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Abstract

Future low-carbon societies will need to store vast amounts of electricity to stabilize electricity

grids and to power electric vehicles. Vehicle-to-grid allows vehicle owners and grid operators

to share the costs of electricity storage by making the batteries of electric vehicles available to

the grid. In practice, vehicle owners decide when to reserve their cars for driving and when

to make them available for grid services. Vehicle aggregators then decide how to commit the

vehicles to grid services.

For vehicle-to-grid to succeed, both vehicle owners and grid operators must be able to trust

aggregators, i.e., vehicles should be available for driving and for grid services when the aggre-

gators promise they will be. In this thesis, we solve a decision-making problem that ensures

reliable commitments by vehicle aggregators for a particular grid service known as primary

frequency regulation, considered one of the most profitable applications of vehicle-to-grid.

Mathematically, we first formulate a robust optimization problem with functional uncertain-

ties that maximizes the expected profit from selling primary frequency regulation to grid

operators and guarantees that vehicle owners can meet their market commitments for all

frequency deviation trajectories in an uncertainty set that encodes applicable European Union

regulations. Functional uncertainties ensure that vehicle owners and grid operators can trust

the decisions of aggregators at all times. Faithfully modeling the energy conversion losses

during battery charging and discharging renders the optimization problem nonconvex. By

exploiting a total unimodularity property of the proposed uncertainty sets and an exact linear

decision rule reformulation, we prove that the nonconvex robust optimization problem with

functional uncertainties is equivalent to a tractable linear program. Somewhat counterintu-

itively, the underlying deterministic problem for a known frequency deviation trajectory does

not reduce to a linear program but results in a large-scale mixed-integer linear program, even

if time is discretized. We believe that we have thus discovered the first practically interesting

class of optimization problems that become dramatically easier through robustification.

Through extensive numerical experiments using real-world data, we quantify the economic

value of vehicle-to-grid and elucidate the financial incentives of vehicle owners, aggregators,

equipment manufacturers, and regulators. In particular, we find that the prevailing penalties

for non-delivery of promised regulation power are too low to incentivize aggregators to honor

their promises toward grid operators.
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Abstract

For general electricity storage devices, we then solve a simplified version of the decision-

making problem analytically to understand how the optimal frequency regulation commit-

ments depend on the roundtrip efficiency of the storage device, the dispersion of the frequency

deviations, and the EU delivery guarantee. We show how the marginal cost of frequency regu-

lation decreases with roundtrip efficiency and increases with frequency deviation dispersion.

For energy-constrained storage devices, we find that the profits from frequency regulation are

inversely proportional to the length of time for which storage operators commit regulation

power. Establishing an intra-day market for frequency regulation would thus make electricity

storage devices more competitive with other regulation providers, such as thermal power

plants.

Keywords: Vehicle-to-Grid, Frequency Regulation, Electricity Storage, Electricity Markets,

Energy Economics, Robust Optimization, Functional Uncertainties, Operations Research.
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Vehicle-to-Grid pour un réglage fré-
quence fiable

Les futures sociétés à bas taux de carbone devront pouvoir stocker des quantités importantes

d’électricité pour équilibrer les réseaux électriques et pour alimenter les véhicules électriques.

La technologie vehicle-to-grid permet aux propriétaires de véhicules électriques et aux ges-

tionnaires de réseaux de partager les coûts de stockage de l’électricité en mettant les batteries

de ces véhicules à disposition pour les besoins de stockage du réseau. En pratique, les pro-

priétaires de véhicules planifient les créneaux horaires pour lesquels leur voiture peut-être à

disposition du réseau. Les agrégateurs de véhicules électriques décident ensuite comment

engager ces véhicules pour les services de réseau.

Le vehicle-to-grid aura du succès uniquement si les propriétaires de véhicules et les gestion-

naires de réseaux peuvent faire confiance aux agrégateurs, à savoir que les véhicules doivent

pouvoir être disponibles pour la mobilité d’une part et pour les services de réseau d’autre

part quand les agrégateurs le promettent. Dans cette thèse de doctorat, nous résolvons un

problème de prise de décision qui garantit des engagements fiables de la part des agrégateurs

pour le service réseau connu sous le nom de « réglage fréquence primaire », considéré comme

l’une des applications les plus favorables du vehicle-to-grid. Mathématiquement, nous for-

mulons d’abord un problème d’optimisation robuste avec des incertitudes fonctionnelles qui

maximise le bénéfice attendu de la vente du réglage primaire aux opérateurs de réseau tout

en garantissant que les propriétaires de véhicules peuvent respecter leurs engagements de

marché pour toutes les trajectoires de déviation de fréquence dans un ensemble d’incertitudes

qui correspond aux réglementations applicables de l’Union européenne. Les incertitudes

fonctionnelles garantissent que les propriétaires de véhicules et les gestionnaires de réseau

peuvent faire confiance aux décisions des agrégateurs à tout moment. La modélisation fidèle

des pertes de conversion d’énergie lors des cycles de charge et de décharge des batteries

rend le problème d’optimisation non-convexe. En exploitant une propriété d’unimodularité

totale de l’ensemble d’incertitudes proposé et une reformulation exacte par une règle de

décision linéaire, nous prouvons que le problème d’optimisation robuste non-convexe avec

des incertitudes fonctionnelles est équivalent à un programme linéaire efficacement soluble.

De manière un peu contre-intuitive, le problème déterministe sous-jacent pour une trajectoire

de déviation de fréquence connue ne se réduit pas à un programme linéaire mais plutôt à

un programme linéaire mixte en nombres entiers à grande échelle, même si le temps est
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Résumé

discrétisé. Nous pensons avoir ainsi découvert la première classe de problèmes d’optimisation

intéressants sur le plan pratique qui deviennent considérablement plus faciles à résoudre

grâce à une robustification.

Basé sur des expériences numériques approfondies utilisant des données du monde réel,

nous quantifions la valeur économique du vehicle-to-grid et discutons les incitations écono-

miques des propriétaires de véhicules, des agrégateurs, des fabricants d’équipements et des

régulateurs. En particulier, nous constatons que les pénalités en vigueur dans l’UE pour la

non-livraison de la puissance de réglage promise sont trop faibles pour inciter les agrégateurs

à honorer leurs promesses envers les gestionnaires de réseaux.

Pour des dispositifs généraux de stockage d’électricité, nous résolvons ensuite une version

simplifiée du problème de décision de manière analytique afin de comprendre comment les

engagements optimaux de réglage de fréquence dépendent du rendement du dispositif de

stockage, de la dispersion des déviations de fréquence et de la garantie de livraison de l’Union

européenne. Nous montrons comment le coût marginal du réglage de fréquence diminue avec

le rendement et augmente avec la dispersion des déviations de fréquence. Pour les dispositifs

de stockage limités par leur capacité à stocker de l’énergie, nous constatons que les bénéfices

du réglage de fréquence sont inversement proportionnels à la durée pour laquelle la puissance

de réglage doit être engagée. L’établissement d’un marché intra-journalier pour le réglage de

fréquence rendrait donc les dispositifs de stockage d’électricité plus compétitifs par rapport

aux autres fournisseurs, tels que les centrales thermiques.

Mots-clés : Vehicle-to-Grid, Réglage fréquence, Marché de l’électricité, Stockage d’électricité,

Economie de l’énergie, Optimisation robuste, Incertitudes fonctionnelles, Recherche opéra-

tionnelle.
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Vehicle-to-Grid zur zuverlässigen Fre-
quenzregelung

Künftige, kohlenstoffarme Gesellschaften werden grosse Mengen Strom speichern müssen, um

Stromnetze zu stabilisieren und um Elektrofahrzeuge anzutreiben. Vehicle-to-Grid ermöglicht

es Fahrzeugbesitzern und Netzbetreibern die Kosten der Stromspeicherung zu teilen, indem

Batterien von Elektrofahrzeugen den Netzen zur Verfügung gestellt werden. In der Praxis

entscheiden die Fahrzeugbesitzer, wann sie ihre Autos für Fahrten reservieren und wann sie

sie für Netzdienstleistungen zur Verfügung stellen. Fahrzeug-Aggregatoren entscheiden dann,

wie sie die Fahrzeuge für Netzdienstleistungen einsetzen.

Damit Vehicle-to-Grid erfolgreich ist, müssen sowohl die Fahrzeugbesitzer als auch die Netz-

betreiber den Aggregatoren vertrauen können. Das heißt, die Fahrzeuge sollten zum Fah-

ren und für Netzdienste zur Verfügung stehen, wenn die Aggregatoren dies versprechen.

In dieser Dissertation lösen wir ein Entscheidungsproblem, das sicherstellt, dass Zusagen

von Fahrzeug-Aggregatoren für eine bestimmte Netzdienstleistung, die Primärregelleistung,

verlässlich sind. Diese gilt als eine der profitabelsten Anwendungen von Vehicle-to-Grid. Ma-

thematisch formulieren wir zunächst ein robustes Optimierungsproblem mit funktionalen

Unsicherheiten, das den zu erwartenden Gewinn aus dem Verkauf primärer Regelleistung an

Netzbetreiber maximiert. Damit können Fahrzeugbesitzer ihre Marktverpflichtungen für alle

Frequenzabweichungs-Trajektorien in einer Unsicherheitsmenge erfüllen, welche den gel-

tenden Vorschriften der Europäischen Union entspricht. Funktionale Unsicherheiten stellen

sicher, dass Fahrzeugeigentümer und Netzbetreiber den Entscheidungen der Aggregatoren

zu jeder Zeit vertrauen können. Die getreue Modellierung der Energieumwandlungsverluste

während des Ladens und Entladens der Batterien führt zu einem nichtkonvexen Optimierungs-

problem. Unter Ausnutzung einer totalen Unimodularitätseigenschaft der vorgeschlagenen

Unsicherheitsmenge und einer exakten linearen Entscheidungsregel-Reformulierung bewei-

sen wir, dass das nichtkonvexe, robuste Optimierungsproblem mit funktionalen Unsicher-

heiten äquivalent zu einem effizient-lösbarem linearen Programm ist. Überraschenderweise

lässt sich das zugrundeliegende deterministische Problem für eine bekannte Frequenzab-

weichungstrajektorie nicht auf ein lineares Programm reduzieren, sondern führt zu einem

großen, gemischt-ganzzahligen, linearen Programm selbst in diskreter Zeit. Wir denken, dass

wir damit die erste Klasse von praxisrelevanten Optimierungsproblemen entdeckt haben, die

durch Robustifizierung dramatisch einfacher werden.
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Zusammenfassung

Mittels umfangreicher numerischer Experimente mit realen Daten bestimmen wir den wirt-

schaftlichen Wert von Vehicle-to-Grid und diskutieren die finanziellen Anreize von Fahrzeug-

besitzern, Aggregatoren, Geräteherstellern und Regulierungsbehörden. Insbesondere stellen

wir fest, dass die derzeitigen Strafen für die Nichtlieferung der versprochenen Regelleistung zu

gering sind, um Aggregatoren dazu zu bewegen, ihre Versprechen gegenüber Netzbetreibern

einzuhalten.

Für allgemeine Stromspeicher lösen wir dann eine vereinfachte Version des Entscheidungs-

problems analytisch, um zu verstehen, wie die optimalen Regelleistungsmengen von dem Wir-

kungsgrad des Speichers, der Streuung der Frequenzabweichungen und der EU-Liefergarantie

abhängen. Wir zeigen, dass die Grenzkosten der Frequenzregelung mit steigendem Wirkungs-

grad sinken und mit steigender Streuung der Frequenzabweichungen steigen. Für energie-

beschränkte Speicher stellen wir fest, dass die Gewinne aus der Frequenzregelung umge-

kehrt proportional zu der Zeitspanne sind, für welche Regelleistung bereit gestellt wird. Die

Schaffung eines untertägigen Marktes für die Frequenzregulierung würde somit die Wettbe-

werbsfähigkeit von Stromspeichern gegenüber anderen Anbietern von Regelenergie, wie z. B.

Wärmekraftwerke, erhöhen.

Stichwörter: Vehicle-to-Grid, Regelleistung, Stromspeicher, Strommärkte, Energiewirtschaft,

Robuste Optimierung, Funktionale Unsicherheiten, Operations Research.
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车网互联背景下电网的可靠调频

未来的低碳社会将需要储存大量的电能以使电网运行更加稳定，并为电动汽车提供动

力。车网互联允许车主和电网运营商共享汽车的电池、通过电动汽车反向向电网充电的

形式来分担电力储存的成本。在实践当中，车主可以选择何时将他们的汽车用于出行，

又或者何时用其服务于电网。与此同时，车辆聚合商将决定是否批准该车辆向电网提供

服务。

车网互联的成功，必须以车主和电网运营商能够信任聚合商为前提：即服役车辆应该在

聚合商允许的情况下方可用于出行或电网服务。在这篇博士论文中，我们解决了一个决

策问题——如何确保车辆聚合商的承诺对于电网的一次调频服务有效并可靠，这被认为

是车网互联的最有前景的应用之一。从数学角度出发，我们首先制定了一个具有泛函不

确定性的鲁棒优化问题——最大化向电网运营商提供一次调频服务的预期利润，并保证

车主能够在编码适用的欧盟法规的不确定性集合中的所有频率偏差轨迹中履行其向市场

作出的承诺。泛函不确定性确保车辆所有者和电网运营商在任何时候都能信任集合商的

决定。然而，直接模拟电池充电和放电过程中的能量转换损失会导致优化问题非凸。通

过运用我们提出的不确定性集的完全单模性属性和精确的线性决策规划重构，我们证明

了具有功能不确定性的非凸性鲁棒优化问题等同于一个可操作的线性规划问题。出人意

料的是，即使时间被离散化，已知频率偏差轨迹的下层确定性问题并没有简化为线性规

划问题，而是变成了大规模的混合整数线性规划问题。因此，相信我们发现了一类实际

应用有价值的、并可通过鲁棒简化的优化问题。

在基于现实世界实际数据的大规模数值实验后，我们量化了车网互联的经济效益，并阐

明了车主、聚合商、设备制造商和监管机构的财务激励。特别是，我们发现目前对不交

付所承诺调节电力的惩罚太低，这将无法激励聚合商履行对电网运营商的承诺。

对于一般的电能存储设备，我们随后找到了一个简化版的决策问题的解析解，以了解最

佳的频率调节如何取决于存储设备的充放电效率、频率偏差的离散程度和欧盟的交付保

证。我们证明了调频的边际成本如何随着充放电效率的提高而降低，并随着频率偏差的

离散程度而提高。对于能量受限的存储设备，我们发现频率调整的利润与存储运营商投

入调节功率的时间长度成反比。因此，建立一个日内的频率调节市场将使电能储存设备

与其他调节提供者（如火力发电厂）相比更具竞争力。

关键词。车网互联（Vehicle-to-Grid），频率调节，电能储存，电力市场，能源经济

学，稳健优化，函数不确定性，运筹学。
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Introduction

In November 1896 when America’s first large-scale power plant at Niagara Falls began trans-

mitting electricity to the city of Buffalo about 20 miles away, the electricity came in the form

of alternating current. The reason was that “unlike direct current, alternating current can

travel” (Bakke, 2016, p. 48). Most electricity grids today still rely on alternating current al-

though modern power electronics allow direct current to travel even farther than alternating

current. The frequency of the alternating current indicates the balance between electricity

supply and demand. Whenever there is too much supply, electricity generators spin faster

and the frequency rises. Similarly, whenever there is too little supply, generators spin slower

and the frequency falls. If the generators do not run close to their nominal speed, they shut

down to protect themselves from damage. In order to ensure a reliable electricity grid and

to prevent blackouts, the frequency must be close to its nominal value of 50Hz in Europe

and most of Asia and 60Hz in North America at all points in time. This gives rise to the need

for primary frequency regulation, also known as frequency containment reserves, which is

a power reserve that grid operators purchase to balance electricity supply and demand in

real-time. Regulation providers measure the instantaneous frequency deviation and adjust

their power consumption from the grid by an amount equal to the normalized deviation times

the amount of reserve power promised to and paid for by grid operators.

Traditionally, this reserve power has been provided by centralized power plants, which were

often fired by fossil fuels. Today, as we transition toward low-carbon societies, wind and

solar power plants are replacing fossil-based power plants. Electricity generation is therefore

becoming increasingly weather-dependent. So is electricity consumption, as heating is in-

creasingly electrified through heat pumps. The further we move into the enery transition, the

more electricity supply and demand will be variable and less predictable. This shall increase

the need for real-time balancing and thus the need for frequency regulation.

Electricity storage is envisioned to fulfill part of the increased need for regulation power (Eu-

ropean Network of Transmission System Operators for Gas and Electricity, 2021). Currently,

lithium-ion batteries are one of the best storage technologies to cover the future need for

frequency regulation because they can be deployed anywhere, as opposed to hydropower, and

because they have fast dynamics (World Energy Council, 2020). Primary frequency regulation,

in particular, is a promising application for lithium-ion batteries. In fact, as the grid frequency

usually fluctuates rapidly around its nominal value, batteries providing frequency regulation
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only experience small deviations in their state-of-charge, which limits battery degradation (Ud-

din et al., 2018; Thompson, 2018). At the moment, however, lithium-ion batteries are still too

expensive to be deployed at scale for frequency regulation, although their prices have been

declining rapidly (Ziegler and Trancik, 2021).

In parallel with the transition toward renewable energy technologies, we are also transitioning

toward electric vehicles. In fact, many cities restrict or plan to restrict the use of internal

combustion engine vehicles to reduce urban air pollution and meet CO2 emissions targets. On

average, privately owned cars are a vastly underutilized resource as they are parked 95 percent

of the time (Kempton and Tomić, 2005a). Since many of them will be electric in the future,

their batteries could be made available to electricity grids when the cars sit idle. This could be

beneficial to both vehicle owners, which stand to make a profit, and to society at large, which

stands to gain safer electricity grids and a decreased reliance on battery imports that may

otherwise be needed for electricity storage.

The idea of putting electric vehicle batteries to use for electricity grids is called “vehicle-to-

grid” (V2G) and was conceived by Kempton and Letendre (1997). Brooks (2002) built the first

working prototype of an electric vehicle delivering frequency regulation. Since then, there

have been about 100 pilot projects, but there has been virtually no commercial deployment of

vehicle-to-grid yet.

In Chapter 1, we investigate the reasons for which vehicle-to-grid has not been deployed on a

larger scale yet. We find that the barriers are not technological but rather socio-economic in

nature. Specifically, the costs of vehicle-to-grid are too high compared to the revenues under

current market conditions and vehicle owners are sceptical because they are concerned about

battery degradation and about restricting the access to their cars for only moderate pay-offs.

In the following chapters, we explore under which conditions vehicle-to-grid can become

profitable in the future.

Among the various services that vehicle-to-grid can provide to electricity grids, primary

frequency regulation is often considered to be most promising as it limits battery degrada-

tion (Kempton and Tomić, 2005a; Noel et al., 2019). Grid operators, however, might doubt

whether they can rely on electric vehicles for primary frequency regulation because they are

used to operate stationary assets rather than mobile assets (Réseau de transport d’électricité,

2017b). In practice, the intermediary between vehicle owners and grid operators is the aggre-

gator, who will pool hundreds of electric vehicles into so-called “virtual power plants” and

engage these in power regulation markets. In doing so, aggregators make promises to both

vehicle owners and grid operators. For vehicle-to-grid to be successful both groups must be

able to trust aggregators. This means that grid operators should get the regulation power

they were promised and vehicle owners should be able to drive when they were promised

they would be able to. Aggregators must thus provide certainty in the face of two sources

of uncertainty, which are future vehicle usage for driving and future deviations in the grid

frequency. There are several ways of dealing with the uncertain vehicle usage for driving in
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the literature (Guille, 2009; Vandael et al., 2013, 2020). We find, however, that uncertain future

frequency deviations have not been addressed satisfactorily yet, especially given applicable

EU regulations that prescribe what frequency deviation trajectories aggregators must be able

to cover to participate in primary frequency regulation (European Commission, 2017). In the

following chapters, we assume for simplicity that vehicles will be available for grid services

when drivers say they are. In practice, this will not always be the case and aggregators would

reserve some margin, which depends on the number of vehicles they pool.

In Chapter 2, we solve a decision-making problem that ensures reliable commitments of elec-

tric vehicles by aggregators for primary frequency regulation. Mathematically, we formulate

a robust optimization problem with functional uncertainties that maximizes the expected

profit from selling frequency regulation while guaranteeing that regulation power can be

delivered for all frequency deviation trajectories in an uncertainty set that encodes applica-

ble EU regulations. Functional uncertainties ensure that the delivery of regulation power is

guaranteed at all times. Faithfully modeling the energy conversion losses during charging and

discharging renders the optimization problem nonconvex. By exploiting a total unimodularity

property of the proposed uncertainty set and an exact linear decision rule reformulation,

we prove that this nonconvex robust optimization problem with functional uncertainties is

equivalent to a tractable linear program. Surprisingly, the underlying deterministic problem

for a known frequency deviation trajectory does not reduce to a linear program but results in a

large-scale mixed-integer linear program, even if time is discretized. We believe that we have

thus discovered the first practically interesting class of optimization problems that become

dramatically easier through robustification. We point out that the decision-making problem

also captures stationary electricity storage devices, which can be modeled as electric vehicles

that never drive.

Two parameters constrain the amount of regulation power electric vehicles can provide: the

maximum charging and discharging power and the energy storage capacity. In the literature,

the charging and discharging capacity is often thought to be the most limiting factor (Kempton

and Tomić, 2005a; Borne, 2019). In contrast, by faithfully accounting for the EU delivery

guarantee, we find that it is actually often the energy storage capacity that is limiting the

amount of regulation power that electric vehicles can provide. This has two implications. First,

vehicle owners may reserve their cars for driving for up to 9 hours per day without reducing

the profits from frequency regulation. In fact, up to a point, vehicle owners can always sell

the same amount of regulation energy by selling more regulation power in a shorter time if

necessary. Second, the amount of regulation power that electric vehicles can provide depends

on how grid operators interpret EU regulations. In fact, the European Commission specifies

that frequency regulation providers must be able to deliver all the power they promise between

about 10% and 20% of the time. It is up to grid operators to choose a percentage within that

range. If they choose 10% rather than 20%, this means that electric vehicles can provide double

the regulation power for a fixed amount of regulation energy.

Whenever aggregators are not able to provide the regulation power they promised, they need to
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pay a fine. In our case study, we find that current fines are too low to incentivize aggregators to

make promises they can hold. In other words, crime pays under current EU market regulations.

The profits from frequency regulation are 2.5 times higher when aggregators ignore the EU

regulations and pay the fines instead. Even so, we find yearly operating profits of just 300e

per year and vehicle. It is quite likely that this is too low to convince equipment manufacturers

and aggregators to invest in vehicle-to-grid, especially given that vehicle owners will also want

a share of the profits when participating in vehicle-to-grid. In short, crime pays but possibly

not enough.

Until now, we have considered fixed ranges for the regulatory parameters, namely the per-

centage and duration of time for which promised regulation power must be delivered and

committed, respectively. From now on, we consider them variable, which makes sense be-

cause they are the result of political negotiations and thus subject to change in the future.

Specifically, we wonder whether it is profitable at all to provide primary frequency regula-

tion through electricity storage, not limited to electric vehicles, and how the profitability

depends on regulatory parameters, on the roundtrip efficiency of the storage device, and on

the dispersion of frequency deviations.

In Chapter 3, we derive an analytical solution for a simplified version of the decision-making

problem in Chapter 2, which only considers stationary storage devices. The decision-making

problem applies to storage operators that can sell regulation power and buy or sell electricity

on retail or wholesale markets. Mathematically, we formulate again a nonconvex robust opti-

mization problem and treat future frequency deviation trajectories as functional uncertainties.

This time, we constrain the expected terminal state-of-charge to be equal to some target,

which should allow storage operators to not only make good decisions for the present but also

for the future. We show that, thanks to the expected state-of-charge constraint, the amount of

electricity bought on the market is an implicit function of the regulation power sold to the grid

operator. The decision-making problem thus reduces to a one-dimensional problem, which

we show to be convex for all storage devices with realistic roundtrip efficiencies.

The implicit function quantifies the amount of power that needs to be purchased to cover

the expected energy loss that results from providing frequency regulation. In fact, although

the average frequency deviation vanishes, the average flow of regulation power that exits the

storage device is nonnegative and does not necessarily vanish. We show that the expected

energy loss is nonincreasing in the roundtrip efficiency and nondecreasing in the dispersion of

the frequency deviations. The higher the market price of electricity, the more costly the losses.

Since retail market prices can be a multiple of wholesale market prices, providing frequency

regulation through storage devices is more profitable when storage operators have access to

wholesale markets.

For energy-constrained storage devices, we find that the profits from frequency regulation

over the lifetime of the storage devices are roughly inversely proportional to both regulatory

parameters, the percentage and the duration of time for which promised regulation power
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must be committed and delivered, respectively. The percentage of time relates to the safety of

the electricity grid, but the duration of time does not. In fact, grid operators could establish

an intra-day market for frequency regulation, which would make electricity storage devices

more competitive with other regulation providers, such as thermal power plants. A priori, the

creation of such a market does not have a direct negative effect on the safety of electricity

grids. To the contrary, electricity grids may become more reliable if it is profitable for more

electricity storage devices to participate in frequency regulation.

Based on a case-study of the French regulation market, we find that stationary lithium-ion

batteries will not become sufficiently low-cost in the near future to be profitable for primary

frequency. Given that the European Commission (2018, 2020) and the European Network

of Transmission System Operators for Gas and Electricity (2021) estimate that Europe will

need up to 100GW of installed battery power by the year 2040 to realize her climate ambitions,

we conclude that it may be necessary to create regulatory conditions that allow batteries,

mobile or stationary, to compete with other flexibility providers on frequency regulation and

electricity markets.

For a three minute presentation of Chapters 1 and 2 aimed at a general audience please visit

https://go.epfl.ch/mt180s_dirk_lauinger.

Statement of Originality. I hereby certify that this thesis is the product of my own work with

some assistance from my advisors Prof. Daniel Kuhn and Dr. François Vuille. Chapter 1 is based

on a conference paper (Lauinger et al., 2017) and Chapter 2 is based on a preprint (Lauinger

et al., 2022). Mengmeng Li and Tianshu Yang have helped to write the Chinese abstract.
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1 A Review of the State-of-Research on
Vehicle-to-Grid:
Progress and Barriers to Deployment

Each car, never exploited, gives to the grid according to its ability while remaining available to

the grid to take from according to its need. Together, all our cars keep our common electrical

system strong. And the grid, with their help, can at long last balance itself.

— Gretchen A. Bakke, The Grid, 2016.

A bidirectional power transfer between electric vehicles and the electricity grid, commonly

referred to as vehicle-to-grid, offers the possibility to pair fluctuating electricity supply and de-

mand with the fluctuating availability of electric vehicles parked at charging stations. Vehicle-

to-grid is envisioned as an option for balancing electricity grids, in particular in regions aiming

at a high penetration of intermittent renewable energy and a high penetration of electric

vehicles. Vehicle-to-grid could lower the need for stationary electricity storage or idle backup

power plants by capitalizing on the existing batteries of electric vehicles. In fact, privately

owned vehicles sit idle most of the time and, if electric, could provide services to electricity

grids during this time. Given this apparent benefit, it may appear surprising that vehicle-to-

grid has not yet been deployed on a wide scale. We investigate this apparent discrepancy by

reviewing the status of research on vehicle-to-grid and the status of technical development

and deployment. We assess the barriers to vehicle-to-grid deployment by identifying the

main open research questions from a technical and economic perspective. We find that the

technological barriers have mostly been overcome. There is still room for improvement on

reliable aggregation, operating strategies that limit battery degradation, battery chemistries,

and secure communication between vehicle owners and grid operators. The economic barri-

ers, however, have not been overcome yet. In particular, the cost of vehicle-to-grid is often too

high compared to the revenues under current electricity market conditions, it is not settled

under which business and aggregation model vehicle-to-grid can capture most economic

value, and electric vehicle owners may be concerned about battery degradation and about

restricting the access to their cars for only moderate pay-offs.
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1.1 Introduction

Vehicle-to-Grid is the idea of establishing a bidirectional power transfer between the electricity

grid and electric vehicles. Since the introduction of the concept by Kempton and Letendre

(1997), vehicle-to-grid has been said to pave the way into a future with a high penetration

of electric vehicles and of power from intermittent renewable sources (Kempton and Tomić,

2005b). When electric vehicles are connected to charging stations, they could offer several

services to the electricity grid such as active power regulation, reactive power support, load

balancing, and current harmonic filtering. Furthermore, in electricity grids with a high penetra-

tion of decentralized electricity generation, vehicle-to-grid could reduce electricity transport

losses by increasing local consumption (Lehtola and Zahedi, 2016).

These benefits are not specific to vehicle-to-grid, but true of demand response in general.

In a demand response scheme, electricity consumers are given an incentive to adapt their

electricity consumption to the needs of electricity grid operators (United States Department

of Energy, 2006). Electric vehicle owners, for example, may give grid operators some control

about when and how to charge their vehicles, which is sometimes referred to as grid-to-

vehicle or unidirectional vehicle-to-grid (Yilmaz and Krein, 2013). Compared to controlled

electric vehicle charging, vehicle-to-grid, as a form of both demand response and electricity

storage, offers a higher dispatch flexibility. In addition, vehicle-to-grid is expected to have

lower investment costs than other forms of electricity storage as it makes use of batteries

that have been purchased for driving, but sit idle 96% of the time for an average personal

vehicle (Kempton and Tomić, 2005b).

Although the technical feasibility of vehicle-to-grid for individual vehicles has already been

demonstrated by AC Propulsion Inc. in the year 2002 (Brooks, 2002), the technology has not

reached full commercial status to date. In the wake of the Fukushima nuclear disaster, Japan

started a pilot project in the year 2012 with 4,000 bidirectional charging stations that allow

electric vehicles to supply power to individual homes but not to the grid at large. In the same

year, the United States Air Force installed 15 bidirectional charging stations to provide first

backup power to their military bases and then frequency regulation and reserve power to

the grid at large (Marnay et al., 2013). The Air Force project is one of the few projects that

provide grid services commercially. In fact, according to the online platform V2G-HubI, out

of 96 vehicle-to-grid projects that have been implemented to date, only 8 projects provide

services commercially. Excluding the Japanese pilot project with 4,000 bidirectional charging

stations, the remaining 95 vehicle-to-grid projects have 22 bidirectional charging stations on

average. In 2018, Everoze and EVConsult (2018) report that about half of all vehicle-to-grid

projects were located in Europe, mostly in the United Kingdom, the Netherlands, France, and

Germany, with Renault-Mitsubishi-Nissan providing the electric vehicles and Nuvve providing

the aggregation platform for 65% and 30% of all projects. The vehicle-to-grid services that

are most often provided are load shifting and frequency regulation with 48% and 32% of all

projects, respectively. While virtually all projects have technical elements, social aspects such

Iwww.v2g-hub.com
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Figure 1.1: Publications and patents titled “vehicle-to-grid” in Google Scholar.

as user acceptance and behavior are often overlooked. The same holds true for academic

publications (Sovacool et al., 2018).

After seminal articles by Kempton and Tomić (2005a,b), the research interest in vehicle-to-grid

accelerated in the year 2009, increased slowly but steadily from 132 new publications and

patents in the year 2011 to 257 new publications and patents in the year 2018, and accelerated

again in the year 2019 to reach a total of 360 new publications and patents titled “vehicle-to-

grid” and indexed in Google Scholar (Figure 1.1).

Through a meta-review of 17 review articles on vehicle-to-grid, we analyze the status of

research and development and investigate the reasons for which vehicle-to-grid has not been

deployed on a wider scale yet, in spite of its apparent benefits. Finally, we discuss and conclude

upon the economic merits of vehicle-to-grid.

1.2 Technology Development

According to Yilmaz and Krein (2013) the six components of a vehicle-to-grid system are

“1) energy resources and an electric utility; 2) an independent system operator and aggregator;

3) charging infrastructure and locations; 4) two-way electrical energy flow and communication

between each EV and ISO or aggregator; 5) on-board and off-board electrical metering and

control; and 6) the EV itself with its battery charger and management.” By “independent system

operators”, Yilmaz and Krein mean operators of high voltage electricity grids. In Europe,

such operators are typically called “transmission system operators”. We refer to them as

“grid operators”.

The need for demand response, and thus also the need for vehicle-to-grid, in a given area

depends on three factors: (i) the generation mix of the utility company, (ii) the maximum

level and the intermittency of the electric load, and (iii) the grid infrastructure (Palensky and

Dietrich, 2011). Electric utilities thus determine the framework conditions for vehicle-to-grid.

In general, the higher the peak load and the more intermittent the electricity supply and

demand, the higher the needs for demand response and electricity storage. Weak electricity

grids further aggravate these needs.
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In the following, we address the remaining five components described by Yilmaz and Krein,

starting with grid operators and aggregators.

Grid operators are responsible for balancing electricity demand and supply. They would

dispatch electric vehicle batteries in electricity markets. Every market transaction must exceed

a certain threshold to be accepted by grid operators, e.g., 2MW for the capacity market in the

United Kingdom (Gough et al., 2017), which corresponds to about 200 electric vehicles. The

aggregation of many electric vehicles into virtual power plants is needed for vehicle-to-grid to

meet these thresholds. The aggregation of small power plants or electric loads, such as heat-

pumps, into virtual power plants has been researched at least since the year 1997 (Awerbuch

and Preston, 1997; Pudjianto et al., 2007) and has become a “relatively well established industry”

(Gough et al., 2017). The challenge lies in adapting existing aggregation concepts to electric

vehicles given the uncertainty surrounding the number of parked and grid-connected vehicles

and the total energy and power that vehicle owners may commit to deliver to the grid at any

one time. To this end, Guille and Gross (2009) proposed a highly cited aggregation framework.

In the meantime, current research has expanded beyond implementing aggregation on a

purely technical level, to the contract parameters that aggregators and electric vehicle owners

should negotiate with each other (Broneske and Wozabal, 2017). It is particularly important

that aggregators are able to deliver the grid services they promise to grid operators. This is es-

pecially so for primary frequency regulation, which Kempton and Tomić (2005a) and Noel et al.

(2019) consider one of the most profitable grid that vehicle-to-grid can offer. In fact, primary

frequency regulation is used to stabilize electricity networks after disturbances (Rebours et al.,

2007). Its provision must therefore be highly reliable. Europe’s largest grid operator, Réseau

de transport d’électricité (2017b), questions the reliability of vehicle-to-grid. The European

Commission (2017) has defined a delivery guarantee to address this concern. In Chapter 2,

we present an optimization problem that faithfully accounts for the delivery guarantee and

show that it can be solved efficiently. In Chapter 3, we derive an analytical solution for the

optimization problem under a simplified delivery guarantee.

