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In almost all animals, the transfer of information from the brain to the motor circuitry is

facilitated by a relatively small number of neurons, leading to a constraint on the amount of

information that can be transmitted. Our knowledge of how animals encode information

through this pathway, and the consequences of this encoding, however, is limited. In this

study, we use a simple feed-forward neural network to investigate the consequences of

having such a bottleneck and identify aspects of the network architecture that enable

robust information transfer. We are able to explain some recently observed properties of

descending neurons—that they exhibit a modular pattern of connectivity and that their

excitation leads to consistent alterations in behavior that are often dependent upon the

desired behavioral state of the animal. Our model predicts that in the presence of an

information bottleneck, such a modular structure is needed to increase the efficiency of

the network and to make it more robust to perturbations. However, it does so at the

cost of an increase in state-dependent effects. Despite its simplicity, our model is able

to provide intuition for the trade-offs faced by the nervous system in the presence of an

information processing constraint and makes predictions for future experiments.

Keywords: neural control, modularity, bottlenecks, neural networks, robustness

1. INTRODUCTION

When presented with dynamical external stimuli, an animal selects a behavior to perform—or a
lack thereof—according to its internal drives and its model of the world. Its survival depends on
its ability to quickly and accurately select an appropriate action, as well as to transmit information
from the brain to its motor circuitry in order to physically perform the behavior. In almost all
animals, however, there exists a bottleneck between the number of neurons in the brain that
make cognitive decisions and the motor units that are responsible for actuating movements, thus
constraining the amount of information that can be transmitted from the brain to the body
(Smarandache-Wellmann, 2016; Kandel et al., 2021).
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In the fruit fly Drosophila melanogaster, descending
commands from the brain to the ventral nerve cord (VNC)
are transmitted through approximately 300 bilaterally symmetric
pairs of neurons that have their cell bodies in the brain and
have axons project into the VNC (Gronenberg and Strausfeld,
1990; Hsu and Bhandawat, 2016). Recent anatomical studies
have shown that these neurons exhibit a modular pattern of
connectivity, with the descending neurons clustering into groups
that each innervate different parts of the motor system (Namiki
et al., 2018; Phelps et al., 2021).

In addition to these anatomical properties, in the fruit fly,
manipulating these descending neurons via optogenetics has
shown that exciting individual neurons or subsets of neurons
often result in dramatic and robust behavioral alterations—
for example, exciting the DNg07 and DNg08 neurons reliably
elicits head grooming, and exciting DNg25 elicits a fast running
response (Cande et al., 2018). In many cases, however, it has been
shown that exciting the same neuron in different contexts (e.g.,
walking and flying) often have state-dependent effects (Cande
et al., 2018; Zacarias et al., 2018; Ache et al., 2019). In other words,
the behavioral effect of stimulating the neuron often depends on
the actions that the fly is attempting to perform.

In this study, we use a simplified model of behavioral control
to explore how modularity may help increase the efficiency and
robustness of behavioral control given an information bottleneck.
Specifically, our model predicts that modularity of behavior
increases the efficiency of the network and its robustness to
perturbations, but also that this modularity increases the amount
of state-dependent variability in how behavioral commands are
transmitted through the bottleneck. While our feed-forward
model is a vast oversimplification of the complicated recurrent
circuitry that lives within a fly’s ventral nerve cord, we show that it
provides intuition into the trade-offs the nervous system is faced
with, and makes qualitative predictions as to how the system
might respond to inhibition or double-activation experiments.

2. RESULTS AND DISCUSSION

Inspired by the fly ventral nerve cord, we have developed an
abstracted model that aims to generate insight into the general
problem of behavior control through an information bottleneck.
Specifically, we assume that there is a set of N behaviors that are
in an animal’s behavioral repertoire and that to perform one of
these behaviors, the animal must excite a subset ofM total binary
“motor” neurons (e.g., task 14 requires units 1, 3, and 99 to turn-
on, and all the rest to be turned off—see Figures 1A,B). However,
to model the effect of having limited information transmission
from the brain to the motor systems, any commands from
the brain must travel through an hidden layer of R < M,N
descending neurons (Namiki et al., 2018).

We implemented this model using a feed-forward neural
network, with the task being encoded in the top layer, the
descending neurons being the hidden layer, and the motor units
constituting the bottom layer (see Figure 1A). For simplicity, we
assume that the brain’s intended behavioral output is represented
in a one-hot encoded manner, where only one “decision” neuron
is turned on at once [i.e., behavior 2 is represented by a first
layer of (0, 1, 0, · · · ) ∈ {0, 1}N]. We start with the case where

each behavior is randomly assigned a set of kmotor neurons that
must be activated. Figure 1B shows an example of this desired
mapping, which we call our behavioral matrix. To perform a
behavior, one of the decision neurons has to be activated and
pass its signal through the network. The parameters of the

network, weights {W
(1)
α,β ,W

(2)
α,β} and biases {B

(1)
β ,B

(2)
β }, are trained

to perform the mapping between the top and bottom layers as
accurately as possible (see details in section 4).

