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Abstract
In this paper we construct Ritz-type projectors with boundary interpolation properties
in finite dimensional subspaces of the usual Sobolev space and we provide a priori
error estimates for them. The abstract analysis is exemplified by considering spline
spaces and we equip the corresponding error estimates with explicit constants. This
complements our results recently obtained for explicit spline error estimates based on
the classical Ritz projectors in (Numer Math 144(4):889–929, 2020).
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1 Introduction

Error estimates for Ritz projections play an important role in the theoretical analysis of
the Ritz-Galerkin approximation of differential problems; see, e.g., [6]. In this paper
we present an abstract framework for constructing a family of Ritz-type projectors
with boundary interpolation properties in finite dimensional subspaces of the usual
Sobolev space

Hr (a, b) := {u ∈ L2(a, b) : ∂αu ∈ L2(a, b), α = 1, . . . , r}, (1)

and we provide a priori error estimates for them in L2 and standard Sobolev
(semi-)norms.
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LetP p be the space of polynomials of degree less than or equal to p. The framework
requires that the considered finite dimensional subspace contains the polynomial space
P2q−1 to ensure interpolation of the function and its derivatives up to orderq−1 ≤ r−1
at the two ends of the interval [a, b]. These Hermite interpolation properties at the
boundary enhance and complement the results recently obtained for the classical Ritz
projectors in [17]. It turns out that the two kinds of projectors are deeply related. For
a fixed q, the difference between the proposed and the corresponding classical Ritz
projection belongs to Pq−1; actually, it equals the L2-projection onto Pq−1 of the
error of the new Ritz-type projection (see Proposition 2). We also provide bounds in
Sobolev semi-norms for this difference.

The abstract construction and the related error estimates are elaborated and dis-
cussed for projectors onto spline spaces of arbitrary smoothness defined on arbitrary
grids. In this case, explicit constants can be deduced for the error bounds. These con-
stants agree with those obtained in [17] for the classical Ritz projectors, and so with
the numerical evidence found in the literature that smoother spline spaces exhibit a
better approximation behavior per degree of freedom, even for low smoothness of the
functions to be approximated.

Projectors with Hermite interpolation properties at the boundary are of partic-
ular interest in practice, because they directly allow for building globally smooth
approximants by simply gluing locally constructed ones. When locally working with
polynomials, the most well known of such projectors is probably cubic Hermite inter-
polation as it results in a local construction of C1 cubic spline interpolants. This can
be extended to higher smoothness, say q − 1, by locally considering polynomials of
degree at least 2q−1; see [4] for an application in the context of isogeometric analysis.
An interesting and powerful alternative is to replace polynomials by splines as local
approximation spaces.

A common way to obtain projectors with boundary interpolation properties onto
spline spaces (of odd degree) is based on (Hermite) interpolation at the knots, by
extending the classical construction of C2 cubic spline interpolants. General error
estimates with explicit constants for such projectors have been provided in [18]. Our
projectors do not have any restriction on the spline degree and numerical evaluations
reveal that our estimates improve upon those in [18], often involving much smaller
constants (see Sect. 5.3). Better constants for the same interpolating projectors as in
[18] can be found in [1] but they are not explicit in most cases. For maximally smooth
spline spaces, the latter constants are explicit but remain larger than those in the present
work. Projectors analogous to those in [1, 18] have also been investigated in [2] for
periodic boundary conditions and for Lidstone interpolation at the boundary in the
case of maximally smooth spline spaces; in those two cases the same explicit error
bounds have been obtained as ours (cf. Remark 2).

The key ingredient to get our projectors and the corresponding error estimates is the
representation of the considered Sobolev spaces and the approximating spline spaces
in terms of integral operators described by suitable kernels, following the approach
already exploited in [17] and earlier work (see, e.g., [10, 16]).

The remainder of this paper is organized as follows. In Sect. 2 we briefly summarize
from [17] the abstract framework we are dealing with. Sect. 3 describes the general
construction of the new family of projectors, analyses their boundary interpolation
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properties, and provides error estimates for them in L2 and standard Sobolev (semi-)
norms. The relation between the proposed and the classical Ritz projector is discussed
in Sect. 4, where bounds for standard Sobolev semi-norms of their difference are also
provided. The relevant case of projectors onto spline spaces is elaborated in Sect. 5,
and particular attention is devoted to error bounds with explicit constants. Finally,
Sect. 6 collects some final remarks and highlights possible areas of applications of the
presented results.

2 General error estimates

In this section we describe an abstract framework to obtain error estimates for the
L2-projection onto spaces defined in terms of integral operators. This section is based
on [17, Section 2].

For real-valued functions f and gwe denote the norm and inner product on L2(a, b)
by

‖ f ‖2 := ( f , f ), ( f , g) :=
∫ b

a
f (x)g(x)dx,

and we consider the Sobolev spaces (1). Let K be the integral operator defined by
integrating from the left,

(K f )(x) :=
∫ x

a
f (y)dy.

We denote by K ∗ the adjoint, or dual, of the operator K , defined by

( f , K ∗g) = (K f , g).