Bidirectional chargers for electric vehicles span a wide range of power levels, from about

1kW for home chargers to over 100kW for commercial fast charger. If managed poorly, fast

chargers might locally overload the electricity grid, which would increase voltage deviations

and decrease the lifetime of voltage transformers (Yilmaz and Krein, 2013). In the last several

years, the standardization of the charging infrastructure and the development of smart vehicle-

to-grid chargers has received considerable attention. Ozansoy et al. (2017) observed that there

are American, European, and Japanese charging infrastructure standards, for example, for

the shape of charging plugs. Ozansoy et al. expected that an international standard would be

agreed upon by the end of the year 2017 and hoped that this would accelerate electric vehicle

deployment. Today, four years later, there are still at least five different plug types in use.II

Smart chargers coordinate the charging behaviour of individual vehicles so as to maximize the

services offered to the electricity grid, while minimizing the battery degradation caused by

IIhttps://www.mobilityhouse.com/int_en/knowledge-center/charging-cable-and-plug-types
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these services. Determining optimal charging strategies is a field of active research.

Since the year 2015, wireless connectivity of new cars is required by European Union standards

for automatic crash notification (Mwasliu et al., 2014). Ozansoy et al. (2017) point to the need

for interoperable communication standards to manage transactions between electric vehicles

and grid operators. Concerns about cybersecurity have been raised in this context (Mwasliu

et al., 2014). Implementing some form of communication between electric vehicles, aggrega-

tors, electric utilities, and grid operators, is expected to be a lesser barrier than securing and

standardizing the communication. As mentioned in the introduction, the technical feasibility

of establishing a bidirectional power and communication flow between an electric vehicle and

a (simulated) grid operator has been demonstrated back in the year 2002 (Brooks, 2002).

Based on our literature review, the metering of the electricity exchanged between electric

vehicles and the electricity grid does not seem to be of particular concern to the deployment

of V2G anymore. Gough et al. (2017) do not mention it in their publication about the techno-

economic feasibility of vehicle-to-grid. Ozansoy et al. (2017) point out that the interplay of the

electricity meter with the other system components requires substantial communication and

coordination, but they do not question the technical feasibility of constructing such a meter.

For a while, vehicle-to-grid induced battery degradation seemed like the main technical barrier

to vehicle-to-grid deployment, possibly severe enough to discourage any deployment (Pe-

terson et al., 2010). More recently, it has become clear that the impact of vehicle-to-grid on

battery lifetime ranges from severe to insignificant and depends on the operating conditions

of the battery, such as temperature and variations in state-of-charge (Uddin et al., 2018). For

example, based on computer simulations, Wang et al. (2016) have shown that providing grid

services does indeed degrade the battery, but that the degradation depends on the nature and

the extent of the grid services. For the particular grid services of frequency regulation and peak

load shaving, battery degradation is negligible if grid services are offered for less than 2 hours

per day. For other grid services, battery degradation is insignificant compared to natural wear

and tear if the services are provided only during the days of greatest needs, about 20 days per

year in Wang et al.’s study. One year later, based on degradation experiments, Dubarry et al.

(2017) found vehicle-to-grid to cause severe battery degradation, while Uddin et al. (2017)

found that vehicle-to-grid may even prolong battery lifetime. The authors of both studies

later explained that they reached different conclusions about the impact of vehicle-to-grid

on battery lifetime because they had made different assumptions about the operating condi-

tions of the battery under vehicle-to-grid (Uddin et al., 2018). As a rule of thumb, Thompson

(2018) recommends that the state-of-charge of common lithium-ion electric vehicle batteries

should be maintained between 20% and 80% to limit battery degradation. Sweda et al. (2017)

follow this rule when optimizing charging policies of electric vehicles. Beyond minimizing

battery degradation through strategic charging and discharging strategies, further research

is conducted on the batteries themselves to increase their energy density and to lower their

cost (Ziegler and Trancik, 2021). Such batteries may favor the deployment of electric vehicles

and thereby increase the potential applications of vehicle-to-grid.
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In their seminal work, Kempton and Tomić (2005a) did not only consider battery electric

vehicles for vehicle-to-grid, but also plug-in hybrid and fuel cell vehicles. Today, it seems

questionable whether plug-in hybrids and fuel cell vehicles will participate in vehicle-to-grid.

On the one hand, plug-in hybrids are seen as a transition technology that should be gradually

replaced by full electric vehicles until the year 2050, at least in the European Union (European

Network of Transmission System Operators for Gas and Electricity, 2021, p. 17), especially if

global warming is to be limited to 1.5K (European Commission, 2018, p. 119). On the other

hand, once hydrogen and fuel cell vehicles become widely available, Andrey et al. (2020)

foresee that electrolysers needed for the supply of hydrogen will take part in demand response

and not the fuel cell vehicles themselves.

To conclude on the state of technology development, vehicle-to-grid can be implemented

from a purely technical point of view, however, reliable aggregation and potential battery

degradation are the principal remaining issues that would hinder mass deployment should

demand for vehicle-to-grid rise. More research is needed on (i) reliable aggregation, (ii)

charging and discharging strategies that limit battery degradation, (iii) battery chemistries, and

on (iv) securing the communication between vehicle owners, aggregators, and grid operators.

In Yilmaz and Krein (2013)’s words, controlled unidirectional charging of electric vehicles

for demand response “is a logical first step [towards vehicle-to-grid deployment] because it

limits hardware requirements, simplifies interconnection issues, and tends to reduce battery

degradation”. As we will see in Chapter 2 at the example of frequency regulation, unidirectional

charging achieves these benefits by greatly limiting the amount of power that can be made

available for grid services. For frequency regulation, the profits earned through controlled

unidirectional charging are negligible. For other grid services, such as peak shaving, it is not

clear yet whether they will be sufficiently high to offset communication and aggregation costs.

1.3 Economic Prospects and Barriers

Based on our meta-review, three socio-economic barriers currently prevent vehicle-to-grid

deployment: (i) the cost of vehicle-to-grid is often too high in comparison to revenue from

demand response under current electricity market conditions (Gough et al., 2017); (ii) it is

not settled under which business and aggregation model vehicle-to-grid can capture most

economic value (Broneske and Wozabal, 2017); (iii) electric vehicle owners may be concerned

about the loss of driving range and vehicle availability when they engaged in vehicle-to-

grid (Parsons et al., 2014; Geske and Schumann, 2018).

The United States Department of Energy defines demand response as “changes in electric

usage by end-use customers from their normal consumption patterns in response to changes in

the price of electricity over time, or to incentive payments designed to induce lower electricity

use at times of high wholesale market prices or when system reliability is jeopardized” (United

States Department of Energy, 2006, p. IX). In other words, demand response helps to balance

electricity supply and demand. Depending on the time scale over which electricity is balanced,
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demand response is referred to more specifically as peak shaving (corresponding to periods

of “high wholesale market prices”) or as ancillary services (corresponding to time instants

during which “system reliability is jeopardized”). Most of the literature sees the delivery of

control energy for frequency and voltage regulation in the ancillary services market as the

most promising economic opportunity for vehicle-to-grid. This is because grid operators

purchase control energy as an insurance against extreme but rare electricity supply and de-

mand mismatch scenario. In practice, grid operators only need a small amount of the control

energy they purchased to balance supply and demand. On average, control energy providers

thus only need to deliver a small fraction of the control energy they sell to grid operators,

which limits battery usage and degradation (Kempton and Tomić, 2005a). Gough et al. (2017)

find that participating in both the peak power and the ancillary services markets may prove

most profitable for vehicle-to-grid in the United Kingdom. By offering these services, demand

response stabilizes the grid and potentially reduces the need for infrastructure upgrades–an

aspect that is rarely analysed in the literature we reviewed.

The need for balancing electricity supply and demand depends on the intermittency of electric-

ity generation and consumption. It is amplified when electricity networks come close to their

thermal limits. In this case, demand response is used to locally and temporarily reduce the

power flows through the networks. The rise of electric vehicles and of intermittent renewable

energy, in particular wind and solar, is likely to increase the need for demand response. Nu-

merous studies have shown that a high penetration of electric vehicles, which are not charged

in a coordinated fashion, increases the peak load (Habib et al., 2015). Since a higher peak

loads are likely to lead to a lower system reliability, electric vehicle deployment may indeed

increase the need for demand response. Should vehicle-to-grid be competitive with other

demand-response technologies, this need could at least partially be covered by the electric

vehicles themselves. To assess the competitiveness of vehicle-to-grid, Mwasliu et al. (2014) call

for “more research and analysis [. . . ] to justify the adoption of the [vehicle-to-grid] framework

over other energy storage systems.” At the moment, however, the economic prospects of “other

energy storage systems”, such as stationary batteries and hydrogen storage, are still under

investigation themselves (Malhotra et al., 2016; Victoria et al., 2019). In Chapter 3, we address

this gap by investigating the economics of providing frequency regulation with various storage

technologies. In particular, we quantify the marginal costs stemming from charging and

discharging losses.

In addition to battery degradation and operating costs, the costs of vehicle-to-grid consist of

investments in bidirectional charging infrastructure and of transaction costs for aggregating

electric vehicles. Although Gough et al. (2017) expect the costs of charging stations to follow a

similar decline as the costs of photovoltaic systems have followed in the past, the exact nature

of the costs for charging stations is not clear yet, which leads to additional uncertainty about

the profitability of vehicle-to-grid. In their seminal paper, Kempton and Tomić (2005a) explain

that vehicle-to-grid requires wiring upgrades from 6.6kW to between 10kW and 15kW in

residential dwellings to be most profitable. A higher line capacity, so their reasoning, provides

more options for individual vehicles to participate in power markets. It also increases the
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overall system cost and reduces the overall charging time. After reviewing the literature, it is not

clear to us whether vehicle owners will connect their cars to chargers for shorter periods of time

if they can charge them faster and what the consequences for vehicle aggregators might be. If

vehicle owners do connect their cars for shorter periods of time, we expect that aggregators

have to pool more vehicles to offer the same amount of grid services, which increases their

transaction costs. For the example of electric loads, Nursimulu (2016) shows that transaction

costs have a significant impact on the economic viability of demand response. The same

may be true for electric vehicles, although we have not found any detailed study of vehicle-to-

grid transaction costs in the literature. Aggregators incur such costs when recruiting electric

vehicles for participation in vehicle-to-grid. The costs depend on the minimum amount of

power aggregators need to be able to offer to participate in electricity markets, on the minimum

duration over which they must be able to provide power, and on the reliability with which

power should be delivered. All three points are subject to regulations governing electricity

grid operators which are set, for example, by the European Commission (2017). Transaction

costs for vehicle-to-grid may be higher than for other demand response technologies. In fact,

electric vehicle owners might be more difficult to convince than, e.g., heat pumps owners

to enlist in demand response because a potential loss of car availability and battery lifetime

might be considered a higher burden than a mere drop in room temperature.

Based on the above, three necessary conditions for vehicle-to-grid deployment can be iden-

tified: (i) electric vehicle penetration needs to be sufficiently high for aggregators to be able

to pool hundreds to thousands of electric vehicles, (ii) there must be a need for electricity

storage, and (iii) the cost of vehicle-to-grid must be low enough to compete with other storage

technologies. We discuss these three conditions below.

The International Energy Agency (2021) reports that the global passenger electric vehicle stock,

including plug-in hybrid electric vehicles, has grown rapidly during the last decade, from about

20,000 vehicles in the year 2010 to over 10 million vehicles in the year 2020 (see Figure 1.2).

Nevertheless, the share of electric vehicles in the global passenger vehicle fleet is, at about 1%,

still small. In addition, according to Eurostat (2021) half of the passenger electric vehicle fleet

in the European Union in the year 2019 consisted of plug-in hybrid electric vehicles, which

usually have smaller batteries than full battery electric vehicles. We will see in Chapters 2 and 3

at the example of frequency regulation that small batteries sizes significantly limit the amount

of grid services that electric vehicles can provide. Full battery electric vehicles therefore seem

most promising for vehicle-to-grid applications. The European Network of Transmission

System Operators for Gas and Electricity (2021) estimates that such vehicles will account

for between 10% and 20% of the European passenger vehicle fleet by the year 2030 and for

between 70% and 90% by the year 2050. Norway has already reached a penetration of 12% by

the end of the year 2020 (Statistics Norway, 2021). The European Network of Transmission

System Operators for Gas and Electricity (2021) also estimates that Europe will need between

75GW and 100GW of installed battery power by the year 2040 to balance electricity supply

and demand. All this power could in theory be provided by 10 million electric vehicles, which

corresponds to 4% of the about 250 million passenger vehicles currently registered in the
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Figure 1.2: Global passenger electric vehicle stock including plug-in hybrid electric vehicles.

European Union. In practice, not all vehicle owners will want to participate in vehicle-to-

grid, and not all of those who will participate, will be connected to a bidirectional charging

station at the same time. Nevertheless, these figures show that the electric vehicle fleet will be

sufficiently large for aggregators to be able to pool enough vehicles to offer grid services, even

in the near future.

Since the European Network of Transmission System Operators for Gas and Electricity (2021)

foresees that electricity storage will be needed to balance electricity supply and demand,

one may suspect that the prices for balancing power will rise in the future. Higher prices for

primary frequency regulation, one specific form of balancing power, would be of particular

interest for vehicle-to-grid operators. In fact, primary frequency regulation is often considered

as one of the most profitable services that vehicle-to-grid could provide because it is thought

to cause very little battery degradation (Kempton and Tomić, 2005a; Noel et al., 2019). From

the year 2017 to the year 2020, however, the prices for primary frequency regulation have

declined in both France and Germany, two major European electricity markets. In Germany, in

particular, they declined by more than 50%, whereas the decline in France was less pronounced

(see Figure 2.A.1). The German Federal Network Agency and the German Federal Cartel

Office suspect that the decline is due to increased increased competition on the primary

frequency regulation market (Bundesnetzagentur and Bundeskartellamt, 2021, p. 204). In fact,

since 19 June 2019 the electricity grid operators of Austria, Belgium, the Netherlands, France,

Germany, Slovenia, Switzerland, and West Denmark procure frequency regulation power in a

common market. In summary, it seems likely that there will be a need, which may include

frequency regulation, for electricity storage in the future. At the moment, however, the need

for additional storage seems limited, at least as far as frequency regulation is concerned.

Concerning the competitiveness of vehicle-to-grid with other storage technologies, Beer et al.

(2012) showed that removing batteries from electric vehicles “at an early stage of their lifecycle

creates considerable economic value”. In their case, the removed batteries were to be used

for stationary storage in a commercial microgrid in California. More recently, Thorne et al.

(2021) estimate that in Norway alone there will be end-of-life batteries with a capacity of about

0.6GWh and 2.1GWh available for second-life applications and recycling in the years 2025

and 2030, respectively. We therefore raise the question whether second-life batteries will

15



A Review of the State-of-Research on Vehicle-to-Grid:
Progress and Barriers to Deployment

directly compete with vehicle-to-grid. In fact, depending on how much vehicle-to-grid de-

ployment lags electric vehicle deployment, there may be an abundance of second-life electric

vehicle batteries for stationary storage, before vehicle-to-grid has the chance to establish

itself as a technology. The number of second-life batteries will depend on the fraction of

batteries that is recycled into new electric vehicles batteries and the fraction that is reused in

stationary applications. The European Parliament currently debates regulations that mandate

a minimum recycled content in new batteries (Halleux, 2021). Such a mandate may decrease

the competition from second-life batteries. This competition will also depend on the respec-

tive costs of vehicle-to-grid and second-life batteries when they will be mature technologies,

for which no robust data is available yet. Although important, the question regarding the

competitiveness of these two technologies remains open.

Finally, we are concerned about market gaming. In reaction to Enron’s gaming of the California

electricity market in the years 2000 and 2001, which caused blackouts affecting several hundred

thousand customers, the then-Chairman of the California Power Authority S. David Freeman

testified to the United States Senate (2002): “There is one fundamental lesson we must learn

from this experience: electricity is really different from everything else. It cannot be stored, it

cannot be seen, and we cannot do without it, which makes opportunities to take advantage

of a deregulated market endless. It is a public good that must be protected from private abuse.

If Murphy’s Law were written for a market approach to electricity, then the law would state

‘any system that can be gamed, will be gamed, and at the worst possible time.’ And a market

approach for electricity is inherently gameable. Never again can we allow private interests to

create artificial or even real shortages and to be in control.” For vehicle-to-grid, the question at

hand is whether aggregators could make profits by intentionally stressing electricity grids and

then offering help to relieve the very same stress?

1.4 Conclusion

Based on a meta-review of 17 review articles, we find that the technical feasibility of vehicle-

to-grid has already been demonstrated in the year 2002 for individual vehicles with first

aggregation functions. The main technological challenges that remain today are battery

degradation, smart (dis-)charging, and reliable aggregation of electric vehicles offering grid

services.

The economic merits of vehicle-to-grid are uncertain and the revenues that can be generated

often not high enough to justify deployment under prevailing electricity market conditions.

This may change in the future with the deployment of electric vehicles and intermittent

energy sources creating a larger need for demand response. The question at hand is whether

the potentially low investment costs of vehicle-to-grid can more than compensate for the

uncertain and potentially high aggregation and operating costs when competing with other

storage technologies. Specifically, how will vehicle-to-grid compete with second-life electric

vehicle batteries that may be used for stationary storage?
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Conclusion

The fundamental motivation behind vehicle-to-grid is to take advantage of the underutiliza-

tion of passenger vehicles. However, autonomous vehicles and car sharing schemes may

increase the utilization of passenger vehicles significantly. To judge the prospects of vehicle-

to-grid, it thus seems important to reflect on the evolution of both the absolute number and

the utilization of electric vehicles. Beyond judging the economic viability of vehicle-to-grid,

these reflections should inform the planning of the infrastructure required for vehicle-to-grid.

Finally, the options for vehicle-to-grid aggregators to “game” electricity markets should be

investigated.

Considering the uncertainty surrounding the economic viability of vehicle-to-grid and the

limited need for demand response, it is not surprising that the technology is still at the pilot

stage. First applications are military bases, where vehicle-to-grid is used to ensure a reliable

supply of electricity during black-outs, with limited consideration for the economic viability

of everyday operations. Furthermore, aggregation is easier, because all vehicles are owned

and operated by the same entity. In fact, after military bases, commercial fleets might be a

good starting point for civilian vehicle-to-grid deployment.

Despite the challenges on the long road to deployment, vehicle-to-grid is a dream worth

pursuing. If it becomes real, then “we could have more green power, fewer polluting backup

power plants, and no robocalls asking us to switch off the AC on the summer’s hottest days”

(Bakke, 2016, p. 244).
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2 Reliable Frequency Regulation
through Vehicle-to-Grid: Encoding
Legislation with Robust Constraints

The grid, then, is built as much from law as from steel, it runs as much on investment

strategies as on coal, it produces profits as much as free electrons.

— Gretchen A. Bakke, The Grid, 2016.

Vehicle-to-grid increases the low utilization rate of privately owned electric vehicles by making

their batteries available to electricity grids. We formulate a robust optimization problem that

maximizes a vehicle owner’s expected profit from selling primary frequency regulation to the

grid and guarantees that market commitments are met at all times for all frequency deviation

trajectories in a functional uncertainty set that encodes applicable legislation. Faithfully

modeling the energy conversion losses during battery charging and discharging renders

this optimization problem non-convex. By exploiting a total unimodularity property of the

uncertainty set and an exact linear decision rule reformulation, we prove that this non-convex

robust optimization problem with functional uncertainties is equivalent to a tractable linear

program. Through extensive numerical experiments using real-world data, we quantify the

economic value of vehicle-to-grid and elucidate the financial incentives of vehicle owners,

aggregators, equipment manufacturers, and regulators. We find that the prevailing penalties

for non-delivery of promised regulation power are too low to incentivize vehicle owners to

honor their promises toward grid operators.

2.1 Introduction

Replacing internal combustion engine vehicles with electric vehicles reduces urban air pollu-

tion and mitigates climate change if electricity is generated from renewable sources (Sperling,

1994). In general, privately owned vehicles are a vastly underutilized resource. Vehicle usage

data collected by the US Federal Highway Administration (2017) shows that on an average

day over 90% of all privately owned vehicles are parked at any one time—even during peak
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rush hour. Since electricity grids require storage capacity to integrate increasing amounts of

intermittent wind and solar power, electric vehicle owners could capitalize on their batteries by

offering storage to the electricity grid when their vehicles are parked. Kempton and Letendre

(1997) term this idea vehicle-to-grid.

Réseau de transport d’électricité (RTE), Europe’s largest transmission system operator, expects

to need an additional flexible generation and electricity storage capacity of 10GW to 20GW by

2035. This corresponds to 7.5% to 15% of the total French electricity generation capacity in

2017 (RTE 2017b; 2017c). If electric vehicles were to provide some of this flexibility, then the

vehicles and the electricity grid could share the costs of electric vehicle batteries. Kempton

and Tomić (2005a) and Noel et al. (2019) have identified primary frequency regulationI as one

of the most profitable flexibility services for vehicle-to-grid. Electric vehicles that provide this

service must maintain a continuous power flow to the vehicle battery that is proportional to

the deviation of the instantaneous grid frequency from its nominal value (e.g., 50Hz in Europe).

As primary frequency regulation is the first flexibility service used to stabilize the electricity

network after disturbances (Rebours et al., 2007), its provision must be highly reliable. However,

RTE questions the reliability of vehicle-to-grid (RTE 2017b). The European Commission (2017)

has recently addressed this concern by defining a minimum level of reliability that electric

vehicles and other providers of frequency regulation must guarantee. Specifically, it demands

that providers must be able to deliver regulation power for all frequency deviation trajectories

with certain characteristics.

Adopting the perspective of a vehicle owner, we formulate an optimization model for de-

termining the bidding strategy on the regulation market that maximizes the expected profit

from selling primary frequency regulation to the transmission system operator under the

reliability constraints imposed by the European Commission. These constraints must hold

robustly for all frequency deviation trajectories in an uncertainty set consistent with applicable

legislation. As these trajectories constitute continuous-time functions, we are confronted

with a robust optimization problem with functional uncertainties. Moreover, the impossibil-

ity of simultaneously charging and discharging the battery—which amounts to dissipating

energy through conversion losses and could be profitable when the battery is full and there

is a reward for down-regulation (see, e.g., (Taylor, 2015, p. 84))—renders the optimization

problem non-convex. The main theoretical contribution of this paper is to show that the

resulting non-convex robust optimization problem with functional uncertainties is equivalent

to a tractable linear program. Specifically, this paper makes the following methodological

contributions to robust optimization (see Ben-Tal et al. (2009) for a textbook introduction).

• We introduce new uncertainty sets in function spaces that capture those frequency

deviation trajectories for which regulation providers must be able to deliver all promised

regulation power. These uncertainty sets are reminiscent of the budget uncertainty sets

by Bertsimas and Sim (2004) in finite-dimensional spaces, and their construction is

IPrimary frequency regulation is also known as primary frequency control and as frequency containment
reserves.
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inspired by EU legislation.

• By leveraging a total unimodularity property of the proposed uncertainty sets and

an exact linear decision rule reformulation, we prove that the worst-case frequency

deviation scenarios in all (convex or non-convex) robust constraints of the vehicle

owner’s optimization problem can be found by solving continuous linear programs,

which can be viewed as variants of the so-called separated continuous linear programs

introduced by Anderson et al. (1983).

• By demonstrating that all these continuous linear programs are solved by piecewise

constant frequency deviation trajectories, we show that the vehicle owner’s robust

optimization problem in continuous time is equivalent to a robust optimization problem

in discrete time. In doing so, we use more direct proof techniques than Pullan (1995),

who derived sufficient conditions under which the solutions of separated continuous

linear programs are piecewise constant.

• The robust optimization problem obtained by time discretization is still non-convex.

Using the structural properties of its (discretized) uncertainty sets and of its objective

and constraint functions, however, we can prove that it is equivalent to a linear ro-

bust optimization problem that can be reformulated as a tractable linear program via

standard techniques.

To our best knowledge, robust optimization models with uncertainty sets embedded in func-

tion spaces have so far only been considered in the context of robust control, where the

primary goal is to develop algorithms for evaluating conservative approximations (Houska,

2011), and in the context of robust continuous linear programming, where the primary goal

is to reduce robust to non-robust continuous linear programs, which can be addressed with

existing algorithms (Ghate, 2020). In contrast, we study here a non-convex robust optimization

problem with functional uncertainties that admits a lossless time discretization and can be

reformulated exactly as a tractable linear program. Remarkably, the state-of-the-art methods

for solving the deterministic counterparts of this robust optimization problem are based on

methods from mixed-integer linear programming. To our best knowledge, we thus describe

the first class of practically relevant mixed-integer linear programs that simplify to standard

linear programs through robustification.

As the emerging linear programs are amenable to efficient numerical solution, we are able to

perform extensive numerical experiments based on real-world data pertaining to the French

electricity system. We define the value of vehicle-to-grid as the profit from selling primary

frequency regulation relative to a baseline scenario in which the vehicle owner does not offer

grid services. As our optimization model faithfully captures effective legislation, it enables us

to quantify the true value of vehicle-to-grid. This capability is relevant for understanding the

economic incentives of different stakeholders such as vehicle owners, aggregators, equipment

manufacturers, and regulators. The model developed in this paper enables us to assess how

the value of vehicle-to-grid depends on the penalties for non-delivery of promised regulation
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power, the size of the uncertainty set, and the vehicle’s battery, charger, and mileage. We

thus contribute to the growing literature on the impact of contract parameters on electricity

storage (Broneske and Wozabal, 2017; Sunar and Birge, 2019). The main insights drawn from

our computational experiments can be summarized as follows.

• Based on 2016–2019 data, we show that the value of vehicle-to-grid attainable with a

bidding strategy that is guaranteed to satisfy all reliability requirements is around 100e

per year and vehicle. Earlier studies based on anticipative bidding strategies that may

violate the legal requirements in practice have estimated this value to be four times

higher (Codani et al., 2015; Borne, 2019).

• We find a similar value of vehicle-to-grid as Codani et al. (2015) and Borne (2019) if the

vehicle owner risks financial penalties for ignoring the legal reliability requirements.

This suggests that current penalties are too low to incentivize vehicle owners to respect

the law.

• We show that the value of vehicle-to-grid saturates at daily plug times above 15 hours.

Thus, maximal profits from frequency regulation can be reaped even if the vehicle is

disconnected from the grid up to 9 hours per day. This means that vehicle owners still

enjoy considerable flexibility as to when to drive, which could help to promote the

adoption of vehicle-to-grid.

Beyond vehicle-to-grid, this paper contributes to the literature on the optimal usage of energy

storage assets. The value of a storage asset is usually identified with the profit that can be

generated through arbitrage by trading the stored commodity on spot or forward markets.

If trading is restricted to the spot market and prices are Markovian, it is known that the as-

set’s value is maximized by a basestock policy (Secomandi, 2010). If the commodity is also

traded on forward markets, then the high dimensional models of forward curve evolution lead

to intractable Markov decision processes that can be addressed with approximate dynamic

programming methods (Nadarajah et al., 2015). For systems of interconnected storage assets

with large capacities such as hydroelectric reservoirs, medium-term planning over several

months or years is necessary. The resulting optimization problems are traditionally addressed

with stochastic dynamic programming (Yeh, 1985) or stochastic dual dynamic programming

(Pereira and Pinto, 1991). Alternatively, Pritchard et al. (2005) use a two-layer dynamic pro-

gramming method to optimize the participation of a hydroelectric reservoir in a spot market,

where the inner layer maximizes the expected revenues over a stage, which comprises several

trading intervals, for a fixed mean and variance of water release over the stage, while the outer

layer optimizes the mean and variance of water release over the stages. More recently, Löhn-

dorf et al. (2013) combine ideas from stochastic dual dynamic programming and approximate

dynamic programming for optimizing the forward trading decisions of hydro storage systems.

Unlike traditional centralized storage assets, decentralized storage assets such as electric

vehicles are usually connected to distribution rather than transmission grids. This means that
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they face retail and not wholesale electricity prices. While wholesale prices are determined

by market mechanisms and thus stochastic, retail prices are often regulated and thus deter-

ministic. Another major difference is that it may take several days to fully charge or discharge

centralized storage assets such as hydropower plants, whereas the batteries of electric vehicles

can be fully charged and discharged in just a few hours. A daily planning horizon is there-

fore sufficient for optimizing their usage. In addition, typical vehicle owners can anticipate

their driving needs at most one day in advance. One can thus solve the storage management

problem in a receding horizon fashion.

The state-of-charge of a vehicle battery depends non-linearly on the power in- and outflows,

which leads to non-convex optimization models. If the battery is merely used for arbitrage

and market prices are non-negative, then these optimization models admit exact convex

relaxations. Conversely, if the battery is used for frequency regulation or if market prices can

fall below zero, then a non-convex constraint is needed to prevent the models from dissipating

energy by simultaneously charging and discharging the battery (Zhou et al., 2016). If energy

conversion losses are negligible and the battery state-of-charge is thus linear in the power flows,

then one can model the provision of frequency regulation through adjustable uncertainty

sets. Such an approach has been proposed by Zhang et al. (2017) for frequency regulation

with building appliances. A stochastic dynamic programming scheme for optimizing the

charging and discharging policy of an electric vehicle with linear battery dynamics is proposed

by Donadee and Ilić (2014). If energy conversion losses are significant, however, one may

still approximate the state-of-charge by a linear decision rule of the uncertain frequency

deviations (Warrington et al., 2013). Sortomme and El-Sharkawi (2012) study a similar model

under the assumption of perfect foresight.

In practice, several hundreds or thousands of electric vehicles must be aggregated to be able

to bid enough reserve power to qualify for participation in the frequency regulation market.

Guille and Gross (2009), Han et al. (2010), Wenzel et al. (2018) and Zhang et al. (2021) develop

frameworks for controlling the batteries of aggregated vehicles, while the design of contracts

between aggregators and vehicle owners is examined by Han et al. (2011) and Broneske and

Wozabal (2017). The policy implications for the market entry of electric vehicle aggregators

are investigated by Borne et al. (2018). Yet the study of vehicle-to-grid schemes for individual

vehicles remains relevant because they constitute important building blocks for aggregation

schemes and because they still pose many challenges—especially when it comes to faithfully

modeling all major sources of uncertainty.

The model developed in this paper is most closely related to the discrete-time robust optimiza-

tion models by Yao et al. (2017) and Namor et al. (2019), which capture the uncertainty of the

frequency deviations through simplicial uncertainty sets that cover all empirical frequency de-

viation scenarios. However, these uncertainty sets may fail to include unseen future frequency

deviation scenarios and are inconsistent with applicable EU legislation. While Yao et al. (2017)

disregard energy conversion losses, Namor et al. (2019) account for them heuristically and test

the resulting charging and discharging policies experimentally on a real battery. Heuristics
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are also common in pilot projects that demonstrate the use of vehicle-to-grid for frequency

regulation (Vandael et al., 2013, 2020).

The model proposed in this paper relies on three simplifying assumptions that we justify

below.

Our first key assumption is that the provision of frequency regulation has no negative impact

on battery lifetime—even though the fear of battery degradation has been identified as a major

obstacle to the widespread adoption of vehicle-to-grid (Lauinger et al., 2017). To justify this

assumption, we point out that the impact of vehicle-to-grid on battery longevity is not yet well

understood. In fact, Dubarry et al. (2017) claim that such degradation is severe, while Uddin

et al. (2017) claim that vehicle-to-grid may actually extend battery lifetime. In (Uddin et al.,

2018), the authors of these two studies reconcile their contradictory findings by concluding

that the impact of vehicle-to-grid depends on the operating conditions of the battery, such as

its temperature and variations in its state-of-charge. We further justify our no-degradation

assumption by restricting the battery state-of-charge to lie within 20% and 80% of the nominal

battery capacity. Thompson (2018) suggests these restrictions as a rule of thumb for extending

the lifetime of common lithium-ion batteries, and Sweda et al. (2017) adopt similar rules to

optimize recharging policies of electric vehicles. Models that account for battery degradation

are studied by He et al. (2016) and Carpentier et al. (2019).

Our second key assumption is that vehicle owners can specify time and energy windows for

their driving needs one day in advance. This assumption makes sense for commuters who

adhere to predictable daily routines, for example.

The third key assumption is that the vehicle owners are price takers who influence neither

the market prices nor the grid frequency. This assumption is reasonable because one vehicle

may cover at most several kilowatts of the 700 megawatts required for frequency regulation in

France. A model of a regulation provider influencing the grid frequency is described by Mercier

et al. (2009).

The paper proceeds as follows. Section 2.2 formulates the vehicle owner’s decision problem

for a single day as a non-convex robust program with functional uncertainties. In Sections 2.3

and 2.4 we show that this problem can be reformulated equivalently as a non-convex robust

program with vectorial uncertainties and even as a tractable linear program, respectively.

Section 2.5 formulates a decision problem that looks several days into the future and shows that

the resulting multistage model is still equivalent to a linear program. Numerical experiments

are discussed in Section 2.6, and policy insights are distilled in Section 2.7. All proofs are

relegated to Appendix 2.C.

Notation. All random variables are designated by tilde signs. Their realizations are denoted

by the same symbols without tildes. Vectors and matrices are denoted by lowercase and

uppercase boldface letters, respectively. For any z ∈R, we define [z]+ = max{z,0} and [z]− =
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max{−z,0} such that z = [z]+−[z]−. The intersection of a set A ⊆Rd withRd+ is denoted by A +.

For any closed intervals T ,U ⊆R, we define L (T ,U ) as the space of all Riemann integrable

functions f : T → U , and we denote the intersection of a set B ⊆ L (T ,R) with L (T ,R+)

as B+.

2.2 Problem Description

Consider an electric vehicle whose state at any time t is characterized by the amount of

energy y(t) stored in its battery and the instantaneous power consumption for driving d(t).

We require that y(t) is never smaller than
¯
y and never larger than ȳ . To mitigate battery

degradation, we set these limits to 20% and 80% of the nominal battery capacity, respectively.

The battery interacts with the power grid through a bidirectional charger with charging effi-

ciency η+ ∈ (0,1] and discharging efficiency η− ∈ (0,1], where an efficiency of 1 corresponds

to a lossless energy conversion between the grid and the battery. The charger is further char-

acterized by its maximum power consumption ȳ+(t ) from the grid and its maximum power

provision to the grid ȳ−(t ). The power the battery can charge or discharge is therefore limited

by η+ ȳ+(t) and 1
η− ȳ−(t), respectively. Note that ȳ+(t) and ȳ−(t) depend on the charger to

which the vehicle is connected at time t . When the vehicle is not connected to any charger,

e.g., when it is driving, then both ȳ+(t) and ȳ−(t) must vanish. A stationary battery can be

modeled by setting d(t ) = 0 and keeping ȳ+(t ) and ȳ−(t ) constant for all t .

