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Abstract

In this thesis we propose and analyze algorithms for some numerical linear algebra tasks:
finding low-rank approximations of matrices, computing matrix functions, and estimating
the trace of matrices.

In the first part, we consider algorithms for building low-rank approximations of a
matrix from some rows or columns of the matrix itself. We prove a priori error bounds
for a greedy algorithm for cross approximation and we develop a faster and more efficient
variant of an existing algorithm for column subset selection. Moreover, we present a
new deterministic polynomial-time algorithm that gives a cross approximation which is
quasi-optimal in the Frobenius norm.

The second part of the thesis is concerned with matrix functions. We develop a divide-
and-conquer algorithm for computing functions of matrices that are banded, hierarchically
semiseparable, or have some other off-diagonal low-rank structure. An important building
block of our approach is an existing algorithm for updating the function of a matrix that
undergoes a low-rank modification (update), for which we present new convergence results.
The convergence analysis of our divide-and-conquer algorithm is related to polynomial or
rational approximation of the function.

In the third part we consider the problem of approximating the trace of a ma-
trix which is available indirectly, through matrix-vector multiplications. We analyze a
stochastic algorithm, the Hutchinson trace estimator, for which we prove tail bounds for
symmetric (indefinite) matrices. Then we apply our results to the computation of the
(log)determinants of symmetric positive definite matrices.

Keywords. Low-rank approximation, column subset selection, low-rank updates,
Krylov subspace methods, matrix functions, banded matrices, hierarchically semiseparable
matrices, trace estimation, determinant.
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Résumé

Dans cette thèse, nous proposons et analysons des algorithmes pour les problèmes d’algèbre
linéaire numérique suivants : trouver des approximations de rang faible de matrices, calculer
des fonctions matricielles et estimer la trace de matrices.

Dans la première partie, nous considérons des algorithmes pour construire des ap-
proximations de rang faible d’une matrice à partir de certaines lignes ou colonnes de
cette matrice. Nous prouvons des bornes de l’erreur a priori d’un algorithme greedy pour
la cross approximation, et nous développons une variante plus rapide et plus efficace
d’un algorithme existant pour la sélection de sous-ensembles de colonnes. De plus, nous
présentons un nouvel algorithme déterministe qui donne en temps polynomial une cross
approximation quasi-optimale dans la norme de Frobenius.

La deuxième partie de la thèse concerne les fonctions matricielles. Nous développons
un algorithme “diviser pour mieux régner” pour calculer les fonctions de matrices à bandes,
hiérarchiquement semi-séparables ou qui ont une autre structure de rang faible hors
diagonale. Notre approche est basée sur un algorithme existant mettant à jour la fonction
d’une matrice qui subit une modification de rang faible, pour lequel nous présentons de
nouveaux résultats de convergence. L’analyse de convergence de notre algorithme “diviser
pour mieux régner” est liée à une approximation polynomiale ou rationnelle de la fonction.

Dans la troisième partie nous considérons le problème de l’approximation de la trace
des matrices dont on ne connaît que leur action sur la multiplication avec un vecteur.
Nous analysons un algorithme randomisé, l’estimateur de trace de Hutchinson, et nous
prouvons des résultats de convergence pour les matrices symétriques (indéfinies). Ensuite,
nous appliquons nos résultats au calcul du (logarithme du) déterminant de matrices
symétriques définies positives.
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Mots cléfs. Approximation de rang faible, sélection de sous-ensembles de colonnes,
mises à jour de rang faible, méthodes de sous-espace de Krylov, fonctions matricielles,
matrices à bandes, matrices hiérarchiquement semi-séparables, estimation de trace, déter-
minant.
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Sommario

In questa tesi proponiamo e analizziamo algoritmi per alcuni problemi di algebra lineare
numerica: trovare approssimazioni di rango basso di matrici, calcolare funzioni di matrici,
e stimare la traccia di funzioni di matrici.

Nella prima parte, consideriamo algoritmi per costruire un’approssimazione di rango
basso di una matrice a partire da alcune righe o colonne della matrice stessa. Dimostriamo
dei risultati a priori sull’errore di un algoritmo greedy per la cross approximation e svilup-
piamo una variante più veloce ed efficiente di un algoritmo già esistente per la selezione di
un sottoinsieme di colonne. Inoltre presentiamo un nuovo algoritmo deterministico che dà,
in tempo polinomiale, una cross approximation quasi ottimale nella norma di Frobenius.

La seconda parte della tesi è dedicata alle funzioni di matrici. Sviluppiamo un
algoritmo divide-et-impera per calcolare funzioni di matrici a banda, gerarchiche, o
che abbiano in generale una struttura con dei blocchi di rango basso. Un ingrediente
importante per il nostro approccio è un algoritmo esistente per aggiornare la funzione
di una matrice che subisce una modifica di rango basso, per il quale presentiamo nuovi
risultati di convergenza. L’analisi della convergenza del nostro algoritmo divide-et-impera
è legata all’approssimazione della funzione tramite polinomi o funzioni razionali.

Nella terza parte consideriamo il problema dell’approssimazione della traccia di matrici
che sono disponibili solo tramite moltiplicazioni con un vettore. Analizziamo un algoritmo
randomizzato, lo stimatore di Hutchinson, per il quale dimostriamo risultati di convergenza
per matrici simmetriche, non necessariamente definite. In seguito applichiamo i nostri
risultati al calcolo del (logaritmo del) determinante di matrici simmetriche definite positive.

Parole Chiave. Approssimazione di rango basso, selezione di un sottoinsieme di
colonne, aggiornamenti di rango basso, metodi di Krylov, funzioni di matrici, matrici a
banda, matrici gerarchiche, stima della traccia, determinante.
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Notation

• R denotes the set of real numbers;

• C denotes the set of complex numbers;

• In denotes the identity matrix of size n× n;

• “log” denotes the natural logarithm.

For a matrix A ∈ Rn×n:

• The entry in row i and column j is denoted by aij or A(i, j);

• ‖A‖2 is the spectral norm of the matrix A;

• ‖A‖F is the Frobenius norm of the matrix A;

• ‖A‖max := maxi,j=1,...,n |aij | is the Chebyshev norm of A;

• ‖A‖∗ is the nuclear norm of the matrix A;

• σ1(A) ≥ σ2(A) ≥ . . . ≥ σn(A) ≥ 0 are the singular values of A; when there is no
confusion, they may be denoted by σ1, . . . , σn;

• δk+1(A) denotes the error of a best rank-k approximation of A in the Chebyshev
norm;

• W (A) := {z∗Az | z ∈ Cn, ‖z‖2 = 1} is the numerical range of A;

• κ(A) := ‖A‖2·‖A−1‖2 is the condition number of A;

• A† denotes the Moore-Penrose pseudoinverse of A.
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Abbreviations:

• ACA = Adaptive Cross Approximation;

• DD = diagonally dominant;

• D&C = divide-and-conquer;

• HSS = hierarchically semiseparable;

• SPD = symmetric positive definite;

• SPSD = symmetric positive semidefinite.
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1 Introduction

This thesis is concerned with three topics in numerical linear algebra: the low-rank
approximation of matrices, the computation of matrix functions, and stochastic trace
estimation. This chapter is a brief introduction to these problems.

Finding a low-rank approximation of a matrix A ∈ Rm×n means finding rectangular
factors B ∈ Rm×k and C ∈ Rn×k such that A is approximately equal to BCT , for some
target rank k � min{n,m}. Almost all matrices have full rank [184], but in many
applications there are matrices that have a low numerical rank, that is, they can be well
approximated by a low-rank matrix. For example, matrices with low numerical rank arise
in the discretization of PDEs [14], in statistical machine learning [80], in social network
analysis [139], and in text document analysis [156]. Having a low-rank representation of a
matrix A ∈ Rm×n yields advantages in terms of storage and computational efficiency. For
example, multiplying a dense matrix A by a vector v ∈ Rn costs O(mn) operations; if a
rank-k factorization A = BCT is known, the cost of a matrix-vector multiplication reduces
to O ((n+m)k). In some applications, it is useful to consider low-rank approximations
in which the factors B and C are made of, or constructed from, rows and columns of A,
as this provides enhanced interpretability.

In the first part of this thesis, we consider three different types of low-rank approxi-
mations: cross approximation, which interpolates A in k rows and k columns [88]; column
subset selection, which aims at selecting k columns that well approximate the range of
A [58]; and CUR approximation, which uses k rows and columns and then minimizes
the low-rank approximation error [63]. We prove a priori error bounds for an existing
algorithm [13] for cross approximation. For column subset selection, we improve an
existing algorithm [57] that is guaranteed to achieve a quasi-optimal low-rank approxima-
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Chapter 1. Introduction

tion in the Frobenius norm, and extend the technique to CUR and cross approximation.
Although we mostly deal with matrices, we include the analysis of the cross approximation
algorithm from [13] applied to bivariate functions [168] and an extension of the column
subset selection algorithm from [57] to low-rank approximation of (low-order) tensors.

The second part of the thesis deals with the computation of functions of a matrix
A ∈ Rn×n. Examples of matrix functions include the inverse of A, the square root
of a symmetric positive semidefinite (SPSD) A, and the matrix exponential. More
generally, one can define a matrix function f(A) whenever the function f is analytic on
the spectrum of A [110]. Applications include PDEs [65, 128], social network analysis [70],
and electronic structure calculations [19, 84]. Here we consider matrices which have a
specific low-rank structure, that is, they have off-diagonal blocks with low rank. Examples
include banded matrices and hierarchically semiseparable (HSS) matrices [100]. It is well
known that, in many cases, functions of such matrices retain some (approximate) low-rank
structure [23, 24, 55, 158], allowing for a memory-efficient representation of f(A). In this
thesis we exploit this fact, combined with the observation that if A undergoes a low-rank
modification R ∈ Rn×n then f(A+R)− f(A) is often numerically low-rank [18, 17], to
develop a fast divide-and-conquer (D&C) algorithm to compute matrix functions.

In some applications, only specific quantities associated to a matrix function are
required. For example, the logarithm of the determinant of a symmetric positive definite
(SPD) matrix can be expressed as the trace of the matrix logarithm of A. For a general
dense matrix A, computing f(A) is infeasible in a large-scale setting and cheaper methods
are needed to approximate its trace. A stochastic algorithm, the Hutchinson trace
estimator [114], provides a way of approximating the trace of a symmetric matrix B ∈
Rn×n using a few quadratic forms involving suitable random vectors. In the setting in
which B = f(A) is a matrix function, quadratic forms with f(A) can be computed –
approximately – via quadrature [85] much more cheaply than the computation of the
whole f(A). In the third part of this thesis we analyze the convergence properties of the
Hutchinson trace estimator when it is used on a symmetric but indefinite matrix B and
we apply the results to the approximation of the determinant of SPD matrices.

Organization of the thesis. The thesis is divided into three parts corresponding to the
three topics mentioned above. Each part contains a more detailed introductory chapter.
Our contributions are presented in Chapters 3, 4, 6, 7, and 9, which are based on the
papers [47, 45, 17, 48, 46]. Chapter 10 serves as the conclusion of the whole manuscript.

2
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2 Introduction to low-rank approxima-
tion

The first part of this thesis is concerned with low-rank approximation. For a matrix
A ∈ Rm×n, we fix a rank k ∈ {1, 2, . . . ,min{m,n}} and consider the problem of finding a
matrix B ∈ Rm×n of rank at most k such that A−B is “small”. We assume without loss
of generality that m ≤ n. We recall that the singular value decomposition (SVD) of A
always exists (see, e.g., [112, Theorem 2.6.3]) and is defined as follows.

Definition 2.1. An (economy-sized) SVD of A is a factorization of the form

A = UΣV T ,

where U ∈ Rm×m and V ∈ Rn×m are matrices with orthonormal columns and Σ =

diag(σ1, . . . , σm) is the m×m diagonal matrix containing the singular values σ1 ≥ . . . ≥
σm ≥ 0.

The problem of minimizing ‖A−B‖ for a unitarily invariant norm (such as the spectral
norm ‖ · ‖2 or the Frobenius norm ‖ · ‖F ) has an elegant and well-known solution given
by the Eckart-Young-Mirsky theorem.

Theorem 2.2 (Eckart-Young-Mirsky (see, e.g., [112])). For every unitarily invariant
norm ‖ · ‖ it holds that

min
B∈Rm×n
rank(B)≤k

‖A−B‖ = ‖A− UkΣkV
T
k ‖, (2.1)

where Uk and Vk denote the matrices formed by the first k columns of U and V , respectively,

5



Chapter 2. Introduction to low-rank approximation

and Σk denotes the leading k × k submatrix of Σ. For the spectral norm the right hand
side of (2.1) equals σk+1 and for the Frobenius norm it equals

√
σ2
k+1 + σ2

k+2 + . . .+ σ2
m.

In this thesis we also consider the Chebyshev norm, which is denoted by ‖ · ‖max and
is defined as the maximum absolute value of an entry of the matrix. We let

δk+1(A) := min
B∈Rm×n
rank(B)≤k

‖A−B‖max, k = 1, . . . ,m− 1 (2.2)

be the error of a best rank-k approximation in the Chebyshev norm. Because of ‖A−
B‖2/

√
nm ≤ ‖A − B‖max ≤ ‖A − B‖2, we have σk(A)/

√
nm ≤ δk(A) ≤ σk(A). There

is no explicit characterization of δk(A) in terms of the singular values of A. Iterative
methods have been developed to find (approximately) the best low-rank approximation
in the Chebyshev norm [143].

While the truncated SVD (2.1) gives the best possible low-rank approximation for
the spectral and Frobenius norms, other low-rank approximation strategies have been
developed. First of all, it can be beneficial to construct low-rank approximations using
rows and/or columns of the original matrix, as this allows for enhanced interpretability and
structure preservation. Examples include unsupervised feature selection [34, 138], sensor
selection [116], and data mining [72]. We pursue this direction and in Chapters 3 and 4
we focus our work on cross approximation [13, 88, 168] (see Section 2.1), column subset
selection [58] (see Section 2.2), and CUR approximation [63, 166, 172] (see Section 2.3).

A second disadvantage of the truncated SVD is that it costs O(nm2) flops (floating
point operations) for dense matrices: Faster methods are desirable for large-scale matrices.
An algorithm for cross approximation that runs faster than the SVD is a greedy algorithm
called Adaptive Cross Approximation (ACA) [13], which we will analyze in Chapter 3.
For column subset selection, greedy and randomized strategies have been developed; see,
e.g., [35, 63, 64, 78, 147, 192]. Another (cheap) way to obtain a low-rank approximation
of a matrix is via a randomized SVD (see, e.g., [101]).

In the rest of this chapter, we introduce cross approximations, the column subset
selection problem, and CUR approximations. We review some results which prescribe
ways to choose rows and columns such that a good approximation is obtained, and briefly
review existing algorithms. Finally, in Section 2.4 we briefly discuss the generalization of
these algorithms to the low-rank approximation of tensors.
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2.1. Cross approximation

2.1 Cross approximation

Cross approximation is a type of low-rank approximation that is often used for matrices A
that cannot be stored in memory, because, for example, A has too many nonzero entries
or it is too expensive to compute all the entries of A. This situation occurs frequently
for discretized integral operators and cross approximation plays an important role in
accelerating computations within the boundary element method [13] and uncertainty
quantification [106].

To formally define a cross approximation, we denote by I ∈ {1, . . . ,m}k and J ∈
{1, . . . , n}k some ordered sets (tuples) corresponding to row and column index sets of
cardinality k. We denote by A(I, :) and A(:, J) the corresponding rows and columns of A,
and by A(I, J) the k × k matrix at the intersection of rows I and columns J .

Definition 2.3. If A(I, J) is invertible then the rank-k matrix

AIJ := A(:, J)A(I, J)−1A(I, :) (2.3)

is called a cross approximation.

In the literature, cross approximations are also called skeleton decompositions [89]
and CUR decompositions1 [133, Section 13.1]. Low-rank approximations of the form (2.3)
also feature prominently in the Nyström method for kernel-based learning [9, 83] and
spectral clustering [77]; in these cases, the involved matrices are SPSD.

2.1.1 Existence results for cross approximation

When A has rank exactly k, a cross approximation of the form (2.3) is equal to A;
otherwise, AIJ interpolates A exactly in the rows and columns corresponding to I and J ,
but the error

EIJ := A−A(:, J)A(I, J)−1A(I, :)

crucially depends on the choice of the index sets. In this section we review some existing
results on the existence of good index sets for cross approximation and we summarize the
existing polynomial-time algorithms that ensure a quasi-optimal output in Section 2.1.2.

1Note that our definition of CUR approximation in (2.11) is different from the CUR decomposition
in [133, Section 13.1]. We use the definition of CUR approximation from [166, 172].
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Chapter 2. Introduction to low-rank approximation

It is useful to introduce the notion of volume of a matrix.

Definition 2.4. The volume of an m× n matrix A is the product of its singular values.

Equivalently, Vol (A) =
√

det(ATA) (when m ≤ n). Note that the volume of a square
matrix is the absolute value of its determinant. We denote by maxVolk(A) the volume of
a k × k maximum volume submatrix of A.

Definition 2.5. Given γ ≥ 1, a k × k submatrix A(I, J) of A has local γ-maximum
volume in A if, for every pair of index sets (Ĩ , J̃) of cardinality k such that Ĩ differs
from I by at most one index and J̃ differs from J by at most one index, we have
Vol (A(I, J)) ≥ 1

γ Vol (A(Ĩ , J̃)). A(I, J) has local maximum volume if γ = 1. We
define local γ-maximum volume rectangular submatrices A(:, J) analogously (see also [153,
Definition 3.2]).

We will say local quasi-maximum volume submatrices when γ is “sufficiently small”
but not specified (e.g. γ = 1.2). A local maximum volume submatrix of A can be very
far from being a maximum volume submatrix. For example, in the m× 2m matrix

A =


1 −1 −1 · · · −1

1 1 −1 · · · −1

. . .
. . .

. . .
...

1 1 −1


the first m columns form a local maximum volume submatrix which has volume 1, while
the last m columns form a submatrix with volume 2m−1.

The following theorem shows that local quasi-maximum volume submatrices provide
a good choice for index sets (I, J) for cross approximation.

Theorem 2.6 ([88, Theorem 2.2] and [91, Theorem 1]). Let I and J be index sets of
cardinality k such that A(I, J) is a local γ-maximum volume submatrix of A. Then

‖EIJ‖max ≤ γ(k + 1)σk+1(A) and ‖EIJ‖max ≤ γ(k + 1)2δk+1(A). (2.4)

Note that the assumption of Theorem 2.6 is weaker than the assumptions of [88, 91];
however, the proofs from these papers still work with the weaker assumption. For the sake
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2.1. Cross approximation

of completeness, we present the proof of Theorem 2.6, following [88, 91] and emphasizing
the fact that the locality of the quasi-maximum volume constraints is the only assumption
we need.

Proof. We prove that the absolute value of each entry of the error matrix EIJ is bounded
by γ(k + 1)σk+1(A) and by γ(k + 1)2δk+1(A). The only entries of EIJ that can be
nonzero are of the form EIJ(i, j) with i /∈ I and j /∈ J ; these are the entries of the
Schur complement of A(I, J) in A. For one of these, let us consider the (k + 1)× (k + 1)

submatrix of A given by

Â :=

[
A(I, J) A(I, j)

A(i, J) A(i, j)

]
.

The cross approximation error in Â associated to the leading k × k principal submatrix
A(I, J) is the Schur complement |EIJ(i, j)| = |A(i, j)−A(i, J)A(I, J)−1A(I, j)|. By [112,
Equation (0.8.5.1)], we have that |detA(I, J)| · |EIJ(i, j)| = | det Â|. If Â is singular,
then |EIJ(i, j)| = 0; therefore, in the following we consider the case in which Â is
invertible. Note that by the adjugate formula for the inverse of a matrix we also have
‖Â−1‖max = maxVolk(Â)/| det Â|. Therefore,

|EIJ(i, j)| = |det Â|
| detA(I, J)|

≤ γ|det Â|
maxVolk(Â)

=
γ

‖Â−1‖max

≤ γ(k + 1)

‖Â−1‖2
= γ(k + 1)σk+1(Â),

(2.5)

where we used that ‖Â−1‖2 ≤ ‖Â−1‖F ≤ (k + 1)‖Â−1‖max and that | detA(I, J)| ≥
1
γ maxVolk(Â) thanks to the local γ-maximum volume assumption, because Â is of size
(k+ 1)× (k+ 1). By the interlacing properties of singular values (see, e.g., [112, Corollary
7.3.6]) we have σk+1(Â) ≤ σk+1(A). Therefore, for every choice of i /∈ I and j /∈ J we
have

|EIJ(i, j)| ≤ γ(k + 1)σk+1(Â) ≤ γ(k + 1)σk+1(A),

which implies the first part of (2.4). Moreover, σk+1(Â) ≤ (k+1)δk+1(Â) ≤ (k+1)δk+1(A),
with the last inequality being a direct consequence of the definition of δk. This implies,
together with (2.5), the second part of (2.4).

Results for cross approximation in the spectral norm exist in the literature of the
closely related topic of rank-revealing factorizations. More specifically, for an n×n matrix

9



Chapter 2. Introduction to low-rank approximation

A, for γ ≥ 1, there exist index sets I and J of cardinality k such that

‖EIJ‖2 ≤
(

1 + γ2k
√

(n− k)(m− k)
)
σk+1. (2.6)

In [153, Theorem 3.8] this is achieved by choosing A(:, J) to be a rectangular γ-maximum
volume submatrix of A and by taking A(I, J) to be a local γ-maximum volume submatrix
of A(:, J). For an SPSD matrix with a Cholesky decomposition A = LLT , the relation (2.6)
holds when I = J and L(:, I) is a local γ-maximum volume submatrix of L [97].

In the case of the Frobenius norm, for which the best rank-k approximation error is√
σ2
k+1 + . . .+ σ2

m, Zamarashkin and Osinsky [196] proved the existence of index sets I
and J of cardinality k such that

‖EIJ‖F ≤ (k + 1)
√
σ2
k+1 + . . .+ σ2

m. (2.7)

Their proof follows a probabilistic argument; we will discuss this result and the techniques
used in the proof in detail in Chapter 4. Using a similar argument, a result for SPSD
matrices for the nuclear norm – which we denote by ‖·‖∗ – was obtained in [134] and states
that there exists an index set I of cardinality k such that ‖EII‖∗ ≤ (k+1)(σk+1 + . . .+σn).

The results mentioned in this section are summarized in Table 2.1. The fourth result
in the table actually implies a better existence result for the spectral norm, that is, there
exist index sets I and J such that

‖EIJ‖2 ≤ ‖EIJ‖F ≤ (k + 1)
√
σ2
k+1 + . . .+ σ2

m ≤ (k + 1)
√
m− k · σk+1.

We included the second and third rows of the table because of their connection to
quasi-maximum volume submatrices.

There are also results for cross approximation when more than k rows and columns
are chosen (see, e.g., [151]), but we do not consider them in this thesis.

2.1.2 Algorithms for cross approximation

Finding a submatrix of maximum volume of A (which would give a good choice of index
sets by Theorem 2.6) is an NP-hard problem [154]. Fortunately, finding index sets for
a good cross approximation is easier. A common algorithm for cross approximation is
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2.1. Cross approximation

Existence result Assumptions Reference

‖EIJ‖max ≤ γ(k + 1)σk+1 A ∈ Rm×n, A(I, J) local [88, Theorem 2.2]

‖EIJ‖max ≤ γ(k + 1)2δk+1 γ-maximum volume in A [91, Theorem 1]

‖EIJ‖2 ≤ (
√

1 + γ2k(n− k) A ∈ Rm×n, A(:, J) local [153, Theorem 3.8]

·
√

1 + γ2k(m− k))σk+1 γ-maximum volume

in A and A(I, J) local

γ-maximum volume in

A(:, J)

‖EII‖2 ≤ (1 + γ2k(n− k))σk+1 A = LLT ∈ Rn×n SPD, [97, page 82]

L(:, I) local γ-maximum

volume in L

‖EIJ‖F ≤ (k + 1)
√
σ2
k+1 + . . .+ σ2

m A ∈ Rm×n, no explicit [196, Theorem 1]

characterization, related

to volume sampling

‖EII‖∗ ≤ (k + 1)(σk+1 + . . .+ σn) A ∈ Rn×n SPSD, no [134, Theorem 1]

explicit characterization,

related to vol. sampling

Table 2.1 – Existence results for cross approximation.

ACA [13], which is a greedy algorithm for volume maximization. We will recall ACA in
Section 3.2. For general matrices its cost is O(nmk); moreover, it has the advantage that
for n× n SPSD or diagonally dominant (DD) matrices the cost is reduced to O(nk2). In
general ACA does not ensure that a local quasi-maximum volume submatrix is returned. A
suitable modification, which will be proposed in Section 3.3, ensures that the relation (2.4)
holds (but makes the algorithm slightly more expensive).

An algorithm for finding k columns of A which form a submatrix of local quasi-
maximum volume is presented in [97] in the context of strong rank-revealing QR factor-
izations. This result can be used to derive algorithms that match the second and third
rows in Table 2.1. More specifically, for an SPSD matrix A with Cholesky decomposition
A = LLT , this algorithm can be used on the factor L to get an index set I satisfying
the third line of Table 2.1. An algorithm that matches the result of the second row of
Table 2.1 is discussed in [153], but there are no complexity bounds in that paper. However,
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Chapter 2. Introduction to low-rank approximation

if one uses the strong rank-revealing QR algorithm from [97] twice – once on A to find J
and once on A(:, J)T to find I – one gets an O

(
nmk logn

log γ

)
algorithm.

A result that matches the fourth row in Table 2.1 will be presented in Chapter 4.
Returning again to SPSD matrices, an O(n3) algorithm that matches the existence result
in the last row of Table 2.1 is proposed in [134, Algorithm 4].

2.2 Column subset selection

The column subset selection problem is a classical problem in numerical linear algebra
which has broad applications in a variety of disciplines, such as scientific computing,
model reduction, and statistical data analysis and is closely connected to rank-revealing
QR factorizations [40, 42, 96]. The aim is to determine an index set I ∈ {1, . . . , n}k of
cardinality k such that the corresponding k columns A(:, I) represent a good approximation
of the range of A.

In this section, we give an overview of some existing results and algorithms for column
subset selection. Let us focus, for now, on the Frobenius norm. The best approximation
error attained by an arbitrary m× k matrix Q is

min
Q∈Rm×k

‖A−QQ†A‖2F = σ2
k+1 + . . .+ σ2

m (2.8)

and a minimizer is Q = Uk from the truncated SVD of A. Here, † denotes the Moore–
Penrose inverse of a matrix and QQ† is the orthogonal projector onto the range of Q. Also
for the column subset selection problem the volume of submatrices plays an important
role. In [58] it is proven that if index sets (tuples) X of cardinality k are sampled in such
a way that P(X = I) is proportional to the squared volume of A(:, I), then

E[‖A−A(:, X)A(:, X)†A‖2F ] ≤ (k + 1)(σ2
k+1 + . . .+ σ2

m). (2.9)

In turn, this implies that there exists a set I of cardinality k such that

‖A−A(:, I)A(:, I)†A‖F ≤
√
k + 1

√
σ2
k+1 + . . .+ σ2

m. (2.10)

We remark that taking I corresponding to the maximum volume submatrix is not always
the best choice, and not always satisfies (2.10) (see Section 4.1). The bound (2.10)
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2.3. CUR approximation

measures how well all the columns of A are approximated by the subset of columns
contained in I. This is remarkable because the bound is larger than the best possible
result (2.8) by a factor that is only linear in k. We will call any quasi-optimal bound
with a factor that is at most polynomial in k (and independent of m, n, and A) a
polynomial bound. We remark that the factor

√
k + 1 in (2.10) cannot be improved [58,

Proposition 3.3]. In [57], a deterministic polynomial-time algorithm has been developed by
derandomizing this approach using the method of conditional expectations. We will recall
such an algorithm in Section 4.1.1. Another line of work that exploits (2.9) investigates
methods to do (approximate) volume sampling, which leads to randomized algorithms;
see, e.g., [20, 56, 57].

Let us briefly consider the column subset selection problem in the spectral norm. The
discrete empirical interpolation method (DEIM) [64] allows us to obtain in time O(nm2)

an index set I such that

‖A−A(:, I)A(:, I)†A‖2 ≤ 2k
√
nk

3
σk+1.

The already mentioned strong rank-revealing QR algorithm from [95] implies the existence
of an index set I of cardinality k such that

‖A−A(:, I)A(:, I)†A‖2 ≤
√

1 + γ2k(n− k)σk+1

for γ ≥ 1, which can be found in time O
(
m2
(
n+ m logm

log γ

))
for γ > 1. It is not possible,

in the case of the spectral norm, to get bounds that do not depend on the size of the
matrix.

We have restricted our discussion to the selection of exactly k columns; let us mention
that several other greedy and randomized algorithms have been proposed and analyzed,
some of which require to select more than k columns; see, e.g., [35, 63, 64, 78, 147, 192]
for a few references representing this research direction.

2.3 CUR approximation

In Section 2.1 we introduced cross approximation as a type of low-rank approximation
built from distinct rows and columns of A, and the k × k matrix A(I, J)−1. CUR
approximations are a more general format in which the middle matrix can be replaced by
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Chapter 2. Introduction to low-rank approximation

any matrix U ∈ Rk×k: they are of the form

A ≈ CUR, C = A(:, J), R = A(I, :), (2.11)

for some row and column index sets I and J of cardinality k. Such decompositions have
been considered initially in [89] (with the name of pseudoskeleton decompositions). Later,
Stewart [175] proved that, given C and R, the choice that minimizes the approximation
error in the Frobenius norm is U = C†AR†. This is, in general, different from the matrix
U = A(I, J)−1 chosen for cross approximation; in turn, the decomposition (2.11) does
not, in general, interpolate the matrix A in the selected rows and columns.

There is a simple and well established strategy to derive a CUR approximation; see,
e.g., [63, 172]. One first applies column subset selection to A and AT in order to determine
C and R, respectively. Using the results on DEIM, in [172] a CUR approximation

is constructed such that ‖A − CUR‖2 ≤ 2k
(√

mk
3 +

√
nk
3

)
σk+1. Analogously, using

the results from [95], in [166] it is proven that one can construct I and J such that
‖A − CUR‖F ≤

√
2 + γ2k(m+ n− 2k)

√
σ2
k+1 + . . .+ σ2

m. Note that the first bound
features an exponential dependence on k and both bounds depend on the dimension of
the matrix.

2.4 Low-rank approximation of tensors

The low-rank approximations discussed before can be extended to tensors. For example,
a strategy similar to the CUR approximation has been used in [62, 90, 166] for low-order
tensors, and cross approximation of tensors has been discussed in [148, 149]. In this thesis
(in Section 4.3) we only focus on the generalization of CUR approximation to tensors,
which is summarized below. We will need some basic definitions regarding tensors; we
refer to [120] for more details.

Definition 2.7. Let A ∈ Rn1×...×nd be a d-th order tensor. Generalizing the notion of
rows and columns of a matrix, the vectors obtained from A by fixing all indices but the µth
one are called µ-mode fibers, where µ ∈ {1, . . . , d}. The matrix A(µ) ∈ Rnµ×(n1···nd)/nµ

containing all µ-mode fibers as columns is called the µ-mode matricization of A. The
µ-mode product of a matrix B ∈ Rm×nµ with A is denoted by A ×µ B and it is the
n1× . . .×nµ−1×m×nµ+1× . . .×nd tensor such that its µ-mode matricization is B ·A(µ).
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Definition 2.8. The Frobenius norm of a tensor is defined as

‖A‖2F :=

n1∑
i1=1

· · ·
nd∑
id=1

A(i1, . . . , id)
2.

Note that ‖A‖F = ‖A(µ)‖F for all µ = 1, . . . , d.

Definition 2.9. The tuple (k1, . . . , kd) defined by kµ = rank(A(µ)) is called the multilinear
rank of A and we can decompose A as

A = C ×1 B1 ×2 . . .×d Bd, (2.12)

for coefficient matrices Bµ ∈ Rnµ×kµ for µ = 1, . . . , d and a so called core tensor
C ∈ Rk1×...×kd . The relation (2.12) is called a Tucker decomposition of A.

The Tucker decomposition is particularly beneficial when the multilinear rank is much
smaller than the size of a tensor. Tucker approximations have been considered that use as
B1, . . . , Bd some subsets of k1, . . . , kd fibers of A; see, e.g., [62, 90, 166]. For a d-th order
tensor of size n×. . .×n and k1 = . . . = kd = k, the bounds from [90, 166] state the existence
of fiber subsets B1, . . . , Bd of cardinality k and a core tensor C := A×1 B

†
1 ×2 . . .×d B†d

such that

‖A − C ×1 B1 ×2 . . .×d Bd‖F ≤
√
d

(
1 +

√
1 + k(nd−1 − k)

)
· ‖A − Abest‖F , (2.13)

where Abest is the best Tucker approximation of A of multilinear rank at most (k1, . . . , kd).
Note that the suboptimality factor in (2.13) depends on the size of the tensor and grows
exponentially with the order d.

2.5 Contributions

In Chapter 3 we focus on cross approximation and the ACA algorithm. First of all,
motivated by Theorem 2.6 and the fact that ACA is much faster for SPSD or DD matrices,
we consider the problem of finding a maximum volume submatrix in these special cases.
We prove that, in both cases, the maximum volume submatrix can be chosen to be
a principal submatrix. Then, we study a priori error bounds for ACA. We provide a
convergence result that holds for any matrix A ∈ Rm×n. Our bound for general matrices
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Chapter 2. Introduction to low-rank approximation

extends an existing result for SPSD matrices and yields new error estimates for DD
matrices. In particular, for doubly DD matrices the error is shown to remain within a
modest factor of the best approximation error. We also illustrate how the application
of our results to cross approximation for functions leads to new and better convergence
results. In the last part of the chapter, we show that, starting from the approximation
given by ACA, an iterative strategy allows us to get a polynomial error bound of the
form (2.4) in polynomial time for general matrices.

Output Complexity Reference

Cross approximation such that O
(
nmk2 log2m

log γ

)
Section 3.3

‖EIJ‖max ≤ γ(k + 1)σk+1

and ‖EIJ‖max ≤ γ(k + 1)2δk+1

Symmetric cross approximation of O
(
nk2 logn

log γ

)
[88, 97]

SPD n× n matrix such that

‖EII‖2 ≤ (1 + γ2k(n− k))σk+1

and ‖EII‖max ≤ γ2(k + 1)σk+1

Cross approximation such that O
(
nmk logn

log γ

)
[97, 153]

‖EIJ‖2 ≤ (
√

1 + γ2k(n− k)

·
√

1 + γ2k(m− k))σk+1

Cross approximation such that O(nm2k) Theorem 4.5

‖EIJ‖F ≤ (k + 1)
√
σ2
k+1 + . . .+ σ2

m

Symmetric cross approximation of O
(
n3
)

[134]

SPD n× n matrix such that

‖EII‖∗ ≤ (k + 1)(σk+1 + . . .+ σn)

Table 2.2 – Algorithms for cross approximation with polynomial approximation errors.

In Chapter 4 we present a faster and more efficient variant of the deterministic column
subset selection algorithm proposed in [57], which achieves the quasi-optimal bound (2.10).
By applying this result to CUR and tensor approximation we improve the results mentioned
in Section 2.3. In particular, our bounds do not depend on the matrix/tensor size and do
not have exponentially large constants. Then, using the technique of derandomization by
conditional expectations as in [57] we construct a polynomial-time deterministic algorithm
for cross approximation which achieves the quasi-optimal error in the Frobenius norm
from [196] (the fourth row in Table 2.1).
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Table 2.2 summarizes the polynomial-time algorithms which ensure a cross approx-
imation with a polynomial error bound that we reviewed in Section 2.1.2 and that we
present in Chapters 3 and 4.

Chapter 3 is based on the paper [47] and Chapter 4 is based on the paper [45].
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3 Maximum volume submatrices and
cross approximation

This chapter contains an analysis of the ACA algorithm for cross approximation (recall
Definition 2.3) and a discussion of maximum volume submatrices of SPSD and DDmatrices,
inspired by Theorem 2.6. More specifically, Chapter 3 is organized as follows. In Section 3.1
we prove that if A is SPSD or DD then there exists a maximum volume submatrix which
is a principal submatrix. In Section 3.2 we recall the greedy ACA algorithm for volume
maximization and we derive a priori error bounds for the approximation returned by
ACA. Although the literature on rank-revealing LU factorizations contains related results,
see in particular [75, Corollary 5.3], the non-asymptotic bound of Theorem 3.6 appears to
be new. Our result includes existing work [74, 106] for SPSD matrices as a special case.
It also allows us to obtain refined bounds for the convergence of cross approximation
applied to functions [13, 180]. Finally, in Section 3.3 we discuss a strategy that allows us
to obtain a cross approximation satisfying a polynomial error bound in the Chebyshev
norm, by suitably modifying the ACA algorithm.