Given this model, we would like to study how the network
performs as a function of the bottleneck size and the sparsity
of the behavioral matrix. The absolute maximum number of
sequences that the network could encode is 2R as each hidden
neuron can either be activated or not. However, this simple
neural network is incapable of reaching the ideal limit. In
Figure 1C, the bottleneck size required for accurate encoding
is ∼ 20 − 60 for N = M = 100, depending on the sparsity
of the behavioral matrix. These values are much larger than
the minimal possible bottleneck size, R = log2 100 ≈ 7.
While we will explore the potential reasons for this discrepancy
shortly, we empirically define the critical bottleneck size, Rc, as
the minimal number of neurons in the hidden layer sufficient
to reproduce 98% of the behaviors correctly, averaged across
multiple random instantiations of the behavioral matrix. See
Supplementary Figure 1 for example learning and loss curves,
and Supplementary Figure 2 for example values of the hidden
layer and the weights of the trained network. The values of the
hidden layer get more binarized (Supplementary Figures 2a,b)
as its size decreases, implying that the system is getting pushed
out of its dynamic range.

2.1. Characterization of the Model
To explore how the statistics of the behavioral matrix affect the
critical bottleneck size, we altered the sparsity of the outputs
by manipulating the number of motor neurons activated per
behavior (k) while keeping M = N = 100 (Figure 1C). Note
that since our output size is 100 and its encoding is binary, a
neural network with k and 100 − k activated motor neurons
have the same statistical behavior. Thus, sparsity increases as k
deviates from 50 in either direction. As evident from Figure 1C

and the inset therein, as k decreases below 25, the network
requires fewer neurons in the hidden layer (a lower Rc) to learn
all of the behaviors perfectly, with the decrease starting around
k = 25. Ultimately, for the sparsest output encoding we tested
(k = 5), the network requires half the number of neurons
compared to the densest (k = 50) case (Rc ≈ 24.4 ± 0.8
vs. Rc ≈ 57 ± 2), indicating that it is more difficult for our
model to learn the more complicated patterns that are associated
with a denser output. This effect can be more explicitly seen by
plotting Rc as a function of the entropy of the behavioral matrix
(Figure 1D, Equation 4). Furthermore, we note that the shape of
the curve, as a function of hidden layer size, R, approaches that
of a sigmoid function in the limit of dense output signal (as k
approaches 50). Equivalently, sparsity can be varied by fixing k
and varying the size of the output layer M (here, keeping N =
100 fixed) (Supplementary Figure 3). We again find that as the
output signal becomes more sparse, that is, as M increases, it is
easier to learn the mapping from behavior to motor commands.
Moreover, we also notice that the learning curves split into two
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FIGURE 1 | Model construction and parameters. (A) The structure of the ventral nerve chord is modeled by a neural network that takes as input a task assignment

represented by a binary sequence Ex of length N. The signal travels through a hidden layer (size R) to an output layer (size M), which corresponds to descending

neurons and motor neurons, respectively. Each neuron in one layer communicates with all the neurons in the following layer through the weight matricesW (·)
α,β , detailed

in section 4. (B) An example of a behavioral matrix that indicates the motor units activated for each task. Row i corresponds to the i-th behavioral command (i.e., the

i-th neuron activated in the input layer of the network). k is the number of motor neurons needed to execute a given behavior. Columns correspond to different motor

neurons [i.e., the jth column indicates whether a particular motor neuron was active (gray) or not (white) in the behaviors]. (C) Fraction of behaviors learned as a

function of hidden layer size R and fixed input layer size N = 100 for varying k and fixed output layer size M = 100. The inset shows the critical bottleneck size Rc as a

function of k. Each point is averaged over 30 random input-output combinations. Dashed line indicates critical bottleneck threshold. (D) Values of the critical

bottleneck size Rc for different values of sparsity (k = 5, 10, 20, 30, 40, 50) as a function of the behaviorial matrix entropy. Black line is the line of best fit and is provided

for visual aid only.

regimes (Supplementary Figures 3a,b) corresponding to when
M is smaller or larger than N. WhenM > N, the network finds it
much easier to learn with the learning ability saturating when the
bottleneck size is a certain fraction of the output layer.

2.2. Modularity of Behaviors
While the analyses presented in the previous section involved
random mappings between behaviors and motor outputs,
we now ask if imposing biologically inspired constraints on
this mapping might affect the efficiency of the network.
Specifically, we will assume that the behavioral matrix is
modular, with similar behaviors (e.g., different locomotion
gaits or different types of anterior grooming motions) more
likely to require similar motor output patterns. This constraint
is motivated from previous anatomical studies in Drosophila
(Namiki et al., 2018).