In order to charge the battery at time t , the vehicle owner may buy power xb(t ) from the local

utility at a known time-varying price pb(t ) as is the case under dynamic pricing schemes or

day/night tariffs. In addition, she may also use the vehicle battery to earn extra revenue by

providing primary frequency regulation, which can be viewed as an insurance bought by the

transmission system operator (TSO) to balance unforeseen mismatches of electricity demand

and supply in real time (Glover et al., 2010). If there is more supply than demand, the frequency

of the power grid rises. Conversely, if there is more demand than supply, the frequency falls.

A battery owner offering regulation power xr (t) at time t is obliged to change her nominal

power consumption xb(t) from the grid by δ(t)xr (t), where δ(t) quantifies the normalized

deviation of the instantaneous grid frequency f (t ) from its nominal value f0 (Gestionnaire du

Réseau de Transport d’Electricité, 2009). Formally, we have

δ(t ) =


+1 if f (t ) > f0 +∆ f ,
f (t )− f0

∆ f if f0 −∆ f ≤ f (t ) ≤ f0 +∆ f ,

−1 if f (t ) < f0 −∆ f ,

where ∆ f > 0 is a threshold beyond which all promised regulation power must be delivered.

The TSO contracts frequency regulation as an insurance over a prescribed planning horizon

of length T , e.g., one day. The planning horizon is subdivided into trading intervals Tk =
[(k −1)∆t ,k∆t) for all k ∈K = {1, . . . ,K }, where K = T

∆t ∈N. In the French electricity market,

for example, the length ∆t of a trading interval is 30 minutes. The TSO requests the vehicle
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owner to announce the market decisions xb(t ) and xr (t ) before the beginning of the planning

horizon, e.g., one day ahead at noon (Réseau de transport d’électricité, 2017a). These decisions

need to be piecewise constant over the trading intervals. The TSO compensates the vehicle

owner for the frequency regulation xr (t) made available at the availability price pa(t) and

charges her for the increase δ(t)xr (t) in her power consumption at the delivery price pd (t).

Note that this charge becomes negative (i.e., it becomes a remuneration) if δ(t ) is negative. In

summary, the vehicle owner’s total cost over the planning horizon T = [0,T ] amounts to∫ T

0
pb(t )xb(t )−

(
pa(t )−δ(t )pd (t )

)
xr (t )dt .

The impact of providing frequency regulation on the battery state-of-charge depends on how

the vehicle owner adjusts the power consumed from and the power injected into the grid to

achieve the desired net power consumption xb(t )+δ(t )xr (t ). The most energy-efficient way

is to avoid unnecessary energy conversion losses resulting from simultaneously charging and

discharging. Sometimes, however, such losses can be attractive, for example if the battery

is almost full and receives a request for down-regulation (δ(t) > 0). Zhou et al. (2016) show

that energy losses can also be attractive when electricity prices are negative. Since common

chargers are not able to simultaneously charge and discharge, we forbid this option and set

the charging rate to

y+
(
xb(t ), xr (t ),δ(t )

)
=

[
xb(t )+δ(t )xr (t )

]+
(2.1a)

and the discharging rate to

y−
(
xb(t ), xr (t ),δ(t )

)
=

[
xb(t )+δ(t )xr (t )

]−
. (2.1b)

Remark 2.1. When operating a vehicle fleet, some vehicles could charge while others dis-

charge, which suggests that the regulation profits achievable with n vehicles may exceed the

regulation profit of a single vehicle multiplied by n. In this paper, we focus on the case n = 1.□

The power exchanged with the grid and the power needed for driving determine the battery

state-of-charge at any time t via the integral equation

y
(
xb , xr ,δ, y0, t

)
= y0+

∫ t

0
η+y+

(
xb(t ′), xr (t ′),δ(t ′)

)
− y− (

xb(t ′), xr (t ′),δ(t ′)
)

η−
−d(t ′)dt ′, (2.2)

where y0 represents the state-of-charge at time 0. For later use, we establish here some basic

properties of the battery state-of-charge.

Proposition 2.1. Holding all other factors fixed, the battery state-of-charge y(xb , xr ,δ, y0, t ) is

concave nondecreasing in xb , concave in xr , concave nondecreasing in δ, and affine nonde-

creasing in y0.

At the time when the vehicle owner needs to choose and report the market commitments
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xb(t) and xr (t), she has no knowledge of the uncertain future frequency deviations δ(t)

and the delivery prices pd (t) at time t ∈ T . In addition, she has no means to predict the

battery state-of-charge y0 at the beginning of the planning horizon, which depends on market

commitments chosen on the previous day and on the uncertain frequency deviations to be

revealed until time 0. By contrast, the availability prices pa(t ) for t ∈T can be assumed to be

known at the planning time. In practice, these prices are determined by an auction. As the

vehicle owner bids an offer curve expressing xr (t) as a function of pa(t) for any t ∈ T , it is

as if the availability prices were known upfront.II Next, we describe the information that is

available about the uncertain problem parameters δ, pd , and y0.

We first discuss the uncertainty in the frequency deviations, which limits the amount of reserve

power that can be sold on the market. Indeed, the vehicle owner must ensure that the battery

state-of-charge will never drop below
¯
y or exceed ȳ when the TSO requests down-regulation

(δ(t ) < 0) or up-regulation (δ(t ) > 0), respectively, for a prescribed set of conceivable frequency

deviation scenarios. Otherwise, the vehicle owner may not be able to honor her market

commitments, in which case the TSO may charge a penalty or even ban her from the market.

The TSO defines under what conditions regulation providers must be able to deliver the

promised regulation power, keeping in mind that extreme frequency deviations are uncom-

mon. Indeed, between 2015 and 2018 the frequency deviation δ(t) has never attained its

theoretical maximum of 1 or its theoretical minimum of −1 in the French market.III In the

following, we thus assume that the vehicle owner needs to guarantee the delivery of regulation

power only for frequency deviation scenarios within the uncertainty set

D =
{
δ ∈L (T , [−1,1]) :

∫ t

[t−Γ]+

∣∣δ(t ′)
∣∣ dt ′ ≤ γ ∀t ∈T

}
parametrized by the duration Γ ∈ R+ of a regulation cycle and the duration γ ∈ R+ of an

activation period. Throughout this paper, we assume that 0 < γ≤ Γ≤ T . By focusing on fre-

quency deviation scenarios in D, one stipulates that consecutive extreme frequency deviations

δ(t ) ∈ {−1,1} can occur at most over one activation period within each regulation cycle. The

activation ratio γ/Γ can thus be interpreted as the percentage of time during which the vehicle

owner must be able to deliver all committed reserve power.

Remark 2.2. Note that the uncertainty set D grows with γ and shrinks with Γ. □

Besides displaying favorable computational properties, the uncertainty set D has conceptual

appeal because it formalizes the delivery guarantee rules prescribed by the European Com-

mission (2017). These rules stipulate that the “minimum activation period to be ensured by

[frequency regulation] providers [is not to be] greater than 30 or smaller than 15 minutes.” This

guideline prompts us to set γ= 30 minutes. The EU further demands that regulation providers

“shall ensure the recovery of [their] energy reservoirs as soon as possible, within 2 hours after the

IIThe bidding process is described at https://www.entsoe.eu/network_codes/eb/fcr/.
IIIThe French TSO publicizes frequency measurements at http://clients.rte-france.com/.

27

https://www.entsoe.eu/network_codes/eb/fcr/
http://clients.rte-france.com/


Reliable Frequency Regulation through Vehicle-to-Grid:
Encoding Legislation with Robust Constraints

0.0 0.1 0.2 0.3 0.4 0.5
Daily standard deviation of δ

0.00

0.25

0.50

0.75

1.00

P
ro

b
ab

ili
ty

Empirical cdf Max in D̂ Empirical max Max in D

Figure 2.1: Empirical cumulative distribution function (cdf) of the daily standard deviation
of δ and the maximum standard deviation of any scenario in D̂ or in D.

end of the alert state.” This means that, although there may be several activation periods of

30 minutes within any 2.5 hour interval, the regulation provider only has to cover one of them.

Thus, we set Γ= 2.5 hours.

In the following, we compare the empirical distribution of the daily variance of δ between the

years 2017 and 2019 with the maximum variance that can be achieved by any hypothetical

frequency deviation scenario δ ∈ D for a planning horizon of one day. By slight abuse of

notation, we define the variance of a frequency deviation scenario δ with respect to zero as

Var(δ) = 1
T

∫ T
0 δ(t )2 dt . This is justified because the TSO protects the system against unforeseen

demand and supply fluctuations, which means that the frequency deviations should be

unbiased and thus vanish on average. Indeed, the empirical frequency deviations have an

average of 5.98 ·10−4.

Proposition 2.2. If δ ∈D, then Var(δ) ≤ ⌈T /Γ⌉γ/T .

Figure 2.1 shows that if T = 1 day, γ = 30 minutes, and Γ = 2.5 hours, then the maximum

standard deviation of any δ ∈ D exceeds the maximum empirical standard deviation by a

factor of 2.5. Thus, D contains extreme frequency deviation scenarios with unrealistically high

variance.

The optimization model developed below not only involves the conservative uncertainty set

D compatible with the guidelines of the European Commission but also a smaller uncertainty

set

D̂ =
{
δ ∈L (T , [−1,1]) :

∫ t

[t−Γ̂]+

∣∣δ(t ′)
∣∣ dt ′ ≤ γ̂ ∀t ∈T

}
parametrized by Γ̂ ≥ Γ and γ̂ ≤ γ. This uncertainty set contains only frequency deviation

scenarios that are likely to materialize under normal operating conditions. Note that D̂ is

obtained from D by inflating Γ to Γ̂ and shrinking γ to γ̂. By Remark 2.2, we may thus conclude

that D̂ is indeed a subset of D. While the pessimistic uncertainty set D is used to enforce the

stringent delivery guarantees imposed by the European Commission, the more optimistic

uncertainty set D̂ is used to model a softer reachability guarantee for the terminal state-of-
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charge. In the numerical experiments we will set Γ̂= T = 1 day and γ̂= γ= 30 minutes. By

Proposition 2.2, the variance of all frequency deviation scenarios in D̂ is therefore bounded

above by ∆t/T = 1/48. Empirically, this threshold exceeds the variance of the frequency

deviation on 99.2% of all days in the years from 2017 to 2018.

Next, we discuss the uncertainty in the initial battery state-of-charge y0. Recall that y0 is

uncertain at the time when xb and xr are chosen because it depends on how much regulation

energy must be provided until the beginning of the planning horizon. This quantity depends

itself on uncertain frequency deviations that have not yet been revealed. We assume that the

vehicle owner constructs two confidence intervals Y0 = [
¯
y0, ȳ0] and Ŷ0 = [

¯
ŷ0, ˆ̄y0] for y0, either

taking into account all frequency deviations under which she must imperatively be able to

deliver regulation power or only those frequency deviations that are likely to occur under

normal operating conditions.

The only assumption we make about the uncertainty in the delivery price pd is that the vehicle

owner can reliably estimate the expected regulation price pr (t ) = pa(t )+E[δ̃(t )p̃d (t )].

We are now ready to formalize the vehicle owner’s decision problem for selecting the market

decisions xb and xr . The primary objective is to minimize the expected cost

c(xb , xr ) = E
∫
T

pb(t )xb(t )−
(
pa(t )+ δ̃(t )p̃d (t )

)
xr (t )dt ′ =

∫
T

pb(t )xb(t )−pr (t )xr (t )dt ,

(2.3)

while ensuring that xb and xr are robustly feasible across all frequency deviation scenarios

δ ∈D and initial battery states y0 ∈Y0. Mathematically, the charging rate y+(xb(t ), xr (t ),δ(t )),

the discharging rate y−(xb(t ), xr (t ),δ(t )), and the battery state-of-charge y(xb , xr ,δ, t , y0) must

therefore satisfy the robust constraints

y+(xb(t ), xr (t ),δ(t )) ≤ ȳ+(t ), y(xb , xr ,δ, y0, t ) ≤ ȳ,

y−(xb(t ), xr (t ),δ(t )) ≤ ȳ−(t ), y(xb , xr ,δ, y0, t ) ≥
¯
y

∀t ∈T , ∀δ ∈D, ∀y0 ∈Y0.

As the vehicle owner continues to use the vehicle for driving and for offering grid services

after the end of the planning horizon, the battery should end up in a state that is “conducive

to satisfactory future operations” (Yeh, 1985). Consequently, the vehicle owner aims to steer

y(xb , xr ,δ, y0,T ) to a desirable state-of-charge y . We assume that the cost-to-go of any y ∈
[
¯
y, ȳ] is quantified by a convex and piecewise affine value function ϕ(y) = maxn∈N {an y +bn}

determined by an ,bn ∈ R for all n ∈ N = {1, . . . , N }. In Section 2.5, we will present a princi-

pled approach to calibrate these coefficients by solving a dynamic programming problem

over multiple periods of length T . As y0 and δ are uncertain, the terminal state-of-charge

is also uncertain. To trade off present versus future costs, it is therefore reasonable to min-

imize ϕ(y(xb , xr ,δ, y0,T )) in view of the worst of all scenarios δ ∈ D̂ and y0 ∈ Ŷ0. This can

be achieved by adding the term maxδ∈D̂ maxy0∈Ŷ0
ϕ(y(xb , xr ,δ, y0,T )) to the objective func-
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tion (2.3). In summary, the vehicle owner’s decision problem can be cast as the following

robust optimization problem with continuous (functional) uncertain parameters,

min
xb ,xr ∈X

c(xb , xr )+ max
δ∈D̂, y0∈Ŷ 0

ϕ(y(xb , xr ,δ, y0,T ))

s.t. y+(xb(t ), xr (t ),δ(t )) ≤ ȳ+(t ) ∀δ ∈D, ∀t ∈T

y−(xb(t ), xr (t ),δ(t )) ≤ ȳ−(t ) ∀δ ∈D, ∀t ∈T

y(xb , xr ,δ, y0, t ) ≤ ȳ ∀δ ∈D, ∀t ∈T , ∀y0 ∈Y0

y(xb , xr ,δ, y0, t ) ≥
¯
y ∀δ ∈D, ∀t ∈T , ∀y0 ∈Y0,

(R)

where X denotes the set of all functions in L (T ,R+) that are constant on the trading inter-

vals. Using the conservative uncertainty sets D and Y0 in the constraints ensures that the

delivery guarantee dictated by the European Commission can be fulfilled. Failing to fulfill this

guarantee might lead to exclusion from the regulation market. In contrast, there are no drastic

consequences of reaching an undesirable state-of-charge at time T . Hence, we use the less

conservative uncertainty sets D̂ and Ŷ0 in the objective function, to steer the terminal state-of-

charge toward a desirable value under all reasonably likely frequency deviation scenarios. The

use of different uncertainty sets in the same model has previously been proposed in robust

portfolio insurance problems (Zymler et al., 2011).

Recall from Proposition 2.1 that the function y(xb , xr ,δ, y0, t ) is concave in the decision vari-

ables xb and xr . Upper bounds on this function thus constitute non-convex constraints.

This implies that (R) represents a non-convex robust optimization problem with functional

uncertain parameters. In general, such problems are severely intractable.

Remark 2.3 (Uncertain driving patterns). Although model (R) assumes deterministic driving

patterns, it readily extends to uncertain driving times and distances. If it is only known that

the vehicle will drive at some time within a prespecified interval, then the vehicle owner must

not plan on exchanging any electricity with the grid during that interval. Similarly, if it is only

known that the vehicle will drive some distance within a certain range, then the vehicle owner

must plan with the low end of the range for the constraint on the maximum state-of-charge

and with the high end of the range for the constraint on the minimum state-of-charge. The

worst-case driving times and distances are thus independent of the vehicle owner’s decisions

and can be determined ex-ante. □

2.3 Time Discretization

In order to derive a lossless time discretization of the frequency deviation scenarios in prob-

lem (R), we assume from now on that the power demand for driving and the maximum charge

and discharge power of the vehicle charger remain constant over the trading intervals. This

assumption is justified because a vehicle that is both driving and parking in the same trad-

ing interval cannot offer constant market bids and is therefore unable to participate in the

electricity market. Although the power demand for driving may fluctuate wildly, the bat-
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tery state-of-charge cannot increase while the vehicle is driving, and therefore the power

consumption for driving can be averaged over trading intervals without loss of generality.

Note that we do not assume the frequency deviation scenarios δ to remain constant over the

trading intervals. In practice δ may fluctuate on time scales of the order of milliseconds, and

averaging out the frequency deviations across a trading interval could result in a dangerous

oversimplification of reality. This phenomenon is illustrated in the following example.

Example 2.1 (Risks of ignoring intra-period fluctuations). As the market decisions xb and xr ,

the power demand d and the charging limits ȳ+ and ȳ− are piecewise constant, one might be

tempted to replace the frequency deviation signal δ with a piecewise constant signal obtained

by averaging δ over the trading intervals. As we will see, however, averaging δ relaxes the bat-

tery state-of-charge constraints. Decisions xb and xr that are infeasible under the true signal

may therefore appear to be feasible under the averaged signal. Hence, replacing the true signal

with the averaged signal could make it impossible for the vehicle owner to honor her market

commitments. As a simple example, assume that xb(t ) = 0 and xr (t ) = xr
1 > 0 are constant and

that the true frequency deviation signal averages to 0 over the first trading interval [0,∆t ], that

is, 1
∆t

∫ ∆t
0 δ(t)dt = 0. The left chart of Figure 2.2 visualizes two such signals, which display a

small and a high total variation and are denoted by δ(1) and δ(2), respectively. The constant

signal equal to their (vanishing) average over [0,∆t ] is denoted by δ(3). If δ(1) reflects reality

but is incorrectly replaced with δ(3), we are led to believe that the state-of-charge will remain

constant at y0. In reality, however, the battery dissipates the amount ∆ηxr
1∆t/2 of energy over

the first trading interval, where ∆η = 1
η− −η+ ≥ 0, and the state-of-charge temporarily rises

above y0 by η+xr
1∆t/2. If δ(2) reflects reality, on the other hand, then the repeated charging

and discharging of the battery still dissipates energy. See the right chart of Figure 2.2 for a

visualization. While scenario δ(1) is contrived for maximum impact, scenario δ(2) rapidly fluc-

tuates around 0 and thus captures a stylized fact that one would expect to see in reality. This

example suggests that finding the minimum or the maximum of the state-of-charge over the

entire planning horizon and over all signals δ ∈D should be non-trivial because intra-period

fluctuations do matter. As a further complication, note that the constraints of the uncertainty

set D couple the frequency deviations across time. □

We will now argue that, in spite of Example 2.1, D and D̂ can be restricted to contain only piece-

wise constant frequency deviation signals without relaxing problem (R). To formalize the rea-

soning about piecewise constant functions, we introduce a lifting operator L :RK →L (T ,R)

that maps any vector v ∈ RK to a piecewise constant function Lv with K pieces defined

through (Lv)(t) = vk if t ∈ Tk , k ∈ K = {1, . . . ,K }. We also introduce the adjoint operator

L† : L (T ,R) → RK that maps any function w ∈L (T ,R) to a K -dimensional vector L†w de-

fined through (L†w)k = 1
∆t

∫
Tk

w(t )d(t ) for all k ∈K . Note that L and L† are indeed adjoint to

each other because
∫
T (Lv )(t )w(t )dt = v⊤L†(w) for all v ∈RK and w ∈L (T ,R). Mathemati-

cally, we impose from now on the following assumption.

Assumption 2.1. The functions d , ȳ+ and ȳ− are piecewise constant, that is, there exist

d , ȳ+, ȳ− ∈RK such that d = Ld , ȳ+ = L ȳ+ and ȳ− = L ȳ−.
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Figure 2.2: Frequency deviation signals (left) and their state-of-charge trajectories (right).

Next, we introduce a discretized uncertainty set

DK =
{
δ ∈ [−1,1]K :

k∑
l=1+[k−Γ/∆t ]+

|δl | ≤
γ

∆t
∀k ∈K

}

reminiscent of D, where Γ/∆t and γ/∆t count the trading intervals within a regulation cycle

and an activation period, respectively. Similarly, we define a smaller discretized uncertainty

set D̂K ⊆RK reminiscent of D̂, which is obtained from DK by replacing Γ with Γ̂ and γ with γ̂.

In the remainder we impose the following divisibility assumption.

Assumption 2.2. The parameters Γ, γ, Γ̂ and γ̂ are (positive) multiplies of ∆t .

The discretized uncertainty sets are of interest because of the following proposition.

Proposition 2.3. The following statements hold.

(i) LDK ⊆D and L†D =DK .

(ii) LD+
K ⊆D+ and L†D+ =D+

K .

Next, we define the finite-dimensional feasible set XK = L†X . As X contains only piecewise

constant functions, we have X = LXK . We further define the cost function cK (xb , xr ) =
c(Lxb ,Lxr ), which is linear in xb ∈RK and xr ∈RK . In addition, for any k ∈K we define the

function

yk

(
xb , xr ,δ, y0

)
= y

(
Lxb ,Lxr ,Lδ, y0,k∆t

)
= y0 +∆t

k∑
l=1

η+y+(xb
l , xr

l ,δl )− 1

η−
y−(xb

l , xr
l ,δl )−dl , (2.4)

which represents the battery state-of-charge at the end of period k under the assumption that

both the market bids and the frequency deviations are piecewise constant.
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Proposition 2.4. Holding all other factors fixed, yk (xb , xr ,δ, y0) is concave nondecreasing in

xb , concave in xr , concave nondecreasing in δ, and linear nondecreasing in y0 for any k ∈K .

We are now ready to define the discrete-time counterpart of the robust optimization prob-

lem (R).

min
xb ,xr ∈XK

cK (xb , xr )+ max
δ∈D̂K ,y0∈Ŷ 0

ϕ(yK (xb , xr ,δ, y0))

s.t. y+(xb
k , xr

k ,δk ) ≤ ȳ+
k ∀δ ∈DK , ∀k ∈K

y−(xb
k , xr

k ,δk ) ≤ ȳ−
k ∀δ ∈DK , ∀k ∈K

yk (xb , xr ,δ, y0) ≤ ȳ ∀δ ∈DK , ∀k ∈K ∪ {0}, ∀y0 ∈Y0

yk (xb , xr ,δ, y0) ≥
¯
y ∀δ ∈DK , ∀k ∈K ∪ {0}, ∀y0 ∈Y0

(RK )

Unlike the original problem (R), the discrete-time counterpart (RK ) constitutes a standard

robust optimization problem that involves only finite-dimensional uncertain parameters. For

this reason, there is hope that (RK ) is easier to solve than (R).

Theorem 2.1 (Lossless time discretization). The problems (R) and (RK ) are equivalent.

The equivalence of (R) and (RK ) is perhaps surprising in view of Example 2.1. It means that

the worst-case frequency deviation scenarios are piecewise constant even though intra-period

fluctuations matter. Theorem 2.1 is proved by showing that the four robust constraints in (R)

with functional uncertainties are equivalent to the corresponding robust constraints in (RK )

with vectorial uncertainties and that the worst-case terminal cost functions in (R) and (RK )

coincide. For example, the equivalence of the first (second) robust constraints in (R) and (RK )

follows from the observation that, for any fixed t ∈T , the left hand side of the first (second)

constraint in (R) is maximized by a scenario δ ∈D with δ(t ) = 1 (δ(t ) =−1), which exists by the

definition of D. The last two robust constraints in (R) are nonlocal as they depend on the entire

frequency deviation scenario δ and not only on its value at a particular time. Thus, they are sig-

nificantly more intricate. The robust upper bound on the state-of-charge can be reformulated

as an upper bound on maxt∈T maxδ∈D y(xb , xr ,δ, y0, t ). By using Propositions 2.1 and 2.3, one

can then show that the maximum over t ∈T must be attained at t = k∆t for some k ∈K ∪ {0}

and that for any such t the state-of-charge can be expressed as an integral of δ against a piece-

wise constant function. Thus, averaging δ across the trading intervals has no impact on the

state-of-charge, which in turn allows us to focus on piecewise constant scenarios without re-

stricting generality. The robust lower bound on the state-of-charge in (R) can be reformulated

as a lower bound on mint∈T minδ∈D y(xb , xr ,δ, y0, t ), which appears to be intractable because

the optimization problem over δ minimizes a concave function over a convex feasible set and

is therefore non-convex. Classical robust optimization provides no general recipe for handling

such constraints even if the uncertain parameters are finite-dimensional, and state-of-the-art

research settles for deriving approximations (Roos et al., 2020). By exploiting a continuous

total unimodularity property of the uncertainty set D facilitated by Assumption 2.2, we first

prove that the minimum of y(xb , xr ,δ, y0, t ) over D is attained by a frequency deviation trajec-
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tory that takes only values in {−1,0}. Next, we demonstrate that there exists an affine function

of δ that matches y(xb , xr ,δ, y0, t) for all trajectories δ ∈D valued in {−1,0} and for all t ∈T .

In the language of robust optimization, the state-of-charge y(xb , xr ,δ, y0, t ) can be viewed as

an analysis variable that adapts to the uncertainty δ, and the corresponding affine function

constitutes a decision rule approximating y(xb , xr ,δ, y0, t ). Decision rule approximations al-

most invariably introduce approximation errors (Ben-Tal et al., 2009, § 14). However, the affine

decision rule proposed here is error-free because it coincides with y(xb , xr ,δ, y0, t ) for all sce-

narios δ ∈D valued in {−1,0} that may attain the worst case in mint∈T minδ∈D y(xb , xr ,δ, y0, t ).

Using this decision rule in an elaborate sensitivity analysis, we can finally prove that the min-

imum over t ∈ T must be attained at t = k∆t for some k ∈ K ∪ {0} and that for any such t

the state-of-charge can be expressed as an integral of δ against a piecewise constant function.

Thus, we may focus again on piecewise constant scenarios without restricting generality. The

full proof of Theorem 2.1 can be found in Appendix 2.C.

The new robust optimization techniques developed to prove Theorem 2.1 are of independent

interest as they provide exact tractable reformulations for certain adjustable robust opti-

mization problems with functional or vectorial uncertain parameters, where the embedded

optimization problems over the uncertainty realizations are non-convex. We also note that

the embedded optimization problems over δ ∈D in problem (R) can be viewed as variants of

the so-called separated continuous linear programs introduced by Anderson et al. (1983). The

proof of Theorem 2.1 shows that these problems are solved by piecewise constant frequency

deviation scenarios that can be computed efficiently, thereby extending the purely existential

results by Pullan (1995). Our results are also orthogonal to those by Ghate (2020), who proves

that robust separated continuous linear programs with budget uncertainty sets are equivalent

to standard separated continuous linear programs.

Even though the non-convex robust optimization problem (R) with functional uncertainty

admits a lossless time discretization, its discrete-time counterpart (RK ) still constitutes a

non-convex robust optimization problem and thus appears to be hard. In the next section,

however, we will show that (R) can be reformulated as a tractable linear program by exploiting

its structural properties.

2.4 Linear Programming Reformulation

In order to establish the tractability of the non-convex robust optimization problem (R), it is

useful to reformulate its time discretization (RK ) as the following linear robust optimization

problem, where all constraint functions are bilinear in the decision variables and the uncertain
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parameters.

min cK (xb , xr )+ z

s.t. xb , xr ∈XK , m ∈RK

xr
k +xb

k ≤ ȳ+
k , xr

k −xb
k ≤ ȳ−

k ∀k ∈K

mk −η+xr
k ≥ 0, mk −

1

η−
xr

k +∆ηxb
k ≥ 0 ∀k ∈K

ȳ0 +∆t
k∑

l=1
η+

(
xb

l +δl xr
l

)−dl ≤ ȳ ∀δ ∈D+
K , ∀k ∈K ∪ {0}

¯
y0 +∆t

k∑
l=1

η+xb
l −mlδl −dl ≥

¯
y ∀δ ∈D+

K , ∀k ∈K ∪ {0}

ˆ̄y0 +∆t
K∑

k=1
η+

(
xb

k +δk xr
k

)−dk ≤ z −bn

an
∀δ ∈ D̂+

K , ∀n ∈N+

ˆ
¯
y

0
+∆t

K∑
k=1

η+xb
k −mkδk −dk ≥ z −bn

an
∀δ ∈ D̂+

K , ∀n ∈N−

z ≥ bn ∀n ∈N0

(R′
K )

Here, ∆η= 1
η− −η+ ≥ 0 is used as a shorthand for the reduction in the battery state-of-charge

resulting from first charging and then discharging one unit of energy as seen from the grid. In

addition, we set N+ = {n ∈N : an > 0}, N− = {n ∈N : an < 0} and N0 =N \ (N+∪N−).

Theorem 2.2 (Lossless linearization). The problems (RK ) and (R′
K ) are equivalent.

The proof of Theorem 2.2 critically relies on the exact affine decision rule approximation

discovered in the proof of Theorem 2.1. Note that the linear robust optimization problem (R′
K )

still appears to be difficult because each robust constraint must hold for all frequency de-

viation scenarios in an uncountable uncertainty set D+
K or D̂+

K and therefore corresponds

to a continuum of ordinary linear constraints. Fortunately, standard robust optimization

theory (Ben-Tal et al., 2004; Bertsimas and Sim, 2004) allows us to reformulate (R′
K ) as the

tractable linear program
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min cK (xb , xr )+ z

s.t. xb , xr ∈XK , z ∈R, m,λ+,λ−,θ+,θ− ∈RK
+ , Λ+,Λ−,Θ+,Θ− ∈RK×K

+
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i=k

θ+i ≥ η+xr
k , λ−

k +
Î (K ,k)∑
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(R
′′
K )

where I (k, l ) = min{k, l +Γ/∆t −1} and Î (k, l ) = min{k, l + Γ̂/∆t −1}.

Theorem 2.3 (Linear programming reformulation). The problems (R′
K ) and (R

′′
K ) are equiva-

lent.

The conversion of the robust optimization problem (R′
K ) to the linear program (R

′′
K ) comes

at the expense of introducing 4K 2 +4K dual variables. For a daily planning horizon with half-

hourly resolution, this amounts to introducing 9,408 additional continuous variables. Overall,

the linear program (R
′′
K ) involves 4K 2 + 7K + 1 variables and K 2 +9K +N +2 constraints,

that is, its size scales quadratically with K . In conjunction, Theorems 1–3 imply that the

non-convex robust optimization problem (R) with continuous uncertain parameters can be

reduced without any loss to the tractable linear program (R
′′
K ), which is amenable to efficient

numerical solution with state-of-the-art linear programming solvers such as CPLEX or Gurobi.

Remark 2.4 (Robustification reduces complexity). A striking property of the robust optimiza-

tion model (R) is that it is much easier to solve than the underlying deterministic model,

which would assume precise knowledge of the frequency deviation scenario δ. Indeed, the

textbook formulation of the deterministic model requires continuous decision variables to rep-

resent y+(xb(t ), xr (t ),δ(t )) and y−(xb(t ), xr (t ),δ(t )) and a binary decision variable to model

their complementarity for every t ∈ T (Taylor, 2015, p. 85). This results in a large-scale

mixed-integer linear program even if T is discretized. In contrast, the robust optimization

model (R) is equivalent to the tractable linear program (R
′′
K ). To our best knowledge, we have

thus discovered the first practically interesting class of optimization problems that become

dramatically easier through robustification. □
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2.5 Multi-Stage Extensions

Model (R) described in Section 2.2 looks only one day ahead and accounts for the future

usage of the vehicle only through the cost-to-go function ϕ. We will now show that this static

decision problem readily extends to a dynamic model that looks H days into the future. For

ease of exposition, we assume that the market bids for day h ∈ H = {0, . . . , H − 1} are due

at midnight of the previous day, which implies that the initial state-of-charge yh on day h

is precisely known. However, this assumption can be relaxed. A vehicle owner aiming to

minimize worst-case expected costs (where the expectation is taken with respect to the prices,

and the worst-case is taken with respect to the frequency deviation scenarios in D̂) across H

days solves the robust dynamic program

ϕh(yh) = min
(xb

h ,xr
h )∈XR(yh )

c(xb
h , xr

h)+max
δh∈D̂

ϕh+1
(
y(xb

h , xr
h ,δh , yh ,T )

) ∀h ∈H . (2.5)

Here, XR(yh) denotes the feasible set of the single-stage problem (R) with uncertainty sets D

and Y0 = {yh}. In principle, XR(yh) could be empty for some yh . Under the reasonable

assumption that each night the vehicle is plugged in long enough for the battery to be fully

charged, however, XR(yh) is guaranteed to be non-empty. In this case, problem (2.5) remains

feasible on all days h ∈ H irrespective of previous market decisions and even when facing

a frequency deviation scenario δ ∉ D̂. The cost-to-go functions ϕh , h ∈ H , are defined

recursively through (2.5). In practice, it proves useful to initialize the recursion by ϕH (yH ) =
p⋆|yH − y⋆| for some target state-of-charge y⋆ and penalty parameter p⋆ ≥ 0, which can be

calibrated to historical data via cross-validation (see Section 2.6.2).

Proposition 2.5. The cost-to-go function ϕh is convex and piecewise affine for every h ∈H .

By Proposition 2.5, problem (2.5) is structurally equivalent to problem (R) for any h ∈ H .

Theorems 2.1, 2.2 and 2.3 thus imply that (2.5) can be recast as a tractable linear program

whose right hand side coefficients depend affinely on yh . Computing the function value and

an arbitrary subgradient ofϕh at a fixed yh is therefore tantamount to solving a linear program.

This insight suggests that convex piecewise affine bounds on the cost-to-go function ϕh

can be constructed by solving a series of linear programs. If ϕh+1 is precisely known for

some h ∈H , for example, then a coarse upper bound is obtained by evaluating ϕh at
¯
y and ȳ

and by linearly interpolating the two function values. A coarse lower bound is given by the

pointwise maximum of the two tangents of ϕh constructed from the function values and

subgradients at
¯
y and ȳ . The difference between these coarse bounds is maximal at the kink

of the lower bound. To improve both bounds, we can then break the interval [
¯
y, ȳ] apart at

the kink and construct separate upper and lower bounds on the two resulting subintervals

by repeating the above procedure. Iteratively partitioning the subinterval on which the gap

between the bounds is maximal yields increasingly tight convex piecewise affine bounds that

approximate ϕh uniformly on [
¯
y, ȳ] to any precision. In each iteration one has to solve a linear

program akin to (R
′′
K ) in order to compute the value and a subgradient of ϕh at a new anchor

point. Note that the outlined procedure remains applicable if ϕh+1 in (2.5) is replaced with
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a convex piecewise affine bound, in which case one has only access to an inexact oracle for

the values and subgradients of ϕh . In this case the approximation errors accumulate over the

dynamic programming recursions.

In reality, the market bids for day h are due around noon and not at midnight of day h−1. As a

consequence, the exact state-of-charge yh at the beginning of day h is unknown at stage h,

that is, at the time when (xb
h , xr

h) must be chosen. Instead, only the confidence intervals [
¯
ŷ0, ˆ̄y0]

and [
¯
y0, ȳ0] for yh are available, which can be constructed from the current state-of-charge

and from (xb
h−1, xr

h−1); see Section 2.2. In a more realistic multi-stage model, the information

available at stage h is therefore encoded by the state vector (
¯
ŷ0, ˆ̄y0,

¯
y0, ȳ0), and thus the cost-to-

go functions have four arguments, while the state transition functions have four components.

