ising universality class. With-
out solving the model, this can be proved by a mapping between the partition
functions of both systems, which is a particular case of a general mapping
between the partition functions of quantum systems inD dimensions and cor-
responding classical systems in D+1 dimensions [30][31, Sec. 5.6, Review].
The exact mapping between spins and fermions allows the reinterpretation of
the Ising ordered phase as an SPT phase where the zero modes at the edges
are Majorana fermions [32], as we will see in more detail in Chapter 2.
1.2 Quantum simulators Some efforts in experimental physics try to push
the boundaries of what current techniques are capable of in the hope of tack-
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ling still-open questions in two or more dimensions through the design of
systems that could model arbitrary quantum Hamiltonians. In the meantime,
some experimental achievements of the past few decades have already made
much more accessible experimentally what was already reachable theoreti-
cally – in particular in 1D quantum physics – encouraging theorists to revisit
somewhat forgotten problems and build upon past ideas, which is the spirit of
this thesis. Two experimental advances are precursors to the work presented
here: the scanning tunneling microscope (STM), and optical traps of neutral
atoms.
1.2.1 Scanning tunneling microscopy In scanning tunneling microscopy, a
conducting probe ending at a sharp tip is lowered in a controlled manner
close to a bulk surface, at distances of the order of the nanometer, not close
enough for atoms to chemically bind and so create a conductive channel, but
close enough to allow for significant tunneling of electrons to occur across the
vacuum between the electron clouds of tip and surface, so that a tunneling
current is observed when a voltage bias is applied. This technique allowed for
the first direct “observations” of individual atoms [33, 34]. To achieve such
precision, the tip of the probe must be extremely sharp and terminating in just
a few atoms, possibly down to a single atom [35].

One can image the surface by sweeping different voltage biases V and cal-
culating the differential conductance dI=dV , which is approximately propor-
tional to the local electron density. One can also image in this way lone atoms
that were adsorbed, so-called adatoms: atoms that attached (often weakly)
to the bulk surface and are now single “defects” on top of a surface. If the
tip moves too close to an adsorbed atom, the atom might prefer to attach to
the tip. This increased influence of the tip on the sample can be exploited
to remove, move, and place individual atoms [36], and thus it is possible to
create quantum structures atom by atom [36, 37][38, Review].

If the STM tip is magnetically polarized, the tunneling current becomes
sensitive to the spin state of the electrons [39, 40, 41], so it’s possible to
obtain the local magnetic states of surfaces or of the adatoms on them. The
possibility then arises of building adatom systems which are effectively de-
scribed by minimal models like the Ising model (TFI-like by applying an ex-
ternal field) and which can be probed magnetically with great accuracy. This
was realized successfully not so long ago with experiments on 1D chains of
Cobalt adatoms [42], the results of which started the line of research which
lead to Chapters 2 and 3 of this thesis.

The STM [33, 34, 43] and its offspring the atomic force microscope [44,
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45] have become standard tools in many condensed matter labs and other
fields with plenty of applications [46, 47, 48, Reviews]. This type of micro-
scopes are collectively called scanning probe microscopes (SPM) [49, 50, Re-
views].

Even with the great versatility they provide, structures of adatoms on sur-
faces controlled by SPMs might not classify completely as quantum simula-
tors, in the sense that one does not have full control over all of the model
parameters: For example, interaction couplings between adatoms only take
discrete values set by the possible distances between them, since adatoms
naturally adsorb at symmetry points of the underlying lattice. However, the
underlying discreteness could be made irrelevant if a universal quantum com-
puter were to be built from such systems [51]. Still, the next technique we
present seems to be some steps closer towards that goal.
1.2.2 Optical traps Trapping neutral particles in a small region of space is a
problem of its own, as obviously one cannot exploit strong electromagnetic
fields for the confinement. In 1970, after the then-recent invention of the
laser, it was demonstrated how focused laser beams can be used to trap trans-
parent neutral particles of sizes of the order of the incident beam wavelength
[52]. At such scales, the stability of the particle inside the laser can be un-
derstood with classical optics as an imbalance of momentum transfers from
refracting rays of light of different intensities if the particle is not at the center
of the beam where intensity is maximal [52]. The resulting force is approx-
imately proportional to the gradient of the intensity. A uniform-width beam
will also push the particle forward, but this can be counteracted by focusing
the beam at a point, creating a single point of highest beam intensity which
is effectively the center of a potential well for the particle [52].

Such an intensity gradient force is also observed for particles much smaller
than the laser wavelength [53][54, Review], in which case the light beam can
be seen as an average electromagnetic field from the point of view of the par-
ticle. In this regime the gradient force is due to the interaction between the
electric field and a (possibly induced) electric dipole moment of the particle,
thus the force is also proportional to the polarizability of the particle.

The average time that particles remain trapped is greatly influenced by
their thermal velocity, thus better cooling techniques were essential to im-
prove this measure. In particular, six-beam configurations distributed in pairs1
along orthogonal axes, all focusing on a single point, were used to optically

1One of the beams of each pair can be replaced by a mirror, thus achieving the same withthree beams.
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cool neutral atoms [55, 56, 57]: Tuning the lasers at a slightly lower frequency
than a specific electronic transition, one can exploit the Doppler shift seen by
atoms moving towards the beam sources, which brings the laser frequency
closer to resonance, and so has a cooling effect on faster atoms. The devel-
opment of this technique lead to the first optically trapped clouds of neutral
atoms [55, 56].

The stability and cooling of the six-beam trap can be enhanced with a
spatially-varying magnetic field [58], forming what are called magneto-optical
traps [59, Review], which were later used in the first experimental observa-
tions of Bose-Einstein condensation [60, 61]. Many experiments nowadays
use some combination of these techniques: A common experimental setup
is to load single-beam optical traps with single atoms coming from a cooled
cloud of atoms in a magneto-optical trap [62]. Atoms can then be set to in-
teract with each other by setting single-atom traps close to each other, and
one can continuously tune the inter-atomic interaction by adjusting the trap
spacing.

The emphasis of many such experiments is on single-atom traps of Ry-
dberg atoms[63, Review]: atoms with very large principal quantum number,
either from a naturally large atomic number or from valence electrons in highly
excited states, or both2. These atoms have a very large electric dipole mo-
ment given their equally large atomic radius, which could be increased even
further through electron excitations at very little cost due to the high density
of atomic levels close to the vacuum energy. Optically trapped atoms can be
excited to a chosen Rydberg state with lasers of appropriate frequencies.

Interactions between Rydberg atoms have been extensively probed us-
ing optical traps, starting with the interaction between two atoms in different
traps [64, 65], demonstrating a repulsive dipole-dipole interaction (∼ r−3)
between atoms in Rydberg states which suppresses simultaneous excitations
when the atoms are close enough to each other, in what is known as the Ry-
dberg blockade, its uses having been recognized before [66, 67]. If the two
atoms are excited to the same Rydberg state and are at sufficient distance
from each other, the direct dipole coupling vanishes and the leading interac-
tions are of Van der Walls type (∼ r−6) [68, 69, Reviews][70].

The single-atom traps can be arranged in 1D [71] or 2D [72, 73] geome-
tries to create optical lattices on which Rydberg atoms interact and effectively
simulate minimal models with highly tunable parameters [74]. Of particular
interest to us is a set of experiments of this kind where a 1D array of Rydberg

2Rubidium-87 atoms are an example of such atoms which are used particularly often, forreasons that escaped me during my survey.



8 Introduction

atoms realized a TFI-like Hamiltonian with long-range Van der Walls interac-
tions [75, 76] and where disordered to periodic phase transitions were probed
dynamically, in an attempt to answer a question set 40 years ago on the na-
ture of the incommensurate-commensurate phase transitions [77] and which
will occupy us throughout Chapter 4.

More recently, similar experiments have been carried out on 2D Rydberg
atom arrangements where the same model is realized [78, 79], with observa-
tions of “antiferromagnetic” phases.
1.3 Thesis overview We present two main topics: ground state level cross-
ings in Ising-ordered phases (Chapters 2 and 3) and quantum phase transi-
tions between ordered phases and phases where correlations are incommen-
surate with respect to the lattice of sites (Chapter 4).

The next two chapters follow their respective published manuscripts al-
most completely, so a preface to this work is given here which will recount how
these advances came to be. The last chapter has been appropriately adapted
with respect to the published manuscript and so no further introduction was
deemed necessary.
1.3.1 Ground state level crossings in TFI-like chains The first main topic of
this thesis is motivated by STM experiments on Ising chains of cobalt adatoms
constructed atom by atom [42]. By building the chain atom by atom, the
progression towards the infinite-system spectrum can be probed, which for
TFI-like systems one can already observe with relatively few atoms due to the
exponentially decreasing gap between the two lowest energy states. However,
it was also observed that for particular values of the applied external magnetic
field, exact degeneracies between these two states occurred at finite size,
and the number of degeneracies (or crossings of the two states) in the full
interval of the applied magnetic field from minus infinity to infinity is equal to
the number of adatoms.

This led to a more careful analytical and numerical study of the degenera-
cies [80], where the most successful explanation for these crossings came
from the mapping to the Kitaev model [32] which can be written in terms of
coupled pairs of Majorana fermions. The wavefunction of the edge Majoranas
shows phase oscillations along the chain on a particular region of the SPT
phase of the model. When these oscillations become commensurate with the
lattice, the pair of edge Majoranas are exactly decoupled, leading to a regular
zero energy fermion.

A subsequent study followed on the implications of the degeneracies re-
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garding the autocorrelation time of spins [1], which is presented in this the-
sis in Chapter 2. This was motivated by a recent theoretical result that non-
integrable extensions of the TFI model still preserve some sort of edge opera-
tor referred to as “strong zero modes” [81] which are connected adiabatically
in some limit to the edge Majoranas. The implications on the autocorrelation
time are strongest for the edge spins because both edge Majoranas and the
strong zero modes reduce, in lowest-order, to single edge Pauli matrices.

The Majorana interpretation of the level crossings suggests that both bound-
ary conditions and dimensionality could play an important role in this phe-
nomena, since the mapping from TFI to Majorana fermions is only effective
for open boundaries and in one-dimension, as we discussed before. However,
simple numerical calculations in small systems immediately tell us otherwise:
both periodic chains (rings) or small 2D and 3D clusters of spins governed by
the same models show again the same number of crossings when we sweep
the full range of the applied magnetic field.

Thanks to the input and ideas of our collaborator Markus Müller, the topic
of the ground state level crossings was revisited but in the context of high-
order degenerate perturbation theory (DPT) [2], which made clear the inde-
pendence of this phenomena from the chosen geometry. The energy splitting
between the two ground states of Ising-like models can be calculated in DPT
from the matrix element of an effective Hamiltonian between the two Ising
ground states, one state becoming the other by flipping all spins. The result-
ing infinite sum is interpretable as a sum over infinitely many tunneling paths
between the Ising ground states where on each tunneling step one or two
spins are flipped, as we shall demonstrate in Chapter 3.

Studying the level crossings with perturbation theory had already been
attempted [80], but here the TFI Hamiltonian was considered as the unper-
turbed Hamiltonian, and the resulting perturbative series quickly becomes
intractable after just a few iterations. By considering instead the Ising Hamil-
tonian as the unperturbed basis and then reorganizing the terms in the series
by the total number of spin flip operations which acted on one of the ground
states, meaning that all terms of “rescaled order” lower than the length of
the chain are zero, we can calculate the lowest rescaled order term of the se-
ries through simple recursion relations, and we see that this term predicts a
number of crossings equal to the length chain and thus contains in it all the
relevant physics to understand the crossings.

Later, it came to our attention that the problem of tunneling of spin mag-
netization had already been tackled in the field of molecular magnets [82,
Review]. The total spins of some of the atoms of these molecules couple to-
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gether with almost-isotropic Heisenberg exchange interactions and can re-
alize ground states of large spin-S. Slight molecular anisotropy causes the
ground state S multiplet to split, thus the low-energy spectrum of these mag-
nets is described by a single anisotropic spin-S. One again finds ground state
level crossings in such a model for some values of the external magnetic field,
the number of which is equal to 2S, which was also demonstrated experimen-
tally [83]. Naturally, the largest spin-S one can form given N spin-1/2s is
S = N=2, thus the connection between the crossings in both systems is obvi-
ous. We revisited this model and applied our recursive tunneling calculation,
in this case the tunneling being between the −S and +S states, the result
being a simpler and arguably more intuitive explanation of the crossings than
what previous analytical work offered [84].



Chapter 2

Infinite coherence time of edge spins in
finite-length chains

The work in this chapter was done in collaboration with my supervisor Frédéric
Mila and it was published in 2018 [1]. This chapter follows the published work
exactly except for minor corrections, a change in notation, and the addition
of an appendix on the determination of the zero modes of the Kitaev model.
2.1 Introduction In recent experiments on chains of cobalt adatoms [42],
level crossings of the two lowest energy states have been observed as a func-
tion of the external magnetic field h. An analysis of the effective spin model of
that system, the spin-1/2 XY chain with in-plane magnetic field, has revealed
the presence ofN level crossings as a function of the magnetic field h between
the two lowest energy states [85, 80]. In Ref. [80], it was shown in partic-
ular that the model can be approximately mapped through a self-consistent
mean-field method to a well-known fermionic non-interacting model, the Ki-
taev chain [32], which can in turn be described as a system of Majorana
fermions coupled in pairs. This model has a topologically non-trivial phase
when the chemical potential lies inside the free-fermion band. In this phase,
two Majorana fermions located at opposite edges have an exponentially small
coupling. For N values of the magnetic field (inside the topological phase),
this coupling vanishes. The two edge Majoranas can then be combined to
form a zero energy regular fermion, implying that all many-particle states
are degenerate. This explains in particular the ground state crossings in the
spin model [80]. In topological superconducting systems, uncoupled edge
Majoranas are commonly referred to as Majorana zero modes [86]. After a
Jordan-Wigner transformation the Kitaev chain becomes the XY chain with
transverse field. This model has been extensively studied and its spin corre-
lation functions [87, 88, 89, 90] and free energy [91] were calculated a long
time ago, but the fact that there are zero modes at non-zero values of the field
has only been noted recently. In the spin model the topological phase trans-
lates exactly to an ordered phase which is either ferro or antiferromagnetic

11
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depending on the spin couplings. This phase is realized at small transverse
fields, below the Ising quantum critical point.

In another recent work [81], it was shown that ”strong zero modes” as-
sociated to an ordered phase of integrable models such as the transverse
field Ising (TFI) model [29] or the anisotropic Heisenberg XYZ model lead
to a high coherence of the edge spin for long times, even for infinite tem-
perature. The strong zero modes are operators localized at the edges of the
chain that guarantee a quasi-degeneracy of all eigenstates, with a splitting
that becomes exponentially small upon increasing the system size, leading to
an infinite coherence time in the thermodynamic limit. A strong zero mode is
still a Majorana zero mode in the sense of [86], but the definition of strong
zero mode stresses the existence of a Z2 symmetry which anti-commutes with
the mode operator. The strong zero mode of TFI is exactly the Majorana edge
quasi-particle that is decoupled from the Hamiltonian in the thermodynamic
limit. When considering a perturbation that breaks the integrability of TFI,
a strong zero mode could no longer be obtained, but applying the iterative
method used to obtain the XYZ strong zero mode to this model resulted in an
”almost strong zero mode”, whose existence implies a plateau of coherence
for long albeit always finite times that was observed numerically [81]. One of
the perturbation terms considered was precisely a spin-spin coupling along
the field, resulting in the XY chain with in-plane magnetic field.

In this chapter, we concentrate on the topological phase of the model, and
we explore the following idea: since degeneracies due to strong zero modes
lead to a high coherence of edge spins that is maintained forever in the ther-
modynamic limit because the degeneracies become exact in that limit, then
we can expect to get the same result if there are exact degeneracies for finite
sizes, like in the XY model with in-plane or transverse field.

The chapter is organized as follows: in Sec. 2.2, we introduce the two mod-
els we focus on, we review the exact solution of the non-interacting model
and the relevant edge operators of both models, and we investigate the evo-
lution of the level crossings as we interpolate from one model to the other.
In Sec.2.3, we show how the edge spin time correlation can be approximated
by a single exponential (or cosine) in the ordered phase for any eigenstate,
and we explore the consequences of the degeneracies for both models. We
point out that the zero modes only have significant consequences for the edge
spin, and we illustrate the difference numerically by comparing the correla-
tion of edge and bulk spins. We also compare the spin time correlation of the
two models for infinite temperature, where significant differences show up be-
cause the models differ by an interaction term in the fermionic language that
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destroys integrability.

2.2 Models Let us start by introducing the anisotropic spin-1/2 Heisenberg
chain with open boundary conditions and a magnetic field h along z :

H =
N−1X
i=1

`
Jxff

x
i ff

x
i+1 + Jyff

y
i ff

y
i+1 + Jzff

z
i ff

z
i+1

´
− h

NX
i=1

ffzi ; (2.1)
where ffa=x;y;z are the Pauli matrices. We denote this model as XYZ-Z, with
the convention that the letters before the hyphen indicate the non-zero com-
ponents of the J couplings, while the letter after the hyphen (if any) refers to
the direction of the magnetic field if there is one. In what follows, we mostly
focus on two limits of this model: XZ-Z and XY-Z, which are equivalent to an
XY chain with in plane or out of plane magnetic field. Fixing the field direction
and changing the couplings will prove to be more convenient when comparing
the crossings of both models.

All the terms of the Hamiltonian either flip two adjacent spins or none
when applied to a state with spins quantized along z , implying that there are
no couplings between states of different z spin parity. This can be quantified
by the operator P =

QN
i=1 ff

z
i with eigenvalues±1 and [H; P ] = 0. Both models,

XY-Z and XZ-Z, have an ordered phase in which the ground state is two-fold
degenerate in the thermodynamic limit. For XY-Z, this phase is defined by
|h| ≤ |Jx + Jy |. For XZ-Z, |h| . |Jx + Jz | is a good approximation for large Jz ,while |h| . |Jx + 3

2Jz | is more accurate for small Jz [92]. For finite size, there
is an energy splitting between the two lowest energy states, which belong to
different P parity sectors. This splitting is exponentially small with the size of
the system.

2.2.1 XY-Z Majorana edge fermions We review here the exact solution of XY-
Z. After a Jordan-Wigner transformation into Majorana fermions and a subse-
quent orthogonal transformation [32, 80],

‚ai = ffai

i−1Y
j=1

ffzj ; ffzi = i‚xi ‚
y
i ; ‚̃ai =

X
j

Qaij‚
a
j ; (2.2)

where Qa=x;y are orthogonal matrices, and ‚a; ‚̃a obey
{‚ai ; ‚bj } = 2‹ab‹i j ; ‚ai = (‚ai )

†; (‚ai )
2 = 1; (2.3)
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Figure 2.1: Spectrum of the quasi-particle energies "i (Eq. 2.4) of XY-Z, for
Jx = 0:6, Jy = 0:4, and N = 8. The model is topologically non-trivial when
|h| ≤ |Jx + Jy | = 1. Four " = 0 points are observable inside this phase andthere are four more at negative h, symmetric to those shown here.

the XY-Z model becomes a model of Majorana fermions coupled in pairs, or,
equivalently, a system of free fermions with particle-hole symmetry:

H =
i

2

N−1X
i=0

"i ‚̃
x
i ‚̃

y
i =

1

2

N−1X
i=0

"i (—
†
i —i − —i—

†
i ); (2.4)

where —†
i = (‚̃xi − i ‚̃

y
i )=2 obeys the usual fermionic commutation relations. An

"-spectrum for a finite system is illustrated in Fig. 2.1. We observe in partic-
ular that there are " = 0 solutions at the fields

hn = 2
p
JxJy cos

„
nı

N + 1

«
; (2.5)

with n = 1; 2; : : : N. Note that these points only exist if JxJy > 0. The Majorana
operators ‚̃ai corresponding to " ≈ 0, which we denote as ‚̃a with energy "0,
are

‚̃a ≈ N
–a+ − –a−

NX
n=1

((–a+)
n − (–a−)

n)‚an; (2.6)
–a± =

h ±
p
h2 − 4JxJy
2Ja

; (2.7)
with a = x; y . They are exact when the energy is exactly zero (as shown in
Appendix 2.A), so at the points given by (2.5). The operators ‚̃x and ‚̃y are
localized at the edges of the system, and one is the reflection of the other
with respect to the middle of the chain. When |Jx | > |Jy | (resp. |Jy | > |Jx |)
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, ‚̃x (resp. ‚̃y ) is localized at the first site. While we have two uncoupled
Majorana fermions at the hn points, that only means we have one zero energy
fermion, resulting in the 2-fold degeneracy of all eigenstates. The Majorana
edge fermions of the Ising chain (X) and TFI (X-Z) can be obtained from (2.7)
using appropriate limits.

In the fermionic language the ordered phase corresponds to a topologi-
cally non-trivial phase where the ‚̃a are uncoupled in the thermodynamic limit.
Equation (2.5) guarantees this in the region h2 < 4JxJy , but the full ordered
phase goes beyond that. ‚̃x is a solution in the thermodynamic limit as long
as (‚̃x)2 = 1 for some N . Using this condition to calculate N 2 for N →∞ we
obtained

N 2 =
(Jx − Jy ) (−h + Jx + Jy ) (h + Jx + Jy )

J2x (Jx + Jy )
(2.8)

= 1−
„
h

Jx

«2

−
„
Jy
Jx

«2

+ O

„
1

J3x

«
: (2.9)

The critical lines of the x-ordered phase can be deduced from the condition
N 2 = 0. They are given by |h| = |Jx+Jy |, corresponding to the order-disorder
(topological-trivial) transition, and Jx = Jy , the transition into the gapless XY
phase. Beyond this line (Jx < Jy ) the norm of ‚̃x diverges and the well-defined
edge Majorana is ‚̃y . The phase diagram was first obtained from the spin-spin
correlations in Ref. [88]. For a recent review of the model see Ref. [93].

Denoting by |E⟩ an eigenstate of energy E, we have
‚̃x |E⟩ = (—† + —) |E⟩ = |E′⟩ ; |E⟩ = ‚̃x |E′⟩ ; (2.10)

where |E′⟩ is the eigenstate of energy E′ = E±"0 differing from |E⟩ by a quasi-
particle. Each term of ‚̃x flips one spin when the quantization axis is along z ,
so the P parity is changed. Separating the eigenstates in parity sectors, we
can write

‚̃x |E±
n ⟩ = |E∓

n ⟩ ; (2.11)
where |E±

n ⟩ is an eigenstate with P |E±
n ⟩ = ± |E±

n ⟩.
2.2.2 XZ-Z prethermal strong zero mode The Jz term of XZ-Z becomes a
four fermion term after the Jordan-Wigner transformation in Eq.2.2, so we no
longer have a free fermion solution. In fact, the model is non-integrable, an
important piece of information since integrability is believed to be a condition
for the existence of a ”strong zero mode”[94]. A strong zero mode (Ψ) is an
operator that squares to 1, obeys [H;Ψ] ∼ e−|¸|N and changes the P parity of a
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state of well-defined parity. For the XY-Z model, the operator ‚̃x with N →∞
matches exactly this definition. In the thermodynamic limit, a strong zero
mode commutes with the Hamiltonian but changes the parity of the state. So
each level must contain a state of each symmetry, and the spectrum of both
sectors are identical. This is the case of XYZ, which has a strong zero mode
inside the ordered phase [94].

The XZ-Z model does not have a strong zero mode, but it has an ”al-
most strong zero mode”[81], later understood as a ”prethermal strong zero
mode”[95], implying the emergence of a conserved quantity for a quasi expo-
nential time [96, 97]. Such an operator, which we denote as Φ, has the same
properties as a strong zero mode except that the commutator is always finite:
[H;Φ] = ‌, where ‌ is an operator whose norm decreases exponentially with
the size up to some limiting system size where a minimum is reached. Using
this commutator we have

(HΦ− ‌) |E±
n ⟩ = E±

n Φ |E±
n ⟩ (2.12)

for an eigenstate |E±
n ⟩. Assuming that the norm of ‌ is sufficiently small, we

may write
Φ |E±

n ⟩ ≈ |E∓
n ⟩ ; (2.13)

with E±
n − E∓

n ∼ ∥‌∥. In the limit Jz = 0, Φ would become the X-Z edge
Majorana fermion ‚̃x and we would recover Eq. 2.11. The operators Φ and ‚̃x
have an important similarity in that their leading operator is the same:

‚̃x = Nffx1 + : : : ; Φ =Mffx1 + : : : ; (2.14)
M2 = 1−

„
h

Jx

«2

−
„
Jz
Jx

«2

+ O

„
1

J3x

«
: (2.15)

The second order expansions of their normalization constants N andM are
also identical. In the limit of the Ising model (Jy = Jz = h = 0) both operators
become equal to ffx1 = ‚x1 , which is exactly the uncoupled edge Majorana
fermion of that model. As we will see, the existence of the operators ‚̃x and Φ

together with the level crossings are the factors that allow a high coherence
of the edge spins for an infinite time for both models.

