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Abstract

When learning from data, leveraging the symmetries of the domain the data lies on is
a principled way to combat the curse of dimensionality: it constrains the set of func-
tions to learn from. It is more data efficient than augmentation and gives a generaliza-
tion guarantee. Symmetries might however be unknown or expensive to find; domains
might not be homogeneous.
From the building blocks of space (vertices, edges, simplices), an incidence struc-

ture, and a metric—the domain’s topology and geometry—a linear operator naturally
emerges that commutes with any known and unknown symmetry action. We call that
equivariant operator the generalized convolution operator. And we use it, designed or
learned, to transform data and embed domains. In our generalized setting involving un-
known and non-transitive symmetry groups, our convolution is an inner-product with
a kernel that is localized instead of moved around by group actions like translations:
a bias–variance tradeoff that paves the way to efficient learning on arbitrary discrete
domains.
We develop convolutional neural networks that operate on graphs, meshes, and sim-

plicial complexes. Their implementation amounts to the multiplications of data ten-
sors by sparse matrices and pointwise operations, with linear compute, memory, and
communication requirements. We demonstrate our method’s efficiency by reaching
state-of-the-art performance for multiple tasks on large discretizations of the sphere.
DeepSphere has been used for studies in cosmology and shall be used for operational
weather forecasting—advancing our understanding of the world and impacting billions
of individuals.

Keywords. Convolutional neural networks, graph neural networks, network embed-
ding, graph signal processing, discrete calculus, equivariance, symmetry groups.
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Résumé

Lors de l’apprentissage à partir de données, l’exploitation des symétries du domaine sur
lequel reposent les données est une manière raisonnée de lutter contre le fléau de la
dimension : elle contraint l’ensemble des fonctions à partir desquelles apprendre. C’est
plus efficace en termes de données que l’augmentation et ça donne une garantie de gé-
néralisation. Les symétries peuvent cependant être inconnues ou coûteuses à trouver ;
les domaines peuvent ne pas être homogènes.
Àpartir des éléments constitutifs de l’espace (sommets, arêtes, simplexes), d’une struc-

ture d’incidence et d’unemétrique – la topologie et la géométrie du domaine – un opéra-
teur linéaire émerge naturellement qui commute avec toute action de symétrie, connue
et inconnue. Nous appelons cet opérateur équivariant l’opérateur de convolution géné-
ralisé. Et nous l’utilisons, conçu ou appris, pour transformer des données et plonger des
domaines. Dans notre cadre généralisé impliquant des groupes de symétrie inconnus et
non-transitifs, notre convolution est un produit scalaire avec un noyau qui est localisé
au lieu d’être déplacé par les actions d’un groupe telles que les translations : un com-
promis biais-variance qui ouvre la voie à un apprentissage efficace sur des domaines
discrets arbitraires.
Nous développons des réseaux de neurones convolutifs qui opèrent sur des graphes,

des maillages et des complexes simpliciaux. Leur implémentation revient à multiplier
des tenseurs de données par des matrices creuses et des opérations ponctuelles, avec
des exigences de calcul, de mémoire et de communication linéaires. Nous démontrons
l’efficacité de notreméthode en atteignant des performances de pointe pour demultiples
tâches sur de grandes discrétisations de la sphère. DeepSphere a été utilisé pour des
études en cosmologie et devrait être utilisé pour la prévision météorologique, faisant
progresser notre compréhension du monde et impactant des milliards d’individus.

Mots-clés. Réseaux de neurones convolutifs, réseaux de neurones sur graphe, plon-
gement de réseaux, traitement du signal sur graphe, calcul différentiel discret, équiva-
riance, groupes de symétrie.

ix





Contents

1 Introduction 1
1.1 Solution space: constraints and biases . . . . . . . . . . . . . . . . . . . 1
1.2 Structure and symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 A bias–variance tradeoff . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Generalized convolutions 9
2.1 A discrete calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Topology: an incidence structure . . . . . . . . . . . . . . . . . . 11
2.1.4 Geometry: an inner product . . . . . . . . . . . . . . . . . . . . 12
2.1.5 A discrete calculus . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Generalized convolutions . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Laplacian and equivariance . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Spectral basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.4 Generalized convolutions . . . . . . . . . . . . . . . . . . . . . . 18
2.2.5 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.6 Spectral embedding . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Learning from structured data 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Proposed technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Learning fast localized spectral filters . . . . . . . . . . . . . . . 27
3.2.2 Graph coarsening . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Fast pooling of graph signals . . . . . . . . . . . . . . . . . . . . 31

xi



Contents

3.3 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.1 Graph signal processing . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 CNNs on non-euclidean domains . . . . . . . . . . . . . . . . . 32

3.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.1 Revisiting classical CNNs on MNIST . . . . . . . . . . . . . . . 34
3.4.2 Text categorization on 20NEWS . . . . . . . . . . . . . . . . . . 35
3.4.3 Comparison between spectral filters and computational efficiency 36
3.4.4 Influence of graph quality . . . . . . . . . . . . . . . . . . . . . 37

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Efficient learning on the sphere 39
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Graph convolution and equivariance . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.2 Finding the optimal weighting scheme . . . . . . . . . . . . . . 44
4.3.3 Analysis of the proposed weighting scheme . . . . . . . . . . . . 44

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.1 3D objects recognition . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.2 Cosmological model classification . . . . . . . . . . . . . . . . . 48
4.4.3 Climate event segmentation . . . . . . . . . . . . . . . . . . . . 49
4.4.4 Uneven sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Cosmological parameter inference 53
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.1 HEALPix sampling . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.2 Graph construction . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.3 Graph Fourier basis . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.4 Convolution on graphs . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.5 Efficient convolutions . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.6 Coarsening and Pooling . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.7 Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.8 Network architectures . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.9 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xii



Contents

5.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.1 2D convolutional neural networks . . . . . . . . . . . . . . . . . 70
5.3.2 Spherical neural networks . . . . . . . . . . . . . . . . . . . . . 71
5.3.3 Graph neural networks . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4.3 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4.4 Network architecture and hyper-parameters . . . . . . . . . . . 78
5.4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4.6 Filter visualization . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Conclusion 85

Bibliography 87

Biography 105

curriculum vitae 107

xiii





1 Introduction

The goal of Science is to learn from data: we seek explanations that are consistent with
observations. An explanation can be a human-designed theory—formalized in a natu-
ral, mathematical, or computer language. Or it can be a machine-learned model.
The goal of machine learning is to automate the task of finding models from data.

At least to help the humans doing it. During my doctoral studies, I have tackled and
contributed to solving the following problems: from observations, estimate the free pa-
rameters of a human-designed theory of the largest-scale structures and dynamics of
our universe, the 𝛬CDM cosmological model (Chapter 5). From observations, learn a
model of the dynamics of the Earth’s atmosphere, towards the goal of predicting its evo-
lution given its current state, i.e., weather forecasting ([62], in preparation). Those were
the problem-driven guides to my research.

1.1 Solution space: constraints and biases

Learning is equivalent to searching for a model 𝑓 ∈ ℱ, or a distribution over ℱ, where
the hypothesis class ℱ is the set of models under consideration (Figure 1.1). Typically,
a model 𝑓𝜃 is parameterized by a finite number of parameters 𝜃 that are optimized to
achieve an objective. Multi-layer perceptrons (MLPs) are a kind of artificial neural net-
work whose layers are fully connected, i.e., implement an unconstrained linear trans-
formation. MLPs are powerful models: they are universal approximators [82]. The flip
side of this flexibility is that they suffer from the curse of dimensionality: they require

Figure 1.1: Learning is finding a model 𝑓 ∈ ℱ, or a dis-
tribution over the solution space ℱ, from data
{(𝑥𝑖, 𝑦𝑖)}.

Figure 1.2: A data tensor that is
structured along 2 of its
3 dimensions.
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1 Introduction

Figure 1.3: Awell-designed solution spaceℱ promotes a priori
likely solutions and forbids those that violate the
problem’s constraints. Figure from [169].

convolution

convolution
ro
ta
tio
n

ro
tatio

n

Figure 1.4: Symmetry con-
straints (i.e.,
equivariance) yield
convolutions.

exponentially many examples to learn from high-dimensional data. One way to combat
that curse is to gather more data. One could collect more data or augment the collected
data. The first costs human resources, the second computer resources.
A more efficient alternative is to design the solution space ℱ. Its support should

implement the constraints of the problem; for example, fluid dynamics does not cre-
ate mass. Those gives the designer a generalization guarantee. Its inductive biases
should promote a priori likely solutions; for example, the identity to predict tomorrow’s
weather given today’s. Those are not hard constraints, but prior knowledge that makes
likely solutions easier to find while allowing unlikely ones given enough data. Solution
spaces are illustrated in Figure 1.3.
Machine learning moves design a level of abstraction up: from that of solutions 𝑓

to that of solution spaces ℱ. While that was possible in theory before, it was a practi-
cal revolution enabled by deep learning. The resulting increase in leverage of human
creativity impacted most sciences and arts, and disrupted many industries. That might
well turn out to be paradigm shift [103] in Science.

1.2 Structure and symmetries

Data is multi-dimensional: it often has a space, time, and feature dimension. Data is
either inherently discrete or is a discretization (because of finite measurements and
computers). Finally, the dimensions are most often structured, i.e., data is a function
of a set with additional structure, such as a topology and a geometry. Figure 1.2 shows
a typical data tensor. That structure yields a discrete calculus (§2.1) that we ought to

2



1.2 Structure and symmetries

leverage (§2.2) to learn more efficiently. Figuring out how to make machines efficiently
leverage structure was the curiosity-driven guide to my research.

Equivariance to symmetries is one way that structure constrains the solution space
as

ℱ = {𝑓 || 𝑓(𝜎 · 𝑥) = 𝜎 · 𝑓(𝑥) ∀𝑥 ∈ 𝑋, 𝜎 ∈ Sym(𝑋)}.

Figure 1.4 depicts the commutative diagram for𝑋 = 𝕊2 andAut(𝕊2) = 𝑆𝑂(3). A special
case of equivariance is invariance, defined as𝑓(𝜎·𝑥) = 𝑓(𝑥) ∀ 𝜎. That is typically desired
in global tasks, where the space dimension is squashed towards the later layers (as in
the regression setting used in Chapter 5).

In practice, the functional space ℱ is determined by the architecture of the neural
network. Mostly by the kind of linear transformations its layers can perform. The clas-
sic recipe to build equivariant linear transformations is to leverage global symmetries
and perform a convolution as 〈𝑥, 𝑃𝜍𝑔〉, the inner product between the data and a fil-
ter 𝑔 moved around by the action 𝑃𝜍 of the symmetry 𝜎 ∈ Sym(𝑋). Convolution on
groups and homogeneous spaces through group action is well understood. The most
common example of that recipe is the classical convolutional neural network, where 𝑋
is the plane and Sym(𝑋) are translations. After Euclidean spaces, the sphere 𝕊2 is cer-
tainly themost practically relevant space to convolve on (Chapter 4). The generalization
of the recipe to any symmetry group has been popularized in machine learning by Co-
hen, Kondor, and others, in a line of work developed concurrently to that presented
here. See for example [33] and [98]. A convolutional structure is not only a sufficient
condition for equivariance, but also a necessary one [98]. The imposed convolutional
structure sparsifies layer connectivity, makes the connections local, and shares param-
eters across the domain. For example, the matrix representation of a 1D convolution,
which is equivariant to the action of the cyclic group, is circulant.

The main limitation of convolutions by symmetry action is that the domain must be
homogeneous for parameters to be shared around it. Figure 1.5b shows a common case:
a graph made of a large asymmetric core and many small symmetric motifs. Even a fi-
nite discretization of the plane does not have enough symmetries to be homogeneous
(Figure 1.5a). Gauge equivariance has been proposed to learn on non-homogeneous
domains [35], although it yields a locally connected rather than convolutional layer, i.e.,
there is no parameter sharing. Sharing parameters on non-homogeneous domains re-
quire an additional constraint.

Another limitation of leveraging symmetry action is that it presumes that the symme-
tries are known. While the symmetries of common data domains like Euclidean space

3



1 Introduction

(a) Grid. (b) Asymmetric core of 7 vertices and 2 symmetric motifs.

Figure 1.5: Two domains that have not enough symmetries to move data around. Symmetries
can only move data between vertices of the same color (but black), i.e., equivalent
vertices who are in the same orbit of the domain’s symmetry group. Another mech-
anism is required to share weights around non-homogeneous (non-transitive) do-
mains.

and the sphere are known and well studied, symmetries might be unknown, expen-
sive to find (e.g., large social or biological networks), or exist only approximately (e.g.,
sampled spheres).

1.3 Research question

My research question is the following:

How to leverage the topological and geometrical structure of the data’s domain
to learn efficiently without the help of symmetry action?

I answer it by proposing to learn the parameters of a linear transformation that is a
priori equivariant to symmetry action (Chapters 2 and 3). Its use to tackle real-world
problemswith spherical data (Chapters 4 and 5) shows that the constraint introduced to
enable parameter sharing does not prevent DeepSphere from reaching state-of-the-art
performance, while being more memory and compute efficient than alternatives. Here
joins the curiosity- and problem-driven approaches to my research.

1.4 A bias–variance tradeoff

While it remains to be determined when (and why) dropping the parameter sharing
constraint might be worth paying in compute, memory, and data; we should note that
it is all a tradeoff between bias and variance—the most fundamental lesson of machine
learning [168].
Onemight believe that data is enough: we shall just throwmore data at a larger MLP.

Or onemight believe that data is not enough: we still need to design the hypothesis class

4



1.5 Contributions

to learn from. Needless to write that I stand firmly in the second camp. That is, until
data proves me wrong.

1.5 Contributions

This document is made of the following manuscripts:

Chapter 2 [41] M. Defferrard. “Generalized convolutions”. In: In preparation. 2022

Chapter 3 [43] M. Defferrard, X. Bresson, and P. Vandergheynst. “Convolutional Neural Net-

works on Graphs with Fast Localized Spectral Filtering”. In: Advances in Neural Infor-

mation Processing Systems (NIPS). 2016. arXiv: 1606.09375. url: https://arxiv.

org/abs/1606.09375

Chapter 4 [45] M. Defferrard, M.Milani, F. Gusset, and N. Perraudin. “DeepSphere: a graph-

based spherical CNN”. in: International Conference on Learning Representations (ICLR).

2020. arXiv: 2012.15000. url: https://arxiv.org/abs/2012.15000

Chapter 5 [132] N. Perraudin, M. Defferrard, T. Kacprzak, and R. Sgier. “DeepSphere: Ef-

ficient spherical Convolutional Neural Network with HEALPix sampling for cosmolog-

ical applications”. Astronomy and Computing 27, 2019, pp. 130–146. issn: 2213-1337.

doi: 10.1016/j.ascom.2019.03.004. arXiv: 1810.12186. url: https:

//arxiv.org/abs/1810.12186

While not forming their own chapter, ideas from the following manuscripts are scat-
tered throughout:

• [53] S. Ebli, M. Defferrard, and G. Spreemann. “Simplicial Neural Networks”. In: Topo-

logical Data Analysis and Beyond workshop at NeurIPS. 2020. arXiv: 2010.03633. url:

https://arxiv.org/abs/2010.03633

• [48] M. Defferrard, N. Perraudin, T. Kacprzak, and R. Sgier. “DeepSphere: towards an

equivariant graph-based spherical CNN”. in: ICLRWorkshop on Representation Learning

on Graphs and Manifolds. 2019. arXiv: 1904.05146. url: https://arxiv.org/

abs/1904.05146

• [150] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson. “Structured Sequence

Modeling with Graph Convolutional Recurrent Networks”. In: International Conference

on Neural Information Processing (ICONIP). 2017. arXiv: 1612.07659. url: https:

//arxiv.org/abs/1612.07659
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During my doctoral studies, I also co-authored the following papers, which do not
appear in this document:
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• A. Scheck, S. Rosset, M. Defferrard, A. Loukas, J. Bonet, P. Vandergheynst, and B. E.

Correia. “RosettaSurf—A surface-centric computational design approach”. PLOS Com-

putational Biology 18:3, 2022. bioRxiv: 2021.06.16.448645, pp. 1–23. doi: 10.1371/

journal.pcbi.1009178

• J. Banjac, L. Donati, and M. Defferrard. “Learning to recover orientations from projec-

tions in single-particle cryo-EM”. in: 2021. arXiv: 2104.06237. url: https://

arxiv.org/abs/2104.06237

• K. Glomb, J. RuéQueralt, D. Pascucci, M. Defferrard, S. Tourbier, M. Carboni, M. Rubega,

S. Vulliémoz, G. Plomp, and P. Hagmann. “Connectome spectral analysis to track EEG

task dynamics on a subsecond scale”. NeuroImage 221, 2020. bioRxiv: 2020.06.22.164111,

pp. 117–137. issn: 1053-8119. doi: 10.1016/j.neuroimage.2020.117137

• M. Defferrard, S. P. Mohanty, S. F. Carroll, and M. Salathé. “Learning to Recognize Musi-

cal Genre from Audio. Challenge Overview”. In: The 2018 Web Conference Companion.

ACM Press, 2018. isbn: 9781450356404. doi: 10.1145/3184558.3192310. arXiv:

1803.05337. url: https://arxiv.org/abs/1803.05337

• M. Defferrard, K. Benzi, P. Vandergheynst, and X. Bresson. “FMA: A Dataset for Mu-

sic Analysis”. In: 18th International Society for Music Information Retrieval Conference

(ISMIR). 2017. arXiv: 1612.01840. url: https://arxiv.org/abs/1612.01840

6

https://github.com/deepsphere/deepsphere-weather
https://github.com/deepsphere/deepsphere-weather
https://arxiv.org/abs/2111.12139
https://arxiv.org/abs/2111.12139
https://arxiv.org/abs/2111.12139
https://openreview.net/forum?id=H5g7W-6Oec
https://openreview.net/forum?id=H5g7W-6Oec
http://dx.doi.org/10.1371/journal.pcbi.1009178
http://dx.doi.org/10.1371/journal.pcbi.1009178
https://arxiv.org/abs/2104.06237
https://arxiv.org/abs/2104.06237
https://arxiv.org/abs/2104.06237
http://dx.doi.org/10.1016/j.neuroimage.2020.117137
http://dx.doi.org/10.1145/3184558.3192310
https://arxiv.org/abs/1803.05337
https://arxiv.org/abs/1803.05337
https://arxiv.org/abs/1612.01840
https://arxiv.org/abs/1612.01840


1.5 Contributions

Finally, robust and useful results for my research were consolidated in the following
stable and maintained software packages with thought-out APIs:

• M. Defferrard, L. Martin, R. Pena, and N. Perraudin. PyGSP: Graph Signal Processing in

Python. doi: 10.5281/zenodo.1003157. url: https://github.com/epfl-

lts2/pygsp/

• F. Gusset, L. Vancauwenberghe, M. Allemann, J. Fluri, N. Perraudin, and M. Defferrard.

DeepSphere: learning on the sphere. url: https://github.com/deepsphere/

• M. Defferrard, R. Pena, and N. Perraudin. PyUNLocBoX: Optimization by Proximal Split-

ting. doi: 10.5281/zenodo.1199081. url: https://github.com/epfl-

lts2/pyunlocbox/

As software is in my opinion not yet recognized enough as core contributions to Sci-
ence, I take this opportunity to acknowledge the use of the following software packages
in pursuing my research and producing this document: PyGSP [44], healpy [172], mat-
plotlib [84], SciPy [165], NumPy [166], TensorFlow [117], PyTorch [129].
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2 Generalized convolutions

2.1 A discrete calculus

In this section, we will build a discrete calculus from the foundations of space: its topol-
ogy and geometry. The presented material follows standard works in discrete calculus,
such as that presented in [19, 49, 69], which is also referred to as discrete exterior cal-
culus (DEC) or discrete differential geometry (DDG). A discrete calculus analogue of
the Laplacian operator first appeared in [54]. I will however take my own perspective
and sometimes diverge from the standard exposition to best suit our ultimate goal of
building an efficient tool to learn from structured data. For example, I will use a lin-
ear algebra notation, instead of the traditional notation inherited from the continuous
setting.

2.1.1 Space

To accommodate our computers’ finite memory and for algorithms to finish in a finite
amount of time, we must deal with finite representations. Discrete spaces are easier to
deal with than parameterizations of continuous ones (e.g., by splines or Bézier curves).
Either way, continuous spaces can bemodeled to an arbitrary precision by finite discrete
spaces through their discretization. Most methods for solving differential equations,
such as the finite element, volume, or difference methods, operate in that way. That
said, discrete spaces are more than merely approximations of continuous spaces: they
have special properties of their own. As we shall see, discrete topology, geometry, and
calculus reduce to linear algebra. That is not only useful for their representation and
manipulation on computers, but also for simplicity of exposition.
Simplices are the building blocks of discrete spaces: a 𝑑-simplex is a set of 𝑑 + 1

vertices that represents a 𝑑-dimensional subspace. An oriented simplex is an ordered
set. Simplices are so-named because they represent the simplest polytope in any given
dimension: vertices for 𝑑 = 0, edges for 𝑑 = 1, triangles for 𝑑 = 2, tetrahedra for 𝑑 = 3,
and so forth (see Figure 2.1).
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0-simplex 1-simplex 2-simplex 3-simplex

Figure 2.1: Simplices. Figure 2.2: Simplicial complex.

A simplicial complex is a collection of simplices that form a discrete space (see Fig-
ure 2.2). While the notion emerged in geometry, a purely combinatorial definition suf-
fices: an abstract1 simplicial complex is a collection of sets closed under taking subsets,
i.e., every subset of a set in the collection is also in the collection. We call a member of a
simplicial complex 𝐾 a simplex of dimension 𝑑 if it has cardinality 𝑑+1, and denote the
set of all such 𝑑-simplices 𝐾𝑑. A 𝑑-simplex has 𝑑 + 1 faces of dimension 𝑑 − 1, namely
the subsets omitting one element.
Graphs are simplicial complexes made of vertices and edges only. Amesh is a special

case of a simplicial complex. Simplicial complexes are special cases of cell complexes
(whose 𝑑-cells, whichmust be homeomorphic to 𝑑-dimensional simplices, can bemade
of more than 𝑑 + 1 vertices) and hypergraphs (whose collection of sets needs not to be
closed under taking subsets). While there are tradeoffs in the choice of discrete struc-
ture to represent relationships, simplicial complexes might be a sweet spot. Compared
to graphs, they enable the representation of higher-order relations and data (such as
vector and tensor fields). Compared to meshes, they are not limited to geometric ap-
plications and can represent purely combinatorial spaces. They are easier to represent
and manipulate than cell complexes (though the presented theory generalizes to cell
complexes). Compared to hypergraphs, they yield a natural discrete calculus.

2.1.2 Data

Unlike in the continuous, where coordinate-free treatments are more elegant, the sim-
plices form a natural basis in which to represent data. Let us call it the spatial basis. To
define that basis, simplices must be oriented and ordered (arbitrarily, as those are not
properties of space). Simplices are oriented by ordering the vertices they are made of.
Simplices are ordered by ordering the sets {𝐾𝑑}. A simple way to do both is to arbitrarily
order the simplices, then use the ordering of 𝐾0 to orient the higher-order simplices.
Our data are fields in the physics sense, i.e., functions that take a value at every sim-

plex. A vertex-valued function (𝑑 = 0) is a scalar field, for example the temperature. An

1A simplicial complex without an associated geometry is said to be abstract.
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2.1 A discrete calculus

edge-valued function (𝑑 = 1) is a vector field, for example the wind, whose evaluation
yields the signed magnitude of the wind along an edge (i.e., at a given position and di-
rection). An example tensor field is the fluid flux (𝑑 = 2), whose evaluation yields the
signed magnitude of the flux through a surface. But data needs not be physical mea-
surements. It could be the number of citations attributed to a 𝑑-simplex that represents
a collaboration between 𝑑 + 1 authors, as we did in [53]. Or it could be an indicator
function of a subdomain.
We call 𝑑-dimensional data that co-vary with the space’s metric 𝑑-chains and con-

travariant data 𝑑-cochains. These are dual quantities: the pairing of a 𝑑-chain with a
𝑑-cochain yields a scalar. Representing data as vectors whose 𝑖th component is the value
of the chain or cochain at the 𝑖th simplex, the dual pairing of the chain 𝑥𝑑 ∈ ℝ|𝐾𝑑| with
the cochain 𝑓𝑑 ∈ ℝ|𝐾𝑑| is denoted by the dot product ⟨𝑥𝑑, 𝑓𝑑⟩ = 𝑥𝑑𝖳𝑓𝑑. Note how the or-
dering and orientation of simplices enable that representation. The orientation defines
what a positive value means (the direction for 𝑑 = 1, the (counter-)clockwise rotation
for 𝑑 = 2, the right- or left-handed helix for 𝑑 = 3, etc.).

Example. Consider an electrical circuit with voltage information represented as a 1-
cochain. Pairing the voltage 1-cochain2 with a subdomain, represented as a 1-chain,
computes a path integral that yields the voltage between the two end vertices. Pairing it
with current information, represented as another 1-chain, yields the power dissipated
by the circuit.