One can check that K ∗ is integration from the right,

(K ∗ f )(x) =
∫ b

x
f (y)dy;

see, e.g., [10, Section 7].
Given any finite dimensional subspace Z0 ⊇ P0 of L2(a, b) and any integral

operator K , we let Zt for t ≥ 1 be defined by Zt := P0 + K (Zt−1). We further
assume that they satisfy the equality

Zt := P0 + K (Zt−1) = P0 + K ∗(Zt−1), (2)

where the sums do not need to be orthogonal (or even direct). From the definition the
following equivalence is easy to check,

Pk ⊆ Zt ⇔ Pk−q ⊆ Zt−q ,
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for any q ≤ k, t . Moreover, let Zt be the L2-projector onto Zt , and define Ct,r ∈ R

for t, r ≥ 0 to be

Ct,r := ‖(I − Zt )K
r‖.

Observe that Ct,0 = 1 and C0,1 := ‖(I − Z0)K‖ = ‖(I − Z0)K ∗‖.
The space Hr (a, b) can be described as

Hr (a, b) = P0 + K (Hr−1(a, b)) = P0 + K ∗(Hr−1(a, b))

= Pr−1 + Kr (H0(a, b)), (3)

with H0(a, b) = L2(a, b) and P−1 = {0}. Thus, any u ∈ Hr (a, b) is of the form
u = g + Kr f for g ∈ Pr−1 and f ∈ L2(a, b). This leads to the following error
estimate for the L2-projection (see also [17, Theorem 1]).

Lemma 1 Let Zt be the L2-projector onto Zt and assume Pr−1 ⊆ Zt . Then, for any
u ∈ Hr (a, b) we have

‖u − Ztu‖ ≤ Ct,r‖∂r u‖. (4)

Proof Since Pr−1 ⊆ Zt and using (3), we have u = g + Kr f for g ∈ Pr−1 and
f ∈ L2(a, b). Thus,

‖u − Ztu‖ = ‖g + Kr f − Zt (g + Kr f )‖ = ‖(I − Zt )K
r f ‖ ≤ Ct,r‖ f ‖, (5)

and the result follows from the identity ∂r u = f . 
�
Bydefinition of the operator norm, the constantCt,r is the smallest possible constant

such that the last inequality in (5) holds for all f ∈ L2(a, b). We thus see from the
above proof that whenever Pr−1 ⊆ Zt , the constant Ct,r is the smallest possible
constant such that (4) holds for all u ∈ Hr (a, b).

3 A projection with boundary interpolation

Similarly to [16], we define a sequence of projection operators Qq
t : Hq(a, b) → Zt ,

for q = 0, . . . , t , by Q0
t := Zt and

Qq
t u := u(a) + K Qq−1

t−1 ∂u. (6)

These projections, by definition, commute with the derivative: ∂Qq
t = Qq−1

t−1 ∂ . Note
that ∂q Qq

t = Zt−q∂
q can equivalently be stated as

(∂q Qq
t u, ∂qv) = (∂qu, ∂qv), ∀v ∈ Zt , (7)
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since ∂qZt = Zt−q . It is also easy to see that these projections satisfy the interpolation
property

(Qq
t u)(�)(a) = u(�)(a), � = 0, . . . , q − 1. (8)

In the following lemma we show under which conditions there is interpolation at the
other end point of the domain.

Lemma 2 If P2q−�−1 ⊆ Zt then the projector Qq
t in (6) satisfies (Qq

t u)(�)(b) =
u(�)(b) for � = 0, . . . , q − 1.

Proof We proceed by induction on �. We first consider � = q − 1. If we pick v(x) =
xq/q! in (7) we find that

(Qq
t u)(q−1)(b) − (Qq

t u)(q−1)(a) = (∂q Qq
t u, 1) = (∂qu, 1) = u(q−1)(b) − u(q−1)(a),

and the result follows from (8). Next we assume that the result is true for � + 1, � +
2, . . . , q − 1 and consider the case �. Using integration by parts, q − � − 1 times, we
find from (7) that

(∂�+1Qq
t u, ∂2q−�−1v) = (∂�+1u, ∂2q−�−1v), (9)

where the boundary terms disappear due to (8) and the induction hypothesis. The result
now follows by picking v(x) = x2q−�−1/(2q − � − 1)! in (9). 
�

In the case q = 1, the projector Q1
t was already defined in [20] and [17, Section 8].

Its interpolation property was exploited to build globally C0 functions in the context
of multi-patch geometries and error estimates were provided for isogeometric multi-
patch discretizations. In the case Zt = P2q−1, the projector Qq

t was used in [4] to
obtain error estimates for spline spaces (with restrictions on the smoothness). We will
generalize these results in Sect. 5.1; see in particular Example 6.

Using the classical Aubin–Nitsche duality argument we arrive at the following error
estimates for Qq

t .

Lemma 3 Let Qq
t be the projector defined in (6). Then,

‖u − Qq
t u‖ ≤ Ct−q,q‖(I − Zt−q)∂

qu‖,
for all t ≥ q such that Pq−1 ⊆ Zt−q .