2.2.3 Level crossings The addition of a J coupling to X-Z, be it Jy or Jz ,creates oscillations in the energies as a function of h inside the ordered phase,
which causes crossings between pairs of quasi-degenerate states of different
parity, a behaviour not present in the TFI. In particular, both models have N
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Figure 2.2: Spectrum of XYZ-Z for N = 4, Jx = 1, and several values of (Jy ; Jz)with XY-Z on the left and XZ-Z on the right. The level crossings associated tozero modes are highlighted with circles. The non-interacting nature of XY-Zof panel (a) is noticeable: the level crossings of different pairs of states occurall at the same fields. This is no longer true when the model is not integrable,as in panels (b) to (e).
points of exact ground state degeneracy as a function of h in some parameter
region. The ground state crossings of XZ-Z have already been studied in detail
[80]: when |Jx | > |Jz |, the two lowest energy states form a low energy sector
isolated from the rest, and if Jz > 0, there are N crossings between these two
states, while there are no crossings for Jz < 0. However, the spectrum of XZ-Z
is independent of the sign of Jx and h, so the spectrum of −H(Jz) is the same
as H(−Jz), implying that for Jz < 0 the crossings are present in the highest
energy state.

Depending on which J coupling is the largest and on its sign, we have
different ordered phases. We study the phase |Jx | > |Jy;z |where there is order
in x . The signs of the couplings are not very important for the correlation, but
we want crossings to exist in the ground state. So, from now on we restrict
ourselves to Jx > Jy;z > 0. Also, the physical situations of positive or negative
field h are equivalent by rotation, so we only discuss h > 0.

In Fig. 2.2 we show how the crossings in each model are adiabatically re-
lated to each other: starting from the XY-Z model (Fig. 2.2(a)), where the
non-interacting nature is noticeable and where all energies are degenerate at
hn, and adding a coupling in the z direction that obeys Jx > Jz > 0, the ground
state crossings continuously move towards higher h. Then when decreasing
Jy → 0 they become the N crossings of XZ-Z (Fig. 2.2(e)). The middle spec-
trum (Fig. 2.2(c)) corresponds to Jy = Jz , which is a turning point where some
of the crossings disappear if we start from XY-Z and increase Jz . In particular,



18 Infinite coherence time of edge spins in finite-length chains

both crossings of the highest energy pair meet at h = 0, after which a gap
appears between these states. When Jy finally becomes zero, a second set of
crossings vanishes. The energy pairing in XZ-Z is highly asymmetrical: lower
energy pairs have a small gap up to fields much higher than their high energy
counterparts. Note that the roles would be reversed for negative Jz . Chang-
ing the sign of Jz would invert the spectra in energy, and the ground state of
XZ-Z would have no crossing. The three middle plots in Fig. 2.2 show that the
XYZ-Z model also has energy crossings in some parameter region, implying
that some of our results could be extended to the more general case.

2.3 Edge spin time correlation This section is devoted to analytical and
numerical results regarding the auto-correlation of edge spins. Following
Ref. [81], we consider the edge spin time auto-correlation of an eigenstate
|E±
n ⟩ of energy E±

n and P parity ±1 defined by
A±
n (t) ≡ ⟨E±

n |ffx1(t)ffx1(0) |E±
n ⟩ (2.16)

where the component of the spin is that along which the system is ordered.
We introduce I =Pm |E+

m⟩ ⟨E+
m |+ |E−

m⟩ ⟨E−
m | to obtain

A±
n (t) = ⟨E±

n | e−iHtffx1e iHtIffx1 |E±
n ⟩

=
X
m

| ⟨E∓
m |ffx1 |E±

n ⟩ |2e i(E
∓
m−E±

n )t :
(2.17)

In this form it becomes obvious that any degeneracy creates time-independent
positive terms in the correlation, as long as the appropriate matrix element
is non-zero. However, not only is the matrix element between the states with
crossings circled in Fig. 2.2 non-zero, but we found that it dominates over all
other matrix elements while inside the bulk of the ordered phases, implying
that we have both degeneracies and a high value of coherence.

Coherence can still be present when considering higher temperatures [81].
The limit of lowest coherence should be at infinite temperature, where the av-
erage edge spin correlation will be

Ā(t) ≡ ⟨ffx1(t)ffx1⟩T=∞ =
1

2N

X
n

[A+
n (t) + A−

n (t)]: (2.18)

2.3.1 XY-Z correlation The correlation of XY-Z can be determined exactly
since ffx1 is exactly the local Majorana fermion ‚x1 , which, inverting the last



Edge spin time correlation 19
equation of (2.2), is given by

ffx1 = ‚x1 =
X
k

Qxk1‚̃
x
k ; (2.19)

where we sum over the N Majorana fermions, one of them being the edge
Majorana ‚̃x . Substituting in (2.17), we get

A±
n (t) =

X
m

| ⟨E∓
m |
X
k

Qxk1‚̃
x
k |E±

n ⟩ |2e i(E
∓
m−E±

n )t =

=
X
k

|Qxk1|2e ig
±
nk"k t (2.20)

where g±nk ≡ −i ⟨E±
n | ‚̃xk ‚̃

y
k |E±

n ⟩ is equal to −1 or 1 depending on whether the
fermion —†

k is present in the state or not. The correlation of any state consists
of the same N terms with different signs in the exponentials. By symmetry,
the result must be the same at the other edge of the chain. Note that we
cannot write the same decomposition for the correlation of spins in the bulk
since only ffx1 corresponds directly to one of the local Majorana fermions in
the Jordan-Wigner transformation. So we expect a difference between edge
and bulk spins.

In the disordered phase, there is no Majorana fermion that is localized at
the edge, so all terms are of the same order of magnitude but differ in am-
plitude and frequency. Accordingly, the system quickly becomes decoherent
(Fig. 2.3(a)). In the thermodynamic limit, assuming that all modes have the
same amplitude at the edge spin and considering the ground state correlation
in which g±nk = 1 for all k , we have

AGS(t) ≈ 1

"t − "b

Z "t

"b

e i"td" = − i
t

e i"tt − e i"bt
"t − "b

; (2.21)
where "t and "b are the limits of the band, leading to AGS(∞) = 0. We expect
the same result for all states. In the ordered phase, the edge mode term
stands out in amplitude and frequency. Writing explicitly the ‚̃x term we have

A±
n (t) = N 2e ig

±
n0"0t + z(t); (2.22)

where |z(t)| ≤ (1 − N 2) and z(t) is the bulk contribution to the correlation
which, as we saw in (2.21), disappears for infinite N and t, so that A±

n (∞) =

N 2 in the thermodynamic limit. For finite sizes, "0 can be orders of magni-
tude lower than the other energies, so the term z(t) looks like noise on the
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time-scale of 1="0 (Fig. 2.3(b)), even though it is well-defined. We can thus
approximate

A±
n (t) ≈ N 2e ig

±
n0"0t : (2.23)

So the edge spin flips after an interval of time fi = ı="0, independently of
the eigenstate the system is in. Close to the hn points of Eq. (2.5), "0 is ap-
proximately linear with ∆hn = h − hn, so fi ∼ 1=∆hn. Since "0 is exponen-
tially suppressed with system size, we have fi ∼ e |¸|N=∆hn, allowing for a
better fine-tuning of the coherence time for larger sizes. Exactly at hn we
have A±

n (t) ≈ N 2, so the edge spin remains coherent for an infinite time
(Fig. 2.3(c)). Even for infinite temperature, we have

Ā(t) = Re(A±
n (t)) ≈ N 2 cos("0t): (2.24)

so the same discussion applies in this limit. However, this result is very sensi-
tive to any realistic perturbation. For example, adding a very small Jz coupling
does not alter significantly N 2, but each pair of states will have a slightly dif-
ferent energy difference and the crossings will move away from hn as we saw
in Fig. 2.2 so that at some point we must reach decoherence, and an infinitely-
lived plateau is no longer present at the hn points (Fig. 2.3(d)). However, if we
were to change the field slightly to a value where one of the crossings moved
to, then we would recover a (small) positive constant term in the correlation
and the coherence time would be infinite again. We explore this fact in more
detail in the next section.

2.3.2 XZ-Z correlation We cannot obtain any exact result for the XZ-Z corre-
lation, but as we saw in Sec. 2.2.2 there is an operator that gives us a pairing
between states of different parity of the form Φ |E±

n ⟩ ≈ |E∓
n ⟩. Using this with

the properties of ffx1 , we have
⟨E∓
n |Φffx1 |E∓

n ⟩ ≈ ⟨E±
n |ffx1 |E∓

n ⟩ ≈ ⟨E±
n |ffx1Φ |E±

n ⟩ ⇒

⟨E±
n |ffx1 |E∓

n ⟩ ≈
1

2
⟨E±
n | {ffx1 ;Φ} |E±

n ⟩ : (2.25)
If Jz = 0, the expression would have no error term, Φ would become ‚̃x , and
the anti-commutator would be a constant: {ffx1 ; ‚̃x} = 2N . Using the next-
order terms of Φ determined in [81], we find {ffx1 ;Φ} = 2M+ Ô

`
J2z =J

2
x

´, and
substituting in Eq. 2.25 we have

⟨E±
n |ffx1 |E∓

n ⟩ =M+ O

„
J2z
J2x

«
(2.26)
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Figure 2.3: (a,b) Ground state edge spin correlation of XY-Z forN = 20, Jx = 1,
Jy = 0:3: (a) Disordered phase (h = 2:2). The correlation function decaysvery fast; (b) In the ordered phase, away from a level crossing (h = 0:35). Thecorrelation function oscillates with period fi = ı=›0, where ›0 is the splittingbetween the quasi-degenerate ground states. The noise-like component isdue to the bulk. (c,d) Average (infinite temperature) edge spin correlation for
N = 8, Jx = 1, Jy = 0:3: (c) Close to a level crossing (h4 ≈ 0:19). At thelevel crossing, indefinite coherence is achieved. (d) Close to a level crossingof XY-Z (h4 ≈ 0:19), but with an extra coupling Jz = 0:001. The coherence islost after a time inversely proportional to Jz .
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Figure 2.4: (a),(b) Ground state edge spin correlation of XZ-Z for N = 8,
Jx = 1, Jz = 0:3 (a) in the ordered phase (h = 0:35), (b) approaching thefirst ground state crossing at h ≈ 0:2341. Although the XZ-Z model is notintegrable, the situation is very similar to that of the XY-Z model (Figs. 3(b,c)).(c,d) Average (infinite temperature) edge spin time correlation at ground statecrossings, with Jx = 1, Jz = 0:3 and (c) N = 2, h ≈ 0:62, (d) N = 4, h ≈ 0:4.The constant part of the correlation corresponds to the time-average of thesecurves. It is much smaller than in the XY-Z case because the crossings do notoccur at the same fields for all pairs, and it decreases fast when the systemsize increases.
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In the ordered phase, the correlation can be approximated by its main term:

A±
n (t) ≈ | ⟨E∓

n |ffx1 |E±
n ⟩ |2e i(E

∓
n −E±

n )t

≈M2e i(E
∓
n −E±

n )t ;
(2.27)

where in the first equation we ignore all other terms and in the second equa-
tion we use Eq. (2.26). As seen in Fig. 2.4(a), this result is confirmed nu-
merically. For finite sizes, we have A±

n (t) ≈ M2 when the paired states are
degenerate, which happens N times for the ground state (Fig. 2.4(b)). The
discussion regarding the XY-Z coherence time close to the degeneracy points
is also applicable here. However, by contrast with XY-Z, the time-independent
term of the average correlation can be quite small since the crossings of dif-
ferent pairs do not happen for the same field. At a pair crossing we have

Ā(t) ≈M2=2N−1 + f (t); (2.28)
for some real function |f (t)| ≤ 1 −M2=2N−1 whose time average is approxi-
mately zero. The constant term may not be noticeable due to the noise f (t).
The constant term could be doubled or, although very unlikely, tripled, if for
certain J couplings there are coincident crossings. In Figs. 2.4(c) and 2.4(d)
we show Ā at the ground state crossings of very small chains. The time av-
erage in both cases gives approximately the expected constant term, but it
is clear that the constant term will be harder to detect under the noise as we
increase the chain size.

2.3.3 Edge vs. bulk The fact that the main term of the ‚̃x and Φ operators is
ffx1 has important consequences for the edge spin, but that is the only term
which is a single Pauli matrix, all others being products of Pauli matrices.
So we cannot conclude anything about the bulk correlation from them. To
highlight the difference between edge and bulk spins, we show in Figs. 2.5 (XY-
Z) and 2.6 (XZ-Z) the correlation along the spin chain at a crossing point of the
ground state and of a pair of excited states. While the ground state correlation
is even higher and consequently has less noise in the bulk, this behavior is
mainly lost in the excited states, but some state pairing is still manifest. For
example, on the second spin of the XY-Z chain, the plateau visible for the first
excited state (index n = 2) pair implies that the term | ⟨E+

2 |ffx2 |E
−
2 ⟩ |2 ≈ 0:5

dominates over the rest. The third spin has no plateau, but the ffx3 elements
reveal a pairing in | ⟨E±

4 |ffx3 |E
∓
2 ⟩ |2 ≈ 0:9, resulting in a correlation that can be

approximated by 0:9e i(E
±
4 −E∓

2 )t .
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Figure 2.5: Spin time correlation of the first 3 spins (N = 6) for the first (AGS)and second (A2) lowest-energy pair of states of XY-Z, with Jx = 1, Jy = 0:3,at the first crossing (h ≈ 0:244). High coherence is maintained away from theedge for the lowest pair (bottom panels), but it is only maintained at the edgefor the second pair and disappears fast away from it (top panels).

Figure 2.6: Spin time correlation of the first 3 spins (N = 6) for the first (AGS)and fifth (A5) lowest-energy pair of states of XZ-Z, with Jx = 1, Jz = 0:3, attheir respective first crossings (hground ≈ 0:295, hexcited ≈ 0:376). The situationis the same as for the integrable XY-Z case of Fig. (5), although the crossingsoccur at different fields.
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The fact that the coherence is maintained at all sites in the ground state is

easy to understand in the limit of the slightly perturbed Ising model (i.e. small
Jy and h). In that limit, the two quasi-degenerate ground states are given by

|E±
1 ⟩ ∼

1± P√
2
|→←→←→←⟩x ; (2.29)

where the spins are along the x direction. Calculating the matrix elements
explicitly from here, and noting that {ffxn ; P} = 0, we have | ⟨E+

1 |ffxn |E
−
1 ⟩ |2 ∼

1, from which the ground state coherence of all spins follows. It would be
interesting to see to which extent the observations for the excited states can
be rationalized along similar lines. This goes beyond the scope of the present
paper however and is left for future investigation.
2.4 Summary and discussion In both the XY-Z and the XZ-Z models, the
edge spin time correlation of any eigenstate can be simplified to a single ex-
ponential in the ordered phase due to Majorana-like operators localized at the
edges that commute or almost commute with the Hamiltonian. At the cross-
ing points of two paired states the edge spin state is partially conserved: its
time autocorrelation does not decay to zero but goes to a finite value (generi-
cally smaller than 1) in the limit of infinite time. Close to the crossing point the
edge spin seems to be rotating with a period that is proportional to 1=∆h. This
could prove of experimental relevance since the edge spin can be controlled
by an external magnetic field.

While all the spins of the chain show coherence at the crossings in the
ground state, the edge spins are different in that they are coherent in any ex-
cited state. As a consequence, the coherence remains relatively unaltered for
XY-Z at high temperatures, although the system becomes more sensitive to
perturbations the higher the temperature. For XZ-Z, coherence can be main-
tained at a plateau of valueM2 for long times as found in [81], after which it
decays to nM2=2N−1 if there are n degenerate pairs for the current field. Thus
for any temperature there has to be a plateau betweenM2 andM2=2N−1.
2.A The Kitaev model As we have discussed, the XY-Z limit of model (2.1)
preserves the free fermion nature. Following the calculation done in Ref. [80],
we review here a simple way to determine in the fermionic language the zero
mode solutions of the model, which are central for all the discussion of this
chapter. We map the spins to Majorana fermions ‚a=x;y through the Jordan-
Wigner transformation in Eq. (2.2). The chain product of ffz operators in the
transformation is responsible to count the number of fermions to the left of
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the site i and then give a sign±1 depending on the parity of that count, which
results in the anti-commutative property of fermionic operators if one thinks
of the normal ordering of operators. The resulting model is known as the
Kitaev model [32]:

H = i
N−1X
l=1

Jx‚
y
l ‚

x
l+1 + Jy‚

y
l+1‚

x
l + hz‚

y
l ‚

x
l ; (2.30)

Note that this is the result of the mapping for open boundary conditions, while
the same mapping for periodic boundaries would create an additional term
with a chain product of 2N Majorana operators. This is important to note
since the ground state degeneracy of the spin model only changes for periodic
boundaries if there is frustration (antiferro interaction on an odd length ring),
while in the Kitaev model there is no cause for frustration and the degeneracy
actually reduces to a single state for a finite periodic boundary system.

Noting that the Hamiltonian only couples ‚x with ‚y Majoranas1, we can
write it as H = i ~‚yM~‚x , where (~‚a)l ≡ ‚al and M is an N × N tridiagonal
matrix with Ml ;l+1 = Jx , Ml ;l = hz and Ml+1;l = Jy . A decomposition of this
matrix with a singular value decomposition would result in a model written in
terms of coupled pairs of Majoranas as in Eq. (2.4). The left and right vectors
associated with the null singular value are precisely the wave-functions of
the edge Majorana fermions. These two vectors transform into each other by
transposing the matrix M, which is equivalent to Jx ↔ Jy . Let us solve for the
right vector, M~v = ~0, which corresponds to finding the solution to

hv1 + Jxv2 = 0;

Jyvn−1 + hvn + Jxvn+1 = 0;

JyvN−1 + hvN = 0:

(2.31)

From the first and second equalities, it follows that
vn = N

–n+ − –n−
–+ − –−

; –± =
h ±

p
h2 − 4JxJy
2Jx

: (2.32)
The definitions in Eqs. (2.7) then follow given the relation between left and
right edge modes. We can already identify two regimes delimited by h2 =

4JxJy . When h2 > 4JxJy , both –± are real, one being larger than the other,
so vn is strictly non-zero for any n > 0, which means that the third equality

1This is a consequence of the particle-hole symmetry of the model which is precisely thesymmetry that protects the zero modes from gaining energy.
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y ≡ Jy−Jx

Jy+Jx
topological trivial

x ≡ hz
Jy+Jx

x2 + y2 = 1x2

cos2( nı
N+1)

+ y2 = 1

Figure 2.7: The phase diagram of the Kitaev model. The ground state is de-generate when |x | < 1, being unique otherwise. The blue ellipses are thefinite-size zero mode solutions (Eq. (2.8), N = 8 represented). A horizontalcut in |y | < 1 will cross the blue lines N times. The cuts |y | = 1 are the TFIlimits of the model, where a finite-size zero mode is only present when x = 0(Ising model). The orange line (y = 0, the gapless XY model [98]) corre-sponds to a transition between x and y ordered phases in the spin language.
(equivalent to vN+1 = 0) cannot be satisfied. When h2 < 4JxJy , we can write

–± = re±i„; r ≡

s
Jy
Jx
; cos(„) ≡ h

2
p
JxJy

: (2.33)
Solving now for vN+1 = 0, we get sin (N + 1)„ = 0, from which the zero condi-
tion (Eq. (2.5)) follows. Given that N should go to zero at a phase transition
(Eq. (2.8)), we can now map the phase diagram as shown in Fig. 2.7. We can
see that the finite-size zeros are governed by the constants –±, which will
appear again in the next chapter, where they play the same role as here.





Chapter 3

Perturbative approach to tunneling and
quantum interferences in spin clusters

The work in this chapter was done in collaboration with Markus Müller and my
supervisor Frédéric Mila, and it was published in 2020 [2]. With respect to the
published work, an alternative proof of the cluster independence is offered
(Sec. 3.B) and a more general derivation of the zeros of the single spin model
is added (Sec. 3.C). Note that we exchange the Ising and magnetic field axes
with respect to the equivalent models in the previous chapter (x ↔ z).
3.1 Introduction Quantum tunneling in magnetic clusters has been inten-
sively studied in the nineties as a special case of macroscopic quantum tun-
neling [99]. Quantum tunneling between two states with very different quan-
tum numbers, e.g. Sz = S and −S for large spin S, is in general a very high-
order process since elementary terms such as a transverse field or exchange
processes only change this quantum number by 1 or 2, and high-order pertur-
bation calculations of the tunneling were limited to systems with a single tun-
neling channel [100, 101]. Other approaches included a Wentzel-Kramers-
Brillouin (WKB) approximation in the semi-classical limit [101, 102], but the
most successful approach proved to be an instanton and path integral for-
mulation [103, 104, 105, 106, 84, 107]. The predictions of these theories,
for instance the difference between half-integer and integer spin [105, 106],
or the presence of oscillations of the tunneling as a function of a transverse
field [84], have been beautifully confirmed by experiments on ferromagnetic
molecules that measured Landau-Zener transition probabilities, which are
sensitive to the tunneling between nearly degenerate levels [83]. The tun-
nel splitting was found to oscillate with the transverse field, and the position
of the minima of the tunneling amplitudes were shown to alternate depending
on whether the difference between the Sz components of the initial and final
spin states was even or odd. For a review, see Refs. [82, 108].

More recently, it has become possible to create and control very small
clusters of magnetic adatoms deposited on surfaces [51, 109, 110], where

29
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the exchange couplings between adatoms can be tailored by their position-
ing [111]. One promising idea is to use arrays of small antiferromagnetic
(AFM) chains or ladders of Ising spins as a means to store bit information in
a very compact way [109]. Applying a large enough voltage pulse with the
scanning tunneling microscope (STM) tip, tunneling between the AFM Ising
ground states can be induced, providing a way to switch between bit states.
The limitation of the associated memory comes from spontaneous tunneling,
thermal or quantum, between the two AFM ground states. For low enough
temperature, the switching rate between the Ising AFM ground states satu-
rates to the quantum tunneling rate, which decays exponentially with system
size. Thus, one way to preserve the bit state longer is to increase the size
of the cluster, at the cost of lower density of information. If however quan-
tum tunneling depends strongly on an applied transverse field, with marked
minima as in the case of molecular magnets, one could reduce the rate of
quantum tunneling without increasing the cluster size. Turning on and off
the tunneling by tuning an external parameter, such as the applied transverse
field, is not only a way to control the switchability of classical storage units,
but it is also a way to manipulate quantum two-level systems (qubit). This is
particularly interesting in cases where the relevant two-level system is topo-
logically protected from dephasing noise, as happens e.g. in one-dimensional
p-wave superconductors, discussed below.

The first indication that quantum tunneling can be reduced very effectively
comes from a recent experiment that demonstrated that anisotropic chains
of N spins-1/2 can have ground state crossings as a function of an applied
magnetic field [42]. The crossings occur between the two lowest levels which
form a quasi-degenerate subspace (which becomes exactly degenerate in the
thermodynamic limit). At these crossings, the quantum tunneling between the
two states is completely suppressed. For small spin chains, this can easily be
demonstrated numerically [85]. A general theory of these level crossings has
not yet been developed, however. One step in this direction has been achieved
in Ref. [80]. This approach relies on a mapping of the spin model onto a
fermionic chain using Jordan-Wigner transformation, and it is thus limited to
open chains. A mean-field decoupling of this fermionic model maps it onto the
Kitaev model of a one-dimensional p-wave superconductor [32]. This leads
to the prediction of exactly N crossings, where N is the number of sites of the
chain. In this framework, the crossings are naturally interpreted in terms of
the oscillating, exponentially weak coupling between the two Majorana edge
states on either end of the chain.

In the following sections, we develop a perturbative approach that pro-
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vides a unified and general framework for all these phenomena. It relies on
a reformulation of degenerate perturbation theory to lowest non-trivial order
in terms of a simple recurrence between flipping amplitudes. This approach
leads to a general expression of the tunneling amplitude as a homogeneous
polynomial in the amplitude of the transverse exchange processes and of the
square of the transverse field. In this approach, the destructive quantum in-
terferences that lead to level crossings appear as a natural consequence of
the competition between tunnel processes with positive and negative ampli-
tudes. In the case of a single exchange channel, level crossings will be present
as soon as the amplitude of this process is positive (AFM) since it will then
compete with the second order process due to the transverse field, which is
intrinsically negative. Our approach leads to a number of analytical results in
the limit of small exchange processes and transverse field (e.g. the exact so-
lution for the open chain, or for a macroscopic spin), to very good asymptotic
expressions for large closed rings and the effect of weak disorder, as well as
to general qualitative conclusions (e.g. concerning the number of level cross-
ings in a ring).

In higher dimension, our method still works, as we show on small rect-
angular, triangular, and cubic clusters, but it becomes rapidly very complex
because of the large number of cluster shapes generated in the recurrence.
The interest of the method is to show for the example of small clusters that the
interference leads to a number of ground state crossings equal to the number
of Ising spins, independently of the geometry, suggesting that this remains
true for larger systems.