To explore the effect of modular structure on our model,
we performed a set of simulations with various degrees of
behavioral matrix modularity. Specifically, we fixed k = 10
and split the behavioral matrix into 5 regions (see inset in
Figure 2A). If there is no active motor neuron in common
between the different clusters, then we have perfect modularity
[µ = 0.8, where µ is the fraction of the edges that fall
within the modules minus the expected fraction within the
modules for an equivalent random network (Newman, 2018), see
section 4]. We then allowed for some overlap between regions
to generate matrices with a spectrum of modularities (some
examples given in Figure 3C) between the perfect modular limit
and random mixing. We observed that the modular behavioral
matrices can be learned more efficiently than random matrices,
requiring far smaller critical bottleneck sizes to achieve the
correct mapping of behavioral commands (Figure 2A). The
perfectly modular output matrix (inset Figure 2A) was learned
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FIGURE 2 | Modularity in the behavioral commands reduces critical bottleneck size and affects other network properties. (A) Relationship between the size of the

hidden layer R and the modularity of the behavior matrix. Each point corresponds to a set of numerical experiments with 10 different matrices around a given

modularity value (see section 4 for details of data generation) for k = 10, M = N = 100. Rc is defined as the minimal hidden layer size that was able to achieve 98%

accuracy in 105 epochs of training. Numbers indicate specific cases that are shown in panels (B–D) in more detail. Inset shows an example of behavioral command

matrix for µ = 0.8 case (point 4). (B) Fraction of behaviors learned as a function of the hidden layer size, R for different system sizes with N = M for two levels of

modularity (µ = 0.8 and µ = 0.46). Error bars correspond to the standard deviation. Results are averaged over 5 different runs with error bars corresponding to the

standard deviation. (C) Values of the critical bottleneck size Rc for different values of modularity [µ = 0.8 (fully modular), 0.68, 0.57, 0.46, 0.36, 0.18] as a function of

the behavioral matrix entropy. Black line is the line of best fit and is provided for visual aid only. (D) Structure of the weight matrices W1 and W2 for different modularity

values. The dimensionality reduction is performed via UMAP (McInnes et al., 2018), a non-linear method that preserves local structure in the data. The point colors

correspond to the colors in (A) inset: 1 (µ = 0.18, random matrix); 2 (µ = 0.46); 3 (µ = 0.56); 4 (µ = 0.8, perfectly modular matrix with 5 clusters).

with only Rc = 13 neurons, which is less than half the
number required for the random matrix (Rc ≃ 35) with the
same amount of sparsity (Supplementary Table 1). Note that
the dependence of the critical bottleneck layer size on matrix
modularity is not linear, just 2 neurons overlapping between
clusters makes learning much harder (Rc = 30, point #3
in Figure 2A).

In addition to making the mapping easier to learn, modularity
in the behavioral matrix also helps learning scale with the system
size. In Figure 2B, we plot the fraction of behaviors learned
as a function of the relative size of the bottleneck layer R as
compared to the output layer M, for different values of the
system size (we assume N = M) and for different values of
the modularity. Modularity values were chosen to highlight the
differences between a perfectly modular matrix (µ = 0.8) and a
matrix that has a low amount of modularity (µ = 0.46) while
not being completely random. For highly modular behavioral
matrices (blue curves in Figure 2B), we find that the size of
the output doesn’t affect the learning ability of the network, as
the bottleneck occurs when the size of the hidden layer is a

similar fraction of the output sizes. On the other hand, when the
behavioral commands aren’t very modular, smaller system sizes
learn better for a relatively smaller bottleneck size (green curves
in Figure 2B). This is again a reflection of our model finding
it easier to learn the simpler patterns (less entropy) of a more
modular behavioral matrix (Figure 2C). The similarities between
Figures 1D, 2C indicate that the entropy of the behavioral matrix
is an important parameter that determines Rc, even while keeping
other parameters constant.

Finally, we found that imposing a modular output
structure also imposes a modular structure on the weights
of the learned network (Figure 2D). The modularity in the
weights becomes more pronounced as the modularity of
the behavioral matrix increases, similar to results found
in the study of more generalized artificial neural networks
(Zavatone-Veth et al., 2021). Together, these results show
that modularity in the behavioral matrix increases the
efficiency and scaling properties of the network through
creating a concomitantly modular representation within
the model.
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FIGURE 3 | Robustness of the network to perturbations increases with the size of the hidden layer and sparsity. (A) Schematic of the perturbation experiment. One of

the hidden neurons of the trained network is artificially forced to be on, keeping all other network parameters unchanged. The network is re-run to generate new

outputs for each behavioral command. (B) Robustness (fraction of outputs that are unaffected by the perturbation) averaged over the effects of activating each hidden

neuron as function of the hidden layer size R, with N = M = 100, with k varied from k = 5 to k = 50. The error bars are obtained by considering 10 different behavioral

matrices. The inset shows the size of the hidden layer for which such a perturbation leaves 98% of the behaviors unaffected, Rrobust, as a function of changing sparsity

(varying k). (C) Example of a hidden layer perturbation on the trained networks’ behavior matrices with different modularities (all show with R = Rc). In each case, one

of the hidden neurons is kept constantly activated, while the rest of the network operates according to the trained weights. White and gray colors correspond to

unperturbed motor neurons, non-active and active correspondingly. Blue indicates motor units that have been turned off, and red shows motor units that have been

activated. (D) Distribution of the number of behavioral commands affected by the hidden layer perturbation. Colors correspond to different degrees of modularity µ.

Each distribution was calculated based on 10 different behavioral matrices, all with R = Rc.