By generalizing Theorems 2.1, 2.2 and 2.3 as well as Proposition 2.5, one can still show that all

cost-to-go functions are convex and piecewise affine and that their values and subgradients

can be computed by solving linear programs akin to (R
′′
K ). While tedious, the proofs of these

generalized results require no fundamentally new ideas and are thus omitted for brevity. As

the cost-to-go functions have four arguments, the construction of convex piecewise affine

upper and lower bounds is more challenging but still possible via the robust dual dynamic

programming algorithm by Georghiou et al. (2019).

Numerical experiments in Section 2.6.3 suggest that the benefits of solving a multi-stage

instead of a single-stage problem are negligible in practice because electric vehicles can

always be charged overnight. We emphasize, however, that the robust optimization models

and techniques developed in this paper may also be useful to optimize the operation of other

energy storage devices that are characterized by slower dynamics and therefore necessitate a

proper multi-stage approach.

2.6 Numerical Experiments

In the following, we first describe how the vehicle owner’s decision problem is parametrized

from data, and we explain the backtesting procedure that is used to assess the performance of a

given bidding strategy. Next, we present numerical results and discuss policy implications. All

experiments are run on an Intel i7-6700 CPU with 3.40GHz clock speed and 64GB of RAM. All

linear programs are solved with GUROBI 9.1.2 using its PYTHON interface. In order to ensure

the reproducibility of our experiments, we provide links to all data sources and make our

code available at www.github.com/lauinger/reliable-frequency-regulation-through-vehicle-

to-grid.

2.6.1 Model Parametrization

The French transmission system operator (RTE) publishes availability and delivery prices

and frequency measurements.IV There have been two policy changes in frequency regulation

IVhttp://clients.rte-france.com/
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since 2015. While the availability prices were historically kept constant throughout the year,

they change on a weekly basis since mid-January 2017 and on a daily basis since July 2019. At

this point, the pricing mechanism also changed from a pay-as-bid auction to a clearing price

auction. The average availability price over all years from 2015 to 2019 amounts to 0.8cts/kWh,

but the yearly average decreased in 2017 and 2018, and increased again in 2019 to pre-2017

levels. For all practical purposes we may assume that the expected regulation price pr (t) =
pa(t )+E[δ̃(t )p̃d (t )] coincides with the availability price pa(t ) because the realized regulation

price pa(t)+δ(t)pd (t) oscillates rapidly around the availability price pa(t) due to intra-day

fluctuations of the frequency-adjusted delivery prices; see Figure 2.A.1 in Appendix 2.A. In

fact, δ(t )pd (t ) empirically averages to −2.36 ·10−5e over all 10s intervals from 2015 to 2019.

We further identify the utility prices pb(t) with the residential electricity prices charged by

Electricité de France (EDF), the largest European electricity provider. These prices exhibit six

different levels corresponding to peak- and off-peak hours on high, medium and low price

days. High price days can occur exclusively on work days between November and March,

whereas medium price days can occur on all days except Sundays. Low-price days can occur

year-round. The peak hours are defined as the hours from 6 am to 10 pm on work days, and all

the other hours are designated as off-peak hours. The prices corresponding to each type of

day and hour are regulated and published in the official French government bulletin.V Over

the past five years, these prices have not changed more than three times per year. On each day,

RTE announces the next day’s price levels by 10:30 am. The average utility price over the years

from 2015 to 2019 amounts to 14cts/kWh and thus exceeds the average availability price by an

order of magnitude.

When simulating the impact of the market decisions on the battery state-of-charge, it is

important to track the frequency signal with a high time resolution. In fact, the European

Commission (2017) requires regulation providers to adjust the power flow between the battery

and the grid every ten seconds in order to ensure that it closely matches xb(t )+δ(t )xr (t ) for all

t ∈T . This means that regulation providers need to measure the frequency deviation δ(t ) at

least every ten seconds. Hence, we use a sampling rate of 100mHz when simulating the impact

of the market decisions on the battery state-of-charge. This contrasts with previous studies,

which used sampling rates below 20mHz (Han et al., 2010; Sortomme and El-Sharkawi, 2012;

Donadee and Ilić, 2014; Wu and Sioshansi, 2019). Recall from Section 2.2 that the frequency

deviation δ(t) depends on the nominal grid frequency f0 = 50Hz and on the normalization

constant∆ f = 200mHz. Moreover, recall that the uncertainty set D is parametrized by γ= 0.5h

and Γ = 2.5h in order to respect the delivery guarantee rules prescribed by the European

Commission, while the less conservative uncertainty set D̂ is parametrized by γ̂= 0.5h and

Γ̂= 24h as described in the discussion of Figure 2.1.

The vehicle data is summarized in Table 2.A.1 in Appendix 2.A. The chosen parameter values

are representative for commercially available midrange vehicle-to-grid-capable electric vehi-

cles such as the 2018 Nissan Leaf, and they are in line with experimental measurements of

VJournal Officiel de la République Française: https://www.legifrance.gouv.fr/
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charging and discharging efficiencies. For example, Apostolaki-Iosifidou et al. (2017) find that

charging and discharging efficiencies η+ and η−, respectively, vary between 64% and 88% for

a LiPF6 cobalt battery with a nominal voltage of 345V and a nominal capacity of 106Ah. We

assume that the vehicle owner reserves the time windows from 7 am to 9 am and from 5 pm to

7 pm on workdays and from 8 am to 8 pm on weekends and public holidays for driving. At all

other times, the car is connected to a bidirectional charging station. We also assume that the

car’s yearly mileage amounts to 10,000km, which approximately matches the French average

of 13,000km (Commissariat général au développement durable, 2010). Hence, the car travels

about 27km per day on average. Even though this distance is easily covered within one hour, it

makes sense to reserve extended time slots for driving. Indeed, the vehicle owner may not

be able to (nor wish to) pinpoint the exact driving times one day in advance. It may also be

impossible to find bidirectional charging stations on weekend trips. With a standard vehicle

efficiency of 0.2kWh/km, the car thus consumes 2,000kWh per year.

2.6.2 Backtesting Procedure and Baseline Strategy

In our experiments, we assess the performance of different bidding strategies over different

test datasets covering one of the years between 2015 and 2019. A bidding strategy is any

procedure that computes on each day at noon a pair of market decisions xb and xr for the

following day. We call a strategy non-anticipative if it determines the market decisions using

only information observed in the past. In addition, we call a strategy feasible if it allows the

vehicle owner to honor all market commitments for all frequency deviation scenarios within

the uncertainty set D.

To measure the profit generated by a particular strategy over one year of test data, we use

the following backtesting procedure. On each day at noon we compute the market decisions

for the following day. We then use the actual frequency deviation data between noon and

midnight and the market decisions for the current day to calculate the true battery state-of-

charge at midnight. Next, we use the frequency deviation data of the following day to calculate

the revenue from selling regulation power to the TSO, which is subtracted from the cost of

buying electricity for charging the battery. If the strategy is infeasible and the vehicle owner is

not able to deliver all promised regulation power even though the realized frequency deviation

trajectory falls within the uncertainty set D, then she pays a penalty. The penalty at time t

is set to kpen ·pa(t ) · (xr (t )−xr
d(t )), where xr

d(t ) denotes the maximum amount of regulation

power that could have been offered without risking an infeasibility, and the penalty factor kpen

ranges from 3 to 10.VI Repeated offenses may even lead to market exclusion. For simplicity,

in each experiment we either assume that the vehicle owner pays a penalty corresponding

to a fixed value of kpen for every offense or is excluded from the regulation market directly

upon the first offense. If the battery is depleted during a trip, any missing energy needed for

driving is acquired at a high price p y from a public fast charging station. We assume that p y

accounts for the price of energy as well as for the opportunity cost of the time lost in driving

VIFor example, Réseau de transport d’électricité (2017a) sets kpen = 5.
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to the charging station and waiting to be serviced. In our experiments we set p y either to

0.75e/kWh (which corresponds to typical energy prices offered by the European fast charging

network IonityVII), to 7.5e/kWh or to 75e/kWh. The procedure described above is repeated

on each day, and the resulting daily profits are accumulated over the entire test dataset.

Our baseline strategy is to determine the next day’s market decisions by solving the robust

optimization problem (R) with terminal cost function ϕ(y) = p⋆|y − y⋆|, where the calibra-

tion of y⋆ and p⋆ is described below. Thus, (R) is equivalent to an instance of the linear

program (R
′′
K ). This problem is updated on each day because the driving pattern d as well

as the market prices pb and pr change, and because the uncertainty sets Y0 and Ŷ0 for the

state-of-charge at midnight depend on the state-of-charge at noon and on the market com-

mitments between noon and midnight that were chosen one day earlier. The baseline strategy

is feasible thanks to the robust constraints in (R), which ensure that regulation power can be

provided for all frequency deviation scenarios in D.

The parameters p⋆ and y⋆ are kept constant throughout each backtest. Specifically, we set

p⋆ = 3+k
40 e/kWh for some k = 1, . . . ,9 and y⋆ = (

ȳ+
¯
y

2 + l )kWh for some l = 0, . . . ,5. Every

tuple (p⋆, y⋆) encodes a different bidding strategy. Given a training dataset comprising one

year of frequency measurements and market prices, we compute the cumulative profit of

each strategy via the backtesting procedure outlined above, and we choose the tuple (p⋆, y⋆)

that corresponds to the winning strategy. This strategy is non-anticipative if the year of

the training dataset precedes the year of the test dataset. Table 2.1 shows that selecting p⋆

and y⋆ non-anticipatively on a historical training dataset has low regret relative to selecting

these parameters anticipatively on the test dataset. Here, the regret is defined as the ratio

of the absolute difference and the arithmetic mean of the cumulative profits generated by

the anticipative and the non-anticipative strategies tuned on the test and training datasets,

respectively. We always use the year immediately prior to the test dataset as training dataset.

Table 2.1 shows that from 2017 onward, perhaps surprisingly, anticipative parameter tuning

has no advantage over non-anticipative tuning. From now on, we assume that p⋆ and y⋆

are tuned non-anticipatively using the year of training data immediately prior to the test

dataset. Additional robustness checks reveal that the cumulative profit (evaluated on 2019

data) is relatively insensitive to the choice of p⋆ and y⋆ within the suggested search grid, which

indicates that its resolution is sufficiently high. Details are omitted for the sake of brevity.

2.6.3 Futility of Solving a Multi-Stage Model

The baseline strategy described in Section 2.6.2 looks only one day into the future. We now

show numerically that the added value of solving a dynamic model that looks H > 1 days

into the future is negligible. Specifically, we compare the baseline strategy against a dynamic

strategy, which computes the market commitments on each day in a receding horizon fashion

by solving model (2.5) with H = 2 andϕ2(y2) = p⋆|y2−y⋆|, assuming that the electricity prices

VIIhttps://ionity.eu/en/
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Table 2.1: Calibration of p⋆ and y⋆.

Test Anticipative Calibration Non-Anticipative Calibration Regret

Dataset p⋆ (e/kWh)
y⋆−

¯
y

ȳ−
¯
y (%) Profit (e) p⋆ (e/kWh)

y⋆−
¯
y

ȳ−
¯
y (%) Profit (e) (%)

2015 0.125 56.7 −74 n/a n/a n/a n/a
2016 0.15 −101 0.15 56.7 −112 10
2017 −169 −169 0
2018 −190 −190
2019 0.15 56.7 −153 0.15 56.7 −153 0

and the driving patterns for both subsequent days are known upfront. To compute the out-of-

sample profits, we use the backtesting procedure outlined in Section 2.6.2 but assume that the

market bids are due at midnight when the initial state-of-charge y0 is known. As explained

in Section 2.5, this assumption greatly simplifies the computation of the dynamic strategy.

We define the value of vehicle-to-grid under a particular bidding strategy as the cumulative

excess profit of that strategy with respect to a simplified strategy that does not participate in

the reserve market. This simplified strategy solves problem (R) under the additional constraint

xr = 0. When examining the value of vehicle-to-grid over the years from 2017 to 2019, we find

that the dynamic strategy outperforms the baseline strategy only by 2.1%. Hence, the dynamic

strategy does not generate significantly higher revenues even though it has the advantage of

knowing the electricity prices and driving patterns two days in advance (which would not

be the case in reality). We also emphasize that both strategies benefit from the assumption

that y0 is known upfront. However, we conjecture that both strategies benefit equally from

this information relaxation and that the dynamic strategy thus still fails to outperform the

baseline strategy when the market bids are due at noon and y0 is uncertain. This reasoning

justifies our use of a static baseline strategy that looks merely one day into the future.

2.6.4 Experiments: Set-up, Results and Discussion

In the remainder, we distinguish six different simulation scenarios. The nominal scenario

uses the parameters of Table 2.A.1 in Appendix 2.A for both training and testing. All other

scenarios are based on slightly modified parameters. Specifically, we consider a lossless energy

conversion scenario, which trains and tests the baseline strategy under the assumption that

η+ = η− = 1. A variant of this scenario assumes lossless energy conversion in training but tests

the resulting strategy under the nominal values of η+ and η−. We also consider two scenarios

with weaker robustness guarantees that replace the uncertainty set D in the training phase

with its subset D̂. The resulting bidding strategy can be infeasible because it may fail to provide

the legally required amount of reserve power. The two scenarios do not differ in training but

impose different sanctions for infeasibilities in testing. In the first of the two scenarios the

vehicle owner is immediately excluded from the reserve market upon the first infeasibility,

thus loosing the opportunity to earn money by offering grid services for the rest of the year.

In the second scenario, the vehicle owner is penalized by kpen ·pa(t ) with kpen = 5 for energy
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Figure 2.3: Value of vehicle-to-grid in 2019 in different simulation scenarios.

that is missing for frequency regulation (see also Section 2.6.2) and by p y = 0.75e/kWh for

energy that is missing for driving. Finally, we consider a scenario in which the vehicle is only

equipped with a unidirectional charger, that is, we set ȳ− = 0. Thus, the vehicle is unable to

feed power back into the grid. Requests for up-regulation (δ(t) < 0) can therefore only be

satisfied by consuming less energy, which is possible only if δ(t )xr (t ) ≤ xb(t ).

Figure 2.3 visualizes the value of vehicle-to-grid in 2019 as a function of time for each of the six

simulation scenarios. We first observe that the value of vehicle-to-grid in the lossless energy

conversion scenario amounts to 165e at the end of the year and thus significantly exceeds the

respective value of 138e in the nominal scenario. Using a perfectly efficient vehicle charger

would thus have boosted the value of vehicle-to-grid by 20% in 2019. This is not surprising

because a perfect charger prevents costly energy conversion losses. Note also that the scenario

with misspecified efficiency parameters results in almost the same value of vehicle-to-grid as

the nominal scenario, which suggests that misrepresenting η+ or η− in training has a negligible

effect on the test performance. However, the underlying bidding strategy is not guaranteed to

be feasible because it neglects energy conversion losses. Even though this strategy happens to

remain feasible throughout 2019, it bears the risk of financial penalties or market exclusion.

The two bidding strategies with weakened robustness guarantees initially reap high profits by

aggressively participating in the reserve market, but they already fail in the first half of January

to fulfill all market commitments. If infeasibilities are sanctioned by market exclusion, the

cumulative excess profit thus remains flat after this incident. If infeasibilities lead to financial

penalties, on the other hand, the cumulative excess profit drops sharply below zero near the

incident but recovers quickly and then continues to grow steadily. As only a few other mild

infeasibilities occur in 2019, the end-of-year excess profit of this aggressive bidding strategy

still piles up to 296e, which is more than twice the excess profit in the nominal scenario. We

conclude that the current level of financial penalties is too low to deter vehicle owners from

making promises they cannot honor. Finally, with a unidirectional charger, the 2019 value

of vehicle-to-grid falls to 15e, which is only 11% of the respective value with a bidirectional

charger.

As the bidding strategy with a weakened robustness guarantee can earn high profits when
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Figure 2.4: Value of vehicle-to-grid in 2019 for different penalty parameters.
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Figure 2.5: Value of vehicle-to-grid in 2019 as a function of the C-rate.

infringements of the EU delivery guarantee incur only financial penalties, we carry out an ad-

ditional experiment to analyze the impact of the penalty parameters kpen and p y on the value

of vehicle-to-grid; see Figure 2.4. We observe that for p y = 0.75e/kWh, doubling the penalty

factor to kpen = 10 decreases the value of vehicle-to-grid by only 4.1% to 284e. An additional

calculation reveals that the TSO would have to set kpen ≈ 240 in order push the value of vehicle-

to-grid below that attained in the basline scenario, which fulfills the EU delivery guarantee.

On the other hand, for kpen = 5, a tenfold increase of p y to 7.50/ekWh decreases the value

of vehicle-to-grid by 16.6% to 247e, and an additional tenfold increase of p y to 75e/kWh

pushes the value of vehicle-to-grid below zero. Increasing p y from 0.75e/kWh to 7.50e/kWh

also reduces the number of days on which the vehicle owner does not have enough energy to

drive from 7 to 2.

Since the market prices display distinct regime shifts as European energy policies evolve, the

value of vehicle-to-grid fluctuates over the years. Indeed, Figure 2.B.1 in Appendix 2.B shows

that the value of vehicle-to-grid averages to 108e per year from 2016 to 2019 with a minimum

of 76e in 2018.

In the next experiment we investigate how the value of vehicle-to-grid depends on the acti-
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vation ratio γ/Γ and the battery’s size and charge rate (C-rate). The C-rate is defined as the

ratio of the charger power and the battery size, and thus it expresses the percentage of the

battery’s total capacity that can be charged within one hour. Figure 2.5 shows that the value

of vehicle-to-grid increases with the C-rate up to a saturation point that is insensitive to the

battery size but decreases with the activation ratio. In the saturation regime, the value of

vehicle-to-grid increases with the battery size. Typical electric vehicles can be fully charged

overnight, within about 8 hours. The corresponding C-rate of 0.125h−1 falls within the sat-

uration regime for both investigated activation ratios of 0.1 and 0.2. This observation has

two implications. First, for typical electric vehicles the value of vehicle-to-grid cannot be

increased by increasing the charger power (and thereby increasing the C-rate). This insight

contradicts previous studies by Kempton and Tomić (2005a), Codani et al. (2015) and Borne

(2019), which advocate for electric vehicles with higher C-rates of 1, 0.45, and 0.37, respectively.

The reason for this discrepancy is that none of the previous studies faithfully account for the

EU delivery guarantee. In particular, Borne (2019) allows the vehicle owner to anticipate future

frequency deviations, and Codani et al. (2015) assume that the bidding strategy can be updated

on an hourly basis, thereby exploiting information that is not available at the the time when

the market bids are collected by the TSO (i.e., one day in advance). By underestimating the

amount of energy that the vehicle owner must be able to exchange with the TSO to satisfy all

future obligations on the reserve market, these studies overestimate the amount of regulation

power that can be sold, which makes potent battery chargers appear more useful than they

actually are. The second implication is that the activation ratio has a critical impact on the

value of vehicle-to-grid. The incumbent storage providers of the European electricity grid,

namely pumped-hydro storage power plants, have C-rates of about 0.0125h−1 (Andrey et al.,

2020), which are significantly smaller than the C-rates of electric vehicles. At such C-rates,

the value of providing frequency regulation is the same for activation ratios of 0.1 and 0.2. To

minimize competition from vehicle-to-grid, pumped-hydro storage operators may thus have

an incentive to lobby for high activation ratios. From the perspective of a TSO, the higher the

activation ratio, the larger the uncertainty set D and the lower the probability of blackouts.

However, Figure 2.1 suggests that an activation period of 30 minutes is already conservative.

On the other hand, the larger D, the harder it is for storage operators to provide regulation

power, which may lead to less competition, higher market prices, and a higher total cost of

frequency regulation. As the system operator is a public entity, this cost is ultimately borne by

the public, and the choice of the activation ratio is a political decision.

The last two experiments study the influence of the driving time and distance on the value of

vehicle-to-grid. Figure 2.B.2 in Appendix 2.B shows that the value of vehicle-to-grid in 2019

approximately displays a concave dependence on the yearly driving distance and plateaus at

138e for driving distances between 5,000km and 10,000km. It is perhaps surprising that the

value of vehicle-to-grid is not globally decreasing in the driving distance. An explanation for

this phenomenon is provided in Appendix 2.B.

Figure 2.6 shows the value of vehicle-to-grid in 2019 against the daily plug time, that is, the

total amount of time during which the vehicle is connected to a bidirectional charger. In this
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Figure 2.6: Value of vehicle-to-grid in 2019 versus daily plug time.

experiment, we assume that a daily plug time of tp ∈ [0h,24h] means that cars are plugged

from midnight to
tp

2 am and from 12h− tp

2 pm to midnight the next day. Whenever the car is

not plugged, it consumes a constant amount of power such that the total consumption over

the year corresponds to a mileage of 10,000 km as in the baseline experiment. We observe that

the value of vehicle-to-grid increases with the daily plug time and saturates after 15 hours at a

level that scales with the battery size. Thus, a daily plug time of 15 hours suffices for offering

the maximal possible amount of regulation power. Additional experiments show that for an

activation ratio of 0.1 instead of 0.2, the saturation point increases to 20 hours.

2.7 Conclusions

We develop an optimization model for the decision problem of an electricity storage operator

offering frequency regulation. To our best knowledge, this is the first model that faithfully

accounts for the delivery guarantees required by the European Commission (2017). In contrast,

all existing models relax the true delivery guarantee constraints and therefore risk that the

electricity storage is empty (full) when a request for up- (down-)regulation arrives. In its

original formulation, our model represents a non-convex robust optimization problem with

functional uncertain parameters and thus appears to be severely intractable. Indeed, the state-

of-the-art methods for solving the deterministic version of this problem for a single frequency

deviation scenario in discrete time rely on techniques from mixed-integer linear programming.

Maybe surprisingly, however, our robust optimization problem is equivalent to a tractable

linear program. This is an exact result and does not rely on any approximations. To our

best knowledge, we have thus discovered the first practically interesting class of optimization

problems that become significantly easier through robustification.

In the numerical experiments centered around electric vehicles we restrict the planning

horizon of our model to 24 hours. This is justified because the batteries of electric vehicles

can be fully charged overnight and because vehicle owners may not know their driving needs

several days in advance. Numerical experiments provide strong evidence that the added value

of looking two or more days into the future is marginal even if future market prices and driving
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patterns were known.

As our optimization model faithfully captures effective legislation, it enables us to quantify the

true value of vehicle-to-grid. This capability is relevant for understanding the economic incen-

tives of different stakeholders such as vehicle owners, aggregators, equipment manufacturers,

and regulators.

As for the vehicle owners, we find that their profits from frequency regulation range from 100e

to 500e per year under typical driving patterns. It seems unlikely that such profits are suf-

ficient for vehicle owners to forego the freedom of using their car whenever they please to.

Nevertheless, some vehicle owners may choose to participate in vehicle-to-grid for idealistic

reasons such as advancing the energy transition away from fossil fuels. Our numerical results

also reveal that the value of vehicle-to-grid saturates at daily plug times above 15 hours. Thus,

maximal profits from frequency regulation can be reaped even if the vehicle is disconnected

from the grid up to 9 hours per day. This means that vehicle owners participating in vehicle-

to-grid still enjoy considerable flexibility as to when to drive, which could help to promote the

adoption of vehicle-to-grid.

Our results also have ramifications for aggregators, which pool multiple vehicles to offer

regulation power. Indeed, aggregators may allow vehicle owners to reserve their vehicles for

up to 9 hours of driving per day without sacrificing profit. This leaves vehicle owners ample

freedom and reduces the probability that they exceed their driving slots. Thus, the actual

number of vehicles available for frequency regulation at any point in time closely matches

its prediction. This allows aggregators to place reserve market bids with small safety margins,

which ultimately lowers transaction costs. In practice, aggregators can use our results as

follows. On each day, they either ask drivers to schedule their driving needs for the next day,

or they infer these needs from past travel patterns. Next, they solve our linear program for

each car individually, which can be done efficiently by parallel computing even for large fleets

with thousands of vehicles. Last, they add up the maximum regulation power each car can

provide and sell it to the grid operator. This approach is easy to implement and requires few

computational resources at the expense of sacrificing some optimality.

As opposed to individual vehicle owners, aggregators can decide which cars (or other flexible

electric devices) to use to provide a given amount of regulation power. This has two advantages.

First, battery degradation can be reduced by managing the state-of-charge of vehicles more

precisely. Second, charging and discharging losses can be reduced by running vehicle chargers

at their nominal operating points. In addition, aggregators may be able to trade on intraday

markets, which would allow them to offer more regulation power for a given aggregate battery

size. For example, if they encounter an extreme deviation trajectory, they can buy or sell

electricity on the intraday market to maintain the state-of-charge within its bounds. This is

risky, however, because intraday markets may not be liquid enough for aggregators to find

trading partners. Especially not when the grid is already in distress, which is the case when

extreme frequency deviations occur.
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Equipment manufacturers design and sell bidirectional vehicle chargers. Contrary to previous

studies that relax the exact delivery guarantee constraints, we find that the battery size and

not the charger power is limiting the profits from frequency regulation. Manufacturers thus

have no incentive to produce overly powerful bidirectional chargers.

The electricity system and the society as a whole could benefit significantly from vehicle-to-

grid, which harnesses the idle storage capacities of electric vehicles and thereby reduces the

need for other sources of flexible electricity supply, such as gas power plants or stationary

batteries. This in turn reduces the need for imports of natural gas and critical raw materials,

increases the long-term security of electricity supply, and decreases greenhouse gas emissions.

Regulators may therefore want to make vehicle-to-grid more attractive by prescribing the

availability and delivery prices, defining appropriate delivery guarantee requirements and

setting the penalties charged for non-compliance. Our results show that the vehicle owners’

profits from frequency regulation decrease with the activation ratio and that current penalties

are too low to incentivize vehicle owners to respect the law. Regulators could thus make vehicle-

to-grid more attractive by decreasing the activation ratio and thereby relaxing the delivery

guarantee requirements. Given that the delivery guarantee in our nominal scenario is very

restrictive, this would only slightly decrease the reliability of frequency regulation. If, at the

same time, regulators were to increase the penalties for non-compliance, then the reliability

of frequency regulation might even increase because more vehicle owners would honor their

contractual obligations. Our new model can be used for finding the appropriate level of the

penalty. Our results also show that incumbent storage operators with low charge rates may

lobby against weaker delivery guarantees because these would increase their competition

from vehicle-to-grid but not increase their profits.
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Appendices

2.A Problem Data and Model Parameters

Table 2.A.1: Parameters of the Nominal Simulation Scenario.

Parameter Symbol Value Unit

Vehicle Data
Minimum State-of-Charge

¯
y 10 kWh

Maximum State-of-Charge ȳ 40 kWh
Target State-of-Charge y⋆ 27 kWh
Deviation Penalty p⋆ 0.15 e/kWh
Charging Efficiency η+ 85 %
Discharging Efficiency η− 85 %
Maximum Charing Power ȳ+ 7 kW
Maximum Discharging Power ȳ− 7 kW
Yearly Energy for Driving 2,000 kWh
Fraction of Time Driving 27 %

Grid Data
Nominal frequency f0 50 Hz
Normalization constant ∆ f 200 mHz
Average Utility Price from 2015 to 2019 14.31 cts/kWh
Average Availability Price from 2015 to 2019 0.825 cts/kW/h

General Parameters
Trading Interval ∆t 30 min
Activation Period in D γ 30 min
Regulation Cycle in D Γ 2.5 h
Activation Period in D̂ γ̂ 30 min
Regulation Cycle in D̂ Γ̂ 1 day
Sampling Rate for Frequency Measurements 0.1 Hz
Planning Horizon T 1 day
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Figure 2.A.1: Evolution of the availability and regulation prices from 2015 to 2019. The regula-
tion price changes every 10s. For better visibility, we show its daily averages.

2.B Additional Experiments and Results

In the first additional experiment we assess the heterogeneity of the value of vehicle-to-grid

across the years 2016 to 2019. Figure 2.B.1 visualizes the temporal evolution of the value

of vehicle-to-grid and shows that it may vary between 75e and 140e at the end of the

year. The second additional experiment compares two vehicles with uni- and bidirectional

chargers. Figure 2.B.2 indicates that the value of vehicle-to-grid is approximately concave

in the yearly mileage for both vehicles and for mileages up to 30,000km. Since a vehicle

with a bidirectional charger can be used for unidirectional charging, the value of vehicle-

to-grid with a bidirectional charger exceeds that of the same vehicle with a unidirectional

charger. Furthermore, a higher mileage necessitates higher utility purchases xb , which has

two opposing effects on regulation profits. On the one hand, power discharges become less

likely because they only occur when δ(t)xr (t) < −xb(t), which reduces energy conversion

losses and makes the provision of frequency regulation more cost-effective. On the other

hand, the effective upper bound ȳ+(t)− xb(t) on xr (t) tightens, which reduces the amount

of regulation power that can be offered on the market. The value of vehicle-to-grid peaks

at 138e for a vehicle with a bidirectional charger traveling between 5,000km and 10,000km

per year and at 42e for a vehicle with a unidirectional charger traveling 30,000km per year.

For yearly mileages greater than 5,000km, the higher the yearly mileage, the lower the added

value of a bidirectional charger. This result may be of particular interest for operators of shared

electric vehicles. However, even for a yearly mileage of 30,000km, using a bidirectional instead

of a unidirectional charger more than doubles the value of vehicle-to-grid. Furthermore,

many drivers may prefer vehicles with internal combustion engines or fuel cells over electric

vehicles to cover high yearly mileages because of their greater ranges and shorter refueling

times. Therefore, owners of electric vehicle are more likely to cover yearly mileages close to

the French average of 13,000km. Providing frequency regulation with a unidirectional charger

would thus earn them about 20e per year. In practice, these earnings would have to be shared

with vehicle aggregators and equipment manufacturers.

To complement the analysis of the nominal scenario described in Section 2.6.4, Figure 2.B.3

shows the relationships between market bids, prices, driving needs, frequency deviations,

and the battery state-of-charge on 9 August 2019 in a 10 second resolution. As expected, the
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Figure 2.B.1: Value of vehicle-to-grid from 2016 to 2019.
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Figure 2.B.2: Value of vehicle-to-grid in 2019 vs mileage.

vehicle owner charges the battery at night when utility prices are low. We also observe that

the vehicle participates in the regulation market at a more or less constant level whenever it

is not driving. This reduces the exposure to extreme frequency deviations at any one time.

The battery state-of-charge naturally decreases when the vehicle is driving, increases when

the vehicle is being charged and remains essentially constant when the vehicle provides only

frequency regulation because the frequency deviations fluctuate rapidly around zero.

2.C Proofs

This appendix contains the proofs of all theorems and propositions in the main text.
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9 August 2019.

Proof of Proposition 2.1. By definition we have

y
(
xb , xr ,δ, y0, t

)
=y0 +

∫ t

0
η+

[
xb(t ′)+δ(t ′)xr (t ′)

]+−
[
xb(t ′)+δ(t ′)xr (t ′)

]−
η−

−d(t ′)dt ′

=y0 +
∫ t

0
min

{
η+

(
xb(t ′)+δ(t ′)xr (t ′)

)
,

xb(t ′)+δ(t ′)xr (t ′)
η−

}
−d(t ′)dt ′,

where the second equality holds because η+ < 1
η− . The postulated properties of y(xb , xr ,δ, y0, t )

follow from the observation that the minimum of two (nondecreasing) affine functions is a

concave (nondecreasing) function (Boyd and Vandenberghe, 2004, p. 73).

Proof of Proposition 2.2. We will show that maxδ∈D Var(δ) ≤ β/T , where β = ⌈T /Γ⌉γ. To this

end, we note that

max
δ∈D

Var(δ) = max
δ∈D+

Var(δ) ≤ max
δ∈Dβ

Var(δ), (2.6)
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where Dβ = {δ ∈ L (T , [0,1]) :
∫ T

0 δ(t)dt ≤ β}. The equality in (2.6) holds because Var(δ)

remains unchanged when δ(t ) is replaced with |δ(t )| for every t ∈T . Moreover, the inequality

holds because D+ ⊆Dβ. To see this, observe that for any δ ∈D+ we have

∫ T

0
δ(t )dt =

⌈T /Γ⌉∑
n=1

∫ min{nΓ,T }

(n−1)Γ
δ(t )dt ≤

⌈
T

Γ

⌉
γ=β.

Note that Dβ constitutes a budget uncertainty set of the type introduced by Bertsimas and Sim

(2004), where the uncertainty budget β corresponds to the maximum number of regulation

cycles within the planning horizon multiplied by the duration of an activation period. Thus, β

can be viewed as the maximum amount of time within the planning horizon during which all

reserve commitments must be honored. By weak duality, the highest variance of any scenario

in Dβ satisfies

max
δ∈Dβ

Var(δ) ≤min
λ≥0

max
δ∈L (T ,[0,1])

1

T

∫ T

0
δ2(t )dt +λ

(
β−

∫ T

0
δ(t )dt

)
=min

λ≥0
λβ+ max

δ∈L (T ,[0,1])

∫ T

0
δ(t ) (δ(t )/T −λ)dt

=min
λ≥0

λβ+T max
δ∈[0,1]

δ (δ/T −λ)

=min
λ≥0

λβ+max{0,1−λT }

=min
λ≥0

max
{
λβ,1−λ(

T −β)}= β

T
.

The claim now follows by substituting the above result into (2.6) and recalling the definition

of β.

Proof of Proposition 2.3. As for assertion (i) we first prove that LDK ⊆D. To this end, select

any δ ∈DK , and define δ= Lδ. It is easy to see that δ ∈L (T , [−1,1]). Next, select any t ∈T .

If t ≤ Γ, note that∫ t

[t−Γ]+
|δ(t ′)|dt ′ =

∫ t

0
|δ(t ′)|dt ′ ≤

∫ Γ

0
|δ(t ′)|dt ′ =∆t

∆k∑
l=1

|δl | ≤ γ,

where the auxiliary parameter ∆k = Γ/∆t is integral thanks to Assumption 2.2. The second

inequality in the above expression holds because δ ∈ DK . If t ≥ Γ, on the other hand, we
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define k = ⌈ t
∆t ⌉ and α= ⌈ t

∆t ⌉− t
∆t ∈ [0,1). Then, we find

∫ t

[t−Γ]+
|δ(t ′)|dt ′ =

∫ (k−∆k)∆t

t−Γ
|δ(t ′)|dt ′+

∫ (k−1)∆t

(k−∆k)∆t
|δ(t ′)|dt ′+

∫ t

(k−1)∆t
|δ(t ′)|dt ′

= (k∆t − t ) |δk−∆k |+∆t
k−1∑

l=k−∆k+1
|δl |+ (t − (k −1)∆t ) |δk |

=∆t

(
α

k−1∑
l=k−∆k

|δl |+ (1−α)
k∑

l=k−∆k+1
|δl |

)
≤ γ,

where the inequality holds becauseδ ∈DK , which ensures that both
∑k−1

l=k−∆k |δl | and
∑k

l=k−∆k+1 |δl |
are smaller or equal to γ/∆t . As t ∈T was chosen arbitrarily, this implies that δ ∈ LDK . In

summary, we have shown that LDK ⊆D.