Our formalism turns out to be particularly convenient to study the effect
of disorder (such as heterogeneities among different clusters, spatial g-factor
variations, weak random fields, etc.) on the suppression of tunneling ampli-
tudes. As we shall see, the suppression of tunneling in the lowest transverse
fields is the least affected by disorder. This leads us to the conclusion that
in order to achieve a maximally robust suppression of tunneling over a range
of potentially fluctuating parameters of clusters, one should use the lowest
transverse field for which a ground state crossing occurs in the disorder-free
limit.

This chapter is organized as follows: In Sec. 3.2 we introduce the spin
models used throughout the rest of the chapter. In Sec. 3.3 we present the
iterative perturbation theory method applied to Ising models. In Sec. 3.4, we
apply the method to a 1D ring and chain, and in Sec. 3.5 to small 2D and 3D
clusters. In Sec. 3.6 we introduce disorder on the pertubative couplings of a
ring and obtain the mean square displacement of the transverse field zeros,
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as well as the second moment of the tunneling to leading order in the disorder
strength. In Sec. 3.7 we apply our method to an anisotropic single spin model
and obtain the tunneling amplitude, including an exact result for the crossing
field values. In Sec. 3.8 we discuss other systems where one can observe in-
terference between different tunneling paths, and consequently crossings. Fi-
nally, in Sec. 3.9 we discuss our results and their experimental consequences.
3.2 Models All the models we consider are spin models and can be written
in the form

H = H0 + V; (3.1)
where H0 is a dominant diagonal term with a doubly-degenerate ground state
where the two states transform into each other by flipping all spins, and

V = –V1 + –2V2; (3.2)
where V1 and V2 are perturbations that respectively flip one or two spins. – is
only an auxiliary parameter which we introduce to organize the perturbation
expansion. It will be set to 1 later on. We thus require that the matrix elements
of V1;2 are much smaller than the norm of the terms inH0. We use the following
notation for the two lowest energy states of the full Hamiltonian H,

H |Ψ±⟩ = E± |Ψ±⟩ : (3.3)
Our main goal is to calculate in leading order in – the splitting ∆E ≡ E+−E−of the ground state doublet of H0.

All the Hamiltonians we consider share the same symmetry, which phys-
ically corresponds to a spin reflection across the x-y plane, Sz → −Sz . We
write the symmetry formally in a way that applies to all models, as

R ≡ Te iıSz ; R2 = 1; [H;R] = 0; (3.4)
where Sz is the total spin projection along z , so that exp(iıSz) rotates all spins
by ı around their z axis, and T is the time-reversal operator which inverts all
spins.

Let us call the two ground states of H0 as |∅⟩ ; |Σ⟩. The operator R flips all
spins and transforms one ground state into the other,

R |∅⟩ = |Σ⟩ ; R |Σ⟩ = |∅⟩ : (3.5)
Taking this into account together with the fact that R is anti-linear, we may
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write the (unnormalized) ground states as simultaneous eigenstates of H and
R, as

|Ψ±⟩ = e−iffi±=2 |∅⟩ ± e iffi±=2 |Σ⟩+ : : : ; (3.6)
with two unknown phases ffi±. In all the models we consider, ∆E becomes
zero for some specific combinations of the couplings. At such points the flip-
ping of the effective two level system is completely suppressed, and thus the
information contained in its state is preserved [1]. If in addition the con-
sidered two-level system is well isolated from environmental noise (e.g. by
topological protection) and from coupling to other degrees of freedom, the
exact degeneracy of the two ground states ensures the absence of dephasing
in the two-level system, if considered as a qubit.

In the following subsections we introduce the spin models used through-
out this chapter. We start with an Ising model with transverse terms, followed
by other Ising models which are extensions of that model. One can solve
the extended models straightforwardly, only requiring a transformation of the
couplings to be able to use the solution of the first Ising model. Finally, we in-
troduce an anisotropic single spin model, a conceptually simpler model than
the Ising models, which was studied in the literature to analyze ground state
degeneracies, having many similarities to a ferromagnetic Ising model.

3.2.1 Ising model with transverse field and exchange We first consider the
Ising model in a small transverse field and subject to weak transverse ex-
change interactions [80]:

H0 = Jz
X
⟨i j⟩

ffzi ff
z
j ;

V1 = −hx
X
i

ffxi ; V2 = Jx
X
⟨i j⟩

ffxi ff
x
j :

(3.7)

Here ff are the Pauli matrices and N is the number of Ising spins. We keep the
lattice general for now, however, we do require that the lattice be classically
unfrustrated, such that the ground state manifold of H0 is only doubly degen-
erate. In the following sections we will carry out more detailed calculations
by restricting ourselves to specific lattices and Ising interactions.

We denote the Ising eigenstates and energies as
H0 |m⟩ = "m |m⟩ ; (3.8)

where |m⟩ are the classical Ising configurations with the spins either up or
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Figure 3.1: Color plot of the energy difference between the two lowest energyeigenstates |Ψ±⟩ (Eq. (3.6)) of the full Hamiltonian (3.7) on a spin chain of8 spins, obtained with exact diagonalization. A change of sign in ∆E indi-cates a crossing between the opposite parity states and therefore a changeof the ground state parity. The full lines indicate the locations where theground state is degenerate, while the dashed lines indicate our perturba-tive prediction (Eq. (3.63)), which works very well for small fluctuation pa-rameters Jx and hx . Calculating the energy gap close to the phase transition
hx = Jz ; Jx = 0 perturbatively in the small parameters hx − Jz and Jx yields
∆ ≈ 2(hx − Jz − 2Jx) [112]. This gives the approximate location of the quan-tum critical line between the Ising-ordered and the paramagnetic phases as
Jx ≈ (hx − Jz)=2, as shown in the plot. This is still accurate for large Jx sincea similar calculation close to the phase transition at (hx = 2Jx ; Jz = 0) givesthe same gap [92]. For the full phase diagram, see Ref. [113]. There are nozeros when Jx < 0, and the ordered phase shrinks with increasingly negative
Jx . Both reflect the fact that the transverse terms reinforce each other for
Jx < 0, while they compete for Jx > 0.
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down along the axis z . We label the states |m⟩ by the set m of spins that
are flipped with respect to one of the Ising ground states. By definition, our
reference ground state corresponds to the empty set m = ∅, and the other
ground state to m = Σ, the set of all spins. The energy of these two states is
"∅(= "Σ).

Before proceeding with introducing various extensions, let us comment on
the ground state degeneracies of the full HamiltonianH on the spin chain with
even N. When Jx > 0 and for finite size, there are lines in the (Jx ; hx)-plane
where the ground state is degenerate, as shown in Fig. 3.1. In our perturbative
regime, these lines scale as hx ∼pJx |Jz |. The lines continue for larger Jx ; hx ,
but the scaling becomes linear. In fact, when Jx ; hx ≫ Jz , all lines except one
approach the critical line Jx = hx=2 of the Jz = 0 classical model (an AFM Ising
with longitudinal field), separating the AFM-ordered phase along x from the
PM phase. The classical ground state on this critical line is highly degenerate,
but the Jz exchange coupling lifts the degeneracy and induces many ground
state crossings close to the classical critical line. The line corresponding to
the smallest field for given Jx instead approaches the classical critical line
Jx = hx . On that line it costs no energy to flip the terminal spin of the chain
which is anti-aligned to the external field in the AFM phase. This separate
degeneracy line is present only for chains with even N.

3.2.2 Ising model with a staggered field The first extension we consider is a
staggering of the magnetic field on bipartite lattices with the same number of
sites on either sublattice, but different transverse fields hx;A and hx;B acting
on the two sublattices A and B, respectively. Thus, the modified perturbation
is

V1 = −
 
hx;A

X
i∈A

ffxi + hx;B
X
i∈B

ffxi

!
; (3.9)

with unchanged V2. In Fig. 3.2 we show the ground state energy splitting of
the full Hamiltonian H of this model as a function of the staggered fields. The
zero lines scale as hx;Ahx;B ∼ Jx |Jz |; but only when hx;Ahx;BJx > 0 do ground
state degeneracies occur, that is, only when the field and the exchange cou-
pling favor opposite ground state configurations. In general we can state that
tunneling suppression occurs when the transverse fluctuations are competing
or ”frustrated”.
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Figure 3.2: Color plot of the exact energy difference between the two low-est energy eigenstates |Ψ±⟩ (Eq. (3.6)) of the full Hamiltonian defined inSec. 3.2.2 on a spin chain of 6 spins, obtained with exact diagonalization.The full green lines indicate the locations where the ground state is degener-ate, while the dashed lines indicate the prediction from perturbation theory(Eqs. (3.35, 3.63)). The diagonal hx;B = 0 is marked to show that the zerosonly occur in the region where the field and the exchange term V2 favor op-posite ground states.
3.2.3 Ising model with general transverse couplings We will also extend the
model by having transverse couplings along both transverse axes,

V1 = −
X
i

`
hxff

x
i + hyff

y
i

´
;

V2 =
X
⟨i j⟩

(Jxff
x
i ff

x
j + Jyff

y
i ff

y
j ):

(3.10)

On a 1D chain of spins with open boundary conditions, this model has an in-
teresting limit in which it is exactly solvable. Taking Jy = hx = 0; one can map
the model with a Jordan-Wigner transformation [29] onto the Kitaev chain
model [32], a free fermion model which one can solve exactly [80, 1] to obtain
field values in which not only the ground state is degenerate, but all eigen-
states are:

h
(n)
y = 2

p
JxJz cos

„
⌊N=2⌋+ 1− n

N + 1
ı

«
; (3.11)

where n = 1; : : : ; ⌊N=2⌋: If we take Jx > 0, these zeros only appear if Jz > 0,
as one can see in Fig. 3.3. Interestingly, our perturbative approach yields ex-
actly the same expression in the appropriate limit (Eqs. (3.63, 3.44)), with no
higher order corrections. This is presumably a consequence of the fact that
the zero energy Majorana fermions do not backscatter, so that our leading or-
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Figure 3.3: Color plot of the exact energy difference between the two low-est energy eigenstates |Ψ±⟩ (Eq. (3.6)) of the full Hamiltonian defined inSec. 3.2.3 on a spin chain of 8 spins, obtained with exact diagonalization. Weset Jy = 0, Jx = 0:2 so we may study the energy splitting in the hx-hy plane.The ground state crossings are drastically different depending on the sign of
Jz . If the ground state is ferromagnetic (above), there are only degeneracieswhen hy = 0 (These are the same zeros as in Fig. 3.1 along the Jx = 0:2line). This is predicted by our perturbative calculations, where we obtain thezeros marked in black as given by Eq. (3.39). In the antiferromagnetic case(below), we obtain lines of zeros in the plane which connect the crossings ofthe model (3.7) (along the x axis) to the exact crossings of the Kitaev chainmodel given by Eq. (3.11) (along the y axis). These lines are consistent withthe perturbative solution (dashed line), where we find that the zeros do notdepend on the orientation of the field in the x-y plane (Eq. (3.44)).
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der approximation, which is equivalent to a forward scattering approximation
for the fermions, becomes exact [114].

3.2.4 Single spin model Instead of studying a cluster of N spins explicitly
with all its internal couplings, one may consider the cluster as a big effec-
tive spin S and consider the tunneling from the up to the down state of this
composite spin. The precise Hamiltonian for this equivalent big spin would in
general be very complex. However, qualitative features can be expected to be
captured by simple effective interactions which can be written as low powers
of the total spin operators Sx;y;z .

A transverse field on a ferromagnetic cluster of spins naturally translates
into a transverse field acting on the big spin. Also, the ferromagnetic Ising
configurations are the projections with largest total Sz of the largest spin one
can form with N (S = 1=2)-spins. Thus, the ground state of a Hamiltonian
of the form −S2

z corresponds to a ferromagnetic Ising ground state of the
original cluster. Indeed, we shall see later that this model captures qualita-
tively the features of a ferromagnetic Ising model (Jz < 0) as considered in
Sec. 3.2.3. In contrast, it is not clear whether such an approximate mapping
is meaningful for antiferromagnetic clusters.

Here we will reconsider quadratic single spin Hamiltonians equivalent to
those considered earlier in the literature [84, 100, 102, 83]. In particular,
we take the most general quadratic single spin model with anisotropy and a
field transverse to the easy axis. Upon choosing axes that bring the quadratic
part to a diagonal form, we are left with three quadratic couplings Jx;y;z . We
are free to choose the easy, medium and hard axes to be, respectively, along
the z-, y- and x-axes (i.e., Jz ≤ Jy ≤ Jx). We are also free to set one of
these couplings to zero, since the ground state splitting will be independent
of a constant term J ~S · ~S that one can add to the Hamiltonian. We therefore
consider the Hamiltonian

H0 = JzS
2
z ;

V1 = −(hxSx + hySy ); V2 = JxS
2
x ;

(3.12)
where we chose Jy = 0, implying that Jz ≤ 0 and Jx ≥ 0. We could recover
the dependence on a Jy coupling with the transformations

Jx → Jx − Jy ; Jz → Jz − Jy : (3.13)
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When performing perturbative calculations, we assume that

|Jz | ≫ |Jx |; |hx |; |hy |: (3.14)
This model has 2S = N values of the magnetic field where the ground state
is doubly degenerate, as demonstrated by A. Garg [84] using path integral
and instanton calculations justified at large S, but without restricting to the
perturbative regime (3.14). In the considered large S limit, the crossings
can be interpreted as the negative interference of two tunneling instantons
having different Berry phases. We shall derive a very similar result within
perturbation theory, but without relying on the size of the spin (or N) and
without taking a saddle point approximation.

We will show in Sec. 3.7 that here again the underlying mechanism behind
the zeros is the competition of multiple tunneling paths with oscillating signs.
Finally, using a different approach we will derive non-perturbatively the lo-
cation of the 2S equally spaced transverse field zeros without relying on any
approximation.
3.3 Perturbation theory for collective tunneling In this section we will present
the perturbative method applied to Ising models defined in Sec. 3.2. The
method is derived in more detail in Sec. 3.A.

Standard techniques to carry out degenerate perturbation theory at arbi-
trarily high orders construct a perturbative expansion for an effective Hamil-
tonian Heff which only acts on the Hilbert space spanned by unperturbed
states and yields the exact splitting of the ground state manifold due to per-
turbations. Let us call the set of unperturbed ground state configurations
g = {∅;Σ}: Defining P as the projector onto the subspace g , one constructs
Heff which projects out all the excited states, i.e., PHeff = HeffP = Heff: How-
ever, Heff is not fully specified by these requirements. A first full series expan-
sion for a possible choice of Heff was obtained in [115] for a general Hamilto-
nian with a discrete spectrum. It leads to a generalized eigenvalue equation
that must be solved for the split ground state energies. A variation of [115]
was later given in [116], where the eigenvalue equations are simpler, but the
operator Heff will in general turn out to be non-Hermitian. Here we use the
latter approach. The eigenvalue equations of this effective Hamiltonian are

HeffP |Ψ±⟩ = E±P |Ψ±⟩ ; (3.15)
where |Ψ±⟩ are the lowest energy eigenstates of H. Owing to the anti-linear
symmetry R (Eq. (3.4)), which lets us write |Ψ±⟩ as in Eq. (3.6), we deduce
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that the energy splitting is given by
∆E = (e iffi+ + e iffi−) ⟨∅|Heff|Σ⟩ ; (3.16)

in terms of the off-diagonal matrix element of the effective Hamiltonian. Our
perturbative method allows us calculate the matrix element ⟨∅|Heff |Σ⟩ to lead-
ing order in –. Since V1 and V2 respectively flip one or two spins when acting
on |m⟩, and given that V = –V1 + –2V2; the power of – of a tunneling path
between |∅⟩ and |Σ⟩ corresponds to the number of spin flips that occurred.
Since the shortest paths have exactly N spin flips (each spin flips once and
only once), it follows that –N is the lowest order that will occur, and thus

⟨∅|Heff |Σ⟩ = tN–
N + O

“
–N+1

”
; (3.17)

where we have defined tN as the leading order term.

In the limit – → 0, the phases in Eq. (3.6) must vanish, ffi± → 0. This
follows from the fact that in this limit the ground states approach the two
linear combinations

|Ψ±⟩ → |∅⟩ ± |Σ⟩+ O(–): (3.18)
One thus finds

|∆E| = 2|tN |+ O(–N+1): (3.19)
As shown in Sec. 3.A, the tunneling amplitude is given by

tN =
NX

n=⌈N
2
⌉

X
{li}
⟨∅| Vl1S : : : Vln−1SVln |Σ⟩ (3.20)

where the li=1;:::n ∈ {1; 2} obey l1 + l2 + · · ·+ ln = N; and
S ≡ −

X
m ̸∈g

|m⟩ ⟨m|
∆"m

; (3.21)

where ∆"m ≡ "m−"∅ is the unperturbed excitation energy of the state |m⟩. Let
us denote by |m| the cardinality of the set m, that is, the number of spins that
are flipped relative to the ground state ∅, so that |Σ| = N. The tunneling tNcan be calculated recursively. To this end we introduce cm as an intermediate
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tunneling coefficient, analogous to tN in Eq. (3.20),

cm ≡
|m|X

n=⌈ |m|
2
⌉

X
{li}
⟨∅| Vl1S : : : Vln−1SVlnS |m⟩ ; (3.22)

where we impose the condition l1 + l2 + : : : ln = |m|; on the li , which restricts
the sum to the terms that contribute to leading order (–|m|) to the tunneling
between |∅⟩ and |m⟩. Finally, by inserting the identity as Pm′ |m′⟩ ⟨m′| before
the last two factors and expanding VlnS |m⟩, one obtains a recursion relation
that connects cm to coefficients of smaller clustersm′ ⊂ m, yielding the cluster
recursion relations

cm =− 1

∆"m

 X
i∈m
⟨m \ {i}|V1|m⟩ cm\{i}

+
X
i ;j∈m

⟨m \ {i ; j}|V2|m⟩ cm\{i ;j}

1A ; (3.23)

where we sum over flipped spins i ∈ m, or pairs of flipped spins {i ; j} ∈ m. An
analogous expression follows for tN ,

tN =
X
i∈Σ
⟨Σ \ {i}|V1|Σ⟩ cΣ\{i}

+
X
i ;j∈Σ
⟨Σ \ {i ; j}|V2|Σ⟩ cΣ\{i ;j}:

(3.24)

The recursions (3.23, 3.24) hold for general perturbations V1;2 which flip sin-
gle spin or pairs of spins, respectively. It is straightforward to generalize the
recursions (3.23) to include higher order terms of the form –kVk , which flip k
spins.

The iterative procedure can be further simplified due to the independence
of disconnected clusters. Let us consider a cluster m that is composed of
several mutually disconnected clusters mi of spins flipped relative to ∅. We
call a set of clusters disconnected if the excitation energy of the set is the
sum of the excitation energies of the individual clusters, i.e. ∆"m = ∆"m1 +

∆"m2 + : : :∆"mn : In Sec. 3.B, we show that for such separable sets, the inter-
mediate tunneling coefficient is the product of tunneling coefficients for their
disconnected components,

cm = cm1cm2 : : : cmn : (3.25)
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To calculate tN for a given cluster one proceeds as follows: One identifies all
inequivalent connected subclusters m of the considered spin cluster, asso-
ciates a coefficient cm to each of them, and uses Eqs. (3.23, 3.25) to calculate
the coefficients recursively for increasing cluster sizes |m|. We say that two
clusters are equivalent if their coefficients cm are the same, which is for in-
stance the case if the two clusters are symmetry related.

If the unperturbed Hamiltonian is the Ising model with nearest neighbor
couplings, the excitation energy ∆"m of a cluster is 2|Jz | times the number of
bonds that connect flipped spins (∈ m) to unflipped spins (∈ Σ \m). In other
words, the excitation energy is proportional to the total length of all domain
walls between m and its complement.

In general, the recursions (3.23, 3.24) can be rather complicated to solve,
especially if one has to consider a large number of inequivalent clusters. How-
ever, we will see in the following subsections that they take a simplified form
when applied to some of our models, and even result in recursion relations
with closed form solutions in some cases. Applying the method to the first
Ising model (3.7), our next step, will be very instructive.
3.3.1 Tunneling in Ising models with transverse field and exchange Let us
consider the model (3.7) and let us apply the recursion relations (3.23, 3.24)
to it. The first thing to note is that the matrix elements in the recursion rela-
tions simplify greatly. They are given by

⟨m \ {i}|V1|m⟩ = −hx (3.26)
and

⟨m \ {i ; j}|V2|m⟩ = Jx (3.27)
if i ; j are nearest neighbors, and vanish otherwise. Then, the recursion rela-
tions become

cm =
1

∆"m

0@hxX
i∈m

cm\{i} − Jx
X

⟨i j⟩∈m
cm\{i ;j}

1A ; (3.28)
tN = −hx

X
i∈Σ

cΣ\{i} + Jx
X

⟨i j⟩∈Σ
cΣ\{i ;j}: (3.29)

In this model, two clusters are equivalent if they are identical including their
environment up to their first neighbors. As an example of this, consider a clus-
ter of flipped spins in the bulk of a lattice with open boundary conditions. Any
translation by a lattice unit whereby the cluster does not touch the bound-
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aries results in an equivalent cluster. When a boundary is reached instead,
the first neighbors of the cluster change and we will find a different cluster
coefficient.

Since tN is the sum over all tunnel paths that flip every spin exactly once,
it is clear that the resulting expression is a polynomial in hx and Jx , each term
being proportional to a product Jkx hN−2k

x with 0 ≤ k ≤ ⌊N=2⌋. The general
form for the tunneling coefficient of a cluster of N spins, regardless of the
lattice, will thus take the form

tN =

⌊N
2
⌋X

k=0

ak
Jkx h

N−2k
x

|Jz |N−k−1
(3.30)

∝ h
mod(N;2)
x

|Jz |2⌊
N
2
⌋−1

⌊N
2
⌋Y

n=1

(Jx |Jz | − ¸nh2x); (3.31)
with some lattice-dependent real coefficients ak , and (potentially complex)
roots ¸n. Note that Kramers theorem is satisfied by Eq. (3.30), which yields
tN ∼ hx for odd N: Indeed, the ground state must be doubly degenerate (i.e.
tN = 0) if there is time-reversal symmetry (hx = 0) and the total spin is half-
integer (N is odd).

Due to the minus sign in the projector S (Eq. (3.21)), the sign of ak re-
flects the number of flipping terms V1;2 that are applied on the corresponding
tunneling paths. The sign thus alternates with k :

sgn(ak) = (−1)k−1; (3.32)
where we have also taken into account the negative sign of the matrix ele-
ment of V1 in Eq. (3.26). If Jx < 0, all monomials contribute with the same
sign, and thus |tN | grows monotonously with the field hx , with no zero cross-
ing. However, if Jx > 0, there is a negative interference between paths with
different numbers of perturbative steps, and tN may oscillate as a function of
the field. In this case, we can have ground state crossings. If the polynomial
of Eq. (3.31) has positive real roots ¸n, the crossings occur at the fields

h
(n)
x = ±¸−1=2

n

p
Jx |Jz |: (3.33)

Thus there may be up to N values of the transverse field (or ⌊N=2⌋, if one
restricts to hx ≥ 0) where tN = 0, depending on the number of real ¸n. (Note
that real ¸n are necessarily positive, since negative ¸n would imply zeros for
Jx > 0, which is excluded).



44 Perturbative approach to tunneling and QI in spin clusters

Later on we will solve the recursion relations for specific spin clusters and
lattices, where we do find that in all cases considered the ¸n are real and
positive. For now, let us assume that indeed all ¸n > 0, so that we have either
N degeneracy points or none (except for the trivial one hx = 0 for odd N),
depending on the sign of Jx .

3.3.2 Tunneling in Ising models with a staggered field We consider the
model presented in Section 3.2.2 where the field of the model (3.7) is stag-
gered. One could calculate the matrix elements and write down the recursion
relations for this model, but this turns out to be unnecessary. Let us first
guess the polynomial form of tN for this model. The tunneling paths due to
transverse exchange only contribute with a factor JN=2x . For tunneling paths
involving spins flipped by transverse fields, those must come in equal num-
bers on the two sublattices, and thus tN must take the form

tN =
J
N=2
x

|Jz |N=2−1

N=2X
k=0

ak

„
hx;Ahx;B
Jx |Jz |

«N=2−k
; (3.34)

where the coefficients ak must be the same as those of the polynomial for
a homogeneous field hx , cf. Eq. (3.30). Thus one simply should substitute
h2x → hx;Ahx;B in that equation. It follows that ground state degeneracy occurs
whenever

hx;Ahx;B = ¸−1
n Jx |Jz |: (3.35)

The condition hx;Ahx;BJx > 0 is a general prerequisite for such degeneracies.
If all ¸n are positive, we recover the behavior observed numerically in Fig. 3.2

3.3.3 Tunneling in Ising models with general transverse couplings In the
case of the more general Ising models (3.10), we found the behavior of the
ground state crossings to depend on the Ising ground state (Fig. 3.3). In
particular, we distinguish whether the dominant Ising interactions are ferro-
magnetic (Jz < 0) or antiferromagnetic (Jz > 0), respectively.