Proof Let u ∈ Hq(a, b) be given and definew as the solution to the Dirichlet problem

(−1)q∂2qw = u − Qq
t u,

w(a) = w(b) = · · · = w(q−1)(a) = w(q−1)(b) = 0.

Using integration by parts, q times, together with (8) and Lemma 2, we have

‖u − Qq
t u‖2 = (u − Qq

t u, u − Qq
t u) = (u − Qq

t u, (−1)q∂2qw)

= (∂q(u − Qq
t u), ∂qw) = ((I − Zt−q)∂

qu, ∂q(w − v)),
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for any v ∈ Zt , since ((I − Zt−q)∂
qu, ∂qv) = 0. Next, using ‖u − Qq

t u‖ = ‖∂2qw‖
together with the Cauchy–Schwarz inequality we obtain

‖u − Qq
t u‖ ‖∂2qw‖ ≤ ‖(I − Zt−q)∂

qu‖ ‖∂q(w − v)‖. (10)

If we let v = Qq
t w, then Lemma 1 implies that

‖∂q(w − Qq
t w)‖ = ‖(I − Zt−q)∂

qw‖ ≤ Ct−q,q‖∂2qw‖, (11)

since Pq−1 ⊆ Zt−q . Combining (10) and (11) completes the proof. 
�
Theorem 1 Let u ∈ Hr (a, b) be given. For any q = 0, . . . , r , let Qq

t be the projector
onto Zt defined in (6). Then, for any � = 0, . . . , q we have

‖∂�(u − Qq
t u)‖ ≤ Ct−q,q−�Ct−q,r−q‖∂r u‖,

for all t ≥ q such that Pr−q−1 ⊆ Zt−q and Pq−�−1 ⊆ Zt−q .

Proof Using the commuting property ∂�Qq
t = Qq−�

t−� ∂� together with Lemma 3 we
obtain

‖∂�(u − Qq
t u)‖ = ‖(I − Qq−�

t−� )∂�u‖ ≤ Ct−q,q−�‖(I − Zt−q)∂
qu‖,

since Pq−�−1 ⊆ Zt−q . The result now follows from Lemma 1 since Pr−q−1 ⊆ Zt−q .

�

In [16, Section 3.1] a closely related sequence of projection operators were studied.
Let Q̃q

t : Hq(a, b) → Zt , for q = 0, . . . , t , be defined by Q̃0
t := Zt and

Q̃q
t u := c(u) + K Qq−1

t−1 ∂u,

where c(u) ∈ R is chosen such that (Q̃q
t u, 1) = (u, 1). In the case of Zt being a

spline space, the projector Q̃1
t was also studied in [21]. In both works [16, 21], only

maximally smooth splines were considered; here we consider a more general context
that allows for splines of any smoothness.

Proposition 1 If P2q−� ⊆ Zt then the projector Qq
t in (6) satisfies (∂�Qq

t u, 1) =
(∂�u, 1) for � = 0, . . . , q. Consequently, if P2q ⊆ Zt then Qq

t = Q̃q
t .

Proof We first consider the case � > 0. Since P2q−� ⊆ Zt it follows from (8) and
Lemma 2 that

(∂�Qq
t u, 1) = (Qq

t u)(�−1)(b) − (Qq
t u)(�−1)(a) = u(�−1)(b) − u(�−1)(a) = (∂�u, 1).

If � = 0 then, using integration by parts together with (8) and Lemma 2, we have

(u − Qq
t u, 1) = (−1)q

q! (∂q(u − Qq
t u), xq) = 0,
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since x2q ∈ Zt and Qq
t satisfies (7). 
�

The degree of the polynomial inclusion in Proposition 1 is sharp as illustrated in
the following example.

Example 1 Let q = 1 and [a, b] = [0, 1]. Then, for Z1 = P1 (t = 1) we have

Q1
1u(x) = u(0) +

∫ x

0
Z0∂u(y)dy = u(0) + x(u(1) − u(0)).

It is clear that in general (Q1
1u, 1) �= (u, 1) and thus Q1

1 is different from Q̃1
1. On the

other hand, for Z2 = P2 (t = 2) we have

Q1
2u(x) = u(0) +

∫ x

0
Z1∂u(y)dy

= u(0) − 2x [u(1) + 2u(0) − 3(u, 1)] + 3x2 [u(1) + u(0) − 2(u, 1)] ,

which satisfies (Q1
2u, 1) = (u, 1) and thus Q1

2 equals Q̃
1
2.

We observe that the polynomial condition P2q−� ⊆ Zt in Proposition 1 is slightly
more restrictive than the polynomial condition P2q−�−1 ⊆ Zt (which is equivalent to
Pq−�−1 ⊆ Zt−q ) required in Theorem 1. Hence, when P2q ⊆ Zt , the explicit error
estimates in the theorem are also valid for the projector Q̃q

t for all � = 0, . . . , q. This
extends the results in [16] that only provides error estimates for � = q − 1, q, and
only covers maximally smooth spline spaces.