2.1.3 Topology: an incidence structure

While a set of sets representation, derived from the combinatorial definition of a sim-
plicial complex, is elegant3, it is not convenient to store and manipulate complexes on
computers. As hinted above, we will resort to an algebraic representation. We define
𝐵𝑑 ∈ {0, 1, −1}|𝐾𝑑|×|𝐾𝑑−1|, in the spatial basis, such that

(𝐵𝑑)𝑖𝑗 =
⎧

⎨
⎩

0 if the 𝑗th (𝑑 − 1)-simplex is not a face of the 𝑖th 𝑑-simplex,
+1 if the 𝑗th (𝑑 − 1)-simplex is a face of the 𝑖th 𝑑-simplex with agreeing orientation,
−1 if the 𝑗th (𝑑 − 1)-simplex is a face of the 𝑖th 𝑑-simplex with disagreeing orientation,

(2.1)
𝐵1 is the classic graph incidence matrix whose columns represent the (ordered) vertices
𝐾0 and rows the (ordered and oriented) edges 𝐾1. The set {𝐵𝑑} is a complete represen-

2As an integrand, it is also known as a discrete differential 1-form.
3It clearly states the single axiom underpinning that object.
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2 Generalized convolutions

tation of the simplicial complex: it records the incidence structure and captures the
topology of the space.

We call 𝐵𝑑𝖳 the boundary operator: given a 𝑑-chain 𝑥𝑑 that represents a subdomain, it
computes its boundary 𝐵𝑑𝖳𝑥𝑑, represented by a (𝑑−1)-chain. We call 𝐵𝑑 the differential
operator4: given a (𝑑−1)-cochain 𝑓𝑑−1 that represents some covariant data, it computes
the finite difference 𝐵𝑑𝑓𝑑−1, represented by a 𝑑-cochain.

We observe that
⟨𝐵𝑑𝖳𝑥𝑑, 𝑓𝑑−1⟩ = ⟨𝑥𝑑, 𝐵𝑑𝑓𝑑−1⟩, (2.2)

hence that the boundary operator 𝐵𝑑𝖳 is adjoint to the differential operator 𝐵𝑑 with re-
spect to the dual pairing of chains and cochains. That is an expression of the general-
ized Stokes theorem5: a topological result that says that taking the boundary is adjoint
to taking the derivative with respect to integration. The result is typically written as
∫𝜕𝛺 𝜔 = ∫𝛺 d𝜔, where𝛺 is a 𝑑-dimensional manifold and 𝜔 a (𝑑 − 1)-differential form,
which is easily identified with (2.2).

2.1.4 Geometry: an inner product

To enable the computation of norms anddistances between chains and cochains, we add
a geometrical structure to our topological space. We define the inner-product between
the cochains 𝑓𝑑 and ℎ𝑑 as ⟨𝑓𝑑, ℎ𝑑⟩𝑀𝑑

= 𝑓𝑑
𝖳𝑀𝑑ℎ𝑑, where𝑀𝑑 is a positive (semi-)definite

matrix that we will call the metric. Naturally assuming that the simplices are indepen-
dent, i.e., that the spatial basis is orthogonal, the metric is diagonal and (𝑀𝑑)𝑖𝑖 can be
interpreted as the weight of the 𝑖th 𝑑-simplex. By convention, I choose these weights to
represent similarities (affinities), which contra-varywith cochains. The set {𝑀𝑑} records
the inner product structure and captures the geometry of the space.

The metric𝑀𝑑 induces an isomorphism between the spaces of chains and cochains6:
given a cochain𝑓𝑑, one gets the chain𝑀𝑑𝑓𝑑 through the inducedmap ⟨𝑓𝑑, ⋅⟩𝑀𝑑

= ⟨𝑀𝑑𝑓𝑑, ⋅⟩.
For this isomorphism to preserve the inner product, wemust have ⟨𝑓𝑑, ℎ𝑑⟩𝑀𝑑

= ⟨𝑀𝑑𝑓𝑑,𝑀𝑑ℎ𝑑⟩𝑀−1
𝑑
.

Hence, 𝑀𝑑
−1 is the metric for chains. It represents edge lengths, triangle areas, and

simplex volumes in general, which, as expected, contra-vary with chains. In the other
direction, one gets the cochain𝑀𝑑

−1𝑥𝑑 from the chain 𝑥𝑑.

4It is also known as the coboundary operator or the exterior derivative.
5A generalization of the fundamental theorem of calculus, the divergence theorem, andGreen’s theorem.
6In the continuous, that role is played by themusical isomorphism, also known as index raising/lowering
in tensor analysis.
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Figure 2.3: Dirichlet energy of a 0-cochain. The energy 𝐸(𝑓0) = ⟨𝑓0, 𝐿0𝑓0⟩𝑀0
= ‖𝐵1𝑓0‖

2
𝑀1

mea-
sures the smoothness, or variation, of the 0-cochain 𝑓0 as the norm of its gradient
1-cochain 𝐵1𝑓0.

By equipping the vector space of cochains (and so chains) with an inner product, it
becomes an Hilbert space. As expected, the inner product induces the norm ‖𝑓𝑑‖

2
𝑀𝑑

=
⟨𝑓𝑑, 𝑓𝑑⟩𝑀𝑑

and distance 𝑑(𝑓𝑑, ℎ𝑑) = ‖𝑓𝑑 − ℎ𝑑‖𝑀𝑑
.

2.1.5 A discrete calculus

With the topological and geometrical structures in 𝐵𝑑 and 𝑀𝑑, we have everything to
build a discrete calculus. Combining both structures, we observe that

⟨𝐵𝑑𝑓𝑑−1, ℎ𝑑⟩𝑀𝑑
= ⟨𝑓𝑑−1, 𝐵𝑑†ℎ𝑑⟩𝑀𝑑−1

, (2.3)

which implies that the adjoint of the difference operator 𝐵𝑑 with respect to the inner
product is the codifferential operator 𝐵𝑑† = 𝑀𝑑−1

−1𝐵𝑑𝖳𝑀𝑑. We can again identify clas-
sical notions: 𝐵1 as the gradient, 𝐵1† as the divergence, and 𝐵2 as the curl.
The Dirichlet energy is given by

⟨𝐵𝑑†𝑓𝑑, 𝐵𝑑†ℎ𝑑⟩𝑀𝑑−1
+ ⟨𝐵𝑑+1𝑓𝑑, 𝐵𝑑+1ℎ𝑑⟩𝑀𝑑+1

= ⟨𝑓𝑑, 𝐿𝑑ℎ𝑑⟩𝑀𝑑
, (2.4)

which defines the Laplacian as the second-order differential operator 𝐿𝑑 = 𝐵𝑑𝐵𝑑† +
𝐵𝑑+1†𝐵𝑑+1. We can again recognize the Laplace–de Rham operator from Hodge–de
Rham theory.
Apart from yielding the Laplacian, theDirichlet energy is useful by itself as ameasure

of variation or smoothness. Writing it as

𝐸(𝑓𝑑) = ⟨𝑓𝑑, 𝐿𝑑𝑓𝑑⟩𝑀𝑑
= ‖
‖𝐵𝑑

†𝑓𝑑‖‖
2

𝑀𝑑−1

+ ‖𝐵𝑑+1𝑓𝑑‖
2
𝑀𝑑+1

(2.5)

shows that it takes into account two notions of smoothness, across down (𝑑−1) and up
(𝑑 + 1) relations. For a 1-cochain 𝑓1, the energy looks at the divergence 0-cochain 𝐵1†𝑓1
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and the curl 2-cochain 𝐵2𝑓1. Figure 2.3 shows an example for a 0-cochain. One could
also write 𝐸(𝑓𝑑) = ‖𝑓𝑑‖

2
𝑀𝑑𝐿𝑑

= ‖𝑀𝑑𝐿𝑑𝑓𝑑‖
2
2, using the fact that all finite-dimensional

Hilbert spaces are isomorphic, including Euclidean space. Because the Laplacian is
positive semi-definite, the Dirichlet energy is a semi-norm, i.e., it follows the axioms of
a norm but there exists cochains 𝑓𝑑 ≠ 0 such that 𝐸(𝑓𝑑) = 0. Such 𝑑-cochains are in
the nullspace of the Laplacian, and are actually indicators of 𝑑-dimensional holes. For
𝑑 = 0, they are the 0-cochains that are constant across connected components.
The set of Laplacians {𝐿𝑑} records both the incidence and inner product structures,

and captures the topology and geometry of the space. It is also a useful representation
to compute topological properties. For example, the number of zero-eigenvalues of 𝐿𝑑
corresponds to the number of 𝑑-dimensional holes in the simplicial complex.
We recover the graph Laplacian 𝐿0 = 𝐵1†𝐵1 = 𝑀0

−1𝐵1𝖳𝑀1𝐵1 (as 𝐵0 = 0) and its
standard variants: the combinatorial Laplacian with edge weights𝑀1 = 𝑊 and without
vertex weights, i.e., 𝑀0 = 𝐼. The normalized symmetric Laplacian with 𝑀0 = 𝐼 and
𝑀1 = 𝐷−1/2𝑊𝐷−1/2, where 𝐷 is the diagonal degree matrix such that 𝐷𝑖𝑖 = ∑𝑗𝑊𝑖𝑗. The
random-walk Laplacian with𝑀0 = 𝐷 and𝑀1 = 𝑊.

2.2 Generalized convolutions

In the previous section, we built the Laplacian 𝐿𝑑 from the fundamentals of space—its
topology and geometry. In this section, we will study its properties with respect to the
symmetries of that space. We will build a convolution operator that (i) enables efficient
learning and (ii) that is equivariant to symmetry actions. Note that we took a construc-
tive approach rather than a deductive one (say from a desired behavior with respect to
symmetries) because symmetries are not necessarily known.
To simplify our discussion, we will focus on the most common case: graphs with

weighted edges and unweighted vertices (i.e.,𝑀0 = 𝐼). It allows to lighten the notation
by dropping the dimension subscript and write 𝐵 = 𝐵1, 𝑀 = 𝑀1, 𝐿 = 𝐿0 = 𝐵†𝐵 =
𝐵𝖳𝑀𝐵, and 𝑛 = |𝐾0|. The discussion however translates to higher-dimensional sim-
plices and non-identity metrics.

2.2.1 Symmetries

A symmetry is an automorphism 𝜎, i.e., a map from the space to itself that preserves
its structure. For a graph 𝐺, it is a permutation of its vertices that preserves edges and
non-edges. The set of automorphisms forms a group, the graph’s automorphism group
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Aut(𝐺). It is a subgroup of the symmetric group 𝑆𝑛, the group of all permutations of 𝑛
elements. All in all, we have 𝜎 ∈ Aut(𝐺) ⊂ 𝑆𝑛. The number of symmetries, |Aut(𝐺)|,
is anywhere between 0 (for asymmetric graphs) and |𝑆𝑛| = 𝑛! (for empty and com-
plete graphs). In the spatial basis, the group representation is the permutation matrix
𝑃𝜍, whose entry (𝑃𝜍)𝑖𝑗 is 1 if a vertex is moved from the 𝑗th to the 𝑖th position and is 0
otherwise. It acts as 𝑃𝜍𝑓 on data (chains and cochains) by moving them across vertices.
While any permutation 𝜎 ∈ 𝑆𝑛 induces a change-of-basis (because vertex order is

arbitrary, see §2.1.3), they are not necessarily symmetries. Similarly, while any reori-
entation of the simplices induces a change-of-basis, they are not symmetries. Both are
artifacts of the algebraic representation.

2.2.2 Laplacian and equivariance

Because a symmetry preserves the adjacency structure by definition, its action on the
Laplacian leaves it unchanged, i.e., 𝑃𝜍𝖳𝐿𝑃𝜍 = 𝐿. In otherwords, the Laplacian commutes
with symmetry group actions, i.e., 𝐿𝑃𝜍 = 𝑃𝜍𝐿. It is well-known that the Laplacian is,
by construction as an intrinsic operator, an equivariant operator (see for example the
discussion in [167]).
As symmetries leave 𝐿 unchanged, they must act as rotations within its eigenspaces.

The basis that diagonalizes theLaplacian as𝐿 = 𝑈𝛬𝑈−1 hence jointly block-diagonalizes
the symmetry group actions—without knowing them. Figure 2.4 illustrates it.
Because permutation groups are compact and Abelian, the result that the Fourier

transform diagonalizes the action of symmetry groups is a special case of the Peter-Weyl
theorem [134] and Pontryagin duality.

2.2.3 Spectral basis

We call the change-of-bases𝑈 and𝑈−1 the graph Fourier transform (GFT) because it is
reminiscent of the classical Fourier transform [155]. Indeed, we get the discrete cosine
transform (DCT) from a path graph and the discrete Fourier transform (DFT) from a
cycle (ring) graph. In the same way the transform was historically invented to simplify
the study of heat diffusion by diagonalizing the heat kernel, it simplifies our study by
(block-)diagonalizing our operators of interest.
Without loss of generality, we assume that the matrices 𝛬 = diag(𝜆1,… , 𝜆𝑛) and𝑈 =

[𝑢1,… , 𝑢𝑛] are assembled such that the eigenvalues are ordered as 0 = 𝜆1 ≤ ⋯ ≤ 𝜆𝑛7.
The eigenvalue 𝜆𝑖 is associated to the eigenvector 𝑢𝑖.

7The smallest eigenvalue is equal to zero because the graph is made of at least one connected component.
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(a) A permutation that is an automorphism, i.e.,
𝑃𝐿𝑃𝖳 = 𝐿.

(b) Apermutation that is not an automorphism, i.e.,
𝑃𝐿𝑃𝖳 ≠ 𝐿.

Figure 2.4: Two permutations of a 3 × 3 grid graph (𝑛 = 9 vertices). Top: an embedding of
the initial graph, permutation, and permuted graph with ordered vertices for illus-
tration. Middle: initial Laplacian 𝐿, permutation matrix 𝑃, and permuted Laplacian
𝑃𝐿𝑃𝖳 in the spatial basis. Bottom: initial Laplacian 𝛬, permutation matrix 𝛱, and
permuted Laplacian 𝛱𝛬𝛱𝖳 in the spectral basis, whose eigen-subspaces are high-
lighted by boxes. Permutations that are automorphisms act within the Laplacian’s
eigenspaces as roto-translations (a); permutations that are not automorphisms do
not (b). By definition and construction, permutations 𝑃 that are symmetry actions
preserve and commute with 𝐿.

u>1 Lu1 = 0.00 u>2 Lu2 = 0.10 u>3 Lu3 = 0.10 u>4 Lu4 = 0.20 u>5 Lu5 = 0.38 u>6 Lu6 = 0.38 u>7 Lu7 = 0.48

u>1 Lu1 = 0.00 u>2 Lu2 = 0.33 u>3 Lu3 = 0.44 u>4 Lu4 = 0.86 u>5 Lu5 = 1.50 u>6 Lu6 = 1.59 u>7 Lu7 = 2.35
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Figure 2.5: Eigenvectors that form the spectral (Fourier) basis.

16



2.2 Generalized convolutions

xTLx = 0.48 xTLx = 2.75 xTLx = 6.88

0 4 8 12
graph frequency λ

0.00

0.25

0.50

0.75

fre
qu

en
cy

co
nt

en
tx̂

(λ
)

0 4 8 12
graph frequency λ

0.00

0.25

0.50

0.75

0 4 8 12
graph frequency λ

0.00

0.25

0.50

0.75

−0.2

0.0

0.2

−0.2

0.0

0.2

−0.2

0.0

0.2

Figure 2.6: Data in the spatial and spectral bases. Spatial: the data 𝑥 is shown as 𝑥𝑖 at vertex 𝑣𝑖.
Spectral: the data ̂𝑥 = 𝑈−1𝑥 is shown as (𝜆𝑖, ̂𝑥𝑖). The smoother the data, measured
by the Dirichlet energy 𝐸(𝑥) = 𝑥𝖳𝐿𝑥 = ̂𝑥𝖳𝛬 ̂𝑥, the more concentrated in the lower
frequencies is the energy.
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Figure 2.7: Eigenvalues of graph Laplacians. All graphs are made of 𝑛 = 16 vertices but their
connectivity yields very different eigenspaces.
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2 Generalized convolutions

The eigenspaces are the subspaces that are spanned by eigenvectors that share the
same eigenvalue. Note that the basis chosen by the eigensolver within each eigenspace
is arbitrary and up to rotation and reflection. For example, 𝑢𝑖 and −𝑢𝑖 are two equally
valid choices.

The number of eigenspaces is the number of distinct eigenvalues, and their dimen-
sionality is the multiplicity of the associated eigenvalue. At the extremes, the spectral
basis of path graphs is made of 𝑛 eigenspaces of dimensionality 1 while that of empty
graphs is made of a single eigenspace of dimensionality 𝑛. See Figure 2.7. While it is
known that a graph is strongly regular if and only if it has 3 distinct eigenvalues, and
that the number of eigenspaces for paths and cycles correspond to the classical DCT and
DFT, I do not know of and could not find a general rule. That is a direction for future
research.

2.2.4 Generalized convolutions

The spectral basis is decomposed into eigenspaces, which are the invariant subspaces
of both the Laplacian and symmetry actions. It hence suffices to look at their action in
these subspaces. The representation of permutations in the spectral basis is the block-
diagonal matrix 𝛱𝜍 = 𝑈−1𝑃𝜍𝑈, with one block per eigenspace. Each block implements
a roto-reflection.

The unique operation that is orthogonal to roto-reflections is scaling: amultiplication
operator. As each eigenspace is associatedwith a distinct eigenvalue, we can implement
the multiplication operator without loss of generality as a kernel evaluated at the eigen-
values:

𝑔(𝛬) = diag(𝑔(𝜆1),… , 𝑔(𝜆𝑛)). (2.6)

We easily verify that 𝑔(𝛬)𝛱𝜍 = 𝛱𝜍𝑔(𝛬) ∀ 𝑔, 𝜎. The orthogonal actions of 𝑔(𝛬) and
𝛱𝜍 are illustrated in Figure 2.11b. Any operator that is to commute with symmetry
actions without knowing them must have the form of 𝑔(𝛬). While any permutation
in the spatial basis is a rotation in the eigenspaces of the spectral basis, the converse
is not true: most of these rotations are not representations of permutations, let alone
symmetries. Hence, if symmetries are known, one can build more general equivariant
operators that not only scale but also rotate.

In the spatial basis, the multiplication operator 𝑔(𝛬) becomes

𝑔(𝐿) = 𝑈𝑔(𝛬)𝑈−1, (2.7)
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Figure 2.8: Filtering. Left: data 𝑥 in the spatial basis. Middle: data ̂𝑥 = 𝑈−1𝑥, concrete filter
diag(𝑔(𝛬)), and filtered data ̂𝑦 = 𝑔(𝛬) ̂𝑥 in the spectral basis. Right: filtered data
𝑦 = 𝑈 ̂𝑦 in the spatial basis. The low-pass filter smooths the data while respecting the
domain’s topology and geometry.

which we call the generalized convolution operator. I see two justifications for calling it
a convolution: first, as in classical signal processing and harmonic analysis, the multi-
plication operator 𝑔(𝛬) in the spectral basis becomes the convolution operator 𝑔(𝐿) in
the spatial basis. Second, it is an equivariant operator that commutes with symmetries,
the defining property of convolutions. It is however a generalized convolution because
it commutes with more than symmetries, although I could not (yet) precisely figure out
what that operation might be.
We have used an inconsistent notation for the homomorphisms 𝜎 → 𝑃𝜍 and 𝑔 →

𝑔(𝐿) (and there equivalent in the spectral basis, 𝜎 → 𝛱𝜍 and 𝑔 → 𝑔(𝛬)). The first
is standard in group theory; the second is standard in functional calculus. The group
theory notation emphasizes that the representation of 𝜎 is a permutation matrix, while
the functional calculus notation emphasizes that 𝑔(𝐿) depends on 𝐿. Indeed, 𝑔(𝐿) is
a concrete representation—on a space specified by 𝐿—of the abstract kernel 𝑔. The
matrix function notation makes sense because 𝐿 is diagonalizable, hence the kernel
𝑔 can be evaluated at its eigenvalues 𝛬. That is the continuous functional calculus,
a generalization of the polynomial functional calculus and a special case of the Borel
functional calculus.

2.2.5 Filtering

The most obvious use of the generalized convolution 𝑔(𝐿) is to linearly transform data
while respecting the space they lie on, known as filtering in signal processing. Figure 2.8
shows a filtering operation 𝑦 = 𝑔(𝐿)𝑥 decomposed as the forward Fourier transform
𝑈−1, multiplication 𝑔(𝛬) in the spectral basis, and backward transform 𝑈 to the spatial
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ĝ
(λ

):
fil

te
rr

es
po

ns
e

f̂(0) = g1,0 � f̂(0)

f̂(0)
g1,0

0 2 4 6 8
λ

−0.5

0.0

0.5

1.0
f̂(5) = g1,5 � f̂(0)

f̂(5)
g1,5

0 2 4 6 8
λ

−0.5

0.0

0.5

1.0
f̂(10) = g1,10 � f̂(0)

f̂(10)
g1,10

0 2 4 6 8
λ

−0.5

0.0

0.5

1.0
f̂(20) = g1,20 � f̂(0)

f̂(20)
g1,20

f(0) f(5) f(10) f(20)

0

1

2

3

4

5

0.2

0.4

0.6

0.8

0.1

0.2

0.3

0.05

0.10

0.15

Figure 2.9: Heat diffusion. Solving the partial differential equation −𝜏𝐿𝑓(𝑡) = 𝜕𝑡𝑓(𝑡) as 𝑓(𝑡) =
𝑔𝜏𝑡(𝐿)𝑓(0), where 𝑓(0) is the initial heat distribution and 𝑔𝜏𝑡(𝜆) = exp(−𝜏𝑡𝜆) is the
heat kernel. Top: process in the spectral basis. Bottom: process in the spatial basis.

domain. The kernel 𝑔 can be designed to perform known linear transformations, for
example to remove noise from data or solve partial differential equations. Figure 2.9
shows the diffusion of heat at different times 𝑡 as an initial heat distribution that is
filtered by the heat kernel 𝑔𝜏𝑡(𝜆) = exp(−𝜏𝑡𝜆).
While 𝑃𝜍, 𝛱𝜍, and 𝑔(𝛬) are rather simple operators, depending on the complexity

of the space, 𝑔(𝐿) might not be. By looking at the weak form ⟨𝑦, 𝛿𝑖⟩ = ⟨𝑔(𝐿)𝑥, 𝛿𝑖⟩ =
⟨𝑥, 𝑔(𝐿)𝛿𝑖⟩, we observe that the result of the convolution at the 𝑖th vertex is an inner prod-
uct of the data with 𝑔(𝐿)𝛿𝑖. We recognize here the form of a classic convolution, which
is an inner product with a kernel that is moved around by group actions like transla-
tions. We will say that 𝑔(𝐿)𝛿𝑖 is the kernel 𝑔 localized at the 𝑖th vertex. Figure 2.10 shows
the localization of the heat kernel on two graphs: a vertex-transitive one and an asym-
metric one. Localization is a generalization of symmetry action to non-homogeneous
spaces. It is important to note that, contrary to the classical case where two signals are
convolved through symmetry group actions, the kernel 𝑔 and the data are objects of a
different nature.

2.2.6 Spectral embedding

We can write
𝐸𝑔(𝑓) = ⟨𝑓, 𝑔(𝐿)𝑓⟩ = ‖

‖𝑔
1/2(𝛬)𝑈−1𝑓‖‖

2

2
(2.8)

as a generalization of the Dirichlet energy (2.4) to 𝑔 ≠ id and view 𝑔1/2(𝛬)𝑈−1𝑓 as an
embedding of 𝑓 in Euclidean space. By construction, that embedding reproduces the
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Figure 2.10: Localization. On homogeneous spaces (e.g., vertex-transitive graphs), symmetry
actions suffice to move convolution kernels anywhere. On non-homogeneous and
asymmetric spaces however, we require another operation: localization. When the
space has symmetries, the localization of a convolution kernel reduces to symmetry
actions.

symmetries of the space encoded in 𝐿 and a notion of distance set by 𝑔. See Figure 2.11.
From that energy and semi-norm, we also get the distance 𝐸𝑔(𝑓 − ℎ) between 𝑓 and ℎ.
Viewing the set {𝑞𝑖}

𝑁
𝑖=1 of 𝑁 embedded cochains 𝑞𝑖 = 𝑔1/2(𝛬)𝑈−1𝑓𝑖 as particles in

Euclidean space, we define by 𝐽(𝑞) = 𝛴𝑖‖𝑞 − 𝑞𝑖‖
2
2 the moment of inertia at a point 𝑞.

The moment of inertia at the center of mass, the origin, is 𝐽(0) = 𝛴𝑖‖𝑞𝑖‖
2. The mo-

ment of inertia at the 𝑖th cochain is 𝐽(𝑞𝑖) = 𝛴𝑗‖𝑞𝑗 − 𝑞𝑖‖
2
2
= 𝛴𝑗‖𝑞𝑗‖

2
2
+ ‖𝑞𝑖‖

2
2 − 2〈𝑞𝑖, 𝑞𝑗〉 =

𝐽(0) + 𝑁‖𝑞𝑖‖
2
2 ∝ ‖𝑞𝑖‖

2
2 = ‖𝑔1/2(𝛬)𝑈−1𝑓𝑖‖

2
2 = 𝐸𝑔(𝑓𝑖). The energy 𝐸𝑔 is hence a measure

of centrality under the notion of distance set by 𝑔: the closest a cochain is to all other
cochains, the closest it must be to the origin.
A special case of interest, for the extraction of structural features for downstream

learning tasks, is the embedding of indicator 0-cochains 𝛿𝑖. The vertices of a graph are
embedded as 𝑄 = [𝑞1,… , 𝑞𝑛] = 𝑔1/2(𝛬)𝑈−1 and the centrality of the 𝑖th vertex is given
by 𝐸𝑔(𝛿𝑖) = (𝑔(𝐿))

𝑖𝑖
. In that embedding, a well-connected vertex is literally centered.