Ising ferromagnets Since the ground state is ferromagnetic, and since we
only flip each spin once, the matrix element ⟨m \ {i ; j}|V2|m⟩ appears in the
recursion relations only in the form

⟨↑↑ |V2| ↓↓⟩ = Jx − Jy ; (3.36)
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for two neighboring spins, while ⟨m \ {i}|V1|m⟩ only appears as

⟨↑| V1 |↓⟩ = −hx + ihy : (3.37)
This implies that the resulting recursion and the tunneling amplitude tN will
be the same as Eqs. (3.28, 3.30), up to the substitution

Jx → Jx − Jy ;
hx → hx − ihy ;

(Ferro) (3.38)
and it suffices to solve the model (3.7).

Performing the substitution in Eq. (3.33), one finds that the tunneling only
vanishes if either hy = 0 and Jx > Jy , in which case there are zeros at the fields

h
(n)
x = ±

„
(Jx − Jy )|Jz |

¸n

«1=2

; (3.39)
or if hx = 0 and Jy > Jx , at fields

h
(n)
y = ±

„
(Jy − Jx)|Jz |

¸n

«1=2

: (3.40)
In other words, the transverse field has to be applied in the spin direction
which corresponds to the stronger antiferromagnetic (or weaker ferromag-
netic) exchange. This is analogous to the result found in the single spin case
by Garg [84], which we will review in Section 3.7 below.

Ising antiferromagnets For antiferromagnetic Ising models case, let us con-
sider a bipartite lattice, so that the ground states have opposite spins on each
sublattice. V2 only acts in the form

⟨↑↓ |V2| ↓↑⟩ = Jx + Jy ; (3.41)
while V1 flips spins from down to up on one sublattice and from up to down
on the other sublattice,

⟨↑ |V1| ↓⟩ = −hx + ihy ; ⟨↓ |V1| ↑⟩ = −hx − ihy : (3.42)
We take each sublattice to have the same number of spins. Since the lattice
is bipartite and V2 flips one spin from each sublattice, there must be an equal
number of single flips due to V1 on either sublattice. This implies that we can
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simply substitute
Jx → Jx + Jy ;

h2x → h2x + h2y ;
(Antiferro) (3.43)

in Eqs. (3.28, 3.30) to obtain the result for the generic, bipartite antifer-
romagnetic Ising models. Interestingly, the direction of the homogeneous
transverse field in the x − y plane is irrelevant. That is, zeros of the tunnel-
ing amplitude occur in circles in the transverse field plane, provided that the
transverse exchange is predominantly antiferromagnetic (Jx + Jy > 0). The
tunneling vanishes for transverse fields of magnitude

h(n) =

„
(Jx + Jy )|Jz |

¸n

«1=2

; (3.44)
regardless of its angle in the x − y plane. While there is no angle dependence
to leading order, the radial symmetry is broken by higher order corrections as
confirmed numerically in Fig. 3.3.

Note that the tunneling matrix element tN is in general complex, and thus
the condition tN = 0 determines a manifold of codimension 2 in the parameter
space of transverse couplings. Thus, by fixing the exchange couplings Jx ; Jyand looking for zeros in the transverse field plane, one will generically only
find isolated points, as it happens in the case of ferromagnetic clusters. A
qualitatively different situation arises in antiferromagnetic clusters because
there, owing to the substitution (3.43), the tunneling amplitude is always real,
such that zeros organize in a manifold of codimension 1, i.e., closed lines in
the transverse field plane.
3.4 Tunneling in 1D systems In this section we apply our method to the
1D model (3.7). The recursion relations for 1D systems are rather simple be-
cause any connected cluster of flipped spins is uniquely defined by its length
and position. We first consider a ring of N spins, where the exact solution of
the recursion allows us to extract explicit asymptotic expressions for large N.
Then we consider an open chain, where we even obtain a closed analytical
expression for tN for any N.
3.4.1 Closed chain: a ring of spins For a ring of spins, all connected clusters
of a given length are equivalent. We denote by cl the intermediate tunneling
coefficient associated with a cluster of length l . The application of Eq. (3.28)
is straightforward: By unflipping a single spin from the cluster, we obtain one
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of l possible states with l − 1 flipped spins. If the unflipped spin is at the
edge of the cluster, its contribution to cl is hxcl−1=(4|Jz |); since the excitation
energy of the cluster is 4|Jz | due to the two domain walls at its ends. If the
unflipped spin is in the bulk then the state consists of two clusters. We thus
use Eq. (3.25) to write the contribution of that state as hxcncl−n−1 for some
0 < n < l . Defining c0 ≡ 1 we can combine the edge and the bulk terms, and
using an analogous reasoning for the term related to Jx we finally have

cl =
hx

4|Jz |

l−1X
n=0

cncl−n−1 −
Jx

4|Jz |

l−2X
n=0

cncl−n−2: (3.45)
To obtain the polynomial for the full tunneling coefficient tN , a similar recur-
sion can be used. It slightly differs from the above due to the periodic bound-
ary conditions. Unflipping a pair or a single spin in the ring, we are left with
a single cluster of length N − 2 or N − 1. The unflipped spin(s) can be at N
positions, so that we find

tN = N(−hxcN−1 + JxcN−2): (3.46)
In general the location of the field-zeros h(n)x depends on N. Interestingly, it
turns out that the pair of largest zeros, ±h(⌊N=2⌋)x , is common to chains of any
size and takes the value h(⌊N=2⌋)x = 2

p
Jx |Jz |. To show that this is indeed so, we

start from Eq. (3.46). The condition to have tl+1 = 0 requires cl = (Jx=hx)cl−1:If this is to hold for all l and given that c0 = 1, we must have cl = (Jx=hx)
l :

Using this in Eq. (3.45) and simplifying we find that this relation is indeed
satisfied if hx = ±2pJx |Jz |: For this value of hx the tunneling tN thus vanishes
for any N. We will retrieve this result from a direct calculation of tN below.

In order to calculate tN for any value of hx , we define the generating func-
tions

C(z) =
∞X
l=0

z lcl ; (3.47)
T (z) = 2|Jz |+

∞X
l=1

z l
tl
l
;

where z is a complex variable. We then multiply Eqs. (3.45, 3.46) by z l , and
sum them from l = 2 to l =∞. After summing over l in Eq. (3.45), one obtains
terms with double summations of the form P∞

l=0

Pl
n=0, which are equal toP∞

n=0

P∞
l=n. Those lead to a term C(z)2 on the right-hand side. Solving the

resulting quadratic equation for C(z), one has to choose the root that satisfies
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Figure 3.4: Keyhole contours of integration.

limz→0 C(z) = c0 = 1. Using the same steps in Eq. (3.46) one obtains T (z).
Solving for C(z) and eventually for T (z), we obtain the closed expression

T (z) =
p

4Jx |Jz |(z − z+)(z − z−); (3.48)
where

z± =
hx ±

p
h2x − 4Jx |Jz |
2Jx

: (3.49)
The above formula for T (z) represents the power series (3.48) with its domain
of convergence at small enough z , but analytically continues it beyond. We
can now calculate tN by contour integration of T (z)=zN+1 around its pole at
z = 0. We have the exact expression

tN
N

=
1

2ıi

I
z=0

T (z)

zN+1
dz: (3.50)

We now deform the contour, pushing it to infinity, but avoiding the branch cuts
ending at z±. This is best done using keyhole contours (Fig. 3.4). The precise
contour used depends on whether z± are real or a pair of complex conjugate
numbers, which we discuss separately. We restrict ourselves to Jx > 0, since
only in that case tN exhibits interesting oscillations.

h2x > 4Jx |Jz | - In this case, both z± are real and either both positive or both
negative, depending on the sign of hx . Without loss of generality, we take
hx > 0. The appropriate contour is shown in Fig. 3.4 on the left. Pushing the
radius of the large circle to infinity and letting the radius of the small circles
around z± shrink to zero, the integrals 1 and 4 cancel, while the integrals 2
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and 3 between the branch points add up to

tN = −
2N
p
Jx |Jz |
ı

Z z+

z−

p
(z+ − x)(x − z−)

xN+1
dx: (3.51)

Note that upon changing hx within the domain h2x > 4Jx |Jz |, the integrand
remains positive, and thus tN never becomes zero.

h2x = 4Jx |Jz | - At the border of the above domain one has z+ = z−. From
Eq. (3.51) one sees that the tunneling becomes zero at this point, indepen-
dently of N, as we have already found previously. Since there are no zeros at
higher fields, this corresponds to the largest field zero.

h2x < 4Jx |Jz | - Here the branch points become a pair of complex conjugate
numbers. We have

z± = r0e
±i„0 ; (3.52)

where
r0 =

s
|Jz |
Jx
; cos(„0) =

hxp
4Jx |Jz |

: (3.53)
We consider the contour shown in Fig. 3.4 on the right, where the branch
points z± are avoided with keyholes oriented radially along the lines z =

re±i„0 : Shrinking the small circles to zero, and expanding the large circle to in-
finity, the expression for tN simplifies to the contribution of two line integrals
along the radial branch cuts, resulting in the exact expression:

tN =
4N
p
Jx |Jz |
ı

×

Im

 
e i„0(

1
2
−N)

Z ∞

r0

p
(r − r0)(re i„0 − r0e−i„0)

rN+1
dr

!
:

(3.54)

At large N, we can make progress by replacing re i„0 − r0e−i„0 by its value at
r = r0 (which is valid as long as „0 ≫ 1=N). The remaining integral can be
written in terms of Gamma functions. To leading order at large N one obtains

tN ≈ |Jz |
„
Jx
|Jz |

«N=2r8 sin „0
ıN

sin

„
„0

„
1

2
− N

«
+
ı

4

«
: (3.55)
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Note that this expression has, however, N + 2 zeros as a function of hx : N
zeros arise from the vanishing of the high frequency sine at fields given by

h
(n)
x = ±2

p
Jx |Jz | cos

 
⌊N=2⌋+ 1

4 − n
N − 1

2

ı

!
; (3.56)

with n = 1; : : : ; ⌊N=2⌋. Two further zeros are due to the vanishing of sin „0:Those reproduce correctly the pair of largest field zeros, hx = ±2
p
Jx |Jz |,which we have already identified above. The two zeros h(n)x with n = ⌊N=2⌋ are

instead artefacts that are introduced by approximating the numerator in the
integrand with its value at r = r0. This approximation is not controlled in that
field regime since there one has „0 = O(1=N). These two zeros thus have to
be discarded, and we are left with N zeros, as it should be.

In Fig. 3.5 we compare the asymptotic Eq. (3.55) with the exact polynomial
for tN obtained from explicitly solving Eqs. (3.45, 3.46). The agreement is very
good even for moderate N, and it further improves with system size.

It is easy to extract from the explicit result of Eq. (3.55) and directly visible
from Fig. 3.5 that the tunneling grows linearly with a small deviation of the
transverse field from an exact zero (3.56), namely:

tN(hx = h
(n)
x + ‹hx) ≈ ‹hx

@tN
@hx

≈ ‹hx
N− 1

2 (Jx=Jz)
N−1
2»

1−
„

h
(n)
x

2
√
Jx |Jz |

«–1=4 : (3.57)

3.4.2 Open Ising spin chains In open chains, connected, flipped clusters
that touch an end of the chain create only one domain wall. Accordingly, their
excitation energy is only 2|Jz |, half that of a bulk cluster. We define dl as the
intermediate tunneling coefficient associated to such an edge cluster of size
l , while cl is again that associated to bulk clusters. These coefficients satisfy
similar recursion relations as before. The one for cl is unchanged, while for dlone finds

dl =
hx

2|Jz |

l−1X
n=0

dncl−n−1 −
Jx

2|Jz |

l−2X
n=0

dncl−n−2; (3.58)
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Figure 3.5: Comparison of the exact tunneling polynomial of a ring of spinswith the asymptotic expression of Eq. (3.55), for N = 10 on the left and N =
16 on the right. The exact tN is obtained by explicitly solving the recursionrelations in Eqs. (3.45, 3.46). The asymptotic expression approximates theexact polynomial better and better as the system size increases.

where we again defined c0 ≡ 1 and d0 ≡ 1. The fully flipped state can only be
created from edge clusters. We thus have

tN = −hx
N−1X
n=0

dndl−n−1 + Jx

N−2X
n=0

dndl−n−2: (3.59)
To proceed we again use the previously defined generating function C(z) and
define

D(z) =
∞X
l=0

z ldl ; T̂ (z) =
∞X
l=1

z l tl : (3.60)
Again, multiplying the recursion relations by z l , summing over l , and solving
for T̂ (z), we obtain

T̂ (z) = |Jz |
z(z − hx=Jx)

(z − z+)(z − z−)
; (3.61)

where the singularities z± are still given by Eq. (3.49). However, here they ap-
pear as poles of T̂ (z), not as branch points. In this case, the contour integral
around z = 0 can be transformed into a simple contour around the two poles,
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which yields the exact result for tN as a sum of two residues:
tN = Res

z=0

 
T̂ (z)

zN+1

!
= −Res

z=z+

 
T̂ (z)

zN+1

!
− Res
z=z−

 
T̂ (z)

zN+1

!

=
|Jz |

(z+ − z−)

„
z−

zN+
− z+

zN−

«
(3.62)

=

8>>>><>>>>:
∼ −|Jz |

“
hx
|Jz |

”N
; h2x

4|Jz | ≫ Jx ;

−|Jz |(N + 1)
“

hx
2|Jz |

”N
; h2x

4|Jz | = Jx ;

−|Jz |
“
Jx
|Jz |

”N=2 sin[(N+1)„0]
sin(„0)

; h2x
4|Jz | < Jx :

Like for the closed chain, tN oscillates when h2x < 4Jx |Jz |: The high frequency
sine function in the oscillatory regime has N + 2 zeros, but when h2x = 4Jx |Jz |the denominator vanishes too, and tN does not vanish. We are thus left with
N zeros at the fields

h
(n)
x = ±2

p
Jx |Jz | cos

„
⌊N=2⌋+ 1− n

N + 1
ı

«
; (3.63)

with n = 1; : : : ; ⌊N=2⌋.
Upon comparing the position of the zeros for open boundary conditions,

Eq. (3.63), with those for periodic boundary conditions, Eq. (3.56), one finds
that closing the chain shifts all fields h(n)x to higher values. This is expected
since a closed chain contains one more bond Jx , so that hx must slightly in-
crease to compensate the increased exchange contribution to the tunneling.

3.5 2D and 3D clusters While in 1D chains connected clusters only come in
one shape (a connected stretch of spins), the length and position (edge or
bulk) being their only characteristics, in quasi 1D and in higher dimensions
there are many more shapes of clusters we have to consider. Finding a gen-
eral solution for the tunneling of any N-sized cluster therefore does not seem
possible. However, we will calculate the polynomial tN(hx ; Jx) for small spin
clusters to demonstrate the method and to show that the number of zeros still
equals the number of spins N.

We first consider the model of Eq. (3.7) on a 3×2 cluster of spins with open
boundary conditions, the smallest non-trivial 2D cluster. Besides the fully
flipped cluster there are 14 inequivalent connected clusters, cf. Table 3.1 for
which we have to compute the intermediate tunneling coefficients. The 3× 2

cluster differs from a ring of 6 spins only by one additional bond. By show-
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c1;1 =
hx

4|Jz | c2;1 =
hx (c1;1+c1;2)−Jx

6|Jz |

c1;2 =
hx

6|Jz | c2;2 =
hx (2c1;1)−Jx

4|Jz |

c2;3 =
hx (2c1;2)−Jx

8|Jz |

c3;1 =
hx (2c2;1+c21;1)−Jx (2c1;1)

6|Jz |

c3;2 =
hx (c2;1+c2;2+c1;1c1;2)−Jx (c1;1+c1;2)

6|Jz |

c3;3 =
hx (c2;1+c2;3+c1;1c1;2)−Jx (c1;1+c1;2)

8|Jz |

c4;1 =
hx (c3;1+c3;2+c2;1c1;1+c2;2c1;1)−Jx (c2;1+c21;1+c2;2)

6|Jz |

c4;2 =
hx (c3;1+2c3;3+c21;1c1;2)−Jx (2c1;1c1;2+c21;1)

8|Jz |

c4;3 =
hx (2c3;2+2c3;3)−Jx (2c2;1+c2;2+c2;3)

4|Jz |

c4;4 =
hx (2c3;3+2c2;1c1;1)−Jx (2c2;1+c21;1)

8|Jz |
c5;1 = [hx(c4;1 + c4;2 + c4;3 + c4;4 + c3;2c1;1)
−Jx(c3;1 + c3;2 + c3;3 + c2;2c1;1)] =(4|Jz |)
c5;2 =

hx (2c4;1+c22;2+2c3;2c1;1)−Jx (2c3;2+2c2;2c1;1)

6|Jz |

t3×2 = −hx(4c5;1 + 2c5;2) + Jx(2c4;3 + c22;2 + 4c4;1)

Table 3.1: Inequivalent connected clusters of a rectangular cluster of 6 spins.Filled orange circles represent flipped spins. The intermediate tunneling co-efficients satisfy the indicated recursion relations.



54 Perturbative approach to tunneling and QI in spin clusters

c1;1 =
hx

4|Jz | c2;1 =
hx (c1;1+c1;2)−Jx

8|Jz |

c1;2 =
hx

8|Jz | c2;2 =
hx (2c1;2)−Jx

12|Jz |

c3;1 =
hx (2c2;1+c21;1)−Jx (2c1;1)

8|Jz |

c3;2 =
hx (2c2;1+c2;2)−Jx (c1;1+2c1;2)

8|Jz |

c3;3 =
hx (c2;1+c2;2+c1;1c1;2)−Jx (c1;1+c1;2)

12|Jz |

c3;4 =
hx (3c2;2)−Jx (3c1;2)

12|Jz |

c4;1 = [hx(c3;1 + c3;2 + c3;3 + c2;1c1;1)
−Jx(2c2;1 + c1;1c1;2 + c1;1c1;1)] =(8|Jz |)

c4;2 =
hx (c3;2+2c3;3+c3;4)−Jx (2c2;1+2c2;2+c1;1c1;2)

8|Jz |

c4;3 =
hx (2c3;3+2c2;1c1;1)−Jx (2c2;1+c21;1)

12|Jz |

c5;1 =
hx (2c4;1+2c4;2+c4;3)−Jx (2c3;2+2c3;3+c3;1+2c2;1c1;1)

4|Jz |

c5;2 =
hx (2c4;1+2c3;1c1;1+c22;2)−Jx (2c3;1+2c2;1c1;1)

8|Jz |

t∆ = Jx(6c4;1 + 3c3;1c1;1)− hx(3c5;1 + 3c5;2)

Table 3.2: Inequivalent connected clusters of a triangular cluster of 6 spins.Filled green circles represent flipped spins. The intermediate tunneling coef-ficients satisfy the indicated recursion relations.
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c1;1 =
hx

6|Jz | c2;1 =
+hx (2c1;1)−Jx (1)

8|Jz |

c3;1 =
hx (2c2;1+c21;1)−Jx (2c1;1)

10|Jz |

c4;1 =
hx (4c3;1)−Jx (4c2;1)

8|Jz |

c4;2 =
hx (3c3;1+c31;1)−Jx (3c21;1)

12|Jz |

c4;3 =
hx (2c3;1+2c2;1c1;1)−Jx (2c2;1+c21;1)

12|Jz |

c5;1 =
hx (c4;1+c4;2+2c4;3+c3;1c1;1)−Jx (3c3;1+2c2;1c1;1)

10|Jz |

c5;2 =
hx (2c4;3+2c3;1c1;1+c22;1)−Jx (2c3;1+2c2;1c1;1)

14|Jz |

c6;1 =
hx (4c5;1+2c5;2)−Jx (2c4;1+4c4;3+c22;1)

8|Jz |

c6;2 =
hx (2c5;1+2c5;2+2c4;2c1;1)−Jx (2c4;2+4c3;1c1;1)

12|Jz |

c6;3 =
hx (6c5;2)−Jx (2c4;2+4c3;1c1;1)

12|Jz |

c7;1 =
hx (3c6;1+3c6;2+c6;3)−Jx (6c5;1+3c5;2)

6|Jz |

t2×2×2 = Jx(12c6;1)− hx(8c7;1)

Table 3.3: Inequivalent connected clusters of a cubic cluster of 8 spins. Filledblue circles represent flipped spins. The intermediate tunneling coefficientssatisfy the indicated recursion relations.
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Figure 3.6: The tunneling amplitude tN for three small, higher-dimensionalclusters, as a function of hx , with the respective zeros marked. All these clus-ters have N tunneling zeros, and the plot shows the N=2 positive ones.

ing that the tunneling polynomial still has N zeros, we thus demonstrate the
robustness of the number of zeros to certain perturbations. Upon gradually
turning on the bond that transforms the ring into the 3 × 2 cluster, the zeros
move towards higher fields, as one expects. We further derive the tunneling
polynomials t∆ for an equilateral triangle made from 6 spins, cf. Table 3.2,
and t2×2×2 for a cube of 8 spins, cf. Table 3.3.

Solving the resulting recursion relations given in the Tables 3.1, 3.2 and 3.3,
we obtain the following polynomials, where we define x ≡ h2x=(Jx |Jz |):

t3×2 =
J3x
|Jz |2

„
−539x3

5184
+

511x2

576
− 193x

108
+

25

36

«
; (3.64)

t∆ =
J3x
|Jz |2

„
−65x3

2304
+

905x2

2304
− 197x

192
+

3

16

«
; (3.65)

t2×2×2 =
J4x
|Jz |3

„
−3119x4

466560
+

66839x3

583200
− 76921x2

129600

+
6979x

7200
− 43

128

«
;

(3.66)

which have the expected number of zeros, N = 6 or 8, as one can see in
Fig. 3.6.
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3.6 Weak Disorder In this section we consider a 1D ring with weak disorder
in the transverse fields and in the exchange in the form of

hx;i = hx + ‹hx;i ; Jx;i = Jx + ‹Jx;i ; (3.67)
where Jx;i connects spins i and i + 1 and where Jx > 0, such that there are
zeros in the absence of disorder. We denote the disordered tunneling as t̃N ,
reserving tN for the tunneling in the disorder free limit. One can in principle
determine the recursion relations of such a system and thus study disorder
using explicit polynomials t̃N . However, we shall rather calculate the relevant
average quantities to lowest order in an expansion in ‹hx;i and ‹Jx;i .

A quantity of particular interest is the typical finite tunneling induced by
random fluctuations of the couplings when the average external field is held at
one of the tunneling zeros h(n)x . Let us denote the disorder induced tunneling
at a zero as

Tn ≡ t̃N |hx=h(n)x : (3.68)
We are also interested in how much a ground state crossing shifts due to the
presence of randomness:

Kn ≡ h̃(n)x − h(n)x ; (3.69)
where h̃(n)x and h(n)x are respectively the nth zeros of the polynomials t̃N and tN .
We can calculate the second moment of these random variables by consid-
ering a homogeneous ring where all spins and all bonds are equivalent and
where in the absence of disorder all couplings are equal. However, explicit
calculations of the second moment of Tn and Kn for open spin chains showed
qualitatively very similar behavior as we find below for rings. For a ring, to
first order in the perturbations, one has

t̃N ≈ tN +
1

N

@tN
@Jx

NX
i=1

‹Jx;i +
1

N

@tN
@hx

NX
i=1

‹hx;i : (3.70)
This follows since perturbations on different sites are equivalent, and thus all
partial derivatives are equal:

@t̃N
@(‹hx;i )

˛̨̨̨
‹Jx=‹hx=0

=
1

N

@tN
@hx

; (3.71)
and likewise for the exchange. For identically and independently distributed
local disorder, the disorder-induced variance of the tunneling evaluated at a
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transverse field zero h(n)x thus results as
⟨T 2
n ⟩ =

⟨‹J2i ⟩
N

˛̨̨̨
@tN
@Jx

˛̨̨̨2
hx=h

(n)
x

+
⟨‹h2i ⟩
N

˛̨̨̨
@tN
@hx

˛̨̨̨2
hx=h

(n)
x

+ O(⟨‹J4i ⟩ ; ⟨‹h4i ⟩):
(3.72)

To leading order, the response of the tunneling amplitude Tn to disorder is
linear. The shift of the transverse field, Kn, necessary to compensate for this
disorder-induced tunneling is then given by the relation

Tn +
@tN
@hx

˛̨̨̨
hx=h

(n)
x

Kn = 0: (3.73)
From Eqs. (3.72, 3.73), we see that in order to calculate Kn we only need the
ratio of the derivatives “@tN@Jx =@tN@hx ”˛̨̨hx=h(n)x : This ratio is easily obtained from
the factorized polynomial form of tN (Eq. (3.31)) as„

@tN
@Jx

=
@tN
@hx

«˛̨̨̨
hx=h

(n)
x

= −h
(n)
x

2Jx
: (3.74)

From this we deduce the average mean square of the drift in the zeros to
leading order as:

⟨K2
n⟩ ≈

 
h
(n)
x

2Jx

!2 ⟨‹J2x;i ⟩
N

+
⟨‹h2x;i ⟩
N

(3.75)

=
1

N

 
h
(n)
x

2

!2 ˆ
⟨—2
i ⟩+ 4 ⟨”2i ⟩

˜
; (3.76)

where
—i ≡

‹Jx;i
Jx

; ”i ≡
‹hx;i

h
(n)
x

; (3.77)
quantify the relative fluctuations of the couplings. In many cases these are
the most appropriate measures of the disorder strength. We see that the
zeros corresponding to larger fields are more strongly affected by disorder.
This certainly holds as long as the shifts are smaller than the typical spacing
O(1=N) between zeros.