3.1 Maximum volume submatrices

In this section we consider the problem of finding a submatrix of maximum volume of
A. Our primary motivation is Theorem 2.6, but the problem is connected to a range of
other applications in discrete mathematics, engineering, and scientific computing; see,
e.g., [5, 94, 189].

Finding a submatrix of maximum volume of A is an NP-hard problem [38, 154].
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In [59] it is shown that there exists a universal constant c > 1 such that it is NP-hard to
approximate the maximum volume of a k × k submatrix of a matrix A ∈ Rn×k within a
factor ck. By a trivial embedding, this implies that it is also NP-hard to approximate the
maximum volume of a k × k submatrix of an n× n matrix.

In many applications, the matrix A carries additional structure. For example, if A
is the discretization of an integral operator with a positive semidefinite kernel then A is
SPSD. In this section, we recall that the submatrix of maximum volume is always attained
by a principal submatrix, that is, a submatrix of the form A(I, I), if A is SPSD. This
has a number of important consequences. For example, it allows us to draw a one-to-one
correspondence to the problem of finding a column subset of maximum volume considered
in [38]. In turn, the maximum volume problem remains NP-hard when restricted to SPSD
matrices. We provide a new extension of this result to DD matrices.

3.1.1 Symmetric positive semidefinite matrices

For an SPSD matrix, an element of maximum absolute value can always be found on
the diagonal. Using compound matrix theory (see, e.g., [112, Section 0.8.1]), this result
extends to volumes of submatrices.

Theorem 3.1. Let A ∈ Rn×n be SPSD and let 1 ≤ k ≤ n. Then the maximum volume
k × k submatrix of A can be chosen to be a principal submatrix.

Proof. The k-th compound matrix Ck(A) is an
(
n
k

)
×
(
n
k

)
matrix containing the deter-

minants of all k × k submatrices of A, such that the determinants of the principal
submatrices are on the diagonal. The compound matrix of an SPSD matrix is again
SPSD [112, problem 4.1.P25] and hence its diagonal contains an element of maximum
absolute value.

Trivially, the result of Theorem 3.1 extends to symmetric negative semidefinite matrices.
On the other hand, it does not extend to the indefinite case; consider for example the
2k × 2k matrix A =

[
0 I
I 0

]
.

We include two additional proofs of Theorem 3.1.

Proof 2. Let A(I, J) be any k×k submatrix of A. As A is SPSD, it admits a factorization
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3.1. Maximum volume submatrices

of the form A = LLT for a lower triangular matrix L and, in turn, A(I, J) = L(I, :)L(J, :)T .
The singular values of a principal submatrix satisfy

σi(A(I, I)) = σi
(
L(I, :)L(I, :)T

)
= σi(L(I, :))2.

Recalling that the absolute value of the determinant equals the product of the singular
values, we obtain

det(A(I, J))2 =
(

Πk
i=1σi(A(I, J))

)2
=
(

Πk
i=1σi(L(I, :)L(J, :)T )

)2

≤
(

Πk
i=1σi(L(I, :))Πk

j=1σj(L(J, :))
)2

=
(

Πk
i=1σi(L(I, :)L(I, :)T )

)(
Πk
j=1σj(L(J, :)L(J, :)T )

)
=
(

Πk
i=1σi(A(I, I))

)(
Πk
j=1σj(A(J, J))

)
= det(A(I, I)) · det(A(J, J)),

where we used [111, Theorem 3.3.4] for the inequality. This implies that the volume of
A(I, J) is not larger than the maximum of the volumes of A(I, I) and A(J, J). In turn,
A(I, J) can be replaced by a principal submatrix without decreasing the volume.

Proof 3. Let A(I, J) be any k × k submatrix of A. We will prove that

det(A(I, J))2 ≤ det(A(I, I)) · det(A(J, J)). (3.1)

If I ∩ J = ∅ then the inequality (3.1) is proved in Theorem 1 in [71].

In the general case, we will construct a matrix for which we can apply again this
theorem. Let d = |I ∩ J |. By choosing a suitable permutation and applying it to the rows
and columns of A, we may assume without loss of generality that

I = (1, . . . , k), J = (k − d+ 1, . . . , 2k − d).

When partitioning

A =

A11 A12 A13 ?

A21 A22 A23 ?

A31 A32 A33 ?
? ? ? ?




k − d

d

k − d

k − d d k − d
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we now have
[
A12 A13
A22 A23

]
= A(I, J) =: B12. We also set B11 := A(I, I) =

[
A11 A12
A21 A22

]
and

B22 := A(J, J) =
[
A22 A23
A32 A33

]
, which both inherit the symmetric positive definiteness from

A. We now build a 2k × 2k matrix B by “repeating” the second block row and column of
the leading (2k − d)× (2k − d) submatrix of A:

B =



A11 A12 A12 A13

A21 A22 A22 A23

A21 A22 A22 A23

A31 A32 A32 A33


=

B11 B12

BT
12 B22

 .

By construction, B is SPSD. To see the latter, it is sufficient to notice that all principal
minors are nonnegative. Indeed, any principal submatrix of B either has (at least) two
equal rows or is a principal submatrix of A. Theorem 1 in [71] now gives

det(B21)2 ≤ det(B11) det(B22),

which is (3.1).

Connection to finding a subset of columns of maximum volume

In [38] the following problem was proven to be NP-hard:

Given B ∈ Rm×n and 1 ≤ k < n, select an m × k submatrix of maximum
volume.

Theorem 3.1 allows us to relate such a problem to the classical maximum volume
submatrix problem. Given B ∈ Rm×n, we consider the SPSD matrix A = BTB ∈ Rn×n.
As A(I, I) = B(:, I)TB(:, I) for any ordered index set (tuple) I, there is a one-to-one
correspondence between the principal submatrices of A and the ordered subsets of k
columns of B. Moreover, we have that

Vol (A(I, I)) =

k∏
i=1

σi(A(I, I)) =

k∏
i=1

σi(B(:, I))2 = Vol (B(:, I))2.

This shows that B(:, I) has maximum volume if and only if A(I, I) has maximum volume.
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3.1. Maximum volume submatrices

In turn, this proves that the maximum volume submatrix problem remains NP-hard when
restricted to the subclass of SPSD matrices.

3.1.2 Diagonally dominant matrices

Definition 3.2. A matrix A ∈ Rn×n is called (row) diagonally dominant (DD) if

n∑
j=1
j 6=i

|aij | ≤ |aii|, for i = 1, . . . , n. (3.2)

If (3.2) holds with strict inequality for i = 1, . . . , n, we call A strictly DD. A matrix A is
called doubly DD if both A and AT are DD.

Lemma 3.3. Let T ∈ Rn×n be a strictly DD, upper triangular matrix. Then |det(T (I, J))| <
|det(T (I, I))| holds for all index sets I 6= J with the same cardinality.

Proof. Let D be the diagonal matrix with dii = tii and set T̃ = D−1T . Because of

det(T (I, J)) = det(D(I, I)) · det(T̃ (I, J)),

det(T (I, I)) = det(D(I, I)) · det(T̃ (I, I)),

the statement of the lemma holds for T if and only if it holds for T̃ . In turn, this allows
us to assume without loss of generality that T has ones on the diagonal. In particular,
det(T (I, I)) = 1.

The statement of the lemma will be proven by induction on k := |I| = |J |. The case
k = 1 follows immediately from the diagonal dominance of T . Suppose now that the
statement of the lemma is true for fixed k. To prove the statement for k + 1, we consider
an arbitrary (k + 1)× (k + 1) submatrix B := T (I, J). If I 6= J then there exists a row
B(i, :) that does not contain a diagonal element of T . By diagonal dominance of T ,

|bi,1|+ |bi,2|+ . . .+ |bi,k+1| < 1. (3.3)

Denote by Bij the k × k submatrix of T obtained from eliminating the ith row and jth
column of B. By induction assumption, |det(Bij)| ≤ 1. Thus, combining (3.3) with the
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Laplace expansion gives

| det(B)| =
∣∣∣∣ k+1∑
j=1

(−1)i+jbij det(Bij)

∣∣∣∣ ≤ k+1∑
j=1

|bij | |det(Bij)| ≤
k+1∑
j=1

|bij | < 1.

In other words, |det(T (I, J))| < |det(T (I, I))|.

Theorem 3.4. Let A ∈ Rn×n be a DD matrix and 1 ≤ k ≤ n. Then the maximum
volume k × k submatrix of A can be chosen to be a principal submatrix.

Proof. We prove the theorem in the case when A is strictly DD; the DD case follows by a
continuity argument, noting that volumes of submatrices are continuous in A. Let A(I, J)

be a k × k submatrix of A. Also, by applying a suitable permutation to the rows and
columns of A, we may assume that I = (1, . . . , k) and J = (k − d+ 1, . . . , 2k − d) with
d = |I ∩ J |. The result of the theorem follows if we can prove

|det(A(I, J))| ≤ | det(A(I, I))|. (3.4)

For this purpose, we note that the LU factorization A = LU always exists with U strictly
DD; see Theorem 9.9 in [109]. We have that

A(I, I) = L(I, I)U(I, I), A(I, J) = L(I, I)U(I, J).

As L(I, I) is lower triangular with ones on the diagonal, we obtain

| det(A(I, I))| = | det(U(I, I))|, | det(A(I, J)| = | det(U(I, J))|.

Thus, the inequality (3.4) follows from Lemma 3.3.

For k = n− 1, the result of Theorem 3.4 is covered in the proof of Theorem 2.5.12 in
[111], while the result of Lemma 3.3 for k = n− 1 follows from Proposition 2.1 in [155].

3.2 Adaptive Cross Approximation

In the following, we summarize the idea behind Bebendorf’s cross approximation algo-
rithm [13]. For this purpose, we first recall that a cross approximation of A ∈ Rm×n (see
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3.2. Adaptive Cross Approximation

Definition 2.3) is closely connected to an incomplete LU decomposition of A. To see this,
suppose that A has been permuted such that I = J = (1, . . . , k) and partition

A =

A11 A12

A21 A22

 , A11 ∈ Rk×k.

Assume that A11 is invertible and admits an LU decomposition A11 = L11U11, where L11

is lower triangular and U11 is upper triangular with ones on the diagonal. By setting
L21 = A21U

−1
11 and U12 = L−1

11 A12, we obtain

A = A(:, J)A(I, J)−1A(I, :) +

0 0

0 A(k)

 ,
=

L11

L21

[U11 U12

]
+

0 0

0 A(k)

 (3.5)

=

L11 0

L21 Im−k


Ik 0

0 A(k)


U11 U12

0 In−k

 , (3.6)

where Ih denotes the identity matrix of size h× h and A(k) ∈ R(m−k)×(n−k) is the Schur
complement

A(k) := A22 −A21A
−1
11 A12.

This shows that the approximation error is governed by A(k) and that the factorized
form (3.5) corresponds exactly to what is obtained after applying k steps of the LU
factorization to A, see, e.g., [86, Chapter 3.2].

The first step of the greedy method for volume maximization consists in choosing
indices (i1, j1) that maximize |A(i1, j1)|. Given index sets I and J of cardinality h for
some h ≥ 1, the next step of the greedy method for volume maximization consists of
choosing indices such that

(ih+1, jh+1) = arg max
{∣∣∣det

(
A((I, i), (J, j))

)∣∣∣ : i 6∈ I, j 6∈ J
}
. (3.7)
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Let us assume that I = J = (1, . . . , h) and set Ĩ = (I, h + ı̃), J̃ = (J, h + ̃) for some
ı̃, ̃ ∈ {1, . . . , n− h}. Then (3.6) implies

det
(
A(Ĩ , J̃)

)
= det

(
A(I, J)

)
·A(h)(̃ı, ̃).

In other words, the local optimization problem (3.7) is solved by searching the entry of
A(h) that has maximum modulus. This choice leads to Algorithm 3.1, which is equivalent
to applying LU factorization with complete pivoting to A.

Algorithm 3.1 Cross approximation with complete pivoting [13]

Input: Matrix A ∈ Rm×n, desired rank k
Output: Index sets (tuples) I, J of cardinality k
1: Initialize R0←A, I←(), J←().
2: for h = 0, . . . , k − 1 do
3: (ih+1, jh+1)← arg maxi,j |Rh(i, j)|
4: I ← (I, ih+1), J ← (J, jh+1)
5: ph+1←Rh(ih+1, jh+1)
6: Rh+1←Rh − 1

ph+1
Rh(:, jh+1)Rh(ih+1, :)

7: end for

Remark 3.5. Because of (3.5), the remainder term of Algorithm 3.1 at each step satisfies
Rh =

[
0 0
0 A(h)

]
after a suitable permutation of the indices. Both for SPSD and DD matrices,

the element of maximum modulus is on the diagonal. Positive definiteness and diagonal
dominance are preserved by taking Schur complements; see, e.g., [112, Section 7.7 and
Problem 6.1.P16]. In turn, the search for the pivot element in Step 3 can be restricted
to the diagonal for such matrices. This significantly reduces the number of entries of A
that need to be evaluated when running Algorithm 3.1. It also implies that Algorithm 3.1
returns I = J , which aligns nicely with the results from Section 3.1. Notice that if A is
an SPSD matrix then the cross approximation

A(:, I)A(I, I)−1A(I, :)

obtained by Algorithm 3.1 is SPSD. In contrast, when Algorithm 3.1 is applied to a DD
matrix, in general the low-rank approximation obtained by the index sets returned by the
algorithm is not DD.
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3.2.1 Error analysis for general matrices

Although not desirable, it may happen that the pivots ph in Algorithm 3.1 grow. Upper
bounds on the growth factor ‖A(h)‖max/‖A‖max play an important role in the error
analysis of Gaussian elimination (see e.g. [190]). In the setting of complete pivoting, we
can define

gh := sup
A

{
‖A(h)‖max/‖A‖max

}
, (3.8)

where the supremum is taken over all matrices of rank at least h. This condition
ensures that there is no breakdown in the first h steps of Algorithm 3.1. By definition,
1 ≤ g1 ≤ g2 ≤ . . . ≤ gh. Wilkinson [190] proved that

gh ≤
√
h+ 1 ·

√
2 · 31/2 · 41/3 · . . . · (h+ 1)1/h ≤ 2

√
h+ 1(h+ 1)log(h+1)/4.

but it is known that this bound cannot be attained for h ≥ 3. We use the notation “log”
to indicate the natural logarithm. For matrices occurring in practice, it is rare to see
any significant growth and it is not unreasonable to consider gh = O(1); we refer to [109,
Section 9.4] for more details. Extending the proof of [106, Theorem 3.2], we obtain the
following result.

Theorem 3.6. Let A ∈ Rm×n have rank at least k < min{m,n}. Then the index sets
I, J returned by Algorithm 3.1 satisfy

‖EIJ‖max = ‖A−A(:, J)A(I, J)−1A(I, :)‖max ≤ 4k · gk · σk+1(A). (3.9)

Proof. Without loss of generality, we may assume I = J = (1, . . . , k). We perform one
more step of Algorithm 3.1 and consider the relation A11 = L11U11 from (3.5) for h = k+1.
Because of complete pivoting, the element of largest modulus in the jth column of L11 is
on the diagonal and equals pj . For such triangular matrices, Theorem 6.1 in [107] gives

‖L−1
11 ‖2 ≤ 2k ·min{|p1|, . . . , |pk+1|}−1.

Analogously, using that the element of largest modulus in every row of U11 is on the
diagonal and equals 1, we obtain ‖U−1

11 ‖2 ≤ 2k. Hence,

‖A−1
11 ‖2 = ‖U−1

11 L
−1
11 ‖2 ≤ 4k ·min{|p1|, . . . , |pk+1|}−1.
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This implies

min{|p1|, . . . , |pk+1|} ≤ 4k‖A−1
11 ‖
−1
2 = 4kσk+1(A11) ≤ 4kσk+1(A), (3.10)

where we used interlacing properties of singular values, see [112, Corollary 7.3.6].

On the other hand, as A(k) is the matrix obtained after j steps of Algorithm 3.1
applied to the matrix A(k−j), the definition (3.8) gives the inequalities

pk+1 = ‖A(k)‖max ≤ gj · ‖A(k−j)‖max = gj · |pk−j+1| ≤ gk · |pk−j+1|

for j = 1, 2, . . . , k. We therefore obtain

‖A−A(:, J)A(I, J)−1A(I, :)‖max

= ‖A(k)‖max = |pk+1| ≤ gk min{|p1|, . . . , |pk+1|}. (3.11)

Combined with (3.10), this shows the result of the theorem.

Because of the factor 4k, Theorem 3.6 only guarantees good low-rank approximations
when the singular values are strongly decaying. This limitation does not correspond to the
typical behavior observed in practice; the quantities ‖L−1

11 ‖2 and ‖U−1
11 ‖2 rarely assume

the exponential growth estimates used in the proof of Theorem 3.6. In turn, the factor 4k

usually severely overestimates the error. Nevertheless, there are examples for which the
error estimate of Theorem 3.6 is asymptotically tight; see Section 3.2.2 below.

Remark 3.7. Note that Equation (3.10) ensures that among |p1|, . . . , |pk+1|, there exists
at least one which is bounded by 4kσk+1(A). In turn, a stronger statement is possible:
The minimum of all cross approximation errors within the first k steps of Algorithm 3.1
is bounded by 4kσk+1(A) and hence the growth factor gk is avoidable.

A result closely related to Theorem 3.6 has been shown in [108] in the context of
perturbation analysis of LU factorizations. This result, however, requires the following
additional assumptions on A. Letting Ak denote the best rank-k approximation of A in
the spectral norm, it is assumed in [108] that Algorithm 3.1 applied to A and Ak returns
the same index sets I, J and, moreover,

∥∥Ak(I, J)−1 (A(I, J)−Ak(I, J))
∥∥

2
< 1. Then,

‖EIJ‖2 ≤
1

3
(4k − 1)

√
(n− k)(m− k) · σk+1(A) +O(σk+1(A)2);

28



3.2. Adaptive Cross Approximation

see Lemma 2.1 and Lemma 2.3, and the discussion in Section 5.3 in [108].

On mixed norms

In the following we develop a variant of Theorem 3.6 in which the best approximation
error is also measured in terms of ‖ · ‖max. This will be useful later on, in Section 3.2.4,
when considering approximation of functions. Recall that δk(A) denotes the error of
the best rank-k approximation in the Chebyshev norm (see Eqn. (2.2)). If A is square
and invertible then σn(A) = ‖A−1‖−1

2 . This result, relating the distance to singularity
to the norm of the inverse, extends to general subordinate matrix norms; see, e.g., [109,
Theorem 6.5]. In particular, we have

δn(A) = ‖A−1‖−1
∞→1, (3.12)

with ‖ · ‖∞→1 denoting the matrix norm induced by the 1- and ∞-norms. More generally,
we set

‖B‖α→β := sup
x 6=0
‖Bx‖β/‖x‖α

for vector norms ‖ · ‖α, ‖ · ‖β . Note that ‖B‖1→∞ = ‖B‖max.

Theorem 3.8. Under the assumptions of Theorem 3.6 and with the notation introduced
above, we have

‖EIJ‖max ≤ 22k+1 · gk · δk+1(A).

Proof. Along the lines of the proof of Theorem 3.6, we first note that

‖L−1
11 ‖∞→1 ≤ (2k+1 − 1) min{|p1|, . . . , |pk+1|}−1,

which can be shown by induction over k. Combined with ‖U−1
11 ‖1→1 ≤ 2k, see [107,

Theorem 6.1], we obtain

‖A−1
11 ‖max = ‖A−1

11 ‖∞→1 ≤ ‖U−1
11 ‖1→1‖L−1

11 ‖∞→1

≤ 22k+1 min{|p1|, . . . , |pk+1|}−1,

where we used submultiplicativity [109, Eqn (6.7)]. Using (3.12), this implies

min{|p1|, . . . , |pk+1|} ≤ 22k+1‖A−1
11 ‖
−1
∞→1 = 22k+1δk+1(A11) ≤ 22k+1δk+1(A).
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The rest of the proof is identical with the proof of Theorem 3.6.

3.2.2 Error analysis for SPSD matrices

In the SPSD case, the pivot elements of Algorithm 3.1 are always non-increasing. Thus,
when restricting the supremum in (3.8) to SPSD matrices of rank at least k, one obtains
gk = 1. In turn, the following result from [74, 106] is a corollary of Theorem 3.6.

Corollary 3.9. For an SPSD matrix A of rank at least k, the bound of Theorem 3.6
improves to

‖EIJ‖max ≤ 4k · σk+1(A).

The bound of Corollary 3.9 is asymptotically tight, see [106, Remark 3.3] and [117, p.
791]. As the growth factor gk which comes into play in Theorem 3.6 is small compared to
the 4k factor, this also proves that the bound of Theorem 3.6 is almost tight.

3.2.3 Error analysis for DD matrices

When restricting the supremum in (3.8) to DD matrices of rank at least k, one obtains
gk ≤ 2; see Theorem 13.8 in [109].

Corollary 3.10. For a DD matrix A ∈ Rn×n of rank at least k, the bound of Theorem 3.6
improves to

‖EIJ‖max ≤ (k + 1) · 2k+1 · σk+1(A).

Proof. It is well known that the factor U in the LU decomposition of a DD matrix is
again DD; see [112, Problem 6.1.P16]. In particular, this implies that the (k+ 1)× (k+ 1)

unit upper triangular matrix U11 in the proof of Theorem 3.6 is DD. Then, for every
entry of U−1

11 we have |(U−1
11 )ij | ≤ 1 by [155, Prop. 2.1]. Therefore,

‖U−1
11 ‖2 ≤ ‖U

−1
11 ‖F ≤

√
(k + 1)(k + 2)/2 ≤ k + 1. (3.13)

This shows that the factor 4k can be reduced to (k + 1)2k in the bound of Theorem 3.6.
Combined with gk ≤ 2, this establishes the desired result.

Corollary 3.11. For a doubly DD matrix A of rank at least k, the bound of Corollary 3.10
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improves to
‖EIJ‖max ≤ 2 · (k + 1)2 · σk+1(A).

Proof. Trivially, AT is DD. By the same arguments as in the proof of Corollary 3.10 this
implies that not only U11 but also LT11 is DD. Proceeding as in the derivation of (3.13),
we get

‖L−1
11 ‖2 ≤ ‖L

−1
11 ‖F ≤ (k + 1) ·min{|p1|, . . . , |pk+1|}−1.

This shows that the factor (k+1) ·2k+1 of Corollary 3.10 can be improved to 2(k+1)2.

Remark 3.12. The fact that Algorithm 3.1 gives a polynomially good low-rank approx-
imation of a doubly DD matrix does not imply that it also gives a polynomially good
approximation of the maximum volume submatrix. For instance, let n = 2k and consider
A =

[
Ik 0
0 Bk

]
, where Bk = tridiag

(
1
2 , 1,−

1
2

)
. Then Algorithm 3.1 does not perform any

pivoting during its k steps and thus the submatrix Ik is selected. Its volume is 1, while

the volume of Bk is exponentially larger, it grows like
(

1+
√

2
2

)k
.

For the particular case of doubly DD matrices, we have shown that the approximation
error returned by cross approximation is at most 2(k+ 1) times larger than the right-hand
side of (2.4) (when γ = 1). This class of matrices includes symmetric DD matrices, which
play a prominent role in [121, 173].

Tightness of estimates for DD matrices

To study the tightness of the estimates from Section 3.2.3, it is useful to connect Al-
gorithm 3.1 to LDU decompositions. From now on, let A ∈ Rn×n be a DD matrix
and let k = n − 1. Suppose that the application of k steps of Algorithm 3.1 yields
I = J = (1, . . . , n− 1). As in the proof of Theorem 3.6, we exploit the relation (3.5) for
k + 1 = n to obtain the factorization

A = L11U11 = LDU, D := diag(p1, . . . , pn)

where L := L11D
−1 and U := U11 are lower and upper unit triangular matrices, respec-

tively. We recall from (3.11) that the error of the approximation returned by Algorithm 3.1
is governed by |pn|.
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As A is DD, the pivot growth factor does not exceed 2 and we have that |pn| ≤
2‖D−1‖−1

2 ≤ 2|pn|. In turn, the ratio between |pn| and the best rank-(n−1) approximation
error satisfies

rk :=
|pn|
σn(A)

= |pn| ‖A−1‖2 ≤ |pn| ‖U−1‖2‖D−1‖2‖L−1‖2 ≤ 2‖L−1‖2‖U−1‖2. (3.14)

Inheriting the diagonal dominance from A, the matrix U is well conditioned; see (3.13).
Therefore, large rk requires ‖L−1‖2 to become large.

The quantity ‖L−1‖2 also plays a prominent role in the stability analysis of LDU
decompositions, see [61] and the references therein. In particular, the potential rapid
growth of ‖L−1‖2 under complete pivoting has motivated the search for alternative
pivoting strategies [155]. However, the existing literature is scarce on examples actually
exhibiting such rapid growth. The worst example we could find is by Barreras and
Peña [11, Sec. 3], which exhibits linear growth. A more rapid growth is attained by the
n× n matrix

A =



1 −1

1
. . .

. . . −1

1 − 1
n/2+1 − 1

n/2+1 · · · − 1
n/2+1

−1 1

−1 1

...
. . .

−1 1



,

where n is even and each block has size n/2× n/2. When applying complete pivoting to
this matrix, no interchanges are performed and the LDU factorization satisfies

‖L−1‖2 = Θ(k
√
k), ‖D−1‖2 = 1/|pn| = 2, ‖U−1‖2 = Θ(k).

Note that, for this example, the right-hand side of (3.14) overestimates the error. This
example attains quadratic growth: rk = ‖A−1‖2 = Θ(k2). This is still far away from the
exponential growth estimated in Corollary 3.10, but closer than the example from [11,
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Sec. 3], which yields rk = Θ(k
√
k).

For a doubly DD matrix, one obtains linear growth in (3.14) by considering the n× n
lower bidiagonal matrix B having 1 on the diagonal and −1 on the first subdiagonal. In
this case, L = B, D = U = In and hence ‖B−1

n ‖2 = Θ(k), showing that rk can grow at
least linearly with k. We have not found an example exhibiting the quadratic growth
estimated by Corollary 3.11.

3.2.4 Cross approximation for functions

Let us consider the approximation of a function f : [−1, 1]2 → R by a linear combination
of separable functions:

f(x, y) ≈
imax∑
i=1

ci · f (1)
i (x) · f (2)

i (y), ci ∈ R.

In the context of cross approximation, the factors are restricted to functions f (1)
i of the

form f
(1)
i = f(x, ȳi) and f

(2)
i = f(x̄i, y), where x̄i and ȳi are fixed elements of [−1, 1].

In particular, Micchelli and Pinkus [141] considered interpolating approximations of the
following form:

f(x, y) ≈


f(x, y1)

...

f(x, yk)


T

·


f(x1, y1) · · · f(x1, yk)

...
...

f(xk, y1) · · · f(xk, yk)


−1

·


f(x1, y)

...

f(xk, y)

 ,

for some x1, . . . , xk, y1, . . . , yk ∈ [−1, 1]. Townsend and Trefethen [180] use a strategy for
choosing the interpolation points which is basically equivalent to Algorithm 3.1 and they
prove a convergence result under some analyticity hypotheses on the function f . There
also exist error analyses for cross approximation of functions when using different pivoting
strategies, see, e.g., [15, 168].

Let us explain how the greedy strategy of Algorithm 3.1 can be translated to the
function setting. Choosing the first pivot corresponds to finding a point (x1, y1) ∈ [−1, 1]2

which maximizes the absolute value of f . The rank-1 separable function approximating f
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is given by
f1(x, y) :=

1

f(x1, y1)
f(x1, y)f(x, y1)

and the first “residual” function is defined as

e1(x, y) := f(x, y)− f1(x, y).

The next step greedily chooses a point (x2, y2) that maximizes the absolute value of e1

and defines functions e2, f2 accordingly. Algorithm 3.2 summarizes cross approximation
of functions with complete pivoting.

Algorithm 3.2 Cross approximation of functions [179, Figure 2.1]

Input: f : [−1, 1]2 → R and k > 0
1: e0(x, y)←f(x, y)
2: f0(x, y)←0
3: for h = 0, . . . , k − 1 do
4: (xh+1, yh+1)← arg max(x,y)∈[−1,1]2{|eh(x, y)|}
5: eh+1←eh − eh(xh+1,·)·eh(·,yh+1)

eh(xh+1,yh+1)

6: fh+1←fh +
eh(xh+1,·)·eh(·,yh+1)

eh(xh+1,yh+1)

7: end for

We now explain in more detail the connection of Algorithm 3.2 to Algorithm 3.1,
which allows us to prove a bound on the error ek of the separable approximation obtained
after k steps of Algorithm 3.2. Fix (x, y) ∈ [−1, 1]2 and consider the points x1, . . . , xk and
y1, . . . , yk obtained by Algorithm 3.2. Consider what happens when applying Algorithm 3.1
to the (k+ 1)× (k+ 1) matrix obtained by interpolating f in the points mentioned above:

A(x,y) :=



f(x1, y1) · · · f(x1, yk) f(x1, y)

...
...

...

f(xk, y1) · · · f(xk, yk) f(xk, y)

f(x, y1) · · · f(x, yk) f(x, y)


.

The first chosen pivot will be p1 = f(x1, y1) because it is the largest entry of the matrix.
Now observe that the Schur complement A(1) obtained after the first step, is the matrix
that interpolates the function e1 in the points x2, . . . , xk, x and y2, . . . , yk, y. At this point,
the second pivot chosen by Algorithm 3.1 will be e1(x2, y2) because of how Algorithm 3.2
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choses (x2, y2) in line 5. After k steps of Algorithm 3.1 we will be left with only one
nonzero entry in position (k+1, k+1) and this will be ek(x, y). This allows us to estimate
|ek(x, y)| via Theorem 3.8:

|ek(x, y)| ≤ 22k+1 · gk · δk+1(A(x,y)). (3.15)

The last thing we need is an estimate on δk+1(A(x,y)) that is uniform in (x, y) ∈ [−1, 1]2.
This will follow from analyticity assumptions on the functions f(·, y) for y ∈ [−1, 1].

Definition 3.13. The Bernstein ellipse Er of radius r > 1 is the ellipse in C with foci in
−1 and 1 and with sum of the semi-axes equal to r.

Corollary 3.14. Let f : [−1, 1]2 → R be such that f(·, y) admits an analytic extension –
which we will denote by f̃ – in the Bernstein ellipse Er0 of radius r0 for each y ∈ [−1, 1].
Let 1 < r < r0 and

M := sup
η∈∂Er, ξ∈[−1,1]

|f̃(η, ξ)|,

where ∂Er denotes the boundary of the ellipse. After k steps of Algorithm 3.2 the error
function satisfies

‖ek‖max ≤
2Mgk

1− 1/r
·
(r

4

)−k
.

Proof. Fix (x, y) ∈ [−1, 1]2 and let b : [−1, 1] → Rk+1 be the vector-valued function
defined by

b(η) :=

[
f(η, y1) · · · f(η, yk) f(η, y)

]T
.

The analyticity hypothesis allows us to apply standard polynomial approximation results
(see e.g. Corollary 2.2 in [125]) and conclude that there exists an approximation b̂ :

[−1, 1]→ Rk+1 given by

b̂(η) =
k∑

h=1

ph(η)vh, (3.16)

where vh ∈ Rk+1 are constant vectors and ph : [−1, 1]→ R are polynomials, such that

max ‖b(η)− b̂(η)‖max ≤
2

1− r−1
·max
α∈Er

‖b(α)‖max · r−k

for any 1 < r < r0. We can clearly bound maxα∈Er ‖b(α)‖max ≤M .
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The matrix A(x,y) is obtained by sampling b in the points x1, . . . , xk, x, i.e.

A(x,y) =

[
b(x1) · · · b(xk) b(x)

]
.

Let us define, analogously,

Â(x,y) =

[
b̂(x1) · · · b̂(xk) b̂(x)

]
.

Notice that Â(x,y) has rank as most k because by (3.16) each of the k + 1 columns of
Â(x,y) is a linear combination of the k vectors v1, . . . , vk, so

δk+1(A(x,y)) ≤ ‖A(x,y) − Â(x,y)‖1→∞ = max
α∈{x1,...,xk,x}

‖b(α)− b̂(α)‖max ≤
2M

1− r−1
· r−k.

The result then follows from Equation (3.15).

To get convergence of the error function to zero as k → ∞, in Corollary 3.14 it is
sufficient that the function f(·, y) admits an analytic extension to the Bernstein ellipse
Er0 with r0 > 4 for each y, because the factor gk has subexponential growth. Our result
compares favorably to Theorem 8.1 in [180], which requires an analytic extension to the
region K consisting of all points at a distance ≤ 4 from [−1, 1]. Figure 3.1 compares
the two domains and it is evident that the requirement from [180] is significantly more
restrictive.

E4

K

-5 -4 -3 -2 -1 0 1 2 3 4 5

-4

-3

-2

-1

1

2

3

4

Figure 3.1 – Analyticity regions ensuring convergence of Algorithm 3.2 according to Corollary 3.14
and [180, Theorem 8.1].
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For a positive semidefinite kernel function f , the matrix A(x,y) in (3.15) is positive
semidefinite and hence the bound of Corollary 3.14 holds with gk ≡ 1. This matches an
asymptotic result given in [180, Theorem 9.1].

3.3 Improving ACA to achieve a polynomial error bound

The results for ACA in Section 3.2 are far from the guarantees of Theorem 2.6. However,
successive row and column “swaps” can be performed after obtaining initial index sets I
and J from ACA. The idea is that if the error EIJ has an entry (i, j) which is larger, in
absolute value, than γ(k+1)σk+1(A), then the (k+1)×(k+1) matrix Â := A((I, i), (J, j))

contains a k × k submatrix whose volume is larger than Vol (A(I, J)) by a factor larger
than γ. In such case, one can update the index sets I and J taking those corresponding to
this submatrix of larger volume. The resulting procedure is summarized in Algorithm 3.3.

Algorithm 3.3 Cross approximation with swaps.

Input: A ∈ Rm×n, rank k, parameter γ > 1
Output: Index sets I and J of cardinality k such that (2.4) holds.
1: Initialize (Inew, Jnew)←ACA(A, k) using Algorithm 3.1
2: repeat
3: I old←Inew, J old←J new

4: (i, j)← indices of largest element of EI oldJ old

5: (Inew, Jnew)← maximum volume k × k submatrix of Â := A((I old, i), (J old, j))
6: until VolA(Inew, Jnew)/VolA(I old, J old) ≤ γ
7: I←I old, J←J old.

First of all, let us show that Algorithm 3.3 achieves (2.4).

Lemma 3.15. The index sets I and J returned by Algorithm 3.3 satisfy

‖EIJ‖max ≤ γ(k + 1)σk+1(A) and ‖EIJ‖max ≤ γ(k + 1)2δk+1(A).

Proof. Let (i, j) be the indices selected in Algorithm 3.3 the last time that the cycle has
been executed. As the algorithm stopped after that, in the matrix Â := A((I, i), (J, j))

we have VolA(I, J) = Vol Â(I, J) ≥ 1
γ maxVol(Â). Therefore, by Theorem 2.6 applied

to Â, we have

‖Â− Â(:, J)A(I, J)−1Â(I, :)‖max ≤ γ(k + 1)σk+1(Â).
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Noting that ‖Â − Â(:, J)A(I, J)−1Â(I, :)‖max = |EIJ(i, j)| = ‖EIJ‖max, σk+1(Â) ≤
σk+1(A) (by interlacing properties of singular values), and σk+1(Â) ≤ (k + 1)δk+1(Â) ≤
(k + 1)δk+1(A) concludes the proof.

The idea of performing successive swaps is not new. This has been done, for example,
in the context of finding local quasi-maximum volume submatrices for (strong) rank-
revealing factorizations [96, 97, 153, 169], and for cross approximation in [87, 150]. The
algorithm proposed in [87, 150] differs from Algorithm 3.3 in that it performs swaps until
A(I, J) is a local quasi-maximum volume submatrix in A(I, :) and A(:, J). Their strategy
is faster but it does not guarantee that the final index sets satisfy (2.4).