The moment of inertia at the origin 𝐽(0) = 𝛴𝑖‖𝑞𝑖‖
2
2 = 1

2𝑛
𝛴𝑖,𝑗‖𝑞𝑖 − 𝑞𝑗‖

2
2
measures the

variance in centrality, hence the regularity of the 𝑔-modulated graph. 𝐽(0) = 𝛴𝑘𝑔(𝜆𝑘)
is indeed the total variance of the embedding, as seen from the full covariance 𝑄𝖳𝑄 =
𝑈𝑔(𝛬)𝑈−1 = 𝑔(𝐿). The 𝑔-modulated graph (hence energy and distance) can be approx-
imated from a lower-rank embedding 𝛴𝑘∈𝒦𝑔1/2(𝜆𝑘)𝑢𝑘𝖳 ≅ 𝑄 that captures 𝛴𝑘∈𝒦𝑔(𝜆𝑘)

𝛴𝑘𝑔(𝜆𝑘)
of

the variance.
Multiplemethods to embed graphs ormeasure centrality can bemapped in this frame-

work. As demonstrated in Figure 2.12, which shows the embedding of vertex indicator
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2 Generalized convolutions

(a) Cochain embedding. Left:
data in the spatial basis.
Right: data in the spectral
basis. The first two and the
last two have the same power
spectral density (PSD), i.e.,
the same energy in each
eigenspace, because they are
equivalent under symmetry
action.

(b) Vertex embedding. Black dots and lines show the origin. Colored
dots numbered 𝑖 show the spectral embedding 𝑔1/2(𝛬)𝑈−1𝛿𝑖 of the
𝑖th vertex represented by the indicator 0-chain 𝛿𝑖. The action of
𝑔, represented by the multiplication operator 𝑔(𝛬), independently
scales the eigenspaces, while the orthogonal action of symmetries
𝜍, represented by𝛱𝜍, rotates and reflects. The 2D embedding in (a)
makes it evident that the 4 × 4 grid is made of 3 equivalent classes
of vertices, represented by 3 colors and linked by symmetry actions
on colored orbits.

Figure 2.11: Spectral embedding of some 0-cochains on a 4×4 grid graph (𝑛 = 16 vertices). The
16-dimensional spectral basis of that graph is decomposed into 9 eigenspaces made
of 1 to 3 eigenvectors.
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2.3 Conclusion

cochains under different choices of 𝑔, there is no single notion of centrality [101]. We
already saw that the Dirichlet energywas a special case with 𝑔(𝜆) = 𝜆. That corresponds
to the degree of a vertex as its measure of centrality, while the pseudo-inverse 𝑔(𝜆) = 𝜆+

corresponds to the resistance [95] or commute-time [66] distance [58]. Laplacian eigen-
maps [17] is obtained with 𝑔(𝜆) = 1. Diffusion kernels [99] and diffusion maps [37] are
obtained with the heat kernel 𝑔(𝜆) = 𝑒−𝑡𝜆. In the computer graphics literature, the heat
kernel signature (HKS) [161] and the wave kernel signature (WKS) [7]were proposed to
extract features for the analysis of shapes. 𝑔(𝜆) = (𝑎 − 𝜆)𝑝, 𝑎 ≥ 𝜆𝑛 corresponds to the
𝑝-steps random-walk used in PageRank [126].

2.3 Conclusion

The kernel 𝑔 defines a notion of distance. Its concrete representation, the generalized
convolution 𝑔(𝐿) = 𝑔(𝐵𝖳𝑀𝐵), only depends on the space’s topology 𝐵 and geometry
𝑀, and is constrained by the symmetries and complexity of that space. Fulfilling our
goal of constraining the functional space to learn from, 𝑔(𝐿) is a linear operator that is
mostly constrained by the properties of the space: while an unconstrained linear oper-
ator would have 𝑛2 degrees of freedom, 𝑔(𝐿) has from 1 to 𝑛 degrees.
Let me close this chapter by emphasizing that filtering and embedding are one and

the same operation—a generalized convolution. They are only different points of view:
filtering emphasizes the linear transformation of data. Embedding emphasizes the ex-
traction of features from the space. For both purposes, the kernel 𝑔 can be designed if
one knows what one wants, or learned from data if one does not.
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(a) 𝑔(𝜆) = 1 yields the Laplacian eigenmaps embedding.
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(b) 𝑔(𝜆) = 𝜆 yields the degree centrality measure and Dirichlet energy.
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(c) 𝑔(𝜆) = 𝜆+ ≈ 𝜆−1 (pseudo-inverse) yields the resistance (or commute-time) distance.
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(d) 𝑔(𝜆) = (𝑎 − 𝜆)𝑝, 𝑎 ≥ 𝜆𝑛, yields the 𝑝-steps random-walk distance.
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(e) 𝑔(𝜆) = 𝑒−𝑡𝜆 yields the diffusion distance and heat kernel signature (HKS) embedding.

0
1

2

3

4
5

6

7

8

9

10

11

Graph(n_vertices=12, n_edges=18)

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

u0
u1
u2
u3
u4
u5
u6
u7
u8
u9

u10
u11

embedding g1/2( )U

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

v0
v1
v2
v3
v4
v5
v6
v7
v8
v9

v10
v11

inner product / operator g(L)

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11
0.0

0.1

0.2

0.3

0.4

norm / moment of inertia diag(g(L))

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

v0
v1
v2
v3
v4
v5
v6
v7
v8
v9

v10
v11

distance ( i j) g(L)( i j)

0.4

0.2

0.0

0.2

0.4

0.1

0.0

0.1

0.2

0.3

0.4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(f) 𝑔(𝜆) = 𝜆+ on the Frucht graph.

Figure 2.12: Embedding and centrality of vertices, along inner product and distance between
them. Different choices of 𝑔 yields different notions. The Krackhardt kite [101]
graph demonstrates that there is no single notion of centrality as multiple vertices
qualify as central (a-e), while the asymmetric Frucht graph [60] is more regular and
hardly has a central vertex (f).
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3 Learning from structured data

In this work, we are interested in generalizing convolutional neural networks (CNNs)
from low-dimensional regular grids, where image, video and speech are represented,
to high-dimensional irregular domains, such as social networks, brain connectomes
or words’ embedding, represented by graphs. We present a formulation of CNNs in
the context of spectral graph theory, which provides the necessary mathematical back-
ground and efficient numerical schemes to design fast localized convolutional filters
on graphs. Importantly, the proposed technique offers the same linear computational
complexity and constant learning complexity as classical CNNs, while being universal
to any graph structure. Experiments on MNIST and 20NEWS demonstrate the ability
of this novel deep learning system to learn local, stationary, and compositional features
on graphs.

3.1 Introduction

Convolutional neural networks [106] offer an efficient architecture to extract highly
meaningful statistical patterns in large-scale and high-dimensional datasets. The abil-
ity of CNNs to learn local stationary structures and compose them to form multi-scale
hierarchical patterns has led to breakthroughs in image, video, and sound recognition
tasks [105]. Precisely, CNNs extract the local stationarity property of the input data or
signals by revealing local features that are shared across the data domain. These similar
features are identified with localized convolutional filters or kernels, which are learned
from the data. Convolutional filters are shift- or translation-invariant filters, meaning
they are able to recognize identical features independently of their spatial locations. Lo-
calized kernels or compactly supported filters refer to filters that extract local features
independently of the input data size, with a support size that can be much smaller than
the input size.
User data on social networks, gene data on biological regulatory networks, log data

on telecommunication networks, or text documents onword embeddings are important
examples of data lying on irregular or non-Euclidean domains that can be structured
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3 Learning from structured data

with graphs, which are universal representations of heterogeneous pairwise relation-
ships. Graphs can encode complex geometric structures and can be studied with strong
mathematical tools such as spectral graph theory [30].
A generalization of CNNs to graphs is not straightforward as the convolution and

pooling operators are only defined for regular grids. Thismakes this extension challeng-
ing, both theoretically and implementation-wise. The major bottleneck of generalizing
CNNs to graphs, and one of the primary goals of this work, is the definition of localized
graph filters which are efficient to evaluate and learn. Precisely, the main contributions
of this work are summarized below.

1. Spectral formulation. A spectral graph theoretical formulation of CNNs on
graphs built on established tools in graph signal processing (GSP) [153].

2. Strictly localized filters. Enhancing [25], the proposed spectral filters are prov-
able to be strictly localized in a ball of radius𝐾, i.e.,𝐾 hops from the central vertex.

3. Low computational complexity. The evaluation complexity of our filters is
linear with respect to the filters support’s size 𝐾 and the number of edges |ℰ|.
Importantly, as most real-world graphs are highly sparse, we have |ℰ| ≪ 𝑛2 and
|ℰ| = 𝑘𝑛 for the widespread 𝑘-nearest neighbor (NN) graphs, leading to a linear
complexity with respect to the input data size 𝑛. Moreover, this method avoids
the Fourier basis altogether, thus the expensive eigenvalue decomposition (EVD)
necessary to compute it as well as the need to store the basis, a matrix of size
𝑛2. That is especially relevant when working with limited GPU memory. Besides
the data, our method only requires to store the Laplacian, a sparse matrix of |ℰ|
non-zero values.

4. Efficient pooling. We propose an efficient pooling strategy on graphs which,
after a rearrangement of the vertices as a binary tree structure, is analog to pooling
of 1D signals.

5. Experimental results. We present multiple experiments that ultimately show
that our formulation is (i) a useful model, (ii) computationally efficient and (iii)
superior both in accuracy and complexity to the pioneer spectral graph CNN in-
troduced in [25]. We also show that our graph formulation performs similarly to
a classical CNNs on MNIST and study the impact of various graph constructions
on performance. The TensorFlow [1] code to reproduce our results and apply the
model to other data is available as an open-source software.1

1https://github.com/mdeff/cnn_graph
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Classification
Fully connected layers

Feature extraction
Convolutional layers

Input graph signals
e.g. bags of words

Output signals
e.g. labels

Graph signal filtering
1. Convolution

2. Non-linear activation

Graph coarsening
3. Sub-sampling
4. Pooling

Figure 3.1: Architecture of a CNN on graphs and the four ingredients of a (graph) convolutional
layer.

3.2 Proposed technique

Generalizing CNNs to graphs requires three fundamental steps: (i) the design of local-
ized convolutional filters on graphs, (ii) a graph coarsening procedure that groups to-
gether similar vertices and (iii) a graph pooling operation that trades spatial resolution
for higher filter resolution.

3.2.1 Learning fast localized spectral filters

There are two strategies to define convolutional filters; either from a spatial approach or
from a spectral approach. By construction, spatial approaches provide filter localization
via the finite size of the kernel. However, although graph convolution in the spatial do-
main is conceivable, it faces the challenge of matching local neighborhoods, as pointed
out in [25]. Consequently, there is no unique mathematical definition of translation
on graphs from a spatial perspective. On the other side, a spectral approach provides
a well-defined localization operator on graphs via convolutions with a Kronecker delta
implemented in the spectral domain [153]. The convolution theorem [115] defines con-
volutions as linear operators that diagonalize in the Fourier basis (represented by the
eigenvectors of the Laplacian operator). However, a filter defined in the spectral domain
is not naturally localized and translations are costly due to the𝒪(𝑛2)multiplicationwith
the graphFourier basis. Both limitations can however be overcomewith a special choice
of filter parametrization.
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3 Learning from structured data

GraphFourierTransform. Weare interested in processing signals defined onundi-
rected and connected graphs 𝒢 = (𝒱, ℰ,𝑊), where 𝒱 is a finite set of |𝒱| = 𝑛 vertices,
ℰ is a set of edges and 𝑊 ∈ ℝ𝑛×𝑛 is a weighted adjacency matrix encoding the con-
nection weight between two vertices. A signal 𝑥 ∶ 𝒱 → ℝ defined on the nodes of the
graph may be regarded as a vector 𝑥 ∈ ℝ𝑛 where 𝑥𝑖 is the value of 𝑥 at the 𝑖𝑡ℎ node. An
essential operator in spectral graph analysis is the graph Laplacian [30], which combi-
natorial definition is 𝐿 = 𝐷−𝑊 ∈ ℝ𝑛×𝑛 where𝐷 ∈ ℝ𝑛×𝑛 is the diagonal degree matrix
with 𝐷𝑖𝑖 = ∑𝑗𝑊𝑖𝑗, and normalized definition is 𝐿 = 𝐼𝑛 − 𝐷−1/2𝑊𝐷−1/2 where 𝐼𝑛 is
the identity matrix. As 𝐿 is a real symmetric positive semidefinite matrix, it has a com-
plete set of orthonormal eigenvectors {𝑢𝑙}

𝑛−1
𝑙=0 ∈ ℝ𝑛, known as the graph Fourier modes,

and their associated ordered real nonnegative eigenvalues {𝜆𝑙}
𝑛−1
𝑙=0 , identified as the fre-

quencies of the graph. The Laplacian is indeed diagonalized by the Fourier basis 𝑈 =
[𝑢0,… , 𝑢𝑛−1] ∈ ℝ𝑛×𝑛 such that 𝐿 = 𝑈𝛬𝑈𝖳 where 𝛬 = diag([𝜆0,… , 𝜆𝑛−1]) ∈ ℝ𝑛×𝑛.
The graph Fourier transform of a signal 𝑥 ∈ ℝ𝑛 is then defined as ̂𝑥 = 𝑈𝖳𝑥 ∈ ℝ𝑛,
and its inverse as 𝑥 = 𝑈 ̂𝑥 [153]. As on Euclidean spaces, that transform enables the
formulation of fundamental operations such as filtering.

Spectral filtering of graph signals. As we cannot express a meaningful trans-
lation operator in the vertex domain, the convolution operator on graph ∗𝒢 is defined in
the Fourier domain such that 𝑥 ∗𝒢 𝑦 = 𝑈((𝑈𝖳𝑥)⊙(𝑈𝖳𝑦)), where⊙ is the element-wise
Hadamard product. It follows that a signal 𝑥 is filtered by 𝑔𝜃 as

𝑦 = 𝑔𝜃(𝐿)𝑥 = 𝑔𝜃(𝑈𝛬𝑈𝖳)𝑥 = 𝑈𝑔𝜃(𝛬)𝑈𝖳𝑥. (3.1)

A non-parametric filter, i.e., a filter whose parameters are all free, would be defined as

𝑔𝜃(𝛬) = diag(𝜃), (3.2)

where the parameter 𝜃 ∈ ℝ𝑛 is a vector of Fourier coefficients.

Polynomial parametrization for localized filters. There are however two
limitations with non-parametric filters: (i) they are not localized in space and (ii) their
learning complexity is in 𝒪(𝑛), the dimensionality of the data. These issues can be
overcome with the use of a polynomial filter

𝑔𝜃(𝛬) =
𝐾−1

∑
𝑘=0

𝜃𝑘𝛬𝑘, (3.3)
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3.2 Proposed technique

where the parameter 𝜃 ∈ ℝ𝐾 is a vector of polynomial coefficients. The value at vertex
𝑗 of the filter 𝑔𝜃 centered at vertex 𝑖 is given by (𝑔𝜃(𝐿)𝛿𝑖)𝑗 = (𝑔𝜃(𝐿))𝑖,𝑗 = ∑𝑘 𝜃𝑘(𝐿

𝑘)
𝑖,𝑗
,

where the kernel is localized via a convolution with a Kronecker delta function 𝛿𝑖 ∈ ℝ𝑛.
By [74, Lemma 5.2], 𝑑𝒢(𝑖, 𝑗) > 𝐾 implies (𝐿𝐾)

𝑖,𝑗
= 0, where 𝑑𝒢 is the shortest path dis-

tance, i.e., the minimum number of edges connecting two vertices on the graph. Con-
sequently, spectral filters represented by 𝐾th-order polynomials of the Laplacian are ex-
actly 𝐾-localized. Besides, their learning complexity is 𝒪(𝐾), the support size of the
filter, and thus the same complexity as classical CNNs.

Recursive formulation for fast filtering. While we have shown how to learn
localized filters with 𝐾 parameters, the cost to filter a signal 𝑥 as 𝑦 = 𝑈𝑔𝜃(𝛬)𝑈𝖳𝑥 is still
highwith𝒪(𝑛2) operations because of themultiplicationwith the Fourier basis𝑈. A so-
lution to this problem is to parametrize 𝑔𝜃(𝐿) as a polynomial function that can be com-
puted recursively from 𝐿, as𝐾multiplications by a sparse 𝐿 costs𝒪(𝐾|ℰ|) ≪ 𝒪(𝑛2). One
such polynomial, traditionally used in GSP to approximate kernels (like wavelets), is the
Chebyshev expansion [74]. Another option, the Lanczos algorithm [162], which con-
structs an orthonormal basis of the Krylov subspace𝒦𝐾(𝐿, 𝑥) = span{𝑥, 𝐿𝑥,… , 𝐿𝐾−1𝑥},
seems attractive because of the coefficients’ independence. It is however more convo-
luted and thus left as a future work.

Recall that the Chebyshev polynomial 𝑇𝑘(𝑥) of order 𝑘may be computed by the sta-
ble recurrence relation 𝑇𝑘(𝑥) = 2𝑥𝑇𝑘−1(𝑥) − 𝑇𝑘−2(𝑥) with 𝑇0 = 1 and 𝑇1 = 𝑥. These
polynomials form an orthogonal basis for 𝐿2([−1, 1], 𝑑𝑦/√1 − 𝑦2), the Hilbert space of
square integrable functions with respect to the measure 𝑑𝑦/√1 − 𝑦2. A filter can thus
be parametrized as the truncated expansion

𝑔𝜃(𝛬) =
𝐾−1

∑
𝑘=0

𝜃𝑘𝑇𝑘( ̃𝛬), (3.4)

of order 𝐾 − 1, where the parameter 𝜃 ∈ ℝ𝐾 is a vector of Chebyshev coefficients and
𝑇𝑘( ̃𝛬) ∈ ℝ𝑛×𝑛 is the Chebyshev polynomial of order 𝑘 evaluated at ̃𝛬 = 2𝛬/𝜆max − 𝐼𝑛,
a diagonal matrix of scaled eigenvalues that lie in [−1, 1]. The filtering operation can
then be written as 𝑦 = 𝑔𝜃(𝐿)𝑥 = ∑𝐾−1

𝑘=0 𝜃𝑘𝑇𝑘(𝐿̃)𝑥, where 𝑇𝑘(𝐿̃) ∈ ℝ𝑛×𝑛 is the Chebyshev
polynomial of order 𝑘 evaluated at the scaled Laplacian 𝐿̃ = 2𝐿/𝜆max − 𝐼𝑛. Denoting
̄𝑥𝑘 = 𝑇𝑘(𝐿̃)𝑥 ∈ ℝ𝑛, we can use the recurrence relation to compute ̄𝑥𝑘 = 2𝐿̃ ̄𝑥𝑘−1 − ̄𝑥𝑘−2
with ̄𝑥0 = 𝑥 and ̄𝑥1 = 𝐿̃𝑥. The entire filtering operation 𝑦 = 𝑔𝜃(𝐿)𝑥 = [ ̄𝑥0,… , ̄𝑥𝐾−1]𝜃
then costs 𝒪(𝐾|ℰ|) operations.
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3 Learning from structured data

Learning filters. The 𝑗th output feature map of the sample 𝑠 is given by

𝑦𝑠,𝑗 =
𝐹in
∑
𝑖=1

𝑔𝜃𝑖,𝑗(𝐿)𝑥𝑠,𝑖 ∈ ℝ𝑛, (3.5)

where the 𝑥𝑠,𝑖 are the input feature maps and the 𝐹in×𝐹out vectors of Chebyshev coeffi-
cients 𝜃𝑖,𝑗 ∈ ℝ𝐾 are the layer’s trainable parameters. When training multiple convolu-
tional layers with the backpropagation algorithm, one needs the two gradients

𝜕𝐸
𝜕𝜃𝑖,𝑗

=
𝑆

∑
𝑠=1

[ ̄𝑥𝑠,𝑖,0,… , ̄𝑥𝑠,𝑖,𝐾−1]
𝖳 𝜕𝐸
𝜕𝑦𝑠,𝑗

and 𝜕𝐸
𝜕𝑥𝑠,𝑖

=
𝐹out
∑
𝑗=1

𝑔𝜃𝑖,𝑗(𝐿)
𝜕𝐸
𝜕𝑦𝑠,𝑗

, (3.6)

where 𝐸 is the loss energy over a mini-batch of 𝑆 samples. Each of the above three com-
putations boils down to 𝐾 sparse matrix-vector multiplications and one dense matrix-
vector multiplication for a cost of 𝒪(𝐾|ℰ|𝐹in𝐹out𝑆) operations. These can be efficiently
computed onparallel architectures by leveraging tensor operations. Eventually, [ ̄𝑥𝑠,𝑖,0,… , ̄𝑥𝑠,𝑖,𝐾−1]
only needs to be computed once.

3.2.2 Graph coarsening

The pooling operation requires meaningful neighborhoods on graphs, where similar
vertices are clustered together. Doing this for multiple layers is equivalent to a multi-
scale clustering of the graph that preserves local geometric structures. It is however
known that graph clustering is NP-hard [27] and that approximations must be used.
While there exist many clustering techniques, e.g., the popular spectral clustering [114],
we are most interested in multilevel clustering algorithms where each level produces
a coarser graph which corresponds to the data domain seen at a different resolution.
Moreover, clustering techniques that reduce the size of the graph by a factor two at
each level offers a precise control on the coarsening and pooling size. In this work, we
make use of the coarsening phase of the Graclus multilevel clustering algorithm [50],

which has been shown to be extremely efficient at clustering a large variety of graphs.
Algebraic multigrid techniques on graphs [143] and the Kron reduction [154] are two
methods worth exploring in future works.
Graclus [50], built onMetis [91], uses a greedy algorithm to compute successive coarser

versions of a given graph and is able to minimize several popular spectral clustering ob-
jectives, from which we chose the normalized cut [152]. Graclus’ greedy rule consists,
at each coarsening level, in picking an unmarked vertex 𝑖 and matching it with one of
its unmarked neighbors 𝑗 that maximizes the local normalized cut𝑊𝑖𝑗(1/𝑑𝑖+1/𝑑𝑗). The
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Figure 3.2: Example of GraphCoarsening andPooling. Let us carry out amax pooling of size
4 (or two poolings of size 2) on a signal 𝑥 ∈ ℝ8 living on 𝒢0, the finest graph given
as input. Note that it originally possesses 𝑛0 = |𝒱0| = 8 vertices, arbitrarily ordered.
For a pooling of size 4, two coarsenings of size 2 are needed: let Graclus gives 𝒢1 of
size 𝑛1 = |𝒱1| = 5, then 𝒢2 of size 𝑛2 = |𝒱2| = 3, the coarsest graph. Sizes are thus set
to 𝑛2 = 3, 𝑛1 = 6, 𝑛0 = 12 and fake nodes (in blue) are added to 𝒱1 (1 node) and 𝒱0 (4
nodes) to pair with the singeltons (in orange), such that each node has exactly two
children Nodes in 𝒱2 are then arbitrarily ordered and nodes in 𝒱1 and 𝒱0 are ordered
consequently. At that point the arrangement of vertices in 𝒱0 permits a regular 1D
pooling on 𝑥 ∈ ℝ12 such that 𝑧 = [max(𝑥0, 𝑥1),max(𝑥4, 𝑥5, 𝑥6),max(𝑥8, 𝑥9, 𝑥10)] ∈
ℝ3, where the signal components 𝑥2, 𝑥3, 𝑥7, 𝑥11 are set to a neutral value.

two matched vertices are then marked and the coarsened weights are set as the sum
of their weights. The matching is repeated until all nodes have been explored. This is
an very fast coarsening scheme which divides the number of nodes by approximately
two (there may exist a few singletons, non-matched nodes) from one level to the next
coarser level.

