
Implicit Distance Functions: Learning and Applications in Control

Mikhail Koptev1, Nadia Figueroa2 and Aude Billard1

Abstract— This paper describes a novel approach to learn
an implicit, differentiable distance function for arbitrary con-
figurations of a robotic manipulator used for reactive control.
By exploiting GPU processing, we efficiently query the learned
collision representation and obtain an implicit distance between
the robot and the environment. The differentiable nature of
the learned function allows for calculating valid gradients wrt.
any robot configuration, providing a repulsive vector field in
joint space that can be injected in various control methods to
improve collision avoidance. We present preliminary results on
solving collision avoidance for a 7DoF robot with a reactive
inverse kinematics solution, as well as improving performance
of a sampling-based model-predictive controller.

I. INTRODUCTION

In previous works [1], [2], we demonstrated that self-
collisions of a redundant system can be represented as a
static boundary in high-dimensional joint space of a robot.
We have shown that if this boundary is approximated as a
continuously differentiable function (of class C1) the gradi-
ents wrt. any input robot configuration essentially represent
a repulsive vector field directly in the joint space of the
robot. This repulsion can be used as a constraint in a control
optimization routine or as a heuristic in sampling-based
methods. In this paper, we extend this idea and present a
novel approach towards constructing an implicit distance
function for distance evaluation between a robot in arbi-
trary configurations and any point in the three-dimensional
workspace of the robot. The learned neural model allows
for efficient and highly-parallelizable batched distance and
gradient queries via GPU. We demonstrate the applicability
of the learned distance function in two reactive control
schemes: i) as a collision-avoidance constraint in a QP-based
inverse kinematics (IK) controller, extending [1], [2], and ii)
as a heuristic to improve performance of a sampling-based
joint space model-predictive control (MPC) scheme [3], [4].

II. PROBLEM FORMULATION

Let’s consider a robotic manipulator with m degrees of
freedom and K links, with the state described by joint angles
q ∈ Rm, i.e., all revolute joints of the robot have joint limits.
Let’s assume B ⊂ R3 to be the set of points on the links
of the robot. We can define minimal distances between the
robot and arbitrary points y ∈ R3 in the workspace as

dkmin(q, y) = min
x∈Bk

||f(q, x)− y||, k = 1..K (1)

where Bk ⊂ B is set of points of the k-th link of the robot,
and f : Rm × B −→ R3 is forward kinematics function.

1École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
2University of Pennsylvania, Philadelphia, Pennsylvania, USA

(out, 1)(in, 1)

(3*in, 1)
(3*in, N)

(N, N)
(N, N)

(N, out)

(N, N-3*in)

ReLULinear[q,sin(q),cos(q)] concat

Legend

(a) (b)

Fig. 1: (a) - NN architecture used to learn Γ(q, y); (b) - Implicit distance
isosurfaces Γ(q, y) = 1 (solid) and Γ(q, y) = 10 (transparent).

The first goal of this paper is to learn a regression function
Γ(q, y) to approximate dkmin(q, y), representing a distance
field of the robot’s workspace depending on configuration
of the robot. Additionally, ∂Γ(q,y)

∂q is a vector field defined
in the joint space of the robot, providing information on
the direction to (and away from) the collision. The second
goal is to apply the learned function Γ(q, y) and its gradient
to enhance reactive control methods, by i) formulating a
collision-avoidance constraint in a QP-based IK controller
[2], and ii) introducing sampling heuristics into MPPI [4].

III. LEARNING IMPLICIT DISTANCE FUNCTION

Let’s consider the expanded state-space Rm × R3, con-
sisting of the robot state q ∈ Rm and a euclidean point
y ∈ R3 in the workspace of the robot. For each expanded
state there exists a unique minimal distance between the
robot in configuration q and the point at position y. Hence, in
this space a static distance field function exists. We propose
to build a neural representation Γ(q, y) : Rm × R3 → R,
by learning the minimal distances between the robot and
arbitrary points in the workspace. Knowing the exact robot
geometry, at training time we collect a dataset of exact values
dkmin(q, y) (1) for various q and y. Each sample contains
the concatenated robot state q, workspace point y, and target
vector dmin = [d1min...d

K
min] consisting of minimal distances

between links of the robot and point y. We sample randomly
similar to [2]. Final dataset is balanced and contains three
million entries, where 50% configurations are collided (i.e.,
dkmin(q, y) < 3cm, ∀k), and 50% are configurations with
minimal distance exceeding 3cm. Additionally, the collided
half of the dataset is balanced to include collisions for links
in equal proportions.