3.3.1 Time complexity of Algorithm 3.3

In this section we show that Algorithm 3.3 takes polynomial time. An ingredient of our
analysis is a bound on the number of swaps S, which will follow from a bound on the
suboptimality of the volume of the submatrix given by ACA.

Theorem 3.16. Let A ∈ Rm×n (m ≤ n) and k < m. Assume (without loss of generality)
that ACA with full pivoting applied to A (Algorithm 3.1) selects the leading submatrix A11.
Then, for any index sets I and J of cardinality k (in particular, for those corresponding
to the maximum volume submatrix of A), we have

| det(A(I, J))| ≤ mkkk2k(m+ 1)k(
1
2

+ 1
4

log(m+1))| det(A11)|.

Proof. Without loss of generality, we assume that no permutation matrices are needed in
ACA with full pivoting. If we do all n steps, we obtain a decomposition A = LDU where
L ∈ Rm×m and U ∈ Rm×n are triangular matrices, with ones on the diagonal and all
other entries of absolute value ≤ 1; the diagonal matrix D ∈ Rm×m contains the pivots
p1, . . . , pm.

We have that A(I, J) = L(I, :) · D · U(:, J). Using the Cauchy-Binet formula for
the determinant of a product, and the fact that the non-principal submatrices of D are
singular, we obtain

det(A(I, J)) =
∑
|K|=k

non-ordered sets K

det(L(I,K)) · det(D(K,K)) · det(U(K,J)).
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3.3. Improving ACA to achieve a polynomial error bound

We are going to obtain an upper bound on |detA(I, J)| by bounding the terms in
the previous sum separately. First, the number of unordered sets K ⊂ {1, . . . ,m} of
cardinality k is

(
m
k

)
≤ mk. As the rows of L(I,K) have norm bounded by k1/2, we have

|det(L(I,K))| ≤ kk/2 by Hadamard inequality. Similarly, |det(U(K,J))| ≤ kk/2. Finally,
to bound | det(D(K,K))|, note that if K = {i1, . . . , ik} with i1 < . . . < ik, we have
|pih | ≤ gm|ph| where gm ≤ 2

√
m+ 1(m + 1)log(m+1)/4 is the growth factor of Gaussian

elimination with complete pivoting (3.8). Therefore,

|det(D(K,K))| = |pi1 · · · pik | ≤ g
k
m · |p1 · · · pk| ≤ 2k(m+ 1)k(

1
2

+ 1
4

log(m+1)) · |p1 · · · pk|.

We obtain the upper bound

|det(A(I, J))| ≤ kkmk| det(D(K,K))| ≤ kkmk2k(m+ 1)k(
1
2

+ 1
4

log(m+1)) · |p1 · · · pk|.

To conclude, note that |p1 · · · pk| = | det(A11)|.

Corollary 3.17. Denote by (I0, J0) the starting index pair obtained in line 1 of Algo-
rithm 3.3 and by (IS , JS) the pair obtained after S swaps. Then

S ≤ O
(
k log2m

log γ

)
.

Proof. Leveraging Theorem 3.16 and recalling that the volume of the selected submatrix
A(Inew, Jnew) grows at least by γ at every step, we have

maxVol(A) ≥ |det(A(IS , JS))| ≥ γS | det(A(I, J))|

≥ γS

mkkk2k(m+ 1)k(
1
2

+ 1
4

log(m+1))
maxVol(A).

Taking the logarithm gives the result.

Computing EI oldJ old
in line 4 costs O(nmk). Finding the maximum volume k × k

submatrix in Â in line 5 costs O(k3) because we can use [142, Proposition 1] to compute the
volume change with respect to VolA(I old, J old). Therefore, each cycle of Algorithm 3.3
can be done in O(nmk) time. Using Corollary 3.17 we conclude that the time complexity
of Algorithm 3.3 is O

(
nmk2 log2m

log γ

)
.
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Note that one logm factor in the time complexity of Algorithm 3.3 is coming from the
growth factor of Gaussian elimination with full pivoting, therefore it is usually negligible
in practice.

Remark 3.18. If A is SPSD, a local γ-maximum volume submatrix can be found in time
O
(
nk2 log k

log γ

)
(see [134, Algorithm 4]) and this ensures that (2.4) holds. In particular, a

result analogous to Theorem 3.16 holds with the constant (k!)2 instead of mkkk2k(m +

1)k(
1
2

+ 1
4

log(m+1)); see [39] and the discussion in [134, Section 2.2.3].
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4 Low-rank approximation in the
Frobenius norm by column and row
subset selection

In this chapter we consider algorithms for the low-rank approximation of matrices and
tensors which are guaranteed to have a polynomial error bound. We start in Section 4.1 by
recalling the deterministic column subset selection algorithm from [57], which is obtained
from the existence result (2.9) by derandomization with the technique of conditional
expectations. The conditional expectations are given in terms of coefficients of certain
characteristic polynomials and the algorithm from [57] attains efficiency by cheaply
updating these coefficients. However, it is well known that working with characteristic
polynomials in finite precision arithmetic is prone to massive numerical cancellation [161]
and, as we will see, the algorithm from [57] is also affected by numerical instability. Our
first contribution, presented in Section 4.1, consists of deriving a formulation of the
algorithm that updates singular values instead of coefficients of characteristic polynomials.
While our new variant enjoys the same favorable complexity, numerical experiments
with matrices of different singular value decay indicate that it is numerically robust,
achieving (2.10) even when the right-hand side

√
k + 1

√
σ2
k+1 + . . .+ σ2

m is at the level
of unit roundoff. Based on a minor extension of the theory from [57, 58], we will also
present a modification of the column selection strategy that results in significant speed
ups of the algorithm.

In Section 4.2 we derive a result for CUR approximation using the column subset
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selection algorithm from Section 4.1. This strategy results in an error that is at most a
factor

√
2k + 2 larger than the best rank-k approximation error in the Frobenius norm.

One major contribution of this work is to derive a polynomial-time deterministic algorithm
that guarantees a polynomial error bound for cross approximation in the Frobenius norm,
via an extension of [57]; our algorithm matches the existence result (2.7).

Section 4.3 contains an extension to the Tucker decomposition of tensors, which
is suitable for tensors of low order. In particular, we derive a deterministic algorithm
that obtains a multilinear low-rank approximation that is constructed from the fibers
of the tensor and satisfies a polynomial bound. Although our approach is a relatively
straightforward extension of (2.11) and related approaches have been proposed in the
literature [62, 90, 166], we are not aware that such an algorithm has been explicitly
formulated and analyzed.

4.1 Column subset selection

We start by providing more details on the approach from [57, 58] for the column subset
selection problem. In the following we assume that the matrix A ∈ Rm×n(with m ≤ n)
has rank at least k. We let ai denote the ith column of A and πi1,...,ikA the orthogonal
projection of A on the subspace spanned by the columns ai1 , . . . , aik , that is,

πi1,...,ikA := A(:, I) ·A(:, I)† ·A = QQTA,

where I = (i1, . . . , ik) ∈ {1, . . . , n}k and Q denotes an orthonormal basis of A(:, I). We
emphasize that I is a tuple. Although order is not important and we are ultimately
interested in an index set, working with tuples simplifies the subsequent definition and
manipulation of probability distributions.

We now define a discrete probability distribution on integer tuples of the form
I ∈ {1, . . . , n}k corresponding to a selection of k columns from A. For this purpose, let
X = (X1, . . . , Xk) be a k-tuple of random variables with values in {1, . . . , n} such that

P(X = I) :=
Vol 2(A(:, I))∑

J∈{1,...,n}k Vol 2(A(:, J))
. (4.1)

It follows from the definition that Vol (A(:, I)) = 0 whenever i1, . . . , ik contain repeated
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indices. Then [58, Theorem 1.3] shows that

E[‖A− πX1,...,XkA‖
2
F ] ≤ (k + 1)

(
σ2
k+1 + . . .+ σ2

m

)
. (4.2)

In particular, this implies the existence of I satisfying the bound (2.10).

In view of (4.1) and the prominent role played by maximum volume submatrices in
low-rank approximation [88], it is tempting to expect that the k columns of maximum
volume satisfy (2.10). However, choosing such columns is not only an NP-hard problem –
as mentioned in Section 3.1.1 – but these might also fail to satisfy (2.10). For instance,
for k = 1 consider the 2× n matrix

A =

 a(1 + ε) b b · · · b

−b(1 + ε) a a · · · a


with a2 + b2 = 1 and ε > 0. The column of maximum volume (that is, of maximum
Euclidean norm) is the first one. The approximation error obtained by this choice is given
by ‖A − π1A‖2F = n − 1, which is much larger than 2σ2

2 = 2(1 + ε)2 for ε sufficiently
small. Note that choosing any of the other columns yields the best approximation error
(1 + ε)2 = σ2

2.

4.1.1 Algorithm by Deshpande and Rademacher

Deshpande and Rademacher [57] derived a deterministic algorithm for column subset
selection by derandomizing (4.2) using the method of conditional expectations.

More specifically, the first step of the algorithm chooses an index i1 such that

E
[
‖A− πX1,...,XkA‖

2
F | X1 = i1

]
is minimized. By construction, this quantity still satisfies the bound (4.2). More generally,
having t− 1 indices i1, . . . , it−1 selected, step t chooses an index it such that

E
[
‖A− πX1,...,XkA‖

2
F | X1 = i1, . . . , Xt−1 = it−1, Xt = it

]
(4.3)

is minimized. After k steps we arrive at an index set I of cardinality k such that the
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desired bound (2.10) holds.

For the algorithm to be practical, it is crucial to compute the conditional expecta-
tions (4.3) efficiently. Lemma 21 in [57] shows that

E
[
‖A− πX1,...,XkA‖

2
F | X1 = i1, . . . , Xt = it

]
= (k − t+ 1)

cm−k+t−1(BBT )

cm−k+t(BBT )
,

where the right-hand side involves the matrix B = A − πi1,...,itA and coefficients cj ≡
cj(BB

T ) of the characteristic polynomial

(−λ)m + cm−1(−λ)m−1 + . . .+ c1(−λ) + c0 := det(BBT − λI). (4.4)

It is therefore required to compute in every step for all values of i, the ratios

cm−k+t−1(BiB
T
i )

cm−k+t(BiB
T
i )

(4.5)

where Bi = A− πi1,...,it−1,iA.

In the following, we discuss the computation of (4.5) and show how the minimization
problem (4.3) can be relaxed in order to accelerate the search for suitable indices.

4.1.2 Computation of characteristic polynomial coefficients

Assuming that the first t − 1 indices have been selected, we set B := A − πi1,...,it−1A.
Then

Bi = B − πiB =

(
I − bib

T
i

‖bi‖22

)
B

is a rank-1 modification of B. Deshpande and Rademacher [57] propose two methods to
compute (4.5) for i = 1, . . . , n. In the following, we summarize them briefly.

1. Algorithm 2 in [57] computes BBT explicitly and then computes BiBT
i as a rank-2

update of BBT for every i = 1, . . . , n. The characteristic polynomial of BiBT
i

is computed by establishing a similarity transformation to a matrix in Frobenius
normal form [36, Section 16.6]. Fast matrix-matrix multiplication and inversion can
be exploited so that the cost of this approach is O(nmω logm), where ω ≤ 2.373 is
the best exponent of matrix-matrix multiplication complexity.
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2. Algorithm 3 in [57] first computes the thin SVD

B = UΣV T , U ∈ Rm×m, Σ ∈ Rm×m, V ∈ Rn×m, (4.6)

where U and V have orthonormal columns and Σ is a diagonal matrix. Then it
computes the characteristic polynomial of BBT from the squared singular values
of B, and the auxiliary polynomials gj(x) =

∏
`6=j
(
x− σ2

` (B)
)
for j = 1, . . . ,m.

For h = m − k + t and h = m − k + t − 1, the coefficient ch(BiB
T
i ) can then be

computed as the coefficient of xh in

det(xI −BBT ) +
1

‖bi‖22

n∑
j=1

σ2
j (B)v2

ijgj(x). (4.7)

The cost of this second approach is O(m2n).

The problem of computing the Frobenius normal form of a matrix is “numerically not
viable” [160]. Also, updating directly the characteristic polynomial as in (4.7) is prone
to numerical cancellation, leading to inaccurate results. For instance, consider the 2× 2

matrix

A =

6.583644 · 10−7 8.113362 · 10−3

8.113362 · 10−3 100

 ,
and the column selection problem for k = 1. Algorithm 4 in [57] using (4.7) selects the
first column, giving an error ‖A−A(:, 1)A(:, 1)†A‖F ≈ 1.2 ·10−6 �

√
2σ2(A) = 1.4 ·10−10.

Therefore, from now on we will avoid updating coefficients of characteristic polynomials
and work with singular values instead. More specifically, we will compute the singular
values of Bi by updating the SVD of B and then apply the Summation Algorithm [161,
Algorithm 1] to compute the coefficients of the characteristic polynomial of BiBT

i from
its eigenvalues (that is, the squared singular values of Bi) with O(m2) operations in a
numerically forward stable manner. To describe the updating procedure, consider the
(thin) SVD B = UΣV T as in (4.6). The (nonzero) singular values of Bi and

UTBiV = (I − UTπiU)UTBV =

(
I − UT bib

T
i U

‖bi‖22

)
Σ =

(
I − qqT

)
Σ,

with q = UT bi/‖bi‖2, are identical. Using standard bulge chasing algorithms (see, e.g., [195,
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Algorithm 3.4] and [6]) it is possible to find orthogonal matrices Q,W ∈ Rm×m such that
QT q = e1, where e1 denotes the first unit vector, and QTΣW is upper bidiagonal. In
turn, the singular values can be computed from the bidiagonal matrix

QT (I − qqT )ΣW = (I − e1e
T
1 )(QTΣW ).

The matrices Q and W are composed of O(m2) Givens rotations [86, Section 5.1] and
the computation of QTΣW requires to apply each of these rotations to at most 3 vectors.
In turn, the cost of computing this bidiagonal matrix is O(m2), which is identical to the
cost of computing its singular values [86, Section 8.6].

4.1.3 Overall algorithm

The described variation of the column subset selection algorithm by Deshpande and
Rademacher is summarized in Algorithm 4.1. One execution of line 3 is O(nm2), lines 6–
9 are O(m2), and lines 14–15 are O(knm). In summary, the overall complexity of
Algorithm 4.1 is O(knm2). This is identical to the complexity of [57, Algorithm 4]
combined with [57, Algorithm 3], and it is better than [57, Algorithm 4] combined
with [57, Algorithm 2].

Note that instead of lines 14–15 we could have updated B ← B − πitB. However, we
noticed that recomputing B in lines 14–15 tends to improve accuracy and it does not
change the overall asymptotic complexity.

4.1.4 Early stopping of column search

For each column index, Algorithm 4.1 needs to traverse O(n) columns in order to find
the one that minimizes the coefficient ratio or, equivalently, the conditional expectation.
This column search can be shortened. To describe the idea, we revisit the argument from
Section 4.1.1 that has led to Algorithm 4.1. Recall that (4.2) states E[‖A−πX1,...,XkA‖2F ] ≤
(k + 1)

(
σ2
k+1 + . . .+ σ2

m

)
. This implies that there exists i1 such that

E
[
‖A− πX1,...,XkA‖

2
F | X1 = i1

]
≤ (k + 1)

(
σ2
k+1 + . . .+ σ2

m

)
.

In particular, an index i1 that minimizes the left-hand side will satisfy the bound, which is
the choice made in Algorithm 4.1. However, there may be other choices of i1 that satisfy
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Algorithm 4.1 Column Subset Selection

Input: A ∈ Rm×n, rank 1 ≤ k < m
Output: Column indices S ∈ {1, . . . , n}k
1: Initialize S←() and B←A
2: for t = 1, . . . , k do
3: Compute U and Σ from the thin SVD of B = UΣV T

4: minRatio←+∞
5: for i = 1, . . . , n do
6: q←UT bi/‖bi‖2
7: D←QTΣW bidiagonal matrix obtained by bulge chasing [195, Algorithm 3.4]
8: Compute singular values σ1, . . . , σm of (I − e1e

T
1 )D

9: Apply Summation Algorithm [161, Algorithm 1] to compute cm−k+t−1(BiB
T
i )

and cm−k+t(BiB
T
i ) from eigenvalues σ2

1, . . . , σ
2
m

10: Set ratio←cm−k+t−1(BiB
T
i )/cm−k+t(BiB

T
i )

11: if ratio < minRatio then Set minRatio←ratio and it←i end if
12: end for
13: Append index S ← (S, it)
14: Compute orthonormal basis Q of A(:, S)
15: B←A−QQTA
16: end for

the bound. Any such i1 is a suitable choice. More generally, suppose that i1, . . . , it−1

have already been selected such that

E
[
‖A− πX1,...,XkA‖

2
F | X1 = i1, . . . , Xt−1 = it−1

]
≤ (k + 1)(σ2

k+1 + . . .+ σ2
m)

holds. This implies the existence of it such that

E
[
‖A− πX1,...,XkA‖

2
F | X1 = i1, . . . , Xt = it

]
≤ (k + 1)(σ2

k+1 + . . .+ σ2
m). (4.8)

Again, there is no need to choose an index it that minimizes the left-hand side; any it
such that (4.8) holds is a suitable choice. By induction, choosing in every step an index
such that (4.8) is verified implies that the error bound (2.10) holds.

The discussion above suggests to modify Algorithm 4.1 such that it computes

bound←(k + 1) ·
(
σ2
k+1 + . . .+ σ2

m

)
in the beginning and substitute line 11 with
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11: if (k − t+ 1) · ratio ≤ bound then Set it←i and break end if

To be able to stop the search early, it is important to test the columns in a suitable
order. We found it beneficial to test the columns of B in descending Euclidean norm. For
each step t, computing the norms of all columns of B and sorting them has complexity
O(mn+ n log n).

Although this choice is clearly heuristic, the following lemma provides some justification
for it by showing that the column of largest norm is the right choice for k = 1 provided
that all other columns are sufficiently small.

Lemma 4.1. Let A =

[
a1 A2

]
. If ‖A2‖F ≤ ‖a1‖2 then choosing the first column solves

the column selection problem for k = 1, that is,

‖A− a1a
†
1A‖

2
F ≤ 2(σ2

2 + . . .+ σ2
m).

Note that the condition of the lemma is satisfied if the column norms of A decay
sufficiently fast, for instance if ‖ai‖2 ≤ ‖a1‖2i for i = 2, . . . , n.

Proof. Without loss of generality we may assume that ‖a1‖2 = 1. By setting B =

A2 − a1a
†
1A2 = A2 − a1a

T
1 A2 and b = AT2 a1, we have

ATA =

1 bT

b AT2 A2

 =

1 bT

b BTB + bbT


and obtain

‖ATA‖2 ≤

∥∥∥∥∥∥∥
 1 ‖b‖2

‖b‖2 ‖BTB + bbT ‖2


∥∥∥∥∥∥∥

2

≤

∥∥∥∥∥∥∥
 1 ‖b‖2

‖b‖2 ‖B‖2F + ‖b‖22


∥∥∥∥∥∥∥

2

. (4.9)

Here, the first inequality is a norm-compression inequality [27, Section 9.10] and the
second inequality follows from the fact that the involved matrices are positive.

We aim at proving

‖A− a1a
†
1A‖

2
F = ‖B‖2F ≤ 2(‖A‖2F − ‖A‖22),
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which is equivalent to

‖A‖22 ≤ 1 + ‖b‖22 +
‖B‖2F

2
=: γ.

Thus, it remains to show that the larger eigenvalue of the symmetric positive definite
2× 2 matrix on the right-hand side of (4.9) is bounded by γ. For this purpose, we note
that its characteristic polynomial is given by

p(λ) = (λ− 1)
(
λ− ‖b‖22 − ‖B‖2F

)
− ‖b‖22.

Setting γ = 1 + ‖b‖22 + ‖B‖2F /2, we obtain

p(γ) = ‖B‖2F /2 ·
(
1− ‖b‖22 − ‖B‖2F /2

)
≥ 0,

where we used that ‖b‖22 + ‖B‖2F = ‖A2‖2F ≤ ‖a1‖22 = 1. Because p is a parabola with
vertex (1 + ‖b‖22 + ‖B‖2F )/2 ≤ γ, it follows that the larger root of p is bounded by γ,
which completes the proof.

It is important to not draw too many conclusions from Lemma 4.1. Consider, for
example, the matrix

A =


1 0 10−b

0 1 10−b

0 0 10−2b


for some b > 1, say b = 16. For k = 1, the optimal choice is the third column, which
is the one of smallest norm. This matrix also nicely illustrates that the obvious greedy
approach (in order to get k columns of A, one first chooses the column i1 that minimizes
‖A− πi1A‖F , then the column i2 that minimizes ‖A− πi1,i2A‖F , and so on) comes with
no guarantees and may, in fact, utterly fail. For k = 2 the optimal choice consists of
the first two columns. On the other hand, the greedy approach for k = 2 first selects
the third column and then the first column, resulting in the arbitrarily bad error ratio
(error greedy)/(error best) ≈ 10b.

This example also shows that, given a column subset of cardinality k − 1 selected by
Algorithm 4.1 one cannot obtain a suitable selection of k columns by simply performing
another step of Algorithm 4.1. In order to ensure that (2.10) holds, Algorithm 4.1 needs
to be re-run from scratch with k instead of k − 1.
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4.1.5 Numerical experiments

Both variants of Algorithm 4.1, without and with early stopping, have been implemented
in Matlab version R2019a. As the bulge chasing algorithm in line 7 would perform poorly
in Matlab, this part has been implemented in C++ and is called via a MEX interface.
Our implementation is available at https://github.com/Alice94/CSS-Code together with
the codes to reproduce the figures in this chapter. All numerical experiments in this
chapter have been run on an eight-core Intel Core i7-8650U 1.90 GHz CPU, with 256 KB
of level 2 Cache and 16 GB of RAM. Multi-threading has been turned off in order to not
distort the findings.

We have applied the algorithm to the following three matrices:

1. the Hilbert matrix Ahilb ∈ R200×200 given by Ahilb(i, j) = 1
i+j−1 ;

2. Aexp ∈ R100×200 given by Aexp(i, j) = exp(−0.3 · |i− j|/200);

3. Apoly ∈ R100×200 given by Apoly(i, j) =

((
i

200

)20
+
(

j
200

)20
)1/20

.

The obtained results are shown in Figures 4.1, 4.2, and 4.3 respectively. Each left plot
contains, for different values of k, the approximation error ‖A − A(:, S)A(:, S)†A‖F
returned by Algorithm 4.1, without and with early stopping. We compare with the
best rank-k approximation error

√
σ2
k+1 + . . .+ σ2

m and the upper bound (2.10), that is,√
(k + 1)(σ2

k+1 + . . .+ σ2
m). It can be seen that both variants of our algorithm stay below

the upper bound, until it reaches the level of roundoff error. Interestingly, for the matrix
Aexp, which features the slowest singular value decay, the observed approximation error
is much closer to the best approximation error than to the upper bound. The right plots
of the figures show, for different values of k, the ratio between the total execution times
of Algorithm 4.1 without early stopping and with early stopping. For example, for the
matrix Ahilb, using early stopping in Algorithm 4.1 reduces the time for constructing an
approximation of rank k = 15 by a factor 22. For the variant with early stopping, we also
plot the number of columns that were examined. In the most optimistic scenario, only k
columns need to be examined, which means that in every step of the algorithm already the
first satisfies the desired criterion. The plots reveal that our algorithm actually stays pretty
close to this ideal situation, at least for the matrices considered. Note that for values of k
larger than the numerical rank of the matrix, Algorithm 4.1 starts computing ratios (4.5)
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from singular values of the order of machine precision. In turn, the computations are
severely affected by roundoff error and it may, in fact, happen that the early stopping
criterion is never satisfied. This leads to meaningless results and we therefore truncate
the plots before this happens. A proper implementation of Algorithm 4.1 needs to detect
such a situation and reduce k accordingly.
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Figure 4.1 – Results for matrix Ahilb.
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Figure 4.2 – Results for matrix Aexp.
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Figure 4.3 – Results for matrix Apoly.

4.2 Matrix approximation

In this section, we extend the developments from Section 4.1 on column subset selection to
compute certain low-rank matrix approximations of a matrix A ∈ Rm×n with m ≤ n. We
will pursue two ways. First, in Section 4.2.1, we discuss a general CUR approximation (see
Section 2.3) obtained from applying column subset selection to the columns and rows of
the matrix. Second, in Section 4.2.2, we present a novel approach to cross approximation,
with guaranteed error bounds.

4.2.1 CUR approximation induced by column subset selection

As mentioned in Section 2.3, when a subset of columns C ∈ Rm×k and a subset of rows
R ∈ Rk×n have been chosen, the matrix U ∈ Rk×k that minimizes ‖A− CUR‖F is given
by the projection U = C†AR†, see [175, p. 320]. The following corollary provides an error
bound for the case when C and R are determined by the techniques from Section 4.1,
leading to Algorithm 4.2. The results in [63, Theorem 4], [166, Corollary 3.5], and [172,
Theorem 4.1] are closely related.

Corollary 4.2. Let A ∈ Rm×n, with 1 ≤ k ≤ m ≤ n. Then the CUR approximation
returned by Algorithm 4.2 satisfies

‖A− CUR‖F ≤
√

2k + 2
√
σ2
k+1(A) + . . .+ σ2

m(A).
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4.2. Matrix approximation

Algorithm 4.2 Matrix approximation by column subset selection

Input: A ∈ Rm×n, rank k
Output: Rank-k CUR approximation, with C,R containing columns and rows of A
1: Compute C by applying Algorithm 4.1 to select k columns of A
2: Compute R by applying Algorithm 4.1 to select k columns of AT

3: Compute U←C†AR†

Proof. Using the inequality (2.10) twice and the fact that CC† is an orthogonal projection,
we obtain

‖A− CUR‖2F = ‖A− CC†AR†R‖2F
= ‖A− CC†A‖2F + ‖CC†(A−AR†R)‖2F
≤ ‖(I − CC†)A‖2F + ‖A(I −R†R)‖2F
≤ 2(k + 1)

(
σ2
k+1(A) + . . .+ σ2

m(A)
)
.

Numerical experiments

We have tested a Matlab implementation of Algorithm 4.2 in the setting and for the
matrices Ahilb, Aexp, Apoly described in Section 4.1.5. Figure 4.4 displays the obtained
approximation errors ‖A− CUR‖F for different values of k. Again, we have tested both
variants of Algorithm 4.1, without and with early stopping, within Algorithm 4.2. The
speedups obtained from early stopping are very similar to the ones reported Section 4.1.5
and, therefore, we refrain from providing details.

We also consider, for 0 < α < 1, the n× n matrix

A = Q · diag(1, α, α2, . . . , αn−1) ·QT ,

where Q ∈ Rn×n is determined as the orthogonal factor from the QR decomposition of

1

−1 1

−1 −1 1

...
...

. . .

−1 −1 −1 · · · 1


.
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Figure 4.4 – Approximation errors for matrices Ahilb (top left), Aexp (top right), and Apoly

(bottom).

This is known to be a challenging example for the CUR approximation induced by
DEIM (discrete interpolation method); see [172, Section 4.2], which determines the row
and column indices by greedily choosing a maximum volume submatrix of Uk and Vk
containing the first k left and right singular vectors of A, respectively. For the example
above, the DEIM induced CUR approximation always chooses 1, . . . , k for the column
and row indices. For α = 0.1, n = 6, k = 5, the error resulting from this choice is given by

‖A−A(:, 1 : 5)A(:, 1 : 5)†AA(1 : 5, :)†A(1 : 5, :)‖F ≈ 2.6 · 10−9,

which is a magnitude larger than the upper bound
√

2(k + 1)σ6 ≈ 3.5 · 10−10 guaranteed
by Algorithm 4.2. Note that the latter algorithm selects the last 5 rows and columns for
this example, leading to an error of ≈ 1.3 · 10−10.
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4.2.2 Cross approximation

We now consider cross approximations (Definition 2.3). As discussed in Section 2.1.1
and Chapter 3, it is crucial to choose the row/column index tuples (I, J) ∈ Ω :=

{1, . . . ,m}k × {1, . . . , n}k wisely. In particular, as the following example shows, choosing
the indices I, J as in Algorithm 4.2 may lead to poor approximation error.

Example 4.3. Consider A = [ 2ε 1
1 ε ] for ε > 0 and k = 1. Clearly, the first column and

row satisfy the bound (2.10) for k = 1 with respect to A and AT , respectively. However, the
error of the corresponding cross approximation, ‖A−A(:, 1)A(1, 1)−1A(1, :)‖F = 1

2ε − ε,
becomes arbitrarily large as ε→ 0.

Zamarashkin and Osinsky [196] have shown the existence of a cross approximation
that satisfies a polynomial error bound in the Frobenius norm. To summarize their result,
let

(X,Y ) = (X1, . . . , Xk, Y1, . . . , Yk)

be a (2k)-tuple of random variables with values in Ω such that

P (X = I, Y = J) :=
Vol 2 (A(I, J))∑

(I′,J ′)∈Ω Vol 2(A(I ′, J ′))
. (4.10)

Note that Vol (A(I, J)) = 0 whenever i1, . . . , ik or j1, . . . , jk contain repeated indices.
Then [196, Theorem 1] shows that

E[‖A−A(:, Y )A(X,Y )−1A(X, :)‖2F ] ≤ (k + 1)2
(
σ2
k+1 + . . .+ σ2

m

)
. (4.11)

In particular, this implies that there exists (I, J) ∈ Ω such that (2.7) holds.

In analogy to Section 4.1.1 and [57], we will now derandomize this result producing
a polynomial-time deterministic algorithm that returns a cross approximation satisfy-
ing (2.7). The key for doing so is to find an expression for the conditional expectations
that is easy to work with.
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Conditional expectations

Lemma 4.4. Let 1 ≤ t ≤ k and (i1, . . . , it, j1, . . . , jt) be such that

P
(
X1=i1,...,Xt=it
Y1=j1,...,Yt=jt

)
> 0

for a random (2k)-tuple (X,Y ) with the probability distribution defined by (4.10). Consider

B = A−A (:, (j1, . . . , jt))A ((i1, . . . , it), (j1, . . . , jt))
−1A ((i1, . . . , it), :) ,

the remainder of cross approximation after choosing row indices i1, . . . , it and column
indices j1, . . . , jt. Then

E
[
‖A−A(:, Y )A(X,Y )−1A(X, :)‖2F

∣∣∣X1=i1,...,Xt=it
Y1=j1,...,Yt=jt

]
= (k − t+ 1)2 · cm−k+t−1(BBT )

cm−k+t(BBT )
,

where the coefficients cm−k+t, cm−k+t−1 are defined as in (4.4) and the expectation is
taken with respect to the distribution (4.10) defined on the (2k)-tuples in Ω.

Proof. To simplify notation, we let I1 = (i1, . . . , it), I2 = (it+1, . . . , ik), I = (I1, I2) =

(i1, . . . , ik) and define J1, J2, J analogously. In the following, we always use the convention
that row and column summation indices range from 1 to m and from 1 to n, respectively.
We have that

E
[
‖A−A(:, Y )A(X,Y )−1A(X, :)‖2F

∣∣∣X1=i1,...,Xt=it
Y1=j1,...,Yt=jt

]
=

∑
it+1,...,ik
jt+1,...,jk

‖A−A(:, J)A(I, J)−1A(I, :)‖2F · P
(
X = I, Y = J

∣∣∣X1=i1,...,Xt=it
Y1=j1,...,Yt=jt

)

=
1

γ
·

∑
it+1,...,ik,ik+1
jt+1,...,jk,jk+1

Vol 2
(
A((I, ik+1), (J, jk+1))

)
, (4.12)

with
γ =

∑
it+1,...,ik
jt+1,...,jk

Vol 2(A(I, J)).
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For establishing the equality in (4.12) we used from [196, Lemma 1] that

‖A−A(:, J)A(I, J)−1A(I, :)‖2F =

∑
ik+1,jk+1

Vol 2
(
A((I, ik+1), (J, jk+1))

)
Vol 2(A(I, J))

,

and, from (4.10), that

P
(
X = I, Y = J

∣∣∣X1=i1,...,Xt=it
Y1=j1,...,Yt=jt

)
=

P(X = I, Y = J)

P
(
X1=i1,...,Xt=it
Y1=j1,...,Yt=jt

) =
1

γ
· Vol 2(A(I, J)).

We now aim at simplifying the expression (4.12). For this purpose, we assume without
loss of generality that i1 = 1, . . . , it = t and j1 = 1, . . . , jt = t. This allows us to partition

A(I, J) =

A(I1, J1) A(I1, J2)

A(I2, J1) A(I2, J2)

 , B(I, J) =

0 0

0 B(I2, J2)

 ,
where B(I2, J2) = A(I2, J2) − A(I2, J1)A(I1, J1)−1A(I1, J2) by the definition of B. By
the relation between determinants and Schur complements [112, Equation (0.8.5.1)],
Vol (A(I, J)) = Vol (A(I1, J1)) · Vol (B(I2, J2)). Therefore,

γ =
∑

it+1,...,ik
jt+1,...,jk

Vol 2(A(I, J)) =
∑

it+1,...,ik
jt+1,...,jk

Vol 2(B(I2, J2)) · Vol 2(A(I1, J1)).

Analogously, one shows

∑
it+1,...,ik+1
jt+1,...,jk+1

Vol 2
(
A((I, ik+1), (J, jk+1))

)

=
∑

it+1,...,ik+1
jt+1,...,jk+1

Vol 2
(
B((I2, ik+1), (J2, jk+1))

)
Vol 2(A(I1, J1)).

Inserting these expressions into (4.12) yields

∑
it+1,...,ik+1
jt+1,...,jk+1

Vol 2
(
B((I2, ik+1), (J2, jk+1))

)
∑

it+1,...,ik
jt+1,...,jk

Vol 2(B(I2, J2))
.
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By [119, Theorem 7] this ratio is equal to

cm−k+t−1(BBT ) · ((k − t+ 1)!)2

cm−k+t(BBT ) · ((k − t)!)2 = (k − t+ 1)2 · cm−k+t−1(BBT )

cm−k+t(BBT )
.

Derandomized cross approximation algorithm

With Lemma 4.4 at hand, we can proceed analogously to Section 4.1.1 and sequentially
find k pairs of row/column indices such that (2.7) is satisfied. Suppose that t− 1 index
pairs (i1, j1), . . . , (it−1, jt−1) have been determined. Then the tth step of the algorithm
proceeds by choosing (it, jt) such that

E
[
‖A−A(:, Y )A(X,Y )−1A(X, :)‖2F

∣∣∣X1=i1,...,Xt=it
Y1=j1,...,Yt=jt

]
(4.13)

is minimized. We will show in Theorem 4.5 below that this choice of index pairs leads to
a cross approximation satisfying the desired error bound (2.7). In view of Lemma 4.4,
the minimization of (4.13) means that in each step of the algorithm we need to compute
the ratios

cm−k+t−1(CijC
T
ij)

cm−k+t(CijC
T
ij)

, i = 1, . . . ,m, j = 1, . . . , n, (4.14)

where

Cij = A−A(:, (j1, . . ., jt−1, j))A((i1, . . ., it−1, i), (j1, . . ., jt−1, j))
−1A((i1, . . ., it−1, i), :).

Analogous to the developments in Section 4.1.2, we now show how the coefficients
in (4.14) can be computed via updating the singular values of Cij . Let us denote the
remainder from the previous step by

B = A−A(:, (j1, . . ., jt−1))A((i1, . . ., it−1), (j1, . . ., jt−1))−1A((i1, . . ., it−1), :).

Then it follows that
Cij = B − 1

B(i, j)
B(:, j)B(i, :), (4.15)

see, e.g., [13]. We compute a thin SVD B = UΣV T such that U ∈ Rm×m, V ∈ Rm×n

have orthonormal columns and Σ ∈ Rm×m is diagonal. Note that

B(:, j) = UΣV (j, :)T , B(i, :) = U(i, :)ΣV T .
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4.2. Matrix approximation

Inserted into (4.15), this shows that the nonzero singular values of Cij match the singular
values of

UTCijV = Σ− ΣV (j, :)T · U(i, :)Σ

B(i, j)
= Σ− xyT ,

where x = ΣV (j, :)T and y = 1
B(i,j)ΣU(i, :)T are vectors of length m and can be computed

with O(m2) operations.

Similarly as in Section 4.1.2, we transform Σ− xyT into bidiagonal form, after which
its singular values can be computed with O(m2) operations. This transformation proceeds
in three steps:

1. We compute orthogonal matrices Q and W such that QTΣW is upper bidiagonal
and QTx = ±‖x‖2 · e1 using, for example, [195, Algorithm 3.4]. In turn, the matrix

D1 := QT (Σ− xyT )W (4.16)

is bidiagonal with an additional nonzero first row; see the first plot in Figure 4.5 for
an illustration.