3.2.3 Fast pooling of graph signals

Pooling operations are carried out many times and must be efficient. After coarsening,
the vertices of the input graph and its coarsened versions are not arranged in anymean-
ingful way. Hence, a direct application of the pooling operation would need a table to
store all matched vertices. That would result in a memory inefficient, slow, and hardly
parallelizable implementation. It is however possible to arrange the vertices such that a
graph pooling operation becomes as efficient as a 1D pooling. We proceed in two steps:
(i) create a balanced binary tree and (ii) rearrange the vertices. After coarsening, each
node has either two children, if it was matched at the finer level, or one, if it was not, i.e
the nodewas a singleton. From the coarsest to finest level, fake nodes, i.e., disconnected
nodes, are added to pair with the singletons such that each node has two children. This
structure is a balanced binary tree: (i) regular nodes (and singletons) either have two
regular nodes (e.g., level 1 vertex 0 in Figure 3.2) or (ii) one singleton and a fake node as
children (e.g., level 2 vertex 0), and (iii) fake nodes always have two fake nodes as chil-
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dren (e.g., level 1 vertex 1). Input signals are initialized with a neutral value at the fake
nodes, e.g., 0 when using a ReLU activation with max pooling. Because these nodes are
disconnected, filtering does not impact the initial neutral value. While those fake nodes
do artificially increase the dimensionality thus the computational cost, we found that,
in practice, the number of singletons left by Graclus is quite low. Arbitrarily ordering
the nodes at the coarsest level, then propagating this ordering to the finest levels, i.e.,
node 𝑘 has nodes 2𝑘 and 2𝑘 + 1 as children, produces a regular ordering in the finest
level. Regular in the sense that adjacent nodes are hierarchically merged at coarser lev-
els. Pooling such a rearranged graph signal is analog to pooling a regular 1D signal.
Figure 3.2 shows an example of the whole process. This regular arrangement makes
the operation very efficient and satisfies parallel architectures such as GPUs as memory
accesses are local, i.e., matched nodes do not have to be fetched.

3.3 Related works

3.3.1 Graph signal processing

The emerging field of GSP aims at bridging the gap between signal processing and spec-
tral graph theory [15, 30, 114], a blend between graph theory and harmonic analysis. A
goal is to generalize fundamental analysis operations for signals from regular grids to
irregular structures embodied by graphs. We refer the reader to [153] for an introduction
of the field. Standard operations on grids such as convolution, translation, filtering, di-
latation, modulation or downsampling do not extend directly to graphs and thus require
newmathematical definitionswhile keeping the original intuitive concepts. In this con-
text, the authors of [36, 61, 74] revisited the construction of wavelet operators on graphs
and techniques to perform mutli-scale pyramid transforms on graphs were proposed
in [138, 154]. The works of [128, 131, 164] redefined uncertainty principles on graphs and
showed that while intuitive concepts may be lost, enhanced localization principles can
be derived.

3.3.2 CNNs on non-euclidean domains

The GraphNeural Network framework [147], simplified in [109],was designed to embed
each node in an Euclidean space with a RNN and use those embeddings as features for
classification or regression of nodes or graphs. By setting their transition function 𝑓 as
a simple diffusion instead of a neural net with a recursive relation, their state vector
becomes 𝑠 = 𝑓(𝑥) = 𝑊𝑥. Their point-wise output function 𝑔𝜃 can further be set as
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̂𝑥 = 𝑔𝜃(𝑠, 𝑥) = 𝜃(𝑠 − 𝐷𝑥) + 𝑥 = 𝜃𝐿𝑥 + 𝑥 instead of another neural net. The Chebyshev
polynomials of degree 𝐾 can then be obtained with a 𝐾-layer GNN, to be followed by a
non-linear layer and a graph pooling operation. Our model can thus be interpreted as
multiple layers of diffusions and node-local operations.

The works of [32, 70] introduced the concept of constructing a local receptive field to
reduce the number of learned parameters. The idea is to group together features based
upon ameasure of similarity such as to select a limited number of connections between
two successive layers. While this model reduces the number of parameters by exploit-
ing the locality assumption, it did not attempt to exploit any stationarity property, i.e.,
no weight-sharing strategy. The authors of [25] used this idea for their spatial formu-
lation of graph CNNs. They use a weighted graph to define the local neighborhood
and compute a multiscale clustering of the graph for the pooling operation. Inducing
weight sharing in a spatial construction is however challenging, as it requires to select
and order the neighborhoods when a problem-specific ordering (spatial, temporal, or
otherwise) is missing.

A spatial generalization of CNNs to 3D-meshes, a class of smooth low-dimensional
non-Euclidean spaces, was proposed in [119]. The authors used geodesic polar coordi-
nates to define the convolution on mesh patches, and formulated a deep learning ar-
chitecture which allows comparison across different manifolds. They obtained state-of-
the-art results for 3D shape recognition.

The first spectral formulation of a graph CNN, proposed in [25], defines a filter as

𝑔𝜃(𝛬) = 𝐵𝜃, (3.7)

where 𝐵 ∈ ℝ𝑛×𝐾 is the cubic B-spline basis and the parameter 𝜃 ∈ ℝ𝐾 is a vector
of control points. They later proposed a strategy to learn the graph structure from the
data and applied the model to image recognition, text categorization and bioinformat-
ics [78]. This approach does however not scale up due to the necessary multiplications
by the graph Fourier basis𝑈. Despite the cost of computing this matrix, which requires
an EVD on the graph Laplacian, the dominant cost is the need to multiply the data
by this matrix twice (forward and inverse Fourier transforms) at a cost of 𝒪(𝑛2) opera-
tions per forward and backward pass, a computational bottleneck already identified by
the authors. Besides, as they rely on smoothness in the Fourier domain, via the spline
parametrization, to bring localization in the vertex domain, their model does not pro-
vide a precise control over the local support of their kernels, which is essential to learn
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3 Learning from structured data

Model Architecture Accuracy

Classical CNN C32-P4-C64-P4-FC512 99.33
Proposed graph CNN GC32-P4-GC64-P4-FC512 99.14

Table 3.1: Classification accuracies of the proposed graph CNN and a classical CNN on MNIST.

localized filters. Our technique leverages on thiswork, andwe showedhow to overcome
these limitations and beyond.

3.4 Numerical experiments

In the sequel, we refer to the non-parametric and non-localized filters (3.2) as Non-
Param, the filters (3.7) proposed in [25] as Spline and the proposed filters (3.4) as Cheby-
shev. We always use the Graclus coarsening algorithm introduced in §3.2.2 rather than
the simple agglomerative method of [25]. Our motivation is to compare the learned fil-
ters, not the coarsening algorithms.

We use the following notationwhen describing network architectures: FC𝑘 denotes a
fully connected layer with 𝑘 hidden units, P𝑘 denotes a (graph or classical) pooling layer
of size and stride 𝑘, GC𝑘 and C𝑘 denote a (graph) convolutional layer with 𝑘 feature
maps. All FC𝑘, C𝑘 and GC𝑘 layers are followed by a ReLU activation max(𝑥, 0). The
final layer is always a softmax regression and the loss energy 𝐸 is the cross-entropy with
an ℓ2 regularization on the weights of all FC𝑘 layers. Mini-batches are of size 𝑆 = 100.

3.4.1 Revisiting classical CNNs on MNIST

To validate our model, we applied it to the Euclidean case on the benchmark MNIST
classification problem [106], a dataset of 70,000 digits represented on a 2D grid of size
28×28. For our graphmodel, we construct an 8-NNgraph of the 2Dgridwhich produces
a graph of 𝑛 = |𝒱| = 976 nodes (282 = 784 pixels and 192 fake nodes as explained
in §3.2.3) and |ℰ| = 3198 edges. Following standard practice, the weights of a 𝑘-NN
similarity graph (between features) are computed as

𝑊𝑖𝑗 = exp(−
‖𝑧𝑖 − 𝑧𝑗‖22

𝜎2 ), (3.8)

where 𝑧𝑖 is the 2D coordinate of pixel 𝑖.
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3.4 Numerical experiments

Model Accuracy

Linear SVM 65.90
Multinomial Naive Bayes 68.51
Softmax 66.28

FC2500 64.64
FC2500-FC500 65.76

GC32 68.26

Table 3.2: Accuracies of the proposed
graph CNN and other meth-
ods on 20NEWS.
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Figure 3.3: Time to process a mini-batch of 𝑆 = 100
20NEWS documents with respect to the
number of words 𝑛.

This is an important sanity check for our model, which must be able to extract fea-
tures on any graph, including the regular 2D grid. Table 3.1 shows the ability of our
model to achieve a performance very close to a classical CNN with the same architec-
ture. The gap in performance may be explained by the isotropic nature of the spectral
filters, i.e., the fact that edges in a general graph do not possess an orientation (like up,
down, right and left for pixels on a 2D grid). Whether this is a limitation or an advan-
tage depends on the problem and should be verified, as for any invariance. Moreover,
rotational invariance has been sought: (i) many data augmentation schemes have used
rotated versions of images and (ii) models have been developed to learn this invariance,
like the Spatial Transformer Networks [87]. Other explanations are the lack of expe-
rience on architecture design and the need to investigate better suited optimization or
initialization strategies.
The LeNet-5-like network architecture and the following hyper-parameters are bor-

rowed from the TensorFlowMNIST tutorial2: dropout probability of 0.5, regularization
weight of 5 × 10−4, initial learning rate of 0.03, learning rate decay of 0.95, momentum
of 0.9. Filters are of size 5 × 5 and graph filters have the same support of 𝐾 = 25. All
models were trained for 20 epochs.

3.4.2 Text categorization on 20NEWS

To demonstrate the versatility of our model to work with graphs generated from un-
structured data, we applied our technique to the text categorization problem on the
20NEWS dataset which consists of 18,846 (11,314 for training and 7,532 for testing) text
documents associatedwith 20 classes [89].Weextracted the 10,000most commonwords
from the 93,953 unique words in this corpus. Each document 𝑥 is represented using

2https://www.tensorflow.org/versions/r0.8/tutorials/mnist/pros
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3 Learning from structured data

Accuracy

Architecture Non-Param (3.2) Spline (3.7) [25] Chebyshev (3.4)

GC10 95.75 97.26 97.48
GC32-P4-GC64-P4-FC512 96.28 97.15 99.14

Table 3.3: Classification accuracies for different types of spectral filters (𝐾 = 25).

Time (ms)
Model Architecture CPU GPU Speedup

Classical CNN C32-P4-C64-P4-FC512 210 31 6.77x
Proposed graph CNN GC32-P4-GC64-P4-FC512 1600 200 8.00x

Table 3.4: Time to process a mini-batch of 𝑆 = 100MNIST images.

the bag-of-words model, normalized across words. To test our model, we constructed
a 16-NN graph with (3.8) where 𝑧𝑖 is the word2vec embedding [121] of word 𝑖, which
produced a graph of 𝑛 = |𝒱| = 10, 000 nodes and |ℰ| = 132, 834 edges. All models were
trained for 20 epochs by the Adam optimizer [93] with an initial learning rate of 0.001.
The architecture is GC32 with support 𝐾 = 5. Table 3.2 shows decent performances:
while the proposed model does not outperform the multinomial naive Bayes classifier
on this small dataset, it does defeat fully connected networks, which requiremuchmore
parameters.

3.4.3 Comparison between spectral filters and computational
efficiency

Table 3.3 reports that the proposed parametrization (3.4) outperforms (3.7) from [25] as
well as non-parametric filters (3.2) which are not localized and require 𝒪(𝑛) parame-
ters. Moreover, Figure 3.4 gives a sense of how the validation accuracy and the loss 𝐸
converges with respect to the filter definitions.
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Figure 3.4: Plots of validation accuracy and training loss for the first 2000 iterations on MNIST.
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3.4 Numerical experiments

Architecture 8-NN on 2D Euclidean grid random

GC32 97.40 96.88
GC32-P4-GC64-P4-FC512 99.14 95.39

Table 3.5: Classification accuracies with different graph constructions on MNIST.

word2vec
bag-of-words pre-learned learned approximate random

67.50 66.98 68.26 67.86 67.75

Table 3.6: Classification accuracies of GC32 with different graph constructions on 20NEWS.

Figure 3.3 validates the low computational complexity of our model which scales as
𝒪(𝑛)while [25] scales as𝒪(𝑛2). Themeasured runtime is the total training time divided
by the number of gradient steps. Table 3.4 shows a similar speedup as classical CNNs
when moving to GPUs. This exemplifies the parallelization opportunity offered by our
model, who relies solely on matrix multiplications. Those are efficiently implemented
by cuBLAS, the linear algebra routines provided by NVIDIA.

3.4.4 Influence of graph quality

For any graph CNN to be successful, the statistical assumptions of locality, stationarity,
and compositionality regarding the data must be fulfilled on the graph where the data
resides. Therefore, the learned filters’ quality and thus the classification performance
critically depends on the quality of the graph. For data lying on Euclidean space, exper-
iments in §3.4.1 show that a simple 𝑘-NN graph of the grid is good enough to recover
almost exactly the performance of standard CNNs. We also noticed that the value of
𝑘 does not have a strong influence on the results. We can witness the importance of
a graph satisfying the data assumptions by comparing its performance with a random
graph. Table 3.5 reports a large drop of accuracy when using a random graph, that is
when the data structure is lost and the convolutional layers are not useful anymore to
extract meaningful features.
While images can be structured by a grid graph, a feature graph has to be built for text

documents represented as bag-of-words. We investigate here three ways to represent a
word 𝑧: the simplest option is to represent eachword as its corresponding column in the
bag-of-words matrix while, another approach is to learn an embedding for each word
with word2vec [121] or to use the pre-learned embeddings provided by the authors. For
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3 Learning from structured data

larger datasets, an approximate nearest neighbors algorithm may be required, which is
the reason we tried LSHForest [14] on the learned word2vec embeddings. Table 3.6 re-
ports classification results which highlight the importance of a well constructed graph.

3.5 Conclusion

In this chapter, we have introduced themathematical and computational foundations of
an efficient generalization of CNNs to graphs using tools from GSP. Experiments have
shown the ability of the model to extract local and stationary features through graph
convolutional layers. Compared with the first work on spectral graph CNNs introduced
in [25], our model provides a strict control over the local support of filters, is compu-
tationally more efficient by avoiding an explicit use of the Graph Fourier basis, and
experimentally shows a better test accuracy. Besides, we addressed the three concerns
raised by [78]: (i) we introduced amodel whose computational complexity is linear with
the dimensionality of the data, (ii) we confirmed that the quality of the input graph is of
paramount importance, (iii) we showed that the statistical assumptions of local station-
arity and compositionality made by the model are verified for text documents as long as
the graph is well constructed.
Future works will investigate two directions. On one hand, we will enhance the pro-

posed frameworkwith newly developed tools inGSP. On the other hand, wewill explore
applications of this generic model to important fields where the data naturally lies on
graphs, which may then incorporate external information about the structure of the
data rather than artificially created graphs which quality may vary as seen in the exper-
iments. Another natural and future approach, pioneered in [78], would be to alternate
the learning of the CNN parameters and the graph.
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4 Efficient learning on the sphere

Designing a convolution for a spherical neural network requires a delicate tradeoff be-
tween efficiency and rotation equivariance. DeepSphere, a method based on a graph
representation of the sampled sphere, strikes a controllable balance between these two
desiderata. This contribution is twofold. First, we study both theoretically and empiri-
cally how equivariance is affected by the underlying graphwith respect to the number of
vertices and neighbors. Second, we evaluate DeepSphere on relevant problems. Exper-
iments show state-of-the-art performance and demonstrates the efficiency and flexibil-
ity of this formulation. Perhaps surprisingly, comparison with previous work suggests
that anisotropic filters might be an unnecessary price to pay. Our code is available at
https://github.com/deepsphere.

4.1 Introduction

Spherical data is found in many applications (Figure 4.1). Planetary data (such as me-
teorological or geological measurements) and brain activity are example of intrinsically
spherical data. The observation of the universe, LIDAR scans, and the digitalization of
3D objects are examples of projections due to observation. Labels or variables are of-
ten to be inferred from them. Examples are the inference of cosmological parameters
from the distribution of mass in the universe [132], the segmentation of omnidirectional
images [92], and the segmentation of cyclones from Earth observation [125].
As neural networks (NNs) have proved to be great tools for inference, variants have

been developed to handle spherical data. Exploiting the locally Euclidean property of
the sphere, early attempts used standard 2D convolutions on a grid sampling of the
sphere [20, 38, 159]. While simple and efficient, those convolutions are not equivariant
to rotations. On the other side of this tradeoff, [34] and [56] proposed to perform proper
spherical convolutions through the spherical harmonic transform. While equivariant
to rotations, those convolutions are expensive (§4.2).

2https://martinos.org/mne/stable/auto_tutorials/plot_visualize_evoked.
html

2https://www.ncdc.noaa.gov/ghcn-daily-description
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4 Efficient learning on the sphere
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Figure 4.1: Examples of spherical data: (a) brain activity recorded through magnetoen-
cephalography (MEG),1 (b) the cosmic microwave background (CMB) temperature
from [135], (c) hourly precipitation from a climate simulation [88], (d) daily max-
imum temperature from the Global Historical Climatology Network (GHCN).2 A
rigid full-sphere sampling is not ideal: brain activity is only measured on the scalp,
the Milky Way’s galactic plane masks observations, climate scientists desire a vari-
able resolution, and the position of weather stations is arbitrary and changes over
time. (e) Graphs can faithfully and efficiently represent sampled spherical data by
placing vertices where it matters.

As a lack of equivariance can penalize performance (§4.4.2) and expensive convo-
lutions prohibit their application to some real-world problems, methods standing be-
tween these two extremes are desired. [35] proposed to reduce costs by limiting the size
of the representation of the symmetry group by projecting the data from the sphere to
the icosahedron. The distortions introduced by this projection might however hinder
performance (§4.4.3).
Another approach is to represent the sampled sphere as a graph connecting pixels

according to the distance between them [26, 92, 132]. While Laplacian-based graph con-
volutions are more efficient than spherical convolutions, they are not exactly equivari-
ant [48]. In this work, we argue that graph-based spherical CNNs strike an interesting
balance, with a controllable tradeoff between cost and equivariance (which is linked to
performance). Experiments on multiple problems of practical interest show the com-
petitiveness and flexibility of this approach.

4.2 Method

DeepSphere leverages graph convolutions to achieve the following properties: (i) com-
putational efficiency, (ii) sampling flexibility, and (iii) rotation equivariance (§4.3). The
main idea is to model the sampled sphere as a graph of connected pixels: the length
of the shortest path between two pixels is an approximation of the geodesic distance
between them. We use the graph CNN formulation introduced in [43] and a pooling
strategy that exploits hierarchical samplings of the sphere.
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4.2 Method

Sampling. A sampling scheme𝒱 = {𝑥𝑖 ∈ 𝕊2}𝑛𝑖=1 is defined to be the discrete subset of
the sphere containing the 𝑛 points where the values of the signals that we want to anal-
yse are known. For a given continuous signal 𝑓, we represent such values in a vector
𝒇 ∈ ℝ𝑛. As there is no analogue of uniform sampling on the sphere, many samplings
have been proposed with different tradeoffs. In this work, depending on the consid-
ered application, we will use the equiangular [51], HEALPix [67], and icosahedral [13]
samplings.

Graph. From 𝒱, we construct a weighted undirected graph 𝒢 = (𝒱,𝑤), where the
elements of 𝒱 are the vertices and the weight 𝑤𝑖𝑗 = 𝑤𝑗𝑖 is a similarity measure between
vertices 𝑥𝑖 and 𝑥𝑗. The combinatorial graph Laplacian𝑳 ∈ ℝ𝑛×𝑛 is defined as𝑳 = 𝑫−𝑨,
where 𝑨 = (𝑤𝑖𝑗) is the weighted adjacency matrix, 𝑫 = (𝑑𝑖𝑖) is the diagonal degree
matrix, and 𝑑𝑖𝑖 = ∑𝑗𝑤𝑖𝑗 is theweighted degree of vertex 𝑥𝑖. Given a sampling𝒱, usually
fixed by the application or the available measurements, the freedom in constructing 𝒢
is in setting 𝑤. §4.3 shows how to set 𝑤 to minimize the equivariance error.

Convolution. On Euclidean domains, convolutions are efficiently implemented by
sliding a window in the signal domain. On the sphere however, there is no straightfor-
ward way to implement a convolution in the signal domain due to non-uniform sam-
plings. Convolutions are most often performed in the spectral domain through a spher-
ical harmonic transform (SHT). That is the approach taken by [34] and [56], which has
a computational cost of 𝒪(𝑛3/2) on isolatitude samplings (such as the HEALPix and
equiangular samplings) and 𝒪(𝑛2) in general. On the other hand, following [43], graph
convolutions can be defined as

ℎ(𝑳)𝒇 = (
𝑃

∑
𝑖=0

𝛼𝑖𝑳𝑖)𝒇, (4.1)

where 𝑃 is the polynomial order (which corresponds to the filter’s size) and𝛼𝑖 are the co-
efficients to be optimized during training.3 Those convolutions are used by [92] and [132]
and cost 𝒪(𝑛) operations through a recursive application of 𝑳.4

3In practice, training with Chebyshev polynomials (instead of monomials) is slightly more stable. We
believe it to be due to their orthogonality and uniformity.

4As long as the graph is sparsified such that the number of edges, i.e., the number of non-zeros in 𝑨, is
proportional to the number of vertices 𝑛. This can always be done as most weights are very small.
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4 Efficient learning on the sphere

Pooling. Down- and up-sampling is natural for hierarchical samplings,5 where each
subdivision divides a pixel in (an equal number of) child sub-pixels. To pool (down-
sample), the data supported on the sub-pixels is summarized by a permutation invari-
ant function such as the maximum or the average. To unpool (up-sample), the data
supported on a pixel is copied to all its sub-pixels.

Architecture. All our NNs are fully convolutional, and employ a global average
pooling (GAP) for rotation invariant tasks. Graph convolutional layers are always fol-
lowed by batch normalization and ReLU activation, except in the last layer. Note that
batch normalization and activation act on the elements of 𝒇 independently, and hence
don’t depend on the domain of 𝑓.

4.3 Graph convolution and equivariance

While the graph framework offers great flexibility, its ability to faithfully represent the
underlying sphere—for graph convolutions to be rotation equivariant—highly depends
on the sampling locations and the graph construction.

4.3.1 Problem formulation

A continuous function 𝑓 ∶ 𝒞(𝕊2) ⊃ 𝐹𝒱 → ℝ is sampled as 𝑇𝒱(𝑓) = 𝒇 by the sampling
operator 𝑇𝒱 ∶ 𝐶(𝕊2) ⊃ 𝐹𝒱 → ℝ𝑛 defined as𝒇 ∶ 𝑓𝑖 = 𝑓(𝑥𝑖). We require 𝐹𝒱 to be a suitable
subspace of continuous functions such that 𝑇𝒱 is invertible, i.e., the function 𝑓 ∈ 𝐹𝒱
can be unambiguously reconstructed from its sampled values 𝒇. The existence of such
a subspace depends on the sampling 𝒱 and its characterization is a common problem
in signal processing [51]. For most samplings, it is not known if 𝐹𝒱 exists and hence if
𝑇𝒱 is invertible. A special case is the equiangular sampling where a sampling theorem
holds, and thus a closed-form of 𝑇𝒱−1 is known. For samplings where no such sampling
formula is available, we leverage the discrete SHT to reconstruct 𝑓 from 𝒇 = 𝑇𝒱𝑓, thus
approximating 𝑇𝒱−1. For all theoretical considerations, we assume that 𝐹𝒱 exists and
𝑓 ∈ 𝐹𝒱.
By definition, the (spherical) graph convolution is rotation equivariant if and only if

it commutes with the rotation operator defined as𝑅(𝑔), 𝑔 ∈ 𝑆𝑂(3): 𝑅(𝑔)𝑓(𝑥) = 𝑓(𝑔−1𝑥).
In the context of this work, graph convolution is performed by recursive applications of
the graph Laplacian (4.1). Hence, if 𝑅(𝑔) commutes with 𝑳, then, by recursion, it will

5The equiangular, HEALPix, and icosahedral samplings are of this kind.
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4.3 Graph convolution and equivariance
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also commute with the convolution ℎ(𝑳). As a result, ℎ(𝑳) is rotation equivariant if and
only if

𝑹𝒱(𝑔)𝑳𝒇 = 𝑳𝑹𝒱(𝑔)𝒇, ∀𝑓 ∈ 𝐹𝒱 and ∀𝑔 ∈ 𝑆𝑂(3),

where 𝑹𝒱(𝑔) = 𝑇𝒱𝑅(𝑔)𝑇𝒱−1. For an empirical evaluation of equivariance, we define the
normalized equivariance error for a signal 𝒇 and a rotation 𝑔 as

𝐸𝑳(𝒇, 𝑔) = (
‖𝑹𝒱(𝑔)𝑳𝒇 − 𝑳𝑹𝒱(𝑔)𝒇‖

‖𝑳𝒇‖ )
2

. (4.2)

More generally for a class of signals 𝑓 ∈ 𝐶 ⊂ 𝐹𝒱, the mean equivariance error defined
as

𝐸𝑳,𝐶 = 𝔼𝒇∈𝐶,𝑔∈𝑆𝑂(3) 𝐸𝑳(𝒇, 𝑔) (4.3)

represents the overall equivariance error. The expected value is obtained by averaging
over a finite number of random functions and random rotations.
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4 Efficient learning on the sphere

4.3.2 Finding the optimal weighting scheme

Considering the equiangular sampling and graphs where each vertex is connected to 4
neighbors (north, south, east, west), [92] designed aweighting scheme tominimize (4.3)
for longitudinal and latitudinal rotations6. Their solution gives weights inversely pro-
portional to Euclidean distances:

𝑤𝑖𝑗 =
1

‖
‖𝑥𝑖 − 𝑥𝑗‖‖

. (4.4)

While the resulting convolution is not equivariant to the whole of 𝑆𝑂(3) (Figure 4.2),
it is enough for omnidirectional imaging because, as gravity consistently orients the
sphere, objects only rotate longitudinally or latitudinally.
To achieve equivariance to all rotations, we take inspiration from [18]. They prove

that for a random uniform sampling, the graph Laplacian 𝑳 built from weights

𝑤𝑖𝑗 = 𝑒−
1
4𝑡
‖
‖𝑥𝑖−𝑥𝑗

‖
‖
2

(4.5)

converges to the Laplace-Beltrami operator𝛥𝕊2 as the number of samples grows to infin-
ity. This result is a good starting point as 𝛥𝕊2 commutes with rotation, i.e., 𝛥𝕊2𝑅(𝑔) =
𝑅(𝑔)𝛥𝕊2. While the weighting scheme is full (i.e., every vertex is connected to every
other vertex), most weights are small due to the exponential. We hence make an ap-
proximation to limit the cost of the convolution (4.1) by only considering the 𝑘 nearest
neighbors (𝑘-NN) of each vertex. Given 𝑘, the optimal kernel width 𝑡 is found by search-
ing for theminimizer of (4.3). Figure 4.3 shows the optimal kernel widths found for var-
ious resolutions of the HEALPix sampling. As predicted by the theory, 𝑡𝑛 ∝ 𝑛𝛽, 𝛽 ∈ ℝ.
Importantly however, the optimal 𝑡 also depends on the number of neighbors 𝑘.
Considering the HEALPix sampling, [132] connected each vertex to their 8 adjacent

vertices in the tiling of the sphere, computed the weights with (4.5), and heuristically
set 𝑡 to half the average squared Euclidean distance between connected vertices. This
heuristic however over-estimates 𝑡 (Figure 4.3) and leads to an increased equivariance
error (Figure 4.2).