Next, we show that L†D ⊆DK . To this end, select any δ ∈D and define δ= L†δ. It is easy to

see that δ ∈ [−1,1]K . Moreover, for any k ∈K we have

k∑
l=1+[k−Γ/∆t ]+

δl =
k∑

l=1+[k−Γ/∆t ]+

1

∆t

∫
Tl

δ(t ′)dt ′ = 1

∆t

∫ k∆t

[k∆t−Γ]+
δ(t ′)dt ′ ≤ γ

∆t
,

where the inequality holds because δ ∈D. As k ∈K was chosen arbitrarily, this implies that

δ ∈ L†D. In summary, we have shown that L†D ⊆DK .

Finally, we prove that DK ⊆ L†D. To this end, we observe that L†L coincides with the identity

mapping on RK . As LDK ⊆D, this implies that

DK = L†LDK ⊆ L†D.

Since both L†D ⊆DK and DK ⊆ L†D, we have in fact shown that L†D =DK . Thus assertion (i)

follows. Assertion (ii) can be proved in a similar manner. Details are omitted for brevity.

Proof of Proposition 2.4. The proof widely parallels that of Proposition 2.1 and is therefore

omitted.

The proof of Theorem 2.1 relies on Propositions 2.6–2.9 below.

Proposition 2.6. The following equivalences hold.

(i ) y+
(
xb(t ), xr (t ),δ(t )

)
≤ ȳ+(t ) ∀δ ∈D,∀t ∈T ⇐⇒ y+

k

(
xb

k , xr
k ,δk

)
≤ ȳ+

k ∀δ ∈DK ,∀k ∈K

(i i ) y−
(
xb(t ), xr (t ),δ(t )

)
≤ ȳ−(t ) ∀δ ∈D,∀t ∈T ⇐⇒ y−

k

(
xb

k , xr
k ,δk

)
≤ ȳ−

k ∀δ ∈DK ,∀k ∈K

Proof. Assertion (i ) can be reexpressed as

max
t∈T

max
δ∈D

y+
(
xb(t ), xr (t ),δ(t )

)
− ȳ+(t ) ≤ 0 ⇐⇒ max

k∈K
max
δ∈DK

y+
k

(
xb

k , xr
k ,δk

)
− ȳ+

k ≤ 0.
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We will prove this equivalence by showing that the left hand sides of the two inequalities are

equal. Indeed, a direct calculation reveals that

max
t∈T

max
δ∈D

y+
(
xb(t ), xr (t ),δ(t )

)
− ȳ+(t ) =max

t∈T
max

−1≤δ(t )≤1

[
xb(t )+δ(t )xr (t )

]+− ȳ+(t )

=max
t∈T

xb(t )+xr (t )− ȳ+(t )

=max
k∈K

xb
k +xr

k − ȳ+
k

=max
k∈K

max
−1≤δk≤1

[
xb

k +δk xr
k

]+− ȳ+
k

=max
k∈K

max
δ∈DK

y+
(
xb

k , xr
k ,δk

)
− ȳ+

k ,

(2.8)

where the first equality follows from the definition of y+ in (2.1a) and the observation that

{δ(t ) : δ ∈D} = [−1,1], while the second equality holds because xb(t ) ≥ 0 and xr (t ) ≥ 0 which

implies that δ(t ) = 1 maximizes the instantaneous charging rate. The third equality exploits

our assumption that xb , xr , and ȳ+ are piecewise constant functions. The fourth equality

holds because xb
k ≥ 0 and xr

k ≥ 0, which implies that δk = 1 maximizes the per-period charging

rate. The fifth equality follows again from the definition of y+ in (2.1a) and the observation

that {δk :δ ∈DK } = [−1,1].

The proof of assertion (i i ) is similar and therefore omitted.

Proposition 2.7. The following equivalence holds.

y
(
xb , xr ,δ, y0, t

)
≤ ȳ ∀δ ∈D,∀t ∈T ⇐⇒ yk

(
xb , xr ,δ, y0

)
≤ ȳ ∀δ ∈DK , ∀k ∈K ∪ {0}

Proof. The claim follows if we can show that

max
t∈T

max
δ∈D

y
(
xb , xr ,δ, y0, t

)
= max

k∈K ∪{0}
max
δ∈DK

yk

(
xb , xr ,δ, y0

)
. (2.9)

To this end, assume first that t = k∆t for some k ∈K ∪ {0}. In this case, we have

max
δ∈D

y
(
xb , xr ,δ, y0, t

)
=max
δ∈D+

y
(
xb , xr ,δ, y0, t

)
=y0 +max

δ∈D+

∫ t

0
η+

(
xb(t ′)+δ(t ′)xr (t ′)

)
−d(t ′)dt ′

=y0 +max
δ∈D+

k∑
l=1

∫
Tl

η+
(
xb

l +δ(t ′)xr
l

)
−dl dt ′

=y0 +max
δ∈D+

∆t
k∑

l=1
η+

(
xb

l + (L†δ)l xr
l

)
−dl

=y0 + max
δ∈D+

K

∆t
k∑

l=1
η+

(
xb

l +δl xr
l

)
−dl

= max
δ∈D+

K

yk

(
xb , xr ,δ, y0

)
= max
δ∈DK

yk

(
xb , xr ,δ, y0

)
,

(2.10)
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where the first equality holds because δ ∈ D if and only if |δ| ∈ D+ and because y is nonde-

creasing in δ thanks to Proposition 2.1. The second equality follows from the definitions of

y , y+, and y− and from the non-negativity of xb , xr and δ. The third equality exploits our

assumption that d , xb and xr are piecewise constant. As δ is integrated against a piecewise

constant function, it may be averaged over the trading intervals without changing its objective

function value. The fifth equality then follows from Proposition 2.3, while the sixth equality

follows from the definitions of yk , y+ and y− and from the non-negativity of xb , xr and δ.

The seventh equality, finally, holds because δ ∈DK if and only if |δ| ∈D+
K and because yk is

nondecreasing in δ thanks to Proposition 2.6.

Assume now more generally that t ∈ Tk for some k ∈ K . If the vehicle is driving in trading

interval Tk , then ȳ+(t ) = ȳ−(t ) = 0 for all t ∈Tk . Thus, we have

max
δ∈D

y
(
xb , xr ,δ, y0, t

)
=max

δ∈D
y

(
xb , xr ,δ, y0, (k −1)∆t

)
−

∫ t

(k−1)∆t
d(t ′)dt ′

≤max
δ∈D

y
(
xb , xr ,δ, y0, (k −1)∆t

)
= max
δ∈DK

yk−1

(
xb , xr ,δ, y0

)
∀t ∈Tk ,

where the inequality holds because d(t) ≥ 0 for all t ∈ Tk , and the second equality follows

from the first part of the proof. Alternatively, if the vehicle is parked in trading interval Tk ,

then d(t ) = 0 for all t ∈Tk . Thus, we have

max
δ∈D

y
(
xb , xr ,δ, y0, t

)
= max
δ∈D+

y
(
xb , xr ,δ, y0, t

)
= max
δ∈D+

y
(
xb , xr ,δ, y0, (k −1)∆t

)
+

∫ t

(k−1)∆t
η+y+

(
xb(t ′), xr (t ′),δ(t ′)

)
dt ′

≤ max
δ∈D+

y
(
xb , xr ,δ, y0,k∆t

)
= max
δ∈D+

K

yk

(
xb , xr ,δ, y0

)
= max
δ∈DK

yk

(
xb , xr ,δ, y0

)
for all t ∈Tk , where the inequality holds because the integral is nondecreasing in t , and the

equalities follow from the first part of the proof. In summary, we have shown that

max
δ∈D

y
(
xb , xr ,δ, y0, t

)
≤ max

{
max
δ∈DK

yk−1

(
xb , xr ,δ, y0

)
, max
δ∈DK

yk

(
xb , xr ,δ, y0

)}
for all t ∈Tk and k ∈K . This implies that

max
t∈T

max
δ∈D

y
(
xb , xr ,δ, y0, t

)
≤ max

k∈K ∪{0}
max
δ∈DK

yk

(
xb , xr ,δ, y0

)
.

On the other hand, we have

max
t∈T

max
δ∈D

y
(
xb , xr ,δ, y0, t

)
≥ max

k∈K ∪{0}
max
δ∈D

y
(
xb , xr ,δ, y0,k∆t

)
= max

k∈K ∪{0}
max
δ∈DK

yk

(
xb , xr ,δ, y0

)
,

where the equality follows from the first part of the proof. Combining the above inequalities

implies (2.9), and thus the claim follows.
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Proposition 2.8. The following equivalence holds.

y(xb , xr ,δ, y0, t ) ≥
¯
y ∀δ ∈D,∀t ∈T ⇐⇒ yk (xb , xr ,δ, y0) ≥

¯
y ∀δ ∈DK ,∀k ∈K ∪ {0}

The proof of Proposition 2.8 is significantly more challenging than that of Proposition 2.7

because y(xb , xr ,δ, y0, t) is concave in δ. We make it more digestible by first proving two

lemmas.

Lemma 2.1. If f :R×T →R is concave, continuous and nonincreasing in its first argument

and piecewise constant on the trading intervals Tk , k ∈K , in its second argument, then

min
δ∈D+

∫ t

0
f
(
δ(t ′), t ′

)
dt ′ = min

δ∈D+∩L (T ,{0,1})

∫ t

0
f
(
δ(t ′), t ′

)
dt ′ ∀t ∈T .

Proof. For ease of exposition, assume first that t = T and define tk =∆t (k −1) for every k ∈K .

For every approximation parameter N ∈Nwe define N = {1, . . . , N } and set

T N
k,n =

[
∆t

(
k −1+ n −1

N

)
,∆t

(
k −1+ n

N

))
∀k ∈K , ∀n ∈N .

Note that the T N
k,n , n ∈N , are mutually disjoint and that their union coincides with the k-th

trading interval Tk . Next, introduce a lifting operator LN :RK×N →L (T ,R) defined through

(LNδ)(t) = δk,n if t ∈ T N
k,n for k ∈ K and n ∈ N . In addition, let L†

N : L (T ,R) → RK×N be

the corresponding adjoint operator defined through (L†
Nδ)k,n = N

∆t

∫
T N

k,n
δ(t )dt for k ∈K and

n ∈N . Using this notation, we first prove that

lim
N→∞

∑
k∈K

∑
n∈N

f
(
(L†

Nδ)k,n , tk

) ∆t

N
=

∫ T

0
f (δ(t ), t ) dt (2.11)

for any fixed δ ∈D+. As f is continuous and nonincreasing in its first argument and piecewise

constant in its second argument, we have

inf
t∈T N

k,n

f (δ(t ), t ) = f

(
sup

t∈T N
k,n

δ(t ), tk

)
≤ f

((
L†

Nδ
)

k,n
, tk

)
≤ f

(
inf

t∈T N
k,n

δ(t ), tk

)
= sup

t∈T N
k,n

f (δ(t ), t )

for every k ∈K , n ∈N and N ∈N. Summing over k and n thus yields

∑
k∈K

∑
n∈N

inf
t∈T N

k,n

f (δ(t ), t )
∆t

N
≤ ∑

k∈K

∑
n∈N

f
((

L†
Nδ

)
k,n

, tk

) ∆t

N
≤ ∑

k∈K

∑
n∈N

sup
t∈T N

k,n

f (δ(t ), t )
∆t

N

for every N ∈N. As f (δ(t), t) constitutes a composition of a continuous function with a Rie-

mann integrable function, it is also Riemann integrable. Thus, the lower and upper Riemann

sums in the above inequality both converge to
∫ T

0 f (δ(t), t)dt as N tends to infinity. This
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observation establishes (2.11). As δ ∈D+ was chosen arbitrarily, we may thus conclude that

inf
δ∈D+

∫ T

0
f (δ(t ), t ) dt = inf

δ∈D+ lim
N→∞

∑
k∈K

∑
n∈N

f
((

L†
Nδ

)
k,n

, tk

) ∆t

N
.

For the following derivations we introduce the auxiliary uncertainty set

D+
K N =

{
δ ∈ [−1,1]K N :

m∑
l=1+[m−NΓ/∆t ]+

δl ≤ N
γ

∆t
∀m = 1, . . . ,K N

}

for N ∈N. By slight abuse of notation, we henceforth naturally identify any matrix δ ∈RK×N

with the vector obtained by concatenating the rows of δ. This convention allows us, for

example, to write δ ∈D+
K N even if δ was initially defined as a K ×N -matrix. By repeating the

arguments of Proposition 2.3, it is easy to show that LN D+
K N ⊆ D+ and L†

N D+ = D+
K N for all

N ∈N. Using these relations, we will now prove that

inf
δ∈D+

∫ T

0
f (δ(t ), t ) dt = lim

N→∞
inf

δ∈D+
K N

∑
k∈K

∑
n∈N

f
(
δk,n , tk

) ∆t

N
. (2.12)

To this end, select any ϵ > 0 and δ⋆ ∈ D+ with
∫ T

0 f (δ⋆(t), t)dt ≤ infδ∈D+
∫ T

0 f (δ(t), t)dt + ϵ,

and choose Nϵ large enough such that∣∣∣∣∣ ∑
k∈K

∑
n∈N

f
((

L†
Nδ

⋆
)

k,n
, tk

) ∆t

N
−

∫ T

0
f
(
δ⋆(t ), t

)
dt

∣∣∣∣∣≤ ϵ ∀N ≥ Nϵ.

Note that such an Nϵ exists thanks to (2.11). For any N ≥ Nϵ, we thus find

0 ≤ inf
δ∈D+

K N

∑
k∈K

∑
n∈N

f
(
δk,n , tk

) ∆t

N
− inf
δ∈D+

∫ T

0
f (δ(t ), t ) dt

≤ inf
δ∈D+

K N

∑
k∈K

∑
n∈N

f
(
δk,n , tk

) ∆t

N
−

∫ T

0
f
(
δ⋆(t ), t

)
dt +ϵ

≤ ∑
k∈K

∑
n∈N

f
((

L†
Nδ

⋆
)

k,n
, tk

) ∆t

N
−

∫ T

0
f
(
δ⋆(t ), t

)
dt +ϵ≤ 2ϵ,

where the first inequality holds because LN D+
K N ⊆D+, the second inequality follows from the

choice of δ⋆, the third inequality exploits the identity L†
N D+ =D+

K N , and the fourth inequality

holds because N ≥ Nϵ. As ϵ> 0 was chosen arbitrarily, Equation (2.12) follows.

In order to prove that

inf
δ∈D+

∫ T

0
f (δ(t ), t ) dt = inf

δ∈D+∩L (T ,{0,1})

∫ T

0
f (δ(t ), t ) dt , (2.13)
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we first observe that

inf
δ∈D+

∫ T

0
f (δ(t ), t ) dt = lim

N→∞
inf

δ∈D+
K N

∑
k∈K

∑
n∈N

f
(
δk,n , tk

) ∆t

N

= lim
N→∞

inf
δ∈D+

K N∩{0,1}K N

∑
k∈K

∑
n∈N

f
(
δk,n , tk

) ∆t

N
. (2.14)

Here, the first equality follows from (2.12), and the second equality holds because f is concave

in its first argument, which implies that the minimum over δ is attained at a vertex of the

polyhedron D+
K N . As all vertices of D+

K N are binary by virtue of Lemma 2.2 below, we can

restrict δ to {0,1}K×N without loss of optimality. To prove (2.13), select any ϵ> 0 and N ∈N
large enough such that∣∣∣∣∣ min

δ∈D+
K N∩{0,1}K×N

∑
k∈K

∑
n∈N

f
(
δk,n , tk

) ∆t

N
− inf
δ∈D+

∫ T

0
f (δ(t ), t ) dt

∣∣∣∣∣≤ ϵ. (2.15)

Note that such an N exists because of (2.14). Next, let δ⋆ be a minimizer of the discrete

optimization problem on the left hand side of the above expression, and set δ⋆ = LNδ
⋆.

By (2.15) and because δ⋆ is constant on the intervals T N
k,n , we thus have

∣∣∣∣∫ T

0
f (δ⋆(t ), t )dt − inf

δ∈D+

∫ T

0
f (δ(t ), t )dt

∣∣∣∣≤ ϵ.

As LN D+
K N ⊆D+ and δ⋆ ∈ {0,1}K×N , we further have δ⋆ ∈D+∩L (T , {0,1}). As ϵ was chosen

arbitrarily, Equation (2.13) follows.

If t ∈ T is a multiple of 1/(K N ) for some N ∈N, then f (δ(t ′), t ′) can be set to 0 for all t ′ ≥ t ,

and the above proof remains valid with obvious minor modifications. For any other t ∈T , the

claim follows from a continuity argument. Details are omitted for brevity.

Lemma 2.2. For any N ∈N, all vertices of the polyhedron

D+
K N =

{
δ ∈ [0,1]K N :

m∑
l=1+[m−NΓ/∆t ]+

δl ≤ N
γ

∆t
∀m = 1, . . . ,K N

}

are binary vectors.

Proof. The polyhedron D+
K N can be represented more concisely as {δ ∈RK N+ : Aδ≤ b}, where

A =
(

C

I

)
∈R2K N×K N , b =

[
N γ

∆t 1

1

]
∈R2K N

and C ∈RK N×K N is defined through Ci j = 1 if i −NΓ/∆t < j ≤ i and Ci j = 0 otherwise. Here, I

denotes the identity matrix and 1 the column vector of 1s inRK N . By construction, A is a binary

matrix where the 1s appear consecutively in each row. Proposition 2.1 and Corollary 2.10 by
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Nemhauser and Wolsey (1999) thus imply that A is totally unimodular. As b ∈ZK N because of

Assumption 2.2, all vertices of D+
K N are integral thanks to Proposition 2.2 again by Nemhauser

and Wolsey (1999). In addition, as D+
K N ⊆ [0,1]K N , the vertices of D+

K N are in fact binary

vectors.

We are now ready to prove Proposition 2.8.

Proof of Proposition 2.8. The claim follows if we can show that

min
t∈T

min
δ∈D

y(xb , xr ,δ, y0, t ) = min
k∈K ∪{0}

min
δ∈DK

yk (xb , xr ,δ, y0). (2.16)

In the first part of the proof, we reformulate the continuous non-convex minimization problem

minδ∈D y(xb , xr ,δ, y0, t) as a continuous linear program. To ease notation, we set ∆η= 1
η− −

η+ ≥ 0 and define the auxiliary functions

χ(δ(t ), t ) = max

{
η+xr (t )δ(t ),

1

η−
xr (t )δ(t )−∆ηxb(t )

}
and

m(t ) = max

{
η+xr (t ),

1

η−
xr (t )−∆ηxb(t )

}
for all t ∈T . The function χ(δ(t ), t ) can be viewed as a nonlinear decision rule of the uncertain

frequency deviation δ(t ). Using these conventions, we find

min
δ∈D

y
(
xb , xr ,δ, y0, t

)= min
δ∈D+ y

(
xb , xr ,−δ, y0, t

)
= y0 + min

δ∈D+

∫ t

0
η+xb(t ′)−χ(

δ(t ′), t ′
)−d(t ′)dt ′

= y0 + min
δ∈D+∩L (T ,{0,1})

∫ t

0
η+xb(t ′)−χ(

δ(t ′), t ′
)−d(t ′)dt ′

= y0 + min
δ∈D+∩L (T ,{0,1})

∫ t

0
η+xb(t ′)−m(t ′)δ(t ′)−d(t ′)dt ′

= y0 + min
δ∈D+

∫ t

0
η+xb(t ′)−m(t ′)δ(t ′)−d(t ′)dt ′,

(2.17)

where the first equality holds because the statements δ ∈ D, −δ ∈ D and |δ| ∈ D+ are all

equivalent and because y is nondecreasing in δ thanks to Proposition 2.1. The second equality

follows from the definitions of y , y+, y− and χ, and the third equality is a direct consequence

of Lemma 2.1, which applies because −χ is concave and nonincreasing in its first argument

and, by virtue of Assumption 2.1, piecewise constant in its second argument. The fourth

equality holds because χ(δ(t ′), t ′) = m(t ′)δ(t ′) whenever δ(t ′) ∈ {0,1}, and the last equality

follows again from Lemma 2.1. Note that m(t ′)δ(t ′) constitutes a linear decision rule of δ(t ).
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In the second part of the proof we assume that t = k∆t for some k ∈K ∪ {0} and show that

min
δ∈D

y(xb , xr ,δ, y0, t ) = min
δ∈DK

yk (xb , xr ,δ, y0).

To this end, we define χl (δl ) = max{η+xr
l δl , 1

η− xr
l δl −∆ηxb

l } and ml = max{η+xr
l ,

xr
l
η− −∆ηxb

l }

for all l ∈K . By (2.17), we thus have

min
δ∈D

y
(
xb , xr ,δ, y0,k∆t

)= y0 + min
δ∈D+

∫ k∆t

0
η+xb(t ′)−m(t ′)δ(t ′)−d(t ′)dt ′

= y0 + min
δ∈D+

k∑
l=1

∫
Tl

η+xb
l −mlδ(t ′)−dl dt ′

= y0 + min
δ∈D+

K

∆t
k∑

l=1
η+xb

l −mlδl −dl

= min
δ∈DK

yk

(
xb , xr ,δ, y0

)
,

(2.18)

where the second equality holds because d , xb and xr are piecewise constant by virtue of

Assumption 2.1, which implies that m(t ′) = ml for every t ′ ∈ Tl . The third equality then

follows from Proposition 2.3. The fourth equality can be proved by reversing the arguments

from (2.17) with obvious minor modifications. In fact, as the frequency deviation scenarios are

now piecewise constant and can be encoded by finite-dimensional vectors, the proof requires

no cumbersome limiting arguments as the ones developed in the proof of Lemma 2.1. We

omit the details for brevity.

In the third part of the proof we assume that t ∈Tk for some k ∈K and show that

min
t∈Tk

min
δ∈D

y(xb , xr ,δ, y0, t ) = min
l∈{k−1,k}

min
δ∈DK

yl (xb , xr ,δ, y0).

As in the proof of Proposition 2.7, we distinguish whether or not the vehicle is driving in

period Tk . Specifically, if the vehicle is driving in period Tk , then ȳ+(t) = ȳ−(t) = 0, which

implies that

min
δ∈D

y(xb , xr ,δ, y0, t ) =min
δ∈D

y(xb , xr ,δ, y0, (k −1)∆t )−
∫ t

(k−1)∆t
d(t ′)dt

=min
δ∈D

y(xb , xr ,δ, y0,k∆t )+
∫ k∆t

t
d(t ′)dt

≥min
δ∈D

y(xb , xr ,δ, y0,k∆t ) = min
δ∈DK

yk (xb , xr ,δ, y0).

Here, the inequality holds because d(t) ≥ 0 for all t ∈ Tk , and the last equality follows

from (2.18). Otherwise, if the vehicle is parked in period Tk , then d(t) = 0 for all t ∈ Tk ,
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and hence

min
δ∈D

y(xb , xr ,δ, y0, t )

= y0 + min
δ∈D+

k−1∑
l=1

∫
Tl

η+xb
l −mlδ(t ′)−dl dt ′+

∫ t

(k−1)∆t
η+xb

k −mkδ(t ′)dt ′

= y0 + min
δ∈D+(t )

∆t
k−1∑
l=1

η+xb
l −dl + (t − (k −1)∆t )η+xb

k −
k∑

l=1

∫
Tl

mlδ(t ′)dt ′

= y0 +∆t
k−1∑
l=1

η+xb
l −dl + (t − (k −1)∆t )η+xb

k − max
δ∈D+

K (t )
∆t

k∑
l=1

mlδl ,

(2.19)

where we use the time-dependent uncertainty sets

D+(t ) =
{
δ ∈D+ : δ(t ′) = 0 ∀t ′ ∈ [t ,k∆t ]

}
and D+

K (t ) =
{
δ ∈D+

K : δk ≤ t − (k −1)∆t

∆t

}
to simplify the notation. The first equality in (2.19) follows from (2.17) and Assumption 2.1.

Note that δ(t ′) does not impact the objective function of the resulting minimization problem

over D+ for any t ′ > t . It is therefore optimal to set δ(t ′) = 0 for all t ′ ≥ t and, in particular,

for all t ′ ∈ [t ,k∆t ]. This restriction has no impact on the objective function but maximizes

nature’s flexibility in selecting harmful frequency deviations δ(t ′) for t ′ ≤ t . Hence, the second

equality in (2.19) follows. As δ is now integrated against a piecewise constant function, it

may be averaged over the trading intervals without changing its objective function value. The

third equality in (2.19) thus holds because L†D+(t ) =D+
K (t ), which can be proved similarly to

Proposition 2.3 by noting that

(L †δ)k = 1

∆t

∫ t

(k−1)∆t
δ(t ′)dt ′ ≤ t − (k −1)∆t

∆t
∀δ ∈D+(t ).

In the following we show that (2.19) is piecewise affine in t . To this end, note that the opti-

mization problem in the last line of (2.19) can be expressed more concisely as the standard

form linear program

min
z≥0

c⊤z

s.t. Az = b(t ),
(2.20)

where z⊤ = (δ⊤, s⊤) ∈RK ×R2K combines the (averaged) frequency deviations in the trading

intervals with a vector of slack variables. Here, the vector c ∈ R3K of objective function

coefficients is defined through cl = −ml∆t if l ≤ k and cl = 0 otherwise. The constraints

involve the matrix

A =
(

C I 0

I 0 I

)
∈R2K×3K ,

where C ∈RK×K is defined through Ci j = 1 if i −Γ/∆t < j ≤ i and Ci j = 0 otherwise, and the
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vector b(t) ∈ R2K is defined through bl (t) = t−(k−1)∆t
∆t if l = k +K and bl = 1 otherwise. By

Lemma 2.2 and Proposition 2.1 of Nemhauser and Wolsey (1999), A is totally unimodular.

Note that (2.20) is solvable for every t ∈Tk because its feasible set is non-empty and compact.

Next, choose any t0 in the interior of Tk , denote by B an optimal basis matrix for problem (2.20)

at t = t0, and define z⋆(t ) = B−1b(t ) for all t ∈Tk . In the following, we will use local sensitivity

analysis of linear programming to show that z⋆(t) is optimal in (2.20) for all t ∈ Tk . As the

basis B remains dual feasible when t deviates from t0, it suffices to show that

z⋆(t ) = z⋆(t0)+ t − t0

∆t
B−1eK+k ≥ 0 ∀t ∈Tk , (2.21)

where eK+k denotes the (K +k)-th standard basis vector in R2K (Bertsimas and Tsitsiklis, 1997,

p. 207). To this end, note that B is a non-singular square matrix constructed from 2K columns

of A and is therefore also totally unimodular. Moreover, B−1 is totally unimodular because

pivot operations preserve total unimodularity (Nemhauser and Wolsey, 1999, Proposition 2.1).

Hence, we have B−1eK+k ∈ {−1,0,1}2K . By construction, we further have b(t) ∈ {0,1}2K for

t = k∆t , which implies that z⋆(k∆t ) ∈Z2K . Evaluating (2.21) at t = k∆t then yields

z⋆(t0) = z⋆(k∆t )− k∆t − t0

∆t
B−1eK+k ,

which ensures that z⋆(k∆t) ≥ 0. Indeed, if any component of the integral vector z⋆(k∆t)

was strictly negative, it would have to be smaller or equal to −1. As t0 resides in the interior

of Tk and thus |(k∆t − t0)/∆t | < 1, the corresponding component of z⋆(t0) would then also

have to be strictly negative. This, however, contradicts the optimality of z⋆(t0), which implies

that z⋆(t0) ≥ 0. Hence, we have z⋆(k∆t) ≥ 0. One can use similar arguments to prove that

z⋆((k −1)∆t ) ≥ 0. As z⋆(t ) is affine in t , it is indeed non-negative for all t ∈Tk .

The above reasoning shows that z⋆(t) is optimal in (2.20) and that the minimum of (2.20) is

affine in t on Tk . Equation (2.19) further implies that minδ∈D y(xb , xr ,δ, y0, t) is affine in t

on Tk , and thus

min
t∈Tk

min
δ∈D

y(xb , xr ,δ, y0, t ) = min
l∈{k−1,k}

min
δ∈D

y(xb , xr ,δ, y0, l∆t ) = min
l∈{k−1,k}

min
δ∈DK

yl (xb , xr ,δ, y0),

where the second equality follows from (2.18). As k ∈K was chosen arbitrarily, (2.16) follows.

Proposition 2.9. The following equality holds.

max
δ∈D̂,y0∈Ŷ 0

ϕ(y(xb , xr ,δ, y0,T )) = max
δ∈D̂K ,y0∈Ŷ 0

ϕ(yK (xb , xr ,δ, y0))
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Proof. By introducing an auxiliary epigraphical variable z, we find

max
δ∈D̂,y0∈Ŷ 0

ϕ(y(xb , xr ,δ, y0,T )) =
 min

z
z

s.t. z ≥ max
δ∈D̂,y0∈Ŷ 0

ϕ(y(xb , xr ,δ, y0,T ))

=
 min

z
z

s.t. z ≥ max
δ∈D̂,y0∈Ŷ 0

an y(xb , xr ,δ, y0,T )+bn ∀n ∈N

=
 min

z
z

s.t. z ≥ max
δ∈D̂,y0∈Ŷ 0

an yK (xb , xr ,δ, y0)+bn ∀n ∈N

= max
δ∈D̂K ,y0∈Ŷ 0

ϕ(yK (xb , xr ,δ, y0)).

(2.22)

The second equality follows from the definition of ϕ and the third equality follows from

Propositions 2.7 and 2.8, which apply since D̂ and D̂K have the same structures as D and DK ,

respectively.

Proof of Theorem 2.1. The claim follows immediately from Propositions 2.6–2.9.

Proof of Theorem 2.2. By introducing embedded optimization problems that evaluate the

(decision-dependent) worst-case frequency deviation scenarios and by replacing the uncertain

initial state-of-charge in each robust constraint with its (decision-independent) worst-case

value, (RK ) becomes

min
xb ,xr ∈XK ,z∈R

cK (xb , xr )+ z

s.t. max
δ∈DK

y+(xb
k , xr

k ,δk ) ≤ ȳ+
k ∀k ∈K (a)

max
δ∈DK

y−(xb
k , xr

k ,δk ) ≤ ȳ−
k ∀k ∈K (b)

max
δ∈DK

yk (xb , xr ,δ, ȳ0) ≤ ȳ ∀k ∈K ∪ {0} (c)

min
δ∈DK

yk (xb , xr ,δ,
¯
y0) ≥

¯
y ∀k ∈K ∪ {0} (d)

max
y0∈Ŷ0

max
δ∈D̂K

ϕ
(
yK (xb , xr ,δ, y0)

) ≤ z (e)

(2.23)

Here, the worst-case cost-to-go has been moved from the objective function to the constraints

by introducing the auxiliary epigraphical variable z. To show that (2.23) is equivalent to (R′
K ),

we reuse several results derived for the proof of Theorem 2.1. First, by Equation (2.8) in the

proof of Proposition 2.6 the maximum charging power in (2.23a) equals

max
δ∈DK

y+(xb
k , xr

k ,δk ) = xr
k +xb

k .

Using similar arguments, it can be shown that the maximum discharging power in (2.23b)
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reduces to

max
δ∈DK

y−(xb
k , xr

k ,δk ) = xr
k −xb

k .

Next, Equation (2.10) in the proof of Proposition 2.7 reveals that, for any k ∈ K ∪ {0}, the

maximum state-of-charge in (2.23c) is given by

max
δ∈DK

yk

(
xb , xr ,δ, ȳ0

)
= ȳ0 + max

δ∈D+
K

∆t
k∑

l=1
η+

(
xb

l +δl xr
l

)
−dl .

Similarly, Equation (2.18) in the proof of Proposition 2.8 implies that, for every k ∈K ∪ {0},

the minimum state-of-charge in (2.23d) amounts to

min
δ∈DK

yk

(
xb , xr ,δ,

¯
y0

)
=

¯
y0 + min

δ∈D+
K

∆t
k∑

l=1
η+xb

l −mlδl −dl ,

where ml = max{η+xr
l , 1

η− xr
l −∆ηxb

l } constitutes an implicit function of the market deci-

sions xb
l and xr

l . As (2.23d) imposes a lower bound on the minimum state-of-charge, ml

may be reinterpreted as an auxiliary epigraphical variable that satisfies ml ≥ η+xr
l and ml ≥

1
η− xr

l −∆ηxb
l .

Finally, the maximum cost-to-go in (2.23e) can be reformulated as

max
y0∈Ŷ0

max
δ∈D̂K

ϕ
(
yK (xb , xr ,δ, y0)

)= max
y0∈Ŷ0

max
δ∈D̂K

max
n∈N

an yK (xb , xr ,δ, y0)+bn

= max
δ∈D̂K

max

{
max
n∈N+

bn +an yK (xb , xr ,δ, ˆ̄y0), max
n∈N−

bn +an yK (xb , xr ,δ,
¯
ŷ0), max

n∈N0

bn

}
,

where the first equality follows from the definition of the convex piecewise affine function ϕ.

The second equality holds because the order of maximization is immaterial, because an > 0

for all n ∈N+, an < 0 for all n ∈N− and an = 0 for all n ∈N0 and because the state-of-charge

yK (xb , xr ,δ, y0) increases with y0. Requiring the last expression to be smaller than or equal

to z is equivalent to

max
y0∈Ŷ0

max
δ∈D̂K

ϕ
(
yK (xb , xr ,δ, y0)

)≤ z ⇐⇒


max
δ∈D̂K

yK (xb , xr ,δ, ˆ̄y0) ≤ (z −bn)/an ∀n ∈N+

min
δ∈D̂K

yK (xb , xr ,δ,
¯
ŷ0) ≥ (z −bn)/an ∀n ∈N−

bn ≤ z ∀n ∈N0.

As DK and D̂K have the same structure, the embedded optimization problems over δ ∈ D̂K

admit similar linear reformulations as the embedded optimization problems over δ ∈ DK

in (2.23c) and (2.23d). Substituting all obtained reformulations into (2.23) yields (R′
K ).