We, therefore, seek to learn Γ(q, x) to be able to evaluate
distances between the robot and points on the moving
obstacles and use ∂Γ(q,y)

∂q to represent the repulsive vector
field. Ideally, we want Γ(q, y) = dkmin(q, y) for any state q
within joint limits. To learn Γ(q, y) we use MLP with five
hidden layers. We choose ReLU as a nonlinear activation
function for the sake of faster forward and backward passes.

Fig. 2: Goal (green point) reaching task via QP Inverse Kinematics (2), while avoiding moving obstacles (red spheres oscillate vertically).

Γ(q, y) implicitly learns the robot’s forward kinematics
(FK); thus, we find it useful to build a feature vector as a
concatenation of joint angles, and their corresponding sine
and cosine values: qin = [q, cos(q), sin(q)]. Additionally, we
introduce a skip-connection between the input and the fourth
layer of the network. This serves two purposes: first, we com-
pensate for vanishing gradients, and second, we reintroduce
the input trigonometrical features to deeper layers for better
FK approximation. A schematic representation of the neural
network is shown in Fig. 1a. There, in = 10 (7 for robot DoF
and 3 for workspace point position), out = 9 (representing
dkmin for k = 1..9 links), and N = 256. Total number of
weights in this perceptron is Nw = 199, 915. The learned
function Γ(q, y) predicts minimum distances with RMSE
of 0.77cm and standard deviation 0.86cm. For points closer
than 5cm, classification accuracy of sign(Γ(q, y)−1) is 0.94
(averaged between all links). The isosurfaces for different
values of Γ(q, y) are visualized in Fig. 1b.

IV. TOWARDS REACTIVE CONTROL WITH LEARNED IDF

A. Reactive Collision-Avoidance IK

Similar to [2] we use the learned function Γ(q, y) to
formulate a constraint in a QP IK solver:

min
∆q,δ

δTQδ +∆qTR∆q

s.t.


f(q) +

∂f(q)

∂q
∆q = x+ δ

q−i < qi +∆qi < q+i , i = 1..m

−∂Γk(q, ys)

∂q

T

∆q ≤ Γk(q, ys)− rs, k = 1..K.

(2)

In (2), R is a damping term, and Q is a weight matrix for
slacks of Cartesian tasks x (positions and orientations of
end-effector). q−i and q+i are joint limits, and Γk(q, y) are
k-th component of implicit distance function output vector.
Finally, ys are centers of spherical obstacles s = 1..S with
radii rs. For simplicity of demonstration, we consider S
separate spherical obstacles. The last constraint guarantees
collision avoidance, repelling the robot from collision when
Γk(q, ys) has low values. The method works with 200Hz
frequency (Intel i7 4.2GHz, Nvidia 1060). Snapshots of a
reaching example with moving obstacles are shown in Fig. 2.

B. Improving Sampling-based MPPI

Consider a discrete-time system. At time t the robot is
controlled by joint space acceleration command ut, sampled
from a policy πt = ΠH

h=1πt,h, where H is a look-ahead
horizon, and policies πt,h are simple Gaussians defined by
means µt,1, ..., µt,H and covariances Σt,1, ...,Σt,H . At every
iteration the sampling-based MPC algorithm, proposed in [4],
samples a batch {ui,h}h=1..H

i=1..N of N control sequences of

TABLE I: Sampling-based MPC performance comparison. Values averaged
between 100 reaching experiments similar to Fig.2. Hardware used: Intel i7
4.2GHz, Nvidia 2080Ti