One can obtain the standard deviation of the tunneling amplitude from
Eqs. (3.73, 3.76), using the derivative @tN

@hx
from Eq. (3.57) for a ring, from
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which we get

⟨T 2
n ⟩ ≈

1

2ı

„
Jx
|Jz |

«N−1

“
h
(n)
x

”2
[⟨—2

i ⟩+ 4 ⟨”2i ⟩]"
1−

„
h
(n)
x

2
√
Jx |Jz |

«2
#1=2 : (3.78)

Again, we see that Tn ∼ h
(n)
x for small transverse field, while it grows quickly

as the largest zero h(⌊N=2⌋)x = 2
p
Jx |Jz | is approached.

3.7 Tunneling in single spin models Here we consider the single spin mod-
els as presented in Sec. 3.2.4. Similarly to an Ising ferromagnet, the unper-
turbed (– = 0) ground states correspond to the two states with Sz = ±S.
Applying our method to this Hamiltonian is rather straightforward: We sim-
ply calculate the tunneling matrix element from −S to the +S ground state
to lowest order in –, using intermediate tunneling coefficients cm, where m
refers to the spin projection onto the z-axis, with eigenstates defined by

Sz |m⟩ = m |m⟩ : (3.79)
If we use the Hamiltonian in the form of Eq. (3.12), the recursion for cm will
involve both cm−1 and cm−2, but unlike in the problem treated in Sec. 3.3.1,
the matrix elements and the denominators involved in the recursion depend
themselves non-trivially on m. The resulting recursion is hard to solve ana-
lytically. We can, however, simplify the recursion greatly by first performing a
rotation in the x − z plane:

Sx = cos¸S′
x + sin¸S′

z ;

Sz = cos¸S′
z − sin¸S′

x ;

Sy = S′
y ;

(3.80)

where we choose ¸ to satisfy tan2 ¸ = –2Jx=|Jz |; such as to kill the matrix
elements ⟨k|H|k − 2⟩ between S′

z-eigenstates, S′
z |k⟩ = k |k⟩ : This yields the

Hamiltonian in the rotated basis
H′ = (Jz + –2Jx)S

′2
z + –

p
Jx |Jz |(S′

zS
′
x + S′

xS
′
z)

− –hx

 s
|Jz |

–2Jx + |Jz |
S′
x +

s
–2Jx

–2Jx + |Jz |
S′
z

!
− –hyS′

y :
(3.81)
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where we consider dominant the ferromagnetic Ising coupling Jz < 0. In the
perturbative regime, the rotation angle ¸ is small and the ground states of H′

still have a large overlap with the two S′
z eigenstates |±S⟩. We now deal with

the problem of calculating the tunneling
⟨S|H′| − S⟩ = t2S–

2S + O(–2S+1) (3.82)
between these two states up to order –2S. Since the matrix form ofH in the S′

zbasis is tridiagonal, only the off-diagonal terms proportional to – contribute
to t2S. Thus we write the Hamiltonian in the form

H′ = H′
0 + –V ′

1 + O(–2); (3.83)
where

H′
0 = JzS

′2
z ; (3.84)

V ′
1 =

p
Jx |Jz |(S′

zS
′
x + S′

xS
′
z)− hxS′

x − hyS′
y : (3.85)

The matrix elements of these operators are
⟨k |H′

0|k⟩ =Jzk2; (3.86)
⟨k |V ′

1 |k − 1⟩
⟨k|Sx |k − 1⟩ =

p
Jx |Jz |(2k − 1)− (hx − ihy ); (3.87)

where we used ⟨k |Sx |k − 1⟩ = −i ⟨k |Sy |k − 1⟩ ; and
⟨k |Sx |k − 1⟩ = 1=2

p
S(S + 1)− k(k − 1): (3.88)

Now that the Hamiltonian is tridiagonal, there is a single tunneling path be-
tween |±S⟩ of order –2S. Its contribution to t2S is just the product of all off-
diagonal matrix elements ⟨k |V ′

1 |k − 1⟩ divided by (minus) the energies of all
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intermediate excited states. The total tunneling amplitude is

t2S =

SQ
k=−S+1

⟨k |V ′
1 |k − 1⟩

S−1Q
k=−S+1

[⟨S|H′
0|S⟩ − ⟨k |H′

0|k⟩]
(3.89)

=

SQ
k=−S+1

hp
Jx |Jz |(2k − 1)− (hx − ihy )

i
⟨k|Sx |k − 1⟩

S−1Q
k=−S+1

Jz(S2 − k2)
:

Note that this already takes the form of a factorized polynomial, with zeros
given by the equation

hx − ihy =
p
Jx |Jz |(2n − 1); (3.90)

where n = −S+1;−S+2; : : : ; S: Recall that we took the x−axis to be the hard
axis (Jx > 0). We find 2S equally spaced ground state crossings for hy = 0

and transverse fields
h
(n)
x =

p
Jx |Jz |(2n − 1): (3.91)

This is the same qualitative behavior as in a ferromagnetic Ising cluster as
seen in Sec. 3.2.3, cf. Eqs. (3.39, 3.40). This result coincides in lowest order
with the zero positions as calculated by A. Garg [84] and as demonstrated
experimentally by Wernsdorfer [83]. However, in the rotated frame it becomes
quite simple to obtain the exact degeneracies of this model, as we show in the
next subsection.

3.7.1 Exact degeneracies of single spin model If we are only interested in
the location of the zeros, the rotated Hamiltonian can be used beyond pertur-
bation theory to determine the position of the zeros exactly. Indeed, a zero
of the tunneling matrix element ⟨S|H′| − S⟩ occurs whenever one of the off-
diagonal entries of H′ becomes zero. At that point, the Hamiltonian splits into
two uncoupled blocks for Sz ≥ k and Sz ≤ k − 1, implying that the up-state
is strictly decoupled from the down-state to all orders. This entails an exact
double degeneracy of the ground state (which map onto each other upon ro-
tation by ı around the x-axis). Now, the off-diagonal matrix element is given
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by
⟨k |H′|k − 1⟩
⟨k |Sx |k − 1⟩ =

p
Jx |Jz |(2k − 1)−

 
hx

s
|Jz |

Jx + |Jz |
− ihy

!
: (3.92)

Since Jx > 0, we can again have a ground state degeneracy only for a trans-
verse field along x . The critical fields are determined by the exact condition

h
(k)
x =

p
Jx(Jx + |Jz |)(2k − 1); (3.93)

which agrees with the perturbative result of Eq. (3.91) to lowest order in Jx ,
and reproduces the non-perturbative path integral results by Garg [84]. Here
we have shown that this yields the location of the zeros exactly, independently
of the size S of the spin. An equivalent but more general and slightly more
rigorous proof of this result is given in Sec. 3.C.

The result that the transverse field has to be applied along the hard axis is
fully consistent with what we found for FM spin clusters in Sec. 3.2.3. The
main difference between the exact cluster calculation and the single spin
model consists, however, in the precise location of the zeros. For the single
spin model, the zeros are equally spaced, while for clusters they are spaced
more and more densely the larger the transverse field, as one can see, e.g. in
Fig. 3.5, or read off from the analytical result in Eq. (3.56).
3.8 Other systems with competing tunneling channels The mechanism we
have studied here, namely the interference of parallel multi-step tunneling
channels between an initial and a final state is very general in nature and
appears in various physical contexts.

A famous example is the case of resonant single-particle tunneling via sev-
eral intermediate sites, a problem introduced by Nguyen, Spivak and Shklovskii
[117, 118], with comprehensive reviews given in Refs. [119, 120].

For free particles (non-interacting fermions), different paths from an ini-
tial to a final site contribute with an amplitude whose sign alternates with the
number of intermediate sites whose energy is above the chemical potential.
This leads to negative interference between alternative paths. A magnetic
field introduces additional Aharonov-Bohm phases and decreases the likeli-
hood of full negative interference, resulting in increased transmission, that
is, negative magnetoresistance [121, 122]. Recently, it was found that the
equivalent question for hard core interacting bosons leads to a similar inter-
ference problem, where, however, at energies close to the chemical poten-
tial all path amplitudes contribute with the same sign, leading to maximally
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constructive interference [123, 124]. This situation resembles that of a fer-
romagnetic cluster with transverse field applied in the direction in which the
transverse exchange is more ferromagnetic (i.e., the softer axis). In contrast
to the magnetic clusters, however, in these hopping problems it is very hard or
even impossible to tune a parameter (e.g., the magnetic field or the chemical
potential) to suppress the tunneling completely.

Competing tunneling terms also arise in more general magnetic clusters
composed of electronic and nuclear spins, a situation that frequently occurs in
rare earth compounds. The magnetic ions are coupled to their nuclear spins,
while the electronic spins couple to each other via dipolar and/or exchange
couplings. Clusters of such ions often have doubly degenerate ground or ex-
cited states, which are only split by higher order tunneling processes that
involve the interference of transverse fields, exchange/dipolar interactions
and hyperfine couplings, that generically contribute with competing signs.
Tuning the transverse field often allows to induce zeros in the correspond-
ing collective tunneling. Similarly, the tunneling of the spin associated with
a crystal field doublet of a magnetic ion can under certain circumstances be
suppressed by a transverse field applied at specific angles, if different chan-
nels involving the magnetic field and transverse crystal field terms compete.

Ground state crossings have also been reported in SU(2) invariant, gapped
frustrated spin chains [125, 126]. In that case, the crossings are related to
the interaction between the edge states of the chain. This is reminiscent of
the explanation of the level crossings in the model of Eq. (3.7) in terms of
Majorana edge states [80], and it is natural to ask whether these crossings
can also be seen as a consequence of destructive interferences between dif-
ferent channels. For that purpose, let us consider the level crossings in the
bilinear-biquadratic spin-1 chain [126], H =

P
i J1(Si ·Si+1)+Jb(Si ·Si+2)

2: If
one adds a strong uniaxial anisotropy along z , one may work with respect to
an AFM ground state, and the transverse terms with ∆Sz = 2 and 4 have com-
peting signs if Jb > 0, presumably leading to level crossings similar to those
of the isotropic case. It would be interesting to see if a more direct connec-
tion can be established by studying the effective coupling between the edge
states starting from the AKLT model Jb = J1=3 for which the edge states are
fully decoupled in the ground state [20]. This goes beyond the scope of the
present work, however.
3.9 Summary and outlook High order degenerate perturbation theory al-
lows us to understand transverse field zeros in terms of negatively interfering
tunneling paths, which in turn is tied to the presence of competing quantum
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fluctuations in the Hamiltonian. Our method nicely applies to 1D systems,
where the tunneling can be obtained for any system size exactly, in contrast
with 2D and 3D clusters where the number of different connected clusters
grows exponentially with system size. Overall, the results support the exis-
tence of N zeros in some region of the parameter space independently of the
geometry.

The original model (Eq. (3.7)) can be further extended by staggering the
field or by adding exchange couplings along the y-axis while keeping the
crossings. As we saw in Sec. 3.2.3, systems with FM ground states exhibit
zeros only when the field is applied along the ”hard axis” (the one with the
strongest antiferromagnetic or the weakest ferromagnetic coupling). In con-
trast, AFM clusters on a bipartite lattice exhibit suppressed tunneling on ap-
proximate circles in the transverse field plane. This may make AFM cluster
ground states more attractive since the tunneling suppression is more resis-
tant to fluctuations in the orientation of the applied field. This ability to control
and suppress the quantum fluctuations in small magnetic clusters or single
molecule magnets is indeed considered an important goal [127].

As we showed in Eq. (3.57), the tunneling amplitude scales linearly with
generic deviations from a zero condition. This linear behavior contrasts with
the scaling one often encounters in situations where tunneling is suppressed
(at hx = 0) due to a point group symmetry, e.g., in rare earth non-Kramers
doublets such as Ho in LiHoF4: Here the doublets have no splitting at zero
transverse field hx , but a quadratic splitting ∼ h2x is induced at small trans-
verse field [128, 129]. The power of hx with which the tunneling grows de-
pends on the structure of the crystal field levels involved in the non-Kramers
doublet. These differences have advantages in different contexts: A linear re-
sponse in tunneling implies that one needs smaller field deviations to manip-
ulate a classical bit or qubit; quadratic or higher order scaling instead imply
better protection from dephasing (of a qubit) due to transverse field noise.

Introducing disorder in the exchange couplings and in the transverse fields,
the crossings change position but do not disappear. The latter only happens
when in ferromagnets Jx−Jy , or in antiferromagnets Jx+Jy , starts to change
sign and turn negative. The relation between a set of Jx , either randomly gen-
erated or carefully chosen, and the resulting number of crossings remains to
be studied more deeply.

A certain amount of disorder in the exchange is always to be expected
from static sources such as lattice imperfections, strain, or dynamically due
to slow phonons. Spatial inhomogeneities can also induce g-factor variations
that lead to an effective disorder in the transverse field. In an ensemble of
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weakly disordered clusters it is thus impossible to suppress the tunneling si-
multaneously in all clusters, and even in a single cluster, temporal fluctuations
of the parameters will destroy the perfect negative interference of competing
tunneling channels. The best strategy to suppress the tunneling as much as
possible consists then in tuning the transverse field to the first (smallest) zero,
h
(n=1)
x , corresponding to the average exchange coupling in the system. The

disorder-induced fluctuations away from vanishing tunneling turn out to be
smallest under those conditions. This is closely related with the fact that the
location of this smallest transverse field zero moves the least as the param-
eters of the Hamiltonian are slightly perturbed. Hence this zero seems to be
the most interesting one for most applications.

Our recursive calculation of collective tunneling amplitudes generalizes
nicely to simpler single spin models, and the ground state crossings in this
model can be interpreted with the same tunneling interference argument.
Given the 2S crossings of a single spin, one may expect that an appropriately
chosen spin-S model on a lattice of N spins will exhibit 2SN crossings.

It is an interesting question to ask what happens to the zeros as one leaves
the perturbative regime. In the ferromagnetic single spin model we can trace
them easily, since we can obtain them exactly. If the hard axis is along the
x-axis and one tunes Jy up to and beyond Jz for example, the number of 2S
zeros remains intact, even though the easy axis has undergone a flop from
the z- to the y-axis. In lattice models, the zero lines in the hx-Jx plane do
not seem to disappear either. They even may cross quantum phase transition
lines, as long as they enter a new phase with a degenerate ground state or a
gapless phase. The study of the related phenomena and implications is left
for future work.

3.A Deduction of method Following Bloch’s recipe [116] we consider the
effective Hamiltonian Heff projected onto the unperturbed ground state sub-
space g = {∅;Σ} by the projection operator P . It takes the form

Heff = PHP + P

0@ ∞X
n=2

X
{ki}

V Sk1 : : : V Skn−1

1A V P; (3.94)

where n specifies the order in V of the term. For a given n, we sum over all
(n − 1)−tuples of ki = 0; 1; : : : that obey

k1 + k2 + · · ·+ ks ≥ s; (3.95)
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for all s = 1; : : : ; n − 2, and
k1 + k2 + · · ·+ kn−1 = n − 1: (3.96)

The operator Sk is defined as
Sk =

(
−P = −

P
m∈g |m⟩ ⟨m| ; k = 0;

1−P
("∅−H0)

k =
P

m ̸∈g
|m⟩⟨m|

(−∆"m)
k ; k ≥ 1;

(3.97)
where ∆"m = "m − "∅: The eigenvalue equations read

HeffP |Ψ±⟩ = E±P |Ψ±⟩ ; (3.98)
where |Ψ±⟩ are the lowest energy eigenstates of H. Due to the symmetry R
(Eq. (3.4)) we may write the eigenstate projections to leading order as

P |Ψ±⟩ = |∅⟩ ± |Σ⟩+ O(–): (3.99)
The relevant matrix element to calculate is

t ≡ ⟨∅|Heff |Σ⟩ : (3.100)
Upon expanding V = –V1 + –2V2 in Eq. (3.94) and substituting in t, we group
terms according to their powers of –. Taking n1 (n2) to be the number of V1(V2) operators present in a term of orders n and u, we have

n1 + n2 = n; n1 + 2n2 = u; (3.101)
from which we find what orders of n contribute to u by taking the limiting
cases of n1 = mod(u; 2) and n2 = 0. Finally, we only need to sum over the
permutations of V1 and V2 that respect the order u. Applying this to t, we
have

t =
∞X
u=1

–u
uX

n=⌈ u
2
⌉

X
{ki};{li}

⟨∅| Vl1Sk1 : : : Vln−1Skn−1Vln |Σ⟩ ; (3.102)
where the li = 1; 2 obey l1 + l2 + : : : ln = N: It helps to look at the calculation
of the matrix element in Eq. (3.102) sequentially; that is, starting with the
extreme left operator, we apply each operator to the states on its left. While
V1 and V2 always transform the states ⟨m| they act on, Sk mainly acts as a
projector onto a subspace of states, either the ground state g (if k = 0), or
the excited states (if k > 0). Now, the treatment of V2 as a second order
perturbation is crucial for our method and physically justified by the fact that
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the basic action of V2 on |m⟩ is to flip pairs of neighboring spins while V1 flips
single spins. In the term of order –u, ⟨∅| is acted on with enough V1’s and V2’s
to at most flip u spins. Since we need a minimum of N spin flips to transform
∅ into Σ, it follows that the lowest order is –N . After applying a Vl to the states
on its left, the resulting states must have l more spin(s) flipped than before
for such terms to yield a non-zero contribution to order –N . In particular,
this means a projection onto g by S0 = −P would only give terms that will
eventually have zero contribution. This imposes ki > 0 in the leading term
O(–N). However, the constraint (3.96) only allows for one single choice of the
ki , namely, ki = 1 for all i . Using this information in Eq. (3.102), and writing
t = tN–

N + O(–N+1), we now have
tN =

NX
n=⌈N

2
⌉

X
{li}
⟨∅| Vl1S : : : Vln−1SVln |Σ⟩ (3.103)

where S ≡ S1. This proves Eq. (3.20) in the main text.

Now, we shall prove the recursion relations in Eq. (3.28), starting from the
definition of the intermediate tunneling coefficients

cm ≡
|m|X

n=⌈ |m|
2
⌉

X
{li}
⟨∅| Vl1S : : : Vln−1SVlnS |m⟩ ; (3.104)

where
l1 + l2 + : : : ln = |m|; (3.105)

and we remind the reader that |m| is the number of spins of |m⟩ that are flipped
relative to |∅⟩. Summing over ln and redefining n→ n − 1; we have

cm =

|m|−1X
n=⌈ |m|

2
⌉−1

X
{li}
⟨∅| Vl1S : : : VlnSV1S |m⟩

+

|m|−1X
n=⌈ |m|

2
⌉−1

X
{l ′i }

⟨∅| Vl ′1S : : : Vl ′nSV2S |m⟩ ;

(3.106)

where
l1 + : : : ln = |m| − 1; l ′1 + : : : l ′n = |m| − 2: (3.107)

By expanding V1;2S |m⟩ in Eq. (3.106), we shall see that we recover the cluster
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coefficients of smaller clusters. Consider first V1S |m⟩. We have that
S |m⟩ = 1

−∆"m
|m⟩ ; (3.108)

which follows from the definition of S. Then, applying V1 to the state |m⟩, we
get a sum over states m′ which differ by one spin flip from m. However, only
m′ clusters with |m′| = |m| − 1 yield a non-zero contribution to cm. Thus,

|m|−1X
n=⌈ |m|

2
⌉−1

X
{li}
⟨∅| Vl1S : : : VlnSV1S |m⟩

=

|m|−1X
n=⌈ |m|

2
⌉−1

X
{li}
⟨∅| Vl1S : : : VlnS

X
m′

|m′|=|m|−1

|m′⟩ ⟨m′| V1S |m⟩

=
X
m′

|m′|=|m|−1

cm′ ⟨m′| V1S |m⟩ ; (3.109)

With an analogous argument applied to V2S |m⟩ we obtain the recursion re-
lations (3.24, 3.23) in the main text. The expression for tN follows from an
analogous derivation, the only difference being that there is no insertion of
the operator S at the last step, as one can note from comparing Eq. (3.103)
and Eq. (3.104). This eliminates the corresponding energy denominator.

3.B Cluster independence Consider a cluster C which is composed of two
(dis)connected clusters of flipped spins A and B, by which we mean that the
excitation energy of cluster C is the sum of independent excitation energies,

∆"C = ∆"A +∆"B; (3.110)
Given the definition of the intermediate tunneling coefficient c(m) (Eq. (3.22)),
we want to prove that

c(C) = c(A)c(B): (3.111)
which one should expect to hold because to leading order we can simply re-
duce the Hamiltonian to the parts acting on either A or B and drop all other
terms, so that the flipping of A and B are independent processes.

First, let us write c(m) in terms of matrix elements of V by expanding all
operators S (Eq. (3.21)). In this way, c(m) is given by a sum over many chain
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products of matrix elements of V1;2:

c(m) =
X

n;{l};{k}
⟨∅| Vl1

|k1⟩ ⟨k1|
−∆"k1

Vl2
|k2⟩ ⟨k2|
−∆"k2

: : : Vln
|m⟩
−∆"m

=
X

n;{l};{k}

nY
i=1

⟨ki−1| Vli |ki ⟩
−∆"ki

; (3.112)

with k0 ≡ ∅ and kn ≡ m. When summing over the full space of n; {l}; {k} in-
dices, many combinations will give a zero contribution. Let us consider only
the combinations that have a non-zero contribution, and let us denote those
by a single index —. Each — corresponds to a unique choice of n; {l}; {k} in-
dices, which we denote as n—; {l—}; {k—}. We may now write

c(m) =
X
—

n—Y
i=1

v—;i
−∆"—;i

; (3.113)
where v—;i ≡ ⟨k—;i−1|Vl—;i |k—;i ⟩. Each — corresponds to a unique way or path
of flipping the m cluster starting from ∅. We can apply this to our clusters of
interest, giving

c(A) =
X
¸

nY̧
i=1

v¸;i
−∆"¸;i

; c(B) =
X
˛

n˛Y
j=1

v˛;j
−∆"˛;j

; (3.114)

c(C) =
X
‚

n‚Y
k=1

v‚;k
−∆"‚;k

; (3.115)
The important thing to realize here is that each ‚, that is, each path from ∅
to the C cluster, is some combination of a path ¸ and a path ˛. Vice-versa,
if one takes two paths ¸ and ˛ from ∅ to A and B respectively, then each
combination of ¸ and ˛ is a different path from ∅ to C and will contribute to
c(C). It is obvious that any such combination has the same product of V matrix
elements, but the energy denominators will not combine so easily. Still, we
see already that we can write

c(C) =
X
¸;˛

Ω(n¸; n˛)
nY̧
i=1

v¸;i

n˛Y
j=1

v˛;j ; (3.116)

where Ω(n¸; n˛) involves calculating the chain product of energy denomina-
tors for each combination of ¸ and ˛ and summing over all combinations. To
be more clear, let us define Ω(n¸; n˛) analytically. Creating the combinations
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of ¸ and ˛ can be seen as the problem of choosing n¸ out of n¸ + n˛ ob-
jects, with a total of (n¸ + n˛)!=n¸!=n˛! possible combinations. We specify a
combination in terms of variables ffi = 0; 1 with i = 1; 2; : : : ; n¸ + n˛, where
ffi indicates if the object i has been chosen or not. To have a valid combina-
tion, we must limit ourselves to sequences of ffi where n¸ objects have been
chosen. Then, we write

Ω(n¸; n˛) =
1X

ff1=0

1X
ff2=0

· · ·
1X

ffn¸+n˛
=0

‹

0@n¸;n¸+n˛X
i=1

ffi

1A×
n¸+n˛Y
k=1

−1
∆"¸;

Pk
i=1 ffi

+∆"˛;
Pk
i=1(1−ffi )

;

(3.117)

where ‹(a; b) is the Kronecker delta and we define ∆"¸;0 = 0 and ∆"˛;0 = 0.
Here we have used the independence between clusters to write the excitation
energy as the sum of the excitation energies at A and B. Ω is to be seen
more generally as a function of two integers, Ω(u; v), obeying 0 ≤ u ≤ n¸ and
0 ≤ v ≤ n˛. Expanding the sum over ffu+v in Ω(u; v), one can show that

Ω(u; v) =
−1

∆"¸;u +∆"˛;v
[Ω(u; v − 1) + Ω(u − 1; v)]; (3.118)

very much related to how one can calculate combinations recursively which
gives rise to Pascal’s triangle. With these new definitions, we set ourselves to
prove Eq. (3.111), which is now equivalent to