4 Relation to the Ritz projection

In this section we focus on the Ritz projector Rq
t considered in [17], and investigate the

relationwith our projector Qq
t .We recall from [17, Eq. (13)] that Rq

t : Hq(a, b) → Zt ,
for q = 0, . . . , t , is defined by

(∂q Rq
t u, ∂qv) = (∂qu, ∂qv), ∀v ∈ Zt ,

(Rq
t u, g) = (u, g), ∀g ∈ Pq−1.

(12)

We first show that the difference between Qq
t u and Rq

t u is a polynomial of at most
degree q − 1.

Proposition 2 Let Qq
t and Rq

t be the projectors defined in (6) and (12), respectively.
Let Pq−1 be the L2-projector onto Pq−1. Then,

Eq−1u := Rq
t u − Qq

t u = Pq−1(u − Qq
t u) ∈ Pq−1.

Proof Let ge := Pq−1(u − Qq
t u) and re := ge + Qq

t u. Then, from (7) we obtain

(∂qre, ∂
qv) = (∂qge + ∂q Qq

t u, ∂qv) = (∂qu, ∂qv), ∀v ∈ Zt ,
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and by the definition of ge we have

(re, g) = (ge + Qq
t u − u + u, g) = (u, g), ∀g ∈ Pq−1.

Hence, we conclude that Rq
t u = re and Eq−1u = ge. 
�

Observe that Proposition 2 implies that

‖u − Rq
t u‖2 = ‖u − Qq

t u‖2 − ‖Eq−1u‖2,

and hence

‖u − Rq
t u‖ ≤ ‖u − Qq

t u‖. (13)

It is also clear that

‖∂q(u − Rq
t u)‖ = ‖∂q(u − Qq

t u)‖. (14)

Example 2 Let q = 1 and r ≥ 1. Then, for u ∈ Hr (a, b) and � = 0, 1 we have

‖∂�(u − R1
t u)‖ ≤ ‖∂�(u − Q1

t u)‖ ≤ Ct−1,1−�Ct−1,r−1‖∂r u‖,

for all t ≥ 1 such that Pr−2 ⊆ Zt−1. This follows immediately from (13)–(14) and
Theorem 1.

In general, the projectors Qq
t and Rq

t are different, but they coincide when polyno-
mials of high enough degree are in the space Zt .

Proposition 3 Let Qq
t and Rq

t be the projectors defined in (6) and (12), respectively. If
P2q+i ⊆ Zt then (u−Qq

t u, xi ) = 0 for i = 0, . . . , q−1. Consequently, ifP3q−1 ⊆ Zt

then Qq
t = Rq

t .

Proof Using integration by parts together with (8) and Lemma 2, we have

(u − Qq
t u, xi ) = (−1)q i !

(q + i)! (∂
q(u − Qq

t u), xq+i ) = 0,

since Qq
t satisfies (7) and x2q+i ∈ Zt for all i ∈ {0, . . . , q − 1}. 
�

The degree of the polynomial inclusion in Proposition 3 is sharp as illustrated in
the following example.

Example 3 Let q = 2 and [a, b] = [0, 1]. We choose u(x) = x6. Then, for Z2 = P2
(t = 2) we have

Q2
2u(x) = 3x2, R2

2u(x) = Q2
2u(x) − 33

14
x + 9

28
;
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for Z3 = P3 (t = 3) we have

Q2
3u(x) = 4x3 − 3x2, R2

3u(x) = Q2
3u(x) + 3

70
x + 17

140
;

for Z4 = P4 (t = 4) we have

Q2
4u(x) = 30

7
x4 − 32

7
x3 + 9

7
x2, R2

4u(x) = Q2
4u(x) + 3

70
x − 3

140
;

and for Z5 = P5 (t = 5) we have

Q2
5u(x) = R2

5u(x) = 3x5 − 45

14
x4 + 10

7
x3 − 3

14
x2.

Note that Q2
t u is interpolating u at b = 1 only for t ≥ 3, in accordance with Lemma 2.

One can ask the question of whether the Ritz projector Rq
t satisfies other boundary

conditions given a polynomial inclusion Pp ⊆ Zt of degree p < 3q − 1. We consider
this problem in the next example.

Example 4 Let q = 2 and define f (x) := u(x) − R2
t u(x). Using integration by parts

twice we have

0 = (∂2 f , ∂2v) = ( f , ∂4v) +
[
∂ f ∂2v

]b
a

−
[
f ∂3v

]b
a
, v ∈ Zt .

We now pick v(x) = xs/s! for s = 2, 3, 4 to obtain

[
f ′(x)

]b
a = 0,[

f ′(x)x
]b
a − [ f (x)]ba = 0,[

f ′(x)x2/2
]b
a

− [ f (x)x]ba = 0,

where we have used that ( f , 1) = 0 in the last equation. This implies that

f ′(b) = f ′(a), P2 ⊆ Zt ,

f ′(b)b − f ′(a)a = f (b) − f (a), P3 ⊆ Zt ,

f ′(b)b2 − f ′(a)a2 = 2 ( f (b)b − f (a)a) , P4 ⊆ Zt .