4.3.3 Analysis of the proposed weighting scheme

We analyze the proposed weighting scheme both theoretically and empirically.

6Equivariance to longitudinal rotation is essentially given by the equiangular sampling.
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4.3 Graph convolution and equivariance

Figure 4.6: Patch.

Theoretical convergence. We extend the work of [18] to a
sufficiently regular, deterministic sampling. Following their set-
ting, we work with the extended graph Laplacian operator as the
linear operator 𝐿𝑡𝑛 ∶ 𝐿2(𝕊2) → 𝐿2(𝕊2) such that

𝐿𝑡𝑛𝑓(𝑦) ∶=
1
𝑛

𝑛

∑
𝑖=1

𝑒−
‖𝑥𝑖−𝑦‖

2

4𝑡 (𝑓(𝑦) − 𝑓(𝑥𝑖)). (4.6)

This operator extends the graphLaplacianwith theweighting scheme (4.5) to each point
of the sphere (i.e., 𝑳𝑡𝑛𝒇 = 𝑇𝒱𝐿𝑡𝑛𝑓). As the radius of the kernel 𝑡 will be adapted to the
number of samples, we scale the operator as 𝐿̂𝑡𝑛 ∶= |𝕊2|(4𝜋𝑡2)−1𝐿𝑡𝑛. Given a sampling
𝒱, we define 𝜎𝑖 to be the patch of the surface of the sphere corresponding to 𝑥𝑖, 𝐴𝑖 its
corresponding area, and 𝑑𝑖 the largest distance between the center 𝑥𝑖 and any point on
the surface 𝜎𝑖. Define 𝑑(𝑛) ∶= max𝑖=1,…,𝑛 𝑑𝑖 and 𝐴(𝑛) ∶= max𝑖=1,…,𝑛 𝐴𝑖.

Theorem 4.3.1 For a sampling 𝒱 of the sphere that is equi-area and such that 𝑑(𝑛) ≤
𝐶

𝑛𝛼
, 𝛼 ∈ (0, 1

2
], for all 𝑓 ∶ 𝕊2 → ℝ Lipschitz with respect to the Euclidean distance in ℝ3,

for all 𝑦 ∈ 𝕊2, there exists a sequence 𝑡𝑛 = 𝑛𝛽, 𝛽 ∈ ℝ such that

lim
𝑛→∞

𝐿̂𝑡𝑛𝑛 𝑓(𝑦) = 𝛥𝕊2𝑓(𝑦).

This is a major step towards equivariance, as the Laplace-Beltrami operator commutes
with rotation. Based on this property, we show the equivariance of the scaled extended
graph Laplacian.

Theorem 4.3.2 Under the hypothesis of Theorem 4.3.1, the scaled graph Laplacian com-
mutes with any rotation, in the limit of infinite sampling, i.e.,

∀𝑦 ∈ 𝕊2 ||𝑅(𝑔)𝐿̂
𝑡𝑛
𝑛 𝑓(𝑦) − 𝐿̂𝑡𝑛𝑛𝑅(𝑔)𝑓(𝑦)||

𝑛→∞
−−−−→ 0.

From this theorem, it follows that the discrete graph Laplacian will be equivariant in
the limit of 𝑛 → ∞ as by construction 𝑳𝑡𝑛𝒇 = 𝑇𝒱𝐿𝑡𝑛𝑓 and as the scaling does not affect
the equivariance property of 𝑳𝑡𝑛.
Importantly, the proof of Theorem 4.3.1 ([72, Appendix A]) inspires our construction

of the graph Laplacian. In particular, it tells us that 𝑡 should scale as 𝑛𝛽, which has
been empirically verified (Figure 4.3). Nevertheless, it is important to keep in mind
the limits of Theorem 4.3.1 and 4.3.2. Both theorems present asymptotic results, but
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4 Efficient learning on the sphere

in practice we will always work with finite samplings. Furthermore, since this method
is based on the capability of the eigenvectors of the graph Laplacian to approximate
the spherical harmonics, a stronger type of convergence of the graph Laplacian would
be preferable, i.e., spectral convergence (that is proved for a full graph in the case of
random sampling for a class of Lipschitz functions in [16]). Finally, whilewe do not have
a formal proof for it, we strongly believe that the HEALPix sampling does satisfy the
hypothesis 𝑑(𝑛) ≤ 𝐶

𝑛𝛼
, 𝛼 ∈ (0, 1

2
], with 𝛼 very close or equal to 1

2
. The empirical results

discussed in the next paragraph also points in this direction. This is further discussed
in [72, Appendix A].

Empirical convergence. Figure 4.2 shows the equivariance error (4.3) for different
parameter sets of DeepSphere for the HEALPix sampling as well as for the graph con-
struction of [92] for the equiangular sampling. The error is estimated as a function of the
sampling resolution and signal frequency. The resolution is controlled by the number
of pixels 𝑛 = 12𝑁side

2 for HEALPix and 𝑛 = 4𝑏2 for the equiangular sampling. The fre-
quency is controlled by setting the set𝐶 to functions 𝑓made of spherical harmonics of a
single degree ℓ. To allow for an almost perfect implementation (up to numerical errors)
of the operator𝑹𝒱, the degree ℓwas chosen in the range (0, 3𝑁side−1) for HEALPix and
(0, 𝑏) for the equiangular sampling [68]. Using these parameters, the measured error is
mostly due to imperfections in the empirical approximation of the Laplace-Beltrami
operator and not to the sampling.
Figure 4.2 shows that the weighting scheme (4.4) from [92] does indeed not lead to

a convolution that is equivariant to all rotations 𝑔 ∈ 𝑆𝑂(3).7 For 𝑘 = 8 neighbors,
selecting the optimal kernel width 𝑡 improves on [132] at no cost, highlighting the im-
portance of this parameter. Increasing the resolution decreases the equivariance error
in the high frequencies, an effect most probably due to the sampling. Most importantly,
the equivariance error decreases when connecting more neighbors. Hence, the number
of neighbors 𝑘 gives us a precise control of the tradeoff between cost and equivariance.

4.4 Experiments

4.4.1 3D objects recognition

The recognition of 3D shapes is a rotation invariant task: rotating an object doesn’t
change its nature. While 3D shapes are usually represented as meshes or point clouds,

7We however verified that the convolution is equivariant to longitudinal and latitudinal rotations, as
intended.
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performance size speed

F1 mAP params inference training

[34] (𝑏 = 128) - 67.6 1400 k 38.0ms 50h
[34] (simplified,9 𝑏 = 64) 78.9 66.5 400 k 12.0ms 32h
[56] (𝑏 = 64) 79.4 68.5 500 k 9.8ms 3h
DeepSphere (equiangular, 𝑏 = 64) 79.4 66.5 190 k 0.9ms 50m
DeepSphere (HEALPix, 𝑁side = 32) 80.7 68.6 190 k 0.9ms 50m

Table 4.1: Results on SHREC’17 (3D shapes). DeepSphere achieves similar performance at a
much lower cost, suggesting that anisotropic filters are an unnecessary price to pay.

representing them as spherical maps (Figure 4.4) naturally allows a rotation invariant
treatment.
The SHREC’17 shape retrieval contest [146] contains 51,300 randomly oriented 3D

models from ShapeNet [28], to be classified in 55 categories (tables, lamps, airplanes,
etc.). As in [34], objects are represented by 6 spherical maps. At each pixel, a ray is
traced towards the center of the sphere. The distance from the sphere to the object
forms a depth map. The cos and sin of the surface angle forms two normal maps. The
same is done for the object’s convex hull.8 The maps are sampled by an equiangular
sampling with bandwidth 𝑏 = 64 (𝑛 = 4𝑏2 = 16, 384 pixels) or an HEALPix sampling
with 𝑁side = 32 (𝑛 = 12𝑁side

2 = 12, 288 pixels).
The equiangular graph is built with (4.4) and 𝑘 = 4 neighbors (following [92]). The

HEALPix graph is built with (4.5), 𝑘 = 8, and a kernel width 𝑡 set to the average of
the distances (following [132]). The NN is made of 5 graph convolutional layers, each
followed by amax pooling layerwhich down-samples by 4. AGAP and a fully connected
layer with softmax follow. The polynomials are all of order 𝑃 = 3 and the number of
channels per layer is 16, 32, 64, 128, 256, respectively. Following [56], the cross-entropy
plus a triplet loss is optimized with Adam for 30 epochs on the dataset augmented by 3
random translations. The learning rate is 5 ⋅ 10−2 and the batch size is 32.
Results are shown in Table 4.1. As the network is trained for shape classification

rather than retrieval, we report the classification F1 alongside the mAP used in the re-
trieval contest.10 DeepSphere achieves the same performance as [34] and [56] at a much
lower cost, suggesting that anisotropic filters are an unnecessary price to pay. As the
information in those spherical maps resides in the low frequencies (Figure 4.5), reduc-

8Albeit we didn’t observe much improvement by using the convex hull.
9As implemented in https://github.com/jonas-koehler/s2cnn.
10We omit the F1 for [34] as we didn’t get the mAP reported in the paper when running it.
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4 Efficient learning on the sphere

accuracy time

[132], 2D CNN baseline 54.2 104ms
[132], CNN variant, 𝑘 = 8 62.1 185ms
[132], FCN variant, 𝑘 = 8 83.8 185ms
𝑘 = 8 neighbors, 𝑡 from §4.3.2 87.1 185ms
𝑘 = 20 neighbors, 𝑡 from §4.3.2 91.3 250ms
𝑘 = 40 neighbors, 𝑡 from §4.3.2 92.5 363ms

Table 4.2: Results on the classification of partial convergence
maps. Lower equivariance error translates to higher
performance.
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Figure 4.7: Tradeoff between
cost and accuracy.

ing the equivariance error didn’t translate into improved performance. For the same
reason, using the more uniform HEALPix sampling or lowering the resolution down to
𝑁side = 8 (𝑛 = 768 pixels) didn’t impact performance either.

4.4.2 Cosmological model classification

Given observations, cosmologists estimate the posterior probability of cosmological pa-
rameters, such as the matter density 𝛺𝑚 and the normalization of the matter power
spectrum 𝜎8. Those parameters are estimated by likelihood-free inference, which re-
quires amethod to extract summary statistics to compare simulations and observations.
As the sufficient and most concise summary statistics are the parameters themselves,
one desires a method to predict them from simulations. As that is complicated to setup,
prediction methods are typically benchmarked on the classification of spherical maps
instead [149]. We used the same task, data, and setup as [132]: the classification of 720
partial convergencemapsmade of 𝑛 ≈ 106 pixels (1/12 ≈ 8% of a sphere at𝑁side = 1024)
from two 𝛬CDM cosmological models, (𝛺𝑚 = 0.31, 𝜎8 = 0.82) and (𝛺𝑚 = 0.26,
𝜎8 = 0.91), at a relative noise level of 3.5 (i.e., the signal is hidden in noise of 3.5 times
higher standard deviation). Convergence maps represent the distribution of over- and
under-densities of mass in the universe (see [10] for a review of gravitational lensing).
Graphs are built with (4.5), 𝑘 = 8, 20, 40 neighbors, and the corresponding optimal

kernel widths 𝑡 given in §4.3.2. Following [132], theNN ismade of 5 graph convolutional
layers, each followed by a max pooling layer which down-samples by 4. A GAP and a
fully connected layer with softmax follow. The polynomials are all of order 𝑃 = 4 and
the number of channels per layer is 16, 32, 64, 64, 64, respectively. The cross-entropy
loss is optimized with Adam for 80 epochs. The learning rate is 2 ⋅ 10−4 ⋅ 0.999step and
the batch size is 8.
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accuracy mAP

[88] (rerun) 94.95 38.41
[35] (S2R) 97.5 68.6
[35] (R2R) 97.7 75.9
DeepSphere (weighted loss) 97.8 ± 0.3 77.15 ± 1.94
DeepSphere (non-weighted loss) 87.8 ± 0.5 89.16 ± 1.37

Table 4.3: Results on climate event segmentation: mean accuracy (over TC, AR, BG) and mean
average precision (over TC and AR). DeepSphere achieves state-of-the-art perfor-
mance.

Unlike on SHREC’17, results (Table 4.2) show that a lower equivariance error on the
convolutions translates to higher performance. That is probably due to the high fre-
quency content of those maps (Figure 4.5). There is a clear cost-accuracy tradeoff, con-
trolled by the number of neighbors 𝑘 (Figure 4.7). This experiment moreover demon-
stratesDeepSphere’s flexibility (using partial sphericalmaps) and scalability (competing
spherical CNNs were tested on maps of at most 10, 000 pixels).

4.4.3 Climate event segmentation

We evaluate our method on a task proposed by [125]: the segmentation of extreme cli-
mate events, Tropical Cyclones (TC) and Atmospheric Rivers (AR), in global climate
simulations (Figure 4.1c). The data was produced by a 20-year run of the Commu-
nity Atmospheric Model v5 (CAM5) and consists of 16 channels such as temperature,
wind, humidity, and pressure at multiple altitudes. We used the pre-processed dataset
from [88].11 There is 1,072,805 spherical maps, down-sampled to a level-5 icosahedral
sampling (𝑛 = 10 ⋅ 4𝑙+2 = 10, 242 pixels). The labels are heavily unbalanced with 0.1%
TC, 2.2% AR, and 97.7% background (BG) pixels.
The graph is built with (4.5), 𝑘 = 6 neighbors, and a kernel width 𝑡 set to the average

of the distances. Following [88], the NN is an encoder-decoder with skip connections.
Details in [72, Appendix C.3]. The polynomials are all of order 𝑃 = 3. The cross-entropy
loss (weighted or non-weighted) is optimized with Adam for 30 epochs. The learning
rate is 1 ⋅ 10−3 and the batch size is 64.
Results are shown in Table 4.3 (details in [72, tables 6, 7, and 8]). The mean and stan-

dard deviation are computed over 5 runs. Note that while [88] and [35] use a weighted
cross-entropy loss, that is a suboptimal proxy for themAPmetric. DeepSphere achieves
state-of-the-art performance, suggesting again that anisotropic filters are unnecessary.

11Available at http://island.me.berkeley.edu/ugscnn/data.
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4 Efficient learning on the sphere

temp. (from past temp.) day (from temperature) day (from precipitations)

order 𝑃 MSE MAE R2 MSE MAE R2 MSE MAE R2

0 10.88 2.42 0.896 0.10 0.10 0.882 0.58 0.42 −0.980
4 8.20 2.11 0.919 0.05 0.05 0.969 0.50 0.18 0.597

Table 4.4: Prediction results on data from weather stations. Structure always improves perfor-
mance.

Note that results from [125] cannot be directly compared as they don’t use the same
input channels.
Compared to [35]’s conclusion, it is surprising that S2R does worse than DeepSphere

(which is limited to S2S). Potential explanations are (i) that their icosahedral projection
introduces harmful distortions, or (ii) that a larger architecture can compensate for the
lack of generality. We indeed observed that more feature maps and depth led to higher
performance [72, Appendix C.3].

4.4.4 Uneven sampling

To demonstrate the flexibility of modeling the sampled sphere by a graph, we collected
historical measurements from 𝑛 ≈ 10, 000weather stations scattered across the Earth.12
The spherical data is heavily non-uniformly sampled, with a much higher density of
weather stations over North America than the Pacific (Figure 4.1d). For illustration, we
devised two artificial tasks. A dense regression: predict the temperature on a given day
knowing the temperature on the previous 5 days. A global regression: predict the day
(represented as one period of a sine over the year) from temperature or precipitations.
Predicting from temperature is much easier as it has a clear yearly pattern.
The graph is built with (4.5), 𝑘 = 5neighbors, and a kernelwidth 𝑡 set to the average of

the distances. The equivariance property of the resulting graph has not been tested, and
we don’t expect it to be good due to the heavily non-uniform sampling. The NN is made
of 3 graph convolutional layers. The polynomials are all of order 𝑃 = 0 or 4 and the
number of channels per layer is 50, 100, 100, respectively. For the global regression, a
GAP and a fully connected layer follow. For the dense regression, a graph convolutional
layer follows instead. The MSE loss is optimized with RMSprop for 250 epochs. The
learning rate is 1 ⋅ 10−3 and the batch size is 64.
Results are shown in Table 4.4. While using a polynomial order 𝑃 = 0 is like model-

ing each time series independently with an MLP, orders 𝑃 > 0 integrate neighborhood

12https://www.ncdc.noaa.gov/ghcn-daily-description
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information. Results show that using the structure induced by the spherical geometry
always yields better performance.

4.5 Conclusion

This work showed that DeepSphere strikes an interesting, and we think currently op-
timal, balance between desiderata for a spherical CNN. A single parameter, the num-
ber of neighbors 𝑘 a pixel is connected to in the graph, controls the tradeoff between
cost and equivariance (which is linked to performance). As computational cost and
memory consumption scales linearly with the number of pixels, DeepSphere scales to
spherical maps made of millions of pixels, a required resolution to faithfully represent
cosmological and climate data. Also relevant in scientific applications is the flexibility
offered by a graph representation (for partial coverage, missing data, and non-uniform
samplings). Finally, the implementation of the graph convolution is straightforward,
and the ubiquity of graph neural networks—pushing for their first-class support in DL
frameworks—will make implementations even easier and more efficient.
A potential drawback of graph Laplacian-based approaches is the isotropy of graph

filters, reducing in principle the expressive power of the NN. Experiments from [35]

and [22] indeed suggest thatmore general convolutions achieve better performance. Our
experiments on 3D shapes (§4.4.1) and climate (§4.4.3) however show thatDeepSphere’s
isotropic filters do not hinder performance. Possible explanations for this discrepancy
are that NNs somehow compensate for the lack of anisotropic filters, or that some tasks
can be solved with isotropic filters. The distortions induced by the icosahedral projec-
tion in [35] or the leakage of curvature information in [22]might also alter performance.
Developing graph convolutions on irregular samplings that respect the geometry of

the sphere is another research direction of importance. Practitioners currently interpo-
late their measurements (coming from arbitrarily positioned weather stations, satellites
or telescopes) to regular samplings. This practice either results in a waste of resolution
or computational and storage resources. Our ultimate goal is for practitioners to be able
to work directly on their measurements, however distributed.
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5 Cosmological parameter
inference

Convolutional Neural Networks (CNNs) are a cornerstone of the Deep Learning tool-
box and have led to many breakthroughs in Artificial Intelligence. So far, these neural
networks (NNs) have mostly been developed for regular Euclidean domains such as
those supporting images, audio, or video. Because of their success, CNN-based meth-
ods are becoming increasingly popular in Cosmology. Cosmological data often comes
as spherical maps, which make the use of the traditional CNNs more complicated. The
commonly used pixelization scheme for spherical maps is the Hierarchical Equal Area
isoLatitude Pixelisation (HEALPix). We present a spherical CNN for analysis of full
and partial HEALPix maps, which we call DeepSphere. The spherical CNN is con-
structed by representing the sphere as a graph. Graphs are versatile data structures
that can represent pairwise relationships between objects or act as a discrete repre-
sentation of a continuous manifold. Using the graph-based representation, we define
many of the standard CNN operations, such as convolution and pooling. With filters
restricted to being radial, our convolutions are equivariant to rotation on the sphere,
and DeepSphere can be made invariant or equivariant to rotation. This way, Deep-
Sphere is a special case of a graphCNN, tailored to theHEALPix sampling of the sphere.
This approach is computationally more efficient than using spherical harmonics to per-
form convolutions. We demonstrate the method on a classification problem of weak
lensing mass maps from two cosmological models and compare its performance with
that of three baseline classifiers, two based on the power spectrum and pixel density
histogram, and a classical 2D CNN. Our experimental results show that the perfor-
mance of DeepSphere is always superior or equal to the baselines. For high noise lev-
els and for data covering only a smaller fraction of the sphere, DeepSphere achieves
typically 10% better classification accuracy than the baselines. Finally, we show how
learned filters can be visualized to introspect the NN. Code and examples are available
at https://github.com/deepsphere/deepsphere-cosmo-tf1.

53

https://github.com/deepsphere/deepsphere-cosmo-tf1


5 Cosmological parameter inference

CMB temperature map
(Planck 2015)

-0.00025 0.00025

galaxy count
(SDSS DR14)

0 6

simulated weak lensing mass map
(DES DR1 area)

-0.014 0.02

Figure 5.1: Examplemaps on the sphere: (left) theCMB temperature (K)map fromPlanck [135],
with galactic plane masked, (middle) map of galaxy number counts (number of
galaxies per arcmin2) in SDSS DR14 [2], and (right) simulated weak lensing con-
vergence map (dimensionless) simulated with DES DR1 mask [40]. These maps
were pixelised using 𝑁side = 512. The CMB and weak lensing mass maps were
smoothedwithGaussian kernels with FWHM=1 deg, and the galaxy countmapwith
FWHM=0.5 deg.

5.1 Introduction

Cosmological and astrophysical data often come in the form of spherical sky maps. Ob-
servables that cover large parts of the sky, such as the Cosmic Microwave Background
(CMB) [96, 136, 158], neutral hydrogen [79, 145], galaxy clustering [4], gravitational lens-
ing [80, 163], and others, have been used to constrain cosmological and astrophysical
models. Cosmological information contained in these maps is usually extracted using
summary statistics, such as the power spectra or higher order correlation functions.
Convolutional Neural Networks (CNNs) have been proposed as an alternative analy-
sis tool in cosmology thanks to their ability to automatically design relevant statistics to
maximise the precision1 of the parameter estimation [6, 31, 63, 71, 76, 113, 139, 149],while
maintaining robustness to noise. This is possible as neural networks (NNs) have the ca-
pacity to build rich models and capture complicated non-linear patterns often present
in the data. CNNs are particularly well suited for the analysis of cosmological data as
their trainable weights are shared across the domain, i.e., the network does not have to
relearn to detect objects or features at every spatial location.

So far these algorithms have mostly been demonstrated on Euclidean domains, such
as images. The main challenge in designing a CNN on the sphere is to define a con-

1Here, the word “precision” is to be understood as the final size of the posterior distribution on the mea-
sured parameters (including systematic errors).
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volution operation that is suitable for this domain, while taking care of the necessary
irregular sampling. Moreover, the designed convolution and resulting NN should pos-
sess the following three key characteristics. First, the convolution should be equivariant
to rotation, meaning that a rotation of the input implies the same rotation of the out-
put. Sky maps are rotation equivariant: rotating a map on the sphere doesn’t change
its interpretation. Depending on the task, we want the CNN to be either equivariant
or invariant to rotation.2 Second, to be able to train the network in reasonable time,
the convolution has to be computationally efficient. Third, a CNN should work well on
parts of the sphere, as many cosmological observations cover only a part of the sky. For
ground-based observations this can be due to limited visibility of the sky from a partic-
ular telescope location, and for space-based instruments due to masking of the galactic
plane area (see Figure 5.1 for example maps).
Three ways of generalizing CNNs to spherical data have been pursued. One approach

is to apply a standard 2DCNN to a grid discretisation of the sphere [21, 39, 160]. An alter-
native is to divide the sphere into small chunks and project those on flat 2D surfaces [57,
63, 71, 149]. While these approaches use the well-developed 2D convolution and hier-
archical pooling, they are not equivariant to rotation. Another way is to leverage the
spherical Fourier transform and to perform the convolution associated to the 𝑆𝑂(3) ro-
tation group in the spectral domain, thanks to the convolution theorem [34, 55]. While
the resulting convolution is equivariant to rotation, this approach is computationally ex-
pensive, even if a fast spherical Fourier transform is used. Moreover, all those methods
cannot be much accelerated when maps only span a part of the sky.
Our spherical CNN leverages convolutions on graphs and hierarchical pooling to

achieve the following properties: (i) rotation equivariance, (ii) computational efficiency,
and (iii) partial sky observations. The main idea is to model the discretised sphere as
a graph of connected pixels: the length of the shortest path between two pixels is an
approximation of the geodesic distance between them. We use the graph CNN formu-
lation introduced in [43], and a pooling strategy that exploits a hierarchical pixelisation
of the sphere to analyse the data at multiple scales. As the Equal Area isoLatitude Pix-
elisation (HEALPix) [67] is a popular sampling used in cosmology and astrophysics, we
tailored the method to that particular sampling. DeepSphere is, however, easily used
with other samplings as only two elements depend on it: (i) the choice of neighboring
pixels when building the graph, and (ii) the choice of parent pixels when building the
hierarchy. The flexibility of modeling the data domain with a graph allows one to easily
model data that spans only a part of the sphere, or data that is not uniformly sampled.