Ω(n¸; n˛) =
nY̧
i=1

−1
∆"¸;i

n˛Y
j=1

−1
∆"˛;j

= Ω(n¸; 0)Ω(0; n˛): (3.119)

We shall prove the more general statement
Ω(u; v) = Ω(u; 0)Ω(0; v) (3.120)

recursively. First, let us assume that
Ω(u − 1; v) = Ω(u − 1; 0)Ω(0; v); (3.121)
Ω(u; v − 1) = Ω(u; 0)Ω(0; v − 1): (3.122)

Using these assumptions on Eq. (3.119), we easily obtain Eq. (3.120). The
initial equations of the recursion are straightforwardly true, if one just defines
Ω(0; 0) ≡ 1, thus the cluster independence is proven.
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3.C General derivation of zeros in single spin model We consider the most
general quadratic single spin model with anisotropy and a transverse field.
Upon choosing axes that bring the quadratic part to a diagonal form and
choosing the easy axis to be along z (Jx ; Jy ≥ Jz), we have the most gen-
eral form

H = +JzS
2
z + JxS

2
x + JyS

2
y − hxSx − hySy : (3.123)

Here we changed the sign of Jz with respect to previous Hamiltonians for ease
of notation. Also note that one can further simplify the Hamiltonian by sub-
tracting a constant J ~S:~S = JS(S + 1)I term and choosing J = Ji so that we
remove one of the second order couplings, showing that we only need 2 sec-
ond order couplings to have the most general Hamiltonian. We also choose
Jx ≥ Jy ≥ Jz , which can always be accomplished by an exchange of the x and
y axes. We will see that we obtain zeros only if the transverse field is parallel
to the hard axis, i.e. hy = 0. Let us choose then hy = 0. In that case the
Hamiltonian has the symmetry

R ≡ exp(iıSx); [H;R] = 0; (3.124)
or in other words, H is invariant under Sy;z → −Sy;z : Let us now analyze the
Hamiltonian as a matrix in the Sz basis: It is pentadiagonal with non-zero
⟨m|Sz |m′⟩ matrix elements when |m − m′| ≤ 2: However, we can reduce the
Hamiltonian to a tridiagonal form by rotating the quantization axis around
the y axis by an angle ¸ (Eq. (3.80)). The part of the rotated Hamiltonian
that potentially has matrix elements between S′

z eigenstates with m′ = m± 2

results as
H′

2 = [Jx − (Jx + Jz) sin
2(¸)](S′

x)
2 + Jy (S

′
y )

2 (3.125)
If we impose ⟨m|H′

2|m − 2⟩ and solve for ¸, we obtain
sin2(¸) =

Jx − Jy
Jx − Jz

; (3.126)
and the condition that 1 ≥ sin2(¸) ≥ 0 gives exactly Jx ≥ Jy ≥ Jz , which is
what we assumed to begin with. With the above choice of the rotation angle
¸, we reduce H′ to be tridiagonal. If in addition, it happens that one of the
off-diagonal elements vanishes,

⟨m|H′|m − 1⟩ = 0; (3.127)
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H′ takes a block diagonal form, and the projector on S′
z ≥ m∗,

Pm∗ =
SX

m=m∗

|m⟩ ⟨m| ; (3.128)
commutes with H′, [H′; Pm∗ ] = 0: Since, however, Pm∗ does not commute with
the symmetry R, the condition (3.127) necessarily implies the presence of
degeneracies in the spectrum. Let us now argue that the ground state is ex-
actly degenerate. The ground state |Ψ0⟩ can be chosen to be an eigenstate
of Pm∗ . It certainly has a non-zero overlap with one of the low energy states
S′
z = ±S or more generally, with some of the states S′

z = m with |m| ≥ |m∗|.
Upon acting with the unitary R on this state one obtains a new ground state,
that has a significant overlap with the opposite low energy states S′

z = ∓S
(or more generally, S′

z = −m) that lies outside the eigenspace of Pm∗ to which
|Ψ0⟩ belongs. Thus, R |Ψ0⟩ is linearly independent of |Ψ0⟩, implying the exact
degeneracy of the ground state, and thus vanishing of the tunneling.

Let us now analyze when the condition (3.127) is satisfied. After the ro-
tation by an angle given by Eq. (3.126), the off-diagonal part of the rotated
Hamiltonian H′ reads

H′
1 = (Jx − Jz) cos(¸) sin(¸)(S′

zS
′
x + S′

xS
′
z)− hx cos(¸)S′

x : (3.129)
Its matrix element between m∗ and m∗ − 1 vanishes if and only if

hx = ±
q

(Jx − Jy )(Jz + Jx)(2m
∗ − 1): (3.130)

There are thus exactly 2S equidistant zeros of the tunnel splitting. This state-
ment is entirely independent of the size of the spin, or the couplings, as long
as they satisfy Jx ≥ Jy ≥ Jz .



Chapter 4

Conformal and chiral phase transitions in
Rydberg chains

The work in this chapter was done in collaboration with Natalia Chepiga and
my supervisor Frédéric Mila. It was published in pre-print in 2022 [3] and is
under peer review for publication in PRL. The same results are presented here
but the discussion is restructured to fit with the long format of the thesis. The
chapter is structured as follows: In the introductory section, we discuss the
problem of incommensurate-commensurate phase transitions in the context
of the Rydberg experiments, and we overview some of our results on the Ryd-
berg model in the phase diagram shown in Fig. 4.1. A complementary section
describing the DMRG algorithm was added, followed by implementation de-
tails specific to our problem. We then present our DMRG results. Finally, we
discuss these results in the context of previous numerical and experimental
work.
4.1 Commensurate-Incommensurate transitions

4.1.1 Chiral clock models In recent experiments on chains of Rydberg atoms
with programmable interactions [75, 76], quantum phase transitions between
commensurate (C) ordered phases of periods p = 2; 3; 4 and an incommen-
surate (IC) disordered phase were probed dynamically using the quantum
Kibble-Zurek mechanism [130, 131, 132]. These experiments have renewed
the interest in the problem of IC-C transitions first studied in the 80’s and
90’s in the context of adsorbed monolayers [133, 134]. The IC-C critical be-
havior of a minimal model introduced to describe such transitions, the p-state
chiral clock model [135, 136] (CCM), contains most of the relevant physics.
The IC-C transition of CCMs with p ≥ 5 happens through an intermediate
gapless phase of central charge c = 1 characterized by incommensurate cor-
relations. The dominant wave-vector q is not frozen to any specific value but
changes continuously (floats) through the phase, therefore referred to as a
floating phase [137, 138, 135]. The disorder to floating (FL) transition is in

73
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the Kosterlitz-Thouless (KT) universality class [17], with exponentially diverg-
ing correlation length ‰. One reaches the ordered phase through a Pokrovsky-
Talapov [139] (PT) transition where the wave-vector q (which we define in
units of 2ı) goes to 1=p as a power-law with the exponent ¯̨ = 1=2 = ‌′.

The p = 2 CCM does not allow chirality and is instead an Ising-like Hamil-
tonian, thus one expects such an universality class (‌ = 1) if the transition
is continuous. The most interesting cases are p = 3 and 4, where the IC-C
transition may be direct. In particular, if the chiral perturbation ‹ is relevant,
it was suggested [77] that the IC-C transition may still be direct but in a
new non-conformal (chiral) universality class characterized by ‌ = ¯̨, at least
up to a Lifshitz point ‹L beyond which the chiral perturbation becomes large
enough for an intermediate floating phase to appear. The direct transition
can in any case only be conformal at a single point, the point where the chiral
perturbation vanishes, as long as the perturbation remains relevant. Discard-
ing possible first-order transitions, as we increase the chiral coupling starting
from zero, we might see the following sequence of transitions:

‹ = 0 0 < ‹ < ‹L ‹ > ‹L

Conformal (‌ > ¯̨) Chiral (‌ = ¯̨) PT - Floating - KT

T; h

1
‰ ; q C IC

0; 1p
T; h

1
‰ ; q C IC

0; 1p
T; h

1
‰ ; q C FL IC

0; 1p

The middle case might not happen, in which case there is no Lifshitz point
(‹L = 0) and we transition directly to an intermediate floating phase. The
parameter driving the transition could be the temperature T for classical 2D
systems [140] or some coupling h for quantum 1D.

The case of p = 3 has been extensively studied [141, 136, 77, 142, 143,
144, 145, 146, 140, 147, 148]. It is known that in this case the chiral pertur-
bation is relevant [143], and the existence of a transition line in the chiral uni-
versality class has been well established, with both experiments [133, 134]
and recent numerical work [149, 150, 151, 152, 153] supporting it. When
‹ = 0, the model reduces to the exactly solvable three-state clock (Potts)
model [154, 155] with exponents ‌ = 5=6 and ¯̨ = 5=3.

On the other hand, the four-state chiral clock model has not received the
same level of attention, but it is known that the chiral perturbation is rele-
vant and evidence points to a floating phase appearing immediately when ‹
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is turned on [135, 144, 156].
4.1.2 The Rydberg model The model which will mostly occupy us until the
end of this chapter is the experimentally relevant model of Rydberg atoms
[75, 76] on a chain of length L. Each Rydberg atom can be excited to a Ryd-
berg state by an applied laser with Rabi frequency Ω and detuning ∆. Excited
Rydberg atoms have long-range interactions between them, while they don’t
interact in the ground state. We can model the system with a hard-core boson
Hamiltonian as such

H =
X
i

−∆n̂i +Ωf̂fxi +
X
r>0

n̂i n̂i+r
r6

; (4.1)

where f̂fxi ≡ b̂†i + b̂i and n̂i ≡ b̂†i b̂i . We will use more frequently the units
∆=Ω and Rb ≡ Ω−1=6 as introduced in Ref. [75]. In the classical limit Ω =

0 of the Rydberg model (Eq. (4.1)), the repulsive interaction and a positive
bias ∆ will compete to reduce/increase the number of bosons. By adjusting
their ratio, a devil’s staircase [157, 158] of classical ground states of many
different ratios of occupation per unit cell size is generated, with the largest
phases having one boson every p sites. One finds such phases of period p

when the potential ∆ is tuned such that the occupation of sites at distance
p−1 is prohibited by strong interactions, while bosons at distance p are weakly
interacting: (p − 1)−6 ≫ ∆ ≫ p−6, which is a significant interval because of
the rapidly decaying van der Waals potential energy. The p phases are stable
whenΩ is turned on, up to values ofΩ ∼ ∆, beyond which the system becomes
disordered and the q-vector incommensurate. However, the q-vector varies
continuously throughout the disordered phase, so that q = 1=p equal-q lines
exist. These lines intersect their respective ordered phases at a single point
(Fig. 4.1), the exception being p = 2, where instead the ordered phase is
surrounded by a commensurate disordered phase. For p = 3; 4, the transition
along the equal-q lines seems to be of a conformal nature, as we will try to
justify with our results. The same does not seem to be true for p = 5, as
it is thought that ordered phases of p ≥ 5 first go through a floating phase
before reaching disorder, while floating phases cover only partially the p = 3; 4

phases. While the connection with the CCMs suggests itself, it can be made
explicit with the introduction of the blockade models.
4.1.3 Blockade models The relation between the p = 3 CCM and the Rydberg
model is well established through the r = 2 blockade model [149, 160]. In
these models, configurations with bosons at a distance less than r are forbid-
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Figure 4.1: Phase diagram of the Rydberg model obtained with DMRG simu-lations on 121 sites, where Rb ≡ Ω−1=6. The ordered lobes are found in theintervals p − 1 ≪ Rb ≪ p. The black region is a commensurate disordered(CD) phase with wave-vector q = 1=2 in units of 2ı. The grey region is a sketchof the floating phase based on a previous iDMRG work [159] (See Sec. 4.4.9for details). Note the very narrow floating phases between the 1=3 and 1=4phases. Equal-q lines are shown in the disordered and floating phases. Afloating phase is also expected to exist in the lower part of the 1/3 lobe, how-ever, it will be much thinner than above the lobe [152, 159], and in fact, it ispushed to much larger values of∆=Ω. The points P and AT are respectively ourestimates of the Potts and Ashkin-Teller critical points. Apart from the cutsthat go through these points, either horizontally/vertically, or along the asso-ciated commensurate lines (P/AT cuts), the other cuts discussed throughoutthe chapter are horizontal or vertical and are labeled cn. They are representedby arrows colored according to the ordered phase they cross (c1 and c3 crosstheir respective lobes from below). The following table defines the cuts:
∆=Ω ∆=Ω Rb Rb

c1 3 c3 2:4 c4 2:225 c7 3:22
c2 2 c6 2 c5 2:45 c8 2:32
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den, and only the interaction at distance r is kept. We can define such models
as

Hr
Ω

=
X
i

−Qn̂i + f̂fxi +

„
Rb
r

«6

n̂i n̂i+r ;

n̂i (1− n̂i ) = 0; n̂i n̂i+j = 0 ∀i ; ∀j ∈ {1; : : : ; r − 1};
(4.2)

where we defined Q ≡ ∆=Ω. We could generate the r blockade model from
the Rydberg model by setting Rb ≈ r , with Q ∼ 1, so that the two local terms
are of the same order as the interaction term of distance r . Then, considering
the power-law exponent (= 6) to be very large, interaction terms at distance
smaller than r become energetically prohibitive while longer range terms be-
come negligible. Thus the r blockade model is expected to be qualitatively
accurate with respect to the Rydberg model in some interval around Rb = r ,
which is between two consecutive ordered phases of periods p = r; r + 1.

The r = 1 blockade model is simply an Ising-like Hamiltonian, just like
the two-state clock model. The IC-C transition of the r = 2 blockade model
is in the three-state CCM universality class [149, 150, 152]. In this model,
there is an integrable line that crosses the period-3 boundary at a single point
where the transition is conformal, a three-state Potts point corresponding to
‹ = 0. As we move away from this point along the phase boundary, we are
necessarily increasing ‹. Chiral lines seem to surround the point [149, 150,
152], and further away intermediate floating phases appear. We can expect
the same critical behavior in the Rydberg model. While the location of the
three-state Potts point on the blockade model is known since it lies on an
integrable line, it is not known in the Rydberg model, but we may locate it
by following the q = 1=3 line since it should intersect the period-3 phase at
exactly the conformal point as demonstrated in the blockade model [152].

In the context of Rydberg atoms, the r = 3 blockade model has only been
introduced very recently [160]. Here, the commensurate line was found to
intersect the p = 4 phase boundary at a conformal point where the correlation
length critical exponent is ‌ ≃ 0:78 [160]. In contrast to the r = 2 case, the
transition along this line is expected to be in the Ashkin-Teller (AT) universality
class [161], which is actually a family of universality classes parametrized by
a coupling –. At – = 0, the Ashkin-Teller model corresponds to two decoupled
Ising chains, while at – = 1 it realizes a symmetric 4-state Potts model. The
exponent ‌ ≃ 0:78 would correspond to an AT universality class with – ≃ 0:57

[162, 163]. Recent work on the chiral AT model has shown [156] that a direct
chiral transition occurs immediately upon turning on ‹ for – & 0:42, at least up
to – ≃ 0:978, after which the chiral perturbation is irrelevant [144]. Thus the
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value of – ≃ 0:57 is inside the predicted range where a direct chiral transition
would exist [156].

Similar theoretical work studying the possible conformal and chiral tran-
sitions on the period-3 and 4 phases has not been carried out. Both the Potts
and Ashkin-Teller points have not been located, and there is no direct con-
firmation of their existence. A proper analysis of the IC-C transition of the
Rydberg model is due, given the now very real possibility of accessing these
transitions experimentally.
4.2 The DMRG Algorithm This section aims to describe succinctly the Den-
sity Matrix Renormalization Group (DMRG) algorithm [164] as it was imple-
mented to obtain the results presented in this chapter. There will be some dis-
regard towards the chronological development of the method and its roots.
The original formulation based on reduced density matrices will be avoided.
Readers familiar with the method may skip this section entirely.

It is common to use a matrix-based notation when discussing the Ma-
trix Product State (MPS) representation of the algorithm [165, 166, 20], but I
found a pure tensor-based notation using the Einstein summation convention
to be much more convenient, and the tensor expressions translate naturally
to simple diagrams in the style of tensor networks. An arbitrary tensorMa1···alcan be represented in graph form as a node (or shape) with l edges coming
out of it, each edge corresponding to an index. This representation suits us
because the only operation between two tensors we are concerned with is in-
dex contraction (a generalization of matrix multiplication), which we indicate
by connecting edges appropriately. With context and some conventions, it
will be apparent from the diagrams which node/edge is which so that label-
ing them won’t be necessary.
4.2.1 Singular value decomposition of tensors The singular value decom-
position (SVD) of a matrix is a linear algebra operation that is central to the
MPS representation and to the DMRG algorithm. One form of this decompo-
sition states that any M × N matrix can be factorized as USV , where S is a
square diagonal matrix with dimension a = min (M;N) and non-negative di-
agonal entries si ≡ Si i , and where U†U = V V † = Ia. We won’t go into how to
perform this operation since very efficient SVD algorithms are most likely im-
plemented in a linear algebra library of your favorite programming language.
Rather, we will abstract this notion and generalize it to tensors: First of all,
note that we can always transform any high degree tensor into a matrix by
grouping its indices into two sets. For example, we can separate the list of
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indices somewhere in the middle, like so: Ma1···al → M(a1···ak)(ak+1···al ), where
we denote the sets with parentheses. More general sets with reordering of in-
dices are of course also possible, but because we will only look at 1D systems,
this will be the only type of grouping we need. We can then apply an SVD to
the resulting matrix, so that the matrix splits into three matrices, USV , with
U carrying the left set of the indices and V the right set. If the singular values
are not of interest, we can matrix multiply S into one of the other matrices,
or instead of an SVD we could have applied the related QR or RQ decomposi-
tions, all resulting in a two-matrix decomposition. We can summarize these
transformations as such:

; (4.3)
where we decomposed a tensor with two arbitrary sets of indices (separated
by the dotted line) with RQ, SVD, and QR from left to right. The diamond-
shaped tensor is diagonal, while the triangle tensors are ”semi-unitary”, in the
sense that the contraction of the tensor with its complex conjugate (mirrored
in the horizontal axis) on all its indices except the newly-formed index at the
tip of the triangle gives us an identity tensor:

: (4.4)

To be clear, this equation is equivalent to U∗
(s)iU(s)j = ‹i j , where (s) is a set

of indices and where we naturally represent a Kronecker delta by a single
edge since uivi = ui‹i jvj . Note that this property means that the ”vectors”
(U(s))i form an orthonormal basis. We will refer to the indices formed during
the decomposition, which thus are always contracted, as virtual, and their
dimension will be denoted by Dl . In contrast, the original indices shown un-
contracted in Eq. (4.3) will have some physical interpretation in a physical
context, and thus we refer to them as physical, and their dimension will be
denoted by dl .

4.2.2 Full tensor decomposition We can apply the SVD and/or QR decompo-
sitions in Eq. (4.3) sequentially in many different ways on a tensor to decom-
pose it as a contraction of individual tensors, each carrying one of the original
indices. A possible decomposition is to use QR sequentially on a tensor and
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separate all its indices, one by one, from left to right:
: (4.5)

We can reach other decompositions by using Eq. (4.3) to move the center of
decomposition (CD), that is, the tensor represented by a circle or the singular
value tensor. For example:

: : : : (4.6)
Assuming we start from a tensor with L indices of dimensions dl=1···L, what

are the dimensions Dl=1···L−1 of the virtual indices in a full tensor decompo-
sition? Each virtual index originates from and also delimits a partition of the
physical indices into two sets, left and right. If we don’t eliminate null vec-
tors or null singular values that may arise in the sequence of decompositions,
then the dimension of any virtual index is the same whether or not the left
and right sets have been further decomposed or not. Given that the dimen-
sion of a virtual index created with any decomposition is the smallest of the
dimensions of the two sets of indices, it follows that

Dl = min

0@Y
k≤l

dk ;
Y
k>l

dk

1A: (4.7)

4.2.3 Tensor representation of quantum objects An arbitrary state |Ψ⟩ in a
Hilbert space of states |ff1 · · ·ffL⟩ of L variables ffi each taking d values can
be written as |Ψ⟩ = Mff1···ffL |ff1 · · ·ffL⟩. As should be apparent now, the tensor
M can be sequentially decomposed as in Eq. (4.5), each tensor carrying a
single physical variable ffi . Quantum operators on this space can go through
the same decomposition. Local operators are particularly simple to represent
since they are already in a local tensor representation. They can also show
us the usefulness of the semi-unitarity on the state representation. By repre-
senting the complex conjugate of a tensor as its mirror image in the horizontal
axis, we can write a local expectation value ⟨Ψ|Ô|Ψ⟩ as

; (4.8)

where we progressively applied the semi-unitary property of Eq. (4.4). We can
see here how we can measure directly in the CD tensor any local quantities we
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want. Moreover, replacing the operator Ô by an identity, we see that the CD
tensor also contains in it the norm of the state. If the CD tensor is a singular
value matrix, we have that the norm of the state is the sum of the squares of
the singular values, meaning any SVD we do will gives us implicitly the norm of
the state, and also that we have 0 ≤ si ≤ 1 for normalized states. In fact, if two
states have CDs on equal positions and differ only on the CD tensor, then the
dot product of both states is given by a contraction of the CD tensors. If the
CD tensors are singular value matrices, then we have ⟨Ψ|Ψ′⟩ = si s

′
i . Removing

null singular values would of course come at no cost in the representation of
a state and there is no reason not to, but note that removing small singular
values has an equally small cost. We will come back to this later. . .

Calculating correlations of the form ⟨Ψ|Ôi Ôj |Ψ⟩ cannot be reduced as much
in terms of operations needed, but we can minimize the cost by having the CD
tensor in-between sites i and j and using again Eq. (4.4).

While a general operator of the form Mff1···ffL
ff′1···ff′L

|ff1 · · ·ffL⟩ ⟨ff′1 · · ·ff′L| can be
decomposed through SVD/QR into local tensors, most physically relevant op-
erators are written in terms of regular arithmetic expressions on local opera-
tors which we can exploit to build analytically a set of local tensors. For ex-
ample, a TFI Hamiltonian with open boundary conditions can be decomposed
with the local tensor

Hffff
′

ab ≡

0B@Iffff
′
J(f̂fz)ffff

′
h(f̂fx)ffff

′

0 0 (f̂fz)ffff
′

0 0 Iffff
′

1CA
ab

; (4.9)

shown as a matrix on the virtual indices a; b = 1; 2; 3. At the edges, the tensors
only have one virtual index and are given by Hffff′1b and Hffff′a3 . This tensor gen-
erates the tensor product chains of operators (I⊗ I⊗ f̂fx ⊗ : : : ) that compose
the Hamiltonian. It has encoded in it a set of rules on what operator(s) can
come next in a chain, given a partial chain. These rules can be represented
as a directed graph on the virtual indices, as such:

1
2

3I
Jf̂fz f̂fz

I

hf̂fx

(4.10)

The three virtual indices represent three possible states of a partial chain of
operators: in state 1, the chain consists only of identities, while in state 3 we
have already added the Pauli matrix segment so only identities can follow. In
state 2, the partial chain ends with a f̂fz so another must follow necessarily. A
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fully decomposed operator is called a Matrix Product Operator (MPO).
4.2.4 The one-site DMRG algorithm We can write the eigenvalue equation
H|Ψ⟩ = E |Ψ⟩ in tensor decomposition as

E × : (4.11)
Contracting on the left and on the right with the complex conjugated semi-
unitary tensors,

E × E × : (4.12)
This last expression can be seen as an eigenvalue equation on the orange
CD tensor and is the basic equation to solve in a one-site DMRG algorithm.
Solving it for the lowest energy tensor with some eigensolver method like the
Lanczos algorithm would only give us the appropriate ground state tensor if
all other tensors already formed an exact decomposition of the ground state,
but the resulting CD tensor will still minimize energy in some local sense and
so the overall state will be closer to the ground state, no matter what the
surrounding tensors are. We can further minimize energy by shifting the CD
by one site as we did in Eq. (4.3) and solving the eigenvalue equation at the
new CD site. Repeating this step and turning back when reaching the edge, we
progressively decrease the energy, hopefully converging to the ground state.
The DMRG algorithm proceeds in back and forth sweeps of local updates until
some convergence criteria like the energy difference between steps is deemed
small enough. We could also use the overlap ⟨Ψ|Ψ′⟩ between the state before
and after the update, which is simply given by a contraction of the original and
updated CD tensor. Another convergence criteria to consider is the energy
variance ⟨Ψ|H2|Ψ⟩ − ⟨Ψ|H|Ψ⟩2, which is a better measure of the distance to a
true eigenstate but as a trade-off is expensive to compute.
4.2.5 Optimal contraction order Since each update is local, it may seem at
a glance that the DMRG algorithm is computationally less complex than con-
ventional exact diagonalization (ED). Let’s check explicitly the computational
complexity (number of arithmetic operations) of the tensor contraction and
see if this is true. In principle, when solving for the CD tensor in Eq. (4.12) we
have to calculate the full tensor contraction in the first expression, and using
the Lanczos algorithm one will have to repeat this contraction to generate as
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many Lanczos vectors as we need. However, on each Lanczos step only the
CD tensor gets updated, so that we do not need to repeat the full contraction
every time. Considering the gray part as already contracted, we are left with

D D

d

D D

d ; (4.13)

where to simplify we assume that the left and right virtual indices have the
same dimension D. Tensor contraction scales as the dimension of the con-
tracted indices times the dimension of the resulting tensor, which means Eq.
(4.13) is of orderD4d2. However, since this is the most costly operation of the
whole algorithm, we should make sure it is done in an optimal way. The ques-
tion is, in what order should we contract the tensors in the first expression
of Eq. (4.12)? Finding the optimal order of contraction on a general tensor
contraction is non-trivial and a major problem in tensor network methods in
larger dimensions[167], but a 1D case like this one is simple enough that find-
ing the optimal way is manageable. The optimal order can depend on which
index dimension is the largest, which in this case will be D, as we shall see.
Then the best way to do this contraction is column by column, edges to middle
of the chain. Again, we can exploit the fact that only the CD tensor is updated.
Having already contracted all columns except the CD column, we have

D D

d

D D

ffl1 4
2
3 ; (4.14)

where we define ffl as the virtual index dimension of the Hamiltonian tensor,
and where we label tensors in the order they should be contracted (1 and 4
could of course be swapped). The leading order contractions are 2 and 4, of
order D3ffld . For better time efficiency in DMRG, we can additionally save all
the partial contractions from the edges up to each column, and update these
contractions as necessary as we move the CD.