By combining the above conditions we also deduce

f ′(b) = f (b) − f (a)

b − a
, P3 ⊆ Zt ,

f (b) = − f (a), P4 ⊆ Zt .
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Thus, if P2 ⊆ Zt , then we have

(R2
t u)′(b) − (R2

t u)′(a) = u′(b) − u′(a).

If P3 ⊆ Zt , then we also have

(R2
t u)′(b) − R2

t u(b) − R2
t u(a)

b − a
= u′(b) − u(b) − u(a)

b − a
.

Finally, if P4 ⊆ Zt , then we also have

R2
t u(b) + R2

t u(a) = u(b) + u(a).

These conditions can be verified with the function and the Ritz projectors considered
in Example 3. We may conclude that the Ritz projector R2

t satisfies some type of
boundary relations for various polynomial inclusions, but they do not seem very useful
in practice unless the polynomial degree is high enough to be covered by Proposition
3.

To complement the result in Proposition 3, we also provide estimates for the dif-
ference between Qq

t and Rq
t in general. We start with the following inverse inequality

(see [11] for details and other similar results).

Lemma 4 If g ∈ Pp then we have

‖∂g‖ ≤ dp
b − a

‖g‖, dp :=
√

p(p + 1)(p + 2)(p + 3)

2
.

Proposition 4 Let Qq
t and Rq

t be the projectors defined in (6) and (12), respectively.
We have

‖Rq
t u − Qq

t u‖ ≤ ‖u − Qq
t u‖.

Furthermore, for � = 1, . . . , q − 1, we have

‖∂�(Rq
t u − Qq

t u)‖ ≤
(

1

b − a

)�
⎛
⎝

q−1∏
i=q−�

di

⎞
⎠ ‖Rq

t u − Qq
t u‖.

Finally, for any � ≥ q, we have

‖∂�(Rq
t u − Qq

t u)‖ = 0.

Proof This follows immediately from Proposition 2, ‖Pq−1(u−Qq
t u)‖ ≤ ‖u−Qq

t u‖,
and a repeated application of Lemma 4. 
�
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Let u ∈ Hr (a, b) be given. The results in Propositions 3 and 4 can be combined
with Theorem 1 to achieve an estimate for (derivatives of) the difference between Rq

t u
and Qq

t u. In particular, we have

‖Rq
t u − Qq

t u‖ ≤ Ct−q,qCt−q,r−q‖∂r u‖, (15)

and

‖∂�(Rq
t u − Qq

t u)‖ ≤ Ct−q,qCt−q,r−q

(
1

b − a

)�
⎛
⎝

q−1∏
i=q−�

di

⎞
⎠ ‖∂r u‖, 1 ≤ � < q,

(16)

for all t ≥ q such that Pr−q−1 ⊆ Zt−q and Pq−1 ⊆ Zt−q .

5 Spline spaces

For k ≥ 0, let Ck[a, b] be the classical space of functions with continuous derivatives
of order 0, 1, . . . , k on the interval [a, b]. We further let C−1[a, b] denote the space
of bounded, piecewise continuous functions on [a, b] that are discontinuous only at a
finite number of points.

Suppose � := (ξ0, . . . , ξN+1) is a sequence of (break) points such that

a =: ξ0 < ξ1 < · · · < ξN < ξN+1 := b,

and let

h := max
j=0,...,N

(ξ j+1 − ξ j ).

Moreover, set I j := [ξ j , ξ j+1), j = 0, 1, . . . , N − 1, and IN := [ξN , ξN+1]. Then,
for −1 ≤ k ≤ p− 1, we define the space Sk

p,� of splines of degree p and smoothness
k by

Sk
p,� := {s ∈ Ck[a, b] : s|I j ∈ Pp, j = 0, 1, . . . , N }.

With a slight misuse of terminology, we will refer to � as knot sequence and to its
elements as knots. We use the notation Skp : L2(a, b) → Sk

p,� for the L2-projector
onto spline spaces.

Define now the constant cp,k,r for p ≥ r − 1 as follows. If k = p − 1, we let

cp,p−1,r :=
(
1

π

)r

,
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and if k ≤ p − 2, we let

cp,k,r :=
(
1

2

)r

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1√

(p − k)(p − k + 1)

)r

, k ≥ r − 2,

(
1√

(p − k)(p − k + 1)

)k+1
√

(p + 1 − r)!
(p − 1 + r − 2k)! , k < r − 2.

The next result was then shown in [17, Theorem 3].

Theorem 2 Let u ∈ Hr (a, b) be given. For any knot sequence �, let Skp be the L2-

projector onto Sk
p,� for −1 ≤ k ≤ p − 1. Then,

‖u − Skpu‖ ≤ cp,k,r h
r‖∂r u‖,

for all p ≥ r − 1.

Remark 1 In [17, Remark 3] it was observed that for k ≤ p − 2 the constant cp,k,r
can be bounded by a simpler expression using the Stirling formula. For k ≥ r − 2, we
have

cp,k,r ≤
(

1

2(p − k)

)r

,

while for k < r − 2 we get

cp,k,r ≤
(

e

4(p − k)

)r

.