Method Success rate Iterations Time, s Freq., Hz
Original [4] 0.96 663 5.43 121

Our modification 1.00 296 2.78 106

length H from current distribution πt. After that, the roll-
out states {xi,h}h=1..H

i=1..N are computed using the approximate
dynamics function and corresponding costs {ci,h}h=1..H

i=1..N are
calculated. These costs are a weighted sum of goal reaching,
joint limit avoidance, contingency stopping, and self and
environmental collision avoidance costs. Gaussian policies
are then updated using a sample-based gradient:

µt,h = (1− αµ)µt−1,h + αµ

∑N
i=1 wiui,h∑N

i=1 wi

, (3)

where αµ is filtering coefficient and wi(ci,h) are
exponentially-weighted task-specific costs for sampled con-
trol sequences. For full derivation, update rule for covari-
ances, and equations for weights wi please refer to [3], [4].

We use values of the learned function {Γk(q, ys)}s=1..S
k=1..K to

find the closest link k̃ and obstacle s̃, and use corresponding
gradients to reproject sampled controls ut,h from (3):

u∗
i,h = (1− fc)ui,h + fc(u

τ
i,h + urep

i,h). (4)

In (4), fc ∈ [0, 1] is a correction coefficient, uτ
i,h is joint

acceleration forcing the robot to move in tangential hyper-
plane of collision boundary, and urep

i,h is a repulsion pushing
the robot away from collisions. We obtain them by projecting
the originally sampled vector ui,h onto ∂Γk̃(q,ys̃)

∂q .
Coefficient fc(q, q̇) depends on value Γk̃(q, ys̃) and cosine

similarity between q̇ and ∂Γk̃(q,ys̃)

∂q . This way, we modify
accelerations that move the robot towards collision to instead
explore the space around the obstacles.

An overview of the method performance is provided in
Table I. Overall, gradient heuristics in sampling significantly
speed-up the planning in presence of obstacles with a slight
decrease in control frequency.

V. DISCUSSION & FUTURE WORK

Our ongoing work focuses on expanding the method to ob-
stacles other than spheres. The nature of our approach allows
us to efficiently process arbitrary point clouds, outputting
minimal distances and repulsive fields in joint space for each
link-point pair. These vector fields work in synergy with
sampling-based methods improving the exploration. Still, for
optimized performance, it is required to develop an algorithm
to obtain a sparse point-cloud representation of obstacles and
complex static environments and combine all repulsive vector
fields into an efficient heuristic.

REFERENCES

[1] S. S. M. Salehian, N. Figueroa, and A. Billard, “A unified framework
for coordinated multi-arm motion planning,” The International Journal
of Robotics Research, vol. 37, no. 10, pp. 1205–1232, 2018. [Online].
Available: https://doi.org/10.1177/0278364918765952

[2] M. Koptev, N. Figueroa, and A. Billard, “Real-time self-collision
avoidance in joint space for humanoid robots,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 1240–1247, 2021. [Online].
Available: https://doi.org/10.1109/LRA.2021.3057024

[3] G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive
path integral control: From theory to parallel computation,” Journal of
Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 344–357, 2017.
[Online]. Available: https://doi.org/10.2514/1.G001921

[4] M. Bhardwaj, B. Sundaralingam, A. Mousavian, N. D. Ratliff, D. Fox,
F. Ramos, and B. Boots, “STORM: An integrated framework for fast
joint-space model-predictive control for reactive manipulation,” in 5th
Annual Conference on Robot Learning, 2021. [Online]. Available:
https://openreview.net/forum?id=ceOmpjMhlyS

https://doi.org/10.1177/0278364918765952
https://doi.org/10.1109/LRA.2021.3057024
https://doi.org/10.2514/1.G001921
https://openreview.net/forum?id=ceOmpjMhlyS

	Introduction
	Problem Formulation
	Learning Implicit Distance function
	Towards Reactive Control with Learned IDF
	Reactive Collision-Avoidance IK
	Improving Sampling-based MPPI

	Discussion & Future work
	References