2.3. Robustness to Perturbations of the
Bottleneck Layer
Although the network is capable of reproducing behavioral
commands nearly perfectly when it is near the critical bottleneck,
it might be prone to errors due to minor perturbations, including
noise in the firing of the descending layer. Inspired by previous
studies in flies where descending neurons were artificially
activated (Cande et al., 2018; Ache et al., 2019), we investigate
the robustness of our trained neural networks by manually
activating one hidden neuron at a time. We then observe
the changes in the output (see Figure 3A) to see how these
activations affect the mapping between command and behavior.
An example of possible outcomes on a set of behaviors under
these perturbation is shown in Figure 3C (for more examples,
see Supplementary Figure 4). For each behavioral command,
the motor neurons can either remain unaffected—their original
“active” or “non-active” state is maintained (gray and white pixels
in Figure 3C) or their state gets flipped—an “active” neuron gets
inactivated or vice-versa (red and blue pixels in Figure 3C). The

robustness of the network with respect to the activated neuron
is calculated as the number of behaviors that are conserved,

that is, behavioral commands where all activated motor neurons

remain unaffected.
Figure 3B shows the robustness of the network to these

perturbations as a function of the hidden layer size R and
varying sparsity (N = M = 100 is fixed and k is varied),
averaged over the effects of activating each hidden neuron and
each behavioral command for a randomly generated behavioral
matrix (no enforced modularity). For fixed sparsity, the fraction
of behaviors that are unaffected increases as the size of the
hidden layer increases. At the critical bottleneck size, for example,
Rc = 35 for k = 10, 80% of behaviors were unaffected by the
perturbation, indicating that the neural network has somemargin
of robustness. Robustness increases as we increase the hidden
layer size R—the behavioral commands become less sensitive
to changes in each individual hidden neuron. As long as the
bottleneck layer size is less than the output layer (R < M),
networks with output signals of high sparsity (lower k) are more
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robust on average. The robustness is bounded below by the curve
corresponding to maximum output signal density k = 50 =
M/2. For sufficiently dense output signals 50 ≥ k > 5, the
robustness decreases monotonically with decreasing hidden layer
size for the entire range of 1 ≤ R ≤ M. In contrast, the
robustness of high sparsity outputs (k = 5) decreases initially
with decreasing hidden layer size, but exhibits an increase in both
its mean and variance at very small hidden layer sizes (R < 5).
This behavior is likely caused by an all-or-nothing switching
relationship between the hidden neurons and the output neurons.

When applying these perturbations to more modular
behavioral matrices (Figure 3C), we find that the effects of
the activations to the hidden neurons lead to more correlated
changes in motor outputs. For these cases at the bottleneck size
Rc (which varies depending upon the modularity, see Figure 2A),
when some of the hidden neurons are activated, they not only
affect a certain number of behaviors, but all of these commands
tend to belong to the same cluster, which is what we would
expect, given the modular structure of the weights in Figure 2D.
Moreover, activation of a neuron can lead to the complete switch
from one type of behavior to the another. An example of this
effect is shown in Figure 3C. The first matrix in this panel
corresponds to a random matrix of behavioral commands (also
point #1 in Figure 2A). In this case, a particular hidden neuron
may be attributed to at most some set of motor neurons as its
activation leads to activation of two of them and deactivation
of other three. However, in the perfectly modular case, there are
some neurons that are responsible for the encoding of the whole
cluster (rightmost panel in Figure 3C). When a hidden neuron
is activated, it causes nearly an entire module of behaviors to be
altered. This is in keeping with the previous studies showing that
stimulating individual descending neurons in flies can result in
dramatic behavioral effects (Bidaye et al., 2014; Cande et al., 2018;
Ding et al., 2019; McKellar et al., 2019). Averaging over several
behavioral matrices and perturbations (Figure 3D), we observe
that this pattern holds true in general, with more modular
behavioral matrices affected more by perturbations at Rc. This
effect is likely due to the different sizes of the hidden layer
where the critical bottleneck size Rc (the minimum number of
hidden layer neurons needed to ably represent all behavioral
commands) occurs, for varying levels of modularity. As the size of
the hidden layer controls the susceptibility toward perturbations
(Figure 3B), highly modular behavioral matrices that have a
much smaller Rc (Figure 2A), are affected to a larger extent by
the perturbations. For example, a fullymodular behavioral matrix
has Rc = 13, but at this size of the hidden layer, it is only
approximately 40% robust to such perturbations (Figure 4A).
This example highlights a trade-off between efficient information
compression in the bottleneck layer and robustness in case of
failure. In general however, if the constraint is that the size
of the hidden layer is fixed, modularity increases robustness to
perturbations (Figure 4A).

Thus, when constrained by a fixed size of the hidden
layer, increasing the modularity and sparsity of the behavioral
commands helps increase the robustness of the network
to artificial perturbations. However, robustness suffers
if the goal is to operate the network at the smallest

possible critical bottleneck size for a given number of
behavioral commands.

2.4. State-Dependency of Behaviors
Previous experimental studies in fruit flies observed that
optogenetically activated behaviors in flies often depend on their
behavioral state prior to activation (Cande et al., 2018; Ache
et al., 2019). This effect can be quantified by calculating the
mutual information between the distribution of a fly’s behaviors
before and after artificial neural activation. We refer to this effect
as state-dependency. In essence, state-dependency implies that
stimulating a neuron in the bottleneck layer will have varying—
but predictable based on the input—behavioral results. In order
to understand this experimentally observed effect within the
framework of our model, we calculated the mutual information
between the input and output distributions in the presence of
an activated hidden neuron, while varying the size of the hidden
layer andmodularity (Figure 4B and Supplementary Material 5,
see section 4 for details). This calculation provides a measure of
how much information about the input distribution is contained
in the output distribution in the presence of artificial activation.