In the following subsections we detail the construction and properties of the pro-
jector in (6) when the approximation space is the spline space Sk

p,�.

5.1 The Q projector for spline spaces

If Z0 = S−1
p−k−1,� then we have Zk+1 = Sk

p,� for the sequence of spaces in (2).
Specifically,

Sk
p,� = P0 + K (Sk−1

p−1,�) = P0 + K ∗(Sk−1
p−1,�), k ≥ 0.

As a special case of the projector in (6) we define the sequence of projector operators
Qq,k

p : Hq(a, b) → Sk
p,�, for q = 0, . . . , k + 1, by Q0,k

p := Skp and

Qq,k
p u := u(a) + K Qq−1,k−1

p−1 ∂u. (17)

By combining Theorem 2 with Theorem 1 we obtain the following error estimate for
Qq,k

p .

123



Ritz-type projectors with boundary interpolation properties... 487

Theorem 3 Let u ∈ Hr (a, b) be given. For any degree p, knot sequence � and
smoothness −1 ≤ k ≤ p − 1, let Qq,k

p be the projector onto Sk
p,� defined in (17) for

q = 0, . . . ,min{k + 1, r}. Then, for any � = 0, . . . , q, we have

‖∂�(u − Qq,k
p u)‖ ≤ cp−q,k−q,q−�cp−q,k−q,r−qh

r−�‖∂r u‖,

for all p ≥ max{r − 1, 2q − � − 1}.
Remark 2 In the case of maximal smoothness, k = p − 1, the estimate in the above
theorem becomes

‖∂�(u − Qq,p−1
p u)‖ ≤

(
h

π

)r−�

‖∂r u‖. (18)

If, on the other hand, k ≤ p − 2, we can use the simplified estimates in Remark 1 to
obtain

‖∂�(u − Qq,k
p u)‖ ≤

(
e h

4(p − k)

)r−�

‖∂r u‖.

Remark 3 The error bound inTheorem3 relies on the constant cp,k,r used inTheorem2
for the L2-projector. It is clear from the general result in Theorem 1 and [17, Remark 1]
that the same procedure can be followed to convert any constant derived for the L2-
projector into a constant for the projector Qq,k

p . For example, the constant Ch,p,k,r for
the L2-projector in [17, Corollary 1] immediately leads to an alternative error bound
for Qq,k

p : under the assumptions of Theorem 3, we have

‖∂�(u − Qq,k
p u)‖ ≤ Ch,p−q,k−q,q−�Ch,p−q,k−q,r−q‖∂r u‖.

Example 5 Let q = 2 and [a, b] = [0, 1]. We choose u(x) = sin(4x). Figure 1 shows
the convergence behavior of ‖∂�(u − Q2,p−1

p u)‖ for p = 2, 3, 4 and � = 0, 1. We
observe the optimal convergence order in h (namely p + 1 − �) when p ≥ 3 − �,
which agrees with the theoretical prediction in Theorem 3 (r = p + 1). Contrarily,
the case p = 2 and � = 0 presents a suboptimal convergence order in h of 2 (instead
of 3), but this case is not covered by Theorem 3.

Example 6 If we choose q = k + 1 in Theorem 3, and consider all � = 0, . . . , k + 1,
then the condition on the degree becomes p ≥ max{r − 1, 2k + 1}. This is the same
condition on the degree as in [4, Theorem 2] and so their theorem is very similar to
the special case q = k + 1 of Theorem 3. This is not surprising since the projector
considered in [4] is defined by using the polynomial projector Qk+1

p : Hk+1(I j ) → Pp

on each knot interval I j , j = 0, . . . , N , and then gluing them togetherwith smoothness
k by means of the boundary interpolation of Qk+1

p .
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Fig. 1 The convergence of the error ‖∂�(u − Q2,p−1
p u)‖ for the problem specified in Example 5, taking

a uniform knot sequence with h = 2−i , i = 1, . . . , 5, and the different choices p = 2, 3, 4 and � = 0, 1.
The reference convergence order in h is indicated by black triangles

Remark 4 Similar to what was done in [15, Section 3] for the Laplacian, the error
estimate in (18) can be used to predict the number of outlier modes [8, 12] in the
numerical approximation of eigenvalues of higher order Laplacians with (full) Dirich-
let boundary conditions, when using smooth spline spaces. As an example, consider
the following eigenvalue problem: find ui ∈ H2(0, 1) and λi ∈ R, for i = 1, 2, . . .,
such that

u(4)
i (x) = λi ui (x),

ui (0) = ui (1) = u′
i (0) = u′

i (1) = 0.