Proof of Theorem 2.3. Problem (R′
K ) can be reformulated as a linear program by using the
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standard machinery of robust optimization (Bertsimas and Sim, 2004; Ben-Tal et al., 2009). For

example, the robust upper bound on the state-of-charge for a fixed k ∈K ∪ {0} is equivalent

to

ȳ0+∆t
k∑

l=1
η+

(
xb

l +δl xr
l

)
−dl ≤ ȳ ∀δ ∈D+

K ⇐⇒ max
δ∈D+

K

∆t
k∑

l=1
η+

(
xb

l +δl xr
l

)
−dl ≤ ȳ−ȳ0. (2.24)

By strong linear programming duality, the maximization problem in (2.24) is equivalent to

min
Λ+,Θ+∈RK×K+

k∑
l=1

∆t
(
η+xb

l +Λ+
k,l −dl

)
+γΘ+

k,l

s.t. Λ+
k,l +

j (k,l )∑
i=l

Θ+
k,i ≥ η+xr

l ∀l ∈K : l ≤ k,

(2.25)

and the minimum of (2.25) is smaller or equal to ȳ − ȳ0 if and only if problem (2.25) has a

feasible solution whose objective value is smaller or equal to ȳ − ȳ0. Therefore, the robust

constraint (2.24) is equivalent to the following system of ordinary linear constraints.

k∑
l=1

∆t
(
η+xb

l +Λ+
k,l −dl

)
+γΘ+

k,l ≤ ȳ − ȳ0

Λ+
k,l +

I (k,l )∑
i=l

Θ+
k,i ≥ η+xr

l ∀l ∈K : l ≤ k

The remaining robust constraints in (R′
K ) can be simplified in a similar manner.

Proof of Proposition 2.5. We prove the claim by backward induction. Note first that ϕH is

convex and piecewise affine by definition. Next, fix any h ∈ H , and assume that ϕh+1 is

convex and piecewise affine, which implies that problem (2.5) is structurally equivalent to

problem (R). By Theorems 2.1, 2.2 and 2.3, problem (2.5) can therefore be reformulated as a

linear program whose right hand side coefficients depend affinely on yh . Global sensitivity

analysis of linear programming (Bertsimas and Tsitsiklis, 1997, p. 214) then ensures thatϕh(yh)

is convex and piecewise affine in yh .
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3 The Economics of Frequency Regula-
tion through Electricity Storage: An
Analytical Solution

Every time a cloud goes by and diminishes solar output for a second or two, we burn some

fossil fuels to generate enough little jolts of electricity to even out the electron flow. If we use a

traditional power plant for this job, it will operate at only 2 percent of its productive capacity.

— Gretchen A. Bakke, The Grid, 2016.

We derive an analytical solution for a simplified version of the decision-making problem in

Chapter 2, which only considers stationary storage devices. The decision-making problem

applies to storage operators that can sell regulation power and buy or sell electricity on retail

or wholesale markets. Mathematically, we formulate again a nonconvex robust optimization

problem and treat future frequency deviation trajectories as functional uncertainties. This

time, we constrain the expected terminal state-of-charge to be equal to some target, which

should allow storage operators to not only make good decisions for the present but also for

the future. We show that, thanks to the expected state-of-charge constraint, the amount of

electricity bought on the market is an implicit function of the regulation power sold to the grid

operator. The decision-making problem thus reduces to a one-dimensional problem, which

we show to be convex for all storage devices with realistic roundtrip efficiencies. The implicit

function quantifies the amount of power that needs to be purchased to cover the expected

energy loss that results from providing frequency regulation. For energy-constrained storage

devices, we find that the profits from frequency regulation over the lifetime of the storage

devices are roughly inversely proportional to both the percentage and the duration of time for

which promised regulation power must be committed and delivered, respectively.

3.1 Introduction

In Chapter 2, we have considered a rather general decision-making problem of an electric

vehicle aggregator providing primary frequency regulation. Although we showed that the
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decision-making problem is equivalent to a linear program that can be solved efficiently, the

solution as such provides only limited intuition on how the profits from frequency regulation

depend on the problem parameters, namely the roundtrip efficiency of the vehicle battery, the

dispersion of the frequency deviations, and the regulatory parameters, that is, the percentage

and duration of time for which promised regulation power must be delivered and committed,

respectively.

In this chapter, we consider a simplified version of the decision-making problem for generic

stationary electricity storage devices and describe the structure of its solution analytically,

which allows us to characterize the impact of these problem parameters.

Our simplifying assumptions consist of

1. constant market bids,

2. a budget uncertainty in function space that captures EU market regulations with a single

budget constraint that limits the mean absolute deviation of admissible frequency

deviation trajectories,

3. a bidding system for frequency regulation in which bids are submitted just before they

become effective.

Other than these assumptions, the main difference to Chapter 2 is that we use a constraint

on the expected terminal state-of-charge, rather than a value function, to steer the decision-

maker toward decisions that work well for both the present and the future. In Section 3.3 we

show that the amount of power bought on electricity markets is an implicit function of the

amount of regulation power sold to the grid operator under this constraint. This leads to a

one-dimensional decision problem, which we can be solved highly efficiently by bisection

for general frequency deviation distributions (see Section 3.4) and analytically for two- and

three-point distributions (see Section 3.5)

To ease readability, we refer to generic electricity storage devices as batteries and relegate all

proofs to Appendix 3.B.

Notation. We denote all random variables by tilde signs. Their realizations are designated

by the same symbols without tilde signs. For any z ∈ R, we define [z]+ = max{z,0} and

[z]− = max{−z,0}. For any closed intervals T ,U ⊆R, we define L (T ,U ) as the space of all

Riemann integrable functions f : T →U , and we denote the intersection of a set B ⊆L (T ,R)

with L (T ,R+) as B+. For any signed function δ ∈ L (T ,R), we denote by |δ| the absolute

value function with |δ|(t) = |δ(t)| for every t ∈T . We denote the subdifferential of a convex

function f : X →Rwith nonempty domain X ⊆Rn at a point x0 ∈X by ∂ f (x0).
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3.2 Problem Description

We study the decision problem of a battery operator who can sell frequency regulation

power xr ∈ R+ to a grid operator and buy electric power xb ∈ R on a wholesale or retail

market. We allow xb to be negative, in which case the amount |xb | of power is sold. Both xr

and xb are chosen ex ante and kept constant over a prescribed planning horizon T = [0,T ]

(e.g., the next day). At any time t ∈ T , the battery operator must measure the normalized

deviation δ̃(t ) ∈ [−1,1] of the uncertain instantaneous grid frequency ν̃(t ) from the nominal fre-

quency ν0 and must consume the amount xb + δ̃(t )xr of power from the grid. Mathematically,

the normalized frequency deviation at time t is given by

δ̃(t ) =


+1 if ν̃(t ) > ν0 +∆ν,
ν̃(t )−ν0
∆ν if ν0 −∆ν≤ ν̃(t ) ≤ ν0 +∆ν,

−1 if ν̃(t ) < ν0 −∆ν,

where ∆ν is the maximum frequency deviation against which the grid operator seeks protec-

tion.

The remuneration for offering frequency regulation is twofold. On the one hand, the power xr

set aside for frequency regulation is compensated at the availability price p̃a(t ). On the other

hand, the regulation power δ̃(t )xr actually delivered at time t is compensated at the delivery

price p̃d (t). The power xb acquired on the market is bought at the price p̃b(t). In summary,

the expected cost over the planning horizon T amounts to

E

∫
T

p̃b(t )xb −
(
p̃a(t )− δ̃(t )p̃d (t )

)
xr dt .

The net power flow leaving the grid at time t ∈T is given by xb +δ(t )xr . To reason about the

constraints on this power flow imposed by the battery and the charging infrastructure, we

henceforth distinguish the charging power y+(xb , xr ,δ(t )) = [xb +δ(t )xr ]+ from the discharg-

ing power y−(xb , xr ,δ(t)) = [xb +δ(t)xr ]−. Specifically, we assume that the charging power

is bounded above by the charging capacity ȳ+ ∈ R+, and the discharging power is bounded

above by the discharging capacity ȳ− ∈R+. When the battery is charging (y+ > 0), then only a

fraction η+ of the charging power enters the battery, where η+ ∈ (0,1] represents the charging

efficiency. The rest is dissipated during the charging process. Conversely, when the battery is

discharging (y− > 0), then a multiple 1
η− of the discharging power leaves the battery, where

η− ∈ (0,1] represents the discharging efficiency. The battery state-of-charge at any time t ∈T

can thus be expressed as

y
(
xb , xr ,δ, y0, t

)= y0 +
∫ t

0
η+y+(

xb , xr ,δ(t ′)
)− 1

η−
y−(

xb , xr ,δ(t ′)
)

dt ′, (3.1)

where y0 denotes the initial state-of-charge and δ ∈L (T , [−1,1]) is a given frequency devia-

tion trajectory. Throughout the planning horizon, the battery state-of-charge must remain
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between 0 and the battery capacity ȳ > 0. For consistency, we assume from now on that

0 ≤ y0 ≤ ȳ . The following proposition establishes fundamental qualitative properties of the

state-of-charge function y .

Proposition 3.1. All else being equal, the battery state-of-charge y(xb , xr ,δ, y0, t ) is concave and

strictly increasing in xb , concave in xr , concave nondecreasing in δ, and affine nondecreasing

in y0.

Proposition 3.1 strengthens Proposition 1 by Lauinger et al. (2022), which characterizes the

state-of-charge of an electric vehicle battery providing frequency regulation. The difference is

that Proposition 3.1 reveals that the state-of-charge is strictly increasing and not just nonde-

creasing in xb . The strict monotonicity will be important for the dimensionality reduction in

Section 3.3.

The battery may be used beyond the immediate planning horizon T for selling more reg-

ulation power, for exchanging power on other electricity markets, or for supplying power

to electric devices. The extent to which this is possible depends on the state-of-charge at

the end of the immediate planning horizon. The value of any particular terminal state-of-

charge y(xb , xr ,δ, y0,T ) could be captured by a reward-to-go function as in dynamic pro-

gramming. This would allow the battery operator to trade off present and future costs when

selecting xb and xr . Another approach is to constrain the terminal state-of-charge to be close

to some target y⋆ that will guarantee satisfactory future performance. Both terminal costs and

terminal constraints are widely studied in model predictive control (Mayne et al., 2000).

The terminal state-of-charge is uncertain at time 0 when the battery operator selects xb and xr

because it depends on the frequency deviation trajectory δ during the planning horizon T . In

fact, the battery operator can only be sure to meet a fixed target y⋆ if she sells no regulation

power (xr = 0), which shields her from the uncertainty of the frequency deviations. If the

battery operator sells regulation power (xr > 0), however, then all she can hope for is to reach a

terminal state-of-charge that is close to the target y⋆ on average. In the following, we will thus

require that the terminal state-of-charge be equal to y⋆ in expectation. We emphasize that

this constraint is not dictated by physics but is simply a means to contain future operating

costs, which are not modeled explicitly.

Throughout the planning horizon, the battery operator must be able to honor all market com-

mitments for all reasonably likely frequency deviation trajectories δ. Anvari et al. (2020) show

that extreme frequency deviation trajectories are very uncommon. It would thus appear overly

conservative to impose the charging, discharging, and battery state-of-charge constraints

robustly for all possible frequency deviation trajectories. Inspired by applicable European

regulations, we assume instead that the battery operator must satisfy the constraints only for

the frequency deviation trajectories in the uncertainty set

D =
{
δ ∈L (T , [−1,1]) :

∫
T
|δ(t )| dt ≤ γ

}
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parametrized by the uncertainty budget γ ∈ (0,T ]. Note that γ represents the maximum

amount of time for which a scenario δ ∈D may adopt an extreme value δ(t ) ∈ {−1,1}. Note also

that D can be seen as an extension of the budget uncertainty sets introduced by Bertsimas and

Sim (2004) to functional uncertainties. The symmetry properties of D will allow us to reduce

the decision problem of the battery operator to an equivalent deterministic optimization

problem, which is convex for typical problem parameters. The following property of D will be

crucial for the subsequent results.

Lemma 3.1. We have δ ∈D if and only if |δ| ∈D+.

In summary, the battery operator’s decision problem is to select xb and xr so as to minimize

expected costs while meeting the battery state-of-charge target y⋆ in expectation and ensuring

that the charger, discharger, and battery capacities are respected at all times and under all

frequency deviation trajectories δ ∈ D. This gives rise to the following robust optimization

problem with functional uncertain parameters.

min
xb∈R, xr ∈R+

E

∫
T

p̃b(t )xb −
(
p̃a(t )− δ̃(t )p̃d (t )

)
xr dt

s.t. y+(xb , xr ,δ(t )) ≤ ȳ+ ∀δ ∈D, ∀t ∈T

y−(xb , xr ,δ(t )) ≤ ȳ− ∀δ ∈D, ∀t ∈T

y(xb , xr ,δ, y0, t ) ≤ ȳ ∀δ ∈D, ∀t ∈T

y(xb , xr ,δ, y0, t ) ≥ 0 ∀δ ∈D, ∀t ∈T

E
[

y(xb , xr , δ̃, y0,T )
]

= y⋆

(R)

The battery operator only needs to insure frequency deviation trajectories in D. For trajectories

outside of D, the battery operator has to deliver regulation power up to the smallest time

instant tγ such that
∫ tγ

0 |δ(t)|dt = γ. At all time instants t > tγ, the battery operator does

not need to deliver any regulation power and may consider that δ(t) = 0. When evaluating

the expectations in the objective function and the terminal state-of-charge constraint, we

thus consider that P[δ ∈ D] = 1. For later use, we note that any δ ∈ D has a mean absolute

deviation 1
T

∫
T |δ(t )|dt no greater than γ

T .

For a fixed frequency deviation trajectory δ, the textbook approach to solving the deterministic

counterpart of problem (R) is to first discretize the planning horizon into N periods and

then introduce N binary variables expressing whether the battery is charging or discharging

during the respective periods (Taylor, 2015, p. 85). This results in a large-scale mixed-integer

linear program. In the remainder, we will show that the robust opimization problem (R) is

much easier to solve than its deterministic counterpart. In fact, we will see that the search

space can be reduced to merely three candidate solutions for realistic values of the roundtrip

efficiency η+η−. All candidate solutions can be computed highly efficiently by bisection. For

specific distributions of the frequency deviations, problem (R) can even be solved in closed

form. This implies that robustification reduces complexity. In the next section, we first show

71



The Economics of Frequency Regulation through Electricity Storage:
An Analytical Solution

that the robust optimization problem (R) is equivalent to a one-dimensional deterministic

optimization problem.

3.3 Reduction to a Deterministic Optimization Problem

In order to simplify problem (R), we first rewrite its objective function more compactly as an

explicit linear function of the decision variables. Next, we show that the robust constraints

are equivalent to deterministic linear constraints. Finally, we exploit the terminal state-of-

charge constraint to express xb as an implicit function of xr , which allows us to reformulate

problem (R) only in terms of xr .

Note first that the objective function of problem (R) can be expressed as T (cb xb − cr xr ),

where cb = E 1
T

∫
T p̃b(t )dt denotes the expected average market price of electricity, and cr =

E 1
T

∫
T p̃a(t)− δ̃(t)p̃d (t)dt denotes the expected average price of regulation power. In the

following, we will assume without much loss of generality that cb > 0 and cr > 0.

We now show that the robust constraints are equivalent to deterministic linear constraints.

This may be surprising because the state-of-charge is concave in the decision variables,

implying that the upper bounds on the state-of-charge represent nonconvex constraints.

Similarly, as the state-of-charge is concave in δ, finding the worst-case frequency deviation

trajectories for the lower bounds on the state-of-charge amounts to solving a nonconvex

optimization problem. In addition to these complications, the bounds on the state-of-charge

also need to hold for all time instants in the planning horizon. In general, constraints with

such properties are severely intractable. Given that xb and xr must be held constant over the

planning horizon, it may be tempting to think that δ can be restricted to a constant function

of time without loss of generality. This restriction of the uncertainty set, however, relaxes

the feasible set, and one can show that the relaxed feasible set contains decisions that are

infeasible in practice. Indeed, averaging the real frequency deviation signals underestimates

the maximum state-of-charge and overestimates the minimum state-of-charge (Lauinger

et al., 2022, Example 1).

Although the robust constraints of problem (R) seem intractable, we can reformulate them

as deterministic linear constraints. This is possible because the worst-case frequency devi-

ation trajectories and the worst-case time instants can be evaluated a priori. The following

proposition summarizes our results.

Proposition 3.2 (Constraint reduction). If 0 ≤ y0 ≤ ȳ , then the following equivalences hold.

(i ) y+(xb , xr ,δ(t )) ≤ ȳ+ ∀δ ∈D, ∀t ∈T ⇐⇒ xr +xb ≤ ȳ+

(i i ) y−(xb , xr ,δ(t )) ≤ ȳ− ∀δ ∈D, ∀t ∈T ⇐⇒ xr −xb ≤ ȳ−

(i i i ) y(xb , xr ,δ, y0, t ) ≤ ȳ ∀δ ∈D, ∀t ∈T ⇐⇒ xr +max

{
T

γ
xb , xb

}
≤ ȳ − y0

η+γ

(i v) y(xb , xr ,δ, y0, t ) ≥ 0 ∀δ ∈D, ∀t ∈T ⇐⇒ xr −min

{
T

γ
xb , xb

}
≤ η−y0

γ
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Proposition 3.2 is inspired by Theorems 1 and 2 by Lauinger et al. (2022). The proof critically

exploits the monotonicity properties of y established in Proposition 3.1 and the symmetry

of the uncertainty set D established in Lemma 3.1. The proof reveals that the upper bound

on the charging power and the upper bound on the state-of-charge are valid for all frequency

deviations signals δ ∈D and all time instants t ∈T if and only if they are valid for the time

instants γ and T and for the particular frequency deviation signal δ(+), defined as δ(+)(t ) = 1

if t ≤ γ and δ(+)(t) = 0 otherwise. Similarly, the upper bound on the discharging power and

the lower bound on the state-of-charge are valid for all frequency deviations signals δ ∈D and

all time instants t ∈ T if and only if they are valid for the time instants γ and T and for the

particular frequency deviation signal δ(−) =−δ(+).

Intuitively, if xb ≥ 0, then the maximum state-of-charge is achieved at time T by any non-

negative frequency deviation trajectory that exhausts the uncertainty budget, i.e., that has

a cumulative deviation of γ, such as δ(+). If xb < 0, then the maximum state-of-charge is

achieved at time γ by the frequency deviation trajectory that exhausts the uncertainty bud-

get as quickly as possible, i.e., that achieves a cumulative deviation of γ as soon as possible.

Since δ ∈L (T , [−1,1]), the nonnegative signal that exhausts the uncertainty budget as quickly

as possible is δ(+). As δ(+)(γ) = 1 and δ(t ) ≤ 1 for all δ ∈D and all t ∈T , the maximum charging

power is achieved at time γ by the frequency deviation trajectory δ(+). The intuition for the

lower bound on the state-of-charge and the upper bound on the discharging power is similar.

In the following, we will exploit the constraint on the expected terminal state-of-charge to

express xb as an implicit function of xr . To this end, we first compress the stochastic process

{δ̃(t)}t∈T to a single random variable ξ̃= δ̃(t̃), where t̃ is a random time independent of all

frequency deviation scenarios that follows the uniform distribution on the planning horizon T .

The marginal probability distribution Pξ of ξ̃ is defined through Pξ[B] = P[ξ̃ ∈B] for every

Borel set B ⊆R. One readily verifies that

Pξ[B] =P[ξ̃ ∈B] = E[
P

[
δ̃(t̃ ) ∈B

∣∣ t̃
]]= 1

T

∫
T
P

[
δ̃(t̃ ) ∈B

∣∣ t̃ = t
]

dt = 1

T

∫
T
P

[
δ̃(t ) ∈B

]
dt

for every Borel set B ⊆T , where the third and the fourth equalities hold because t̃ is uniformly

distributed on T , and because t̃ is independent of δ̃(t ) for every t ∈T , respectively. Historical

frequency deviation data suggest that the marginal distribution of ξ̃ is symmetric around zero

(see Figure 3.A.1 in Section 3.A). From now on, we will thus make the following assumption.

Assumption 3.1 (Symmetry). We have Pξ[B] =Pξ[−B] for every Borel set B ⊆T .

If the stochastic process {δ̃(t )}t∈T is stationary, then the marginal distribution of δ̃(t ) coincides

with Pξ for every t ∈ T . Based on data from the UK and the Central European electricity

grid, Anvari et al. (2020) show, however, that frequency deviations may not be stationary

on timescales of up to 24 hours but become stationary on longer timescales. The 24 hour

threshold coincides with the typical length of planning horizons for frequency regulation.

This suggests that Pξ does not change from one planning horizon to the next and can thus be

estimated from historical data.
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In the following, we define F :R→ [0,1] as the cumulative distribution function corresponding

to Pξ, and we define ϕ : R→ R+ as the antiderivative of F with ϕ(−1) = 0. For short, we will

refer to ϕ as the super-cumulative distribution function. We are now ready to investigate

the expected terminal state-of-charge as a function of xb and xr . To this end, we define

ηd = 1
η− −η+.

Proposition 3.3 (Properties of the expected terminal state-of-charge). The expected terminal

state-of-charge is continuous, differentiable almost everywhere and jointly concave in xb and xr ,

strictly increasing and unbounded above in xb , and nonincreasing in xr . It is given by

E
[

y(xb , xr , δ̃, y0,T )
]
= y0 +T

(
η+xb −ηd xrϕ

(
−xb

xr

))
∀(xb , xr ) ∈R×R+. (3.2)

Note that xrϕ(− xb

xr ) represents the perspective function of ϕ(−xb), which is jointly convex

in xb and xr because ϕ is convex (Boyd and Vandenberghe, 2004, p. 89). For xr = 0, the

perspective function is defined as limxr →0+ xrϕ(− xb

xr ) and coincides thus with [xb]−.

We know from Proposition 3.1 that the battery state-of-charge is strictly increasing in xb , and

thus it is unsurprising that its expected value is also strictly increasing in xb . We emphasize,

however, that the state-of-charge may display a complicated nonmonotonic dependence

on xr . Nevertheless, Proposition 3.3 reveals that the expected state-of-charge is nonincreasing

in xr , which means that, on average, providing frequency regulation causes energy losses and

thereby discharges the battery. Even though the average frequency deviations vanish by virtue

of Assumption 3.1, frequency regulation fails to be energy-neutral unless η+ = 1 and η− = 1.

We will explain this phenomenon by reasoning about the power flow entering the battery as

opposed to the power flow exiting the electricity grid. If there are no losses, then the power flow

entering the battery and the power flow exiting the electricity grid coincide with xb +δ(t )xr .

They thus follow the same probability distribution as the frequency deviations with the mean

value shifted from 0 to xb and the standard deviation scaled by xr . Providing frequency

regulation hence only increases the dispersion of the power flow entering the battery but

does not affect its mean. In the general case, when η+,η− < 1, the power flow exiting the

electricity grid follows the same probability distribution as before, but the power flow entering

the battery follows a different probability distribution. In fact, charging losses compress the

positive part of the original distribution, while discharging losses stretch the negative part

of the original distribution. The losses thereby decrease the average power flow entering the

battery. The higher the dispersion of the power flow, the more pronounced the decrease. Since

the dispersion increases in xr , the average power flow entering the battery and, by extension,

the expected terminal state-of-charge of the battery decrease in xr . Figure 1 visualizes the

distribution of the power flow entering the battery for xb = 0 with and without losses.

The monotonicity properties of the expected terminal state-of-charge established in Proposi-

tion 3.3 imply that the last constraint of problem (R) determines xb as an implicit function of xr .

Instead of reasoning about the state-of-charge of the battery directly, we will reason about the
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Figure 1: Distribution of the power flow entering the battery.

power flow entering the battery, which is independent of the initial state-of-charge y0 and of

the length of the planning horizon T . By defining the average expected charging rate and the

desired charging rate as

ẏ(xb , xr ) = E
[

y(xb , xr , δ̃, y0,T )
]− y0

T
= η+xb −ηd xrϕ

(
−xb

xr

)
and ẏ⋆ = y⋆− y0

T
,

respectively, the constraint E[y(xb , xr , δ̃, y0,T )] = y⋆ can be reformulated equivalently as ẏ(xb , xr ) =
ẏ⋆. Since T > 0, the expected charging rate ẏ inherits the concavity and monotonicity prop-

erties of the state-of-charge established in Proposition 3.3. In particular, if xr = 0, then

ẏ(xb ,0) = η+[xb]+− 1
η− [xb]−. Hence, ẏ(xb ,0) = ẏ⋆ is valid if and only if xb = 1

η+ [ẏ⋆]+−η−[ẏ⋆]−,

which is fully determined by the desired charging rate ẏ⋆ and by the charging and discharging

efficiencies η+ and η−. As xr increases, the expected charging rate ẏ(xb , xr ) may decrease due

to increased charging and discharging losses. The battery operator, however, can compensate

this decrease by increasing xb . Since ẏ is strictly increasing, continuous, and surjective onto R

for any fixed xr , there is a unique xb that satisfies the equation ẏ(xb , xr ) = ẏ⋆. This means

that xb can be expressed as an implicit function of xr . This implicit function depends on the

expected charging rate ẏ⋆, the charging and discharging efficiencies, and the mean absolute

deviation of the frequency deviations. The latter is defined as ∆= E[|ξ̃|] = 2ϕ(0), where the

second equality can be proved via integration by parts.

Remark 3.1 (Mean absolute deviation). We have ∆ ≤ γ
T because all relevant frequency de-

viation trajectories reside in D and have thus a mean absolute deviation no greater than γ
T .

Formally,

P [δ ∈D] = 1 =⇒ ∆≤ γ

T
.

Proposition 3.4 (Implicit function). The constraint ẏ(xb , xr ) = ẏ⋆ defines a unique implicit

function g : R+ → R such that ẏ(g (xr ), xr ) = ẏ⋆ for all xr ∈ R+. The function g is convex,

continuous, nondecreasing and almost everywhere differentiable with derivative

g ′(xr ) = ηd
ϕ(− xb

xr )+ xb

xr F (− xb

xr )

η++ηd F (− xb

xr )
(3.3)
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(if it exists), where xb = g (xr ). We have g ′(xr ) = 0 for all xr ∈ (0, |g (0)|), and m = limxr →∞ g ′(xr ) ∈
[0,1). In addition, the asymptotic slope m is the unique solution of the equation

m = (1−η+η−)ϕ(m). (3.4)

Proposition 3.4 implies that for any fixed xr , the battery operator must buy the amount

xb = g (xr ) of power in order to meet the expected state-of-charge target. One can interpret g (0)

as the amount of power needed to meet the target in the absence of frequency regulation.

Accordingly, g (xr )−g (0) reflects the amount of power needed to compensate the charging and

discharging losses due to frequency regulation. These losses vanish for xr = 0 and increase

in xr at a rate that is smaller than or equal to m if y0 ̸= y⋆. Otherwise, they increase at rate m.

Maybe surprisingly, the losses due to frequency regulation are thus smaller when the initial

state-of-charge differs from the target.

The asymptotic slope is of particular interest because it is an upper bound on the percentage

of regulation power that the battery operator needs to purchase in order to cover the losses

from providing frequency regulation.

Lemma 3.2 (Asymptotic slope). The asymptotic slope m is convex and nonincreasing in

the roundtrip efficiency η+η− and nondecreasing in the mean absolute deviation ∆ of the

frequency deviations.

Proposition 3.4 further reveals that g ′(0) = 0 whenever ẏ⋆ ̸= 0, which is the case when-

ever g (0) ̸= 0 since g (0) = 1
η+ [ẏ⋆]−η−[ẏ⋆]−. Otherwise, we have g ′(0) = m.

Lemma 3.3 (Linearity). If ẏ⋆ = 0, then the function g is linear with slope m.

Remark 3.2 (Computability). The asymptotic slope m can be found by bisection on the

interval [0,1]. For xr = 0, we have g (0) = 1
η+ [ẏ⋆]+−η−[ẏ⋆]−. For xr > 0, g (xr ) can be computed

by finding the root of the function ẏ(g (xr ), xr )− ẏ⋆ by bisection on the interval [g (0), g (0)+
mxr ]. Once xb = g (xr ) is known, g ′(xr ) can be obtained from equation (3.3). □

Using Propositions 3.2 and 3.4, we can now reformulate problem (R) as the one-dimensional

deterministic optimization problem

min
xr ∈R+

T
(
cb g (xr )− cr xr

)
s.t. xr + g (xr ) ≤ ȳ+

xr − g (xr ) ≤ ȳ−

xr +max

{
T

γ
g (xr ), g (xr )

}
≤ ȳ − y0

η+γ

xr −min

{
T

γ
g (xr ), g (xr )

}
≤ η−y0

γ
.

(P)

Theorem 3.1 (Constraint and dimensionality reduction). The problems (R) and (P) are equiva-

lent.
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Note that the objective function of problem (P) is convex as the implicit function g is convex.

The feasible set of (P) can be represented concisely as X = {
xr ∈R+ : ℓ(xr ) ≤ g (xr ) ≤ u(xr )

}
, where

ℓ(xr ) = max

{
xr −min

{
ȳ−,

η−y0

γ

}
,
γ

T
xr − η−y0

T

}
and

u(xr ) = min

{
min

{
ȳ+,

ȳ − y0

η+γ

}
−xr ,

ȳ − y0

η+T
− γ

T
xr

}
.

Due to the lower bounds on the convex function g (xr ), the set X is generally nonconvex. If

g (xr )−ℓ(xr ) is monotonic, then the constraint ℓ(xr ) ≤ g (xr ) defines nevertheless a convex

feasible set. This is the case under the following assumption.

Assumption 3.2 (Roundtrip efficiency). We have η+η− > 1
3 .

Assumption 3.2 is non-restrictive. Indeed, all relevant electricity storage technologies, as

identified by the World Energy Council (2020), have a roundtrip efficiency higher than 1
3 .

Lemma 3.4 (Convex feasible set). If Assumption 3.2 holds, then the set X is convex.

Lemma 3.4 asserts that under realistic parameter settings the feasible set X is a line segment.

As the objective function of problem (P) is convex, an optimal solution xr∗ coincides either

with a boundary point of the line segment X or with a stationary point of the objective

function in the interior of this line segment. All three candidate solutions can be computed

conveniently via bisection. We point out that if Assumption 3.2 fails to hold, then X consists

of two disjoint line segments, and it becomes necessary to check five different candidate

solutions. We emphasize that all of these candidate solutions can again be computed by

bisection. A detailed discussion of this generalized setting is omitted, however, because it has

little practical relevance.

3.4 Candidate Solutions

In the following, we examine first the boundary points of the line segment X and then the

stationary points of the objective function of problem (P).

One can show that u(xr )− g (xr ) is strictly decreasing and that g (xr )−ℓ(xr ) is strictly decreas-

ing under Assumption 3.2. This means that there is a unique xr
u such that u(xr

u) = g (xr
u) and

a unique xr
ℓ

such that g (xr
ℓ

) = ℓ(xr
ℓ

). The feasible set X can thus be expressed as the line

segment {xr ∈R+ : xr ≤ xr
ℓ

, xr ≤ xr
u} = [0, x̄r ], where x̄r = min{xr

ℓ
, xr

u}.

Remark 3.3. Since ℓ is strictly increasing and u is strictly decreasing, there exists a unique ¯̄xr

such that ℓ( ¯̄xr ) = u( ¯̄xr ). As neither xr
ℓ

nor xr
u are greater than ¯̄x, they can be computed by
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bisection on [0, ¯̄xr ]. The point ¯̄xr itself can be expressed in closed form as

¯̄xr = min

{
ȳ++ ȳ−

2
,

ȳ++ η−
γ y0

2
,

T ȳ++η−y0

γ+T
,

ȳ−+ ȳ−y0

η+γ

2
,

T ȳ−+ ȳ−y0

η+

γ+T
,

ȳ + (
η+η− T

γ −1
)
y0

η+(γ+T )
,

T
γ ȳ − (T

γ −η+η−)
y0

η+(γ+T )

}
. □

The stationary points of the objective function of problem (P) are such that the expected

marginal cost, T cb g ′(xr ), of providing frequency regulation equals the expected marginal

revenue, T cr , from providing frequency regulation. The set of all stationary points in X is

thus X⋆ = {xr ∈ [0, x̄r ] : cr

cb ∈ ∂g (xr )}. Note that cr

cb > 0 because cb > 0 and cr > 0. If x̄r = 0,

then 0 is the unique feasible solution to problem (P). If min∂g (x̄r ) < cr

cb , then X⋆ is empty,

and x̄r is the optimal solution to problem (P) because the marginal revenue of providing

frequency regulation is strictly higher than the marginal cost for all feasible xr . Similarly,

if g ′(0) > cr

cb , then X⋆ is again empty, and 0 is the optimal solution because the marginal cost

of providing frequency regulation is strictly higher than the marginal revenue for all xr ∈ (0,∞].

Otherwise, X⋆ may be non-empty and contain several stationary points, all of which would

be optimal solutions to problem (P). In this case, it makes sense to assume that the battery

operator selects the smallest stationary point to avoid unnecessary battery usage. Theorem 3.2

formalizes these results.

Theorem 3.2. The smallest optimal solution to problem (P) is

xr
∗ =


0 if x̄r = 0 or x̄r > 0 and g ′(0) ≥ cr

cb ,

x̄r if x̄r > 0 and min∂g (x̄r ) < cr

cb ,

minX⋆ otherwise.

Remark 3.4. If ẏ⋆ = 0, then g (xr ) = mxr . Therefore, xr∗ = x̄r if m < cr

cb and xr∗ = 0 otherwise. □

Remark 3.5. If X⋆ is non-empty, minX⋆ can be found by bisection on X as g ′ is nondecreas-

ing. □

To compute the optimal solution, we first need to compute x̄r . If x̄r > 0, we then need to

evaluate g ′(0) and min∂g (x̄r ). By Proposition 3.4 and Lemma 3.3, we find g ′(0) = 0 if ẏ⋆ ̸= 0;

= m otherwise. Finally, if X⋆ is non-empty, we need to compute its minimum. By Remarks 3.2,

3.3, and 3.5, x̄r , min∂g (x̄r ), and minX⋆ can all be computed by bisection. The optimal

solution xr∗ can thus also be computed highly efficiently by bisection.

The expected marginal cost of providing frequency regulation depends on the desired charging

rate ẏ⋆, which is only known to the battery operator but unknown to the grid operator. Never-

theless, the grid operator knows that the expected marginal cost amounts to at most cbm and

can therefore infer that it is profitable for the battery operator to offer all available regulation

power if cr

cb > m. Thanks to Lemma 3.2, we know that m is convex and nonincreasing in
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the roundtrip efficiency η+η− and nondecreasing in the mean absolute deviation ∆ of the

frequency deviations, but we do not know the explicit dependence of m on η+η− and ∆. In the

next section, we will derive explicit lower and upper bounds on m that are tight for certain

degenerate frequency deviation distributions. For these particular distributions, we will then

explain how to derive analytical solutions to problem (P).