2. By a bulge chasing algorithm, we transform D1 to an upper banded matrix D2

with two superdiagonals using O(m2) Givens rotations. We refrain from giving a
detailed description of the algorithm and refer to Figure 4.5 for an illustration.

3. The banded matrix D2 is reduced to a bidiagonal matrix D3 using the LAPACK [3]
routine dgbbrd.

The overall procedure described above can be implemented by means of O(m2) Givens
rotations, each of which is applied to a small matrix of size independent of m,n. Hence,
it has complexity O(m2).

Algorithm 4.3 summarizes our newly proposed method for cross approximation. The
SVD needed at the beginning of each outer loop is of complexity O(m2n) and each of the
mn inner loops costs O(m2) operations; the total complexity of Algorithm 4.3 is therefore
O(knm3).

Theorem 4.5. For a matrix A of rank at least k, Algorithm 4.3 returns index sets I and
J such that (2.7) is satisfied.
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Figure 4.5 – Illustration of bulge chasing algorithm to transform a bidiagonal matrix with an
additional nonzero first row to an upper banded matrix. In each plot, except for the first and last
ones, a Givens rotation is applied to a pair of row or columns to zero out the entry denoted by ⊗.
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Proof. Let B{X,Y } = A−A(:, Y )A(X,Y )−1A(X, :). For t = 1, . . . , k we have that

E
[
‖B{X,Y }‖2F

∣∣∣X1=i1,...,Xt−1=it−1
Y1=j1,...,Yt−1=jt−1

]
=
∑
i,j

E
[
‖B{X,Y }‖2F

∣∣∣X1=i1,...,Xt−1=it−1,Xt=i

Y1=j1,...,Yt−1=jt−1,Yt=j

]
P
(
Xt = i, Yt = jt

∣∣∣X1=i1,...,Xt−1=it−1
Y1=j1,...,Yt−1=jt−1

)
.

Therefore, as (4.11) holds, the choice (4.13) inductively ensures that

E
[
‖B{X,Y }‖2F

∣∣∣X1=i1,...,Xt=it
Y1=j1,...,Yt=jt

]
≤ E

[
‖B{X,Y }‖2F

∣∣∣X1=i1,...,Xt−1=it−1
Y1=j1,...,Yt−1=jt−1

]
≤ (k + 1)2(σ2

k+1 + . . .+ σ2
m).
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4.2. Matrix approximation

Algorithm 4.3 Derandomized cross approximation

Input: A ∈ Rm×n with m ≤ n, integer k ≤ m
Output: Index sets I, J of cardinality k defining the cross approximation (2.3)
1: Initialize I ← (), J ← (), and B ← A
2: for t = 1, . . . , k do
3: [U,Σ, V ]← thin SVD of B
4: minRatio←+∞
5: for i = 1, . . . ,m do
6: for j = 1, . . . , n do
7: x← ΣV (j, :)T , y ← 1

B(i,j)ΣU(i, :)T

8: Compute matrix D1 defined in (4.16) using [195, Algorithm 3.4]
9: Transform D1 into upper banded form D2 using bulge chasing algorithm

10: Transform D2 into bidiagonal matrix D3 using LAPACK’s dgbbrd
11: Compute singular values σ1, . . . , σm of D3

12: Apply Summation Algorithm [161, Algorithm 1] to obtain cm−k+t−1(CijC
T
ij)

and cm−k+t(CijC
T
ij) from eigenvalues σ2

1, . . . , σ
2
m

13: Set r← cm−k+t−1(CijC
T
ij)

cm−k+t(CijC
T
ij)

14: if r < minRatio then Row← i, Col← j, minRatio←r end if
15: end for
16: end for
17: I ← (I,Row), J ← (J,Col)

18: B ← B − B(:,Col)·B(Row,:)
B(Row,Col)

19: end for

Therefore, the index sets I and J computed by Algorithm 4.3 satisfy the bound (2.7).

In analogy to the discussion in Section 4.1.4, let us emphasize that it is not necessary
to select the pair (it, jt) that minimizes the ratio r. Any pair (i, j) for which the inequality

(k − t+ 1)2
cm−k+t−1(CijC

T
ij)

cm−k+t(CijC
T
ij)
≤ (k + 1)2(σ2

k+1(A) + . . .+ σ2
m(A)) (4.17)

holds will lead to index sets I and J such that (2.7) is satisfied. Inspired by ACA with full
pivoting (Algorithm 3.1), we traverse the entries of B from the largest to the smallest (in
magnitude) and stop the search once we have found an index pair (it, jt) satisfying (4.17).
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A (theoretically) faster algorithm

It is possible to improve the worst-case time complexity of the derandomized cross
approximation algorithm from O(knm3) to O(knm2). This does not improve the practical
performance of the algorithm because in practice (see the numerical experiments’ section)
the heuristic criterion for choosing the new entries as the largest entries of B usually works
well; however, it is satisfying from a theoretical point of view, as it gives an algorithm of
the same time complexity as column subset selection1.

We start with the following lemma.

Lemma 4.6. Let A ∈ Rm×k with k ≤ m. If to each column of A a linear combination of
the other columns is added, the volume does not change.

Proof. Adding to a column a linear combination of other columns means computing
AB for a matrix B ∈ Rk×k which has ones on the diagonal and has only one column
with nonzero entries elsewhere, therefore detB = 1. Therefore, ( VolA)2 = det(ATA) =

det((AB)T (AB)) = ( Vol (AB))2.

Lemma 4.7. Let 0 ≤ t < k and (i1, . . . , it, j1, . . . , jt, jt+1) be such that

P
(
X1=i1,...,Xt=it
Y1=j1,...,Yt=jt

, Yt+1 = jt+1

)
> 0

for a random (2k)-tuple (X,Y ) with the probability distribution defined by volume sampling.
Consider

B = A−A(:, (j1, . . . , jt))A((i1, . . . , it), (j1, . . . , jt))
−1A((i1, . . . , it), :),

the remainder of cross approximation after choosing row indices i1, . . . , it and column
indices j1, . . . , jt, and the matrix C = B − πjt+1B.

Then

E
[
‖A−A(:, Y )A(X,Y )−1A(X, :)‖2F | X1=i1,...,Xt=it

Y1=j1,...,Yt=jt
, Yt+1 = jt+1

]
1The discussion in this subsection follows from a discussion with Alexander Osinsky and Nikolai

Zamarashkin at the 5th International Conference on Matrix Methods in Mathematics and Applications,
in August 2019 in Moscow, and is not contained in the paper [45].
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4.2. Matrix approximation

= (k − t)(k − t+ 1)
cm−k+t(CC

T )

cm−k+t+1(CCT )
,

with the coefficients cm−k+t, cm−k+t−1 defined as the coefficients of the characteristic
polynomial.

Proof. Using the same notation as in Lemma 4.4, we have that

E
[
‖A−A(:, Y )A(X,Y )−1A(X, :)‖2F | X1=i1,...,Xt=it

Y1=j1,...,Yt=jt
, Yt+1 = jt+1

]
=

∑
it+1,...,ik
jt+2...,jk

‖A−A(:, J)A(I, J)−1A(I, :)‖2F ·
P(X = I, Y = J)

P
(
X1=i1,...,Xt=it
Y1=j1,...,Yt=jt

, Yt+1 = jt+1

)
=

∑
it+1,...,ik+1
jt+2...,jk+1

Vol (A((I, ik+1), (J, jk+1)))2
/ ∑

it+1,...,ik
jt+2...,jk

Vol (A(I, J))2

=
∑

it+1,...,ik+1
jt+2...,jk+1

Vol (B((I2, ik+1), (J2, jk+1)))2
/ ∑

it+1,...,ik
jt+2...,jk

Vol (B(I2, J2))2

=
(k − t+ 1)!

(k − t)!
∑

jt+2,...,jk+1

Vol (B(:, (J2, jk+1)))2
/ ∑
jt+2,...,jk

Vol (B(:, J2))2

= (k − t+ 1)
∑

jt+2,...,jk+1

Vol (C(:, (jt+2, . . . , jk+1)))2
/ ∑
jt+2,...,jk

Vol (C(:, (jt+2, . . . , jk)))
2

= (k − t+ 1)
(k − t)!cm−k+t(CC

T )

(k − t− 1)!cm−k+t+1(CCT )
= (k − t+ 1)(k − t) cm−k+t(CC

T )

cm−k+t+1(CCT )
.

All equalities but the fifth follow similarly to the proof of Lemma 4.4. For the fifth
equality, note that C is obtained from B by adding a multiple of the jk+1th column of B.
Therefore,

VolB(:, J2)2 = Vol

([
C(:, (jt+2, . . . , jk)) B(:, jt+1)

])2

= det

([
C(:, (jt+2, . . . , jk)) B(:, jt+1)

]T [
C(:, (jt+2, . . . , jk)) B(:, jt+1)

])

= det

C(:, (jt+2, . . . , jk))
TC(:, (jt+2, . . . , jk)) 0

0 ‖B(:, jt+1)‖22


= Vol (C(:, (jt+2, . . . , jk)))

2 · ‖B(:, jt+1)‖22.
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The third equality follows from the fact that CTB(:, jt+1) = 0. Analogously,

VolB(:, (J2, jk+1))2 = Vol (C(:, (jt+2, . . . , jk+1)))2 · ‖B(:, jt+1)‖22,

so the factor ‖B(:, jt+1)‖22 is present in both the numerator and the denominator and it
simplifies.

Combined with Lemma 4.4, Lemma 4.7 shows that, instead of choosing an index
pair at each step as in Algorithm 4.3, we can subsequently select j1, i1, j1, i2, . . ., jk,
ik. Selecting each index costs O(nm2), leading to an O(knm2) cross approximation
algorithm.

Numerical experiments

We have implemented both variants of Algorithm 4.3, without and with early stopping,
in Matlab. Again, the two inner loops have been implemented in a C++ function that
is called via a MEX interface. The computational environment is the one described
in Section 4.1.5 but the test matrices are smaller because Algorithm 4.3 without early
stopping is significantly slower. We choose Ahilb to be 100× 100, Aexp to be 50× 100,
and the matrix Apoly ∈ R50×100 is given by

Apoly(i, j) =

((
i

100

)10

+

(
j

100

)10
)1/10

.

The approximation error ‖EIJ‖F = ‖A − A(:, J)A(I, J)−1A(I, :)‖F for the index
sets returned by both variants of Algorithm 4.3 is displayed in the left plots of Fig-
ures 4.6, 4.7, 4.8. The right plots display the ratios between the execution time of
Algorithm 4.3 without and with early stopping, as well as the total number of index pairs
that needed to be tested in Algorithm 4.3 with early stopping. It can be observed that
early stopping dramatically accelerates the computation and is thus the preferred variant.

It can be seen that the approximation errors often stay close to the best rank-k
approximation error

√
σ2
k+1 + . . .+ σ2

m and do not exceed the upper bound (2.7), modulo
roundoff error. However, for larger values of k, Algorithm 4.3 without early stopping
appears to encounter stability issues; the approximation error is distorted well above
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Figure 4.6 – Results for matrix Ahilb.
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Figure 4.7 – Results for matrix Aexp.

the level of roundoff error. To better understand the numerical instability of our cross
approximation algorithm, we analyzed what happens for the matrix Apoly for rank k = 43,
for which Algorithm 4.3 without early stopping gives a cross approximation error out of
the bounds predicted by (2.7). We computed the Frobenius norm of the intermediate
residuals

A−A(:, (j1 . . . jt)) ·A((i1 . . . it), (j1 . . . jt))
−1 ·A((i1 . . . it), :) (4.18)

for t = 1, . . . , 43, for the index sets given by Algorithm 4.3 with and without early
stopping. We used Matlab’s vpa with 200 digits of accuracy to compute the Frobenius
norm of the residual. The results are shown in Figure 4.9. The intermediate residuals
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Figure 4.8 – Results for matrix Apoly.
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Figure 4.9 – Frobenius norm of the residual (4.18) for t = 1, . . . , k for the matrix Apoly with
target rank k = 43, when using Algorithm 4.3 with and without early stopping.

grow significantly in Algorithm 4.3 without early stopping, which may completely spoil
the accuracy of the singular values computed in lines 7–11. As these are needed to
determine the indices to select at each step, this selection is not guaranteed to satisfy the
bound (4.17). For Apoly and k = 43, this happens for the first time at iteration t = 34.

Such an intermediate growth of the residual can already happen for small matrices.
For example, consider

A =


−10−4 3 −4

4 1 2

8 −1 1

 .
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When aiming at a rank-2 approximation, the choice that minimizes the expectation at
the first step is the pivot in position (1, 1), which results in a residual more than 104

larger than the norm of the original matrix.

The intermediate growth of the residuals may explain why Algorithm 4.3 with early
stopping shows more stability in the examples we considered: If possible, it chooses one
of the largest entries of the residual, which, in turn, should prevent the residuals from
becoming too large. However, there are no results that ensure that we can take a “large
entry” at each step of the algorithm; further investigation would be needed to understand
the stability of Algorithm 4.3 with early stopping.

We also consider the n× n matrix A = LDLT , where

L =



1

−c 1

−c −c 1

...
...

. . .

−c −c −c · · · 1


, D =



1

s2

s4

. . .

s2(n−1)


with s = sin(θ), c = cos(θ) for some 0 < θ < π. This is known to be a challenging example
for greedy cross approximation [106]: When k = n− 1 the greedy algorithm selects the
leading k × k submatrix and returns an approximation error that is exponentially larger
than the best approximation error. In contrast, Algorithm 4.3, with and without early
stopping, makes the correct choice by selecting the last n − 1 rows and columns. For
instance, for n = 6 and θ = 0.1, we obtain the error

‖A−A(:, 2 : 6)A(2 : 6, 2 : 6)−1A(2 : 6, :)‖F ≈ 3.9 · 10−13 < 1.8 · 10−12 ≈
√

6σn.

Selecting the first 5 rows and columns results in an error of 9.8 · 10−11.

Finally, we would like to point out an interesting observation concerning the preserva-
tion of structure. In Section 3.1, we have shown that for a symmetric positive definite
matrix A there is always a symmetric choice of indices, J = I, leading to a symmetric
cross approximation such that the favorable error bound (2.4) is attained. For cross
approximation in the Frobenius norm, the situation appears to be more complicated; it is
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generally not true that a symmetric choice of indices achieves the error bound (2.7) even
when A is symmetric positive definite. For instance, for n = 3 and k = 1 consider

A =


1.87 −1.82 −2.11

−1.82 1.87 2.11

−2.11 2.11 2.54

 .

The best symmetric choice is I = J = (3) but this leads to an error ≈ 0.1911 >

2
√
σ2

2 + σ2
3 ≈ 0.1821.

4.3 Tensor approximation

As mentioned in Section 2.4, column subset selection can be used to approximate tensors
as well. In the following, we demonstrate the use of the algorithm from Section 4.1 to
obtain approximations of low multilinear rank constructed from the fibers of a third-order
tensor A ∈ Rn1×n2×n3 .

Algorithm 4.4 produces an approximate Tucker decomposition for a given tensor such
that each coefficient matrix Bµ is composed of µ-mode fibers. The following result shows
that the obtained approximation error remains close to the best approximation error.

Algorithm 4.4 Approximation of tensors by column selection

Input: Tensor A ∈ Rn1×n2×n3 , integers k1, k2, k3

Output: Approximate Tucker decomposition of multilinear rank (k1, k2, k3) in terms of
coefficient matrices B1, B2, B3 and core tensor C

1: for µ = 1, 2, 3 do
2: Compute Bµ←A(µ)(:, Sµ) by applying Algorithm 4.1 to select kµ columns from

A(µ)

3: end for
4: Compute C←A×1 B

†
1 ×2 B

†
2 ×3 B

†
3

Corollary 4.8. Consider A ∈ Rn1×n2×n3 and integers k1, k2, k3 such that 1 ≤ kµ ≤ nµ

for µ = 1, 2, 3. Then the output of Algorithm 4.4 satisfies

‖A − C ×1 B1 ×2 B2 ×3 B3‖F ≤
√
k1 + k2 + k3 + 3 · ‖A − Abest‖F ,

where Abest is the best Tucker approximation of A of multilinear rank at most (k1, k2, k3).
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Proof. The proof is similar to existing proofs on the quasi-optimality of the Higher-Order
SVD [54] and related results in [62, 90, 166].

Using (2.10) and setting πµ = BµB
+
µ , the result of Algorithm 4.1 applied to A(µ)

satisfies

‖A(µ) − πµ(A(µ))‖2F ≤ (kµ + 1)
(
σ2
kµ+1(A(µ)) + . . .+ σ2

nµ(A(µ))
)

≤ (kµ + 1)‖A(µ) −A(µ)
best‖

2
F = (kµ + 1)‖A −Abest‖2F ,

where the second inequality follows from the fact that A(µ)
best, the µ-mode matricization of

Abest, has rank at most kµ. Using the orthogonality of the projections πµ, we obtain

‖A − C ×1 B1 ×2 B2 ×3 B3‖2F = ‖A −A×1 π1 ×2 π2 ×3 π3‖2F
= ‖A −A×1 π1‖2F + ‖(A−A×2 π2)×1 π1‖2F + ‖(A−A×3 π3)×1 π1 ×2 π2‖2F

≤
3∑

µ=1

‖A −A×µ πµ‖2F =

3∑
µ=1

‖A(µ) − πµ(A(µ))‖2F ≤
3∑

µ=1

(kµ + 1)‖A −Abest‖2F

= (k1 + k2 + k3 + 3)‖A −Abest‖2F ,

where the second equality follows from [186, Theorem 5.1].

Remark 4.9. Algorithm 4.4 easily generalizes to tensors of arbitrary order. Given a
tensor A ∈ Rn1×...×nd and integers k1, . . . , kd, this generalization constructs subsets of
fibers B1, . . . , Bd and a core tensor C such that

‖A − C ×1 B1 ×2 . . .×d Bd‖F ≤
√
k1 + . . .+ kd + d · ‖A − Abest‖F .

This compares favorably with other existence results in the literature, which feature much
larger constants that grow exponentially with the order; see [90], [149, Theorem 3.1],
and [166, Theorem 3.1].

4.3.1 Numerical experiments

We have implemented Algorithm 4.4 in Matlab and tested it on two 50 × 50 × 50

tensors, given by Ahilb(i, j, h) = 1
i+j+h−1 and Apoly(i, j, h) =

(
i10 + j10 + h10

)1/10
/50.

We choose k1 = k2 = k3 = k and report in Figure 4.10 the obtained approximation errors
‖A − C ×1 B1 ×2 B2 ×3 B3‖F for different values of k, where B1, B2, B3, C are returned
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Chapter 4. Low-rank approximation in the Frobenius norm by column and
row subset selection

by Algorithm 4.4, with and without early stopping in the column selection part. We
compare with the quantity

( 3∑
µ=1

σ2
kµ+1(A(µ)) + . . .+ σ2

nµ(A(µ))

)1/2

,

which provides a (tight) upper bound on the best approximation error. It can be seen
that the errors obtained from Algorithm 4.4 remain close to this quasi-best approximation
error.
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Figure 4.10 – Results for tensors Ahilb (left) and Apoly (right).
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5 Introduction to matrix functions

This second part of the thesis is concerned with matrix functions. The formal definition
is the following.

Definition 5.1. For A ∈ Rn×n and a complex-valued function f which is analytic on
and inside a contour Γ which encloses the eigenvalues of A, the matrix function f(A) is
defined as

f(A) :=
1

2πi

∫
Γ
f(z)(zIn −A)−1dz,

where In ∈ Rn×n denotes the identity matrix.

In fact, it is not necessary for f to be analytic inside Γ in order to define the matrix
function f(A). For example, when A is diagonalizable, that is, A = V · diag(λ1, . . . , λn) ·
V −1, and the function f is defined on the eigenvalues λ1, . . . , λn of A, the definition above
is equivalent to

f(A) := V · diag(f(λ1), . . . , f(λn)) · V −1;

this expression does not depend on the choice of the eigenvector matrix V . When A is
not diagonalizable, f(A) can be defined using the Jordan canonical form. In this case,
letting λ1, . . . , λs be the distinct eigenvalues of A and letting µi be the size of the largest
Jordan block corresponding to the eigenvalue λi, for i = 1, . . . , s, it is sufficient that f
and its derivatives up to the (µi − 1)th order are defined in λi, for all i = 1, . . . , s. We
refer the reader to [110, Section 1.2] for the precise definition of f(A) using the Jordan
canonical form and some additional equivalent definitions.

Functions of matrices arise, for instance, in the solution of ordinary or partial differ-
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Chapter 5. Introduction to matrix functions

ential equations; see, e.g., [65, 128]. A well-known example is that the solution of the
system of linear ordinary differential equationsẋ(t) = Ax(t) x(t) ∈ Rn, A ∈ Rn×n

x(0) = x0 x0 ∈ Rn

is given in closed form by the matrix exponential

x(t) = exp(At)x0 =

∞∑
k=0

tkAk

k!
x0.

Other applications of matrix functions include electronic structure calculations [19, 84]
and social network analysis [70]; see Section 7.2 for some more examples. In some cases,
only some quantities related to matrix functions are of interest. The diagonal of a matrix
function is needed, for instance, in Density Functional Theory [19], electronic structure
calculations [130], and uncertainty quantification [177]. The trace of matrix functions is
used to compute determinants [80] (see also Part III), spectral densities [131], Schatten
p-norms [66], the Estrada index of a graph [70] (which will be defined in Section 7.2.6),
and it also arises in lattice quantum chromodynamics [193].

A general-purpose algorithm for computing matrix functions is the Schur-Parlett
algorithm [51]. For specific choices of f , such as the exponential, the sign function, the
square root, or the logarithm, ad-hoc methods have been developed. We refer the reader
to the book [110] for a detailed discussion of methods for general (dense) matrices.

In this thesis, we focus on the interplay between low-rank structures and matrix
functions, analyzing low-rank updates and functions of rank-structured matrices, for
which fast algorithms can be developed.

5.1 Low-rank updates

The first problem that we consider is the computation of a low-rank update of a matrix
function. More precisely, when a matrix function f(A) has been computed and the matrix
A undergoes an additive low-rank modification R for some R ∈ Rn×n with rank(R)� n,
we are interested in computing f(A+R) without starting from scratch. This means that

74



5.1. Low-rank updates

we look for an efficient way to compute/approximate the update

f(A+R)− f(A).

For example, this is useful when computing matrix functions of adjacency matrices of
graphs in which edges are added or removed: these are rank-2 modifications of the
adjacency matrix. Moreover, having an algorithm for low-rank updates allows us to devise
the D&C algorithms for computing matrix functions that we develop in Chapter 7.

A classical result, the Sherman-Morrison formula, states that if f(z) = z−1 and
rank(R) = 1 then the update has rank 1.

Theorem 5.2 (Sherman-Morrison formula). For a matrix A ∈ Rn×n and vectors b, c ∈ Rn,
it holds

(A+ bcT )−1 −A−1 = −A
−1bcTA−1

1 + cTA−1b
,

provided that all involved quantities exist.

The Sherman-Morrison formula can be generalized to rational functions [28], but
for other matrix functions the update is usually full-rank. However, it was observed
in [18] that in many contexts the update f(A+ bcT )− f(A) is numerically low-rank; see
Figure 5.1 for an example.

In [18, 17] the updates f(A + R) − f(A) are approximated by low-rank matrices
obtained by a Krylov subspace projection method, which we review in Chapter 6.

5.1.1 Contributions

In Chapter 6 we present two extensions of the convergence analysis of the low-rank
updates algorithm presented in [18]. First, we show that the error of the low-rank update
of matrix functions can be linked to polynomial approximation of the derivative of the
function, which simplifies the analysis from [18] for non-symmetric matrices. Second, we
show that the update of the trace of matrix functions has a quicker convergence when the
matrix and the update are symmetric. These results have been published in [17] and [48],
respectively.
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Figure 5.1 – We consider the 1024× 1024 tridiagonal matrix A which has 2 on the diagonal and
−1 on the super-diagonal and sub-diagonal. We denote A = tridiag(−1, 2,−1). We consider a
rank-1 update of the form bbT where b is a unit vector chosen at random, and we consider the
update f(A+ bbT )− f(A) for f(z) = exp(z) (left) and f(z) =

√
z (right). The two plots show

the 30 largest singular values of the update. While the update is mathematically full rank, the
numerical rank is much lower than 1024 in both cases.

5.2 Functions of rank-structured matrices

The second problem that we address is the computation of functions of rank-structured
matrices. For now, let us consider a banded matrix A. If f is well approximated by a
low-degree polynomial p on the spectrum of A, the matrix function f(A) can usually
be well approximated by the banded matrix p(A). Many a priori results confirm this
property. For example, the entries of the inverse of a tridiagonal matrix A decay quickly
with the distance to the diagonal, provided that A is well conditioned [55]. Such decay
properties extend to inverses of symmetric banded matrices [55], to more general matrix
functions of symmetric banded matrices [23], and to symmetric sparse matrices with
more general sparsity patterns [25]. When A is not symmetric, one can prove similar
results via diagonalization assuming a well conditioned eigenvector matrix [24, 158] or by
considering polynomial approximations of f(z) on a larger set, the numerical range of A
(see Definition 6.4) [21, 50].

When f cannot be well approximated on the spectrum of A by a low-degree polynomial,
often other low-rank structures come to the rescue. Let us illustrate this with an example.

Example 5.3. Let A = tridiag(−1, 2,−1) and let us consider the inverse of such matrix.
The matrix A−1 is not tridiagonal nor banded, but it has the property that all off-diagonal
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5.2. Functions of rank-structured matrices

blocks have rank at most 1. Indeed, consider an off-diagonal block of size k×(n−k), without
loss of generality in the upper-right part of A, and note that we have the decomposition

A =

2
. . .

2

3

3

2
. . .

. . .
2

−1
. . .
−1

−1
. . .

. . .
−1

−1
. . .
−1

−1
. . .

. . .
−1

− ·

0
...
0

1

0
...
...
0

1

1 10· · ·0 0 · · · · · · 0

k n− k

= blkdiag(A1, A2)− bbT ,

where A1 and A2 are k × k and (n − k) × (n − k) matrices and b is a vector which
contains 1 in the k-th and (k + 1)th entries; thanks to the Sherman-Morrison formula,
A−1 − blkdiag(A1, A2)−1 = A−1 − blkdiag(A−1

1 , A−1
2 ) has rank 1, and the considered

off-diagonal block of A−1 has rank 1.

The reasoning above can be applied to any invertible tridiagonal matrix A. Similarly,
if we consider a rational function r of degree m and apply it to a tridiagonal matrix A,
one can prove that the off-diagonal blocks of r(A) have rank at most m.

5.2.1 Existing algorithms

For computing a matrix function f(A) when A is banded, one can take f(A) ≈ p(A)

if a good polynomial approximation p of the function f is known a priori. Compared
to A, the width of the band gets multiplied by the degree of the polynomial p. This
technique is used, for instance, in electronic structure methods [84] combined with
Chebyshev interpolation [22]. In [24], polynomial approximation is combined with a
dropping strategy in order to maintain a low bandwidth in the approximation of f(A). A
possible alternative to a priori polynomial approximations is to adapt an existing method
for dense matrices to banded matrices, possibly combining it with thresholding in order
to maintain sparsity; for example, Newton-Schultz iterations have been used for the sign
function in the context of electronic structure calculations [53, 144]. For functions of
banded Toeplitz matrices, structured thresholding techniques have been designed in order
to maintain a Toeplitz plus low-rank structure [30].

When polynomial approximation of f is difficult, one can instead use an a priori
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rational approximation f(A) ≈ r(A) for a rational function r of small degree. Matrices
with off-diagonal blocks with low rank can be stored conveniently in the HSS format [100],
which will be formally introduced in Section 7.1.3, and fast arithmetic can be performed
with them. An advantage of rational approximation is that it also works for matrices that
have off-diagonal low-rank structure but are not necessarily banded. For the exponential,
there exists an excellent rational approximation on the negative real axis [4], which implies
a good approximation of exp(−A) for an SPD matrix A even when the norm of A is large;
see [98] for further examples. Another favorable class of functions is the one of Markov
functions, that has been recently discussed in [16] in the context of a Toeplitz matrix
argument. Rational functions approximating f can also be obtained by discretizing the
Cauchy integral representation of the function; this approach is used, for instance, for
the exponential operator [81], for step functions arising in the computation of spectral
projectors [126], and for matrix functions that may have singularities inside the contour of
integration [136]. An alternative to a priori rational approximation is the use of iterative
methods, such as for the matrix sign function [92] or the matrix square root of an SPD
matrix [100, Section 15.3]; the iterations can be done in HSS arithmetic, and possibly
some truncation strategies are needed in order to maintain a low-rank structure.

5.2.2 Contributions

In Chapter 7 we design new algorithms for approximating functions of matrices with
off-diagonal low-rank structure – for example banded matrices – which can be decomposed
as the sum of a block-diagonal matrix D and a low-rank correction. We approximate the
update f(A)− f(D) with the Krylov subspace projection method described in Chapter 6
and compute f(D) recursively, leading to a D&C algorithm. Our convergence analysis of
the D&C algorithm is linked to polynomial or rational approximation of the functions,
and we show several numerical examples. We also derive a simpler (and faster) algorithm
for banded matrices. The results in Chapter 7 are contained in [48].
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6 Low-rank updates of matrix func-
tions

Let A,R ∈ Rn×n with rank(R)� n and assume that f(A) has already been computed.
In this chapter we consider algorithms for computing the update

f(A+R)− f(A), (6.1)

without computing f(A + R) from scratch. In Section 6.1 we review the low-rank
updates algorithm proposed in [18, 17]. At the beginning of Section 6.2 we review some
convergence results from [18, 17], then in Section 6.2.1 we prove a new result that relates
the convergence to polynomial approximation of the derivative of f . In Section 6.2.2 we
prove that under suitable assumptions the trace of the update (6.1) converges faster than
the full matrix function update.

6.1 Approximation via Krylov subspace projections

The fact that the update (6.1) is often numerically low-rank – as mentioned in Chapter 5
– motivates the search for approximations of the form

f(A+R)− f(A) ≈ UmXm(f)V T
m , (6.2)

where Um, Vm are orthonormal bases of suitable (low-dimensional) subspaces Um,Vm of
Rn and Xm(f) is a suitably chosen (small) matrix.

A natural choice for Um and Vm are Krylov subspaces.
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Chapter 6. Low-rank updates of matrix functions

Definition 6.1. The polynomial Krylov subspace associated to A and a (block) vector
B ∈ Rn×r is

Km(A,B) := span
{
B,AB,A2B, . . . , Am−1B

}
.

The rational Krylov subspace [164] associated with qm(z) = (z − ξ1) · · · (z − ξm) for
prescribed poles ξ1, . . . , ξm ∈ C is

qm(A)−1Km(A,B) := span
{
qm(A)−1B, qm(A)−1AB, qm(A)−1A2B, . . . , qm(A)−1Am−1B

}
.

Given a factorization of the low-rank matrix R,

R = BJCT , B, C ∈ Rn×rank(R), J ∈ Rrank(R)×rank(R),

we let Um and Vm be Krylov subspaces generated with the matrices A and AT and
starting (block) vectors B and C, respectively. To make sure that Um and Vm are real
when using rational Krylov subspaces, the set of poles is assumed to be closed under
complex conjugation. Also, we allow for infinite poles and consider the polynomial Krylov
subspace as the particular case where ξj =∞, j = 1, . . . ,m.

Let us now consider the choice of Xm(f) in (6.2). Lemma 2.2 in [18] states that

f


A R

0 A+R


 =

f(A) f(A+R)− f(A)

0 f(A+R)

 . (6.3)

For this reason, the coefficient matrix Xm(f) is set to be the (1, 2)-block of the (small)
matrix

f


UTmAUm UTmRVm

0 V T
m (A+R)Vm


 .

The whole procedure is summarized in Algorithm 6.1. The orthonormal bases Um, Vm
of qm(A)−1Km(A,B), qm(AT )−1Km(AT , C) are computed with the block rational Arnoldi
method described in [68, 26]. This computation is performed incrementally with respect
to m and yields the compressed matrices UTmAUm and V T

m (A+R)Vm nearly for free. For
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6.1. Approximation via Krylov subspace projections

choosing m, we use the following heuristic:

‖f(A+R)− f(A)− Um−dXm−d(f)V T
m−d‖2 ≈ ‖UmXm(f)V T

m − Um−dXm−d(f)V T
m−d‖2

=

∥∥∥∥∥∥∥Xm(f)−

Xm−d(f) 0

0 0


∥∥∥∥∥∥∥

2

,

for a small integer d, the so called lag parameter. Each step of the block rational Arnoldi
method in lines 4-5 requires either matrix-vector products with A,AT (for an infinite
pole) or solving shifted linear systems with A,AT (for a finite pole). When only a few
different finite poles are present, it can be beneficial to precompute the LU factorization
of the shifted matrix A and reuse it across several steps. We refer to [17, Section 3.1] and
the references therein concerning further implementation details.

Algorithm 6.1 Krylov subspace projection for approximating f(A+R)− f(A)

Input: Matrix A, update R = BJCT , poles ξ = (ξ1, . . . , ξmmax)T , function f(z), lag
parameter d, desired accuracy ε

1: function Krylov_proj(A,B, J, C, ξ, f(z), d, ε)
2: for m = 1, . . . ,mmax do
3: qm(z)← (z − ξ1) · · · (z − ξm)

4: Compute orthonormal basis Um of qm(A)−1Km(A,B)

5: Compute orthonormal basis Vm of qm(AT )−1Km(AT , C)

6: Compute Xm(f) as the (1, 2) block of f


UTmAUm UTmRVm

0 V T
m (A+R)Vm




7: if m > d and

∥∥∥∥∥∥∥Xm(f)−

Xm−d(f) 0

0 0


∥∥∥∥∥∥∥

2

< ε then

8: break
9: end if
10: end for
11: return Um, Xm(f), Vm

When A and R are symmetric, we can choose C = B. It follows that Um = Vm and
hence only one basis needs to be generated; line 5 of Algorithm 6.1 is skipped. Moreover,
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Chapter 6. Low-rank updates of matrix functions

the computation of Xm(f) in line 6 simplifies to

Xm(f) = f
(
UTm(A+R)Um

)
− f(UTmAUm).

6.2 Exactness and convergence results for Algorithm 6.1

In the following, we let

Em(f) := f(A+R)− f(A)− UmXm(f)V T
m (6.4)

denote the error of the approximation returned by Algorithm 6.1. Moreover, we let Πm

denote the space of polynomials with degree bounded by m and Πm/qm denote the set of
all rational functions of the form p(z)/qm(z) with p ∈ Πm.

The properties of Krylov subspaces and the choice of Xm(f) in line 6 of Algorithm 6.1
allow us to prove the following exactness result.

Theorem 6.2 ([18, Theorem 3.2] and [17, Theorem 3.3]). When using rational Krylov
subspaces associated to poles ξ1, . . . , ξm (possibly infinite), it holds that

Em(f) = 0

for all f ∈ Πm/qm.

Remark 6.3. For future reference, we note here that the exactness result in Theorem 6.2
also holds when Um and Vm are orthonormal bases of subspaces of Rn which contain the
Krylov subspaces Um and Vm, respectively.

Such exactness results can be turned into convergence results via polynomial/rational
approximation. For a function f and a set D ⊆ C we denote by ‖f‖D := supz∈E |f(z)|
the supremum norm on D.

Definition 6.4. The numerical range (or field of values) of A is

W (A) := {z∗Az | z ∈ Cn, ‖z‖2 = 1}.

Theorem 6.5 ([18, Theorem 4.1] and [17, Theorem 4.5]). Let A and R = BJBT be
symmetric, let the set of poles be closed under complex conjugation, and let Um = Vm be
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6.2. Exactness and convergence results for Algorithm 6.1

an orthonormal basis of qm(A)−1Km(A,B). Furthermore, let f be analytic in a compact
domain D containing the union of W (A) and W (A+R). Then the error (6.4) returned
by Algorithm 6.1 satisfies

‖Em(f)‖2 ≤ 4 min
r∈Πm/qm

‖f − r‖D.

When A and R are symmetric, the sets W (A) and W (A + R) are closed bounded
intervals on the real line. For non-symmetric matrices, one needs to consider an approx-
imation problem on a larger set. We state the result in the case of polynomial Krylov
subspaces.