If we define the spline space Sp,�,00 := {s ∈ S p−1
p,� : s(0) = s(1) = s′(0) = s′(1) =

0} and let n := dim Sp,�,00, then the above eigenvalue problem can be numerically
approximated with the discrete weak formulation: find uh,i ∈ Sp,�,00 and λh,i ∈ R,
for i = 1, . . . , n, such that

(∂2uh,i , ∂
2vh) = λh,i (uh,i , vh), ∀vh ∈ Sp,�,00. (19)

The explicit error estimate in (18) can now be used to estimate the number of outlier
modes, i.e., the number of eigenvalues which are badly approximated by (19). Using
the same strategy as in [15, Section 3], we find that for fixed h, the discrete eigenvalue
λh,i is not an outlier if hλ

1/4
i < π . The main difference compared to the simpler case

of the Laplacian in [15, Section 3] is that λi must now also be estimated; however,
this can be done either analytically or numerically. Analytically, it is known that λi is
very close to ((2i + 1)π/2)4 for i = 1, 2, . . .; see, e.g., [9, Section 5.5]. Finally, we
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note that, using the techniques in [15], this outlier discussion can also be extended to
the higher dimensional tensor-product case.

5.2 Estimates for higher derivatives

The � in Theorem 3 only goes up to q, while the function u is assumed to be in
Hr (a, b) for r ≥ q. If r > q then we can use an argument from [18, Section 4] to
obtain error estimates in the cases q < � ≤ r . This argument provides an optimal
rate of convergence in the maximum knot distance h, whenever the knot sequence is
quasi-uniform, but convergence in the degree p appears less than optimal. For any
knot sequence �, let hmin denote its minimum knot distance. Since ∂�Qq,k

p u is not in
L2(a, b) for � > k + 1 we define the broken norm ‖ · ‖� by

‖ · ‖2� :=
N∑
j=0

‖ · ‖2L2(I j )
.

Proposition 5 Let u ∈ Hr (a, b) be given. For any degree p, knot sequence � and
smoothness −1 ≤ k ≤ p − 1, let Qq,k

p be the projector onto Sk
p,� defined in (17) for

q = 0, . . . ,min{k + 1, r − 1}. Moreover, we set m := max{2r − q − 1, p}. Then, for
any � = q + 1, . . . , r , we have

‖∂�(u − Qq,k
p u)‖�

≤
[
cm−r ,−1,r−� + (cm−r ,−1,r−q + cp−q,k−q,r−q )

(
h

hmin

)�−q ( m−q∏
i=m−�+1

di

)]
hr−�‖∂r u‖,

for all p ≥ r − 1.

Proof First, from Theorem 3 we deduce

‖∂q(Qr ,r−1
m u − Qq,k

p u)‖ ≤ ‖∂q(Qr ,r−1
m u − u)‖ + ‖∂q(u − Qq,k

p u)‖
≤ (cm−r ,−1,r−q + cp−q,k−q,r−q)h

r−q‖∂r u‖,

for p ≥ max{r − 1, q − 1} = r − 1 and m ≥ max{r − 1, 2r − q − 1} = 2r − q − 1.
Next, using the inverse inequality in Lemma 4 on each knot interval, we obtain

‖∂�(Qr ,r−1
m u − Qq,k

p u)‖� ≤
(

1

hmin

)�−q
( m−q∏
i=m−�+1

di

)
‖∂q(Qr ,r−1

m u − Qq,k
p u)‖.

The result now follows from

‖∂�(u − Qq,k
p u)‖� ≤ ‖∂�(u − Qr ,r−1

m u)‖ + ‖∂�(Qr ,r−1
m u − Qq,k

p u)‖�,

together with another application of Theorem 3. 
�
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We remark that the case q = 0 and � = 1 of the above proposition is a stan-
dard argument for showing error estimates (and stability) of the L2-projection in the
H1-(semi)norm for quasi-uniform grids; see, e.g., the proof of [3, Lemma 1] or [5,
Corollary 7.8].

5.3 Comparison with other projectors

Explicit error estimates for certain spline projectors with boundary interpolation have
also been considered in [18]. We denote the sequence of projection operators onto
Sk
p,� studied in [18, Theorem 3.5] by I q,k

p for q = 1, . . . , k + 1 and p = 2q − 1.
Then, for any � = 0, . . . , q and r = 2q, it has been proved that

‖∂�(u − I q,k
p u)‖ ≤ Kq,q,k,�Kq,q,k,0h

r−�‖∂r u‖,

where

Kq,q,k,� :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, � = q,

(k + 2 − q)!
(k + � + 2 − 2q)! πq−�

, 2q − k − 2 < � < q,

(k + 2 − q)!
πq−�

, � ≤ 2q − k − 2.

Numerical experiments reveal that the constants in Theorem 3 are never larger (and
often much smaller) for the same values of q, p, k, �, r ; see Example 7 for a visual
illustration. Better constants for the projector I q,k

p can be found in [1], but they are
not explicit in most cases. We note that the latter constants are explicit for maximal

smoothness k = p−1 but these are still worse than
( 1

π

)r−�
, the corresponding values

attained in Theorem 3.

Example 7 In the case � = 0, the constant in the error estimate of [18] is (Kq,q,k,0)
2,

while the oneofTheorem3 is (cq−1,k−q,q)
2 taking into account r = 2q and p = 2q−1.