All that is left now to get the full complexity of DMRG is to determine the
order ofD. Since all the physical indices have the same dimension d , it follows
from Eq. (4.7) that

Dl = min
“
d l ; dL−l

”
: (4.15)
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Given the maximum dimension DL=2 = dL=2, DMRG scales approximately as
ffld

3L
2 , which in principle is better than the regular matrix-vector multiplication

scaling (d2L) of ED methods, but that is if we don’t take into account some
possible optimizations of ED like the sparse-matrix form of many Hamiltoni-
ans which leads to an ED scaling of mdL, where m is the average number of
non-zero entries of each row ofH. There is also the question of how to imple-
ment symmetries in the algorithm, which is possible [168], but is much more
straightforward in ED.

4.2.6 Why DMRG works If this was all there was to DMRG, then it would be
no more than a curiosity and no better than ED. But focusing on the scaling
would be missing the point. In practice, one rarely uses DMRG to find an exact
ground state, if ever. Instead we limit the virtual index dimension, if necessary
by discarding the smallest singular values up to some numberD of our choice:

Dl = min
“
D; d l ; dL−l

”
; (4.16)

and we take the truncated MPS as a variational state on which we do DMRG
sweeps. The claim is that even for extremely large system sizes, we can always
find a limit D such that the variational state is effectively equal to the ground
state up to our intended precision. How can this be?

Of course, if D is smaller than dL=2, then we cannot represent all possi-
ble states of the Hilbert space. This is clear in the limit of D = 1, where the
contractions on the virtual indices become superfluous and the indices them-
selves can be removed:

D=1
===⇒ : (4.17)

In this representation, all local physical variables are independent of each
other, so we can only represent product states of the form |Ψ1⟩⊗|Ψ2⟩⊗|Ψ3⟩ : : : .Only if the dimension of a virtual index is larger than one can we represent
dependence between local states. The larger the dimension of an index, the
larger the dependence between the subspaces on its left and right can be, or
in other words, the more impactful a measurement on one of the subspaces
can be on the other. Using the SVD decomposition, we can quantify very well
the inter-state dependence, or quantum entanglement between the left and
right subspaces. Let us take a state and partition it with SVD:

; (4.18)
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where the thicker vertical edges are supposed to represent all the physical
indices on each side. Let us say the partition resulted in D singular values,
which will be the dimension of the virtual index. We can see the side tensors
as sets ofD vectors, one for each singular value. Then, given the semi-unitary
property (Eq. (4.4)), each set forms an (incomplete) orthonormal basis. We
could write the decomposition as such:

|Ψ⟩ =
DX
i=1

si |ui ⟩ ⊗ |vi ⟩ ; (4.19)
where ⟨ui |uj⟩ = ⟨vi |vj⟩ = ‹i j . This is called the Schmidt decomposition. This
decomposition is useful because it helps us see that the i-th singular value
squared is the probability of observing the state |ui ⟩ ⊗ |vi ⟩. An observation
on one side will give a unique outcome on the other side, so the distribution
of singular values squared represents exactly the entanglement between both
sides. A proper way of quantifying the amount of entanglement is with the von
Neumann entropy of this distribution, also called the entanglement entropy:

S ≡ −
DX
i=1

s2i log s
2
i : (4.20)

For an infinite system, an SVD partition of a non-trivial state will give an infinite
number of positive singular values in the range of 0 to 1, which we can sort
from largest to smallest. What makes DMRG work is that even when L → ∞,
the entanglement entropy of typical 1D ground states will saturate to a finite
value, or equivalently, the distribution of the singular values has an exponen-
tially decaying tail, so a truncation of the singular values somewhere in the
exponential regime gives us a great approximation of the state.

By typical ground states we mean in particular the ground states of gapped,
local, unfrustrated Hamiltonians. For such Hamiltonians, the correlations be-
tween local operators decay exponentially at large enough distance with a
characteristic length ‰,1 which in natural units we can expect to behave as the
inverse of the energy gap. The correlation length is therefore finite at infinite
length, so partitions of the state which are at a distance significantly larger
than ‰ are effectively independent. The contributions to the entanglement at
a partition boundary come mainly from the entanglement between sites in a
neighborhood of the boundary of size determined by ‰. Increasing the length

1While different correlation functions don’t have necessarily the same correlation length,we can take ‰ to stand here for the largest one.
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of the chain won’t increase significantly the entanglement, and therefore S is
finite at any length.

The entanglement entropy is still an ”extensive” quantity, but this quantity
lives in the bond separating subsystems, so it will grow roughly proportion-
ally to the area of the partition boundary between subsystems, or in discrete
terms, proportionally to the number of bonds that cross the boundary. We
can summarize this property as S ∼ Lds−1, where ds is the spatial dimension.
This property is known as the area law of the entanglement entropy [169].

In turn, gapless Hamiltonians have power-law decaying correlation func-
tions, and we can expect the same heavy-tail behavior in the singular values,
so any truncation we do will be significant. In this case, it is known from CFT
that in 1+1D the entanglement entropy scales as the logarithm of the sub-
system length [170]. This scaling is not so bad, and in practice DMRG is still
very useful for such systems.

In summary, the MPS representation of a state is a natural way of repre-
senting quantum entanglement, as first demonstrated with the exact solution
of the AKLT model [20]. The area law states that for gapped ground states the
quantity of information on a partition of the state is proportional to the area
of the partition boundary, implying it is a bounded quantity in 1D systems.
This allows us to truncate the virtual index dimension with little cost and ob-
tain ground states at system lengths much larger than what is possible with
conventional ED methods.
4.2.7 Convergence of DMRG While each DMRG update of a local tensor is
guaranteed to reduce the energy, nothing guarantees that we will converge
to the ground state. In our descent of the energy landscape, we might be
attracted towards a local minimum and never be able to escape. Since the
local update is based on ED methods like Lanczos that preserve well-defined
conserved quantities of our initial guess, we cannot reach the ground state
if we start in the wrong symmetry sector. However, the problem of DMRG is
more severe in that we might get stuck even if we start in the symmetry sector
of the ground state.

The problem is particularly clear in the one-site DMRG algorithm in the
presence of a conserved quantity like the magnetization Pl ⟨f̂fzl ⟩. Once our
state reaches a well-defined magnetization, the Lanczos algorithm will not
allow us to change it anymore, which also means the magnetization at any
single site ⟨f̂fzl ⟩ cannot change alone, it has to swap or mix with the rest of
the chain, but since the update is local and each local tensor carries in it the
local magnetization ⟨f̂fzl ⟩ as we saw with Eq. (4.8), we effectively have local
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magnetization conservation which imposes a severe restriction on how the
local tensor can be updated, so that we might never reach the ground state
even while being in the same symmetry sector.

Even if we are not exactly at a defined magnetization but only close, the
energetic cost of locally changing the magnetization to reach other plateaus
can still be too high and so we are at risk of quickly falling into the energeti-
cally closest magnetization plateau and therefore the magnetization freezing
locally.

4.2.8 Two-site DMRG There are modifications of the one-site algorithm that
can prevent the state from getting stuck and even speed-up convergence
[171]. However, the most common approach to attenuate this problem is to
instead update two consecutive sites on each DMRG step. This means that in
Eq. (4.12) we leave two sites uncontracted, one of them being the CD tensor:

E × : (4.21)

The complexity of the contraction becomes D3ffld2, just d times larger than
for one-site. We can start the Lanczos algorithm with the contraction of the
two tensors to be updated. After converging with Lanczos to some tensor
with two physical indices, we perform an SVD or QR/RQ to separate again the
indices and at the same time move the CD tensor to the next site to carry on
with the next update.

In the context of the freezing magnetization discussed above, the two-site
update would allow the mixing of local magnetization between the sites and
thus allow a much larger subspace in which to update the tensors.

The two-site modification carries an additional advantage: After the two-
site tensor update and subsequent SVD, the index that connects the two sites
can be up to d times larger than before. We could again truncate the singular
values up to the previous dimension D, or we could let the index dimension
grow. Instead of setting a hard limit D, we could instead look at the singular
value distribution and decide more carefully where to truncate. For example,
it is common to discard singular values smaller than 10−8 since these carry
a statistical weight smaller than machine double-precision. Being able to dy-
namically changeD throughout the simulation is also useful if we have a good
guess MPS of small virtual index dimension to start DMRG with.
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4.2.9 The starting MPS As a starting point for the algorithm, we could gener-
ate random tensors with the appropriate dimensions, taking already into ac-
count a limit D to the virtual index dimensions, then left/right-orthogonalize
them and finally normalize the CD tensor. A better approach is to grow a
small MPS up to the size L we wish. This is commonly called infinite-system
DMRG, in contrast with finite-system DMRG (the one- and two-site algorithms
we described) where the size remains the same. The chain growth can be
formulated as follows (the tensor color is for guidance only):

• Start with a small MPS of length X ≪ L. We could obtain this MPS
from random tensors or, even better, from the decomposition of an ex-
act ground state obtained from ED. Let’s say the length is even, for sim-
plicity, and that the CD is a singular value tensor in the middle of the
chain:

: : : : : : (4.22)
• We substitute the CD singular value tensor by a random normalized ten-

sor with two physical indices and two virtual indices with equal virtual
dimensions as the singular value tensor:

: : : : : : (4.23)
• We then solve the two-site DMRG equation for this tensor we introduced

and update it accordingly.
• Finally, an SVD on this tensor leaves us with a chain similar to the start-

ing chain but with two more sites:
: : : : : : (4.24)

• We repeat these steps until we reach the intended length L. If L is odd,
at the last step we can substitute a tensor with a single physical index
instead.

Note that we have to grow the chain by at least two sites to allow the vir-
tual index dimension to grow if necessary. However, to speed up the growth
we can set a limit Dg during the growth which is significantly smaller than
the finite-system D, in the hope that the few states |ui ⟩ ⊗ |vi ⟩ generated dur-
ing the infinite-system DMRG are representative of the subspace of states of
largest singular values of the target ground state, making this state an excel-
lent starting point to optimize from.
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4.2.10 Implementation The basic code implemention of DMRG used in this
chapter is made available on Github2. Some work is still needed documenting
its structure so it can be used by others, and further functions were written
around this code which are not yet made available, but the published code
can already be run on the Rydberg model.
4.3 DMRG implementation of the Rydberg model In this section we will
discuss details of the DMRG simulation specific to the Rydberg model, which
include the MPO implementation of the model, our choice of convergence pa-
rameter, and how we measured the correlation length and wave-vector from
our results.
4.3.1 MPO form of the Hamiltonian The long-range interaction term of the
model requires some care in its implementation in the MPO representation of
the Hamiltonian. We could treat each term at a unit distance r separately, each
term being implemented with its own virtual state (Eq. (4.10)), and to avoid
having the virtual MPO dimensionffl grow with the system size, we can truncate
the power-law somewhere, which does not imply such a large error due to the
large exponent of the interaction. However, there is a better approximation
we can do which preserves the power-law at all length scales. While it is
not obvious why, a power-law decay can be well approximated by a sum of
exponentials of different weights and length scales [172]. The approximated
interaction term looks like this:

X
i

X
r>0

n̂i n̂i+r

mX
k=1

uk–
r
k : (4.25)

Exponential interactions are much more straightforward to implement in an
MPO representation [173, 166]. Each of the m exponential terms can be in-
cluded with no approximation in the local Hamiltonian tensor as such:

kI

–k

uk n̂ –k n̂
I ; (4.26)

where we follow the conventions of Eq. 4.10. In this work we have used twelve
exponentials (m = 12). Together with the ∆ and Ω terms, this results in ffl =

14. A good set of parameters for the approximation can be found with a regular
2www.github.com/ivomac/DMRG code

https://github.com/ivomac/DMRG_code
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un –n un –n

−4:375 780× 10−2 0:325 988 1:936 228× 10−5 0:634 314
−3:707 815× 10−2 0:326 220 1:244 534× 10−3 0:429 284
−1:216 618× 10−6 0:787 502 6:849 186× 10−2 −0:017 733
2:120 790× 10−18 1:013 796 7:054 547× 10−2 0:103 117
4:620 461× 10−7 0:830 014 8:547 828× 10−2 0:322 411
4:587 174× 10−6 0:730 021 8:550 526× 10−1 0:009 142

Table 4.1: Power-law fitting coefficients used for 601 sites, rounded to 6 dec-imal places. The closeness of some –n suggest that the fit could be improvedeven further. However, it is not clear how to properly approach the search fora global minimum to the problem given the large number of parameters.
gradient descent minimization of the cost function:

F ≡
LX
r=1

 
r−6 −

mX
k=1

uk–
r
k

!2

: (4.27)
For all sizes considered in our simulations, the minimized cost function was
smaller than 10−16. Specifically, our simulations on chains of length L = 601

used the parameters shown in Table 4.1, with a resulting cost function F =

3:8×10−19. As a comparison, a truncation of the power-law preserving the first
12 terms results in an equivalent squared differences error of ∼ 7:5× 10−14.

4.3.2 Correlations and q-vector After meeting our convergence criteria to-
wards a ground state estimate, we measure the correlation function between
the middle site j and site j + r ,

Cr ≡ ⟨n̂j n̂j+r ⟩ − ⟨n̂j⟩ ⟨n̂j+r ⟩ : (4.28)
We obtain the correlation length ‰ and q by fitting the correlation function
with the expected Ornstein-Zernike (OZ) form [174]:

Cr ∼ Ar cos (2ıqr + ffi0); (4.29)
where

Ar ≡ A0
e−r=‰√
r
: (4.30)

What we want to observe and fit for is the dominant exponentially-decaying
term of the correlation, which might only clearly appear for some finite r . At
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(a)

(b)

Figure 4.2: Demonstration of a successful fit using the two-step fittingscheme for a 601 site simulation along the c8 cut (Fig. 4.1), at (∆=Ω;Rb) =
(2:23; 3:32).
the same time, when r is closer to L, boundary effects will be prevalent, so we
discard points from the head and the tail-end of the correlation function until
an OZ regime is thought to be reached, then we fit the remaining points. One
should also pay attention to possible machine-precision errors when the cor-
relation length is very low. In practice, we removed all points where the cor-
relation was smaller than 10−12. We implemented a two-step fitting scheme
(Fig. 4.2) that has been described before [160], where first we obtain ‰ and
A0 by performing a linear fit on Cr√r in a semi-log scale. Then, q is obtained
by a least-squares cosine fit on Cr=Ar , where one minimizes the cost function
F (q) defined as the sum of squared differences.

In general, we find the limit of reliable correlation lengths to be ‰ ∼ L=6,
beyond which ‰ is noticeably affected by the finite size. Still, we find that the
q-vector suffers less from finite size effects than ‰, thus a cosine fit beyond
this ‰ limit can still give an accurate estimate of q.
Error bars The confidence intervals (error bars) of q are an estimate of the
fitting error. They are calculated by assuming that the error ‹q is proportional
to the cost function. It then follows that ‹q = F (dF=dq)−1 in lowest order,
which can be explicitly calculated. The main contributions to this error are
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not precision errors in the fitting algorithm, but are instead errors in the de-
termination of ‰ and A0, or deviations from an OZ regime. The error bars of
‰ were deemed too small to be represented. The error on ‰q̄ is derived from
these errors by the differential chain rule.
Fitting problems on close-to-commensurate q values The automatic two-
step fitting algorithm described above does have some pitfalls, and some
manual intervention was required in some cases. A common problem that ap-
peared were unnatural ”kinks” when looking at q and/or ‰ along some cuts.
The following explanation was found for this problem, which turns out to be
a general fitting problem that is certain to happen in close-to-commensurate
systems. When q takes a value commensurate with the lattice, say q0, the fit to
obtain ‰ is quite simple and very accurate, since the correlation function has
an exact period of 1=q0 = p. In this case, if one only takes the points that are
local maxima of the correlation, they will form a perfect line (in semi-log scale,
correcting for the √l factor). In fact, the semi-log plot will show a sequence
of p possibly overlapping lines, all with the same slope, each associated with
the p values that cos (2ıq0l) can take (we set ffi0 = 0 for simplicity). However, a
small shift away from the commensurate value will cause these lines to move.
Taking q = q0 + ", the oscillating part of Cr can be written as:

Cr
Ar

= cos (2ıq0l + 2ı"l): (4.31)
The deviation "will act as a phase shift on cos (2ıq0l). Since we fit the absolute
value of Cl , each line returns to its initial value after 1=(2") points. A maxima
is reached every 1=(2p") points. This means that, if the number of points
X we use to fit Al is smaller than 1=(2p"), there is a single maximum of the
oscillation in our interval, thus we are not able to see the enveloping function
Al . This sets a limiting frequency shift "c ≡ 1

2Xp below which the fitting error
of q and ‰ should increase. The error again goes to zero when " → 0, so we
could expect our error will be maximum at " = "c=2, that is, when we only see
half a period of the phase shift. In this case, we can expect the fitted value of ‰
to be smaller than what it should. This was observed in several of the cuts we
consider below: when q was close to "c=2 in the disordered side of our cuts, we
often saw a kink in q or ‰. While some small algorithm modifications did help
with this problem, it was hard to properly solve all the kinks, so some kinks
were dealt with by manually finding pairs of q and ‰ values which resulted in
a reasonable cosine behavior of Cr=Ar , and then using those parameters as
starting points for the fitting optimization.
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4.3.3 Convergence As a convergence criteria for our simulations, we re-
quired the relative energy variance

⟨Ψ|H2|Ψ⟩
⟨Ψ|H|Ψ⟩2

− 1; (4.32)
where |Ψ⟩ is the variational MPS state, to be smaller than 10−11 when estimat-
ing the boundaries of phases and 10−12 when determining critical exponents
and equal-q lines. A limit of D = 350 was typically enough to reach such
precision for 601 sites, while index dimensions up to 500 were used to reach
convergence close to or inside the gapless floating phases.
4.4 Results Our objective in the following sections is to use DMRG to study
the IC-C transitions of the long-range interacting Rydberg model. We map
the q-vector on the incommensurate disordered phase and accurately deter-
mine where the q = 1=3; 1=4 equal-q lines intersect their respective ordered
phases. We discuss our approach in tackling the IC-C transitions and present
our results along many cuts (all shown in Fig. 4.1), for chains of 301 and 601

sites. We also look at the finite-size scaling of the conformal points at ex-
perimentally relevant sizes. Finally, we discuss our attempts and failure at
reproducing the floating phase boundary of Ref. [159].

To avoid stability problems in DMRG, we chose system sizes of the form
L = 12l + 1 with l integer, which split the ground state degeneracy in the
ordered phases by guaranteeing a single ground state with occupied edges
for p = 3; 4. For the full phase diagram (Fig. 4.1) we chose L = 121 which
stabilizes all relevant orders. This phase diagram gave us a first estimate of
the q-line intersection points. In particular, it already showed that only the
commensurate lines intersect the ordered lobes, while all the other lines avoid
them and continue in-between lobes. The same behavior is observed at all
parameter scales we consider, as shown below. However, there are ordered
phases of other rational periods in the regions between the 1=p phases, but
these phases only appear at larger ∆=Ω [159], beyond the scale we looked
at. It is natural to expect the appropriate equal-q vectors to also intersect
these phases. All these phases seem to be covered by a floating phase [159],
although there is some chance that the prominent q = 2=5 phase between 1=2

and 1=3 is not completely covered. Still, the focus for now is in the dominant
ordered phases 1=p which are experimentally more accessible and pose the
major open questions regarding the IC-C critical nature.

In all our plots of ‰ and q along some cut in the phase diagram, points
which are filled (fully colored) are considered in the power-law fits, while hol-
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(a) (b)

Figure 4.3: Correlation length along the ∆=Ω = 3 cut (left) that crosses thecommensurate transition line below the period-2 lobe, and the ∆=Ω = 2 cut(right) that crosses it above. All points shown in the disordered sides areinside the commensurate phase. The minimal finite-size effects observed letus conclude from the exponent obtained that the transition is continuous andin the Ising universality class.
low points are not. For clarity, we do not show data points close to the tran-
sitions if they were not included in the fit. These points were removed in the
first place mainly because they were clearly affected by finite-size effects. We
also only show error bars on the filled points.

4.4.1 Period-2 cuts We start by looking at the order-disorder transition on
the period-2 phase. This was the easiest case to tackle, with bond dimensions
of less than 150 being required to get the accuracy of 10−12 in our criteria,
and minimal finite-size effects already for 301 and 601 sites. In general, as
we increase Rb, the complexity increases and larger bond dimensions are
required to achieve the same precision.

In contrast to the p ≥ 3 cases, the 1/2 lobe is surrounded by a commen-
surate disordered (CD) phase. The q-vector changes sharply close the CD
border and becomes practically flat inside, with a minimal variation of mag-
nitude smaller than 10−3. This criteria was used to set the CD border shown
in the phase diagram. We have checked that this phase extends at least up to
∆ = 0. The CD to ordered phase transition was found to be continuous and
in the Ising universality class. We confirmed this by taking several cuts along
the phase boundary and verifying that upon approaching the transition the
correlation length diverges with the critical exponent ‌ ≃ 1. We confirm this
at least up to the deepest cuts we considered at ∆=Ω = 3, as seen in Fig. 4.3.
Above the lobe (on the side closer to the 1=3 phase), we looked at cuts up to
∆=Ω = 2, with similar results. We did not look at cuts beyond ∆=Ω = 2 above
since it was expected already from the effective r = 2 blockade model that
the transition would be Ising on this side [149, 152]. However, as we move
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away from the 1=3 phase, the Ising critical line of the blockade model even-
tually ends at a tricritical Ising point, below which the transition is first order.
We did not find any evidence of a first order transition in the Rydberg model.
It is not very surprising though because the tricritical point of the blockade
model is located at negative (attractive) next-to-blockade interactions, which
naturally does not occur in the Rydberg model. A more appropriate effective
model of the lower part of the 1=2 lobe is the r = 1 blockade model, where a
change of variables to a spin system results in an Ising model with transverse
and longitudinal fields where the transition is always Ising [175].
4.4.2 The product criteria The product ‰q̄, where we define q̄ ≡ |q − 1=p|,
can let us differentiate between a conformal, chiral, and intermediate floating
phase without relying on accurate estimates of exponents. This quantity will
diverge at the KT transition of a floating phase (‰ = ∞; q ̸= 1=p), approach
a constant for a chiral transition ( ¯̨ = ‌), and go to zero for a conformal
transition ( ¯̨ > ‌) [77]. Thus we also show this quantity for each of our cuts,
when applicable.

When drawing conclusions from ‰q̄, one should be aware of how the in-
evitable finite-size effects will affect it, in particular when we are very close
to a transition. On one hand, ‰ is limited to some maximum value determined
by the chain length, so we could expect a bias towards lower values of ‰q̄
than expected as we approach the transition. This is in part compensated by
both fitting errors or actual biases of the q-vector value with respect to the
expected, which keep q̄ from being zero at the transition and thus push ‰q̄ to
be bigger.