2When only the statistics of the maps are relevant, they are rotation invariant.
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Using a 𝑘-nearest neighbours graph, the convolution operation costs𝒪(𝑁pix) operations,
where 𝑁pix is the number of pixels. This is the lowest possible complexity for a convo-
lution without approximations. DeepSphere is readily apt to solve four tasks: (i) global
classification (i.e., predict a class from a map), (ii) global regression (i.e., predict a set of
parameters from a map), (iii) dense classification (i.e., predict a class for each pixel of a
map), and (iv) dense regression, (i.e., predict a set of maps from a map). Input data are
spherical maps with a single value per pixel, such as the CMB temperature, or multiple
values per pixel, such as surveys at multiple radio frequencies.

We give a practical demonstration of DeepSphere on cosmological model discrimina-
tion using maps of projected mass distribution on the sky [29]. These kind of maps can
be created using the gravitational lensing technique (see [11] for a review). Our maps
are similar to the ones used by [149]. In a simplified scenario, we classify partial sky
convergence maps into two cosmological models. These models were designed to have
very similar angular power spectrum. We compare the performance of DeepSphere to
three baselines: a 2D CNN, and an SVM classifier that takes pixel histograms or power
spectral densities (PSDs) of these maps as input. The comparison is made as a function
of the additive noise level and the area of the sphere used in the analysis. Results show
that our model is always better at discriminating the maps, especially in the presence of
noise. DeepSphere is implemented with TensorFlow [118] and is intended to be easy to
use out-of-the-box for cosmological applications. The Python Graph Signal Processing
package (PyGSP) [44] is used to build graphs, compute the Laplacian and Fourier basis,
and perform graph convolutions. Code and examples are available online.3

5.2 Method

ACNN is composed of the following main building blocks [107]: (i) a convolution, (ii) a
non-linearity, and, optionally, (iii) a down-sampling operation, (iv) a pooling operation,
and (v) a normalization.4 Our architecture is depicted in Figure 5.2 and discussed in
greater details in §5.2.8. As operations (ii) and (v) are point-wise, they do not depend on
the data domain. The pooling operation is simply a permutation invariant aggregation
functionwhich does not need to be adapted either. The convolution and down-sampling
operations, however, need to be generalized from Euclidean domains to the sphere.

3https://github.com/deepsphere/deepsphere-cosmo-tf1
4Batch normalization has been shown to help training [86].Weverified this experimentally in our setting
as well.
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Figure 5.2: Overall NN architecture, showing here three convolutional layers acting as feature
extractors followed by three fully connected layers with softmax acting as the clas-
sifier. A convolutional layer is based on five operations: convolution, non-linearity,
batch normalization, down-sampling, and pooling. While most operations are ag-
nostic to the data domain, the convolution and the down-sampling have to be
adapted. In this chapter, we propose first to model the sphere with a graph and to
perform the convolution on the graph. Graphs are versatile data structures which
can model any sampling, even irregular or partial. Second, we propose to exploit a
hierarchical pixelization of the sphere for the down-sampling operation. It allows
the NN to analyze the data at multiple scales while preserving the spatial localiza-
tion of features. This figure shows a network that operates on the whole sphere. The
process is the same when working with partial observations, except that the graph is
only built for the region of interest.
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On regular Euclidean domains, such as 1-dimensional time series or 2-dimensional
images, a convolution can be efficiently implemented by sliding a localized convolution
kernel (for example a patch of 5 × 5 pixels) in the signal domain. Because of the irreg-
ular sampling, there is no straightforward way to define a convolution on the sphere
directly in the pixel domain; convolutions are most often performed using spherical
harmonics. In our method we also use the spectral domain to define the convolution.
The implementation, however, does not need a direct access to the spectrum, which is
computationally more efficient (see §5.2.5).

Down-sampling is achieved on regular Euclidean domains by keeping one pixel every
𝑛 pixels in every dimension. That is again not a suitable strategy on the sphere because
of the irregular sampling.

The gist of our method is to define the convolution operation on a sphere using a
graph, and the down-sampling operation using a hierarchical pixelisation of the sphere.

5.2.1 HEALPix sampling

Before doing any numerical analysis on the sphere, one first has to choose a tessellation,
i.e., an exhaustive partition of the sphere into finite area elements, where the data un-
der study is quantized. The simplicity of the spherical form belies the intricacy of global
analysis on the sphere: there is no known point set that achieves the analogue of uni-
form sampling in Euclidean space. While our method is applicable to any pixelisation
of the sphere, two details depend on the chosen sampling: (i) the choice of neighbours
in the construction of the graph, and (ii) the choice of parent vertices when coarsen-
ing the graph. As HEALPix [67] is our target application, we tailor the method to that
particular sampling in the subsequent exposition. Figure 5.1 shows three examples of
HEALPixmaps: the CosmicMicrowave Background [135], galaxies found in SloanDigi-
tal Sky Survey Data Release 14 [2], and an example simulatedmassmap on the footprint
of Dark Energy Survey Data Release 1 [40].

HEALPix is a particular case of a more general class of schemes based on a hierarchi-
cal subdivision of a base polyhedron. Another example is the geodesic grids which are
based on geodesic polyhedrons, i.e., polyhedrons made of triangular faces. A counter-
example is the equirectangular projection, which is not constructed from a base poly-
hedron, although it can be subdivided. In the particular HEALPix case, the base is a
rhombic dodecahedron, i.e., a polyhedron made from 12 congruent rhombic faces. See
Figure 5.5 for an illustration of the base rhombic dodecahedron and its subdivisions.
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The HEALPix pixelisation produces a hierarchical subdivision of a spherical surface
where each pixel covers the same surface area as every other pixel. Ahierarchy is desired
for the data locality in the computermemory. Equal area is advantageous becausewhite
noise generated by the signal receiver gets integrated exactly into white noise in the
pixel space. Isolatitude is essential for the implementation of a fast spherical transform.
HEALPix is the sole pixelisation scheme which satisfies those three properties.

The lowest possible resolution is given by the base partitioning of the surface into
𝑁pix = 12 equal-sized pixels (right-most sphere in Figure 5.5). The resolution changes
as 𝑁pix = 12𝑁2

side such that 𝑁pix = 48 for 𝑁side = 2 and 𝑁pix = 192 for 𝑁side = 3.
High-resolutions maps easily reach millions of pixels.

5.2.2 Graph construction

Our graph is constructed as an approximation of the sphere 𝑆2, a 2Dmanifold embedded
in ℝ3. Indeed, [16] showed that the graph Laplacian converges to the Laplace-Beltrami
when the number of pixels goes to infinity providing uniform sampling of the manifold
and a fully connected graph built with exponentially decaying weights. While our con-
struction does not exactly respect their setting (the sampling is deterministic and the
graph is not fully connected), we empirically observe a strong correspondence between
the eigenmodes of both Laplacians (see [132, Appendix A]).

From theHEALPix pixelization, we build aweightedundirected graph𝒢 = (𝒱, ℰ,𝑾),
where 𝒱 is the set of 𝑁pix = |𝒱| vertices, ℰ is the set of edges, and𝑾 is the weighted
adjacency matrix. In our graph, each pixel 𝑖 is represented by a vertex 𝑣𝑖 ∈ 𝒱. Each
vertex 𝑣𝑖 is then connected to the 8 (or 7)5 vertices 𝑣𝑗 which represent the neighboring
pixels 𝑗 of pixel 𝑖, forming edges (𝑣𝑖, 𝑣𝑗) ∈ ℰ. Given those edges, we define the weighted
adjacency matrix𝑾 ∈ ℝ𝑁pix×𝑁pix as

𝑾𝑖𝑗 = {
exp(−

‖𝒙𝑖−𝒙𝑗‖22
𝜌2

) if pixels 𝑖 and 𝑗 are neighbors,

0 otherwise,

where 𝒙𝑖 is a vector encoding the 3-dimensional coordinates of pixel 𝑖, and

𝜌 = 1
|ℰ| ∑

(𝑣𝑖,𝑣𝑗)∈ℰ
‖𝒙𝑖 − 𝒙𝑗‖2

5The 12×4 = 48 pixels at the corner of each rhombus of the base dodecahedron only have 7 neighboring
pixels. See Figures 5.6 and 5.5.
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is the average Euclidean distance over all connected pixels. This weighting scheme is
important as distances betweenpixels are not equal. Otherweighting schemes are possi-
ble. For example, [59] uses the inverse of the distance instead. We found out that the one
proposed above works well for our purpose, and did not investigate other approaches,
leaving it to future work. Figure 5.6 shows a graph constructed from the HEALPix sam-
pling of a sphere.

5.2.3 Graph Fourier basis

Following [156], the normalized graph Laplacian, defined as 𝑳 = 𝑰 −𝑫−1/2𝑾𝑫−1/2, is a
second order differential operator that can be used to define a Fourier basis on the graph.
Here𝑫 is the diagonal matrix where𝑫𝑖𝑖 = 𝒅𝑖 and 𝒅𝑖 = ∑𝑗𝑾𝑖𝑗 is the weighted degree of
vertex 𝑣𝑖. By construction, the Laplacian is symmetric positive semi-definite and hence
can be decomposed as 𝑳 = 𝑼𝜦𝑼𝖳, where 𝑼 = [𝒖1,… , 𝒖𝑁pix] is an orthonormal matrix
of eigenvectors and 𝜦 is a diagonal matrix of eigenvalues. The graph Fourier basis is
defined as the Laplacian eigenvectors, motivated by the fact that a Fourier basis should
diagonalize the Laplacian operator. The graph Fourier transform of a signal 𝒇 ∈ ℝ𝑁pix

is simply its projection on the eigenvectors given by ̂𝒇 = ℱ𝒢{𝒇} = 𝑼𝖳𝒇. It follows that
the inverse graph Fourier transform reads ℱ−1

𝒢 { ̂𝒇} = 𝑼 ̂𝒇 = 𝑼𝑼𝖳𝒇 = 𝒇. Note that
the Fourier modes are ordered in the increasing order of the Laplacian eigenvalues 𝜦,
which can be interpreted as squared frequencies. Indeed,

𝜦𝑖𝑖 = 𝒖𝑖𝖳𝑳𝒖𝑖 = ∑
(𝑣𝑗,𝑣𝑘)∈ℰ

𝑾𝑗𝑘

√𝒅𝑗𝒅𝑘
(𝑼𝑗𝑖 −𝑼𝑘𝑖)

2

is a measure of the variation of the eigenvector𝒖𝑖 on the graph defined by the Laplacian
𝑳.

Figure 5.3 shows the Fourier modes of a HEALPix graph, created using the graph
construction described above. The graph Fourier modes resemble the spherical har-
monics. That is a strong hint that the graph is able to capture the spherical properties
of the HEALPix sampling. This topic is further discussed in [132, Appendix A].

5.2.4 Convolution on graphs

As there is no notion of translation on a graph, we cannot convolve two graph signals in
a strict sense. We can, however, convolve a signal with a kernel defined in the spectral
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Mode 0: =0, |m|=0 Mode 1: =1, |m|=1 Mode 2: =1, |m|=1 Mode 3: =1, |m|=0

Mode 4: =2, |m|=2 Mode 5: =2, |m|=1 Mode 6: =2, |m|=1 Mode 7: =2, |m|=0

Mode 8: =2, |m|=2 Mode 9: =3, |m|=2 Mode 10: =3, |m|=0 Mode 11: =3, |m|=3

Mode 12: =3, |m|=3 Mode 13: =3, |m|=2 Mode 14: =3, |m|=1 Mode 15: =3, |m|=1

Figure 5.3: The first 16 eigenvectors of the graph Laplacian, an equivalent of Fourier modes, of
a graph constructed from the HEALPix sampling of the sphere (𝑁side = 16). Eigen-
vectors 1–3 could be associated with spherical harmonics of degree ℓ = 1 and order
|𝑚| = (0, 1), eigenvectors 4–8 with degree ℓ = 2 and order |𝑚| = (0, 1, 2), and eigen-
vectors 9–15 with degree ℓ = 3 and order |𝑚| = (0, 1, 2, 3). Nevertheless, graph
eigenvectors are only approximating spherical harmonics.

domain. More precisely, we can filter a graph signal by a kernel. Given the convolution
kernel ℎ ∶ ℝ+ → ℝ, a signal 𝒇 ∈ ℝ𝑁pix on the graph is filtered as

ℎ(𝑳)𝒇 = 𝑼ℎ(𝜦)𝑼𝖳𝒇, (5.1)

where ℎ(𝜦) is a diagonal matrix where (ℎ(𝜦))
𝑖𝑖
= ℎ(𝜦𝑖𝑖).

Contrary to classical signal processing on Euclidean domains, the kernel ℎ has no
single representation in the vertex domain and cannot be translated on the graph. It
can however be localized on any vertex 𝑣𝑖 by the convolution with a Kronecker delta6
𝜹𝑖 ∈ ℝ𝑁pix. The localization operator 𝒯𝑖 reads 𝒯𝑖ℎ = ℎ(𝑳)𝜹𝑖 = (ℎ(𝑳))

𝑖
, the 𝑖th column of

ℎ(𝑳). This localization of the kernel ℎ can be useful to visualize kernels, as shown in an
example of heat diffusion presented in [132, Appendix B]. If the graph is not regular, i.e.,
all vertices do not have the same number of neighbors, and all distances are not equal,
the effect of the kernel will slightly differ from one vertex to another. While there is no
perfect sampling of the sphere, these differences are negligible as the structure of the
whole graph is very regular. However, when considering only parts of the sphere, one
can observe important border effects (see [132, Appendix C]).

6A Kronecker delta is the signal 𝜹𝑖 ∈ ℝ𝑁pix that is zero everywhere except on vertex 𝑣𝑖 where it takes the
value one.
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5 Cosmological parameter inference

Finally, the graph convolution can be interpreted in the vertex domain as a scalar
product with localizations 𝒯𝑖ℎ of the kernel ℎ. Indeed, the result of the convolution of
the signal 𝒇 with the kernel ℎ is

(ℎ(𝑳)𝒇)
𝑖
= ⟨𝒯𝑖ℎ(𝑳), 𝒇⟩ = ⟨ℎ(𝑳)𝜹𝑖, 𝒇⟩. (5.2)

To make the parallel with the classical 1D convolution, let 𝑓, 𝑔 ∈ ℤ → ℝ be two 1D
discrete signals. Their convolution can be written in the same form as (5.2):

(𝑓 ∗ 𝑔)[𝑖] =
∞

∑
𝑗=−∞

𝑓[𝑗]𝑔[𝑖 − 𝑗] = ⟨𝑇𝑖𝑔, 𝑓⟩,

where 𝑇𝑖𝑔[𝑗] = 𝑔[𝑖 − 𝑗] is, up to a flip (i.e., 𝑔[𝑖 − 𝑗] instead of 𝑔[𝑖 + 𝑗]), a translation
operator. Similarly as (5.2), the convolution of the signal 𝑓 by a kernel 𝑔 is the scalar
product of 𝑓 with translated versions 𝑇𝑖𝑔 of the kernel 𝑔. Additionally, it turns out that
the localization operator 𝒯𝑖ℎ is a generalization of the translation operator on graphs.
In the particular case where the Laplacian matrix 𝑳 is circulant, 𝒯𝑖ℎ is a translated ver-
sion of 𝒯𝑗ℎ for all 𝑖, 𝑗 and both convolutions are equivalent. We refer the reader to [133,
Section 2.2] for a detailed discussion of the connection between translation 𝑇𝑖 and local-
ization 𝒯𝑖.

To shed some light on the meaning of the convolution on a graph, we show in [132,

Appendix B] that the diffusion of heat on a graph can be expressed as the convolution of
an initial condition 𝒇 with a heat kernel ℎ.

5.2.5 Efficient convolutions

While (5.1) is awell justified definition of the convolution, it is computationally cumber-
some. As no efficient and general fast Fourier transform (FFT) exists for graphs [104],
the execution of the Fourier transform by multiplication of the signal 𝒇 by the dense
matrix𝑼 costs𝒪(𝑁2

pix) operations. In a NN, this operation has to be performed for each
forward and backward pass. As current training procedures require processing of many
samples, that would be very slow. Moreover, the eigen-decomposition of the Laplacian
𝑳 is needed to obtain the Fourier basis 𝑼 in the first place. That has a unique cost of
𝒪(𝑁3

pix) operations.
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Fortunately, both of these computational issues are overcome by defining the convo-
lution kernel ℎ as a polynomial ℎ𝜃(𝜆) = ∑𝐾

𝑘=0 𝜃𝑘𝜆
𝑘 of degree 𝐾 parametrised by 𝐾 + 1

coefficients 𝜃. The filtering operation (5.1) becomes

ℎ𝜃(𝑳)𝒇 = 𝑼(
𝐾

∑
𝑘=0

𝜃𝑘𝜦𝑘)𝑼𝖳𝒇 =
𝐾

∑
𝑘=0

𝜃𝑘𝑳𝑘𝒇, (5.3)

where 𝑳𝑘 captures 𝑘-neighborhoods. The entry (𝑳𝑘)𝑖𝑗 is the sum of all weighted paths
of length 𝑘 between vertices 𝑣𝑖 and 𝑣𝑗, where the weight of a path is the multiplication
of all the edge weights on the path. Hence, it is non-zero if and only if vertices 𝑣𝑖 and
𝑣𝑗 are connected by at least one path of length 𝑘.7 Filtering with a polynomial convo-
lution kernel can thus be interpreted in the pixel (vertex) domain as a weighted linear
combination of neighboring pixel values. In the classical setting, convolutions are also
weighted local sums. The weights are however given by the filter coefficients only, and
there is one coefficient per pixel in the patch. In the graph setting, the weights are de-
termined by the filter coefficients 𝜃 and the Laplacian 𝑳, and there is one coefficient
per neighborhood, not vertex. That defines radial filters, values of which depend only
on the distance to the center, and not on the direction. While it may seem odd to re-
strict filters to be 1D while the sphere is 2D, radial filters are direction-less and result
in rotation equivariant convolutions. We note that restricting the graph convolutional
kernel to a polynomial is similar to restricting the classical Euclidean convolution to a
fixed-size patch. Similarly, each column of the matrix ∑𝐾

𝑘=0 𝜃𝑘𝑳
𝑘 defines an irregular

patch of radius 𝐾. Hence, filters designed as polynomials of the Laplacian have local
support in the vertex domain.
Following [43], we define our filters as Chebyshev polynomials. The filtering opera-

tion (5.1) becomes

ℎ𝜃(𝑳̃)𝒇 = 𝑼(
𝐾

∑
𝑘=0

𝜃𝑘𝑇𝑘( ̃𝜦))𝑼𝖳𝒇 =
𝐾

∑
𝑘=0

𝜃𝑘𝑇𝑘(𝑳̃)𝒇, (5.4)

where
𝑳̃ = 2

𝜆max
𝑳 − 𝑰 = − 2

𝜆max
𝑫−1/2𝑾𝑫−1/2

is the rescaled Laplacian with eigenvalues ̃𝜦 in [−1, 1]. 𝑇𝑘(⋅) is the Chebyshev poly-
nomial of degree 𝑘 defined by the recursive relation 𝑇𝑘(𝑳̃) = 2𝑳̃𝑇𝑘−1(𝑳̃) − 𝑇𝑘−2(𝑳̃),
𝑇1(𝑳̃) = 𝑳̃, 𝑇0(𝑳̃) = 𝑰. While definitions (5.3) and (5.4) both allow the representation
of the same filters, we found in our experiments that optimizing 𝜃 in (5.4) is slightly

7The length of a path between two vertices defines a distance on the graph.
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Figure 5.4: Comparison of filtering speed for Gaussian smoothing of maps of various sizes. The
fast spherical harmonic transform (SHT) is implemented by theHealPy Python pack-
age (via the healpy.sphtfunc.smoothing function). The graph filtering is de-
fined by (5.4) and implemented with the NumPy and SciPy Python packages. Both
are executed on a single core. The theoretical cost of filtering on the graph is𝒪(𝐾𝑁pix)
and 𝒪(ℓ3max) = 𝒪(𝑁3/2

pix ) for the spherical harmonics, where ℓmax is the largest angu-
lar frequency. The timings for the partial graphs correspond to a convolution on two
fractions (1/12 and 1/192) of the sphere, and illustrates the 𝒪(𝑁pix) scaling of graph
convolutions.

more stable than 𝜃 in (5.3). We believe that this is due to (i) their almost orthogonality
in the spectral and spatial domains, and (ii) their uniformity.8 Finally, note that while
the graph convolution (5.1) is motivated in the spectral domain, definitions (5.3) and
(5.4) are implementations in the vertex domain.
Exploiting the recursive formulation of Chebyshev polynomials, evaluating (5.4) re-

quires 𝒪(𝐾) multiplications of the vector 𝒇 with the sparse matrix 𝑳̃. The cost of one
such multiplication is 𝒪(|ℰ| + |𝒱|). By construction of our graph, |ℰ| < 8𝑁pix and the
overall computational cost of the convolution reduces to𝒪(𝑁pix) operations and as such
is much more efficient than filtering with spherical harmonics, even though HEALPix
was designed as an iso-latitude sampling that has a fast spherical transform. This is es-
pecially true for smooth kernels which require a low polynomial degree 𝐾. Figure 5.4
compares the speed of low-pass filtering for Gaussian smoothing using the spherical
harmonics and the graph-based method presented here. On a single core, a naive im-
plementation of our method is ten to twenty times faster for 𝑁side = 2048, with 𝐾 = 20
and 𝐾 = 5, respectively, than using the spherical harmonic transform at ℓmax = 3𝑁side

implemented by the highly optimized Libsharp [140] library used by HEALPix. The
further important speed-up of graph convolutions on fractions of the sphere is a direct
reflection of the𝒪(𝑁pix) complexity. On graphs, you only pay for the pixels that you use.

8The amplitude of the Chebyshev polynomials 𝑇𝑘(𝑥) is mostly constant over the domain [−1, 1], inde-
pendently of the order 𝑘. On the contrary, the amplitude of the monomials 𝑥𝑘 is very different for
|𝑥| ≈ 0 and |𝑥| ≈ 1.
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Figure 5.5: Two levels of coarsening and pooling: groups of 4 cells are merged into one, then the
data on them is summarized in one. The coarsest cell covers 1/12 of the sphere.

Note that the twomight however scale differently, given that Libsharp can be distributed
on CPUs through MPI while our method can be distributed on GPUs by TensorFlow.

5.2.6 Coarsening and Pooling

Coarsening can be naturally designed for hierarchical pixelisation schemes, where each
subdivision divides a cell in an equal number of child sub-cells. To coarsen, the sub-
cells are merged to summarise the data supported on them. Merging cells lead to a
coarser graph. Coarsening defines𝒞(𝑖), the set of children of vertex 𝑣𝑖. For theHEALPix
subdivision scheme, the number of children is constant, i.e., |𝒞(𝑖)| = 4𝑝 ∀𝑖, for some 𝑝.
Pooling refers to the operation that summarizes the data supported on the merged

sub-cells in one parent cell. Given a map 𝒙 ∈ ℝ𝑁pix, pooling defines 𝒚 ∈ ℝ𝑁′
pix such that

𝑦𝑖 = 𝑓({𝑥𝑗 ∶ 𝑗 ∈ 𝒞(𝑖)}), ∀𝑖 ∈ [𝑁′
pix], (5.5)

where 𝑓 is a function which operates on sets (possibly of varying sizes) and 𝑁pix/𝑁′
pix is

the down-sampling factor, which for HEALPix is

|𝒞(𝑖)| = 𝑁pix/𝑁′
pix = (𝑁side/𝑁′

side)
2 = 4𝑝,

where 𝑝 = log2(𝑁side/𝑁′
side). That operation is often taken to be themaximum value, but

it can be any permutation invariant operation, such as a sum or an average. Figure 5.5
illustrates the process.

5.2.7 Layers

Neural networks are constructed as stacks of layers which sequentially transform the
data from its raw representation to some predictions. The general DeepSphere archi-
tecture, pictured in Figure 5.2, is composed of many layers. The convolutional part, the
head of the NN, is composed of graph convolutional layers (𝐺𝐶), pooling layers (𝑃), and
batch normalization layers (𝐵𝑁). The tail is composed of multiple fully connected lay-
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ers (𝐹𝐶) followed by an optional softmax layer (𝑆𝑀) if the network is used for discrete
classification. A non-linear function 𝜎(⋅) is applied after every linear 𝐺𝐶 and 𝐹𝐶 layer,
except for the last 𝐹𝐶 layer. That operation is point-wise, i.e., 𝑦𝑖𝑗 = 𝜎(𝑥𝑖𝑗) and 𝑦𝑖 = 𝜎(𝑥𝑖)
for matrices 𝑿, 𝒀 and vectors 𝒙, 𝒚. The rectified linear unit (ReLU) 𝜎(⋅) = max(⋅, 0) is a
common choice, and is the one we adopted in this contribution.