To understand how these two expressions relate, we look at the quantity

log(Kq,q,k,0) − log(cq−1,k−q,q). (20)

Several values are depicted in Figure 2. They are clearly nonnegative, implying that
Kq,q,k,0 ≥ cq−1,k−q,q .

Let us now define the Ritz projector Rq,k
p : Hq(a, b) → Sk

p,�, for any q =
0, . . . , k + 1, by

(∂q Rq,k
p u, ∂qv) = (∂qu, ∂qv), ∀v ∈ Sk

p,�,

(Rq,k
p u, g) = (u, g), ∀g ∈ Pq−1.

(21)
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Fig. 2 The quantity in (20) for different choices of q ≥ 1 and q − 1 ≤ k ≤ 2q − 2

This projector is a special case of (12). From Proposition 3 we know that Rq,k
p = Qq,k

p

whenever p ≥ 3q − 1. For degrees 2q − 1 ≤ p < 3q − 1 the projectors Rq,k
p and

Qq,k
p are in general different, however, we can use Proposition 4 (see (15) and (16))

to achieve an estimate for derivatives of the difference between them.

Proposition 6 Let u ∈ Hr (a, b) be given. For any degree p, knot sequence � and
smoothness −1 ≤ k ≤ p − 1, let Qq,k

p and Rq,k
p be the projectors onto Sk

p,� defined,
respectively, in (17) and (21) for q = 0, . . . ,min{k + 1, r}. Then, we have

‖Rq,k
p u − Qq,k

p u‖ ≤ cp−q,k−q,qcp−q,k−q,r−qh
r‖∂r u‖,

for all p ≥ max{r − 1, 2q − 1}. Furthermore, for � = 1, . . . , q − 1, we have

‖∂�(Rq,k
p u − Qq,k

p u)‖ ≤ cp−q,k−q,qcp−q,k−q,r−qh
r
(

1

b − a

)�
⎛
⎝

q−1∏
i=q−�

di

⎞
⎠ ‖∂r u‖,

(22)

for all p ≥ max{r − 1, 2q − 1}. Finally, for � ≥ q, we have

‖∂�(Rq,k
p u − Qq,k

p u)‖ = 0.

We see that the estimate in (22) converges in h with order r , independently of �.
This is more than the general convergence order r − � of the spline space for � > 0;
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Fig. 3 The convergence of the error ‖∂�(R2,p−1
p u − Q2,p−1

p u)‖ for the problem specified in Example 8,

taking a uniform knot sequence with h = 2−i , i = 1, . . . , 5, and the different choices p = 2, 3, 4 and
� = 0, 1. The reference convergence order in h is indicated by black triangles

see Theorem 3. Actually, Example 8 indicates that there is even a higher order of
convergence for high p than predicted by the proposition.

Example 8 Let q = 2 and [a, b] = [0, 1]. We choose again u(x) = sin(4x) as a
continuationofExample 5. Figure 3 shows the convergence behavior of‖∂�(R2,p−1

p u−
Q2,p−1

p u)‖ for p = 2, 3, 4 and � = 0, 1. As expected from Proposition 6, we notice
that the convergence order in h does not depend on � for a given p. However, the order
seems to be equal to 2(p − q + 1), which is better for p > 2q − 1 than the predicted
order r = p + 1.

6 Conclusions

In an abstract framework, Ritz-type projectors with boundary interpolation properties
have been presented and equipped with a priori error estimates. Their relation with
the classical Ritz projectors has also been investigated.

In the important case of projectors onto spline spaces, the provided error bounds
are fully explicit in all the parameters defining the approximation space — degree,
smoothness, knot spacing — and in the Sobolev regularity of the approximated func-
tion. They agreewith those derived in [17] for the classical Ritz projectors and improve
upon the error estimates known for typical spline projectors withHermite interpolation
properties at the boundary [1, 18]. In this perspective, the presented results enhance
and complement those recently obtained for the classical Ritz projectors in [17] by
enriching explicit spline error estimates with matching of the boundary data.
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For the sake of brevity, the presentation has been confined to the onedimensional
case. The multivariate extension of the proposed projectors (and of the corresponding
error estimates) towards tensor-product structures is straightforward by following the
same line of arguments already detailed in [17].

The Hermite interpolation properties at the boundary make the presented projectors
of interest in several applications as they directly allow for a local construction of
globally smooth approximants by simply gluing local ones. Among the others, we
mention their possible use in the context of isogeometric analysis for investigating
the approximation properties in the frame of multi-degree spline spaces [19, 23] and
smooth spline spaces on multi-patch geometries [7, 17, 24].

Moreover, as mentioned in Remark 4, for smooth spline spaces the Ritz-type pro-
jector with boundary interpolation and its corresponding error estimates can be used
to predict the number of outlier modes in the numerical approximation of eigenvalues
of higher order Laplacians with (full) Dirichlet boundary conditions.

Finally, we remark that both (6) and (12) are global projectors. As future line of
research, it might be interesting to quantify the difference between them and local
projectors such as Bézier projection [22] and the classical ones in [13, 14].
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