With the input distribution corresponding to the fly’s intended
behavioral output (the one-hot encoded initial layer from
Figure 1A) and the modified output corresponding to the set
of behaviors that the artificial activation triggers, we see that
increasing the bottleneck constraint (reducing R) lowers the
overall mutual information—thus, it becomes harder to predict
what the triggered behavior will be. On the other hand, a higher
amount of modular structure in the output behavioral commands
increases the mutual information for a fixed size of the hidden
layer, with a maximum increase of around 0.8 corresponding
to about a 30% increase between the two extreme values of
modularity (µ = 0.18 and µ = 0.8) considered here. Thus, our
model predicts that increasedmodular structure in the behavioral
matrix not only increased robustness to perturbations (for a given
N, M, and R), but also results in increased state-dependency.
These results are consistent with the finding of state-dependency
and modularity in the Drosophila VNC. In our model, this effect
likely results from the fact that the model’s weights are segregated
at higher modularities (Figure 2D), meaning that the effect of
stimulating a given bottleneck-layer neuron will be limited to a
relatively small number of output behaviors.

It is worth mentioning that we find that the mutual
information is proportional to the robustness (Figure 4A
and Supplementary Figure 5) with a proportionality constant
1
M log2(N) (see section 4). This is a consequence of an absence of
stereotypy in our simplified model, that is, multiple inputs don’t
give the same output on forced activation.

Given these results, we explored what predictions our model
makes for two additional types of perturbation experiments that
have not, to our knowledge, been systematically performed. First,
we asked what the effects would be for deactivating, rather
than activating, individual hidden layer neurons (Figure 5A).
As one might expect for a binary encoded network, the
effect of deactivating individual neurons on the robustness
of the network is qualitatively similar to that for activation.
The network is more robust to the perturbation as the size
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FIGURE 4 | Modularity improves robustness to perturbation and increases state-dependency for a fixed size of the hidden layer. (A) Robustness of the network

averaged over the effects of activating each hidden neuron as a function of the hidden layer size, R and varying levels of modularity, µ. Here, robustness A(µ) is

defined as the numbers of behaviors that are not affected upon forcefully activating a neuron in the network. (B) Average mutual information (defined as in Equation 9)

between the input and output distributions after forced activation of each hidden neuron as a function of the size of the hidden layer R, and varying levels of

modularity, µ. To highlight the effects of increasing modularity, we show the results relative to the lowest modularity. The figure for the absolute values is reported in

Supplementary Figure 5. The mutual information turns out to be A(µ)× 1
M log2(N) due to the absence of stereotypy. (A,B) N = M = 100 and results are means over

5 iterations with the error bars corresponding to the standard deviation. Stars correspond to the Rc value for each value of modularity.

FIGURE 5 | Future excitation and inhibition experiments predict modularity is always associated with improved robustness. To highlight the effects of increasing

modularity, we show the results relative to the lowest modularity, µ = 0.18 as A(µ)−A(µ = 0.18), where A is the robustness of the network upon de-activating each

hidden neuron (A) and the robustness upon activating pairs of hidden neurons one at a time (B) defined as follows. The figure for the absolute values is reported in

Supplementary Figure 6. The value of Rc for each modularity value is shown as stars. (A) Robustness of the network averaged over the effects of de-activating each

hidden neuron as a function of the hidden layer size, R and varying levels of modularity, µ. (B) Robustness of the network averaged over the effects of activating a pair

of hidden neurons as a function of the hidden layer size, R and varying levels of modularity, µ. (A,B) N = M = 100 and results are means over 5 iterations with the

error bars corresponding to the standard deviation.

of the hidden layer increases. For any given size of the
hidden layer, modularity increases the network’s robustness to
deactivating perturbations.

Similarly, we also explored whether activating pairs of
hidden layer neurons (rather than individual neurons)
leads to increased state-dependency with modularity
as well (Figure 5B). We find similar results in this case
(averaging over all possible pairs of hidden layer units across
many networks).

3. CONCLUSION

Understanding how animals use their nervous system to control
behavior is one of the key questions in neuroscience. A key
component of most animal’s nervous system is an information
bottleneck between cognitive decision-making in the brain
and the neurons that are responsible for the performance of
behaviors. In this work, we use a simple feed-forward neural
network, similar to an autoencoder architecture that is commonly
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used in deep neural networks (Goodfellow et al., 2016), to
understand the consequences of having such a bottleneck and
identify different aspects of the network architecture that can
still enable robust learning despite having such a constraint.
For each set of network parameters, we identify the smallest
size of the hidden layer (bottleneck size) that still allows near
perfect learning.We find that increasing the sparsity of the output
behavioral commands reduces this bottleneck size and increases
the robustness of the network.