Given a matrix 𝑿 = [𝒙1,… , 𝒙𝐹in] ∈ ℝ𝑁pix×𝐹in, a 𝐺𝐶 layer computes 𝒀 = 𝐺𝐶(𝑿) =
[𝒚1,… , 𝒚𝐹out] ∈ ℝ𝑁pix×𝐹out, where 𝑁pix is the number of pixels (and vertices), 𝐹in is the
number of input features, and 𝐹out is the number of output features. Using the efficient
graph convolution from (5.4), each output feature map is computed as

𝒚𝑖 =
𝐹in
∑
𝑗=1

ℎ𝜃𝑖𝑗(𝑳̃)𝒙𝑗 + 𝑏𝑖 ∈ ℝ𝑁pix, ∀𝑖 ∈ [𝐹out].

As such, a 𝐺𝐶 layer is composed of 𝐹in × 𝐹out filters, each parameterized by 𝐾 numbers
(see §5.2.5). A bias term 𝒃 ∈ ℝ𝐹out is jointly optimized.

Given a matrix 𝑿 ∈ ℝ𝑁pix×𝐹, a pooling layer computes 𝒀 = 𝑃(𝑿) ∈ ℝ𝑁′
pix×𝐹 by

reducing its spatial resolution (𝑁′
pix < 𝑁pix) according to (5.5). The batch normalization

layer [86] computes 𝒀 = 𝐵𝑁(𝑿) such as

𝒚𝑖 = 𝛾𝑖
𝒙𝑖 − E(𝒙𝑖)
√Var(𝒙𝑖) + 𝜖

+ 𝛽𝑖, ∀𝑖 ∈ [𝐹],

where 𝛾𝑗 and 𝛽𝑗 are parameters to be learned and 𝜖 is a constant added for numerical
stability. The empirical expectation E(𝒙𝑖) ∈ ℝ and variance Var(𝒙𝑖) ∈ ℝ are taken
across training examples and pixels.

The layer 𝐹𝐶 ∶ ℝ𝐹in → ℝ𝐹out is defined as

𝒚 = 𝐹𝐶(𝒙) = 𝑾𝒙 + 𝒃, (5.6)

where 𝑾 ∈ ℝ𝐹out×𝐹in and 𝒃 ∈ ℝ𝐹out are the parameters to be learned. Note that the
output 𝒀 ∈ ℝ𝑁pix×𝐹out of the last 𝐺𝐶 is vectorized as 𝒙 = vec(𝑿) ∈ ℝ𝐹in before being fed
to the first 𝐹𝐶, where 𝐹in = 𝑁pix × 𝐹out.

The softmax layer is the last layer in a NN engineered for classification. Given the
output 𝒙 ∈ ℝ𝑁classes of the last 𝐹𝐶, called the logits in the deep learning literature, the
softmax layer outputs 𝒚 = 𝑆𝑀(𝒙) such that

𝑦𝑖 =
exp(𝑥𝑖)

∑𝑁classes
𝑗=1 exp(𝑥𝑗)

∈ [0, 1], ∀𝑖 ∈ [𝑁classes],
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Classification Regression
Global 𝑁𝑁𝜃(𝑿) ∈ ℝ𝑁classes 𝑁𝑁𝜃(𝑿) ∈ ℝ𝐹out

Dense 𝑁𝑁𝜃(𝑿) ∈ ℝ𝑁pix×𝑁classes 𝑁𝑁𝜃(𝑿) ∈ ℝ𝑁pix×𝐹out

Table 5.1: The output’s size of the neural network 𝑁𝑁𝜃(𝑿) depends on the task to be solved.
𝑁pix is the number of pixels in a HEALPix map, 𝑁classes is the number of classes in a
classification task, and 𝐹out is the number of variables to be predicted in a regression
task. The output size of a global task does not depend on the input size, whereas a
dense task asks for one prediction per pixel. A classification task asks for discrete (or
probabilistic) predictions, whereas a regression task asks for continuous variables.

where𝑁classes is the number of classes to discriminate. Thanks to the softmax, the output
𝒚 ∈ ℝ𝑁classes of a NN is a discretised conditional distribution for the class given the
data and trained parameters. That is, 𝑦𝑖 is the confidence of the network that the input
sample belongs to class 𝑖. This last layer is actually normalizing𝒙 into𝒚 such that ‖𝒚‖1 =
∑𝑖 𝑦𝑖 = 1.

5.2.8 Network architectures

Given a map 𝑿 ∈ ℝ𝑁pix×𝐹in, a neural network computes 𝑁𝑁𝜃(𝑿), where 𝑁𝑁 is a com-
position of the above layers and 𝜃 is the set of all trainable parameters. The number of
input features 𝐹in depends on the data. For the CMB radiation temperature, 𝐹in = 1.
For observations in radio frequencies, 𝐹in would be equal to the number of surveyed
frequencies. 𝐹in might also be the number of slices in the radial direction.
DeepSphere can perform dense or global predictions, for regression or classification.

A typical global classification task is to classifymaps into cosmologicalmodel classes [149].
A typical global regression task is to infer the parameters of a cosmological model from
maps [57, 71]. Some dense regression tasks are denoising, interpolation of missing val-
ues, or inpainting parts of a map [85]. Segmentation and feature detection [5] are exam-
ples of dense classification tasks. The size of the output of the NN depends on the task.
See Table 5.1.
Fully convolutional networks (FCNs) have been introduced by [112] and are mostly

used for the semantic segmentation of images, a dense classification task. An example
FCN for dense regression is

𝒀 = 𝑁𝑁𝜃(𝑿) = (𝐺𝐶 ∘ 𝜎 ∘ 𝐵𝑁 ∘ 𝐺𝐶)(𝑿) ∈ ℝ𝑁pix×𝐹out,

where ∘ denotes composition, i.e., (𝑓 ∘ 𝑔)(⋅) = 𝑓(𝑔(⋅)). If 𝑃 layers are used, they have to
be inverted via up-sampling in an encoder-decoder architecture.
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The set of input pixels which influence the value of an output pixel forms a receptive
field. That field is isotropic and local, i.e., it forms a disk centered around the output
pixel. The field’s radius is influenced by the polynomial order 𝐾 of 𝐺𝐶 layers (setting
how far the convolution operation looks around), and the down-sampling factor of 𝑃
layers, if any. This radius should be large enough to capture statistics of interest. For
example, a partial sky observation can provide only limited information of cosmological
relevance. On the other hand, looking at the whole sky is often superfluous and waste
computations, as most interactions are local. A data and task dependent trade-off is
to be found. Note here that while global predictions use, by definition, the whole sky,
dense predictions are not necessarily local.
By treating each output pixel independently and in parallel, this architecture is a prin-

cipled way to perform rotation equivariant operations. Rotation equivariance means
that the rotation operation commutes with the NN, i.e., a rotation of the input implies
the same rotation of the output.9
Global tasks can be solved by averaging dense predictions [111, 157]. Global averaging

is computed by the layer 𝐴𝑉 ∶ ℝ𝑁pix×𝐹 → ℝ𝐹. Doing so assumes the data is locally
independent, and form different observations of an unknown process. Averaging over
independent observations is a common way to reduce variance. An example FCN for
global regression is

𝑁𝑁 = 𝐴𝑉 ∘ 𝐺𝐶 ∘ 𝜎 ∘ 𝐺𝐶 ∘ 𝑃 ∘ 𝜎 ∘ 𝐵𝑁 ∘ 𝐺𝐶.

Here, the FCN predicts parameters for many overlapping parts of the sky in parallel,
then average those predictions to get one set of parameters for the whole sky. Global
predictions aremade invariant to rotation on the 𝑆𝑂(3) group by averaging dense equiv-
ariant predictions. Rotation invariance means that rotating the input does not impact
the prediction.
By replacing the average by a 𝐹𝐶 layer, one gets the standard convolutional neural

network (CNN), which is a generalization of the FCN. Indeed, the 𝐴𝑉 layer is a 𝐹𝐶
layer where all the entries of 𝑾 in (5.6) are equal to 1/𝑁pix and 𝒃 = 𝟎. By dropping
rotation invariance, CNNs learn where to put attention on the domain. That is useful
when pixels are not of the same importance, with respect to the task. For example,
on images, the subject of interest is most often around the center of the picture. Hence,
those pixels are more predictive than the ones in the periphery when considering image
classification. On the sphere, location is important when analyzing weather data on the

9Small errors will however appear as𝐺𝐶 layers are not exactly equivariant due to the small discrepancy
between the graph Fourier modes and the spherical harmonics. See [132, Appendix A].
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Earth for example, as oceans and mountains play different roles. An example of such
an architecture is

𝑁𝑁 = 𝐹𝐶 ∘ 𝜎 ∘ 𝐹 ∘ 𝑃 ∘ 𝜎 ∘ 𝐵𝑁 ∘ 𝐺𝐶.

There are in general two ways to deal with symmetries one wants to be invariant to:
(i) build them into the architecture, or (ii) augment the dataset such that a (more gen-
eral) model learns them. With respect to rotation invariance, the FCN architecture is of
the first kind, while the CNN is of the second kind. For tasks that are rotation invariant,
FCNs hence need less training data as the rotation symmetry is backed in the archi-
tecture and need not be learned. This can be seen as intrinsic data augmentation, as a
CNN would need to see many rotated versions of the same data to learn the invariance.
Moreover, FCNs can accommodate maps with a varying number of pixels. Such global
summarization as the 𝐴𝑉 layer is commonly used along graph convolutions to classify
graphs of varying sizes (as it is invariant to vertex permutation) [52, 110]. As such, CNNs
should only be used if rotation invariance is undesired.
All the above architectures can be used for classification (instead of regression) by

appending a 𝑆𝑀 layer. An example FCN for global classification is therefore

𝑁𝑁 = 𝑆𝑀 ∘ 𝐴𝑉 ∘ 𝐺𝐶 ∘ 𝜎 ∘ 𝐺𝐶 ∘ 𝑃 ∘ 𝜎 ∘ 𝐵𝑁 ∘ 𝐺𝐶.

Similarly, we emphasize that the use of 𝐹𝐶 and 𝐴𝑉 layers is the sole difference between
a NN engineered for global or dense prediction.

5.2.9 Training

The cost (or loss) function 𝐶(𝒀, ̄𝒀) = 𝐶(𝑁𝑁𝜃(𝑿), ̄𝒀)measures how good the prediction
𝒀 is for sample 𝑿, given the ground truth ̄𝒀. For a classification task, the cost is usually
taken to be the cross-entropy

𝐶(𝒀, ̄𝒀) = −
𝑁pix

∑
𝑖=1

𝑁classes

∑
𝑗=1

̄𝑦𝑖𝑗 log(𝑦𝑖𝑗),

where ̄𝒀 ∈ ℝ𝑁pix×𝑁classes is the ground truth label indicator, i.e., ̄𝑦𝑖𝑗 = 1 if pixel 𝑖 of sample
𝑿 belongs to class 𝑗 and is zero otherwise. For global prediction, we have 𝑁pix = 1. For
a regression task, a common choice is the mean squared error (MSE)

𝐶(𝒀, ̄𝒀) =
‖𝒀 − ̄𝒀‖22
𝑁pix𝐹out

= 1
𝑁pix𝐹out

𝑁pix

∑
𝑖=1

𝐹out
∑
𝑗=1

(𝑦𝑖𝑗 − ̄𝑦𝑖𝑗)
2,
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strategies to include the radial component, using concentric grids, which allows us to conduct
convolutions in spherical volumes.

Our hypothesis is that these concentric spherical convolutions should outperform standard 3D
convolutions in cases where data is naturally parameterized in terms of a radial component. We test
this hypothesis in the context of molecular modelling. We will consider structural environments in a
molecule as being defined from the viewpoint of a single amino acid or nucleotide: how does such an
entity experience its environment in terms of the mass and charge of surrounding atoms? We show
that a standard convolutional neural network architectures can be used to learn various features of
molecular structure, and that our spherical convolutions indeed outperform standard 3D convolutions
for this purpose. We conclude by demonstrating state-of-the art performance in predicting mutation
induced changes in protein stability.

2 Spherical convolutions

Conventional CNNs work on discretized input data on a grid in Rn, such as time series data in R
and image data in R2. At each convolutional layer l a CNN performs discrete convolutions (or a
correlation)

[f ∗ ki](x) =
∑

x′∈Zn

Cl∑
c=1

fc(x
′)kic(x− x′) (1)

of the input feature map f : Zn → RCl and a set of Cl+1 filters ki : Zn → RCl (Cohen and Welling,
2016; Goodfellow et al., 2016). While such convolutions are equivariant to translation on the grid,
they are not equivariant to scaling (Cohen and Welling, 2016). This means that in order to preserve
the translation equivariance in Rn, conventional CNNs rely on the grid being uniformly spaced within
each dimension of Rn. Constructing such a grid is straightforward in Rn. However, for convolutions
on other manifolds such as the 2D sphere, S2 = {v ∈ R3|vvᵀ = 1}, no such planar uniform grid is
available, due to the non-linearity of the space (Mardia and Jupp, 2009). In this section, we briefly
discuss the consequences of using convolutions in the standard non-uniform spherical-polar grid, and
present an alternative grid for which the non-uniformity is expected to be less severe.

2.1 Convolutions of features on S2

A natural approach to a discretization on the sphere is to represent points v on the sphere by their
spherical-polar coordinates (θ, φ) and construct uniformly spaced grid in these coordinates, where
the spherical coordinates are defined by v = (cos θ, sin θ cosφ, sin θ sinφ)ᵀ. Convolutions on such
a grid can be implemented efficiently using standard 2D convolutions when taking care of using
periodic padding at the φ boundaries. The problem with a spherical-polar coordinate grid is that it is
highly non-equidistant when projected onto the sphere: the distance between grid points becomes
increasingly small as we move from the equator to the poles (figure 1, left). This reduces the ability
to share filters between different areas of the sphere.

Figure 1: Two realizations of a grid on the sphere. Left: a grid using equiangular spacing in a
standard spherical-polar coordinate system, and Right: An equiangular cubed-sphere representation,
as described in Ronchi et al. (1996).

2

strategies to include the radial component, using concentric grids, which allows us to conduct
convolutions in spherical volumes.

Our hypothesis is that these concentric spherical convolutions should outperform standard 3D
convolutions in cases where data is naturally parameterized in terms of a radial component. We test
this hypothesis in the context of molecular modelling. We will consider structural environments in a
molecule as being defined from the viewpoint of a single amino acid or nucleotide: how does such an
entity experience its environment in terms of the mass and charge of surrounding atoms? We show
that a standard convolutional neural network architectures can be used to learn various features of
molecular structure, and that our spherical convolutions indeed outperform standard 3D convolutions
for this purpose. We conclude by demonstrating state-of-the art performance in predicting mutation
induced changes in protein stability.

2 Spherical convolutions

Conventional CNNs work on discretized input data on a grid in Rn, such as time series data in R
and image data in R2. At each convolutional layer l a CNN performs discrete convolutions (or a
correlation)

[f ∗ ki](x) =
∑

x′∈Zn

Cl∑
c=1

fc(x
′)kic(x− x′) (1)

of the input feature map f : Zn → RCl and a set of Cl+1 filters ki : Zn → RCl (Cohen and Welling,
2016; Goodfellow et al., 2016). While such convolutions are equivariant to translation on the grid,
they are not equivariant to scaling (Cohen and Welling, 2016). This means that in order to preserve
the translation equivariance in Rn, conventional CNNs rely on the grid being uniformly spaced within
each dimension of Rn. Constructing such a grid is straightforward in Rn. However, for convolutions
on other manifolds such as the 2D sphere, S2 = {v ∈ R3|vvᵀ = 1}, no such planar uniform grid is
available, due to the non-linearity of the space (Mardia and Jupp, 2009). In this section, we briefly
discuss the consequences of using convolutions in the standard non-uniform spherical-polar grid, and
present an alternative grid for which the non-uniformity is expected to be less severe.

2.1 Convolutions of features on S2

A natural approach to a discretization on the sphere is to represent points v on the sphere by their
spherical-polar coordinates (θ, φ) and construct uniformly spaced grid in these coordinates, where
the spherical coordinates are defined by v = (cos θ, sin θ cosφ, sin θ sinφ)ᵀ. Convolutions on such
a grid can be implemented efficiently using standard 2D convolutions when taking care of using
periodic padding at the φ boundaries. The problem with a spherical-polar coordinate grid is that it is
highly non-equidistant when projected onto the sphere: the distance between grid points becomes
increasingly small as we move from the equator to the poles (figure 1, left). This reduces the ability
to share filters between different areas of the sphere.

Figure 1: Two realizations of a grid on the sphere. Left: a grid using equiangular spacing in a
standard spherical-polar coordinate system, and Right: An equiangular cubed-sphere representation,
as described in Ronchi et al. (1996).

2

Figure 5.6: Some pixelizations of the sphere. Left: the equirectangular grid, using equiangu-
lar spacing in a standard spherical-polar coordinate system. Middle: an equiangular
cubed-sphere grid, as described in [144]. Right: graph built from a HEALPix pix-
elization of half the sphere (𝑁side = 4). By construction, each vertex has eight neigh-
bors, except the highlighted ones which have only seven.5 Left and middle figures
are taken from [21].

where ̄𝒀 is the desired output. Again, take𝑁pix = 1 for global regression. We emphasize
that the cost function and the 𝑆𝑀 layer are the sole differences between aNNengineered
for classification or regression.
The goal of training is to find the parameters 𝜃 of the NN that minimize the risk

𝑅(𝜃) = E[𝐶(𝑁𝑁𝜃(𝑿), ̄𝒀)], where E is the expectation over the joint distribution (𝑿, ̄𝒀).
In general, that expectation cannot be computed as the data distribution is unknown.
We can however minimize an approximation, the empirical risk over the training set
{(𝑿𝑖, ̄𝒀𝑖)}

𝑁samples

𝑖=1
:

̂𝜃 = argmin
𝜃

𝑁samples

∑
𝑖=1

𝐶(𝑁𝑁𝜃(𝑿𝑖), ̄𝒀𝑖).

The optimization is performed by computing an error gradient w.r.t. all the parame-
ters by back-propagation and updating them with a form of stochastic gradient descent
(SGD):

𝜃 ← 𝜃 −
𝜂
|ℬ| ∑𝑖∈ℬ

𝜕𝐶(𝑁𝑁𝜃(𝑿𝑖), ̄𝒀𝑖)
𝜕𝜃 ,

where 𝜂 is the learning rate, and ℬ is the set of indices in a mini-batch. Batches are
used instead of single samples to gain speed by exploiting the parallelism afforded by
modern computing platforms.

5.3 Related work

5.3.1 2D convolutional neural networks

A first approach, explored by [21] for molecular modeling and [39, 160] for omnidi-
rectional imaging, is to use a 2D CNN on a discretisation of the sphere that is a grid,
such as the equirectangular projection (Figure 5.6, left panel), or a set of grids, such
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as the cubed-sphere defined by [144] (Figure 5.6, middle panel). As this formulation
uses the standard 2D convolution, all the optimizations developed for images can be
applied, which makes it computationally efficient. This approach is applicable to the
many pixelizations that are based on a regular subdivision of a base polyhedron, such
as HEALPix. Each base polyhedron then forms a grid. Care has to be taken to handle
boundary conditions: for example by padding a grid with the content of the opposite
side (equirectangular) or of the neighboring grids (cubed-sphere, HEALPix). That in-
curs some computational losses. For samplings that are not equal area, such as the
equirectangular projection, the convolution operation should be adjusted to take the
induced distortion into account [39, 160].

Another approach to leverage 2D CNNs is to project spherical data onto many tan-
gent planes, which are flat 2D surfaces. This approach has been extensively used for
cosmological maps [57, 63, 71, 149] and omnidirectional imaging [170, 171]. This idea
has been generalized to arbitrary 2D manifolds for shape alignment and retrieval [23,
120, 123].

Themain issue with the above two approaches is that they depend on a (local) coordi-
nate system to define anisotropic filters, i.e., filters which are direction dependent. Di-
rection iswell defined andmatters for some applications, such as the analysis of weather
and climate data on the Earth (north, south, east, west), and omnidirectional imaging
(up, down). Indeed, rotation invariance has been shown to reduce discriminative power
for omnidirectional imaging [39]. Some problems are, however, intrinsically invariant
(or equivariant) to rotation. Examples include the analysis of cosmological maps, and
the modeling of atoms and molecules. In such cases, directions are arbitrarily defined
when setting the origin of the pixelization. Therefore, a convolution operation has to be
isotropic to be equivariant to rotation.

5.3.2 Spherical neural networks

Rotation equivariance was addressed by leveraging the convolution associated to the
3D rotation group 𝑆𝑂(3), with applications to atomization energy regression and 3D
model classification, alignment and retrieval [34, 55]. The resulting convolution is per-
formed by (i) a spherical harmonic transform (SHT), i.e., a projection on the spherical
harmonics, (ii) a multiplication in the spectral domain, and (iii) an inverse SHT. Note
the similarity with the naive graph convolution defined in (5.1). Likewise, the computa-
tional cost of a convolution is dominated by the two SHTs, and a naive implementation
of the SHT costs 𝒪(𝑁2

pix) operations. Accelerated schemes however exist for some sam-

71



5 Cosmological parameter inference

pling sets (see [122, 140, 142] for examples). The convolutions remain nevertheless ex-
pensive, limiting the practical use of this approach. For example with HEALPix, which
was designed to have a fast SHT by being iso-latitude, the computational cost of the
SHT is 𝒪(𝑁3/2

pix ) = 𝒪(𝑁3
side) = 𝒪(ℓ3max), where ℓmax is the largest angular frequency [67,

140].10 While the Clebsh-Gordan transform can be leveraged to avoid SHTs between
layers (it does a non-linear transformation in the spectral domain), the transform itself
costs 𝒪(𝑁3/2

pix ), for no reduction of overall complexity [97]. This work is another indica-
tion that there might be a𝛺(𝑁3/2

pix ) computational lower bound for the proper treatment
of rotation equivariance with the spherical harmonics. In comparison, DeepSphere
scales as 𝒪(𝑁pix) (see §5.2.5), at the expense of not being exactly equivariant (see [132,
Appendix A]). Being a mathematically well-defined rotation equivariant network is the
main advantage of methods based on spherical harmonics, though the fact that convo-
lution kernels are learned probably compensates for inexact equivariance. See [98] for
a rigorous treatment of convolution and equivariance in NNs.

While defining the convolution in the spectral domain avoids all sampling issues,
filters so defined are not naturally localized in the original domain. Localization is de-
sired for the transformation to be stable to local deformation [116], andmost interactions
in the data are local anyway. A straightforward way to impose locality in the original
domain is to impose smoothness in the spectral domain, by Heisenberg’s uncertainty
principle.11 A more elegant approach is to define filters that are provably localized. The
filters defined in (5.3) and (5.4), by being polynomials of the Laplacian, are of this kind.

All the presented 2D and spherical CNNs cannot be easily accelerated when the data
lies on a part of the sphere only. That is an important use case in cosmology as mea-
surements are often partial, i.e., whole sky maps are rare. One could still fill the unseen
part of the sphere with zeros, and avoid computing empty integrals. It is, however, not
straightforward to identify empty space, and computations would still be wasted (for
example on a ring that mostly contains zeros but a few measurements). With graphs,
however, computations are only performed for used pixels. While it results in some

10All pixels are placed on 𝑁ring = 4𝑁side − 1 = 𝒪(√𝑁pix) rings of constant latitude. Each ring has

𝒪(√𝑁pix) pixels. Thanks to this iso-latitude property, the SHT is computed using recurrence rela-
tions for Legendre polynomials on co-latitude and fast Fourier transforms (FFTs) on longitude. The
computational cost is thus√𝑁pix FFTs for a total cost of 𝒪(𝑁pix log√𝑁pix), plus√𝑁pix matrix mul-

tiplications of size√𝑁pix for a total cost of 𝒪(𝑁3/2
pix ) operations.

11Heisenberg’s uncertainty principle states that a filter cannot be arbitrarily concentrated in one domain
without being de-concentrated in the other.

72



5.4 Experiments

distortions due to border effects (see [132, Figure C.15 and Appendix C]), these can be
mitigated by padding with zeros a small area around the measurements.