Theorem 6.6 ([18, Theorem 4.2]). Let A :=

A R

0 A+R

 and assume that f is analytic

in a neighborhood of a compact set D ⊇W (A). When polynomial Krylov subspaces are
used in Algorithm 6.1 we have that

‖Em(f)‖2 ≤ (2 + 2
√

2) min
p∈Πm

‖f − p‖D.

The numerical range of A can be much larger than the union of W (A) and W (A+R).
Indeed, there are situations [18, Figure 6.2] in which W (A) contains a singularity of f
and hence the bound becomes void. In order to deal with these situations, alternative
convergence results based on integral representations have been developed in [18, 17].
In Section 6.2.1 we provide an alternative way to deal with this problem in the case
of polynomial Krylov subspaces: We provide a convergence result based on polynomial
approximation of the derivative of f on a convex set containing W (A) and W (A+R).

6.2.1 Convergence analysis for polynomial Krylov subspaces

In the rest of this chapter, we consider the case in which Um and Vm are polynomial
Krylov subspaces. The following lemma is key to our analysis; its proof uses a recent
bound on the Fréchet derivative from [49].

Lemma 6.7. Let B =

B11 B12

0 B22

 for some matrices B11, B12, B22 ∈ Rn×n, let D be a
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Chapter 6. Low-rank updates of matrix functions

compact convex set containing W (B11) and W (B22), and let f be analytic in D. Then

‖[f(B)]1,2‖F ≤ (1 +
√

2)2‖f ′‖D‖B12‖F .

Proof. For n× n matrices A and B, let Lf (A,B) denote the Fréchet derivative of f at
A applied to the matrix B and let Lf (A, ·) denote the corresponding linear operator
represented as an n2 × n2 matrix. By [110, Theorem 4.12],

f(B) = f(D) + Lf (D,N ), where D :=

B11 0

0 B22

 and N :=

0 B12

0 0

 .
Because f(D) is block-diagonal, we have that

‖[f(B)]1,2‖F = ‖Lf (D,N )‖F ≤ ‖Lf (D, ·)‖2 · ‖B12‖F .

Corollary 5.1 in [49] states that ‖Lf (D, ·)‖2 ≤ (1 +
√

2)2‖f ′‖W (D), which concludes the
proof because W (D), as the convex hull of W (B11) and W (B22), is contained in D.

Lemma 6.7 applied to the matrix

A R

0 A+R

 combined with (6.3) immediately

implies the following result, which might be of independent interest.

Corollary 6.8. Let A,R ∈ Rn×n, let D be a compact convex set containing the union of
W (A) and W (A+R), and let f be analytic in D. Then

‖f(A+R)− f(A)‖F ≤ (1 +
√

2)2‖f ′‖D‖R‖F . (6.5)

When A and R are Hermitian, it is well known that the inequality (6.5) holds without
the constant (1 +

√
2)2; see, e.g., [171, Proposition 3.1.5]. For general diagonalizable

matrices A and A+R, Corollary 2.4 in [82] states that

‖f(A+R)− f(A)‖F ≤ κev(A)κev(A+R) max |f ′| · ‖R‖F ,

where κev(A), κev(A + R) are the condition numbers of any eigenvector matrices of A
and A + R, respectively. The maximum of |f ′| is taken over the convex hull of the
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6.2. Exactness and convergence results for Algorithm 6.1

spectra of A+R and A. Corollary 6.8 instead holds for any matrix and does not feature
the potentially large constant κev(A)κev(A+R), at the cost of bounding f ′ on a larger
domain.

We are now prepared to state a convergence result for Algorithm 6.1.

Theorem 6.9. Let A ∈ Rn×n, R = BJCT ∈ Rn×n, and let f be analytic in a compact
convex set D containing W (A) and W (A + R). Let Um and Vm be orthonormal bases
of Um = Km(A,B) and Vm = Km(AT , C), respectively. Then the error of Algorithm 6.1
satisfies

‖Em(f)‖F ≤ 2(1 +
√

2)2‖R‖F inf
p∈Πm−1

‖f ′ − p‖D.

Proof. The first part of the proof is the same as in Theorem 4.2 in [18]: Theorem 6.2
implies that for all q ∈ Πm we have Em(f) = Em(f − q), therefore

‖Em(f)‖F = ‖(f − q)(A+R)− (f − q)(A)− UmXm(f − q)V T
m‖F

≤ ‖(f − q)(A+R)− (f − q)(A)‖F + ‖UmXm(f − q)V T
m‖F

≤ ‖(f − q)(A+R)− (f − q)(A)‖F + ‖Xm(f − q)‖F . (6.6)

Moreover, by definition (line 6 in Algorithm 6.1), we have Xm(f − q) = [(f − q)(Ã)]1,2,

where Ã :=

UTmAUm UTmRVm

0 V T
m (A+R)Vm

. We can now leverage Corollary 6.8 to get

‖(f − q)(A+R)− (f − q)(A)‖F ≤ (1 +
√

2)2‖(f − q)′‖D‖R‖F .

and Lemma 6.7 to get

‖Xm(f − q)‖F ≤ (1 +
√

2)2‖(f − q)′‖D‖UTmRVm‖F ≤ (1 +
√

2)2‖(f − q)′‖D‖R‖F ,

because of the inclusions W (UTmAUm) ⊆ W (A) and W (V T
m (A + R)Vm) ⊆ W (A + R).

Combining these with (6.6) gives the result of the theorem, because q′ ∈ Πm−1 can be
chosen arbitrarily.

Remark 6.10. Let us compare the result of Theorem 6.6 with Theorem 6.9. Note that
although the first bound features a somewhat smaller constant and the approximation of
f instead of f ′, the latter has the major advantage that the convex hull of W (A) and
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W (A+R) can be much smaller than the numerical range of A.

6.2.2 Convergence analysis for the trace of the update

Let us consider a symmetric matrix A and a symmetric update R = BJBT . When we
are interested in the trace of f(A + R) given that the trace of f(A) has already been
computed, Algorithm 6.1 can be used to obtain the approximation

tr
(
f(A+BJBT )− f(A)

)
≈ tr

(
UmXm(f)UTm

)
= tr (Xm(f)) (6.7)

When polynomial Krylov subspaces are used, we can prove an exactness result for (6.7)
which is stronger than Theorem 6.2.

Theorem 6.11. Let A ∈ Rn×n and R = BJBT ∈ Rn×n be symmetric, and let Um be an
orthonormal basis of Km(A,B). Then

tr (Xm(p)) = tr (p(A+R)− p(A)) for all p ∈ Π2m.

Proof. By linearity it is sufficient to show that the theorem holds for monomials, that is,
we need to prove that

tr
(
(UTm(A+R)Um)j

)
− tr

(
(UTmAUm)j

)
= tr

(
(A+R)j

)
− tr

(
Aj
)

for j = 0, 1, 2, . . . , 2m. The left hand side is a sum of terms of the following form:

tr
(

(UTmAUm)a0(UTmBJB
TUm)b1(UTmAUm)a1 · · · (UTmBJBTUm)bh(UTmAUm)ah

)
, (6.8)

for some h ≥ 1, a0, ah ≥ 0, a1, . . . , ah−1 ≥ 1, b1, . . . , bh ≥ 1, and a0 + b1 + . . . + ah−1 +

bh + ah = j. By [165, Lemma 3.1] we have that

Um(UTmAUm)kUTmB = AkB (6.9)

for all k = 0, . . . ,m− 1. Moreover, it is easy to see that for k ≥ 1 we have

(UTmBJB
TUm)k = UTm(BJBT )kUm = UTmB(JBTB)k−1JBTUm.
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Then, using (6.9) and the cyclic property of the trace we rewrite (6.8) as

tr
(

(UTmAUm)a0(UTmBJB
TUm)b1(UTmAUm)a1 · · · (UTmBJBTUm)bh(UTmAUm)ah

)
= tr

(
(UTmAUm)a0UTmB

(
h−1∏
i=1

Cai,bi

)
(JBTB)bh−1JBTUm(UTmAUm)ah

)

= tr

(
Ca0+ah,bh

h−1∏
i=1

Cai,bi

) (6.10)

with Ca,b := (JBTB)b−1JBTUm(UTmAUm)aUTmB for b ≥ 1 and 0 ≤ a ≤ 2m− 1.

We claim that Ca,b = (JBTB)b−1JBTAaB: if a ≤ m− 1, this follows directly from
the exactness property (6.9); if a ≥ m, we write Ca,b as

(JBTB)b−1J BTUm(UTmAUm)m−1UTm︸ ︷︷ ︸
BTAm−1

AUm(UTmAUm)a−mUTmB︸ ︷︷ ︸
Aa−mB

and use the exactness property (6.9) on the two selected parts to arrive at the same
conclusion. Finally, incorporating the rightmost factor B of Cai,bi into Cai+1,bi+1

we obtain
that (6.10) is equal to

tr
(

(JBTB)bh−1JBTAa0+ah(BJBT )b1Aa1 · · · (BJBT )bh−1Aah−1B
)
.

By means of the cyclic property of the trace we finally get

tr
(
Aa0(BJBT )b1Aa1 · · · (BJBT )bhAah

)
which matches the terms in the expansion of tr

(
(A+BJBT )j

)
− tr(Aj).

The following theorem provides an a priori estimate on the error of the approximation
of the trace of a matrix function update obtained by Algorithm 6.1.

Theorem 6.12. Let A and R = BJBT be symmetric and let f be defined on an interval
D ⊂ R containing the eigenvalues of A and A+R. Then

∣∣ tr (f(A+BJBT )− f(A)
)
− tr (Xm(f))

∣∣ ≤ 4n min
p∈Π2m

‖f − p‖D.
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Proof. By Theorem 6.11, for all polynomials p ∈ Π2m we have that

| tr(f(A+R)− f(A))− tr (Xm(f)) |

= | tr((f − p)(A+R))− tr((f − p)(A))+

tr((f − p)(UTm(A+R)Um))− tr((f − p)(UTmAUm))|

≤ | tr((f − p)(A+R))|+ | tr((f − p)(A))|

+ | tr((f − p)(UTm(A+R)Um))|+ | tr((f − p)(UTmAUm))|

≤ n‖(f − p)(A+R)‖2 + n‖(f − p)(A)‖2
+ n‖(f − p)(UTm(A+R)Um)‖2 + n‖(f − p)(UTmAUm)‖2.

For a normal matrix X and a function g, it holds that ‖g(X)‖2 ≤ ‖g‖Λ(X), where Λ(X)

denotes the convex hull of the eigenvalues of X. As Λ(A+R), Λ(A), Λ(UTm(A+R)Um),
and Λ(UTmAUm) are all contained in D, it follows that the right hand side of the above
equation is upper bounded by 4n‖f − p‖D. Taking the minimum over all polynomials
p ∈ Π2m concludes the proof.

Example 6.13. Consider SPD matrices A,R ∈ Rn×n, and denote by [α, β] an interval
containing the eigenvalues of A and A+R. The best polynomial approximation error on
such interval when f(z) =

√
z decreases as γm, where

γ :=

√
β/α− 1√
β/α+ 1

;

see, e.g., [181, Theorem 8.2]. Therefore, the error in the approximation of f(A+R)−f(A)

via Algorithm 6.1 decreases geometrically with rate γ, while the error in the approximation
of tr(f(A+R)− f(A)) decreases with rate γ2 thanks to Theorem 6.12, that is, twice as
fast.

Numerical examples

Figure 6.1 reports numerical experiments to explore the scope of the result of Theorem 6.12.
In Figure 6.1(a) we have applied Algorithm 6.1 with polynomial Krylov subspaces to
a random symmetric matrix A and random symmetric update R. As expected from
Theorem 6.12, the trace of the update converges at double speed with respect to the error
of the full update.
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6.2. Exactness and convergence results for Algorithm 6.1

Figure 6.1(b) features polynomial Krylov subspaces with a random non-symmetric
matrix A and Figure 6.1(c) features a rational Krylov subspace method applied to
symmetric A and R. In these two situations, there is no significant difference in the
convergence of the trace of the update.
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Figure 6.1 – Convergence of the errors ‖f(A+R)− f(A)− UmXm(f)V T
m‖F , ‖diag(f(A+R)−

f(A)− UmXm(f)V T
m )‖2, and | tr(f(A+R)− f(A)− UmXm(f)V T

m )| for f = exp.
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7 Divide-and-conquer algorithms for
matrix functions

In this chapter, we design new algorithms for approximating functions of matrices that
can be recursively decomposed as the sum of a block-diagonal matrix D and a low-rank
correction. This is the case for banded matrices, HSS matrices (see Section 7.1.3), and
sparse matrices corresponding to graphs with community structure [146].

The update f(A)− f(D) is approximated using Algorithm 6.1 with suitable Krylov
subspaces. We perform the evaluation of f(D) recursively, leading to a D&C algorithm.
Similarly to the a priori bounds on f(A) mentioned in Chapter 5, we prove that the
effectiveness of the D&C algorithm is related to best polynomial or rational approximation.
The advantage of our approach is that the use of Krylov subspaces bypasses the need of
choosing an a priori polynomial or rational approximation of f and this can be beneficial
if there are some outliers in the spectrum of A.

For banded matrices A, polynomial Krylov subspaces associated to low-rank updates
inherit sparsity. Thanks to this fact, we can develop an algorithm that allows for a
more compact description of the low-rank updates and a more efficient implementation,
which we call block diagonal splitting method. Our algorithm is based on covering A
with overlapping blocks and only needs the evaluation of f on these blocks. A related,
although significantly different, technique has been proposed in [170] for approximating
the exponential of infinite banded matrices. The equivalence of our method with low-rank
updates allows us to prove a convergence result that connects the error of the algorithm
with polynomial approximations of f . When only the diagonal of f(A) is needed, we
observe accelerated convergence and we confirm this by theoretical results.
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The remainder of the chapter is organized as follows. Section 7.1 is dedicated to the
D&C algorithm for matrix functions and its convergence analysis. Numerical experiments
for banded and HSS matrix arguments are presented in Section 7.2. In Section 7.3 we
present and analyze the block diagonal splitting algorithm for banded matrices. The
performance of the splitting algorithm is validated in Section 7.4.

7.1 Divide-and-conquer for matrix functions

7.1.1 Divide-and-conquer for matrices with low-rank off-diagonal blocks

In this section we use low-rank updates to devise a D&C method for functions of matrices
that have low-rank off-diagonal blocks. More specifically, let us assume that A ∈ Rn×n

can be block-partitioned as

A =

A11

A22


︸ ︷︷ ︸

AD

+

 A12

A21


︸ ︷︷ ︸

AO

, A11 ∈ Rn1×n1 , A22 ∈ Rn2×n2 , (7.1)

where the off-diagonal part AO has low rank and the diagonal blocks can be recursively
block-partitioned in the same fashion. Examples of matrix structures that have this
property are banded matrices and HSS matrices [41]; see also Section 7.1.3 below.

The computation of f(A) is split in two tasks: computing f(AD) and computing
f(A) − f(AD). The latter quantity is approximated via Algorithm 6.1 exploiting that
AO = A− AD has low rank; the former decouples into the computation of f(A11) and
f(A22). Since we assume that the blocks Aii can again be decomposed into the form (7.1),
the described procedure is applied recursively for computing f(Aii), i = 1, 2. Finally,
when the size of a block Aii is below a minimal block size ni ≤ nmin, we evaluate f(Aii)

with a standard dense method, like the scaling and squaring method [110] for f = exp.

Algorithm 7.1 summarizes the described D&C method for matrix functions. The D&C
method simplifies when certain selected quantities of f(A), like the diagonal or the trace,
are of interest. Because of linearity, it suffices to evaluate the diagonal or the trace of the
low-rank update UXV T ≈ f(A)− f(AD); see lines 19 and 21 of Algorithm 7.1.

Theorem 6.2 directly implies the following result.

92



7.1. Divide-and-conquer for matrix functions

Algorithm 7.1 Template of D&C algorithm for matrix functions

Input: Matrix A ∈ Rn×n, poles ξ, function f(z), lag parameter d, desired accuracy ε,
minimum block size nmin, parameter flag that indicates whether the full matrix
function, its diagonal, or its trace is needed

1: function D&C_funm(A, ξ, f(z), d, ε, nmin, flag)
2: if n ≤ nmin then
3: if flag = “full” then
4: return f(A)
5: else if flag = “diagonal” then
6: return diag(f(A))
7: else if flag = “trace” then
8: Compute the eigenvalues λj , j = 1, . . . , n, of A
9: return

∑n
j=1 f(λj)

10: end if
11: end if
12: Given a decomposition (7.1), retrieve a low-rank factorization AO = BJCT

13: [U,X, V ]←Krylov_proj(AD, B, J, C, ξ, f(z), d, ε) (Algorithm 6.1)
14: F11 ← D&C_funm(A11, ξ, f(z), d, ε, nmin, flag) (Recursion)
15: F22 ← D&C_funm(A22, ξ, f(z), d, ε, nmin, flag) (Recursion)
16: if flag = “full" then
17: return

[
F11

F22

]
+ UXV T

18: else if flag = “diagonal" then
19: return

[
F11
F22

]
+ diag(UXV T )

20: else if flag = “trace" then
21: return F11 + F22 + trace(V TUX)
22: end if

Proposition 7.1. Let A ∈ Rn×n and consider qm(z) :=
∏m
i=1(z− ξi) for a set of m poles

ξ1, . . . , ξm ∈ C∪{∞} closed under complex conjugation. Then Algorithm 7.1 applied to A
and a function f ∈ Πm/qm is exact, provided that Algorithm 6.1 called in Line 13 utilizes
all m poles.

7.1.2 Algorithm 7.1 for banded matrices

Let us first consider the application of Algorithm 7.1 to a banded matrix A with bandwidth
b, that is, such that aij = 0 whenever |i − j| > b. Then the off-diagonal part AO in
the decomposition (7.1) has rank at most 2b. Under the idealistic assumption that
Algorithm 6.1 converges in a constant number of iterations (independent of n), computing
the low-rank update on the top level of recursion requires O(b2n) operations when
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using either polynomial or rational Krylov subspaces. Thus, the total complexity of
Algorithm 7.1 is O(b2n log n), provided that nmin = O(1) (that is, the minimum block
size is a constant which is independent of n).

Remark 7.2. By an appropriate correction of the diagonal blocks in the decomposi-
tion (7.1), it is possible to reduce the rank of the off-diagonal part to b (similarly to
Example 5.3). Although this clearly has the potential to result in lower-dimensional Krylov
subspaces in the low-rank update, it also bears the danger of leading to diagonal blocks for
which f is not defined or difficult to approximate. When A is SPD then the rank-b update
can be chosen such that the diagonal blocks remain SPD [124, Section 4.4.2].

Remark 7.3. When Algorithm 7.1 is used with polynomial Krylov subspaces for banded
A then it can be shown that the output is again banded (but with larger bandwidth).
However, in such a situation a much simpler approach is possible, which will be described
in Section 7.3.

7.1.3 Storing the output of Algorithm 7.1 using HSS matrices

Except for the situation described in Remark 7.3, the approximation of f(A) constructed
in line 17 of Algorithm 7.1 is not banded. To still efficiently represent this approximation,
we use HSS matrices.

In the following we give a brief introduction to HSS matrices; see [132, 137, 194] for
more details. The HSS format is associated to a recursive partitioning of the matrix,
which we now formalize.

Definition 7.4. Given n ∈ N, let TL be a perfect binary tree of depth L whose nodes are
subsets of {1, . . . , n}. We say that TL is a cluster tree if it satisfies:

• The root is I0
1 := I = {1, . . . , n}.

• The nodes at level `, denoted by I`1, . . . , I
`
2`
, form a partitioning of {1, . . . , n} into

consecutive indices:
I`i = {n(`)

i−1 + 1 . . . , n
(`)
i − 1, n

(`)
i }

for some integers 0 = n
(`)
0 ≤ n

(`)
1 ≤ · · · ≤ n

(`)

2`
= n, ` = 0, . . . , L. In particular, if

n
(`)
i−1 = n

(`)
i then I`i = ∅.

• The children form a partitioning of their parent.
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Usually, the cluster tree TL is defined such that the index sets on the same level `
have nearly equal cardinalities and the depth of the tree is determined by a minimal
diagonal block size nmin for stopping the recursion. In particular, if n = 2Lnmin, such a
construction yields a perfect tree of depth L in which all the leaves correspond to nmin

indices.

The block structure of an HSS matrix is determined by TL. The diagonal blocks
Di := A(ILi , I

L
i ) are treated as (small) dense matrices. All other blocks are of the form

A(I`i , I
`
j ) for some siblings I`i , I

`
j in TL (that is, for any pairs of nodes with the same

parent); for an HSS matrix of rank k, each block has rank (at most) k. Therefore, each
block admits a factorization

A(I`i , I
`
j ) = U

(`)
i S

(`)
i,j (V

(`)
j )T , S

(`)
i,j ∈ Rk×k, U

(`)
i ∈ Rn

(`)
i ×k, V

(`)
j ∈ Rn

(`)
j ×k.

Moreover, the factors U (`)
i , V

(`)
j are nested across different levels of TL [194]. More

specifically, there exist so called translation operators, R(`)
U,i, R

(`)
V,j ∈ R2k×k such that

U
(`)
i =

U (`+1)
2i−1 0

0 U
(`+1)
2i

R(`)
U,i, V

(`)
j =

V (`+1)
2j−1 0

0 V
(`+1)

2j

R(`)
V,j ,

where I`+1
2i−1, I

`+1
2i and I`+1

2j−1, I
`+1
2j denote the children of I`i and I`j , respectively. Given the

bases U (L)
i and V (L)

i at the deepest level L, the low-rank factors U (`)
i and V (`)

i for the
higher levels ` = 1, . . . , L − 1, can be retrieved by means of the translation operators.
Figure 7.1 illustrates the HSS format graphically.

Summarizing, for storing an HSS matrix A we need:

• the diagonal blocks Di,

• the bases U (L)
i , V (L)

i ,

• the core factors S(`)
i,j and S(`)

j,i ,

• the translation operators R(`)
U,i, R

(`)
V,i.

The storage cost is O(kn). Note that we have used a uniform rank k for the off-diagonal
blocks to simplify the description; in practice these ranks are chosen adaptively. The HSS
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I0
1 = {1, . . . , 4nmin}

I1
1 = {1, . . . , 2nmin} I1

2 = {2nmin + 1, . . . , 4nmin}

I21 = {1, . . . , nmin} I22 = {nmin + 1, . . . , 2nmin} I23 = {2nmin + 1, . . . , 3nmin} I24 = {3nmin + 1, . . . , 4nmin}

D1

D2

D3

D4

U
(2)
3 S

(2)
34 (V

(2)
4 )T

U
(2)
4 S

(2)
43 (V

(2)
3 )T

U
(2)
2 S

(2)
21 (V

(2)
1 )T

U
(2)
1 S

(2)
12 (V

(2)
2 )T

S
(1)
12

R
(1)
U,1

(R
(1)
V,2

)T

S
(1)
21

R
(1)
U,2

(R
(1)
V,1

)T

Figure 7.1 – Illustration of an HSS representation of a matrix of size n× n with cluster tree of
depth L = 2, where for simplicity we assume that n = 4nmin is a multiple of 4.
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format also allows for fast algorithms for matrix operations. For example, multiplying a
matrix with HSS rank k with a vector costs O(kn); solving a linear system and computing
the corresponding decomposition costs O(k2n) (see, e.g., [137, Figure 6]).

In the context of Algorithm 7.1, we choose a cluster tree that aligns with the (recursive)
decompositions (7.1). In turn, the sum at line 17 is performed using HSS arithmetic and
is combined with a re-compression step to mitigate the increase of the HSS rank. This
costs O(k2n) operations, assuming that the HSS ranks of F11, F22 and the rank of UXV T

are O(k) [137].

7.1.4 Algorithm 7.1 for HSS matrices

We now discuss the situation when the HSS structure is not only used for storing the
output of Algorithm 7.1 but when the input matrix A itself is also an HSS matrix. In
this case the decomposition (7.1) is aligned with the cluster tree TL associated with A
as this choice guarantees that the rank of AO is bounded by 2k and that the outcome
inherits the same cluster tree of the input matrix. In Algorithm 7.1 we can exploit the
fact that fast algorithms are available for HSS matrices as follows:

• We retrieve B and C in line 12 by means of the translation operators (O(k2n)).

• The Krylov subspaces in Algorithm 6.1 are generated by performing matrix-vector
products and/or solving shifted linear systems with HSS algorithms.

• We use the HSS structures of A11, A22 in the recursive calls in lines 14-15 and we
return HSS matrices F11 and F22.

Let us analyze the cost of Algorithm 7.1 for the input (TL, k)-HSS matrix A, with
L = O(log(n)), and flag = “full”. We again make the idealistic assumption that
Algorithm 6.1 converges in a constant number of iterations, independent of k and n, and
that the outcome of the (compressed) sum at line 17 has always HSS rank O(k). Then,
we have that the low-rank updates at level ` ∈ {0, 1, . . . , L− 1} cost O(k2(n

(`)
i − n

(`)
i−1)),

i = 1, . . . , 2`, when using either polynomial or rational Krylov subspaces. Since the sum
at line 17 costs O(k2(n

(`)
i − n

(`)
i−1)) too, the asymptotic complexity of each non-base level
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of the recursion is

O

k2
2`∑
i=1

(n
(`)
i − n

(`)
i−1)

 = O(k2n).

The base of the recursion requires us to evaluate O(n/nmin) functions of matrices of size at
most nmin × nmin; assuming a cubic cost for matrix function evaluations yields O(n2

minn).
Hence, the overall complexity of Algorithm 7.1 for HSS matrices is O(k2n log(n)).

7.1.5 Convergence results for D&C algorithm

Convergence results for Algorithm 7.1 can be obtained from the convergence results on
low-rank updates of matrix functions discussed in Section 6.2.2. In the following, we let
TL denote the (perfectly balanced) binary tree of depth L associated with the recursive
decompositions performed in line 12.

Theorem 7.5. Let A be symmetric and let f be a function analytic on an interval D
containing the eigenvalues of A. Suppose that Algorithm 7.1 uses rational Krylov subspaces
with poles ξ1, . . . , ξm, closed under complex conjugation, for computing updates. Then the
output FA of Algorithm 7.1 satisfies

‖f(A)− FA‖2 ≤ 4L · min
r∈Πm/qm

‖f − r‖D,

where qm(z) =
∏m
i=1(z − ξi).

Proof. Using the index sets contained in TL (see Definition 7.4), the matrices to which
Algorithm 7.1 is applied to in the `th level of recursion are denoted by

A`j := A(I`j , I
`
j )

for ` < L. Analogously, we let G`j denote the update of the form UXV T computed in
line 13. We aim at proving the following bound for the error of Algorithm 7.1:

‖f(A)− FA‖2 ≤
L−1∑
`=0

max
j=1,...,2`

∥∥∥∥∥∥∥f(A`j)−

f(A`+1
2j−1)

f(A`+1
2j )

−G`j
∥∥∥∥∥∥∥

2

. (7.2)

This bound implies the statement of the theorem because by Theorem 6.5 each term
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appearing in the sum can be bounded by∥∥∥∥∥∥∥f(A`j)−

f(A`+1
2j−1)

f(A`+1
2j )

−G`j
∥∥∥∥∥∥∥

2

≤ 4 min
r∈Πm/qm

‖f − r‖D,

where we used that the eigenvalues of principal submatrices of A are contained in D.

The proof of (7.2) is by induction on L, the number of levels. When L = 1, the
definition of FA yields

‖f(A)− FA‖2 =

∥∥∥∥∥∥∥f(A0
1)−

f(A1
1)

f(A1
2)

−G0
1

∥∥∥∥∥∥∥
2

.

Now, suppose that (7.2) holds for L− 1. Then the result for L ≥ 2 is proven by observing

‖f(A)− FA‖2 =

∥∥∥∥∥∥∥f(A0
1)−


FA1

1

FA1
2

+G0
1


∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥f(A0
1)−

f(A1
1)

f(A1
2)

−G0
1 +

f(A1
1)

f(A1
2)

−
FA1

1

FA1
2


∥∥∥∥∥∥∥

2

≤

∥∥∥∥∥∥∥f(A0
1)−

f(A1
1)

f(A1
2)

−G0
1

∥∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥
f(A1

1)− FA1
1

f(A1
2)− FA1

2


∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥f(A0
1)−

f(A1
1)

f(A1
2)

−G0
1

∥∥∥∥∥∥∥
2

+ max
k∈{1,2}

‖f(A1
k)− FA1

k
‖2.

Each of the terms ‖f(A1
k)− FA1

k
‖2 corresponds to applying Algorithm 7.1 with a cluster

tree of depth L− 1, for which (7.2) holds by the induction assumption; therefore, (7.2)
also holds for L.

Corollary 7.6. Under the assumptions of Theorem 7.5, when using polynomial Krylov
subspaces in Algorithm 6.1, we have that

|trace(f(A))− trace(FA)| ≤ 4nL min
p∈Π2m

‖f − p‖D.
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Proof. Analogously to the proof of Theorem 7.5, we can bound

|trace(f(A))− trace(FA)|

≤
L−1∑
`=0

2`∑
j=1

∣∣∣∣∣∣∣trace(f(A`j))− trace

f(A`2j−1)

f(A`2j)

− trace(G`j)

∣∣∣∣∣∣∣
and use Theorem 6.12 to conclude.

7.2 Numerical tests for Algorithm 7.1

In this section we test Algorithm 7.1 on a variety of matrices and functions coming from
different applications. The minimum block size parameter nmin is set to 256 for all our
experiments, and the tolerance is ε = 10−8 for all experiments, unless otherwise noted.
The lag parameter in Algorithm 6.1 is set to d = 1. The algorithm has been implemented
in Matlab, version 9.9 (R2020b) and the code for reproducing the experiments in this
chapter is available at https://github.com/Alice94/MatrixFunctions-Banded-HSS. The
computations with HSS matrices have been performed using the hm-toolbox [137]. This
requires choosing a minimum block size and a tolerance parameter, which we set to be
equal to nmin and ε, respectively.

In all tables referring to the computation of matrix functions f(A) the columns denoted
by “Err” contain the relative error in the Frobenius norm computed with respect to the
value of f(A) obtained by dense arithmetic, whenever the size of the matrix allows for
computations in dense arithmetic.

7.2.1 Space-fractional diffusion equation without source

Let us consider the fractional diffusion problem:
∂u(x,t)
∂t = ∂αu(x,t)

∂−xα
+ ∂αu(x,t)

∂+xα
(x, t) ∈ (0, 1)× (0, T ]

u(x, t) = 0 (x, t) ∈ (R \ [0, 1])× [0, T ]

u(x, 0) = u0(x) x ∈ [0, 1]
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where α ∈ (1, 2) is a fractional order of derivation and ∂α

∂−xα
, ∂α

∂+xα
denote the left-looking

and right-looking αth derivatives. Discretizing in space by means of the finite difference
scheme based on Grünwald-Letnikov formulas, with step size ∆x = 1

n+1 , yields

u̇(t) = Au(t)

u(0) = u0

A = Tn + T Tn , Tn =
1

∆xα



g
(α)
1 g

(α)
0 0 . . . 0 0

g
(α)
2 g

(α)
1 g

(α)
0 0 . . . 0

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

g
(α)
n−1

. . .
. . .

. . . g
(α)
1 g

(α)
0

g
(α)
n g

(α)
n−1 . . . . . . g

(α)
2 g

(α)
1


,

where

g
(α)
0 = −1, g

(α)
k =

(−1)k+1

k!
α(α− 1) · · · (α− k + 1), k = 1, . . . , n,

and u(t),u0 ∈ Rn contain the sampling of the solution and of the boundary condition,
respectively, at the spatial points j∆x, for j = 1, . . . , n. In particular, evaluating the
solution at time t = 1 as u(1) = eAu0 requires the computation of the matrix exponential
of A which is well approximated in the HSS format [135].

Concerning the latter task, we compare the performances of our D&C method (Algo-
rithm 7.1) with polynomial Krylov subspaces and of the function expm of the hm-toolbox
that makes use of a Padé approximant combined with scaling and squaring.

The results are reported in Table 7.1. The column labeled as “Dense” corresponds
to the evaluation of the matrix exponential with dense arithmetic via Matlab’s expm

function. This has been computed up to size n = 8192 and demonstrates that D&C is
slightly more accurate; expm (HSS) and D&C are cheaper than the dense method from
sizes 4096 and 2048, respectively.

7.2.2 Sampling from a Gaussian Markov random field

This case study, taken from [115], arises from computational statistics and it concerns a
tool often used to model spatially structured uncertainty in the data. Given a cloud of
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A D&C expm (HSS) Dense eA

Size HSS rank Time Err Time Err Time HSS rank

512 10 0.09 1.89 · 10−8 0.57 3.78 · 10−8 0.03 13

1,024 11 0.18 2.34 · 10−8 1.01 6.75 · 10−8 0.15 15

2,048 13 0.38 4 · 10−8 1.77 9.88 · 10−8 0.96 23

4,096 14 1.09 4.85 · 10−8 3.99 1.44 · 10−7 8.94 23

8,192 15 3.11 6.09 · 10−8 10.22 1.16 · 10−7 70.75 25

16,384 15 8.61 18.48 26

32,768 16 22.18 37.22 27

Table 7.1 – Computation of eA in the HSS format for the coefficient matrix A of the fractional
diffusion problem discussed in Section 7.2.1. We compare the performances of the expm function
of the hm-toolbox [137] and of the D&C approach proposed in Algorithm 7.1.

points {si}ni=1 ⊂ Rd we introduce Gaussian random variables xi for i = 1, . . . , n at each

point. The vector x =

[
x1 · · · xn

]T
is referred to as a Gaussian Markov random field

(GMRF) when it is distributed according to the precision (inverse covariance) matrix
A = (aij) ∈ Rn×n depending on two positive parameters φ and δ as follows:

aij =


1 + φ ·

n∑
k=1,k 6=i

χδki if i = j

−φ · χδij if i 6= j

where χδij =

1 if ||si − sj ||2 < δ,

0 otherwise.

A sample v ∈ Rn from a zero-mean GMRF with precision matrix A is obtained as
v = A−

1
2 z, where z is a vector of independently and identically distributed standard

normal random variables.

When many samples are needed, it is convenient to store an HSS representation of
A−

1
2 so that each sample requires only a matrix vector product with an HSS matrix. In

this experiment we set φ = 3, we generate n = 2j pseudo-random points si in the unit
interval (0, 1), and we choose δ = 0.02 · 29−j for j = 9, . . . , 18. Sorting the points si yields
precision matrices that are symmetric, diagonally dominant and with bandwidth in the
range [19, 26].

As suggested in Remark 7.2, as the matrix A is banded and SPD we use a decomposition
which features rank-b updates; we observed a speed up with respect to doing rank-2b
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updates in our experiments. In Algorithm 6.1 the projection method used for computing
the updates in the D&C is the Extended Krylov method, which alternates poles 0 and
∞. More precisely, the mth extended Krylov subspace associated to a matrix A and a
(block) vector B is

A−mK2m(A,B) := span
[
B,A−1B,AB, . . . , Am−1B,A−mB

]
.

We compare the computation of A−
1
2 in the HSS format by means of our D&C scheme

with the function sqrtm contained in the hm-toolbox [137] which combines the Denman
and Beavers iteration (see, e.g., [110, Section 6.3]) with the HSS arithmetic.

The results reported in Table 7.2 show that the D&C approach yields a significant
reduction of the computational time with respect to sqrtm (HSS). For the largest instance,
n = 32, 768, we have profiled the computing time spent at the different stages of the D&C
method. The generation of the bases of the extended Krylov subspaces consumed about
25% of the total time while about 50% was spent to sum the (low-rank) updates to the
block diagonal intermediate results. Around 20% was used for computing the projected
matrices and evaluating the inverse square roots of the diagonal blocks at the lowest level
of recursion and of the projected matrices.

7.2.3 Merton model for option pricing

We consider the evaluation of option prices in the Merton model for one single underlying
asset, as in [123, Section 6.3]. More specifically, we compute the exponential of the
non-symmetric Toeplitz matrix A arising from the discretization of the partial integro-
differential equation

ωt =
ν2

2
ωξξ +

(
r − λκ− ν2

2

)
ωξ − (r + λ)ω + λ

∫ +∞

−∞
ω(ξ + η, t)φ(η)dη,

where ω(ξ, t) on (−∞,+∞) × [0, T ] is the option value, T is the time to maturity,
ν ≥ 0 is the volatility, r is the risk-free interest rate, λ ≥ 0 is the arrival intensity of a
Poisson process, φ is the normal distribution with mean µ and standard deviation σ, and
κ = eµ+σ2/2 − 1. We use the same discretization and parameters as [123, Section 6.3]
and [128, Example 3].