In addition to sparsity, we find that an increased modularity
in the behavioral commands helps to reduce the bottleneck size
and increases robustness. This observation could provide an
explanation for why such a modular structure has evolved in the
behavioral commands in animals, so far observed in flies. Our
simple model is also able to predict the experimentally observed
state-dependency between behavioral states before and after the
forced activation of hidden neurons. We find that lowering the
size of the hidden layer reduces state-dependent variability, but
state-dependency increases with increasingmodularity for a fixed
hidden layer size. Overall, the modular nature of the output
makes it easier for the network to learn in the presence of a
bottleneck, increases its robustness but also leads to a higher
amount of state-dependency.

This model described here is obviously simplistic in
architecture and dynamics (in that it lacks them) and is
highly unlikely to accurately describe the dynamical activity
of ventral nerve cord function, where recurrent connections
and temporal structure are important features of the system’s
functioning (Reyn et al., 2014; Phelps et al., 2021). Future work
would incorporate the effects of temporal dynamics, as well
as using more biophysically realistic neurons. In addition, our
model only includes discrete inputs, and understanding how
graded controls over more continuous variables (e.g., walking
or flight speed) would be interesting for future study. In
addition, our interpretation of the results implicitly assumes that
the information bottleneck is the fundamental constraint that
evolution has to contend with, rather thanmodularity itself being
the constraint and an information bottleneck being the answer
that maximizes efficiency. While the ubiquity of information
bottlenecks in most nervous systems provides indirect evidence
toward our interpretation, future comparative studies will be
needed to assess which of the two hypotheses is more likely.

However, despite its simplicity, our model recapitulates
several non-trivial features that are observed in experiment,
and makes predictions as to the effects of artificially inhibiting
neurons or of simultaneously stimulating multiple neurons,
allowing for general principles of information-limited motor
control to be elucidated, and new hypotheses to be tested.

4. MATERIALS AND METHODS

4.1. Network Architecture and Training
To mimic the structure of the neural chord, we built a feed-
forward fully-connected neural network with one hidden layer
(see Figure 1). The network is constructed with the Python
framework PyTorch. The input layer represents decision neurons
of number N: they send the signal from the brain down the

network leading to a certain behavioral output. The hidden layer
of size R represents descending neurons of the neural chord: it
transmits the signal down to the motor neurons, which are the
output layer of the network of size M. We used the sigmoid
as our activation function, serving as an approximation of the
transmission of the neural signal. The functioning of the neural
network can be understood explicitly from its mathematical
definition. The first layer applies a linear transformation on the

input sequence Ex via the weight matrix,W
(1)
α,β connecting neuron

α in the first layer with neuron β in the following equation,

a
(1)
β =

∑

α

W
(1)
α,βxα − B

(1)
β , (1)

while the second and last layer applies the activation function
ρ(a) on a(1) as,

a
(2)
β =

∑

α

W
(2)
α,βρ(a(1)α )− B

(2)
β , (2)

with ρ(a) given by the sigmoid ρ(x) = 1/(1+e−x) and B(1) (B(2))
is the bias, an additive constant. The output of the network is
defined as f (x,W) ≡ a(2), where W contains all the parameters,
comprising the biases.

We fixed the size of the input layer (N = 100) throughout
our experiments, while varying the sizes R, M of the hidden and
output layers. We trained the network in the following fashion:
we fixed the input and outputmatrices, i.e., decision and behavior
matrices, respectively; we trained the network in a feed-forward
manner using stochastic gradient descent with momentum and
used the mean-squared error (MSE) loss function to assess
learning performance; we stopped training after 105 epochs,
which corresponds to when the loss curve flattens and the
network is no longer learning. The output y = f (x,W) of the
trained network is then binarized by rounding each entry (using
a Heavyside step function centered around 0.5) and the trained
weights and biases defining the network are saved for further
analysis. Along with these parameters, the number of behaviors
learnt, obtained by comparing each entry of the output ywith the
imposed behavior, is also stored.

4.2. Modularity
Weuse the NetworkX 2.5 Python package to calculate modularity
using the function ‘networkx.algorithms.community.modularity’
by treating the output matrix of behavioral commands as an
adjacency matrix of a graph. Here modularity is defined as
Newman (2018),

µ =
1

2m

∑

ij

(

Aij −
kikj

2m

)

δ(ci, cj) (3)

where m is the number of edges, Aij is the adjacency matrix, ki is
the degree (number of connections of a node in a graph) of i and
δ(ci, cj) is 1 if i and j are in the same community and 0 otherwise.

4.3. Entropy of the Behavioral Matrix
The entropy of the behavioral matrix depends upon the number
of behaviors N, size of the output layer M, sparsity k, number
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of modules m, and the noise σ associated with the modules (#
of units active outside a module, for e.g., σ = 0 for perfect
modularity). For a random behavioral matrix where for any
output k random units are turned “on” the total entropy (in bits)
is,

S = Nlog2

(

M

k

)

(4)

For a modular behavioral matrix with equal sized square modules
(msize ×msize,msize = M/m) the entropy (in bits) is given by,

S = Nlog2

[(

msize

k− σ

)

×

(

M −msize

σ

)]

(5)

4.4. Data Generation
The input data for all of our numerical experiments is always a
100 × 100 identity matrix. Each row of this matrix corresponds
to the signal of performing one behavior from the output
matrix. We generated several sets of output behavior matrices. In
Figure 1, we varied the sparsity of the output matrix by changing
the number of randomly activated units in a given row, i.e.,
the number of 1s. In Figure 3, we generated modular behavior
matrices by introducing dense and sparse clusters into the output
matrix. We start with 5 perfect clusters, i.e., no activated units
are in common between 2 different clusters. Then, we generate
matrices with different degree of modularity by deactivating
some of the units within the cluster and activating the same
number of units outside of the cluster so that the sparsity
is preserved. In each case we generated 10 different behavior
matrices for statistical purposes.