3.5 Analytical Solution

We now construct two discrete distributions
¯
Pξ and P̄ξ with the same mean absolute deviation

as Pξ, which is given by ∆= 2ϕ(0). Recall that ∆≤ 1 because ξ is supported on [−1,1]. Specifi-

cally, we define
¯
Pξ as a two-point distribution with mass 1

2 at −∆ and∆, and P̄ξ as a three-point

distribution with mass ∆
2 at −1 and 1, and mass 1−∆ at 0. The super-cumulative distribution

function
¯
ϕ of

¯
Pξ with

¯
ϕ(−1) = 0 is

¯
ϕ(ξ) = max{0, 1

2 (ξ+∆),ξ}. Similarly, the super-cumulative

distribution function of P̄ξ with ϕ̄(−1) = 0 is ϕ̄(ξ) = max{0, ∆2 (ξ+1),(1− ∆
2 )ξ+ ∆

2 ,ξ}. As ξ̃ is

supported on [−1,1] under all three distributions, we have
¯
ϕ(ξ) =ϕ(ξ) = ϕ̄(ξ) for all |ξ| ≥ 1.

For any |ξ| < 1,
¯
ϕ(ξ) is a lower bound on ϕ(ξ) as

¯
ϕ is the piecewise maximum of three affine

functions that are tangent to the convex function ϕ at ξ = −1, ξ = 0, and ξ = 1. Conversely,

ϕ̄(ξ) is an upper bound on ϕ(ξ) as ϕ̄ is the piecewise maximum of two linear interpolations

of ϕ from ξ=−1 to ξ= 0 and from ξ= 0 to ξ= 1. This reasoning implies that Pξ second-order

stochastically dominates
¯
Pξ and that P̄ξ second-order stochastically dominates Pξ. Formally,

¯
ϕ(ξ) ≤ϕ(ξ) ≤ ϕ̄(ξ) ∀ξ ∈R. (3.5)

We now define the asymptotic sensitivities m and m as the solutions to the nonlinear algebraic

equations m = (1−η+η−)
¯
ϕ(m) and m = (1−η+η−)ϕ̄(m), respectively, which exist and are

unique by Proposition 3.4. These equations admit the closed-form solutions

m = 1−η+η−
1+η+η−∆ and m = 1− 1

1+ ( 1
η+η− −1)∆2

.

Lemma 3.5. We have m ≤ m ≤ m.

The discrete distributions
¯
Pξ and P̄ξ provide not only explicit bounds on the asymptotic

slope m of the implicit function g (xr ) but also on g (xr ) itself. These bounds, which are

denoted by
¯
g and ḡ , are obtained by solving the differential equation (3.3) for

¯
Pξ and P̄ξ,

respectively. Concretely, as
¯
ϕ and ϕ̄ are piecewise linear, the differential equation can be

solved separately for each linear piece. Combining the results for the different pieces yields

¯
g (xr ) =max

{
g (0), mxr + g (0)− 1−η+η−

1+η+η− |g (0)|
}

and ḡ (xr ) =max

{
g (0),

(1−η+η−)ϕ(0)xr − [g (0)]−

η+η−+ (1−η+η−)(1−ϕ(0))
, mxr + η+η−[g (0)]+− [g (0)]−

η+η−+ (1−η+η−)ϕ(0)

}
.
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Lemma 3.6. We have
¯
g (xr ) ≤ g (xr ) ≤ ḡ (xr ) for all xr ∈R+.

In order to calculate the optimal solutions under
¯
Pξ and P̄ξ, we need to calculate the boundary

points of and the smallest stationary points, if they exist, in the corresponding feasible sets
¯
X

and X̄ . The left boundary points of the feasible sets are both 0, as under Pξ. The right

boundary points are min{
¯
xr
ℓ

, x̄r
u} and min{x̄r

ℓ
,
¯
xr

u}, respectively, where
¯
xr
ℓ

, x̄r
u , x̄r

ℓ
, and

¯
xr

u are

the unique points such that
¯
g (

¯
xr
ℓ

) = ℓ(
¯
xr
ℓ

),
¯
g (x̄r

u) = u(x̄r
u), ḡ (x̄r

ℓ
) = ℓ(x̄r

ℓ
), and ḡ (

¯
xr

u) = u(
¯
xr

u).

Lemma 3.6 implies that

¯
xr
ℓ ≤ xr

ℓ ≤ x̄r
ℓ and

¯
xr

u ≤ xr
u ≤ x̄r

u .

The points
¯
xr
ℓ

, x̄r
u , x̄r

ℓ
, and

¯
xr

u can be computed in closed form by evaluating the intersections

of the affine functions ℓ and u with the affine functions that compose
¯
g and ḡ . The right

boundary points min{
¯
xr
ℓ

, x̄r
u} and min{x̄r

ℓ
,
¯
xr

u} are then given by the minimum of six and eight

rational functions of the problem parameters y0, ẏ⋆, ȳ , ȳ+, ȳ−, η+, η−,∆, γ, and T , respectively.

The boundary points admit thus closed-form expressions, but the expressions are not very

insightful. The smallest stationary points, on the other hand, are more inuitive. Since
¯
g

and ḡ are piecewise linear, the smallest stationary points occur, if they exist, either at kinks

of the piecewise linear objective functions cb

¯
g (xr )− cr xr and cb ḡ (xr )− cr xr or at xr = 0.

Nevertheless, as the expressions for the boundary points of the feasible set are too complicated

to be insightful in the general case, we assume that y0 = y⋆ in the subsequent analysis. In this

special case, the losses due to frequency regulation are higher than for any other value of y0 as

explained in the discussion of Proposition 3.4. If it is profitable to provide frequency regulation

in this special case, it will thus also be profitable to provide frequency regulation in any other

case. As ẏ⋆ = y⋆−y0

T = 0, Lemma 3.3 implies that
¯
g (xr ) = mxr , g (xr ) = mxr , and ḡ (xr ) = mxr .

Under any frequency deviation distribution Pξ, the optimal solution to problem (P) then

satisfies xr∗ = x̄r if m < cr

cb and xr∗ = 0 otherwise. Since ℓ and u are piecewise linear functions

with two pieces each, the right boundary point x̄r of the feasible set can be expressed as

the minimum of only four rational functions of the problem parameters, and will admit an

intuitive interpretation.

Proposition 3.5. If y0 = y⋆, then

x̄r = min

{
ȳ−

1−m
,

ȳ+

1+m
,

η−y0

γ(1−m)
,

ȳ − y0

η+(γ+mT )

}
. (3.6)

The first two terms in formula (3.6) for xr depend on the charging capacity ȳ+ and the dis-

charging capacity ȳ−, while the last two terms depend on the battery capacity ȳ and the initial

state-of-charge y0. We say that the battery is power-constrained if x̄r is equal to one of the

first two terms. Otherwise, we say that the battery is energy-constrained. We now state the

analytical solution.
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Analytical Solution

Theorem 3.3 (Analytical solution). If y0 = y⋆, then an optimal solution to problem (P) is

xr
∗ =

 0 if m ≥ cr

cb ,

x̄r otherwise,

under any frequency deviation distribution Pξ. If Pξ =
¯
Pξ, then m = m. If Pξ = P̄ξ, then m = m.

As a direct consequence of Theorem 3.3, if m < cr

cb , it is optimal to set xr = x̄r for any frequency

deviation distribution with mean absolute deviation ∆, regardless of the shape of the distri-

bution, because m ≥ m. In the following, we describe the maximum amount x̄r of regulation

power that can be offered by power- and energy-constrained batteries, for the case y0 = y⋆.

If the battery is power-constrained, then x̄r depends on the charging and discharging efficien-

cies only through the marginal increase m in the expected power loss which, in turn, depends

on these efficiencies only through their product, that is, the roundtrip efficiency η+η−. Due to

charging and discharging losses, the battery operator expects to lose energy while delivering

frequency regulation and compensates the expected loss by purchasing the power mxr from

an electricity market, which decreases the effective charging capacity and increases the effec-

tive discharging capacity of the battery. Accounting for the effective charging and discharging

capacities, the battery operator may dimension the discharging capacity ȳ− as a fraction 1−m
1+m

of the charging capacity ȳ+ without restricting x̄r .

If the battery is energy-constrained, then x̄r depends not only on the roundtrip efficiency η+η−,

through m, but also on the individual charging and discharging efficiencies. Charging losses

increase the amount of energy that the battery can consume from the grid and therefore

increase the effective storage capacity. Conversely, discharging losses decrease the amount

of energy that the battery can deliver to the grid and therefore decrease the effective storage

capacity. For given charging and discharging efficiencies, the initial state-of-charge y0 deter-

mines how much energy the battery can consume from and deliver to the grid. As the battery

operator must be able to both consume and deliver regulation power, x̄r is maximized if the

battery can absorb as much energy from the grid as it can deliver to the grid. This occurs at an

initial state-of-charge of y⋆0 and results in the maximum amount x̄r
⋆ of regulation power that

can be offered by energy-constrained batteries, where

x̄r
⋆ = min

{
ȳ−

1−m
,

ȳ+

1+m
,

η−
γ
T (1+η+η−−m)+η+η−m

ȳ

T

}
and y⋆0 = (1−m)ȳ

1+η+η−+ (η+η− T
γ −1)m

.

Assuming that ȳ− = 1−m
1+m ȳ+, the battery is thus energy constrained if ȳ+

1+m > x̄r
⋆, which occurs if

the battery’s charge rate C = ȳ+
y (C-rate) is at least as large as

C = 1

T
· (1+m)η−
γ
T (1+η+η−−m)+η+η−m

.
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Note that the C-rate expresses the percentage of the battery’s storage capacity that can be

consumed from the grid within one hour.

The initial state-of-charge y⋆0 , which maximizes the amount of regulation power that energy-

constrained batteries can provide, depends on the charging and discharging efficiencies only

through the roundtrip efficiency η+η−. It increases from ȳ
2 to ȳ as the roundtrip efficiency

decreases from 1 to 0. The maximum amount x̄r
⋆ of regulation power that can be provided by

energy-constrained batteries is equal to ȳ
2γ in the absence of charging and discharging losses.

The storage capacity ȳ is divided by 2γ because the storage operator must be able to both

consume and deliver all of the regulation power she promised for a total time of at least γ.

3.6 Applications

In the following, we compare the profits that storage operators can earn by providing frequency

regulation against the expected investment costs of lithium-ion batteries. After describing the

parameters of our case study, we analyze the marginal cost and profit of providing frequency

regulation as well as the maximum amount of regulation power that storage operators can

provide. Last, we discuss the profits that storage operators can earn over the planning hori-

zon T and, for the specific case of lithium-ion batteries, under what conditions on the total

activation period γ and the length of the planning horizon T it can be profitable to invest in

electricity storage for frequency regulation.

3.6.1 Model Parametrization

We focus on storage operators who provide frequency regulation to the French grid operator

and compute their profits based on historic data on frequency deviations, availability and de-

livery prices, and on wholesale and retail market prices. Frequency measurements, availability

prices, and delivery prices are published by the French grid operator Réseau de Transport

d’Electricité (RTE).I Wholesale market prices depend on how long before delivery electricity

is traded. Since frequency regulation is traded up to one day before delivery, we consider

the prices of the day-ahead market, which are equal to the delivery prices published by RTE

(Réseau de transport d’électricité, 2017a, p. 68). Retail market prices vary from one electric

utility company to another. We use the base tariff of Electricité de France, the largest French

electric utility company. The French government regulates this particular tariff and pub-

lishes the corresponding prices.II We will compare the operating costs of storage technologies

with different roundtrip efficiencies, namely hydrogen, redow flow batteries, vehicle-to-grid,

pumped hydro, and stationary lithium-ion batteries. In assigning roundtrip efficiencies to

storage technologies, we follow Apostolaki-Iosifidou et al. (2017) for vehicle-to-grid and the

World Energy Council (World Energy Council, 2020, p. 9) for all other storage technologies.

Table 1 lists the roundtrip efficiencies of the storage technologies. In order to judge whether it

Ihttps://clients.rte-france.com
IIJournal Officiel de la République Française: https://legifrance.gouv.fr
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Table 1: Roundtrip efficiencies of storage technologies.

Storage Technology Hydrogen Redox Flow Vehicle-to-Grid Pumped Hydro Li-Ion

Roundtrip Efficiency (%) 35–55 60–85 70–85 75–85 85–95

is profitable to invest in lithium-ion batteries for frequency regulation, we follow Comello and

Reichelstein (2019) and assume investment costs in the year 2023 between US$85 and US$165

per kWh of storage capacity with a lifetime of 10 years and between US$710 and US$860 per

kW of charging and discharging capacity with a lifetime of 30 years. We assume an exchange

rate of 1e= US$1.15 and annualize the investment costs with a yearly discount rate of 2%,

which equals the long-term inflation target of the European Central Bank (2021).

The technical term for the type of frequency regulation we consider is frequency containment

reserves (FCR). France participates in a common European market for frequency containment

reserves with a daily planning horizon.III We thus set T = 24 hours. In its regulation on

frequency containment reserves the European Commission specifies that the “minimum

activation period to be ensured by FCR providers [is not to be] greater than 30 or smaller than

15 minutes” and that storage operators “shall ensure the recovery of [their] energy reservoirs

as soon as possible, within 2 hours after the end of the alert state” (European Commission,

2017, art. 156(10, 13)), where an activation period designates a period of consecutive extreme

frequency deviations δ(t ) ∈ {−1,1}. The total activation period γ to be ensured over a period of

24 hours is thus between 2.75 hours and 5 hours. The uncertainty set D contains all frequency

deviation signals that correspond to a given total activation period γ. Some of these signals

may exhibit activation periods that are longer than the minimum activation period prescribed

by the European Commission. The uncertainty set D is therefore a conservative approximation

of the regulation by the European Commission. The strength of the delivery guarantee required

by the European Commission can nevertheless be measured by the activation ratio γ/T , that is,

the fraction of time during which a storage operator must be able to provide all the regulation

power she promised. When studying the profits a storage operator can reap from frequency

regulation over the lifetime of an electricity storage device, we will vary the length of the

planning horizon T while keeping the activation ratio constant. In line with the regulation by

the European Commission, we will consider activation ratios of 0.1 and 0.2.

The desired charging rate ẏ⋆ for meeting the terminal state-of-charge target influences the

quantity and the price of regulation power that a storage operator can offer. Ideally, the storage

operator would be able to meet the terminal state-of-charge target y⋆ not just in expectation

but exactly. In the following, we assume that this is the case and that the terminal state-of-

charge target stays constant from one planning horizon to another. The desired charging rate

vanishes therefore during any given planning horizon. In this case, the implicit function g is

the linear function g (xr ) = mxr by Proposition 3.4. The marginal cost of providing frequency

regulation is thus Tmcb . If the desired charging rate was nonzero, then the marginal cost would

IIIhttps://entsoe.eu/network_codes/eb/fcr

83

https://entsoe.eu/network_codes/eb/fcr


The Economics of Frequency Regulation through Electricity Storage:
An Analytical Solution

be lower as the slope of g would converge to m only asymptotically. We thus overestimate the

marginal cost of providing frequency regulation when assuming that ẏ⋆ = 0. Regardless of the

particular value of ẏ⋆, it is therefore always profitable for the storage operator to sell as much

regulation power as possible if the marginal revenue, T cr , of providing frequency regulation is

higher than the marginal cost, Tmcb , given ẏ⋆ = 0, i.e., if cr

cb > m.

In the year 2019, the expected average price of regulation power was the same as the expected

average availability price because E 1
T

∫
T δ̃(t)p̃d (t)dt vanished. In fact, the average value of

1
T

∫
T δ(t )pd (t )dt over all days was −8.77 ·10−5. The minimum availability, wholesale market,

and retail market prices in any half-hour interval were 0.41 cts
kW·h , −2.49 cts

kWh , and 14.5 cts
kWh ,

respectively. Averaged over each day, the minimum daily average availability, wholesale

market, and retail market prices were 0.41 cts
kW·h , 0.37 cts

kWh , and 14.5 cts
kWh , respectively, which

are all strictly positive. The ratio of daily average availability prices to daily average market

prices of electricity was between 0.070 and 2.168 with an average of 0.251 for wholesale

market prices, and between 0.026 and 0.133 with an average of 0.059 for retail market prices.

Figure 3.A.2 in Appendix 3.A shows the empirical cumulative distribution function of this ratio

for wholesale and retail market prices. When studying the profits from frequency regulation

over the planning horizon T and over the lifetimes of electricity storage devices, we will set

the ratio of the expected average price of regulation power cr to the expected average market

price of electricity cb to cr

cb = 0.251 for wholesale market prices and to cr

cb = 0.059 for retail

market prices.

Over the years 2017 to 2019, the cumulative distribution function F corresponding to Pξ
can be approximated by a symmetric logistic function with a maximum error of 0.018 with

respect to the empirical cumulative distribution function constructed from about 9.5 mil-

lion frequency recordings with a 10 second resolution. This justifies Assumption 3.1. Based

on the logistic approximation, the cumulative distribution function and the characteristic

function are given by F (ξ) = 1
1+exp(−θz) and ϕ(ξ) = ln(1+exp(θξ))

θ , respectively, where θ = 2ln(2)
∆

and ∆ = 2ϕ(0) = 0.0816, which satisfies the condition ∆ ≤ γ
T in Assumption 3.2 as γ

T ≥ 0.1.

The coefficient θ was chosen such that frequency deviations have the same mean absolute

deviation ∆ under the logistic distribution as under the empirical distribution. In principle,

F should be a truncated logistic function as the support of Pξ, Ξ= [−1,1], is bounded. The

truncation error, however, is just 2.5 · 10−8, which we deem to be negligible. We find that

the mean absolute deviation of the frequency recordings is smaller than 0.1 on 96.7% of all

days. If the uncertainty set D is parametrized by γ= 0.1T , the empirical frequency deviation

signals fall thus outside of D on 3.3% of all days. On these days, the storage operator may stop

delivering regulation power once the total absolute deviation
∫ t

0 |δ(t ′)|dt ′ of the frequency

deviation signal exceeds γ. In principle, the frequency deviation distribution should thus be

estimated based on past frequency deviation signals with mean absolute deviation capped

at the activation ratio γ/T . The distribution estimated directly on past frequency deviation

signals will differ most from the distribution estimated on capped past frequency deviation sig-

nals if the activation ratio is equal to 0.1 rather than 0.2. In this case, the maximum difference

between the two distributions is less than 0.001, which we consider negligible compared to the
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maximum difference of 0.018 between the empirical cumulative distribution function and the

logistic function F . Figure 3.A.1 in Appendix 3.A shows the empirical cumulative distribution

function and its logistic approximation.

We provide all code and data at www.github.com/lauinger/cost-of-frequency-regulation-

through-electricity-storage.

3.6.2 Marginal Cost and Maximum Regulation Bid

The marginal cost of providing frequency regulation is the marginal increase in the expected

power loss multiplied by the market price of electricity and the length of the planning horizon.

Formally, the marginal cost is g ′(xr )cbT for a fixed amount of regulation power xr . In our

case study, g ′(xr ) = m as we consider that ẏ⋆ = 0. It is profitable to use a storage device at its

full potential if the marginal cost is lower than the marginal revenue, T cr , which is the case

if and only if the ratio cr

cb of the expected average price of regulation power to the expected

average market price of electricity exceeds the marginal increase m in the expected power loss.

Proposition 3.4 states that m is convex and nonincreasing in the roundtrip efficiency η+η−

and nondecreasing in the mean absolute deviation of the frequency deviations ∆. Figure 2 dis-

plays m as a function of roundtrip efficiency for the estimated logistic distribution of frequency

deviations, together with its lower bound m and its upper bound m, both parametrized by

the same mean absolute deviation as the logistic distribution. The bounds are tight when the

roundtrip efficiency equals one and loosen as the roundtrip efficiency decreases. The upper

bound loosens faster than the lower bound. For roundtrip efficiencies higher than 0.60, the

lower bound, m = 1−η+η−
1+η+η−∆, underestimates m by less than 4.59 ·10−4. At a roundtrip efficiency

of 0.35, typical for inefficient hydrogen storage, m is 4.30%. For inefficient redox flow batteries,

with a roundtrip efficiency of 0.60, m decreases to 2.09%. For inefficient lithium-ion batteries,

with a roundtrip efficiency of 0.85, m decreases further to 0.66%. Unsurprisingly, m vanishes

for perfectly efficient storage devices. For storage operators buying electricity at retail prices,

the ratio cr

cb was greater than 0.026 on all days in 2019. It would have therefore been profitable

for them to use any of the storage technologies we consider at their full potential for frequency

regulation, except for hydrogen storage. For storage operators buying electricity at wholesale

prices, the ratio cr

cb was greater than 0.07 on all days in 2019, which means that it would have

been profitable for them to use a hydrogen storage device at its full potential, too.

Although charging and discharging losses may not cause storage operators to withhold reg-

ulation power from the market, they still reduce the profit cr −mcb per unit of regulation

power. Figure 3 shows the average profit per unit of regulation power as a function of roundtrip

efficiency for storage operators buying electricity at wholesale and retail prices in the year 2019.

Losses reduce the profit by 19% from 0.90 cts
kW·h to 0.73 cts

kW·h for the most inefficient storage

devices if electricity is bought at wholesale prices. If electricity is bought at retail prices, losses

reduce the profit by 72% to 0.24 cts
kW·h . The reduction is thus four times higher at retail than

at wholesale prices. A hydrogen tank with a roundtrip efficiency of 0.4 buying electricity at
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Figure 2: Marginal increase in expected power loss for different roundtrip efficiencies.
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Figure 3: Profit per unit of regulation power for wholesale and retail electricity prices.

wholesale prices and an electric vehicle with a roundtrip efficiency of 0.8 buying electricity at

retail prices achieve the same profit per unit of regulation power. In its recent regulation, the

Federal Energy Regulatory Commission (2018) has made it easier for storage devices to access

the wholesale electricity market. Such regulation is most beneficial to storage devices with

low and moderate roundtrip efficiencies. Overall, the regulation may make electricity storage

more competitive with fossil-fuel-based power plants in the frequency regulation market.

Nevertheless, even if electricity is bought at wholesale prices, charging and discharging losses

should be carefully considered as they reduce the profit per unit of regulation power by up

to 19%.

Losses reduce not only the profit per unit of regulation power, but may also reduce the amount

of regulation power x̄r a storage device can provide. We have seen in Section 3.5 that the

storage device may be either energy-constrained or power-constrained if ẏ⋆ = 0.

If the storage device is power-constrained, then the storage operator can account for the

roundtrip efficiency by dimensioning the discharging capacity ȳ− as a fraction 1−m
1+m of the

charging capacity ȳ+ without restricting x̄r . The fraction is 1 at a roundtrip efficiency of 1, and

decreases to 0.92 as the roundtrip efficiency decreases to 0.35.

If the storage device is energy-constrained, then charging losses increase the amount of energy

that the storage device can consume from the grid, while discharging losses decrease the
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Figure 4: Maximum regulation power normalized by ȳ
2γ .

amount of energy that the storage device can deliver to the grid. The storage operator can

offer most regulation power, x̄r
⋆, to the grid operator if the initial state-of-charge is such that

she can consume as much energy from the grid as she can provide to the grid. For roundtrip

efficiencies in (0,1), the optimal initial state-of-charge, y⋆0 , is nondecreasing in the activation

ratio. Given activation ratios between 0.1 and 0.2,
y⋆0
ȳ is between 0.52 and 0.53 for lithium-ion

batteries with a roundtrip efficiency of 0.85, between 0.57 and 0.60 for redox flow batteries

with a roundtrip efficiency of 0.60, and between 0.66 and 0.69 for hydrogen storage with a

roundtrip efficiency of 0.35.

Figure 4 shows that the normalized regulation power x̄r
⋆/ ȳ

2γ is indeed nonincreasing in the

charging efficiency η+ and nondecreasing in the discharging efficiency η−. The decrease in η+

is more pronounced and the increase in η− is less pronounced if the activation ratio is 0.2

rather than 0.1. Starting from a roundtrip efficiency of 1 and an activation ratio of 0.2, the

normalized regulation power increases from 1 to 1.45 as the charging efficiency decreases

from 1 to 0.35, and decreases from 1 to 0.51 as the discharging efficiency decreases from 1

to 0.35. At an activation ratio of 0.1, the normalized regulation power increases to only 1.37

as the charging efficiency decreases to 0.35, and decreases slightly further to 0.48 as the

discharging efficiency decreases to 0.35. Although the normalized regulation power is lower,

the absolute regulation power is considerably higher at an activation ratio of 0.1 rather than 0.2,

because the normalization constant ȳ
2γ is inversely proportional to γ.

In principle, charging losses may outweigh discharging losses and increase the normalized

regulation bid compared to storage devices with no losses. In practice, however, discharging

losses usually outweigh charging losses. As examples, we consider lithium-ion batteries,

vehicle-to-grid, and hydrogen storage, all of them operating at an activation ratio of 0.2.

Hydrogen storage is unlikely to be energy-constrained because hydrogen can be stored at low

cost in steel tanks, or at even lower cost in salt caverns (Victoria et al., 2019). Nevertheless,

we include hydrogen in our comparison as an example of storage devices with low roundtrip
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efficiencies. For lithium-ion batteries with charging and discharging efficiencies of 0.92 each,

losses reduce the normalized regulation bid from 1 to 0.98. For vehicle-to-grid with a charging

efficiency of 0.88 and a discharging efficiency of 0.79, loosely based on Apostolaki-Iosifidou

et al. (2017), losses reduce the normalized regulation bid to 0.91. For hydrogen storage with a

charging efficiency of 0.80 and a discharging efficiency of 0.58, based on Victoria et al. (2019),

losses reduce the normalized regulation bid to 0.77. In practice, charging and discharging

losses thus reduce the amount of regulation power x̄r that energy-constrained storage devices

can provide by up to 23%, even at high activation ratios, and should therefore be carefully

considered.

3.6.3 Economics

We will now consider the profit that an energy-constrained storage device may earn per unit of

storage capacity. First, we describe the operating profit made over the planning horizon T of

length T . For the case of a lithium-ion battery, we then calculate the effective yearly profit as the

difference between the operating profits made over one year and the annualized investments

costs of the battery.

The operating profit is the product of the profit per unit of regulation power and the amount of

regulation power the storage device can deliver. Formally, the operating profit is thus equal to

(cr − cbm)η− ȳ
γ
T (1+η+η−−m)+η+η−m

.

It may be somewhat surprising that the operating profit depends on the length of the planning

horizon T only through the activation ratio γ/T . Intuitively, one may expect the operating

profit to increase linearly with the length of the planning horizon because a longer planning

horizon should allow the storage operator to sell the same amount of regulation power for

a longer period of time. This reasoning is correct if the storage device is power-constrained.

For an energy-constrained storage device, however, the storage operator can only deliver a

fixed amount of regulation energy. The length of the period over which the regulation energy

is delivered does therefore not influence the operating profit.

We have established in Section 3.6.2 that the profit per unit of regulation power increases

with the roundtrip efficiency, while the maximum amount of regulation power increases with

the discharging efficiency but decreases with the charging efficiency. The operating profit

will therefore increase with the discharging efficiency, but it is unclear how it depends on the

charging efficiency. Intuitively, the higher the market price of electricity, the more pronounced

the increase of the profit per unit of regulation power in the charging efficiency. Similarly,

the higher the activation ratio, the more pronounced the decrease of the maximum amount

of regulation power in the charging efficiency. Figure 5 and Figure 3.A.4 in Appendix 3.A

show that, for activation ratios of 0.2 and 0.1, the operating profit increases with the charging

efficiency at retail electricity prices but not at wholesale electricity prices. In practice, however,
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Figure 5: Operating profit per kWh of storage capacity on wholesale and retail markets.
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Figure 6: The impact of charging and discharging losses on regulation power and profits.

the combined effect of charging and discharging losses is usually a decrease in the operating

profit, even at wholesale prices. As examples, we consider again lithium-ion batteries, vehicle-

to-grid, and hydrogen storage, with the same charging and discharging efficiencies as in

Section 3.6.2. At an activation ratio of 0.2, the operating profit is 2.25 cts
kWh in the absence of

charging and discharging losses, regardless of the market price of electricity. For lithium-ion

batteries, the operating profit reduces to 2.15 cts
kWh at wholesale prices and to 1.96 cts

kWh at retail

prices. For vehicle-to-grid, the operating profit decreases further to 1.92 cts
kWh at wholesale

prices and to 1.53 cts
kWh at retail prices. For hydrogen, finally, the operating profit falls to 1.49 cts

kWh

at wholesale prices and to 0.81 cts
kWh at retail prices. If the activation ratio halves from 0.2

to 0.1, the operating profits roughly double. Overall, charging and discharging losses should be

carefully considered because they reduce the operating profit from selling frequency regulation

by over 33% at wholesale prices and over 70% at retail prices. Figure 6 summarizes the impact

of losses on the profits per unit of regulation power, on the maximum normalized regulation

power, and on operating profits at wholesale and retail electricity prices.

The effective yearly profit determines whether it is worthwhile for a storage operator to

invest into a storage device for frequency regulation. The European Network of Transmission

System Operators for Gas and Electricity (2021) estimates that the need for electricity storage
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will increase in the future as the electricity grid becomes more weather-dependent, due

to more electric heating and more wind and solar power plants, while the weather itself

becomes more variable, due to climate change. Batteries are to provide between 10GW

to 40GW of flexible power by 2030, 75GW to 100GW by 2040, and 90GW to 100GW by 2050,

to ensure that the European electricity grids can meet peak electricity demand without load

shedding, the technical term for rolling black-outs. Based on the cost and lifetime data

of lithium-ion batteries in Section 3.6.1, we estimate the annualized costs of lithium-ion

batteries in the near future, specifically, in the year 2023, to range from 8.2 e
kWh to 16.0 e

kWh

for energy storage capacity and from 27.6 ekW to 33.4 ekW for charging and discharging capacity.

For an energy-constrained battery, we have seen that the operating profit depends on the

length of the planning horizon T only through the activation ratio γ/T . The operating profits

accrued over a one-year period are thus inversely proportional to the length of the planning

horizon. Similarly, the minimum C-rate required for the battery to be energy-constrained is

also inversely proportional to the length of the planning horizon, and so are the costs of the

charging and discharging capacity of the battery. In fact, Figure 3.A.3 in Appendix 3.A shows

that, at an activation ratio of 0.2, the minimum required C-rate increases from 0.1h−1 to 0.6h−1

if the planning horizon decreases from 24h to 4h. At an activation ratio of 0.1, the minimum

required C-rates are about twice as high. Conversely, the costs of the energy storage capacity

of the battery are independent of the length of the planning horizon.

Figure 7 shows the effective yearly profit for lithium-ion batteries with charging and discharg-

ing efficiencies of 0.92, buying electricity at wholesale prices, as a function of the length of the

planning horizon, for activation ratios of 0.1 and 0.2, for low annualized investment costs of

8.2 e
kWh and 27.6 ekW , and for high annualized investment costs of 16.0 e

kWh and 33.4 ekW . At the

current 24 hour planning horizon, lithium-ion batteries are profitable only at an activation

ratio of 0.1 and low investment costs. Given that we have only considered the cost of the

battery itself but no additional costs related to installation, maintenance, administration, or

land lease, investing in lithium-ion batteries for frequency regulation does not seem to be prof-

itable in the near future. In the medium term, lithium-ion batteries may become sufficiently

low-cost (Ziegler and Trancik, 2021) to be used for frequency regulation. Besides falling battery

prices, grid operators might opt for an activation ratio of 0.1 rather than 0.2 to make the use

of energy storage for frequency regulation more profitable. This would roughly double the

operating profits from frequency regulation, but it would also shrink the uncertainty set D and

therefore make grid operators more vulnerable to extreme frequency deviations that could

cause black-outs.

Alternatively, grid operators might reduce the length of the planning horizon T . If the planning

horizon were to be reduced from 24 hours to 4 hours, for example, the operating profits

accrued over a one-year period would increase by a factor 6. Lithium-ion batteries could then

achieve an effective yearly profit of 10peer kWh of storage capacity, even at high investment

costs and high activation ratios. A shorter planning horizon for frequency regulation does not

necessarily make grid operators more vulnerable to extreme frequency deviations. In fact, grid

operators already use intraday markets with 15 minute bidding blocks for the wholesale of
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Figure 7: Effective yearly profit per kWh of storage capacity after investment costs.

electricity.IV Adopting intraday markets for frequency regulation as well would make energy-

constrained storage devices more competitive with power-constrained flexibility providers,

such as thermal power plants and pumped hydro storage. The latter may not welcome

this competition and lobby grid operators and policy makers to keep the current planning

horizons for frequency regulation. Increased competition, however, may decrease the total

cost of frequency regulation, which is ultimately borne by the public since grid operators are

public entities.

Finally, if battery costs decline slower than projected, vehicle-to-grid may be a viable al-

ternative to newly built batteries as it would use existing batteries in electric vehicles for

frequency regulation when the vehicles are parked. Lauinger et al. (2022) suggest, however,

that the value of vehicle-to-grid under current market conditions may not be high enough to

convince vehicle owners, aggregators, and equipment manufacturers to invest in this technol-

ogy. Vehicle-to-grid, too, would thus benefit from a shorter planning horizon for frequency

regulation.

3.7 Conclusions

We analyze the decision problem of an electricity storage operator offering frequency regula-

tion, or, more precisely, frequency containment reserves, under a reliability guarantee that

captures effective EU regulations. We show that although frequency deviations vanish on

average, the average power flow entering the storage device is nonincreasing in the amount of

regulation power offered. The lower the rountrip efficiency of the storage device and the higher

the mean absolute deviation of the frequency deviations, the higher the dissipative losses

incurred by the provision of regulation power. We assume that the storage operator purchases

power to compensate these losses. There is therefore a nonzero marginal cost of providing

frequency regulation. The higher the market price of electricity, the higher the marginal cost.

To our best knowledge, we are the first to quantify the marginal cost of providing frequency

regulation through electricity storage and to study its dependence on both the roundtrip

IVhttps://www.entsoe.eu/network_codes/cacm/implementation/sidc/
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efficiency of the storage device and on the dispersion of the frequency deviations. In particular,

we provide closed-form lower and upper bounds on the marginal cost, which are tight for

some extremal frequency deviation distributions.

In a numerical case-study based on frequency measurements in the continental European

electricity grid, we find that storage operators need to purchase between 0.6% and 4.3% of the

regulation power they offer in order to compensate charging and discharging losses. Since the

average wholesale and retail market prices of electricity are about five and fifteen times higher,

respectively, than the average price for regulation power, even small losses can increase the

marginal cost of frequency regulation significantly. In fact, for inefficient storage devices, such

as hydrogen tanks with a roundtrip efficiency of 35%, we find that charging and discharging

losses reduce the expected profits per unit of regulation power by up to 19% at wholesale

prices and by up to 72% at retail prices. For more efficient storage devices, such as lithium-ion

batteries with a roundtrip efficiency of 85%, the reductions are still up to 3% at wholesale

prices and up to 11% at retail prices.