We aim at approximating exp(A), for different values of the matrix size n. To do so,
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A D&C sqrtm (HSS) Dense A−
1
2

Size Band Time Err Time Err Time HSS rank

512 22 0.05 2.02 · 10−9 0.49 3.44 · 10−9 0.02 14

1,024 20 0.16 3.45 · 10−9 1.41 5.22 · 10−9 0.13 17

2,048 19 0.37 3.76 · 10−9 3.99 6.38 · 10−9 0.95 19

4,096 21 0.8 3.23 · 10−9 9.05 5.61 · 10−9 9.03 19

8,192 22 2.46 3.46 · 10−9 21.27 6.61 · 10−9 70.42 20

16,384 25 5.7 48.92 22

32,768 26 15.12 102.65 25

65,536 26 26.25 209.56 24

131,070 25 60.44 417.21 24

262,140 26 146.97 918.81 26

Table 7.2 – Computation of A− 1
2 in the HSS format for the precision matrix A of the Gaussian

Markov random field discussed in Section 7.2.2. We compare the performances of the sqrtm
function of the hm-toolbox [137] and of the D&C approach proposed in Algorithm 7.1.

we first compute an HSS approximation H of A using the hm-toolbox [137], then rescale
it by dividing by 2dlog2 ‖H‖2e, then we apply Algorithm 7.1, and finally we square the
result dlog2 ‖H‖2e times in the HSS format. We use polynomial Krylov subspaces for the
updates in Algorithm 7.1. For different values of n, we compare the output of the described
method with the expm algorithm from the hm-toolbox [137] and the algorithm sexpmt

proposed in [123]. In order to attain a similar accuracy to the sexpmt algorithm, we set
the tolerance parameter ε = 10−12 in Algorithm 7.1 and for HSS computations in the
hm-toolbox [137]. The results are summarized in Table 7.3.

7.2.4 Neumann-to-Dirichlet operator

Consider
∂2

∂x2
u = Au,

∂

∂x
u |x=0= −b, u |x=+∞ = 0 (7.3)

for a non-singular matrix A which is the discretization of a differential operator on some
spatial domain Ω ⊆ R`. Then (7.3) is a semidiscretization of an (`+ 1)-dimensional PDE
on [0,+∞) × Ω; the solution is given by u(x) = exp

(
−xA−1/2

)
A−1/2b. In particular,

u(0) = A−1/2b and the operator A−1/2 is called Neumann-to-Dirichlet (NtD) operator as
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A D&C expm (HSS) sexpmt Dense eA

Size Time Err Time Err Time Err Time HSS rank

512 0.49 2.66 · 10−11 0.57 2.34 · 10−10 0.16 2.95 · 10−12 0.1 18

1,024 0.86 7.13 · 10−10 1.82 5.99 · 10−10 0.54 2.04 · 10−11 0.69 18

2,048 2.4 1.18 · 10−9 4.16 8.03 · 10−9 1.31 3.37 · 10−11 5.05 17

4,096 5.53 6.19 · 10−8 8.06 2.96 · 10−8 7.39 1.86 · 10−10 42.33 19

8,192 9.6 5.65 · 10−7 16.23 3.1 · 10−7 25.52 1.35 · 10−9 323.18 18

16,384 20.58 33.71 98.41 20

32,768 46.13 67.43 419.82 20

Table 7.3 – Computation of eA in the HSS format for the coefficient matrix A in Section 7.2.3. We
compare the performances of our Algorithm 7.1 with the expm function of the hm-toolbox [137]
and the sexpmt algorithm of [123].

it allows for conversion of the Neumann data −b at the boundary x = 0 into the Dirichlet
data u(0), without needing to solve (7.3) on its unbounded domain.

As in [65, Example 6.1], we consider the inhomogeneous Helmholtz equation

∆u(x, y) + k2u(x, y) = f(x, y), f(x, y) = 10δ(x− 511π/512)δ(y − 50π/512)

for k = 50 on the domain [0, π]2. The matrix A corresponds to the discretization of − ∂2

∂y2
−

k2 on [0, π] by central finite differences. We consider step sizes h ∈ {π/29, . . . , π/215}
and compute the NtD operator A−1/2 in the HSS format using the D&C algorithm 7.1;
Table 7.4 illustrates the comparison with the computation of A−1/2 in dense arithmetic. For
computing the inverse square root, we move the branch cut to the negative imaginary axis,
that is, when expressing z = ρ exp(iθ) for θ ∈

[
−π

2 ,
3π
2

]
we define f(z) := ρ−1/2 exp

(
−i θ2

)
.

This avoids a discontinuity on the negative real axis, where some of the eigenvalues of A
lie. For the updates, we use the complex extension of Algorithm 6.1 with rational Krylov
subspaces where we cyclically repeat 6 poles coming from the degree-6 approximation to
f(z) = z−1/2 on the set S := [−b,−a] ∪ [a, b] for b = ‖A‖2 (estimated with normest(A))
and a = 1/‖A−1‖2 (computed via b / condest(A)) described in [65, Section 2]. As the
spectral interval of A contains zero, which is a singularity of the inverse square root
function, the assumptions of Theorem 7.5 are not satisfied. When applying Algorithm 6.1
for the low-rank updates, the projected matrix in line 6 in practice could be almost
singular, leading to instabilities in the computation of its inverse square root; however,
this does not happen in our example.
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A D&C Dense A−1/2

Size Time Err Time HSS rank

512 1.18 2.53 · 10−8 0.13 12

1,024 0.99 3.59 · 10−8 0.21 13

2,048 1.84 4.26 · 10−8 0.92 20

4,096 3.23 6.39 · 10−8 6.73 20

8,192 7.89 8.2 · 10−8 64.74 20

16,384 16.75 20

32,768 37.7 20

Table 7.4 – Computation of A−1/2 in the HSS format for Neumann-to-Dirichlet problem discussed
in Section 7.2.4.

7.2.5 Computing charge densities

The approximation of the diagonal of a matrix function applies to the calculation of the
electronic structure of systems of atoms. In particular, the charge densities of a system
are contained in the diagonal of f(H), where f is the Heaviside function

f(x) =

1 x < 0

0 x ≥ 0

and H is the Hamiltonian matrix that is given by the sum of the kinetic and potential
energies. The entries of Hamiltonian matrices usually decay rapidly away from the main
diagonal. Let us consider the parametrized model Hamiltonian given in [19, Section 4.3]:

H ∈ RNb·Ns×Nb·Ns , HNb·(i−1)+j,i′·Nb(i′−1)+j′ =


(i− 1)∆ + (j − 1)δ i = i′, j = j′

C · e−|j−j′| i = i′, j 6= j′

C
nod(|i−i′|+1) · e

−|j−j′| otherwise

,

where we have set the parameters’ values: Nb = 5, Ns = 1600,∆ = 10−1, δ = 10−4, C =

10−1, and nod = 5000. The HSS structure of the matrix H is shown in the left part of
Figure 7.2. We compute the diagonal of f(H) by means of Algorithm 7.1 and exploiting
the relation

f(x) = (1− sign(x))/2.
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More specifically, we use Algorithm 7.1 to compute the diagonal of sign(H); then we
subtract the latter from the vector of all ones and we divide by 2. The procedure has
terminated after 3.52 seconds. As benchmark method we evaluate f(H) by diagonalization
with dense arithmetic. This has required 78.62 seconds. The Euclidean distance of the
vectors obtained with the two approaches is 2.68 · 10−11. In Figure 7.2, the first 500

components of the two charge densities are shown.
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Figure 7.2 – Left: Ranks of the off-diagonal blocks of the Hamiltonian matrix H from Section 7.2.5;
the blue blocks indicate matrices for which dense arithmetics is used. Right: Charge densities
estimated with dense arithmetic (blue) and with the HSS D&C method (red).

7.2.6 Computing subgraph centralities and Estrada index

Given an undirected graph G with adjacency matrix A, the diagonal entries of exp(A)

are called the subgraph centralities of the vertices. Their normalized sum

EEn(G) :=
1

n
tr(exp(A))

is called the normalized Estrada index of the graph; it was introduced in [69] to characterize
the folding of molecular structures and has found applications in network analysis [70].

When aiming at the diagonal of exp(A), as the baseline method we use the mmq

algorithm [85], which approximates each diagonal entry of exp(A) by Gauss quadrature
(see also Section 9.4 in Chapter 9). For our D&C method, at each step we run a clustering
algorithm [118] on the matrix to divide it into two components that have few edges
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between them; the ufactor parameter, which measures how “unbalanced” the clusters are
allowed to be, is set to 100. If the rank of the off-diagonal part is less than 1/15 of the
matrix size, we compute a low-rank update, otherwise we use mmq. We also use mmq on
matrices of size less than nmin = 256. We compare our D&C algorithm for the diagonal
with mmq and diag(expm(full(A))).

When aiming at trace(exp(A)), we use sum(exp(eig(full(A)))) instead of mmq

to address small blocks or blocks that cannot be divided into smaller blocks with a
low-rank correction; we noticed that this is faster than letting Matlab work with the
matrices in sparse format. As a competitor for the computation of the trace we consider
sum(exp(eig(full(A)))).

In Table 7.5 we report the errors and the time needed by our algorithm. The matrices
we used are minnesota, power, as-735, nopoly, worms20_10NN, and fe_body from the
SuiteSparse Matrix Collection [52].

A D&C diagonal mmq diagonal expm D&C trace eig

Size Time Err Time Err Time Time Err Time

2,642 1.01 6.24 · 10−10 0.8 1.82 · 10−11 1.98 0.14 7.71 · 10−13 0.44

4,941 2.06 1.29 · 10−8 5.15 3.39 · 10−11 16.11 0.47 7.75 · 10−11 3.61

7,716 8.01 4.03 · 10−9 24.19 2.29 · 10−10 56.59 3.91 1.96 · 10−12 8.73

10,774 15.87 1.04 · 10−8 39.42 3.54 · 10−10 151.52 2.98 2.69 · 10−10 21.04

20,055 38.49 2.59 · 10−9 97.53 1.4 · 10−11 929.25 6.99 2.66 · 10−13 124.34

45,087 182.19 603.57 27.99

Table 7.5 – Computation of the diagonal and the trace of eA for the graphs from Section 7.2.6.

The lag parameter

We compare the timings and the accuracy of our D&C algorithm on the matrices nopoly
and worms20_10NN for values of the lag parameter in the range {1, 2, 3, 4}. The results
are reported in Table 7.6. In general, it looks like we can safely put the lag parameter
equal to 1.
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nopoly worms20_10NN

Lag Diag Trace Err diag Err trace Diag Trace Err diag Err trace

1 19.44 2.81 1.04 · 10−8 2.69 · 10−10 47.82 6.37 2.59 · 10−9 2.6 · 10−13

2 16.54 3.13 1 · 10−8 3.78 · 10−12 61.76 12.04 2.46 · 10−9 5.19 · 10−16

3 14.63 4 9.29 · 10−9 2.41 · 10−14 87.85 11.55 2.34 · 10−9 5.19 · 10−16

4 16.08 3.76 8.51 · 10−9 1.42 · 10−14 89.01 20.86 2.16 · 10−9 1.73 · 10−16

Table 7.6 – For two matrices from [52] we investigate the influence of the lag parameter on the
timing of the D&C algorithm for computing the diagonal and the trace of exp(A).

7.3 Block diagonal splitting algorithm for banded matrices

As already mentioned in Remark 7.3 and shown in more detail below, Algorithm 7.1
applied to a banded matrix returns again a banded matrix when polynomial Krylov
subspace bases are used. The purpose of this section is to go further and use this
observation to bypass the need for building Krylov subspaces. We can also avoid recursion
and arrive at a simpler algorithm.

7.3.1 Block diagonal splitting algorithm from low-rank updates

Let A ∈ Rn×n be banded with bandwidth b. Our algorithm will be based on splitting A
into a block-diagonal matrix with many small diagonal blocks and an off-diagonal part.
To explain this construction, we will first discuss splitting off one small diagonal block.
We consider the partitioning

A = D +R, D =

D1

D̃1

 , D1 ∈ Rs×s, R = A−D, (7.4)

but we now suppose that the first diagonal block is small, that is, s � n; see also
Figure 7.3.

The matrix R can be written as R = U1JU
T
1 where

U1 := 0 I2b 0
[ ]
s− b 2b n− s− b

T
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A = D +R = +

Figure 7.3 – Illustration of decomposition (7.4).

and

J :=

 A(s− b+ 1 : s, s+ 1 : s+ b)

A(s+ 1 : s+ b, s− b+ 1 : s)

 .
When applying Algorithm 6.1 to approximate the low-rank update f(A) − f(D) the
polynomial Krylov subspaces remain sparse in the following sense.

Lemma 7.7. Given the setting described above, assume that 2mb ≤ s. Then the Krylov
subspaces Km(D,U1) and Km(DT , U1) are each contained in the column span of the
n× 2mb matrix

Um := 0 I2mb 0
[ ]

s−mb 2mb n− s−mb

T
.

Proof. For every polynomial p ∈ Πm−1, the matrix p(D) is banded with bandwidth
(m−1)b. In turn, p(D)U1 only has nonzero rows at positions s−mb+ 1, . . . , s+mb or, in
other words, every column of p(D)U1 is contained in the column span of Um. Combined
with the definition Km(D,U1) = span[U1, DU1, . . . , D

m−1U1], this proves the statement
of the lemma.

The compressions of D and A with respect to the orthonormal basis Um from
Lemma 7.7 takes the form

Gm = UTmDUm

= blkdiag(A(s−mb+ 1 : s, s−mb+ 1 : s), A(s+ 1 : s+mb, s+ 1 : s+mb)))

=: blkdiag(C
(1)
1 , C

(2)
1 ),

Hm = UTmAUm = A(s−mb+ 1 : s+mb, s−mb+ 1 : s+mb) =: B1.
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7.3. Block diagonal splitting algorithm for banded matrices

Following Algorithm 6.1, we define the approximate low-rank update as

f(A)− f(D) = f(A)− blkdiag(f(D1), f(D̃1))

≈ Umf(B1)UTm − Umf(blkdiag(C
(1)
1 , C

(2)
1 ))UTm. (7.5)

By Lemma 7.7, this approximation becomes in fact identical to the one returned by
Algorithm 6.1 if Km(D,U1) and Km(DT , U1) each have dimension 2mb. If the Krylov
subspaces are of smaller dimension then the approximations may differ, but the exactness
property of Theorem 6.2 still holds (see Remark 6.3).

7.3.2 The block diagonal splitting algorithm

From (7.5), it follows that the first part of Algorithm 7.1 (lines 12–14) reduces to the
computation of f(B1), f(C

(1)
1 ), f(C

(2)
1 ), f(D1), that is, functions of small submatrices of

A. For the second part (line 15) one can apply the same reasoning recursively to D̃1.

With the simplified assumptions that n = ks for an integer k and m := s
2b is an integer,

the discussion above shows that Algorithm 7.1 reduces to the simpler Algorithm 7.2,
where

• D := blkdiag(D1, . . . , Dk) and D1, . . . , Dk are the consecutive s× s diagonal blocks
of A;

• B̃ := blkdiag(B1, . . . , Bk−1) and B1, . . . , Bk−1 are consecutive s× s diagonal blocks
of A starting from index s

2 + 1;

• C̃ := blkdiag(C
(1)
1 , C

(2)
1 , . . . , C

(1)
k−1, C

(2)
k−1) where C(1)

1 , . . . , C
(2)
k−1 are the consecutive

s
2 ×

s
2 diagonal blocks of A starting from index s

2 + 1;

• B := blkdiag(Z, B̃, Z), C := blkdiag(Z, C̃, Z), where Z := zeros( s2).

The resulting splitting A = D+B−C is illustrated in Figure 7.4. Note that Algorithm 7.2
is embarrassingly parallel and attains nearly perfect weak scalability on k processors.
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Chapter 7. Divide-and-conquer algorithms for matrix functions

Algorithm 7.2 Approximation of f(A) for banded A

Input: Banded matrix A ∈ Rn×n of bandwidth b, block size s, function f
Output: Approximation approx

(s)
f (A) of f(A)

1: Define B̃, B, C̃, C, and split A = D +B − C as explained in Section 7.3.2
2: Compute f(D), f(B̃), and f(C̃) by evaluating f on each block of D, B̃, and C̃
3: Set fB←blkdiag(Z, f(B̃), Z) and fC←blkdiag(Z, f(C̃), Z), where Z := zeros( s2)
4: Return f(D) + fB − fC

D1

D2

D3

D4

D5

C
(1)
1

C
(2)
1

C
(1)
2

C
(2)
2

C
(1)
3

C
(2)
3

C
(1)
4

C
(2)
4

B1

B2

B3

B4

D1

D2

D3

D4

D5

Figure 7.4 – The blocks that are involved in the computation of f(A) for a banded matrix A.

7.3.3 Convergence analysis of block diagonal splitting method

Algorithm 7.2 corresponds to Algorithm 7.1 where the updates are performed using
projection onto spaces that include polynomial Krylov subspaces of dimension m :=

⌊
s
2b

⌋
;

thanks to Remark 6.3 and Proposition 7.1 this implies that Algorithm 7.2 is exact for all
f ∈ Πm. This property allows us to prove convergence results for Algorithm 7.2.

Theorem 7.8. Let A ∈ Rn×n be a banded matrix with bandwidth b. For a given block
size s, the output approx

(s)
f (A) of Algorithm 7.2 satisfies

‖f(A)− approx
(s)
f (A)‖2 ≤ 4C min

p∈Πm
‖f − p‖W (A),

where C = 1 if A is normal and C = 1 +
√

2 otherwise, and m :=
⌊
s
2b

⌋
.
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7.3. Block diagonal splitting algorithm for banded matrices

Proof. Algorithm 7.2 is exact for a polynomial in Πm and is linear with respect to f ,
therefore for all p ∈ Πm we have

‖f(A)− approx
(s)
f (A)‖2 = ‖f(A)− p(A) + approx(s)

p (A)− approx
(s)
f (A)‖2

= ‖f(A)− p(A)− approx
(s)
f−p(A)‖2

≤ ‖(f − p)(A)‖2 + ‖approx
(s)
f−p(A)‖2.

Using a result by Crouzeix and Palencia [50], we have ‖(f − p)(A)‖2 ≤ C‖f − p‖W (A).
Since the spectral norm of a block-diagonal matrix is the maximum spectral norm of its
blocks, it holds that

‖approx
(s)
f−p(A)‖2 ≤ max

i
‖(f − p)(Di)‖2 + max

i
‖(f − p)(Bi)‖2 + max

i,j
‖(f − p)(C(j)

i )‖2

≤ 3C‖(f − p)‖W (A).

In the latter inequality, we used again [50] combined with the fact that the numerical
range of a principal submatrix of A is contained in W (A). We conclude that

‖f(A)− approx
(s)
f (A)‖2 ≤ 4C‖(f − p)‖W (A),

and the claim follows from taking the minimum over all polynomials p ∈ Πm.

When considering the approximation of the trace of a matrix function by Algorithm 7.2,
a stronger convergence result could be proved, because of the exactness of the low-rank
updates (and therefore of the D&C algorithm) for polynomials in Π2m. In the specific
case of Algorithm 7.2, however, we can prove a stronger result even for the diagonal
entries of f(A).

Theorem 7.9. Let A ∈ Rn×n with bandwidth b, let us fix a block size s, let m := b s2bc.
Then the output approx

(s)
p (A) of Algorithm 7.2 satisfies

diag(p(A)) = diag(approx(s)
p (A)) (7.6)

for all polynomials p ∈ Π2m+1.

Proof. The proof is in the spirit of [159, Lemma 5.1], but the aim is different. By linearity
of Algorithm 7.2, it is sufficient to prove (7.6) when p(x) = xk, with 0 ≤ k ≤ 2m+ 1, that
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Chapter 7. Divide-and-conquer algorithms for matrix functions

is, to prove that the diagonal entries of Ak and approx
(s)
p (A) coincide.

To study the entries of Ak, it is helpful to consider the associated directed graph G(A)

with vertices 1, . . . , n and adjacency matrix A. The jth diagonal entry of Ak is given by
the sum of the weights of all the paths of length exactly k that start and end at vertex
i; we recall that the weight of a path v1 → v2 → . . .→ vk of length k is defined as the
product of the weights of the edges

∏k−1
h=1Avhvh+1

. We also consider the graphs G(Bi),
G(Di), G(C

(1,2)
i ). The diagonal entries of approx

(s)
p (A) are obtained by summing the

weights of the paths of length exactly k in the graphs G(Di) and G(Bi) and subtracting
the weights of the paths of length exactly k in the graphs G(C

(1)
i ) and G(C

(2)
i ) for all

indices i. Therefore, it is sufficient to prove that this sum coincides with the sum of the
weights of the paths of length exactly k in G(A).

Note that, for all indices i, G(C
(1)
i ) is a subgraph of G(Di) and G(Bi); G(C

(2)
i ) is a

subgraph of G(Di+1) and G(Bi); all these are subgraphs of G(A). The distance from a
vertex in G(Di) and one in G(Bi+1) or G(Bi−2) is at least m + 1. Therefore, for each
vertex v ∈ {1, . . . , n} each path in G(A) of length at most 2m+ 1 from v to itself satisfies
one (and only one) of the following conditions for some i ∈ {1, . . . , ns − 1}:

1. It is contained in G(C
(1)
i ), G(Bi), and G(Di), but in no other subgraph.

2. It is contained in G(C
(2)
i ), G(Bi), and G(Di+1), but in no other subgraph.

3. It is contained in G(Bi) but in no other subgraph.

4. It is contained in G(Di) but in no other subgraph.

In all these four cases, the weight of the path is counted exactly once in approx
(s)
p (A);

we conclude that the diagonal entries of approx
(s)
p (A) coincide with the ones of p(A) for

p(x) = xk for k ≤ 2m+ 1 and therefore for all polynomials in Π2m+1.

A convergence result for the diagonal elements of the output of Algorithm 7.2 follows
from Theorem 7.9 similarly to Theorem 7.8.

Corollary 7.10. With the same assumptions of Theorem 7.8 it holds that

|f(A)ii − approx
(s)
f (A)ii| ≤ 4C min

p∈Π2m+1

‖f − p‖W (A)
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7.3. Block diagonal splitting algorithm for banded matrices

for all i = 1, . . . , n and therefore

| tr(f(A))− tr(approx
(s)
f (A))| ≤ 4Cn min

p∈Π2m+1

‖f − p‖W (A),

where C = 1 for normal matrices A, and C = 1 +
√

2 otherwise.

Proof. According to Theorem 7.9, for all polynomials p ∈ Π2m+1 we have that

|f(A)ii−approx
(s)
f (A)ii| = |(f−p)(A)ii−approx

(s)
f−p(A)ii| ≤ ‖(f−p)(A)−approx

(s)
f−p(A)‖2.

From here one proceeds as in the proof of Theorem 7.8.

In Figure 7.5 we illustrate the convergence of approx
(m)
f (A) for the exponential of two

banded matrices and we observe that the diagonal – and therefore the trace – converges
much faster than the full matrix function.
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(a) Normalized random symmetric tridiagonal ma-
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Figure 7.5 – Convergence of the errors ‖f(A)− approx
(m)
f (A)‖F , ‖diag(f(A)− approx

(m)
f (A))‖2,

and | tr(f(A)− approx
(m)
f (A))| for f = exp.

7.3.4 Adaptive algorithm

In Algorithm 7.2 the block size s, which determines the accuracy of the approximation of
f(A), needs to be chosen a priori and is uniform across the whole matrix. In the following,
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Chapter 7. Divide-and-conquer algorithms for matrix functions

we develop a strategy to choose the block size adaptively and possibly differently in
different parts of the matrix.

When f is a polynomial of degree m and A has bandwidth b, f(A) has bandwidth
(at most) bm and the discussion in Section 7.3.3 implies that Algorithm 7.3 is exact
for block size s = 2bm. This motivates the following strategy. For a target accuracy
ε, we define the ε-approximate bandwidth of a matrix to be the bandwidth that the
matrix has if we discard all the entries with absolute value smaller than ε. In the first
phase, we choose the sizes of the blocks D1, D2, . . . , Dk in such a way that their sizes
are at least twice the ε-approximate bandwidth of f(D1), f(D2), . . . , f(Dk), and we set
F := blkdiag(f(D1), . . . , f(Dk)). In the second phase we compute the “updates” between
each pair of consecutive blocks Dj and Dj+1 corresponding to indices {j1, . . . , h} and
{h+ 1, . . . , j2} of A, respectively, similarly to (7.5). More precisely, we take

P := f(B)− blkdiag(f(C(1)), f(C(2))), (7.7)

with
B := A(J, J), C(1) := A(J1, J1), C(2) := A(J2, J2)

for J1 := b j1+h
2 c : h, J2 := (h + 1) : d j2+h

2 e, and J := J1 ∪ J2, and add the matrix P
to the submatrix of F corresponding to the indices J . As a heuristic criterion to check
convergence, we check if the absolute value of all the entries corresponding to the first
and last column and row of P is smaller than ε; if this is not the case, the sets J1, J2,
and J are enlarged. The procedure is summarized in Algorithm 7.3.

7.4 Numerical tests for Algorithms 7.2 and 7.3

In this section we test the block diagonal splitting algorithm on a variety of functions
of banded matrices. Both the input and output matrices of Algorithms 7.2 and 7.3 are
represented in the sparse format in Matlab.

7.4.1 Fermi-Dirac density matrix of one-dimensional Anderson model

As a first numerical experiment, we test Algorithm 7.3 on the function

f(z) = (exp(β(z − µ)) + 1)−1
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7.4. Numerical tests for Algorithms 7.2 and 7.3

Algorithm 7.3 Block diagonal splitting algorithm: Adaptive version

Input: Banded matrix A ∈ Rn×n, tolerance ε, function f , minimum block size nmin

Output: Approximation F of f(A)
1: Initialize F ← zeros(n), s← nmin, i← 1 (i denotes where the next diagonal block

starts)
2: while i ≤ n do
3: if f(A(i : i+ s− 1, i : i+ s− 1)) has ε-approximate bandwidth ≤ s/2 then
4: Set F (i : i+ s− 1, i : i+ s− 1)←f(A(i : i+ s− 1, i : i+ s− 1)), i← i+ s, s←

min{s/2, nmin}
5: else
6: Choose a larger block size s← min{2s, n− i+ 1}
7: end if
8: end while
9: for each pair of consecutive diagonal blocks do

10: Compute P using matrices B, C(1), C(2) corr. to indices J , J1, and J2 as in (7.7)
11: while the update has not converged do
12: Enlarge matrices B, C(1), C(2) in (7.7) corresp. to indices J , J1, and J2, and

recompute P
13: end while
14: Sum F (J, J)← F (J, J) + P
15: end for

and a symmetric tridiagonal matrix with diagonal entries uniformly randomly distributed
in [0, 1] and all other nonzero elements equal to −1, as in [24, Section 5]; this is the
Fermi–Dirac density matrix corresponding to a one-dimensional Anderson model. We
use µ = 0.5 and β = 1.84. We set ε = 10−5, nmin = 32, and we consider values of n
ranging from 29 to 219. For each value of n, we compare the approximation F returned by
Algorithm 7.3 to the approximation p(A) where p is a Chebyshev polynomial interpolating
f on [−2, 3] of degree d := dnnz(F )/(2n)e; choosing the degree in this way gives a banded
approximation of f(A) with roughly the same storage cost and a comparable accuracy.
The results are reported in Table 7.7; the approximation errors (relative errors in the
Frobenius norm) and the timings are comparable.

7.4.2 Spectral adaptivity: Comparison with interpolation by Cheby-
shev polynomials

An advantage of (polynomial) Krylov subspace over polynomial interpolation on the
spectral interval of A is the fact that Krylov methods are less impacted by outliers in the
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Chapter 7. Divide-and-conquer algorithms for matrix functions

A Splitting algorithm Chebyshev interpolation Dense

Size Time Err nnz/n Time Err Time

512 0.02 4.42 · 10−7 47.00 0.01 1.59 · 10−7 0.03

1,024 0.03 4.56 · 10−7 47.50 0.02 1.59 · 10−7 0.12

2,048 0.04 4.56 · 10−7 47.75 0.02 1.61 · 10−7 0.60

4,096 0.06 4.58 · 10−7 47.88 0.05 1.61 · 10−7 3.34

8,192 0.16 4.59 · 10−7 47.94 0.12 1.61 · 10−7 21.51

16,384 0.36 4.60 · 10−7 47.97 0.27 1.61 · 10−7 150.50

32,768 0.51 47.98 0.59

65,536 1.07 47.99 1.11

131,070 2.23 48.00 2.67

262,140 4.68 48.00 5.38

524,290 9.24 48.00 11.48

Table 7.7 – Computation of f(A) by Algorithm 7.3, where f(z) = (exp(β(z − µ)) + 1)
−1 and

the matrices A are symmetric tridiagonal matrices with diagonal entries uniformly randomly
distributed in [0, 1] and all other nonzero elements equal to −1, as discussed in Section 7.4.1.

spectrum of A. In the next experiment, we consider three 2048× 2048 matrices:

• The exponential of A1 = tridiag(−1, 2,−1);

• The exponential of the matrix A2 which is obtained from A1 by changing the entry
in position (1, 1) to 10;

• The square root of the matrix A3 which is the tridiagonal matrix with linspace(2,

3, n) on the diagonal and −1 on the super-diagonal and subdiagonal.

We run Algorithm 7.2 with different block sizes and Chebyshev interpolation with
different degrees of Chebyshev polynomial and we plot in Figure 7.6 the relative error in the
Frobenius norm versus the number of nonzero entries in the approximation of the matrix
functions described above. For the matrix A1, Chebyshev outperforms Algorithm 7.2.
However, for the matrix A2 which has an outlier in the eigenvalues, and for the matrix
A3 for which it is difficult to find a good polynomial approximation on the whole spectral
interval, Algorithm 7.2 achieves a smaller error with the same number of nonzero entries.
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Figure 7.6 – Relative error in the Frobenius norm of the approximations of exp(A1), exp(A2),
and
√
A3 from Section 7.4.2 obtained by Algorithm 7.2 and by Chebyshev interpolation.

We do not report the timings: In general, Chebyshev interpolation is faster than
our splitting algorithm; however, Chebyshev interpolation is only suitable for symmetric
matrices (for non-symmetric matrices one needs more refined techniques such as using
Faber polynomials as discussed, e.g., in [24]), while the splitting method works for any
banded matrix, can automatically adapt to different spectral distributions, and could
exploit the Toeplitz structure of A producing an approximation in constant time (as
the matrices D, B, and C are made of equal blocks, we could compute only a constant
number of matrix functions of the small blocks).

7.4.3 Adaptivity in the size of blocks

The matrix square root of A3 has slower off-diagonal decay in the upper-left region, as
shown in Figure 7.7(b). We run Algorithm 7.3 to compute A3

1/2, setting ε = 10−8. The
sparsity pattern of the output is shown in Figure 7.7(a), where different block sizes are
selected for different parts of the matrix; the relative error of the computed approximation
is 2.6 · 10−10 in the Frobenius norm.

7.4.4 Comparison with HSS algorithm

We expect Algorithm 7.3 to be faster than the general D&C algorithm (Algorithm 7.1) as
the first one should scale as O(n) and the latter as O(n log n), plus the fact that we have
no overhead computations needed for HSS arithmetic. We compare the timings of the two
algorithms for the computation of exp(−A) for A = tridiag(−1, 2,−1). For Algorithm 7.3
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(a) Sparsity structure of the output of Algorithm 7.3
applied to A3 and f(z) = z1/2.
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Figure 7.7 – The matrix A3 is the tridiagonal matrix with linspace(2, 3, n) on the diagonal
and −1 on the first super- and sub-diagonals.

we use a minimum block size of 64, while for Algorithm 7.1 we set nmin = 128 and we
write each low-rank update as a rank-1 update as discussed in Remark 7.2; in both cases
we set the tolerance parameter ε = 10−8. We report the results in Figure 7.8, together
with the timings of Matlab’s expm, for matrix dimensions ranging from n = 28 to n = 218.
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Figure 7.8 – Timings of Algorithms 7.3 and 7.1 for exp(−tridiag(−1, 2,−1)).
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8 Introduction to stochastic trace
estimation

Part III is concerned with the estimation of the trace of a symmetric matrix B ∈ Rn×n.
As mentioned in Chapter 5, in many applications one is interested in computing the trace
of a matrix function B = f(A) for a symmetric matrix A ∈ Rn×n. The application we
consider here is the computation of the log-determinant of an SPD matrix A ∈ Rn×n,
which is related to the trace of B = log(A) via the equality

log(det(A)) = tr(log(A)); (8.1)

see, e.g., [10]. The need for estimating determinants arises, for instance, in statistical
learning [2, 73, 80], lattice quantum chromodynamics [178], and Markov random fields
models [188]; moreover, certain quantities associated with graphs can be expressed as
determinants, such as the number of spanning trees [67].

Computing the trace of a matrix function is, of course, a trivial task if we are willing to
compute the full matrix f(A), which usually has cubic cost. To compute the determinant,
the standard way is to compute a Cholesky decomposition of A – which also has cubic
cost – and to multiply the squares of its diagonal entries. However, if one is happy with
an estimate of the trace of a matrix B, the Hutchinson trace estimator [114] allows us to
get an approximation of tr(B) by computing some quadratic forms XTBX for suitable
random vectors X of length n. The Hutchinson trace estimator is described in Section 8.1
and existing convergence results are presented in Section 8.2. The advantage of dealing
with quadratic forms is that, if the matrix A has no low-rank structure, often the quantity
XTBX = XT f(A)X can be approximated via Krylov subspace projection methods much
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Chapter 8. Introduction to stochastic trace estimation

faster than the computation of the whole f(A); see Section 8.3 below.

Let us briefly mention that there are other methods to approximate traces and deter-
minants, including randomized subspace iteration [167] and block Krylov methods [129],
but they only work well in specific cases, e.g., when A = σI + C for a matrix C of low
numerical rank. The Hutch++ trace estimator, recently proposed and analyzed for the
SPD case in [140], overcomes this limitation via a combination of randomized low-rank
approximation with the Hutchinson trace estimator. The Hutch++ algorithm will be
briefly discussed in Chapter 10. Another direction of work on large-scale determinant
estimation has explored the use of spectral sparsifiers for symmetric diagonally dominant
matrices [67, 113].

8.1 The Hutchinson trace estimator

Let B ∈ Rn×n be symmetric. The Hutchinson trace estimator is based on the following
fact.

Proposition 8.1. Let X =

[
X1 · · · Xn

]T
be a random vector of length n such that

E
[
XXT

]
= I. Then

E
[
XTBX

]
= tr(B).

Proof. We have that

E
[
XTBX

]
=

n∑
i=1

n∑
j=1

bijE[XiXj ] =
n∑
i=1

bii = tr(B),

where the first equality follows from the linearity of the expectation and the second
equality follows from the assumption that E[XXT ] = I.

The Hutchinson estimator is obtained by sampling an average of N quadratic forms:

trN (B) :=
1

N

N∑
i=1

(X(i))TBX(i), (8.2)

where the vectors X(i), i = 1, . . . , N , are independent copies of X, which we call probe
vectors. The most common choices for X are standard Gaussian and Rademacher random
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Figure 8.1 – For a randomly chosen symmetric matrix A ∈ R1000×1000 we plot the error | tr(A)−
trRN (A)| for increasing values of N . The error oscillates because this is a stochastic process, but
overall converges to zero with rate O(1/

√
N), as it can be expected from a Monte Carlo method.

The estimator trGN (B) behaves in an analogous way.

vectors; the latter are defined by having i.i.d. entries that take values ±1 with equal
probability. We will consider both choices and denote the resulting trace estimates by
trGN (B) and trRN (B), respectively. Other possible strategies include spherical random
vectors [8, 162] and probing vectors [79, 174]; we will briefly discuss the probing vectors
in Chapter 10. A typical example of the behavior of the estimator (8.2) in the case of
Rademacher random vectors is displayed in Figure 8.1.