4.5. Checking the Robustness of the
Network
We checked the robustness of the network by forcefully activating
one of the hidden layer neurons. This is achieved by setting
its corresponding weight in the first weight matrix W(1) to an
arbitrarily high value.We propagate the input matrix through the
resulting perturbed network to get an output behavior matrix to
be compared to the original output. In this way we can monitor
how many of the original output behaviors were changed by the
forceful activation. These steps are repeated for each individual
hidden neuron and the results are averaged over the number of
hidden neurons.

4.6. Mutual Information Calculation
Mutual information (MI) between two distributions is the
measure of the amount of information one distribution has about
the other. For two discrete binary random variables X and Y
embedded in R

N with joint distribution P(X,Y) it is given by
Cover and Thomas (2006),

I(X;Y) =
∑

x∈X

∑

y∈Y

P(x, y)log2
P(x, y)

P(x)P(y)
(6)

where P(X) and P(Y) are the marginal distributions. In the
absence of forced activation, the perfect learning case has a one

to one mapping between the input and output distributions and
hence the MI is log2N. This perfect mapping gets perturbed on
forced activation which can lead to one of the three different
scenarios: (i) the input-output mapping is still unaffected, (ii) the
input gets mapped to another output (stereotypy), and (iii) the
input getsmapped to a completely different output that is not part
of the original output distribution. This last case suggests that the
input possess no information about the output.

Suppose we haveN inputs x andM outputs ywhere we assume
that they follow a uniform distribution, that is, P(x) = 1/N and
P(y) = 1/M. After forced activation, let ni be the number of
inputs associated with each output yi where ni ≥ 0. This gives
us P(x|yi) =

1
ni

when ni > 0 and P(x|yi) = 0 when ni = 0. The
mutual information then reads

I(X,Y) =
∑

y∈Y

P(y)
∑

x∈X

P(x|y) log2
P(x|y)

P(x)
(7)

=
∑

yi∈Y ′

P(yi)
∑

x∈X ′

1

ni
log2

(

N

ni

)

(8)

=
∑

yi∈Y ′

P(yi) log2

(

N

ni

)

(9)

=
1

M

∑

yi∈Y ′

log2

(

N

ni

)

(10)

where X ′ is the set of ni inputs associated with each output yi, Y
′

is the set of m outputs with ni > 0. Note that in the absence of
stereotypy that is, when ni is either 1 or 0, the mutual information
becomes

I(X,Y) =
m

M
log2 (N) , (11)

where m is the number of original outputs that were unaffected
by perturbation and hence, the mutual information becomes
proportional to our definition of network robustness.

4.7. Statistical Analysis
Error bars in the figures are standard deviations that were
calculated by averaging simulation results for 10 different
output matrices unless specified otherwise. We used the UMAP
(McInnes et al., 2018) method to visualize the structure in
weight matrices.

4.8. Code Availability
The code for both our simulations and statistical analysis, can
be downloaded from: https://github.com/drahcir7/bottleneck-
behaviors.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 9 April 2022 | Volume 16 | Article 835753

https://github.com/drahcir7/bottleneck-behaviors
https://github.com/drahcir7/bottleneck-behaviors
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Nande et al. Bottlenecks, Modularity, and the Neural Control of Behavior

AUTHOR CONTRIBUTIONS

AN, VD, RR, and GZ performed all the analyses. GB conceived
the project and advised on all aspects of the modeling
and analysis. All authors wrote the manuscript. All authors
contributed to the article and approved the submitted version.

FUNDING

GB was supported by the Simons Foundation and a Cottrell
Scholar Award, a program of the Research Corporation for
Science Advancement (25999). AN was supported by a grant
from the US National Institutes of Health (DP5OD019851).
GZ acknowledges support from the Paul and Daisy Soros
Fellowship and the National Science Foundation Graduate

Research Fellowship under Grant No. DGE1745303. RR was
supported by the Swiss National Science Foundation under grant
No. 200021-165509/1.

ACKNOWLEDGMENTS

The authors thank the organizers of the 2019 Boulder Summer
School for Condensed Matter and Materials Physics for the
opportunity to meet and start a collaboration on this project.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnbeh.
2022.835753/full#supplementary-material

REFERENCES

Ache, J. M., Namiki, S., Lee, A., Branson, K., and Card, G. M. (2019).

State-dependent decoupling of sensory and motor circuits underlies

behavioral flexibility in Drosophila. Nat. Neurosci. 22, 1132–1139.

doi: 10.1038/s41593-019-0413-4

Bidaye, S. S., Machacek, C., Wu, Y., and Dickson, B. J. (2014). Neuronal

control of Drosophila walking direction. Science 344, 97–101.

doi: 10.1126/science.1249964

Cande, J., Namiki, S., Qiu, J., Korff, W., Card, G. M., Shaevitz, J. W., et al. (2018).