In practice, points where the correlation length was noticeably limited
were easy to identify and were removed. The error in q̄ was more problematic:
a slight shift across the whole cut was commonly observed, in particular for
301 sites. The resulting error is more prominent on cuts where ‰q̄ is mainly flat
(chiral): one commonly sees a slow but smooth increase in ‰q̄ as we approach
the transition, for example in panel (n) of Fig. 4.5. Still, the effect is visibly
reduced for 601 sites in all affected cuts.
4.4.3 Procedure for period-3 and 4 phases A very similar approach was
conducted for both the 1=3 and 1=4 cases that we now describe: First, the
region close to the tip of the ordered lobes were mapped with L = 301 data
(Figs. 4.5(d) and 4.6(d)). From these regions, we get a first estimate of where
the conformal points occur. Next, we improve our estimate of the q = 1=3

and 1=4 lines by going even closer to the conformal points and mapping this
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region with L = 601 data (Fig. 4.4). At this scale, the equal-q lines are effec-
tively linear. We fit these lines and then determine ‌ along these cuts (P and
AT cuts in Figs. 4.5(a) and 4.6(a) respectively). The point where ‰ diverges, or
equivalently where 1=‰ vanishes, is our estimate of the location of the confor-
mal points, and the exponent with which it diverges is our numerical estimate
of ‌.

To further characterize the conformal transitions, we considered vertical
and horizontal cuts that go through the estimated P and AT points respec-
tively. These are labeled ”P/AT cut (vertical/horizontal)” in Figs. 4.5 and 4.6.
Along these cuts, q varies, and accordingly one can estimate the exponent
¯̨ and follow the behavior of ‰q̄. The two vertical lines on the q̄ and ‰q̄ plots
are the 301 and 601 site estimates of the critical points obtained from the cor-
relation length fit. To fit the q̄ power-laws, we fix the critical points to these
estimates.

Having accurate estimates on the conformal transitions, we move away
from these points along the transition lines in the hope of targeting direct
chiral transitions and also indirect transitions beyond the chiral lines. Most of
our results on IC-C transitions for q = 1=3; 1=4 are shown in Figs. 4.5 and 4.6
respectively.
4.4.4 Determining the P and AT cuts We obtain the equal-q lines in our
phase diagrams by interpolation of the q-vector on a finite grid. We use this
same method to accurately determine where the q = 1=3 and 1=4 lines inter-
sect their respective ordered phases, using data from simulations on 601 sites
very close to the phase boundary, as shown in Fig. 4.4. The resolution in q
that we reach is of the order of 10−4. The grid data in these figures show the
order parameter O (Eq. (4.35)). We can see in these figures the start of the
ordered phases in the top right. Linear fits of the interpolated lines give us
the following:

Rb ≃0:1284∆=Ω+ 1:9527; (q = 1=3;P cut); (4.33)
Rb ≃0:1441∆=Ω+ 2:8747; (q = 1=4;AT cut): (4.34)

Simulations along these linear fits then lead to estimates of the conformal
critical points. To note that a slight drift of the equal-q lines is noticeable
when comparing these results with the equal-q lines obtained for 301 sites
shown in Figs. 4.5(a) and 4.6(a). In these plots, the black lines are given by
Eq. (4.34). A proper finite-size scaling of the equal-q lines was not done.
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(a)

(b)

Figure 4.4: Regions where the q = 1=3; 1=4 lines intersect the ordered phases.The colored grid data shows the order parameter O (Eq. (4.35)). A linear fitof the 1=3 line gives Rb = 0:1284∆=Ω + 1:9527 (P cut), while for 1=4 we have
Rb = 0:1441∆=Ω + 2:8747 (AT cut). All other equal-q lines are repelled whenapproaching the ordered phases.
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Figure 4.5: Scaling across the boundary of the period-3 phase along P, P ver-tical, c3;4;5;6 cuts. (a): Tip of the 1/3 lobe, mapped with L = 301 data. Notethe inverted y-axis in panels (p) and (q).
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4.4.5 Period-3 cuts Along the P cut, we expect to find a phase transition
in the three-state Potts universality class, with exponents ‌ = 5=6 ≃ 0:833,
¯̨ = 5=3 ≃ 1:66 and ˛ = 1=9 [154, 155]. Our results for 601 sites agree
within 1% with the theory predictions (Fig. 4.5(a, b, e)). The location of the
critical point P is (∆=Ω;Rb) ≃ (1:942; 2:202). The discrepancy in the 301 site
exponents could be due to finite-size effects displacing the q = 1=3 line, so
that along this cut we slightly missed the 301 site equal-q line. As expected,
the concavities of q and ‰ are opposite, and ‰q̄ converges to zero (Fig. 4.5(g)).
Overall, our results provide strong evidence in favor of a three-state Potts
universality class at the point P.

Let us now discuss the results we have obtained away from this point.
Both above the 1=3 line (c4 cut, horizontal, Rb = 2:225) and below it (c3 cut,
vertical, ∆=Ω = 2:4) we find evidence of a chiral transition: ‰q̄ is nearly flat
upon approaching the transition (Fig. 4.5(h, n)). Note that cut c3 (f, g, h)
shows very little difference between the 301 and 601 data: The data are pretty
much overlapping. This is due in part to the comparatively small correlation
length values at the chosen scale ofRb, but this only proves that one can draw
stronger conclusions at just 601 sites. With both the ‌ and ¯̨ exponents being
so far from the expected 1=2 for a PT transition, this limits a possible interme-
diate floating to be extremely narrow in this scale. Even if such a phase exists,
on most length scales the transition will still look chiral from the standpoint
of the correlation length and q-vector.

Along the cut c5 at Rb = 2:45, further above, the IC-C transition is more
consistent with Pokrovsky-Talapov. Our finite-size ‌′ ≃ 0:6 is slightly larger
than the expected value ‌′ = 1=2, but ¯̨ ≃ 0:52 is in very good agreement
with the PT value ¯̨ = 1=2. It does make sense that ¯̨ is more accurate since
in DMRG, q converges faster than ‰. On the disordered side of the transition,
we find a rapidly growing correlation length which later levels off before the
PT transition at a very large value. The plateau is slightly smaller in ∆=Ω for
601 sites. This can be understood as a KT transition into a floating phase,
with the ‰ plateau being limited by the finite size. The ‰q̄ product shows more
clearly a divergence in the correlation length before q becomes commensu-
rate. Extrapolating to infinity this divergence, we would find a floating phase
of width in ∆=Ω of approximately 0:01 for 301 sites and 0:004 for 601 sites.
This result might indicate that the floating phase reaches closer to the top of
the lobe than what is shown in the phase diagram. Alternatively, the shrinking
width of the floating phase with system size could suggest that there will be
a crossover to a chiral regime at larger system sizes. One should note that
the correlation length of the plateau on the IC side of the transition, while it



100 Conformal and chiral phase transitions in Rydberg chains

is certainly very large, it is also comparable to system size, thus substantially
above what we would consider reliable. Simulations at larger system sizes
would make the transition along this cut clearer. Still, while it may not be
completely convincing, the observed behavior still contrasts with respect to
the chiral/conformal situations.

Cut c6, located further above in Rb is qualitatively equivalent to cut c5,
but shows a narrower difference between system sizes, especially compar-
ing ‰q̄ between both cuts (k, q). Still, it may not be sufficient to completely
discriminate between chiral and floating in the infinite length limit.
4.4.6 Period-4 cuts Turning now to the IC-C transition of the 1/4 phase,
much of the discussion of the 1=3 case will repeat. We will discuss all the
cuts in Fig. 4.6. Along the commensurate line and for 601 sites, we find a
phase transition at a point denoted AT in Fig. 4.1 at (∆=Ω;Rb) ≃ (2:346; 3:213)

with exponent ‌ ≃ 0:80, which is consistently replicated with a horizontal cut
that crosses this critical point. The ¯̨ exponent, unknown analytically for the
AT universality class, is nevertheless larger than one and so the ‰q̄ product
decays to zero at the transition.

The situation around the AT point and around the P point are very similar.
The c7 cut (Rb = 3:22) is in agreement with a direct chiral transition of expo-
nent ‌ (≃ ¯̨) slightly larger than at the AT point, suggesting that this exponent
increases as we initially move away from the AT point.

Cut c8 (Rb = 3:32) shows the clearest indication of an intermediate floating
phase out of all the cn cuts, which makes sense since it is also the closest to the
expected floating region shown in Fig. 4.1. The L = 601 exponents ‌′ ≃ 0:52

and ¯̨ ≃ 0:47 are in good agreement with the PT universality class, and the
correlation length shows different behaviors on both sides of the transition.
The ‰q̄ product diverges as expected, similarly to cuts c5 and c6, with the
exception that in the c8 cut the 301 site data are mainly above the 601 line,
meaning (‰q̄)301 . (‰q̄)601, while the opposite is observed in cuts c5 and c6.
4.4.7 Order parameter scaling To further confirm the conformal nature of
the transitions along the commensurate lines, we looked at the scaling of the
order parameter O defined as the maximal local difference in the occupation
⟨n̂l⟩. To be sensitive to all relevant periods of the occupation oscillation (p =

2 · · · 5), we consider the maximal oscillation in the middle 10 sites, leading to
the following definition of O:

O ≡ max
l∈J
⟨n̂l⟩ −min

l∈J
⟨n̂l⟩ ; (4.35)
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Figure 4.6: Scaling across the boundary of the period-4 phase along AT, AThorizontal, c7 and c8 cuts. (d): Tip of the 1/4 lobe, mapped with L = 301 data.Note the inverted y-axis in panel (k).
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(a) (b)

Figure 4.7: Order parameter scaling along (a) the P and (b) the AT cuts (notethe log-log scale). The data was fitted with the expected power-law behavior:
O ∼ ∥∆=Ω − (∆=Ω)c∥˛. For 301 sites both the exponent and the criticalpoints are fitting parameters, while for 601 sites ˛ is fixed to the expectedvalues to show the good agreement with our estimated ‌ along these cuts.The horizontal coordinates were shifted by the estimated critical point values.
where J ≡ {L−1

2 − 4; : : : ; L−1
2 +5} for odd L. The results are shown in Fig. 4.7.

Along the P cut, and for 601 sites, the scaling is in excellent agreement with
the exact result ˛ = 1=9. While ˛ is not known exactly in the AT universality
class, it will be related to ‌ by the scaling relation ˛ = ‌∆ffi, where ∆ffi is the
lowest CFT scaling dimension of the AT model, which has been measured as
∆ffi = 1=8 in MERA simulations on the chiral AT model, independently of the
coupling – [176]. Given ∆ffi and ‌, we can produce estimates of all the other
critical exponents:
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For 601 sites, the scaling is in good agreement with the expected ˛ ≃ 0:10.
4.4.8 Finite-size scaling It is already apparent from the results shown for
301 and 601 sites that a significant drift of the equal-q lines and of the phase
boundaries happens at small system sizes. Indeed, as shown in Fig. 4.8, the P
and AT points show a significant drift between 601 sites down to experimen-
tally relevant sizes like 61 sites. Extrapolating from these results, our L→∞
estimate of the P point is (∆=Ω;Rb) ≃ (1:951; 2:203) and of the AT point is
(∆=Ω;Rb) ≃ (2:357; 3:214). Consistently, we observe that the ordered lobes
start at larger ∆=Ω with increasing size. The finite-size drift of the ordered
lobes posed a problem when trying to overlap the floating phase boundaries
from Ref. [159] (an infinite-size result) with our L = 121 ordered lobes. The
floating phase had to be slightly shifted towards lower ∆=Ω by matching the
tips of the ordered lobes on both phase diagrams, otherwise the 1=5 lobe
would not have been fully covered by the floating phase.
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Figure 4.8: Finite size scaling analysis along the c1 (Ising), P, and AT cuts.Top panels: inverse correlation length for several system sizes along the cuts.Bottom panels: finite-size scaling of the size-dependent critical points, where
‌ = 1; 3=5; 0:80, for c1, P, and AT respectively. The L → ∞ limits lead to
Rb = 1:1434 for c1, ∆=Ω = 1:951 for P, ∆=Ω = 2:357 for AT.
4.4.9 Floating phase boundary Our attempts of replicating the infinite DMRG
floating phase boundaries [159] with the L = 121 data used in the rest of
the phase diagram (Fig. 4.1) failed dramatically, which is why we decided to
instead sketch this phase based on those results, which for that matter were
more accurate. According to that study, there is no floating phase around
the tips of the period-4 and period-3 phase, and a floating phase was only
observed beyond ∆=Ω ≃ 24 below the period-3 phase.

Note that the ”Lifshitz” points in the phase diagrams, that is, the points
where we connect floating, ordered and disordered phases, are just a neces-
sity of representing smooth phase transition lines, they are not an accurate
physical estimate. While our results suggest the existence of such points, they
have not been determined accurately.

Central charge In a first attempt, we tried to determine the boundary through
the central charge: The floating phase is in the Luttinger liquid [177, 178]
universality class with central charge c = 1. We obtained the central charge
numerically by fitting the entanglement entropy Sl arising from the Schmidt
decomposition of the state at a bond l . We fit Sl in a small interval in the
middle of the chain with the Calabrese-Cardy formula for the entanglement
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(a) (b)

Figure 4.9: Phase diagrams where the floating phase boundary was deter-mined (a) by a central charge criteria: along several cuts, we interpolate tofind the point where c reaches the value of 1. (b) from the correlation length.

entropy with open boundary conditions [170]:
Sl =
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where g is a system-dependent constant. The resulting phase diagram is
shown in Fig. 4.9(a). As we can see, the resulting floating phase is signifi-
cantly overestimated. The ID to floating transition lines were obtained by in-
terpolation of the central charge on a finite grid to determine where it reaches
the value of 1. The line was then smoothed to remove nonphysical oscillations.
This criteria was used because simulations which were beyond this limit (so
supposedly inside the floating phase) often reached values of c much bigger
than 1. While the entanglement entropy had properly converged in terms of
D, the profile of Sl seemed unphysical: Such large values of c would always
come paired with negative values of the constant g such that the fit of Sl be-
comes negative at some point inside the chain. Fitting Sl properly was also a
challenge: On one side, the presence of Friedel oscillations in the entangle-
ment entropy encourages us to widen the interval of points used in the fit so
as to average out the oscillations, but the interval where the proper scaling is
observed is very small so c will artificially grow as we include more points, so
it was not possible to determine the floating phase boundary with these data.

As an aside, there were also attempts to determine the central charge of
the critical P and AT points. Along these cuts, it was observed that the fitted
central charge decreased monotonically across the phase boundary, being
the largest on the disordered side and missing the expected values at the
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critical point estimates derived from the correlation length. There were some
efforts to justify reaching the expected value somewhere inside the ordered
phases, by checking if the scaling dimension of the local order parameter also
reached the expected value at that point, but this was found not to be true.
Instead of the inconclusive central charge results, we presented the order
parameter scaling as further proof of the claimed critical nature.
Correlation length In a second attempt, we estimated the floating phase
boundary through the correlation length. As can be noted with cuts c5, c6, and
c8, ‰ tends to increase quickly and then plateau at some value. We considered
several horizontal cuts and qualitatively estimated the beginning of a floating
when a sharp increase in ‰ was found. This resulted in the boundaries shown
in Fig. 4.9(b). While still overestimating the size of the floating phase, these
boundaries are much closer to what is shown in Fig. 4.1. However, a floating
phase covering the 1/5 lobe could not be differentiated using the L = 121

data, so this approach was also scrapped.
4.5 Comparing with previous work Finally, we discuss our results in the
context of the Rydberg experiments which motivated this work and of other
recent numerical work.

Our q = 1=3 results are in qualitative agreement with the r = 2 blockade
model results [152] up to one point: we have not found evidence of a floating
phase below the P point, although we expect a floating phase of significant
width to appear at large ∆=Ω. If cut c3 is indeed chiral, then the lower part of
the 1=3 lobe would prove to be the most numerically accessible chiral region of
the phase diagram, and ideal to further explore the chiral universality class.
Moreover, cut c3 is remarkably far from the Potts point on the scale of the
phase diagram of Fig. 4.1, leaving a significant parameter range to probe the
chiral universality class experimentally.

On its own, the detection of a 3-state Potts universality class along the
P cut is already an indication that the P point should be flanked by chiral
transitions: If the P point is Potts, then the period-3 to IC transition should
be in the p = 3 CCM universality class, and as we have seen already, existing
evidence supports chiral transitions surrounding the Potts point of the p = 3

CCM.
A similar argument applies for the AT point: Assuming an AT universality

class, a critical exponent ‌ ≃ 0:80 corresponds to a – coupling of the AT model
of 0:5. This represents a slight shift with respect to the exponent ‌ ≃ 0:78

(– ≃ 0:57) found in the p = 4 blockade model at larger system sizes [160],
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although it is still unclear whether this shift is within our error bars or if there
is a discrepancy between the models. Nevertheless, – ≃ 0:5 is still inside the
range 0:42 . – . 0:978 where the chiral perturbation is relevant and where
we might expect chiral lines to surround the conformal point [156].
4.5.1 The Kibble-Zurek exponent In the Rydberg atom experiments on chains
of 51 atoms[76], the experimentally accessible quantity related to the IC-C
transitions is the Kibble-Zurek (KZ) exponent — [130, 131, 132], which was
probed dynamically by ramping through the transition along specific cuts, in
a range ofRb which includes the P and AT points. For infinite systems, the KZ
exponent is related to the correlation length exponent ‌ by — = ‌=(1 + z‌),
where z is the dynamical critical exponent relating the time and spatial char-
acteristic lengths (fi ∼ ‰z). The experimental value of the KZ exponent, which
controls the power-law increase of the domain size with the sweeping rate,
was measured at around — ≃ 0:38 across the period-3 phase and — ≃ 0:25

for the period-4 phase. TEBD simulations complementing the experiments re-
ported values of around — ≃ 0:45 for period-3 and — ≃ 0:3− 0:4 for period-4
[76]. The exponent — remained fairly independent from Rb across the phase
boundary close to the tips of the lobes.

The exponent — ≃ 0:25, found for the period-4 phase experimentally, can
be regarded as a lower bound on the KZ exponent since it coincides with the
exponent of a dynamical driving across a PT transition (‌′ = 0:5, z = 2),
although the system, coming from smaller ∆=Ω, would cross first a floating
phase.

On our side, we can determine the KZ exponent at the conformal points
P and AT where the dynamical exponent z is fixed to 1, but along the chiral
lines this exponent is not known, and an accurate estimate of its value along
those lines is beyond what we could achieve numerically. To fully determine
the chiral universality class, one will also need an estimate of the exponent
z , along with another static critical exponent like, for example, the specific
heat exponent ¸, which could be determined from the second derivative of
the ground state energy with respect to the coupling driving the transition.

To determine z along the chiral line, one can complement the dynamical
approaches which return — with accurate numerical measurements of ‌, but
the current dynamical results are not sufficient for this purpose: The KZ ex-
ponent of the Potts point can be determined exactly, — = 5=11 ≃ 0:4545, while
for the AT point we have found an exponent ‌ ≃ 0:80 leading to — ≃ 0:444.
While the TEBD values are comparatively close [76], the experimental values
are significantly smaller.
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Attributing this discrepancy to finite-size limitations on the experimental

side, we suggest that new KZ experiments should be carried out, using the
conformal cuts P and AT determined here as benchmarks along which one
should find the predicted KZ exponents for sufficiently large system sizes.
Then, a comparison between experimental values away from the conformal
points and theoretical estimates of ‌ should allow one to reach precise esti-
mates regarding the dynamical critical exponent.

Overall, we believe the picture on the IC-C transitions of the Rydberg model
is much clearer now, even though it is still incomplete regarding the chiral uni-
versality class. It is also unclear how the exponent ‌ varies along the chiral
line, or if it converges or not to the expected PT value of 0:5 as we get closer to
the Lifshitz point, the location of which is also unknown. The numerical work
on the r = 2 blockade model [152] suggests that there is a discontinuity or at
least a sharp decrease of ‌ close to the Lifshitz point, in which case the Lifshitz
point might be easier to locate. Work is in progress to refine our estimates of
the exponent ‌ all along the boundary of the period-3 and period-4 phases
where the transition is believed to be chiral, and possibly a first estimate of
the location of the Lifshitz points could be achieved.





Chapter 5

Future work

Apart from what has already been mentioned throughout this thesis, some
other work developed during this time was left unfinished and some ideas are
still to be explored. We recap here some of these ideas and make some initial
observations, when applicable.
Level crossings and edge Majoranas Given the interpretation of the level
crossings in the Majorana picture, it was our initial intention to explore other
systems with topologically protected edge modes which could show simi-
lar behavior in the oscillations of its energy. Topologically protected phases
are not limited to a single edge mode: Adding next-neighbor couplings to
the Kitaev chain already generates a phase with two Majoranas at the edge
[179, 180, 181], for example. It would be interesting to note if these edge
Majoranas also show oscillations for a finite-size in certain regions of the two-
Majorana phase, and it is not clear a priori whether or not the oscillations of
the Majoranas would be correlated between them, or if an effective interaction
between them turns the level crossings into avoided crossings, thus remov-
ing all finite-size exact zeros. If the Majoranas are instead independent of
each other, then it is possible that they could be described by the two-level
degenerate perturbation theory developed in Chapter 3.
Level crossings and Floquet Majoranas The same type of questions were
under investigation on a related Floquet system: a driven Kitaev chain where
the chemical potential spikes periodically as a Dirac-delta [182, 183]. Flo-
quet systems are typically characterized by the periodic eigenspectrum of
its evolution operator (quasienergies), and this system in particular features
topological phases of increasing number of zero-quasienergy Majoranas as
one increases the period and the area of the spike. It was shown how the
heat transfer to a thermal bath through the edges of the chain is sensitive to
the different topological phases [184]. It was not clear how having many Ma-
joranas could influence the autocorrelation time, which was of special interest
to us at the time. We found that it was not simple to find parameter regimes on
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which to study these questions properly, as some edge Majoranas only seem
to appear for very large system sizes – since one is only guaranteed to have
the expected number of zero quasienergies in the thermodynamic limit – while
the quasienergy of the Majorana adiabatically connected to the static zero en-
ergy Majorana decays exponentially with system size. Moreover, it seems that
not all Majoranas are exponentially located at the edge, with some showing
a maxima of their wavefunction away from the edge, which could be inter-
preted as a repulsion between the edge Majoranas, although it could also be
a size-dependent result.

Interestingly, a symmetry property of the model was noted that could ex-
plain the emergence of the edge Majoranas in the Brillouin zone boundaries
of the quasienergies, the so-called ı-Majoranas [182], which we believe is
not known in the literature as it was new to our collaborators. Otherwise, a
relation seems to exist between the Majorana fermions of zero quasienergy
in driven Kitaev models and in Kitaev models with longer range-interactions,
both models having phases with more than one Majorana at each edge, and
a BCH series expansion of the Floquet Hamiltonian suggests that the driv-
ing induces effective long-range interactions, so it might be more feasible to
instead focus on long-range Kitaev models in the future.
Extensions of the tunneling amplitude method The study of the effects of
disorder on the tunneling amplitude could be expanded beyond drift effects
on the level crossings, as one could numerically simulate stochasticity on the
perturbative couplings entering the recursion relations. More generally, the
method could become a framework on which to study a variety of spatially-
dependant systems: In our focus on demonstrating the method on models
where one can extract exact results, one might miss the point that the recur-
sion relations at the basis of the method are simple enough that one can easily
implement them numerically, in particular in 1D, so that more general models
with, for example, more complicated spatial anisotropy, spatially modulated
magnetic fields, or random couplings, are very much accessible. Otherwise,
some other possible fields of application of the method have already been
mentioned (Sec. 3.8).
Rydberg atoms As we have already discussed, the next steps in the investi-
gation of the Rydberg incommensurate-commensurate transitions is clear, as
the chiral universality class is left to be completely studied, followed by the
location and characterization of the Lifshitz points. We have pointed out es-
pecially to the lower part of the 1=3 ordered lobe which has proved to be the
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most accessible chiral region, both experimentally due to its length, and nu-
merically due to the lower computational complexity that is apparent in this
region.

The numerical determination of other critical exponents along the chiral
lines but also across the conformal points would be a useful self-consistent
check of our results. There is still a big room for improvement in our simula-
tions as our attempts at determining the central charge or other critical expo-
nents were unsuccessful, except for the determination of ˛ at the conformal
points. Time-evolving MPS methods could be used to more closely simulate
the experimental setup and directly probe the dynamical and Kibble-Zurek
exponents, with some similar numerics having been done recently [185], in
this case using ED.

It could also prove interesting to carry out the same numerical study done
here in the case of other Rydberg-Rydberg power-law interactions, in partic-
ular r−3 which can be relevant experimentally as it is accessible with Rydberg
atoms, but one could also look at other exponents in order to understand the
change of the critical exponents (or lack of it) as one approaches the limit
cases of the blockade models (∼ r−∞) and the Coulomb potential. While in
general one could expect no significant change with respect to what we ob-
served, the tendency in the case of the p = 4 conformal universality class
seems to be an increase of the Ashkin-Teller coupling – as we move towards
the blockade model, given the estimates – ≃ 0:5 for r−6 and – ≃ 0:57 for
the blockade model [160], so it is a possibility that the chiral regime of the
p = 4 case disappears at a smaller power-law exponent, linked to a decrease
of the – coupling beyond the limit – . 0:42 (‌ & 0:82) where a chiral regime
is expected to exist [156]. A change in the p = 3 universality class, however,
seems highly unlikely.
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– Are you sure you lost them here?
– Oh no, I lost them in the park!
– Then why would you search here?
– Well, here we have light, of course.
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