8.2 Existing tail bounds for the Hutchinson estimator

By the central limit theorem, the estimate (8.2) can be expected to become more reliable
as N increases; see, e.g., [44, Corollaries 3.3 and 4.3] for such an asymptotic result as
N →∞. Most existing non-asymptotic results for trace estimation are specific to an SPD
matrix B; see [8, 93, 162] for examples. They provide a bound on the estimated number
N of probe vectors needed to ensure a small relative error with high probability:

P
(∣∣∣∣ tr(B)− trN (B)

tr(B)

∣∣∣∣ ≥ ε) ≤ δ. (8.3)

More specifically, in [8] it is shown that N = 20ε−2 log 2
δ and N = 6ε−2 log 2n

δ are sufficient
for Gaussian and Rademacher vectors, respectively. In [162] these bounds are improved
and it is shown that N = 8ε−2 ‖A‖2

tr(A) log 2
δ and N = 6ε−2 log 2

δ are sufficient for Gaussian
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and Rademacher vectors, respectively. In [93] it is proven that N = 2ε−2 log 2
δ is sufficient

for Gaussian vectors when ε ∈
(
0, 1

2

)
.

The assumption that B is SPD is usually not met when computing the determinant of
an SPD matrix A via (8.1) because log(A) is SPD only if all eigenvalues of A are larger
than one. For general symmetric indefinite B, it is unrealistic to aim at a bound of the
form (8.3) for the relative error, because the fact that tr(B) = 0 does not imply that
the Hutchinson trace estimator has zero error. The only result that holds for general
symmetric indefinite B, as far as we know, is contained in [7]; it is shown that

P
(
| trN (B)− tr(B)| ≥ ε

)
≤ δ (8.4)

holds for Gaussian vectors if the number of samples is N = 20ε−2‖B‖2∗ log 4
δ and holds

for Rademacher vectors if N = 6ε−2‖B‖2∗ log 2·rank(B)
δ ; see Remarks 9.13 and 9.17 for a

comparison with our results.

In the context of log-determinant approximation, there are several results obtained by
suitably rescaling or modifying the results for SPD matrices contained in [8, 162]. Ubaru,
Chen, and Saad [183] derive a bound for the absolute error via rescaling, that is, the
results from [162] are applied to the matrix C := − log(λA) for a value of λ > 0 that
ensures that C is SPD. Specifically, for Rademacher vectors it is shown in [183, Corollary
4.5] that

P
(
| trRN (log(A))− log det(A)| ≥ ε

)
≤ δ (8.5)

is satisfied with fixed failure probability δ if the number of samples N grows proportionally
to ε−2n2 log(1 + κ(A))2 log 2

δ where κ(A) denotes the condition number of A. A similar
rescaling approach is used in [104], in which determinant estimation for indefinite matrices
A is addressed by applying trace estimation to a suitable rescaled version of AAT , in
such a way that its logarithm is negative definite. Theorem 2 in [104] gives a number of
samples that grows as 14ε−2n2(log(1 + κ(A)2)2 log 2

δ to get an approximation Γ such that
P(| log det(A)− Γ| ≤ ε) > 1− δ. Also in this case, they get a quadratic dependence on n.

Unfortunately, these estimated numbers of samples compare unfavorably with a much
simpler approach; computing the trace from the diagonal elements of log(A) only requires
the evaluation of n quadratic forms, using all n unit vectors of length n.
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8.3 Approximating the quadratic forms

When using the Hutchinson trace estimator to compute tr(B) for the matrix function
B = f(A), the quadratic forms

(X(i))TBX(i) = (X(i))T f(A)X(i)

can in general not be computed exactly. For this, a polynomial approximation of f
can be used. We restrict our discussion to f(z) = log(z), which corresponds to the
log-determinant.

One possible strategy is to use a priori polynomial approximations. Chebyshev
expansion/interpolation has been used in [103, 152] and approximation by Taylor series
expansion has been investigated in [12, 33, 197]. Often, a better approximation can
be obtained by the Lanczos method (see, e.g., [10]). Given the orthonormal basis Um
of the Krylov subspace Km(A,X(i)) obtained by the Lanczos algorithm, one takes the
approximations

f(A)X(i) ≈ Umf(UTmAUm)e1, (X(i))T f(A)X(i) ≈ eT1 f(UTmAUm)e1.

Note that the size of UTmAUm can be much smaller than the size of A and therefore
computing f(UTmAUm) is cheaper than computing f(A). The Lanczos method for com-
puting quadratic forms is equivalent to applying Gaussian quadrature to the integral∫

log(λ)dµ(λ) on the spectral interval of A, for a suitably defined measure µ; see [85]. In
the case of the logarithm, upper and lower bounds for the quantity (X(i))T log(A)X(i) can
be determined without much additional effort [10]. Moreover, the convergence of Gaussian
quadrature for the quadratic form can be related to the best polynomial approximation
of the logarithm on the spectral interval of A; see [183, Theorem 4.2] and Section 9.4.

By combining the polynomial approximation error with (8.5), one obtains a total error
bound for log-determinant approximation that takes into account both sources of errors.
Such a result is presented in [183, Corollary 4.5] for Rademacher vectors; the fact that all
such vectors have bounded norm is essential in the analysis.
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8.4 Contributions

In Chapter 9, we improve the results from [7, 183] by first showing that the number of
samples required to achieve (8.4) with symmetric indefinite matrices is much lower for
both Gaussian and Rademacher vectors. Our result for Rademacher vectors also implies
an improved bound for SPD matrices. A summary of the bounds that we discussed in
Section 8.2 and that we will derive in Chapter 9 on the number of probe vectors for the
Hutchinson trace estimator in the SPD and indefinite case is presented in Tables 8.1
and 8.2.

Bound on the number of samples Assumptions Reference

N = 20ε−2 log 2
δ X Gaussian [8]

N = 2ε−2 log 2
δ X Gaussian and 0 < ε < 1

2 [93]

N = 8ε−2 ‖B‖2
tr(B) log 2

δ X Gaussian [162]

N = 6ε−2 log 2n
δ X Rademacher [8]

N = 6ε−2 log 2
δ X Rademacher [162]

N = 8ε−2(1 + ε) ‖B‖2tr(B) log 2
δ X Rademacher Corollary 9.24

Table 8.1 – Summary of the bounds on the number of probe vectors that ensure that (8.3) holds,
for an SPD matrix B.

Bound on the number of samples Assumptions Reference

N = 20ε−2‖B‖2∗ log 4
δ X Gaussian [7]

N = 4ε−2(‖B‖2F + ε‖B‖2) log 2
δ X Gaussian Theorem 9.12

N = ε−2n2 log(1 + κ(A))2 log 2
δ X Rademacher, B = log(A) [183]

N = 6ε−2‖B‖2∗ log 2·rank(B)
δ X Rademacher [7]

N = 8ε−2
(
‖B‖2F + 2ε‖B‖2

)
log 2

δ X Rademacher Corollary 9.16

Table 8.2 – Summary of the bounds on the number of probe vectors that ensure that (8.4) holds,
for a symmetric indefinite matrix B.
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8.4. Contributions

Specialized to determinant computation, we combine our results with an improved
analysis of the Lanczos method for estimating the quadratic forms XT log(A)X, to get
a sharper total error bound for Rademacher vectors. Finally, we extend this combined
error bound to Gaussian vectors, which requires some additional consideration because of
the unboundedness of such vectors.

Chapter 9 is based on the paper [46].
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9 Trace estimates for indefinite matri-
ces with an application to determi-
nants

In the first part of this chapter we prove new tail bounds for the Hutchinson trace
estimator. More specifically, in Section 9.1 we consider a single-sample estimate (N = 1)
and in Section 9.2 we extend the results to trN (B). We show for a general symmetric
matrix B that

P
(
| trN (B)− tr(B)| ≥ ε

)
≤ δ, (9.1)

for both Gaussian and Rademacher vectors, is satisfied with fixed failure probability δ if
the number of samples N grows proportionally with the stable rank

ρ(B) :=
‖B‖2F
‖B‖22

.

As 1 ≤ ρ(B) ≤ n (see, e.g., [182, Section 2.1.15]), our result improves the ones in [7] and
in [183] by a factor which can be as large as n. We demonstrate that the dependence on
n is asymptotically tight with an explicit example. For SPSD matrices B, our bound
also improves the state-of-the-art result [162, Theorem 1] for Rademacher vectors by
establishing that the number of probe vectors is inversely proportional to the stable rank
of B1/2. Section 9.3 contains numerical examples illustrating the behavior of our bounds
and a comparison with previous results.

In the second part of the chapter we apply the analysis to the computation of the
log-determinant of SPD matrices. More specifically, in Section 9.4 we provide an improved
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analysis of Lanczos method for the approximation of quadratic forms XT log(A)X, in
Section 9.5 we combine it with the results from Section 9.2 to get convergence bounds for
log-determinant estimation. Finally, Section 9.6 contains some numerical examples.

9.1 Bounds for a single-sample estimate

In this section we consider single-sample estimates, that is, we look for tail bounds for
the random variable XTBX when X is a Gaussian or Rademacher random vector. Such
results will be generalized to tail bounds for trGN (B) and trRN (B) in Section 9.2.1. Here,
B is a symmetric, possibly indefinite, n× n matrix.

A straightforward approach to get a tail bound for XTBX is via Chebyshev inequality,
which gives

P(|XTBX − tr(B)| ≥ ε) ≤ Var(XTBX)

ε2
for all ε > 0. (9.2)

The variance of the random variable XTBX is 2‖B‖2F for Gaussian vectors and is
2‖B − DB‖2F for Rademacher vectors, where DB denotes the diagonal matrix containing
the diagonal entries of B (see [8]). However, (9.2) is meaningless for small values of ε,
and the failure probability in the right-hand-side decreases slowly when ε increases.

In fact, the random variable XTBX has been largely studied in the literature and goes
under the name of chaos of order 2. In particular, the Hanson-Wright inequality [105, 163]
is a tail bound for such quadratic form for vectors X whose entries are independent
sub-Gaussian random variables.

Definition 9.1. A random variable Y is sub-Gaussian if the quantity

‖Y ‖ψ2 := sup
p≥1

p−1/2 (E[|Y |p])1/p

is finite.

We refer the reader to [76, Section 7.4] for equivalent definitions and properties of
sub-Gaussian random variables.

Theorem 9.2 ([163, Theorem 1.1]). There exists a universal constant c > 0 such that
if X is a random vector of length n with E[Xi] = 0, independent components which are
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sub-Gaussian with ‖Xi‖ψ2 ≤ K, and B ∈ Rn×n is symmetric, then for all ε > 0

P
(
|XTBX − tr(B)| > ε

)
≤ 2 exp

(
−cmin

{
ε2

K4‖B‖2F
,

ε

2K2‖B‖2

})
.

Both Rademacher and Gaussian vectors satisfy the assumptions of Theorem 9.2, as
both types of random variables are sub-Gaussian. However, to obtain practical bounds
we are interested in finding the best constant c in these two particular cases.

For Gaussian vectors, results with explicit constants appear in [32, Example 2.12]
and [127, Lemma 1], but they apply to symmetric matrices with zero diagonal and SPD
matrices, respectively. Lemma 9.6 below is similar, but not identical, to these results.

For Rademacher vectors, the homogeneous case, corresponding to a matrix B with zero
diagonal, has been studied extensively in the literature; see, e.g., [32, 76, 105, 122, 176].
In particular, the results stated in [1, Theorem 6] and [32, Exercise 6.9] give

P
(
|XTBX| ≥ ε

)
≤ 2 exp

(
− ε2

16‖B‖2F + 16‖B‖2ε

)
and

P
(
|XTBX| ≥ ε

)
≤ 2 exp

(
− ε2

32‖B‖2F + 128‖B‖2ε

)
,

respectively. Proposition 8.13 in [76] states

P
(
|XTBX| ≥ ε

)
≤ 2 exp

(
−min

{
3ε2

128‖B‖2F
,

ε

32‖B‖2

})
.

We will improve these constants in Theorem 9.10 below. The non-homogeneous case is
easily obtained from the homogeneous case; see Corollary 9.16 below.

9.1.1 Sub-Gamma random variables

For both the Gaussian and the Rademacher case we will use a Chernoff bound for sub-
Gamma random variables – a larger class than sub-Gaussian random variables; see, e.g.,
[32].

Definition 9.3. A random variable X is called sub-Gamma with variance parameter
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ν > 0 and scale parameter c > 0 if

E[exp(λX)] ≤ exp

(
νλ2

2(1− cλ)

)
for all 0 < λ <

1

c
.

Lemma 9.4 ([32, Section 2.4]). Let X be a sub-Gamma random variable with parameters
(ν, c). Then, for all ε ≥ 0, we have

P(X ≥
√

2εν + cε) ≤ exp(−ε).

Lemma 9.5 ([187, Proposition 2.10]). Let X be a random variable such that E[X] = 0,
and such that both X and −X are sub-Gamma with parameters (ν, c). Then, for all ε ≥ 0,
we have

P (|X| ≥ ε) ≤ 2 exp

(
− ε2

2(ν + cε)

)
.

9.1.2 Tail bounds for a single-sample estimate with Gaussian vectors

Let B be a real symmetric matrix and let B = QΛQT be a spectral decomposition,
where Λ = diag(λ1, . . . , λn) contains the eigenvalues of B and Q is an orthogonal matrix.
Lemma 9.5 implies the following result for the tail of a single-sample trace estimate with
Gaussian vectors.

Lemma 9.6. For a Gaussian vector X of length n we have

P
(
|XTBX − tr(B)| ≥ ε

)
≤ 2 exp

(
− ε2

4‖B‖2F + 4ε‖B‖2

)
for all ε > 0.

Proof. We let

Y := XTBX − tr(B) = XTQΛQTX − tr(B) =

n∑
i=1

λi(Z
2
i − 1),

where Zi ∼ N (0, 1) is the ith component of the Gaussian vector QTX. To show that Y
is sub-Gamma, we define for λ ∈ R the function

ψ(λ) := logE[exp(λ(Z2 − 1))], Z ∼ N (0, 1).
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9.1. Bounds for a single-sample estimate

We have that ψ(λ) = log E[exp(λZ2)]
exp(λ) =− λ− 1

2 log(1− 2λ) for λ < 1
2 . In particular, this

implies ψ(λ) ≤ λ2

1−2λ for 0 ≤ λ < 1
2 , and ψ(λ) ≤ λ2 ≤ λ2

1+cλ for −1
c < λ < 0 for all c > 0.

Using the independence of Zi for different i we obtain

logE[exp(λY )] =
n∑
i=1

logE[exp(λλi(Z
2
i − 1))] =

n∑
i=1

ψ(λλi)

≤
n∑
i=1

λ2
iλ

2

1− 2|λi|λ
≤
‖B‖2Fλ2

1− 2‖B‖2λ

for 0 < λ < 1
2‖B‖2 . This shows that Y is sub-Gamma with parameters (ν, c) =

(2‖B‖2F , 2‖B‖2). Moreover, −Y = XT (−B)X − tr(−B) is also sub-Gamma with the
same parameters. Because E[Y ] = 0, Lemma 9.5 implies the desired result.

9.1.3 Tail bounds for a single-sample estimate with Rademacher vec-
tors

We now assume that X is a Rademacher vector. The property that the multiplication
with orthogonal matrices preserves Gaussian random vectors, which has been exploited
in the proof of Lemma 9.6, does not extend to the Rademacher case, and the moment
generating function of XTBX cannot be written in a simple form. Therefore, other
strategies need to be used. Note that, as Rademacher random variables are bounded,
classical tools such as Hoeffding and Bernstein inequalities can be used to directly obtain
tail estimates for trRN (B), but they do not give sharp results; see Remark 9.18. Instead,
we make use of the the entropy method [32] to establish the tail bound in Theorem 9.10
for a single-sample trace estimate.

Definition 9.7. The entropy of a random variable Z is defined as

H(Z) := E[Z logZ]− E[Z] logE[Z],

provided that all expected values exist.

We will need the two following ingredients. The Herbst argument (see, e.g., [32, page
11], [76, pages 239–240], and [187, Section 3.1.2]) turns a bound on the entropy of a
random variable into a bound on the moment generating function. By Chernoff’s bound,
the latter implies a bound on the tail of the random variable. Specifically, we use the
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following (modified) Herbst argument.

Lemma 9.8. Let Z be a random variable and g : [0, a)→ R such that

H(exp(λZ)) ≤ λ2g(λ)E[exp(λZ)]. (9.3)

Then for all λ ∈ [0, a) it holds

logE[exp(λZ)] ≤ λE[Z] + λ

∫ λ

0
g(ξ)dξ.

Proof. For ψ(λ) := logE[exp(λZ)], it holds that ψ′(λ) = E[Z exp(λZ)]/E[exp(λZ)].
Recalling the definition of entropy, this allows us to rewrite (9.3) as

λψ′(λ) exp(ψ(λ))− ψ(λ) exp(ψ(λ)) ≤ λ2g(λ) exp(ψ(λ)),

which is equivalent to
d

dλ

(
ψ(λ)

λ

)
≤ g(λ).

Integration on the interval [0, λ] gives

ψ(λ)

λ
− lim
λ→0+

ψ(λ)

λ
≤
∫ λ

0
g(ξ)dξ.

We conclude by noting that limλ→0+
ψ
λ = E[Z].

For deriving bounds on the entropy, we need the following two variations of Gross’
logarithmic Sobolev inequality.

Theorem 9.9. Let f : {−1, 1}n → R and let X be a Rademacher vector with components
X1, . . . , Xn. Define f(X̄(i)) := f(X1, . . . , Xi−1,−Xi, Xi+1, . . . , Xn) for i = 1, . . . , n.
Then for all λ > 0 we have

H(exp(λf(X))) ≤ λ2

4
E

[
exp(λf(X))

n∑
i=1

(
f(X)− f(X̄(i))

)2

+

]
(9.4)

and

H(exp(λf(X))) ≤ λ2

8
E

[
exp(λf(X))

n∑
i=1

(
f(X)− f(X̄(i))

)2
]
. (9.5)
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Proof. The inequality (9.4) is a standard result and can be found, e.g., in [32, page 122].
The inequality (9.5) is a variation of the same argument; see also [32, Exercise 5.5] for a
related (but not identical) result. The inequality (9.5) can, in fact, be found in a Master’s
thesis [1, Theorem 5]. For convenience of the reader, we provide a proof of (9.5) based on
the textbook [32].

In [32, page 122] it is proven that

H(exp(λf(X))) ≤ 1

2
E

[
n∑
i=1

(
exp(λf(X)/2)− exp(λf(X̄(i))/2)

)2
]
. (9.6)

For a ≥ b we have

exp
(a

2

)
− exp

(
b

2

)
=

∫ a/2

b/2
exp(t)dt ≤ a− b

2
·

exp
(
a
2

)
+ exp

(
b
2

)
2

≤ a− b
2

√
exp(a) + exp(b)

2
,

where the first inequality follows from the concavity of the exponential and the Hermite-
Hadamard inequality. Therefore, for all a, b ∈ R we have

(exp(a/2)− exp(b/2))2 ≤ 1

8
(a− b)2(exp(a) + exp(b)). (9.7)

Applying (9.7) to each summand in Equation (9.6) one obtains

H(exp(λf(X))) ≤ λ2

16

n∑
i=1

E
[
(f(X)− f(X̄(i)))2

(
exp(λf(X)) + exp(λf(X̄(i)))

)]
=
λ2

16

n∑
i=1

E
[
(f(X)− f(X̄(i)))2 exp(λf(X))

]
+
λ2

16

n∑
i=1

E
[
(f(X)− f(X̄(i)))2 exp(λf(X̄(i)))

]
=
λ2

8
E

[
exp(λf(X))

n∑
i=1

(
f(X)− f(X̄(i))

)2
]
,

where the last equality follows from the fact that f(X) and f(X̄(i)) have the same
distribution and changing the sign of the ith entry of X̄(i) gives X again.
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We are now ready to state and prove our tail bound for Rademacher chaos of order 2,
that is, for a single-sample estimate.

Theorem 9.10. Let X be a Rademacher vector of length n and let B be a nonzero
symmetric matrix such that Bii = 0 for i = 1, . . . , n. Then, for all ε > 0,

P
(
|XTBX| ≥ ε

)
≤ 2 exp

(
− ε2

8‖B‖2F + 8ε‖B‖2

)
. (9.8)

Proof. The proof follows closely [1, Theorem 6] and [32, Theorem 17]; see Remark 9.11
for a comparison with these results. The main idea of the proof is as follows. Using the
logarithmic Sobolev inequalities presented in Theorem 9.9, a bound on the entropy of the
random variable XTBX is obtained. Using the modified Herbst argument of Lemma 9.8,
we derive a bound on the moment generating function (MGF) of XTBX, establishing
that it is sub-Gamma with certain constants, which then allows us to apply Lemma 9.5.

Without loss of generality, we may assume ‖B‖2 = 1; the general case follows from
applying the result to B̃ := B/‖B‖2. Let us consider the function f : {−1, 1}n → R
defined as

f(x) = xTBx =
∑
i 6=j

xixjBij .

We want to apply the logarithmic Sobolev inequality (9.5) from Theorem 9.9 to f(X).
For this purpose, we let

X̄(i) =
[
X1, . . . , Xi−1,−Xi, Xi+1, . . . , Xn

]T
= X − 2Xiei, i = 1, . . . , n,

where ei denotes the ith unit vector. Using that B has zero diagonal entries, we obtain

f(X)− f(X̄(i)) = 〈BX,X〉 − 〈BX − 2XiBei, X − 2Xiei〉 = 4Xi〈Bei, X〉,

where 〈·, ·〉 denotes the standard inner product in Rn. Therefore, denoting

Y := ‖BX‖22 =

n∑
i=1

( n∑
j=1

BijXj

)2

,

Theorem 9.9 establishes, for all λ > 0,

H(exp(λf(X))) ≤ 2λ2E [Y exp(λf(X))] . (9.9)
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The decoupling inequality in [76, Lemma 8.50], which follows from Jensen’s inequality,
gives

λE[Y exp(λf(X))] ≤ H(exp(λf(X))) + E[exp(λf(X))] logE[exp(λY )].

Combined with (9.9), this implies

H(exp(λf(X))) ≤ 2λ

1− 2λ
E[exp(λf(X))] · logE[exp(λY )] for 0 < λ <

1

2
. (9.10)

To find an upper bound on the MGF of Y , we use again a logarithmic Sobolev
inequality, then transform the obtained bound on the entropy into a bound on the MGF
by Herbst argument. We do so by applying the inequality (9.4) from Theorem 9.9 to the
function h : Rn → R defined by h(x) := ‖Bx‖22. For this purpose, note that

h(X)− h(X̄(i)) = 〈BX,BX〉 − 〈BX̄(i), BX̄(i)〉 = 〈B(X − X̄(i)), B(X + X̄(i))〉

= 4〈XiBei, BX −XiBei〉 ≤ 4Xi〈Bei, BX〉

and, hence,

n∑
i=1

(
h(X)− h(X̄(i))

)2

+
≤ 16

n∑
i=1

〈Bei, BX〉2 = 16‖BTBX‖22 ≤ 16‖BX‖22,

where we used that ‖B‖2 = 1 for the last inequality. Therefore Theorem 9.9 gives

H(exp(λY )) ≤ 4λ2E[Y exp(λY )].

Letting g(λ) := 4E[Y exp(λY )]/E[exp(λY )], we have obtained a bound of the form (9.3),
as required by Lemma 9.8. Note that g(λ) = 4ψ′(λ), where ψ(λ) := logE[exp(λY )]. The
result of Lemma 9.8 gives

logE[exp(λY )] ≤ λ

1− 4λ
‖B‖2F for λ ∈

(
0,

1

4

)
.

Inserting this inequality into (9.10) gives

H(exp(λf(X))) ≤
2λ2‖B‖2F

(1− 4λ)(1− 2λ)
E[exp(λf(X))] for λ ∈

(
0,

1

4

)
.
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The random variable f(X) satisfies (9.3) for the function g(λ) :=
2‖B‖2F

(1−4λ)(1−2λ) in the
interval [0, 1/4). Recalling that E[f(X)] = 0, the result of Lemma 9.8 gives

logE[exp(λf(X))] ≤ λ‖B‖2F log
1− 2λ

1− 4λ
≤

2‖B‖2Fλ2

1− 4λ
, λ ∈ [0, 1/4),

where we used log(1 + x) ≤ x in the last inequality.

Replacing f by −f and B by −B, we also obtain

logE[exp(−λf(X))] ≤
2‖B‖2Fλ2

1− 4λ
, λ ∈ [0, 1/4).

Therefore the random variables f(X) and −f(X) are sub-Gamma with parameters
(4‖B‖2F , 4). Applying Lemma 9.5 concludes the proof.

Remark 9.11. The proof of Theorem 9.10 follows the proof of [1, Theorem 6], which in
turn refines a result from [31, Theorem 17] (see also [32]) by substituting the more general
logarithmic Sobolev inequality from [31, Proposition 10] with the ones from Theorem 9.9
specific for Rademacher random variables. However, let us stress that the results in [1, 31]
feature larger constants partly because they deal with the more general Rademacher chaos

f(X) = sup
B∈B

∑
i 6=j

XiXjBij ,

where B is a set of symmetric matrices with zero diagonal.

9.2 Tail bounds for trace estimation

In this section we use a diagonal embedding trick to turn Lemma 9.6 and Theorem 9.10 into
tail bounds of the form (9.1) for the Hutchinson trace estimator applied to a symmetric,
possibly indefinite matrix B ∈ Rn×n.

9.2.1 Tail bounds for trace estimation with Gaussian vectors

Here we assume that X is a standard Gaussian vector.
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Theorem 9.12. Let B ∈ Rn×n be symmetric. Then

P
(
| trGN (B)− tr(B)| ≥ ε

)
≤ 2 exp

(
− Nε2

4‖B‖2F + 4ε‖B‖2

)
for all ε > 0. In particular, for N ≥ 4

ε2
(‖B‖2F + ε‖B‖2) log 2

δ it holds that P(| trGN (B)−
tr(B)| ≥ ε) ≤ δ.

Proof. We apply Lemma 9.6 to the matrix

B := diag
(
N−1B, . . . , N−1B

)
∈ RNn×Nn, (9.11)

that is, the block diagonal matrix with the N diagonal blocks containing rescaled copies of
B. In turn, the trace estimate (8.2) equals XTBX for a Gaussian vector X of length Nn.
Noting that ‖B‖F = N−1/2‖B‖F and ‖B‖2 = N−1‖B‖2, the first part of the corollary
follows from Lemma 9.6. Setting

δ := 2 exp

(
− ε2

4‖B‖2F + 4ε‖B‖2

)
= 2 exp

(
− Nε2

4‖B‖2F + 4ε‖B‖2

)
we obtain N = 4

ε2

(
‖B‖2F + ε‖B‖2

)
log 2

δ .

Remark 9.13. The result of Theorem 9.12 compares favorably with Lemma 4 in [7],
which shows that P(| trGN (B) − tr(B)| ≥ ε) ≤ δ for N ≥ 20

ε2
‖B‖2∗ log 4

δ . Because of
‖B‖F ≤ ‖B‖∗ ≤

√
n‖B‖F , the bound of Theorem 9.12 is always better for reasonably

small values of ε (e.g. ε ≤ 5‖B‖∗), and it can improve the estimated number of samples
N in [7] by a factor proportional to n.

We recall that the stable rank of B is defined as ρ = ‖B‖2F /‖B‖22 and satisfies ρ ∈ [1, n].
In particular, ρ(B) = 1 when B has rank one and ρ(B) = n when all singular values
are equal. Intuitively, ρ(B) tends to be large when B has many singular values not
significantly smaller than the largest one. The minimum number of probe vectors required
by Theorem 9.12 depends on the stable rank of B in the following way:

4

ε2
(ρ‖B‖22 + ε‖B‖2) log

2

δ
≤ 4

ε2
(n‖B‖22 + ε‖B‖2) log

2

δ
.

The upper bound indicates that N may need to be chosen proportionally with n to reach a
fixed (absolute) accuracy ε with constant success probability, provided that ‖B‖2 remains
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constant as well. The following lemma shows for a simple matrix B that such a linear
growth of N can actually not be avoided.

Lemma 9.14. Let n be even and consider the traceless matrix B =
[
In/2 0

0 −In/2

]
. Then,

for every ε > 0, it holds that

P(| trGN (B)| ≤ ε) ≤ ε
√
N

πn
.

Proof. By the definition of B, the trace estimate takes the form

trGN (B) =
1

N

( nN/2∑
i=1

X2
i −

nN/2∑
j=1

Y 2
j

)

for independent Xi, Yj ∼ N(0, 1). In other words,

N · trGN (B) = X − Y,

where X,Y are independent Chi-squared random variables with nN
2 degrees of freedom.

The probability density function f of Z = X − Y can be expressed as

f(z) =
1

2nN/4
√
πΓ(nN/4)

|z|
nN
4
− 1

2KnN
4
− 1

2
(|z|),

where KnN
4
− 1

2
is a modified Bessel function of the second kind [60]. In particular,

f(0) =
1

4
√
π

Γ
(
nN
4 −

1
2

)
Γ
(
nN
4

) =
1

4
√
π

√
π

2
nN
2
−2

(nN
2 − 2
nN
4 − 1

)
≤ 1

2
√
πnN

,

where we used the duplication formula for Gamma functions and the inequality 1
22k

(
2k
k

)
≤

1√
πk

; see [185].

As f is an autocorrelation function (of the density function of a Chi-squared variable
with nN/2 degrees of freedom), its maximum is at 0. We can therefore estimate the
probability of X − Y being in the interval [−Nε,Nε] in the following way:

P(| trGN (B)| ≤ ε) = P(|X − Y | ≤ Nε) ≤ 2Nεf(0) ≤ ε
√
N

πn
.

We can reformulate Theorem 9.12 in such a way that, given a number N of probe

142



9.2. Tail bounds for trace estimation
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Figure 9.1 – Dots: Errors | trG10(B) − tr(B)| of 20 samples for each n = 2k with k = 2, . . . , 23,
where B is the matrix from Lemma 9.14. Blue line: Error bound ε(B, 0.05, 10) from (9.12).

vectors and a failure probability δ ∈ (0, 1), we have ε = ε(B, δ,N) such that with
probability at least 1− δ one has trGN (B) ∈ [ tr(B)− ε, tr(B) + ε]. The random variable
XTBX − tr(B), where B is defined as in (9.11) and X is a Gaussian vector of length nN ,
is sub-Gamma with parameters

(
2
‖B‖2F
N , 2‖B‖2N

)
, and the same holds for −XTBX. By

Lemma 9.4 we have

ε ≡ ε(B, δ,N) =
2√
N
‖B‖F

√
log

2

δ
+

2

N
‖B‖2 log

2

δ
≤ 2

(√
n

N
log

2

δ
+

1

N
log

2

δ

)
‖B‖2.

(9.12)
As the example in Lemma 9.14 shows, the potential growth of ε with

√
n cannot be avoided

in general. Figure 9.1 illustrates this growth. In the case of relative error estimates for
symmetric positive semidefinite (SPSD) matrices, it is shown in [191] that the dependence
on log 2

δ and 1
ε2

cannot be improved.

Remark 9.15. For a nonzero SPSD matrix B, the result of Theorem 9.12 can be turned
into a relative error estimate. Let γ := ‖B‖2/ tr(B) = ρ(B1/2)−1 be the inverse of the
intrinsic dimension of B (see, e.g., [182, Section 7.1]). Replacing ε by ε · tr(B) in
Theorem 9.12 and noting that ‖B‖2F / tr(B)2 ≤ γ, one obtains

P
(
| trGN (B)− tr(B)|

tr(B)
≥ ε
)
≤ δ for N ≥ 4

ε2
(1 + ε)γ log

2

δ
.
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State-of-the-art results of a similar form are Theorem 3 in [162], which requires N ≥
8
ε2
γ log 2

δ , and Corollary 3.3 in [93], which requires N ≥ 2
ε2
γ log 2

δ and ε ∈
(
0, 1

2

)
. Com-

pared to [93], our result imposes no restriction on ε at the expense of a somewhat larger
constant. On the other hand, as ε ≤ 1, our result is always more favorable than the result
from [162] for SPSD matrices.

9.2.2 Tail bounds for trace estimation with Rademacher vectors

As for Gaussian vectors, the result of Theorem 9.10 can be turned into a tail bound for
trRN (B) by block-diagonal embedding.

Corollary 9.16. Let B be a nonzero symmetric matrix. Then

P
(
| trRN (B)− tr(B)| ≥ ε

)
≤ 2 exp

(
− Nε2

8‖B − DB‖2F + 8ε‖B − DB‖2

)
for every ε > 0. In particular, for

N ≥ 8

ε2

(
‖B − DB‖2F + ε‖B − DB‖2

)
log

2

δ

it holds that P
(
| trRN (B)− tr(B)| ≥ ε

)
≤ δ.

Proof. Let C := B− DB and C := diag
(
N−1C, . . . , N−1C

)
∈ RNn×Nn. Then, trRN (B)−

tr(B) = XTCX for a Rademacher vector X of length Nn. The matrix C has zero diagonal,
‖C‖F = N−1/2‖C‖F , and ‖C‖2 = N−1‖C‖2. Now, the first part of the corollary directly
follows from Theorem 9.10. Imposing a failure probability of δ in (9.8) gives

δ := 2 exp

(
− ε2

8‖C‖2F + 8ε‖C‖2

)
= 2 exp

(
− Nε2

8‖C‖2F + 8ε‖C‖2

)
,

and hence N = 8
ε2

(
‖C‖2F + ε‖C‖2

)
log 2

δ .

An alternative expression for the lower bound on N is obtained by noting that
‖B − DB‖F ≤ ‖B‖F and ‖B − DB‖2 ≤ 2‖B‖2 (the factor 2 in the latter inequality is
asymptotically tight, see, e.g., [29]). The result of Corollary 9.16 thus states that N needs
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to be at least as large as:

8

ε2
(ρ‖B‖22 + 2ε‖B‖2) log

2

δ
≤ 8

ε2
(n‖B‖22 + 2ε‖B‖2) log

2

δ
,

where ρ is the stable rank of B.

Remark 9.17. In analogy to the Gaussian case (see Remark 9.13), the result of Corol-
lary 9.16 compares favorably with Lemma 5 in [7], which shows that P(| trRN (B)− tr(B)| ≥
ε) ≤ δ for N ≥ 6

ε2
‖B‖2∗ log 2·rank(B)

δ .

Remark 9.18. It is instructive to compare the result of Corollary 9.16 to the straightfor-
ward application of Hoeffding’s and Bernstein’s inequalities, two classical concentration
inequalities for the sum of bounded random variables.

Theorem 9.19 (Hoeffding’s inequality). Consider a sum of independent random variables∑N
i=1 Yi such that there exist constants ai ≤ Yi ≤ bi for all i = 1, . . . , N . Denoting

C := maxi=1,...,N (bi − ai) we have

P

(∣∣∣∣∣
N∑
i=1

Y i −
N∑
i=1

E[Yi]

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
− 2ε2

NC2

)
.

Theorem 9.20 (Bernstein’s inequality). Consider a sum of independent random variables∑N
i=1 Yi such that there exist constants ai ≤ Yi ≤ bi for all i = 1, . . . , N . Denoting

C := maxi=1,...,N (bi − ai) we have

P

(∣∣∣∣∣
N∑
i=1

Yi −
N∑
i=1

E[Yi]

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
− ε2/2∑N

i=1 Var(Yi) + Cε/3

)
.

We apply these inequalities to the random variables Yi := 1
N (X(i))T (B − DB)X(i) for

i = 1, . . . , N where the vectors X(1), . . . , X(N) are Rademacher vectors. These random
variables are bounded, in particular we have

|Yi| ≤
1

N
‖X(i)‖22‖B − DB‖2 =

n

N
‖B − DB‖2.

Moreover, the variance is
Var(Yi) =

2

N2
‖B − DB‖2F .

Plugging these values into Hoeffding’s and Bernstein’s inequalities immediately gives the
following tail bounds for trace estimates with Rademacher random variables.
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Corollary 9.21. For a symmetric matrix B we have

P(| trRN (B)− tr(B)| ≥ ε) ≤ 2 exp

(
− ε2N

2n2‖B − DB‖22

)
.

Corollary 9.22. For a symmetric matrix B we have

P(| trRN (B)− tr(B)| ≥ ε) ≤ 2 exp

(
− ε2N

4‖B − DB‖2F + 4
3εn‖B − DB‖2

)
.

Clearly, a disadvantage of these bounds is the explicit dependence of the denominator
on n or n2, which does not appear in Corollary 9.16.

In analogy to the Gaussian case, the following lemma shows that a potential linear
dependence of N on n cannot be avoided in general.

Lemma 9.23. Let n be even and consider the traceless matrix B =

[
1

1

. .
.

1

]
. Then

P
(
| trRN (B)| ≤ ε

)
≤ ε
√
N

πn

for every ε > 0.