Optogenetic dissection of descending behavioral control in Drosophila. eLife 7,

e34275. doi: 10.7554/eLife.34275

Cover, T. M., and Thomas, J. A. (2006). Elements of Information Theory, 2nd Edn.

New York, NY: Wiley.

Ding, Y., Lillvis, J. L., Cande, J., Berman, G. J., Arthur, B. J., Long, X., et al.

(2019). Neural evolution of context-dependent fly song. Curr. Biol. 29,

1089.e7–1099.e7. doi: 10.1016/j.cub.2019.02.019

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. Cambridge,

MA: MIT Press.

Gronenberg, W., and Strausfeld, N. J. (1990). Descending neurons supplying the

neck and flight motor of diptera: physiological and anatomical characteristics.

J. Comp. Neurol. 302, 973–991. doi: 10.1002/cne.903020420

Hsu, C. T., and Bhandawat, V. (2016). Organization of descending neurons in

Drosophila melanogaster. Sci. Rep. 6, 20259. doi: 10.1038/srep20259

Kandel, E. R., Koester, J. D., Mack, S. H., and Siegelbaum, S. A. (2021). Principles

of Neural Science, 6th Edn. New York, NY: McGraw-Hill.

McInnes, L., Healy, J., Saul, N., and Groberger, L. (2018). UMAP: uniform

manifold approximation and projection. J. Open Sour. Softw. 3, 861.

doi: 10.21105/joss.00861

McKellar, C. E., Lillvis, J. L., Bath, D. E., Fitzgerald, J. E., Cannon, J. G.,

Simpson, J. H., et al. (2019). Threshold-based ordering of sequential

actions during drosophila courtship. Curr. Biol. 29, 426.e6–434.e6.

doi: 10.1016/j.cub.2018.12.019

Namiki, S., Dickinson, M. H., Wong, A. M., Korff,W., and Card, G. M. (2018). The

functional organization of descending sensory-motor pathways in Drosophila.

eLife 7, e34272. doi: 10.7554/eLife.34272

Newman, M. (2018). Networks, 2 Edn. Oxford, UK: Oxford University Press.

doi: 10.1093/oso/9780198805090.001.0001

Phelps, J. S., Hildebrand, D. G. C., Graham, B. J., Kuan, A. T., Thomas, L.

A., Nguyen, T. M., et al. (2021). Reconstruction of motor control circuits in

adult Drosophila using automated transmission electron microscopy. Cell 184,

759.e18–774.e18. doi: 10.1016/j.cell.2020.12.013

Reyn, C. R., Breads, P., Peek, M. Y., Zheng, G. Z., Williamson, W. R., et al. (2014).

A spike-timing mechanism for action selection. Nat. Neurosci. 17, 962–970.

doi: 10.1038/nn.3741

Smarandache-Wellmann, C. R. (2016). Arthropod neurons and nervous system.

Curr. Biol. 26, R960-R965. doi: 10.1016/j.cub.2016.07.063

Zacarias, R., Namiki, S., Card, G. M., Vasconcelos, M. L., and Moita, M. A.

(2018). Speed dependent descending control of freezing behavior inDrosophila

melanogaster. Nat. Commun. 9, 3697. doi: 10.1038/s41467-018-05875-1

Zavatone-Veth, J. A., Canatar, A., and Pehlevan, C. (2021). Asymptotics

of representation learning in finite Bayesian neural networks.

arXiv[preprint].arXiv:2106.00651. doi: 10.48550/arXiv.2106.00651

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Nande, Dubinkina, Ravasio, Zhang and Berman. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 10 April 2022 | Volume 16 | Article 835753

https://www.frontiersin.org/articles/10.3389/fnbeh.2022.835753/full#supplementary-material
https://doi.org/10.1038/s41593-019-0413-4
https://doi.org/10.1126/science.1249964
https://doi.org/10.7554/eLife.34275
https://doi.org/10.1016/j.cub.2019.02.019
https://doi.org/10.1002/cne.903020420
https://doi.org/10.1038/srep20259
https://doi.org/10.21105/joss.00861
https://doi.org/10.1016/j.cub.2018.12.019
https://doi.org/10.7554/eLife.34272
https://doi.org/10.1093/oso/9780198805090.001.0001
https://doi.org/10.1016/j.cell.2020.12.013
https://doi.org/10.1038/nn.3741
https://doi.org/10.1016/j.cub.2016.07.063
https://doi.org/10.1038/s41467-018-05875-1
https://doi.org/10.48550/arXiv.2106.00651
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles

	Bottlenecks, Modularity, and the Neural Control of Behavior
	1. Introduction
	2. Results and Discussion
	2.1. Characterization of the Model
	2.2. Modularity of Behaviors
	2.3. Robustness to Perturbations of the Bottleneck Layer
	2.4. State-Dependency of Behaviors

	3. Conclusion
	4. Materials and Methods
	4.1. Network Architecture and Training
	4.2. Modularity
	4.3. Entropy of the Behavioral Matrix
	4.4. Data Generation
	4.5. Checking the Robustness of the Network
	4.6. Mutual Information Calculation
	4.7. Statistical Analysis
	4.8. Code Availability

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