5.3.3 Graph neural networks

The use of a graph to model the discretised sphere was also considered for omnidi-
rectional imaging [59]. This work is the closest to our method, with three differences.
First, they parametrize their convolution kernel with (5.3) instead of (5.4) (see §5.2.5
for a discussion and comparison). Second, they did not take advantage of a hierarchical
pixelization of the sphere and resorted to dynamic pooling [90]. While that operation
has proved its worth to pool sequences of varying length, such as sentences in language
models, it is undesired in our context as it is not local and destroys spatial coherence.
Third, they introduced a statistical layer— an operation that computes a set of statistics
from the last feature maps — to provide invariance to rotation. We propose to use the
idea of fully convolutional networks (FCNs) instead (see §5.2.8). While statistics have
to be hand-chosen to capture relevant information for the task, the filters in a FCN are
trained end-to-end to capture it.
Many formulations of graph neural networks, reviewed by [24] and [73], have been

proposed. For this contribution, we chose the formulation of [43] as its root on strong
graph signal processing theorymakes the concept of convolutions and filters explicit [156].
As the convolution is motivated by a multiplication in the graph Fourier spectrum, it is
close in spirit, and empirically, to the formulation based on the spherical harmonics,
which is the ideal rotation equivariant formulation.
Thanks to their versatility, graph neural networks have been used in a variety of

tasks, such as identifying diseases from brain connectivity networks [102] or popula-
tion graphs [127], designing drugs using molecular graphs [81], segmenting 3D point
clouds [137], optimizing shapes to be aerodynamic [9], and many more. By combin-
ing graph convolutional layers and recurrent layers [150], they can, for example, model
structured time series such as traffic on road networks [108], or recursively completema-
trices for recommendation [124]. Another trend, parallel to the modeling of structured
data, is the use of graph neural networks for relational reasoning [12].

5.4 Experiments

The performance of DeepSphere is demonstrated on a discrimination problem: the clas-
sification of convergence maps into two cosmological model classes. The experiment
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Figure 5.7: Example maps from two classes to be discriminated. Left: model 1 with 𝛺𝑚 = 0.31
and 𝜎8 = 0.82. Right: model 2 with 𝛺𝑚 = 0.26 and 𝜎8 = 0.91. The initial con-
ditions for both simulations are the same, so differences only arise due to different
cosmological parameters.

presented here is similar to the one by [149]. These maps are similar to those created
with gravitational lensing techniques [29]. The two sets of maps were created using the
standard cosmological model with two sets of cosmological parameters (see §5.4.1 for
details). The classification methods were trained to predict a label from a HEALPix
map. Our Python implementation to reproduce those experiments is openly available
online.12 The data is available upon request.13

While we only demonstrate a classification task here, other tasks, such as regression
or segmentation, are also possible (see §5.2.8). The regression task will most likely be
the most practical cosmological application, as described in [71] and [57]. Implementa-
tion of full cosmological inference typically requires, however, many more simulations,
building the likelihood function, and several other auxiliary tasks. The classification
problem is much more straightforward to implement and execute, and can be used to
fairly compare the accuracy of the algorithm against benchmarks [149]. For these rea-
sonswe decided to use the classification problem in thiswork, andwe expect the relative
performance of the methods to generalise to the regression scenario.

5.4.1 Data

Convergencemaps represent the dimensionless distribution of over- andunder-densities
of mass in the universe, projected on the sky plane. The 3D structures are projected
using a geometric kernel, the value of which depends on the radial distance. In gravi-
tational lensing, this kernel is dependent on the radial distances between the observer,

12https://github.com/SwissDataScienceCenter/DeepSphere
13https://doi.org/10.5281/zenodo.1303272
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Figure 5.8: Power spectral densities of the noiseless maps. To prevent the cosmological models
frombeing distinguished by their power spectra alone, themaps have been smoothed
with a Gaussian kernel of radius 3 arcmins to remove high frequencies (ℓ > 1000).

the mass plane, and the plane of source galaxies (see [10] for a review of gravitational
lensing).

We make whole sky N-body simulations for two parameter sets of the 𝛬CDM cosmo-
logical model: model 1 (𝛺𝑚 = 0.31, 𝜎8 = 0.82) and model 2 (𝛺𝑚 = 0.26, 𝜎8 = 0.91),
where 𝛺𝑚 is the matter density in the universe and 𝜎8 is the normalisation of the mat-
ter power spectrum. Other parameters are set to: Hubble constant 𝐻0 = 70 km/s/Mpc,
spectral index 𝑛𝑠 = 0.96, and Baryon density today 𝛺𝑏 = 0.05. The parameters 𝛺𝑚

and 𝜎8 were chosen for the maps to have the same spherical harmonic power spectrum.
That means that it is difficult to distinguish between these cosmological models. We
found that the differences in power spectrum is 5% for ℓ > 1000. To remove this in-
formation, we additionally smooth the spherical maps with a Gaussian kernel of radius
3 arcmin. The resulting power spectral density (PSD), computed using the anafast
function of the HEALPix package, are displayed in Figure 5.8. We also subtract the
mean of each map and down-sample them to a resolution of 𝑁side = 1024, which cor-
responds to maps of 12 × 10242 ≈ 12 × 106 pixels. As shown by the occupied spectrum
(Figure 5.8), a larger resolution would waste memory and computation, while a lower
resolution would destroy information.

The simulations are createdusing the fast lightconemethodUFalcondescribed in [151].
A brief overview about the map making procedure used in UFalcon as well as the sim-
ulation parameters are given in [132, Appendix F]. We however use a single simulation
box, as opposed to two used in that work, as we use source galaxies at a lower redshift
of 𝑧 = 0.8, instead of 𝑧 = 1.5. L-PICOLA [83] is used for fast and approximate N-body
simulations. We generate 30 simulations for each of the two classes. Out of the 60 sim-
ulations, 20 are kept as the test set, and 20% of the remaining training data is used as
a validation set, to monitor the training process and select the hyper-parameters. Fig-
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ure 5.7 shows the whole sky simulations and a zoom region for both models. Initial
conditions for these simulations are the same, so the differences in structures can only
be attributed to different cosmological parameters used to evolve the particle distribu-
tion.

5.4.2 Problem formulation

As the distribution of matter in the universe is homogeneous and isotropic, no pixel is
more informative than any other.14 As such, we can control the difficulty of the classifi-
cation problem by limiting the number of pixels available to the algorithms, i.e., extract-
ing partial maps fromwhole skymaps. Using the properties of HEALPix, we split maps
into 12 × 𝑜2 independent samples of (𝑁pix/𝑜)

2 pixels (for 𝑜 = 1, 2, 4,… ). The resulting
partial maps are large enough to suffer from the effects of the spherical geometry, and
cover 8.3% (≈ 1×106 pixels), 2.1% (≈ 260×103 pixels), and 0.5% (≈ 65×103 pixels) of the
sphere for 𝑜 = 1, 2, 4, respectively. Corresponding areas can be seen in Figure 5.5: the
surface of pixels in the left, middle, and right spheres correspond to samples at order
𝑜 = 4, 2, 1, respectively. We report results for 𝑜 = 1, 2, 4 only, as full sphere classifi-
cation is easy at such resolution (perfect classification accuracy is already obtained at
𝑜 = 1, see Figure 5.9). The published code nonetheless includes an example demoing
classification on full spheres of lower resolution (𝑁side = 64).
Tomake the discrimination harder and the problemmore realistic, centeredGaussian

noise is added to the simulated maps. The standard deviation of the noise varies from
zero (i.e., no noise) to 2× the standard deviation of pixel’s values in the noiseless maps.
While the noise model of real maps often has a slightly different distribution, Gaussian
noise should be a sufficient model to demonstrate the performance of our method. To
avoid over-fitting, randomnoise is generated during training, so that no two samples are
exactly the same (i.e., two samples might be from the same simulation, but the added
noise will be different). That is a data augmentation scheme, as it creates more training
examples than we have simulations.

5.4.3 Baselines

DeepSphere is first compared against two simple yet powerful benchmarks. The two
baselines are based on features that are (i) the power spectral densities (PSDs) of maps,
and (ii) the histogramof pixels in themaps [130]. After normalization, those features are
used by a linear support vectormachine (SVM) trained for classification. A linear kernel

14Contrast that with images, where the subject of interest is most often around the center of the picture.
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is used as other kernels did not provide better results, while having significantly worse
scaling properties. For fairness, the training set was augmented in a similar way as for
DeepSphere: we created samples by adding new random realizations of the noise. We
stopped adding new samples to the training data once the validation error converged.
This process is detailed in [132, Appendix E]. As for DeepSphere, the SVM regularization
hyper-parameter was tuned based on the performance over the validation set. The clas-
sification accuracy of DeepSphere and both baselines was checked as a function of the
used area (the order 𝑜), and the relative level of additive noise.

DeepSphere is further compared to a classical CNN for 2D Euclidean grids, later re-
ferred to as 2DConvNet. To be fed into the 2DConvNet, samples have to be transformed
into flat images. As described in [132, Appendix D], we use the property that HEALPix
is defined as the subdivision of 12 square surfaces to efficiently project the spherical
maps. This property has been independently exploited (while this work was under re-
view) to define another spherical CNN [100]. In our experiments, we used the same
architecture as DeepSphere (described in §5.4.4), with convolution kernels of size 5× 5
and an ℓ2 weight decay with a weight of 3 as regularization. The number of filters was
reduced in order to match the number of trainable parameters between DeepSphere
and the 2D ConvNet. (A larger architecture resulted in unstable training for a marginal
performance gain.)

Ideally, wewould compareDeepSphere to alternative spherical CNNs like [34] and [55].
There are however two issues with that comparison. First, these CNNs were developed
for the equirectangular sampling. An option is tomodify the available implementations
to use HEALPix, which is a major undertaking due to their complexity. Another option
is to transform the cosmological maps to the equirectangular sampling, which is of dis-
putable usefulness as the field is unlikely to use that sampling. Second, those methods,
based on SHTs, only work on the full sphere (at least in their current state). As shown
in Figure 5.4, using the full sphere at a resolution of 𝑁side = 1024would result in a slow-
down of multiple orders of magnitude compared to using a partial graph. The authors
of [77] could not use [34] for CMB analysis because of that.15 For those reasons and be-
cause we think that a proper comparison is better carried out on diverse datasets and
tasks, we leave it as future work.

15Note that reported results in [34] and [55] are for maps of at most (2 × 128)2 = 65, 536 pixels. That is
the size of our smallest partial map, while the largest is of approximately one million pixels.
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5 Cosmological parameter inference

5.4.4 Network architecture and hyper-parameters

As discussed in §5.2.8, the choice of a network architecture depends on the data and task
at hand. For our problem, where we assume that each pixel carries the same quantity
of information about the cosmological model, a rotation invariant FCN architecture
should be best. The selected network is defined as

𝐹𝐶𝑁 = 𝑆𝑀 ∘ 𝐴𝑉 ∘ 𝐺𝐶2⏟⎵⎵⎵⏟⎵⎵⎵⏟
classifier

∘ 𝐿5 ∘ 𝐿4 ∘ 𝐿3 ∘ 𝐿2 ∘ 𝐿1⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
feature extractor

,

with
𝐿1 = 𝑃4 ∘ 𝜎 ∘ 𝐵𝑁 ∘ 𝐺𝐶16,
𝐿2 = 𝑃4 ∘ 𝜎 ∘ 𝐵𝑁 ∘ 𝐺𝐶32,
𝐿3, 𝐿4, 𝐿5 = 𝑃4 ∘ 𝜎 ∘ 𝐵𝑁 ∘ 𝐺𝐶64,

where 𝐺𝐶𝐹 indicates a graph convolutional layer with 𝐹 output feature maps, 𝑃4 is a
pooling layer that divides the number of pixels by 4, 𝜎 is a ReLU, and the Chebyshev
polynomials in (5.4) are of degree 𝐾 = 5. The layers 𝐿1 to 𝐿5 build the statistical evi-
dence to classify each pixel of a down-sampled sphere. The last𝐺𝐶 layer acts as a linear
classifier and outputs two predictions. The 𝐴𝑉 layer averages these predictions and the
𝑆𝑀 layer normalizes them.
For comparison, we tried the more conventional CNN architecture, where the clas-

sification is performed by a fully connected layer from the last feature maps instead of
the average of local classifications. This architecture is not invariant to rotation. The
selected network is defined as

𝐶𝑁𝑁 = 𝑆𝑀 ∘ 𝐹𝐶2⏟⎵⎵⏟⎵⎵⏟
classifier

∘ 𝐿5 ∘ 𝐿4 ∘ 𝐿3 ∘ 𝐿2 ∘ 𝐿1⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
feature extractor

,

where 𝐹𝐶2 denotes a fully connected layer with two outputs. Architectures were se-
lected over their performance on the validation set.
The Adam optimizer [94] with 𝛽1 = 0.9, 𝛽2 = 0.999 was used with an initial learn-

ing rate of 2 × 10−4 that is exponentially decreased by a multiplication with 0.999 at
each step. All models were trained for 80 epochs, which corresponds to 1920 steps. The
batch size is set to 16 × 𝑜2 to keep the amount of supervision used to estimate the gra-
dient identical, irrespective of the chosen order 𝑜 (the learning rate would otherwise
need to be adapted). By this choice, DeepSphere is trained with the same amount of
information, i.e., the number of pixels, across all variants of the problem. Training took
approximately 1.5 hour using a single Nvidia GeForce GTX 1080 Ti and 5 hours with a
Tesla K20.
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Figure 5.9: Classification accuracy of the fully convolutional variant of DeepSphere (Deep-
Sphere FCN), the standard convolutional variant of DeepSphere (DeepSphere CNN),
the fully convolutional 2D ConvNet (2D ConvNet FCN), the standard 2D ConvNet
(2D ConvNet CNN), the support vector machine (SVM) with the power spectral den-
sity (PSD) as features, and the SVM with the histogram as features. The difficulty of
the task depends on the level of noise and the size of a sample (that is, the number
of pixels that constitute the sample to classify). Order 𝑜 = 1 corresponds to samples
which area is 1

12
= 8.1% of the sphere, order 𝑜 = 2 to 1

12×22
= 2.1%, and order 𝑜 = 4

to 1

12×42
= 0.5%. The standard deviation of the added Gaussian noise varies from

zero to 2× the standard deviation of pixel’s values in the noiseless maps. It is clear
from those results that the noise makes the problem harder, and that having more
pixels available to classify a sample makes the problem easier (the classifier having
more evidence to make a decision). The FCN variant of DeepSphere beats the CNN
variant by being invariant to rotation. Both variants largely beat the 2D ConvNet and
the two SVM baselines.

5.4.5 Results

Figure 5.9 compares the classification accuracy of DeepSphere (FCN and CNN vari-
ants), and the three baselines across five noise levels and three sample sizes. We indeed
observe that the problem is made more difficult as the sample size decreases, and the
noise increases. As fewer pixels are available to make a decision about a sample, the al-
gorithms have access to less information and thus cannot classify as well. As the noise
increases, the useful information gets diluted in irrelevant data, i.e., the signal-to-noise
ratio (SNR) diminishes.
As the cosmological parameters were chosen for the maps to have similar PSDs (see

Figure 5.8), it is reassuring to observe that an SVM with those as features has difficul-
ties discriminating the models. Other statistics are therefore needed to solve the prob-
lem. Using histograms as features gives a significant improvement. Performance is very
good for larger maps and deteriorates for the smaller cases with increased noise level,
reaching 80% at the highest noise level for 𝑜 = 4. The histogram features contain infor-
mation about the distribution of pixels, which clearly varies for the two classes. They
do not, however, include any spatial information. DeepSphere (both the FCN and CNN
variants) shows superior performance over all configurations. The gap widens as the
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5 Cosmological parameter inference

problem becomesmore difficult. This is likely due to DeepSphere learning features that
are adapted to the problem instead of relying on hand-designed features. The accuracy
of DeepSphere is > 97% for orders 𝑜 = 1 and 𝑜 = 2, for all noise levels, and starts to
deteriorate for 𝑜 = 4, reaching 90% for the highest noise level.

It may seem unfair to compare DeepSphere, who has access to raw pixels, with SVMs
who only see limited features (histograms and PSDs). We however trained an SVM on
the raw pixels and were unable to obtain over 60% accuracy in any of the three noiseless
cases.

The 2D ConvNet fairs in-between the SVMs and DeepSphere. Its relatively low per-
formance probably come from the following drawbacks. First, it does not exploit the
rotational invariance of the problem. We observed that the learned convolution kernels
were not radial. Second, the 2D projection distorts the geometry, and the NN has to
learn to compensate for it, which comparatively requires more training data.

As expected, the FCN variants outperform the CNN variants (both for DeepSphere
and the 2D ConvNet). This may seem counterintuitive as the CNN is a generalization
of the FCN and hence should be able to learn the same function and provide at least
equivalently good results. Nevertheless, as discussed in §5.2.8, the larger number of pa-
rameters incurred by the increased flexibility requires more training data to learn the
rotation symmetry. The superior performance of the FCN is an empirical validation that
these maps are stationary with a small-support radial autocorrelation function, stem-
ming from the fact that the mass distribution is homogeneous and isotropic. It also
implies that this classification problem is invariant to rotation. Hence, a pixel can be
statistically classified using only its surrounding, and those local predictions can be av-
eraged to vote for a global consensus. The CNN variant, however, may be better for data
that does not have this property, as the architecture should always be adapted to the data
and task (see §5.2.8).

While testing the FCN and CNN variants of DeepSphere, we made the following em-
pirical observations. First, training wasmore stable (in the sense that the loss decreased
more smoothly) when using Chebyshev polynomials, as in (5.4), rather than monomi-
als, as in (5.3). Nevertheless, we could not observe a significant difference in accuracy
after convergence. Second, using ℓ2 regularization does not help either with perfor-
mance or training of the models, mostly because the models are not over-fitting. Third,
we recommend initializing the Chebyshev coefficients with a centered Gaussian dis-
tribution with standard deviation √2/(𝐹in × (𝐾 + 0.5)), where 𝐾 is the degree of the
Chebyshev polynomials and 𝐹in the number of input channels. This standard devia-
tion has the property of keeping the energy of the signal more or less constant across
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Figure 5.10: Random selection of 24 learned filters from the fifth spherical convolutional layer
𝐿5. Top: section. Bottom: gnomonic projection. The structure in the filters re-
sembles peaks, which is not unexpected, given that the convergence maps largely
consist of concentrated clumps.

layers.16 Finally, we observe that scaling the Laplacian’s eigenvalues between [−𝑎, 𝑎],
where 0 < 𝑎 ≤ 1, significantly helps in stabilizing the optimization. We use 𝑎 = 0.75 in
our experiments.

5.4.6 Filter visualization

A common visualization to introspect and try to understand how a CNN function is to
look at the learned filters. Since our construction leads to almost (up to sampling irreg-
ularities) spherical filters, we plot in Figure 5.10 both the radial profile and a gnomonic
projection on a plane of a random selection of learned filters from the last layer of the
network. While those particular filters were obtained from the experiment with order
𝑜 = 2 and a relative noise level of 2, all trained networks presented visually similar

16We derived this rule from the principles presented in [65], the Chebyshev polynomial equations, and
some empirical experiments.
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patterns. Details of how the convolution kernels are plotted are described in [132, Ap-

pendix B].While it is usually difficult to interpret the shape of the filters, especially given
the type of data, we can notice that they often have a “peak”-like structure. An example
of filter interpretation was demonstrated in [141].

5.5 Conclusion

We present DeepSphere, a convolutional neural network defined on the sphere with
HEALPix sampling, designed for the analysis of cosmological data. The main contri-
butions of this chapter are (i) to show that spherical CNNs are a great NN architecture
for cosmological applications, and (ii) that a graph-based spherical CNN has certain
undeniable advantages. The core of our method is the use of a graph to represent the
discretised sphere. This allows us to leverage the advantages of the graph convolution.
It is both efficient, with a complexity of 𝒪(𝑁pix), and flexible, which allows DeepSphere
to efficiently work on a partial sphere. The spherical properties of the domain are well
captured: the graph Fourier modes are close to the spherical harmonics. Filters are
restricted to be radial for the convolution operation to be equivariant to rotation. Deep-
Sphere can then bemade either equivariant or invariant to rotation. Equivariance is not
perfect as small imprecisions due to the sampling cause the action of a graph filter to
slightly depend on the location. However, we do not expect that to cause problems for
practical applications.
We demonstrate that DeepSphere systematically and significantly outperforms three

benchmark methods on an example problem of cosmological model discrimination
with weak lensing mass maps, designed similarly to [149]. The maps were produced
from two cosmological models with varying 𝜎8 and 𝛺𝑚, chosen to follow the typical
weak lensing degeneracy in these parameters, so that the power spectra for these mod-
els are similar. We compared the performance of DeepSphere versus that of a classical
2D CNN and two SVM classifiers (one trained on the spherical harmonics power spec-
trum, and the other on the pixel density histogram). DeepSphere performs better than
the three baselines for all considered cases. The advantage is small for large, noise-free
maps, and grows up to 10% for smaller, noisier data.
Spherical CNNs are so far mostly used for omnidirectional imaging. Many scientific

fields, such as weather or climate modelling, would however benefit from an efficient
and versatile spherical CNN. With this work, we hope to demonstrate and help democ-
ratize the use of those tools for spherical data analysis. We publish the code as a small
and easy-to-use python package. The code was designed so that DeepSphere can easily
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be used for typical machine learning tasks, such as classification and regression, both
dense and global.
As future work, it would be interesting to further investigate the relation between the

graphFourier basis and the spherical harmonics. The goalwould be to find edgeweights
such that the graph Laplacian converges (or is equivalent) to the Laplace-Beltrami (up
to a certain bandwidth). Ideally, that should work for any sampling of the sphere. That
would enable a truly rotation equivariant graph convolution and high-precision filtering
using the graph rather than the SHT (for speed). Finally, a comparison of DeepSphere to
other spherical CNN formulations, with different sampling schemes, would be worth-
while.
The fact that a graph representation of the discretised sphere enables an efficient con-

volution relaxes the iso-latitude constraint on the design of sampling schemes which
aim to enable fast convolutions. In the long term, graphs might enable researchers to
consider sampling schemes with different trade-offs, or remove the need for schemes
and interpolation altogether and simply consider the positions at which measures were
taken.
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When learning from data, leveraging the symmetries of the domain the data lies on is a
principled way to combat the curse of dimensionality: it constrains the set of functions
to learn from. It is more data efficient than augmentation and gives a generalization
guarantee, a guarantee that tropical cyclones will be recognized regardless of their lo-
cation and orientation.

From the building blocks of space (vertices, edges, simplices), an incidence structure
𝐵, and a metric𝑀—the domain’s topology and geometry—we have a discrete calculus
and the Laplacian 𝐿 = 𝐵𝖳𝑀𝐵. As domain symmetries leave 𝐿 unchanged, they must act
as rotations within its eigenspaces. The spectral basis that diagonalizes the Laplacian
as 𝐿 = 𝑈𝛬𝑈−1 hence jointly block-diagonalizes these symmetry group actions. The
generalized convolution operator 𝑔(𝐿) = 𝑈𝑔(𝛬)𝑈−1, where 𝑔(𝛬) = diag(𝑔(𝜆1),… , 𝑔(𝜆𝑛))
is a kernel evaluated at the Laplacian’s eigenvalues, emerges as the linear operator that
commutes with any potential symmetry action—without knowing them. It is an equiv-
ariant operator. As in classical signal processing andharmonic analysis, the convolution
operator 𝑔(𝐿) in the spatial basis becomes the multiplication operator 𝑔(𝛬) in the spec-
tral basis, where the change-of-basis is performed by the Fourier transforms𝑈 and𝑈−1.
In our generalized setting involving non-transitive and unknown symmetry groups, the
convolution is however an inner-productwith a kernel that is localized instead of moved
around by group actions like translations.

While the kernel 𝑔 is domain independent—hence transfer across domains—we can
use 𝑔 to probe them. The number of distinct eigenvalues measures domain complex-
ity: an 8-vertices path graph can express kernels with 8 degrees of freedom while the
additional symmetries of a cycle reduces that to 5. By adding a single edge! Informa-
tion about the domain is obtained by convolving indicator functions, yielding invariant
positional (global) and structural (local) features as well as centrality and distance mea-
sures. The kernel 𝑔 can be designed for 𝑔(𝐿) to propagate waves or compute resistance
distances. Or it can be expanded in a truncated spectral or polynomial basis (for the
kernel to have global or local spatial support) whose weights are learned from data.
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With 𝑔(𝐿), an interpolation operator between finer and coarser discrete domains (per-
haps with non-linear pooling), and a non-linear activation function, we build a convo-
lutional neural network. Its implementation boils down to the multiplications of data
tensors by sparse matrices and pointwise operations. These have linear compute and
memory requirements, along with sparse communication requirements allowing dis-
tributed implementations. Unlike group convolutions, one does not need to explicitly
know the (potentially expensive to find) symmetries. Neither does one need an homo-
geneous domain to share weights around. There is of course no free lunch and our
kernels have an additional constraint: they are isotropic. This bias–variance tradeoff
paves the way to efficient learning on arbitrary discrete domains.
To avoid the standard but inflexible and wasteful practice of interpolating to dis-

cretizations with nice properties, we developed DeepSphere to enable practitioners to
efficiently represent spherical data by placing vertices where it matters. In comparisons
with alternatives, including group convolutions, we found DeepSphere to reach state-
of-the-art performance while being more memory and compute efficient. These results
suggest that anisotropic kernels might be an unnecessary price to pay. DeepSphere has
been used for studies in cosmology and shall be used for operational weather forecast-
ing—advancing our understanding of the world and impacting billions of individuals.
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Ross, N. P. Ross, G. Rossi, J. A. Rubiño-Martıń, S. Saito, S. Salazar-Albornoz, L.
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