Proof. We first note that trRN (B) = 2
N

∑nN/2
i=1 Zi with independent Rademacher random

variables Zi. In turn, P
(
| trRN (B)| ≤ ε

)
= P

(∣∣∣∑nN/2
i=1 Zi

∣∣∣ ≤ Nε
2

)
equals the probability

that the number of variables satisfying Zi = 1 is at least n−ε
4 N and at most n+ε

4 N .
Therefore,

P
(
| trRN (B)| ≤ ε

)
=

1

2nN/2

bn+ε
4
Nc∑

i=dn−ε
4
Ne

(
nN/2

i

)
≤ Nε

2
· 1

2nN/2
·
(
nN/2

nN/4

)

≤ Nε

2
· 2√

πnN
= ε

√
N

πn
,

where we used the inequality 1
22k

(
2k
k

)
≤ 1√

πk
.

We do not report a figure analogous to Figure 9.1 because the observed errors are
very similar to the Gaussian case.
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For SPSD matrices, a relative error estimate follows from Corollary 9.16 similarly to
what has been discussed in Remark 9.15 for Gaussian vectors.

Corollary 9.24. For a nonzero SPSD matrix B, we have

P
(
| trRN (B)− tr(B)|

tr(B)
≥ ε
)
≤ δ for N ≥ 8

ε2
(1 + ε)γ log

2

δ
, where γ :=

‖B‖2
tr(B)

.

Proof. First of all, it is immediate that ‖B − DB‖F ≤ ‖B‖F . As shown, e.g., in [29,
Theorem 4.1], the same holds for the spectral norm when B is SPSD. For convenience,
we provide a short proof: For every y ∈ Rn it holds that

|yT (B − DB)y| ≤ max{yTBy, yT DBy} ≤ max{‖B‖2, ‖DB‖2} ≤ ‖B‖2,

where the first inequality uses that both yTBy and yT DBy are nonnegative. By taking
the maximum with respect to all vectors of norm 1 one obtains ‖B − DB‖2 on the
left-hand side, which shows that it is bounded by ‖B‖2. Now, the claimed result follows
from Corollary 9.16 using the arguments of Remark 9.15.

Corollary 9.24 improves the result from [162, Theorem 1], which requires N ≥ 6
ε2

log 2
δ ;

a lower bound that does not improve as γ decreases.

9.3 Numerical examples

9.3.1 Triangle counting

To illustrate the estimates from Theorem 9.12 and Corollary 9.16, we compare them
with the convergence of the Hutchinson trace estimation using Gaussian and Rademacher
vectors for an example from [7, 140]. The number of triangles in an undirected graph
is equal to 1

6 tr(A3) where A is the (usually indefinite) adjacency matrix. Note that the
quadratic forms XTA3X can be evaluated exactly using two matrix-vector multiplications.
We consider an arXiv collaboration network with n = 5 242 nodes and 48 260 triangles
taken from https://snap.stanford.edu/data/ca-GrQc.html.

We estimate tr(A3) using N = 2, 22, 23, . . . , 211 samples. For each value of N we
performed 1 000 experiments and discarded the 5% worst approximations in order to
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estimate an error bound that holds with probability 95%. The obtained results are
represented by the shaded regions in Figure 9.2 and match the obtained bounds fairly
well, especially for Gaussian vectors.
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Figure 9.2 – Estimation of tr(A3) with Gaussian and Rademacher vectors for the matrix from
Section 9.3.1. Error bounds from Theorem 9.12, Corollary 9.16, and [7] for failure probability
δ = 0.05 compared with the observed error.

Figure 9.3 shows the empirical failure probability P(| trN (A3) − tr(A3)| ≥ ε) with
ε = 1

10 tr(A3) using 1 000 experiments for N = 2, 22, 23, . . . , 211 (blue and red lines). The
vertical purple and yellow lines are the estimated number of samples needed to achieve
failure probability δ = 0.05 from Theorem 9.12 and Corollary 9.16, respectively.
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Figure 9.3 – Number of samples needed to attain error ε = 1
10 tr(A3) with failure probability 5%

for Section 9.3.1. Empirical failure probability vs. bounds from Theorem 9.12 and Corollary 9.16.

148



9.3. Numerical examples

9.3.2 Comparison of estimates for indefinite matrices with Rademacher
vectors

We consider the Hutchinson trace estimator with Rademacher vectors applied to two
symmetric indefinite matrices: A is created by A = randn(2000);A = A + AT and
has stable rank ρ(A) ≈ 500; B has eigenvalues 1, 1

22
, . . . , 1

10002
,− 1

10012
, . . . ,− 1

20002
and

has stable rank ρ(B) ≈ 1.08. We compare the estimates coming from Hoeffding’s and
Bernstein’s inequalities (Corollaries 9.21 and 9.22), the result in [7], and our result
(Corollary 9.16), for δ = 0.05. Moreover, we estimate empirically the minimum value of
ε such that P(| trRN (A) − tr(A)| ≥ ε) ≤ 0.05 in the following way: For each value of N
from 1 to 10, 000 we run the Hutchinson’s estimator 100 times, discard the worst 5% and
plot the maximum error of the remaining estimates.

The results are shown in Figure 9.4. Corollary 9.16 gives the most accurate bound.
Note that the estimate coming from Bernstein’s inequality seems to have a different
convergence rate with respect to all the other ones. This is due to the factor n in such
estimate, and for very large values of the number of samples N the rate is actually
O(1/

√
N); however, it does not make sense to consider a value of N which is larger than

the matrix dimension.

Figure 9.4 – Comparison of different estimates for the indefinite matrices A (left) and B (right)
from Section 9.3.2.

9.3.3 An SPD example

We consider the Hutchinson trace estimator with Rademacher vectors applied to two
SPD matrices: A has eigenvalues d = rand(1000, 1) and γ ≈ 0.002, B has eigenvalues
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1, 1
22
, 1

32
, . . . , 1

10002
and γ ≈ 0.6. For each value of N from 1 to 10, 000 we run the

Hutchinson trace estimator 100 times, discard the worst 5% and plot the maximum error
of the remaining estimates in Figure 9.5 with a solid line; this corresponds to the accuracy
that we get – empirically – with failure probability δ = 0.05. We compare this with the
result in [162] (black line) and the results from Corollary 9.24 (pink and blue dotted lines).
The decay as 1√

N
is correctly captured by both estimates, but the constant in front of it

depends on γ.

10 0 10 1 10 2 10 3 10 4

N

10 -4

10 -2

10 0

10 2

R
e
la

ti
v
e
 e

rr
o
r

A

B

Roosta-Khorasani/Ascher est.

our est.

our est.

0 200 400 600 800 1000
10 -6

10 -4

10 -2

10 0

singular values A

singular values B

Figure 9.5 – Results for the SPD matrices A (left) and B (right) from Section 9.3.3.

9.4 Lanczos method to approximate quadratic forms

Let us now consider the problem of estimating the log-determinant through log(det(A)) =

tr(log(A)), or more generally the problem of computing the trace of f(A) for an analytic
function f .

Applying the Hutchinson trace estimator to tr(f(A)) requires the (approximate)
computation of the quadratic forms xT f(A)x for fixed vectors x ∈ Rn. As mentioned in
Section 8.3, we use the Lanczos method, Algorithm 9.1, for this purpose.

For theoretical considerations, it is helpful to view the quadratic form as an in-
tegral. For this purpose, we consider the spectral decomposition A = QΛQT , Λ =

diag(λ1, . . . , λn), with λmin = λ1 ≤ λ2 ≤ · · · ≤ λn = λmax. Then

xT f(A)x = I :=

∫ λmax

λmin

f(λ) dµ(λ),
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Algorithm 9.1 Lanczos method to approximate quadratic form xT f(A)x

Input: Matrix A ∈ Rn×n, nonzero vector x ∈ Rn, number of iterations m
Output: Approximation of xT f(A)x
1: Initialize u1 ← x/‖x‖2 and β0 ← 0
2: for i = 1, . . . ,m do
3: αi ← uTi Aui
4: ri ← Aui − αiui − βi−1ui−1

5: βi ← ‖ri‖2
6: ui+1 ← ri/βi
7: end for

8: Tm ←


α1 β1

β1 α2
. . .

. . .
. . . βm−1

βm−1 αm


9: Return ‖x‖22 · eT1 f(Tm)e1

with the piecewise constant measure

µ(λ) :=

n∑
i=1

z2
i χ[λi,∞)(λ), z := QTx, (9.13)

where χ denotes the indicator function. It is well known [85, Theorem 6.2] that the
approximation Im returned by the m-points Gaussian quadrature rule applied to I is
identical to the approximation returned by m steps of the Lanczos method:

Im := ‖x‖22 · eT1 f(Tm)e1.

To bound the error |I− Im|, the analysis in [183] proceeds by using existing results on
the polynomial approximation error of analytic functions. Although our analysis is along
the same lines, it differs in a key technical aspect; we derive and use an improved error
bound for the approximation of the logarithm; see Corollary 9.29. We have also noted two
minor issues in [183]; see the proof of Theorem 9.25 and the remark after Corollary 9.26
for details.

Theorem 9.25. Let f : [−1, 1]→ R admit an analytic continuation to a Bernstein ellipse
Er0 with foci ±1 and elliptical radius r0. For 1 < r < r0, let Mr be the maximum of |f(z)|
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on Er. Then
|I− Im| ≤ ‖x‖22 ·

4Mr

1− r−1
r−2m.

Proof. As in [183], this result follows directly from bounds on the polynomial approxima-
tion error of analytic functions via Chebyshev expansion, combined with the fact that
m-points Gaussian quadrature is exact for polynomials up to degree 2m− 1. However,
the proof of [183, Theorem 4.2] uses an extra ingredient, which seems to be wrong. It
claims that the integration error for odd-degree Chebyshev polynomials is zero thanks to
symmetry. While this fact is indeed true for the standard Lebesgue measure, it does not
hold for the measure (9.13). In turn, one obtains the slightly worse factor 1− r−1 in the
denominator, compared to the factor 1− r−2 that would have been obtained from [183,
Theorem 4.2] translated into our setting.

The affine linear transformation

ϕ : [λmin, λmax]→ [−1, 1], x 7→ 2

λmax − λmin
t− λmax + λmin

λmax − λmin
,

is used to map an interval [λmin, λmax] containing the eigenvalues of A to the interval
[−1, 1] of Theorem 9.25. Defining g := f ◦ ϕ−1, one has

xT g(ϕ(A))x = xT f(A)x, eT1 g(ϕ(Tm))e1 = eT1 f(Tm)e1. (9.14)

By its shift and scaling invariance, the Lanczos method with g, ϕ(A), and x returns the
approximation eT1 g(ϕ(Tm))e1. This allows us to apply Theorem 9.25. Combined with the
relations (9.14), the following result is obtained.

Corollary 9.26. With the notation introduced above, it holds that

∣∣xT f(A)x− ‖x‖22 · eT1 f(Tm)e1

∣∣ ≤ ‖x‖22 · 4Mr

1− r−1
r−2m,

Note that Mr is the maximum of g on Er, which is equal to the maximum of f on
the transformed ellipse with foci λmin, λmax, and elliptical radius (λmax − λmin)r/2. The
result of Corollary 9.26 differs from the corresponding result in [183, page 1087], which
features an additional, erroneous factor (λmax(A)− λmin(A))/2.

Before addressing the special case of the logarithm, we present an elementary result,
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which will be needed in the proof of Corollary 9.29.

Lemma 9.27. Consider a circle in the complex plane with center a ∈ R+, a > 1 and
radius b such that b2 = a2 − 1. Then the maximum absolute value of the logarithm on this
circle is attained on the real axis.

Proof. We consider the functions ` : [0, π]→ C and f : [0, π]→ R given by

`(t) := log(a+ b cos(t) + ib sin(t)), f(t) := |`(t)|2.

We will prove that f has two local maxima at t = 0 and t = π and one local minimum.
This is sufficient for the conclusion, because the problem is symmetric with respect to the
real axis. Denoting by

r(t) :=
√
a2 + b2 + 2ab cos(t), θ(t) := arctan

b sin(t)

a+ b cos(t)
,

we have `(t) = log (r(t) exp(iθ(t))) = log(r(t)) + iθ(t) and its derivative is

`′(t) =
−b sin(t) + ib cos(t)

a+ b cos(t) + ib sin(t)
=

b

r(t)2
(− sin(t) + cos(t))(a+ b cos(t)− ib sin(t))

=
b

r(t)2
(−a sin(t) + i(b+ a cos(t))) .

Therefore we have

f ′(t) = 2Re(`′(t) · `(t)) =
2b

r(t)2
(−a sin(t) log(r(t)) + (b+ a cos(t))θ(t)) .

Note that t = 0, t = π and t = arccos
(
− b
a

)
are zeros of f ′. To prove that 0 and π are

local maxima and t = arccos
(
− b
a

)
is a local minimum it is sufficient to prove thatf ′(t) < 0 for t ∈ I1 :=

(
0, arccos

(
− b
a

))
;

f ′(t) > 0 for t ∈ I2 :=
(
arccos

(
− b
a

)
, π
)
.

Now consider the function g : [−1, 1]→ R given by

g(t) := −a log
(√

a2 + b2 + 2abt
)

+ b
b+ at

a+ bt
= −a

2
log(a2 + b2 + 2abt) + b

b+ at

a+ bt
.

As arctan(x) ≤ x for all x ≥ 0 with equality only for x = 0, sin(t) > 0 on I1 ∪ I2,
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b+ a cos(t) > 0 on I1, b+ a cos(t) < 0 on I2, and
b sin(t)

a+b cos(t) > 0 on I1 ∪ I2, we have

f ′(t) <
2b sin(t)
r(t)2

· g(cos(t)) for t ∈ I1;

f ′(t) > 2b sin(t)
r(t)2

· g(cos(t)) for t ∈ I2.
(9.15)

We show that the function g is decreasing: its derivative is

g′(t) = b

(
− a2

a2 + b2 + 2abt
+

1

(a+ bt)2

)
and we have

g′(t) ≤ 0⇔ a2b2t2 + 2t(a3b− ab) + a4 − a2 − b2 ≥ 0.

The latter expression is a convex parabola which has its minimum in t = −a3b−ab
a2b2

= − b
a ,

for which we have g′
(
− b
a

)
= 0. Therefore g′(t) ≤ 0 for all t ∈ [−1, 1] so g(t) is

decreasing. Moreover, g
(
− b
a

)
= 0, so g(t) ≥ 0 in

[
−1,− b

a

]
and g(t) ≤ 0 in

[
− b
a , 1
]
, which

implies (9.15).

Corollary 9.28. Consider an ellipse E in the open right-half complex plane, with foci on
the real axis. Then the maximum absolute value of the logarithm on this ellipse is attained
on the real axis.

Proof. Let 0 < α < β be the two intersections of the ellipse with the real axis. If
| logα| ≥ | log β| then E is contained in the circle C1 of center a := 1

2

(
1
α + α

)
and radius

b := 1
2

(
1
α − α

)
=
√
a2 − 1, and E is tangent to C1 in α; otherwise E is contained in the

circle C2 of center a := 1
2

(
β + 1

β

)
and radius b := 1

2

(
β − 1

β

)
=
√
a2 − 1, and E is tangent

to C2 in β. In both cases, the result follows from Lemma 9.27.

By specializing Corollary 9.26 to the logarithm we obtain the following result.

Corollary 9.29. Let A ∈ Rn×n be SPD with condition number κ(A), f ≡ log and
x ∈ Rn\{0}. Then the error of the Lanczos method after m steps satisfies

|xT log(A)x− ‖x‖22 · eT1 log(Tm)e1| ≤ cA‖x‖22

(√
κ(A) + 1− 1√
κ(A) + 1 + 1

)2m

.

where cA := 2(
√
κ(A) + 1 + 1) log(2κ(A)).
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Proof. The proof consists of applying Corollary 9.26 to a rescaled matrix. More specifically,
we choose B := λA with λ := 1/(2λmin) > 0. The tridiagonal matrix returned by the
Lanczos method with A replaced by B satisfies TBm = λTm. Together with the identity
log(λA) = log λIn + log(A), this implies

xT log(A)x− ‖x‖22 · eT1 log(Tm)e1 = xT log(B)x− ‖x‖22 · eT1 log(TBm )e1.

Note that the smallest/largest eigenvalues of B are given by 1/2 and κ(A)/2, respectively.

Applying Corollary 9.26 to B with1 r :=

√
κ(A)+1+1√
κ(A)+1−1

thus gives

|xT log(A)x− ‖x‖22 · eT1 log(Tm)e1| ≤ ‖x‖22 ·
4Mr

1− r−1
r−2m.

The constant Mr is the maximum absolute value of the logarithm on the ellipse with foci
1/2 and κ(A)/2 that intersects the real axis at α := 1

2κ(A) and β := κ(A)2+κ(A)−1
2κ(A) . By

Corollary 9.28, Mr = | log(α)| = log(2κ(A)), where we used α ≤ 1/β ≤ 1. Noting that

4Mr

1− r−1
= 2(

√
κ(A) + 1 + 1) log(2κ(A)) = cA

concludes the proof.

9.5 Combined bounds for determinant estimation

Combining Hutchinson trace estimation with the Lanczos method, we obtain the following
(stochastic) estimate for log(det(A)):

estG,RN,m :=
N∑
i=1

‖X(i)‖22 · eT1 log(T (i)
m )e1,

where X(1), . . . , X(N) are independent Gaussian or Rademacher random vectors and
T

(i)
m is the tridiagonal matrix obtained from the Lanczos method with starting vector
X(i)/‖X(i)‖2. By combining the results obtained so far, we now derive new bounds on
the number of samples and number of Lanczos steps needed to ensure an approximation
error of at most ε (with high probability).

1In fact, it is possible to choose r =

√
κ(A)+ε+1√
κ(A)+ε−1

for arbitrary ε > 0.
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9.5.1 Standard Gaussian random vectors

Theorem 9.30. Suppose that the following holds for N (number of Gaussian probe
vectors) and m (number of Lanczos steps per probe vector):

(i) N ≥ 16ε−2(ρlog‖ log(A)‖22 + ε‖ log(A)‖2) log 4
δ , where ρlog denotes the stable rank

of log(A);

(ii) m ≥
√
κ(A)+1

4 log
(

4ε−1n2(
√
κ(A) + 1 + 1) log(2κ(A))

)
.

If, additionally, n ≥ 2 and N ≤ δ
2 exp

(
n2

16

)
then P(| estGN,m − log det(A)| ≥ ε) ≤ δ.

Proof. For a Gaussian vector X, the squared norm ‖X‖22 is a Chi-squared random variable
with n degrees of freedom. Therefore, by [127, Lemma 1] we have

P(‖X‖22 ≥ n+ 2
√
nt+ 2t) ≤ exp(−t)

for every t > 0. For t = log 2N
δ , the additional assumptions of the theorem imply

n+ 2
√
nt+ 2t ≤ n+ 2

√
n · n

4
+ 2 · n

2

16
< n2,

and therefore P(‖X‖22 ≥ n2) ≤ δ
2N . By the union bound, it holds that

P
(
exists i ∈ {1, . . . , N} s.t. ‖X(i)‖22 ≥ n2

)
≤ δ

2
. (9.16)

Corollary 9.29, together with condition (ii) and (9.16) imply that | estGN,m− trGN (log(A))| ≤
ε
2 holds with probability at least 1− δ/2, where we also used that

log

(√
κ(A) + 1 + 1√
κ(A) + 1− 1

)
≥ 2√

κ(A) + 1
.

Applying Theorem 9.12 to the matrix log(A), for which ‖ log(A)‖2F = ρlog‖ log(A)‖22,
we find that | trGN (log(A))− log det(A)| ≤ ε

2 holds with probability at least 1− δ/2. The
proof is concluded by applying the triangle inequality.
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9.5.2 Rademacher random vectors

Theorem 9.31. Suppose that the following holds for N (number of Rademacher probe
vectors) and m (number of Lanczos steps per probe vector):

(i) N ≥ 32ε−2
(
ρlogd‖ log(A)− Dlog(A)‖22 + ε

2‖ log(A)− Dlog(A)‖2
)

log 2
δ , where ρlogd

denotes the stable rank of log(A) − Dlog(A) and Dlog(A) is the diagonal matrix
containing the diagonal entries of log(A);

(ii) m ≥
√
κ(A)+1

4 log
(

4ε−1n(
√
κ(A) + 1 + 1) log(2κ(A))

)
.

Then P(| estRN,m − log det(A)| ≥ ε) ≤ δ.

Proof. Using Corollary 9.26 and the fact that Rademacher random vectors have norm
√
n, the bound

∣∣∣ estRN,m − trRN (log(A))
∣∣∣ ≤ ε

2 holds if

m ≥ 1

2
log
(

4ε−1n(
√
κ(A) + 1 + 1) log(2κ(A))

)/
log

(√
κ(A) + 1 + 1√
κ(A) + 1− 1

)
.

Because of log

(√
κ(A)+1+1√
κ(A)+1−1

)
≥ 2√

κ(A)+1
, condition (ii) ensures that this inequality is

satisfied.

Applying Corollary 9.16 to log(A) and with ε replaced by ε/2, immediately shows

| trRN (log(A))− log det(A)| ≤ ε

2
(9.17)

with probability at least 1 − δ if condition (i) is satisfied. The proof is concluded by
applying the triangle inequality.

Comparison with an existing result. To compare Theorem 9.31 with an existing
result from [183], it is helpful to first derive a simpler (but usually stronger) condition on
N .

Lemma 9.32. The statement of Theorem 9.31 holds with condition (i) replaced by
N ≥ 8ε−2

(
n log2 κ(A) + 2ε log κ(A)

)
log 2

δ .
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Proof. We set B := λA with λ := 1/
√
λmin(A)λmax(A) and note that

trRN (log(A))− log det(A) = trRN (log(λA))− log det(λA).

Using λmax(B) =
√
κ(A), λmin(B) = 1/

√
κ(A), and κ(B) = κ(A), we obtain

‖ log(B)− Dlog(B)‖2 ≤ 2‖ log(B)‖2 = log κ(A);

‖ log(B)− Dlog(B)‖2F ≤ ‖ log(B)‖2F = ρ(log(B))
log2 κ(A)

4
≤ n

4
log2 κ(A).

An application of Corollary 9.16 to log(B) therefore yields (9.17) with probability at least
1− δ for N ≥ 8ε−2

(
n log2 κ(A) + 2ε log κ(A)

)
log 2

δ .

Correcting for the two minor erratas explained above, the result from [183, Corollary
4.5] states that P(| estRN,m − tr(log(A))| ≥ ε) ≤ δ holds if

N ≥ 24ε−2n2 (log(1 + κ(A)))2 log
2

δ
(9.18)

and

m ≥
√

3κ(A)

4
log
(

20ε−1n
(√

2κ(A) + 1 + 1
)

log(2κ(A) + 2)
)
. (9.19)

Compared to (9.18), Lemma 9.32 reduces the explicit dependence on the matrix size from
n2 to n, while the dependence of the bounds on κ(A) is comparable. Let us stress that
even a dependence on n does not compare favorably to simply computing the diagonal
elements, but the bound from condition (i) of Theorem 9.31 can often be expected to
be significantly better than the simplified bound of Lemma 9.32. Below we describe
a situation in which the former only depends logarithmically on n. Condition (ii) of
Theorem 9.31 improves (9.19) clearly but less drastically, roughly by a factor

√
3.

Implications of low stable rank. Let us consider a family of matrices {A`} of
increasing dimensions n1 < . . . < n` < . . ., a fixed failure probability δ, and a fixed
accuracy ε; the number of probe vectors required to get P(| trN (log(A`))− tr(log(A`))| ≥
ε) ≤ δ is proportional to O(ρ`‖ log(A`)‖22), where ρ` is the stable rank of log(A`). In
certain applications, including regularized kernel matrices (see, e.g., [43, 80]), the stable
rank grows slowly when the matrix size increases. For such situations, our bounds lead
to favorable implications. To illustrate this, let us consider matrices A` := In` + B`,
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where the eigenvalues satisfy λi(B`) ≤ n`Cαi for some constants C > 0 and 0 < α < 1,
for all i ≤ n`, such as in the discretization of a radial basis function kernel on a fixed
domain [80]. In this case, ρ` = O(log n`). As a second example, if B` comes from a
discretization of a Matérn kernel on a regular grid in a fixed domain, its eigenvalues satisfy
λi(B`) ≤ n`Ci−β for some constants C > 0 and β > 1, for all i ≤ n` [43]; the stable rank
of log(A`) = log(In` + B`) is bounded by ρn` = O(n

1/β
` ). To apply Theorems 9.30 and

9.31 one also needs to take into account that, for both our examples, ‖ log(A`)‖2 and
κ(A`) grow proportionally to log(n`) and n`, respectively. Finally, note that in practice
one would consider A` = σIn` +B` with the regularization parameter σ chosen adaptively;
see, e.g., [37].

9.6 Numerical experiments for log-determinant

To compare the results of Theorems 9.30 and 9.31 with the number of sample vectors
N and Lanczos steps m (per sample) required to reach a fixed accuracy, we consider
the matrices listed in Table 9.1. The matrix labeled as thermo is the thermomec_TC

matrix contained in the University of Florida sparse matrix collection [52] and has been
considered, for instance, in [33, 73, 183]. The matrix lowrank is defined in [167, 129] as

A =

40∑
j=1

10

j2
xjx

T
j +

300∑
j=41

1

j2
xjx

T
j ,

where each xj is a sparse vector of length 20 000 with approximately 2.5% uniformly
distributed nonzero entries, generated with the Matlab command sprand. The matrix
precip is a two-dimensional Gaussian kernel matrix with length parameter γ = 64 and
regularization parameter λ = 0.008 taken from [140], involving precipitation data from
Slovakia [145]. As the matrices thermo and lowrank are too large for log(A) to be
computed explicitly, the quantities ‖ log(A)‖F and ‖ log(A)− Dlog(A)‖F are approximated
by randomized trace estimation combined with the Lanczos method to estimate the
diagonal elements of log(A).

For quadratic forms involving the logarithm, there is a relatively inexpensive way
to obtain an upper bound on the error of the Lanczos method. As discussed in [10],
Gauss quadrature always yields an upper bound for xT log(A)x, while Gauss-Lobatto
quadrature always yields a lower bound. We fix δ = 0.1 and for several values of ε we
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Name Size Ref. log det(A) κ(A) ‖ log(A)‖F ‖ log(A)− Dlog(A)‖F

thermo 102158 [52] −5.47 · 105 67.2 1.72 · 103 122.8

lowrank 20000 [129] 89.4 1560 17.04 16.99

precip 6400 [140] −2.56 · 104 6738 357 157

Table 9.1 – Summary of the matrices used for log-determinant experiments.

investigate how many samples and Lanczos iterations are needed in practice. When
approximating quadratic forms while aiming at accuracy ε, we stop the Lanczos method
when the difference between upper and lower bound is less than ε/2. Starting from
N = 1, we compute the empirical failure probability P(|estN,m − log det(A)| ≥ ε); if this
probability is larger than δ, we double the number of samples N and repeat.

The results for the three matrices from Table 9.1 are reported in Figures 9.6, 9.7,
and 9.8. The left plots show, for the considered values of ε (which have been normalized
by dividing them by the true | log det(A)|), the number of samples required to attain 90%

success probability over 30 runs of the algorithm, versus the number of samples given
by Theorems 9.30 and 9.31. The plots on the right show, for the same (normalized)
values of ε, the average number of Lanczos steps required to reach accuracy ε/2 versus
the number of Lanczos steps predicted by Theorems 9.30 and 9.31.

For thermo, the diagonal of log(A) is large relative to the rest of the matrix: ‖ log(A)−
Dlog(A)‖F /‖ log(A)‖F ≈ 0.07. Therefore, our bounds predict that Rademacher vectors
perform much better than Gaussian vectors; this is indeed confirmed by Figure 9.6.
The matrix A is well conditioned and, hence, the bounds correctly predict that the
Lanczos method only needs relatively few iterations to attain good accuracy. For lowrank,
Figure 9.7 shows that Rademacher and Gaussian vectors perform similarly. Although the
condition number of A is κ(A) ≈ 1560, the eigenvalues have a strong decay, and hence its
adaptivity lets the Lanczos method perform much better than predicted by our bounds, see,
e.g., [99] for a discussion. For precip, the ratio ‖ log(A)− Dlog(A)‖F /‖ log(A)‖F ≈ 0.44 is
reflected in Figure 9.8, showing that Rademacher vectors attain somewhat better accuracy.
The condition number of A is high and there is no strong decay or gaps in the singular
values; a relatively large number of Lanczos steps is necessary to obtain the desired
accuracy when approximating the quadratic forms.
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Figure 9.6 – Results for matrix thermomec_TC from [52].
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Figure 9.7 – Results for matrix lowrank from [129].
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Figure 9.8 – Results for matrix precip from [140].
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10 Conclusions and outlook

In Chapters 3 and 4 we have presented and analyzed deterministic algorithms for cross
approximation, column subset selection, CUR approximation, and Tucker approximation
of tensors. We started Chapter 3 by showing that the search for a k×k maximum volume
submatrix can be restricted to principal submatrices for SPSD and DD matrices; a fact
that appears intuitive but does not appear to be widely known. In fact, for DD matrices
Theorem 3.4 is the first result providing a mathematical justification to this intuition.
For cross approximation, Theorem 3.6 appears to be the first non-asymptotic error bound
that holds for general matrices. Except for [106], previous results for cross approximation
applied to matrices or functions [15, 180] are based on a step-by-step analysis of the error.
In contrast, our technique takes a more global view and can, in turn, leverage existing
results on the pivot growth in Gaussian elimination. As illustrated in Section 3.2.4, this
can yield significant advantages.

A number of fundamental questions remain open. Most importantly, there is a
mismatch between the derived error bounds and the known worst-case examples for ACA
applied to DD and doubly DD matrices. Especially for DD matrices, the theoretical
results feature an exponential growth in the L factor of an LU decomposition, but the
worst known examples only show polynomial growth. This problem appears to be difficult
to overcome and was encountered previously in the context of the error analysis of LDU
factorizations [11, 61].

In Chapter 4, we have dealt with algorithms that guarantee a quasi-optimal low-
rank approximation in the Frobenius norm. We have proposed several improvements
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to the column selection algorithm by Deshpande and Rademacher [57]. The numerical
experiments indicate that updating singular values (instead of characteristic polynomials)
leads to numerical robustness, in the sense that the approximation error obtained in finite
precision arithmetic is not affected unduly by roundoff error. We have also developed
an extension of an existence result from [57] to produce a deterministic polynomial time
algorithm that yields a cross approximation with a guaranteed polynomial error bound in
the Frobenius norm. We have introduced a mechanism for stopping early the search for
indices in column subset selection or cross approximation. Although relatively simple,
this mechanism tremendously reduces the execution time for all examples tested.

A number of issues remain for future study, such as the numerical stability analysis of
our algorithms. In particular, it would be desirable to study the numerical robustness of the
cross approximation returned by Algorithm 4.3 with early stopping. Also, by combining
early stopping with a more aggressive reuse of the SVD might lead to further complexity
reduction, but a rigorous complexity analysis would require deeper understanding of
early stopping, well beyond the limited scope of Lemma 4.1. Finally, we stress that
the algorithms presented in Chapter 4 are intended for small to medium sized matrices
and tensors. For large-scale data, the algorithms presented in this chapter need to be
combined with other, possibly heuristic/randomized dimensionality reduction techniques.

In Chapter 7 we have proposed two new algorithms for computing matrix functions of
structured matrices, based on a D&C paradigm. The algorithms have been tested on a wide
range of examples of practical relevance that require to compute, for a medium- to large-
scale matrix, the whole matrix function, its diagonal or its trace. The numerical results in
Sections 7.2 and 7.4 demonstrate that, most of the time, the proposed methods outperform
state-of-art techniques with respect to time consumption and offer a comparable accuracy.
The convergence analysis of the splitting algorithm from Section 7.3 highlights stronger
convergence properties for the entries located on the main diagonal, which applies also to
non-Hermitian matrix arguments. The block diagonal splitting approach can, in principle,
be applied to matrices arising from the discretization of two-dimensional partial differential
equations. On the one hand, the bandwidth becomes much larger, on the other hand
these matrices have additional sparsity structure that is not exploited by our algorithm.
It would be interesting to explore whether there is a variant of Algorithm 7.2 that also
covers this case efficiently.

We have also expanded the framework of low-rank updates of matrix functions [18, 17]
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towards several directions. When polynomial Krylov subspaces are used, we have proved
in Chapter 6 a convergence result related to polynomial approximation of the derivative
of the function. In the Hermitian case, we have shown that the approximation of the trace
of the update, computed by projection on the polynomial Krylov subspace, has a higher
convergence rate with respect to the full update. We briefly mention an observation on
low-rank updates that would require further study. When polynomial Krylov subspaces
are used and the matrices A and R are symmetric, we noticed that the eigenvalues of the
update seem to converge faster than the whole matrix function update f(A+R)− f(A);
see Figure 10.1 for an example. However, there does not seem to be a “clean” exactness
result similar to Theorem 6.11, so other techniques should be used for proving results in
this direction.
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(a) Normalized random symmetric matrix A,
normalized random update R = bbT , f = exp.
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(b) Well conditioned SPD matrix A, normalized
random update R = bbT , f =

√ .

Figure 10.1 – We consider two examples of symmetric A and R with polynomial Krylov subspaces
for approximating the update f(A + R) − f(A). The solid lines denote the convergence of the
errors ‖f(A + R) − f(A) − UmXm(f)V T

m‖F , ‖diag(f(A + R) − f(A) − UmXm(f)V T
m )‖2, and

| tr(f(A + R) − f(A) − UmXm(f)V T
m )|; the dotted lines denote the convergence of the three

largest eigenvalues of the approximate update UmXm(f)UT
m to the three largest eigenvalues of

f(A+R)− f(A). Note that in both cases the eigenvalues are converging as fast as the trace, and
faster than the full update and its diagonal.

In Chapter 9 we presented new tail bounds for the Hutchinson trace estimator applied
to symmetric but indefinite matrices. These improve the results from [7] by lowering
the number of samples required to get accuracy ε with failure probability δ by a factor
which can be as large as n, the matrix size. We have then combined these bounds with
an improved analysis of the Lanczos method for the computation of quadratic forms
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xT log(A)x to obtain results on the approximation of the log-determinant of SPD matrices,
improving the results from [183].

The error of the Hutchinson trace estimator decreases as the inverse square root of the
number of samples; this is a typical behavior of Monte Carlo algorithms. In the recent
paper [102] it is shown that a multilevel Monte Carlo approach can give some advantages
for trace estimation; the setting they consider, however, is not the same as ours, as they
use Chebyshev approximations instead of Lanczos method. We conclude this thesis by
touching on two further directions in which trace estimation algorithms can be improved;
these also allow us to draw a connection between Part III and low-rank approximation
(Part I) and rank-structured matrices (Part II).

A disadvantage of the Hutchinson trace estimator is that it does not take into account
any structure of the matrix A. For example, if one needs to compute the trace of a
matrix A which is approximately low-rank, we can obtain a good approximation by taking
tr(Ak), where Ak is a low-rank approximation of A. The randomized SVD [101] allows us
to compute a low-rank approximation of A via matrix-vector multiplications with random
vectors. By combining this with the Hutchinson trace estimator, the recently introduced
Hutch++ algorithm [140] ensures that O(ε−1) samples are sufficient to reach accuracy ε
for an SPD matrix A. Our bounds for the Hutchinson trace estimator from Section 9.2
can also be useful in this context [157].

Another case in which trace estimation can be improved is when the matrix has some
known (approximate) sparsity structure. As discussed in Part II, when A is banded or
has some known sparsity structure in many cases f(A) approximately preserves some
structure. When estimating tr(f(A)) this can (and should) be taken into consideration.
Probing techniques have been developed for this aim; see, e.g., [19, 79, 174, 177]. The
idea is that, if f(A) has bandwidth b, computing b quadratic forms with carefully
chosen vectors will allow us to compute the trace exactly. For a tridiagonal matrix,
for instance, the vectors probing can be chosen to be v1 = (1, 0, 0, 1, 0, 0, 1, 0, 0, . . .)T ,
v2 = (0, 1, 0, 0, 1, 0, 0, 1, 0, . . .)T , v3 = (0, 0, 1, 0, 0, 1, 0, 0, 1, . . .)T . In the more practical
case in which f(A) is only approximately banded such deterministic vectors will still
give a good approximation of the trace. Probing can be combined, in principle, with the
Hutchinson trace estimator by substituting the “ones” in the probing vectors with i.i.d.
Rademacher random variables; our results from Chapter 9 can be applied to this case as
well.
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