In order to balance electricity demand and supply in the future, European grid operators

estimate that they may need to store electricity in batteries with a total power of up to 100GW

by the year 2050. Lithium-ion batteries, in particular, are considered a promising source

of frequency regulation, thanks to their fast dynamics. The investment costs of lithium-ion

batteries have declined sharply in recent years, but we find that they are not yet low enough for

lithium-ion batteries to be profitable in the frequency regulation market. Since Europe plans

to increasingly rely on batteries in the future, however, their use should become profitable.

We identify two policy options that make electricity storage in general and battery storage

in particular more profitable. First, regulators can decrease the marginal costs of frequency

regulation by making it easier for small and medium-sized storage devices to access wholesale

electricity markets. This is one of the aims of Order 845 from the year 2018 by the US Federal

Energy Regulatory Commission. Second, regulators can decrease the length of the planning

horizon, which is currently one day in the common European frequency regulation market.

In fact, we show that the amount of regulation power that storage devices can provide may

be constrained not by their charging and discharging capacities but rather by their storage

capacity and their initial state-of-charge. In this case, the profits from frequency regulation

over the lifetime of the storage devices are inversely proportional to the length of the planning

horizon. The planning horizon could, for example, be shortened by adopting intraday markets

for frequency regulation. In fact, such markets already exist for the wholesale of electricity.

In general, regulations that make electricity storage more profitable also make it more com-

petitive. The increased competition may not be welcome by traditional frequency regulation

providers such as thermal power plants and pumped hydro storage plants. Their operators

may lobby against new regulations. Nevertheless, a more competitive frequency regulation

market may lead to a higher security of supply, especially in electricity grids with high shares of

intermittent wind and solar power, and to lower public costs of frequency regulations, which

are borne by all electricity consumers alike.
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3.A Additional Figures
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Figure 3.A.1: Distribution of
frequency deviations in 2017–19.
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Figure 3.A.4: Operating profit on wholesale and retail markets for γ
T = 0.1.
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3.B Proofs

This appendix contains the proofs of all theorems, propositions, and lemmas in the main text.

Proof of Proposition 3.1. The proof is similar to the one of Proposition 1 by Lauinger et al.

(2022), which analyzes the state-of-charge of an electric vehicle battery providing frequency

regulation. The difference is that we do not model any electricity consumption for driving. By

definition,

y
(
xb , xr ,δ, y0, t

)= y0 +
∫ t

0
η+

[
xb +δ(t ′)xr ]+− 1

η−
[
xb +δ(t ′)xr ]− dt ′

= y0 +
∫ t

0
min

{
η+

(
xb +δ(t ′)xr )

,
1

η−
(
xb +δ(t ′)xr )}

dt ′,

where the second equality holds because η+ < 1/η−. As η+ > 0, η− > 0, and xr ≥ 0, both

η+(xb +δ(t ′)xr ) and 1
η− (xb +δ(t ′)xr ) are nondecreasing in δ(t ′) and strictly increasing in xb .

The minimum of two (nondecreasing/strictly increasing) affine functions is a concave (nonde-

creasing/strictly increasing) function (Boyd and Vandenberghe, 2004, p. 73). The function y is

thus concave strictly increasing in xb , concave in xr , concave nondecreasing in δ, and affine

nondecreasing in y0.

Proof of Lemma 3.1. The claim follows immediately from the definition of D and is thus omit-

ted.

Proof of Proposition 3.2. We first show that the upper bound on the charging power and the

upper bound on the state-of-charge are valid for all frequency deviation trajectories δ ∈ D

and all time instants t ∈ T if and only if they are valid for the particular frequency devia-

tion trajectory δ(+), defined through δ(+)(t) = 1 if t ≤ γ and δ(+) = 0 otherwise, and all time

instants t ∈ {γ,T }.

The upper bound on the charging power is valid for all δ ∈D and all t ∈T if and only if it is

valid for the maximum charging power that can be achieved by any δ ∈D and any t ∈T . We

have

max
δ∈D, t∈T

y+(xb , xr ,δ(t )) = max
δ∈D+, t∈T

y+(xb , xr ,δ(t )) = max
δ∈D+, t∈T

xb +δ(t )xr = xb +xr ,

where the first equality holds because y+ is nondecreasing in δ(t ) and because D is symmetric.

In fact, for any δ ∈D, we have |δ| ∈D, and the maximum charging power for |δ| will be at least

as high as the one for δ. The second equaliy holds because y+ is linear in δ(t ) whenever δ(t ) ≥ 0.

The last equality holds because δ(t ) ≤ 1 for all δ ∈D+ and t ∈T , and because the upper bound

is attained at δ= δ(+) and t = γ, for example. Thus, assertion (i ) follows.

The state-of-charge at a given time instant t for a given frequency deviation trajectory δ is
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given by the integral of the difference between the instantaneous charging and discharging

power weighted by η+ and 1
η− , respectively. This integral does not depend on the order

of the frequency deviations within the interval [0, t ]. We can thus assume without loss of

generality that δ is sorted in decreasing order within this interval. Next, define the effective

charging time t c = maxt ′∈[0,t ]{t ′ : xb +δ(t ′)xr ≥ 0}. In addition, denote the average frequency

deviations during charging and discharging by δc and δd , respectively, which we define

through δc = 1
t c

∫ t c

0 δ(t ′)dt ′ if t c > 0 and = 0 otherwise, and δd = 1
t−t c

∫ t−t c

t c δ(t ′)dt ′ if t c < t

and = 0 otherwise. Recalling that −1 ≤ δ(t) ≤ 1 for all δ ∈ D and all t ∈ T , we now address

two special cases. First, if −xb > xr , then t c = 0 and the battery is discharging at all times,

regardless of the frequency deviation trajectory. The maximum state-of-charge is thus the

initial state-of-charge, which we assumed to satisfy the upper bound for consistency. Second,

if xb > xr , then t c = t and the battery is charging at all times, regardless of the frequency

deviation trajectory. The maximum state-of-charge is thus attained at time t = T by any

nonnegative frequency deviation trajectory that exhausts the uncertainty budget such as δ(+).

For the case |xb | ≤ xr , we now prove that

max
δ∈D, t∈T

y(xb , xr ,δ, y0, t ) = max
t ,t c ,δc ,δd

y0 + t cη+(xb +δc xr )+ t − t c

η−
(xb +δd xr )

s.t. xb +δc xr ≥ 0, xb +δd xr < 0,

t cδc + (t − t c )δd ≤ γ,

0 ≤ δc ,δd ≤ 1, 0 ≤ t c ≤ t ≤ T.

(3.7)

First, we note that D can be replaced with D+ on the left-hand side of equation (3.7) because y

is nondecreasing in δ by Proposition 3.1 and because D is symmetric by Lemma 3.1. Next, D+

can be further restricted to D+
▷ of all δ ∈D+ that are nonincreasing because y depends only

on the integral of δ over the interval [0, t ]. In fact, for t = T , y(xb , xr ,δ, y0,T ) does not depend

on the order of δ. For t < T , Proposition 3.1 implies that y(xb , xr ,δ, y0, t ) is maximized if δ is

sorted in nonincreasing order. If δ ∈D+, then the sorted δ ∈D+ because the order of δ matters

neither for the budget constraint
∫
T δ(t)dt ≤ γ nor for the box constraints δ ∈ L (T , [0,1])

which define D+. We thus have

max
δ∈D, t∈T

y(xb , xr ,δ, y0, t ) = max
δ∈D+

▷, t∈T
y(xb , xr ,δ, y0, t ).

We now show that maxδ∈D+
▷, t∈T y(xb , xr ,δ, y0, t ) is equal to the right-hand side of equation 3.7.

Select δ ∈D+
▷ and t ∈T , then we have

y(xb , xr ,δ, y0, t ) = y0 +
∫ t

0
η+[xb +δ(t ′)xr ]+− 1

η−
[xb +δ(t ′)xr ]− dt ′

= y0 +
∫ t c

0
η+(xb +δ(t ′)xr )dt ′+

∫ t

t c

1

η−
(xb +δ(t ′)xr )dt ′

= y0 + t cη+(xb +δc xr )+ t − t c

η−
(xb +δd xr ),
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where δc , δd , and t c are as defined above. The new variables δc , δd , and t c correspond to

feasible frequency deviation trajectories δ ∈ D+
▷ and to feasible time instants t ∈ T if and

only if they satisfy the constraints of the optimization problem on the right-hand side of

equation (3.7). In fact, we have∫ t

0
δ(t ′)dt ′ =

∫ t c

0
δ(t ′)dt ′+

∫ t

t c
δ(t ′)dt ′ = t cδc + (t − t c )δd ≤ γ.

All other constraints are valid by construction. We now solve the optimization problem on the

right-hand side of equation (3.7) analytically. It is optimal to set t − t c = 0 since the negative

term xb +δd xr is multiplied by the nonnegative term t − t c in the objective function. The

budget constraint t cδc + (t − t c )δd ≤ γ thus reduces to t cδc ≤ γ and the objective function

reduces to y0 + t cη+(xb +δc xr ). As xr is nonnegative, it is also optimal to set t cδc = γ, which

restricts t to be no smaller than γ as δc must be no greater than 1. This restriction, however,

does not affect optimality because the objective function is nondecreasing in t as xb +δc xr is

nonnegative. We obtain the equivalent problem

max
t

y0 +η+(t xb +γxr )

s.t. xb + γ

t
xr ≥ 0, γ≤ t ≤ T.

If xb ≥ 0, then it is optimal to set t = T , which implies that δc = γ
T in the earlier problem.

Conversely, if xb ≤ 0, then it is optimal to set t = γ, which implies that δc = 1 in the earlier

problem. The average of the frequency deviation trajectory δ(+) is γ on the interval [0, t ] and γ
T

on the interval [0,T ]. The upper bound on the state-of-charge thus holds if and only if it holds

for y(xb , xr ,δ(+), y0, t ) and y(xb , xr ,δ(+), y0,T ), which leads to assertion (i i i ).

Using similar arguments, one can show that the upper bound on the discharging power and the

lower bound on the state-of-charge hold for all frequency deviation signals δ ∈D and all time

instants t ∈T if and only if they hold for the particular frequency deviation signal δ(−) =−δ(+)

and all time instants t ∈ {γ,T }. We omit the details for the sake of brevity.

The proof of Proposition 3.3 relies on the following symmetry property of ϕ.

Lemma 3.7 (Symmetry of ϕ). For all z ∈R, we have ϕ(z) =ϕ(−z)+ z.

Proof of Lemma 3.7. We first prove that the symmetry of Pξ implies that F (z)+F (−z) = 1+
Pξ[{z}] for all z ∈R. To see this, note that

F (z)+F (−z) =Pξ ((−∞, z])+Pξ ((−∞,−z]) =Pξ ((−∞, z])+Pξ ([z,∞)) = 1+Pξ [{z}] .

Thus, F (z)−1/2(1+Pξ[{z}]) = 1/2(1+Pξ[{z}])−F (−z) =−(F (−z)−1/2(1+Pξ[{z}])) is an odd
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function, which implies that

ϕ(z) =
∫ z

−∞
F (ξ)dξ=

∫ −z

−∞
F (ξ)dξ+

∫ z

−z
F (ξ)− 1

2
(1+Pξ[{z}])+ 1

2
(1+Pξ[{z}])dξ

=ϕ(−z)+
∫ z

−z

1

2
(1+Pξ[{z}])dξ=ϕ(−z)+ 1

2

(
z +Pξ[{z}]− (−z)−Pξ[{−z}]

)
=ϕ(−z)+ z + 1

2

(
Pξ[z]−Pξ[z]

)=ϕ(−z)+ z.

Hence, the claim follows.

Proof of Proposition 3.3. We first prove equation (3.2). If xr > 0, then we have

E
[

y(xb , xr , δ̃, y0,T )
]
= y0 +T E

[
1

T

∫
T
η+

[
xb + δ̃(t )xr

]+− 1

η−
[

xb + δ̃(t )xr
]−

dt

]
= y0 +T xr

∫ 1

−1
η+

[
xb

xr +ξ
]+

− 1

η−

[
xb

xr +ξ
]−
Pξ(dξ), (3.8)

where the second equality follows from the definitions of ξ̃ and Pξ. Setting z = xb/xr to

simplify notation, we then find∫ 1

−1
[z +ξ]+Pξ(dξ) =

∫ 1

−z
(z +ξ)Pξ(dξ) = zF (ξ)|1−z +ξF (ξ)|1−z −

∫ 1

−z
F (ξ)dξ

= (z +ξ)F (ξ)−ϕ(ξ)|1−z = (z +1)F (1)+ϕ(−z)−ϕ(1) = z +ϕ(−z).

The second equality follows from integration by parts, and the fifth equality holds because

F (1) =ϕ(1) = 1. In fact, asϕ(−1) = 0 by construction, Lemma 3.7 implies thatϕ(1) =ϕ(−1)+1 =
1. Following a similar reasoning and keeping in mind that F (−1) = 0, we obtain∫ 1

−1
[z +ξ]−Pξ(dξ) =−

∫ −z

−1
(z +ξ)Pξ(dξ) =ϕ(ξ)− (z +ξ)F (ξ)|−z

−1

= (z −1)F (−1)+ϕ(−z)−ϕ(−1) =ϕ(−z).

Substituting these expressions into (3.8) yields equation (3.2).

If xr = 0, then we find

E
[

y(xb ,0, δ̃, y0,T )
]
= y0+T

(
η+

[
xb

]+− 1

η−
[

xb
]−)

= lim
xr →0+ y0+T

(
η+xb −ηd xrϕ

(
−xb

xr

))
.

The second equality holds because xrϕ(− xb

xr ) is the perspective of ϕ(−xb), which implies that

lim
xr →0+ xrϕ

(
−xb

xr

)
= xb

(
lim

xr →0+
∂

∂xb
xrϕ

(
−xb

xr

))
= xb

(
lim

xr →0+−F

(
−xb

xr

))
=

[
xb

]−
.
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We now establish several useful properties of the expected terminal state-of-charge. Note

first that ϕ is convex, continuous, and almost everywhere differentiable because it is a super-

cumulative distribution function. The expected terminal state-of-charge is jointly concave

in xb and xr because −xrϕ(− xb

xr ) is the negative perspective of the convex function ϕ(−xb)

and therefore concave (Boyd and Vandenberghe, 2004, p. 89). Theorem 10.1 by Rockafellar

(1970) implies that any concave function is continuous on the interior of its domain. We have

shown above that the expected terminal state-of-charge on the boundary of its domain, i.e.,

for xr = 0, is equal to its right limit. It is thus continuous. Theorem 25.5 again by Rockafellar

(1970) implies that is also differentiable almost everywhere. To see that the expected terminal

state-of-charge is strictly increasing in xb , note that

∂

∂xb
E
[

y(xb , xr , δ̃, y0,T )
]
= T

(
η++ηd F

(
−xb

xr

))
> 0 ∀(xb , xr ) ∈R×R+

because η+ > 0, ηd ≥ 0, and F is nonnegative. Here, we use the convention that F (− xb

0 ) = 0 if

xb ≥ 0 and F (− xb

0 ) = 1 if xb < 0. Similarly, to see that the expected terminal state-of-charge is

nondecreasing in xr , we note that

∂

∂xr E
[

y(xb , xr , δ̃, y0,T )
]
=−ηd T

(
ϕ

(
−xb

xr

)
+ xb

xr F

(
−xb

xr

))
≤ 0 ∀(xb , xr ) ∈R×R++.

To prove the inequality, we set z = −xb/xr and show that the function −ηd (ϕ(z)− zF (z)) is

nonnegative. As ϕ(z) = 0 for all z ≤−1, Lemma 3.7 implies that ϕ(z) = z for all z ≥ 1. Thus, we

have ϕ(z)− zF (z) = 0 for all |z| ≥ 1. If z ∈ [−1,0], then ϕ(z)− zF (z) ≥ 0 because ϕ and F are

both nonnegative. Finally, if z ∈ [0,1] then we first note that

ϕ(1) =ϕ(z)+
∫ 1

z
F (z ′)dz ′ ≤ϕ(z)+

∫ 1

z
F (1)dz ′ =ϕ(z)+F (1)(1− z), (3.9)

where the first and second equalities follow from the definition of ϕ and the monotonicity

of F , respectively. Hence, we have for every z ∈ [0,1] that

0 =ϕ(1)−F (1) ≤ϕ(z)+F (1)(1− z)−F (1) =ϕ(z)− zF (1) ≤ϕ(z)− zF (z),

where the first and second inequalities follow from (3.9) and from the monotonicity of F ,

respectively.

Finally, the expected terminal state-of-charge is unbounded above in xb because

lim
xb→∞

y0 +T

(
η+xb −ηd xrϕ

(
−xb

xr

))
= lim

xb→∞
y0 +Tη+xb =∞,

where the first equality holds because ϕ(− xb

xr ) = 0 for all xb ≥ xr .
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Proof of Proposition 3.4. The average expected charging rate ẏ is a positive affine transforma-

tion of the expected terminal state-of-charge. Proposition 3.3 thus immediately implies that ẏ

is continuous, differentiable almost everywhere, and jointly concave in xb and xr . In addition,

ẏ is strictly increasing and unbounded above in xb , and nonincreasing in xr . As ẏ is concave

and strictly increasing in xb , it is also unbounded below in xb . Overall, ẏ is continuous and

unbounded below and above in xb , which means that the equation ẏ(xb , xr ) = ẏ⋆ has at least

one solution xb◦ for any given xr ∈ R+. As ẏ is strictly increasing in xb , this solution is also

unique. The constraint ẏ(xb , xr ) = ẏ⋆ defines therefore a unique implicit function g :R+ →R

such that ẏ(g (xr ), xr ) = ẏ⋆ for all xr ∈R+.

As ẏ is nonincreasing in xr , an increase in xr either leaves ẏ unchanged or decreases ẏ . As ẏ

is strictly increasing in xb , the equality ẏ(xb , xr ) = ẏ⋆ remains valid if and only if xb◦ stays

unchanged in the first case and increases in the second case. The implicit function g is thus

nondecreasing.

As ẏ is jointly concave in xb and xr , the superlevel set C = {(xb , xr ) ∈R×R+ : ẏ(xb , xr ) ≥ ẏ⋆} is

convex. As ẏ is strictly increasing in xb , a point (xb , xr ) satisfies ẏ(xb , xr ) ≥ ẏ⋆ if and only if

xb ≥ g (xr ). The set C thus coincides with the epigraph of g . The convexity of C then implies

that g is a convex function (Boyd and Vandenberghe, 2004, p. 75).

As ẏ is differentiable almost everywhere and continuous, so is g . By the implicit function

theorem (Protter and Morrey, 1985, p. 395), the derivative of g is given by

g ′(xr ) =−
∂ẏ(xb , xr )

∂xr

∂ẏ(xb , xr )
∂xb

= ηd
ϕ(− xb

xr )+ xb

xr F (− xb

xr )

η++ηd F (− xb

xr )

wherever it exists. If g (0) ̸= 0, then we have

ẏ(g (0), |g (0)|) = η+g (0)−ηd |g (0)|ϕ
(
− g (0)

|g (0)|
)
= η+g (0)−ηd

[
g (0)

]− = ẏ(g (0),0),

where the first and third equalities follow from Proposition 3.3 and the second equality holds

because ϕ(z) = 0 for z ≤−1 and ϕ(z) = z for z ≥ 1.

As g is nondecreasing, it must be constant on the interval [0, |g (0)|], which means that g ′(xr ) =
0 for all xr in the interior of that interval.

The asymptotic slope m = limxr →∞ g ′(xr ) is equal to the asymptotic average slope limxr →∞
g (xr )

xr ,

which can be found by analyzing the expression limxr →∞
ẏ(g (xr ), xr )

xr . In fact,

lim
xr →∞

ẏ(g (xr ), xr )

xr = lim
xr →∞η

+ g (xr )

xr −ηdϕ

(
−g (xr )

xr

)
= lim

xr →∞
ẏ⋆

xr = 0 ⇐⇒ lim
xr →∞

g (xr )

xr = m,

where m is the unique solution to the equation η+m −ηdϕ(−m) = 0. As ηd = 1
η− −η+ and

ϕ(−m) =ϕ(m)−m by Lemma 3.7, this equation is equivalent to m = (1−η+η−)ϕ(m). It admits
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a unique solution within the interval [0,1), because the function s(m) = m − (1−η+η−)ϕ(m)

is nondecreasing in m, nonpositive for m = 0, and strictly positive for m = 1. Indeed, s

is nondecreasing as its derivative 1− (1−η+η−)F (m) is nonnegative because F (m) ≤ 1 for

all m ∈R and because η+η− ∈ (0,1]. The asymptotic slope of g is indeed equal to m because

lim
xr →∞g ′(xr ) = ηd

ϕ(−m)+mF (−m)

η++ηd F (−m)
= ηd

η+
ηd

m +mF (−m)

η++ηd F (−m)
= m.

Proof of Lemma 3.2. From the proof of Proposition 3.4 we know that the asymptotic slope m

is the unique solution to the equation s(µ) = 0, where s(µ) = µ− (1−η+η−)ϕ(µ). We have

s(0) = −(1−η+η−)ϕ(0) ≤ 0 and s′(µ) = 1− (1−η+η−)F (µ). As F (µ) ∈ [0,1] for all µ ∈ R and

as η+η− ∈ (0,1], s′ is nonnegative and s is nondecreasing in µ. An increase in ∆= 2ϕ(0) can

decrease (but not increase) the intercept s(0), but it does not influence the slope s′. An increase

in η+η− can increase (but not decrease) the intercept s(0) and the slope s′. The zero-crossing

of s is thus nondecreasing in ∆ and nonincreasing in η+η−, and so is m.

As ϕ is a continuous convex function, it is closed. By Rockafellar’s envelope representation

theorem, any closed convex function is the pointwise supremum of all affine functions below

it (Rockafellar, 1970, p. 102). Forϕ, specifically, we haveϕ(µ) = 0 for all µ≤−1 andϕ(µ) =µ for

all µ≥ 1. It thus suffices to consider all affine functions aµ+b with a ≥ 0 and b ≥ 0 such that

ϕ(µ) ≥ aµ+b. The highest possible slope of any such function is the highest possible slope

of ϕ, which is 1. Similarly, the highest possible intercept of any such function is the intercept

of ϕ, which is ϕ(0). Let A = {(a,b) ∈ [0,1]× [0,ϕ(0)] : ϕ(µ) ≥ aµ+b ∀µ ∈ R} be the set of all

admissible coefficients for the affine functions. By the envelope representation theorem, we

have ϕ(µ) = max(a,b)∈A aµ+b for all µ ∈R. Substituting this expression into the equation for

the asymptotic slope yields

µ= (1−η+η−)

(
max

(a,b)∈A
aµ+b

)
= max

(a,b)∈A
(1−η+η−)(aµ+b),

where the second equality holds because 1−η+η− ≥ 0. The asymptotic slope m is the solution

to

min
m

m s.t. m ≥ (1−η+η−)(am +b) ∀(a,b) ∈A .

The constraint holds for all (a,b) ∈A if and only if

m ≥ (1−η+η−)(am +b) ⇐⇒ (1−a(1−η+η−))m ≥ (1−η+η−)b ⇐⇒ m ≥ 1−η+η−
1−a(1−η+η−)

b,

where the first equivalence is valid because 1− a(1−η+η−) > 0 as a ≤ 1 and η+η− ∈ (0,1].

Hence,

m = max
(a,b)∈A

ς(a,b,η+η−), where ς(a,b,η+η−) = 1−η+η−
1−a(1−η+η−)

b.
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If ς is convex in η+η− for all (a,b) ∈ A , then m is also convex in η+η− since the pointwise

maximum of convex functions is a convex function (Boyd and Vandenberghe, 2004, p. 80).

Note that ς is twice differentiable in η+η−. In fact,

∂

∂η+η−
ς(a,b,η+η−) =− b

(1−a(1−η+η−))2 and
∂2

(∂η+η−)2 ς(a,b,η+η−) = 2ab

(1−a(1−η+η−))3 .

As a ≥ 0 and b ≥ 0 for all (a,b) ∈ A , the first and second derivatives are always nonpositive

and nonnegative, respectively. The asymptotic slope m is thus convex and nonincreasing

in η+η−.

Proof of Lemma 3.3. If ẏ⋆ = 0, we have for all xr > 0

ẏ(g (xr ), xr ) = 0 ⇐⇒ ẏ(g (xr ), xr )

xr = η+ g (xr )

xr −ηdϕ

(
−g (xr )

xr

)
= 0 ⇐⇒ g (xr ) = mxr ,

where the second equivalence holds because m is the unique solution to η+m −ηdϕ(−m) =
0, which is equivalent to m = (1−η+η−)ϕ(m), by Proposition 3.4. For xr = 0, we trivially

have g (xr ) = mxr . The function g is thus linear with slope m.

Proof of Theorem 3.1. The robust constraints are replaced by their deterministic counterparts

in Proposition 3.2. The constraint on the expected terminal state-of-charge is modeled implic-

itly by expressing the decision variable xb as the function g , characterized in Proposition 3.4,

of xr .

Proof of Lemma 3.4. The feasible set X is convex if the function s(xr ) = g (xr )−ℓ(xr ) is mono-

tonic. In the following, we show that Assumption 3.2 implies that s is strictly decreasing. The

slope of s is maximal when the slope of g is maximal and the slope of ℓ is minimal. The

maximal slope of g is m, while the minimal slope of ℓ is γ
T . The function s is strictly decreasing

if its maximal slope is strictly negative, which is the case if m < γ
T . As ϕ(m) =ϕ(−m)+m by

Lemma 3.7, we have indeed

m = (1−η+η−)ϕ(m) =
(

1

η+η−
−1

)
ϕ(−m) ≤

(
1

η+η−
−1

)
ϕ(0) < 1

2

(
1

η+η−
−1

)
γ

T
≤ γ

T
.

The first inequality holds as ϕ is nondecreasing and m ≥ 0. The strict inequality holds be-

cause ϕ(0) < γ
2T by Assumption 3.2. The second inequality holds because η+η− ≥ 1

3 , also by

Assumption 3.2.

Proof of Theorem 3.2. Problem (P) consists of minimizing the convex cost function T (cb g (xr )−
cr xr ) over the interval X = [0, x̄r ]. Proposition 3.4 implies that the marginal profit T (cr −
cb g ′(xr )) exists almost everywhere and is nonincreasing, since g is convex, and that g ′(0)

exists.
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Problem (P) is feasible because it is equivalent to problem (R), which we assumed to be feasible

for consistency. Hence, x̄r ≥ 0. If x̄r = 0, the only feasible, and therefore optimal solution,

is xr∗ = 0.

If g ′(0) ≥ cr

cb , the marginal profit is nonpositive for all feasible values of xr and xr∗ = 0 is the

smallest optimal solution. Conversely, if min∂g (x̄r ) < cr

cb , then the marginal profit is strictly

positive for all feasible values of xr and xr∗ = x̄r is the only optimal solution.

If g ′(0) < cr

cb and min∂g (xr ) ≥ cr

cb , then the marginal profit may admit roots on X , any of which

would be an optimal solution. We now show that the set X⋆ of roots, or stationary points,

is nonempty and closed, which implies that minX⋆ exists. In this case, xr∗ = minX⋆ is the

smallest optimal solution.

Let g ′+ and g ′− denote the right and left derivative functions of g . We have g ′+(0) < cr

cb and

g ′−(x̄r ) ≥ cr

cb since g ′(0) < cr

cb and min∂g (xr ) ≥ cr

cb . Theorem 24.3 by Rockafellar (1970) implies

that the graph of the subdifferential mapping ∂g on X is the complete nondecreasing curve

segment

Γ=
{

(xr , xb ′) ∈X ×R : g ′
−(xr ) ≤ xb ′ ≤ g ′

+(xr )
}

.

The subsegment Γ⋆ = {(xr , xb ′) ∈ Γ : xb ′ = cr

cb } is nonempty since g ′+(0) < cr

cb and g ′−(x̄r ) ≥ cr

cb ,

closed, and bounded as a consequence of Theorem 23.4 by Rockafellar (1970). The set X⋆ is

the projection of Γ⋆ onto the xr -axis and therefore also nonempty, closed, and bounded.

Proof of Lemma 3.5. By Proposition 3.4, the asymptotic sensitivities m, m, and m are the

unique roots of the functions s
¯
ϕ, sϕ, and sϕ̄, respectively, where sϕ is defined as

sϕ(µ) = (1−η+η−)ϕ(µ)−µ

and the functions s
¯
ϕ and sϕ̄ are defined similarly. Equation (3.5) implies that s

¯
ϕ(µ) ≤ sϕ(µ) ≤

sϕ̄(µ) for all µ ∈R as 1−η+η− ≥ 0. In addition, the functions s
¯
ϕ, sϕ, and sϕ̄ are nonincreasing

because neither
¯
ϕ, nor ϕ, nor ϕ̄ admit a subgradient that is strictly greater than 1. In fact,

¯
ϕ, ϕ, and ϕ̄ are convex since they are super-cumulative distribution functions of ξ̃ and thus

achieve their greatest subgradients when µ tends to infinity. As ξ̃ is supported on [−1,1], we

have
¯
ϕ(µ) =ϕ(µ) = ϕ̄(µ) =µ for all µ≥ 1. Hence, the greatest subgradients are equal to 1.

We have 0 = s
¯
ϕ(m) ≤ sϕ(m). As m is the unique root of the nonincreasing function sϕ, this

implies that m ≥ m. A similar reasoning leads us to conclude that m ≤ m.

Proof of Lemma 3.6. For any xr ≥ 0, the constraint ẏ(xb , xr ) = ẏ⋆ implies that
¯
g (xr ), g (xr ),

and ḡ (xr ) are the unique roots of the functions s
¯
ϕ, sϕ, and sϕ̄, respectively, where sϕ is defined
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as

sϕ(xb) = ẏ⋆+ηdϕ

(
−xb

xr

)
xr −η+xb

and the functions s
¯
ϕ and sϕ̄ are defined similarly. Equation (3.5) implies that s

¯
ϕ(µ) ≤ sϕ(µ) ≤

sϕ̄(µ) for all xb ∈R since ηd xr ≥ 0. In addition, Proposition 3.3 implies that s
¯
ϕ, sϕ, and sϕ̄ are

all strictly decreasing. The claim follows from the same arguments as at the end of the proof of

Lemma 3.5.

Proof of Proposition 3.5. If y0 = y⋆, then ẏ⋆ = y⋆−y0

T = 0 and so g (xr ) = mxr by Lemma 3.3.

Hence, the constraints in Problem (P) obey the following equivalences.

xr + g (xr ) ≤ ȳ+ ⇐⇒ xr ≤ ȳ+

1+m

xr − g (xr ) ≤ ȳ− ⇐⇒ xr ≤ ȳ−

1−m

xr +max

{
T

γ
g (xr ), g (xr )

}
≤ ȳ − y0

η+γ
⇐⇒ xr ≤ ȳ − y0

η+(γ+mT )

xr −min

{
T

γ
g (xr ), g (xr )

}
≤ η−y0

γ
⇐⇒ xr ≤ η−y0

γ(1−m)

The last two equivalences hold because T
γ ≥ 1 and g (xr ) = mxr ≥ 0 since any feasible xr must

be nonnegative and since m is nonnegative by Proposition 3.4.

Proof of Theorem 3.3. If y0 = y⋆, then ẏ⋆ = y⋆−y0

T = 0 and so g (xr ) = mxr by Lemma 3.3.

Hence, g ′(0) = min∂g (x̄r ) = m. Theorem 3.2 implies that xr∗ = 0 if m ≥ cr

cb and = x̄r otherwise.
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In this thesis, we model the decision-making problem of electric vehicle aggregators that par-

ticipate in primary frequency regulation markets subject to EU regulations. Three overarching

themes emerge from this work.

First, time must be considered carefully when modeling the state-of-charge of electricity

storage devices. In general, modeling the state-of-charge in discrete rather than continuous

time underestimates the maximum state-of-charge and overestimates the minimum and

average state-of-charge (see Example 2.1).

Second, electricity systems are physical systems and must obey the laws of thermodynamics.

The first law states that energy can neither be created nor destroyed, it can only be transformed.

The second law implies that energy is lost in every transformation. For storage devices, charg-

ing and discharging losses lead to nonzero marginal costs of providing frequency regulation,

even if the average frequency deviation is zero.

Third, electricity systems are also political and cultural systems and thus subject to govern-

ment regulations, which will be respected if the penalties for noncompliance are sufficiently

high. For frequency regulation, European Union regulations specify an energy reserve that

storage devices must maintain to provide a given amount of regulation power. It is natural

to model such regulations through robust, as opposed to probabilistic, constraints so that

compliance can be audited. Maintaining the energy reserve means that, when providing

frequency regulation, electric vehicles are often constrained not by how fast they can charge

and discharge but by how much energy they can store. We show that the prevailing penalties

for noncompliance are too low to incentivize aggregators to maintain the energy reserve.

These three aspects may seem to complicate our decision-making problem, but, when consid-

ered together, the robust constraints pertaining to the energy reserve have a special structure

that allows for a simple mathematical solution. Surprisingly, the deterministic counterpart

of our decision-making problem does not have such a structure and is much harder to solve.

We believe that we have discovered the first practically relevant class of optimization prob-

lems that become dramatically easier through robustification. Thanks to its simplicity, our

solution can potentially be integrated into more general models, which may account for the

aggregation of many electric vehicles or for the provision of multiple grid services.
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Without taking the three themes into account, decision makers may experience a false sense

of security and run the risk of taking decisions that are infeasible in practice. For frequency

regulation, this could lead to blackouts.

In practice, aggregators can use our solution to compute the amount of regulation power

that each vehicle can provide by solving multiple independent linear programs. This can be

done efficiently by parallel computing even for large fleets with thousands of vehicles. In a

second step, aggregators may want to take advantage of economies of scale. As opposed to

individual vehicle owners, aggregators can decide which cars to use to provide a given amount

of regulation power. This has several advantages. First, battery degradation can be reduced by

managing the state-of-charge of vehicles more precisely. Second, charging and discharging

losses can be reduced by running vehicle chargers at their nominal operating points. Third,

aggregators can trade electricity on intra-day markets, which allows them to balance the state-

of-charge in the event of extreme frequency deviations, and hence to offer more regulation

power for a given battery capacity. Fourth, the availability of individual vehicles can be

estimated less conservatively because the vehicles will be somewhat independent. Extreme

deviations from the expected number of parked vehicles, for example, become less likely as

aggregators pool more vehicles. Finally, the fixed costs of creating and operating an aggregation

platform can be spread over more vehicles. On the downside, aggregators incur transaction

costs to convince vehicle owners to sign up with them. Even though the prices for frequency

regulation have doubled from the year 2019 to the year 2021, due partly to higher gas prices

and a wide-spread outage of French nuclear power plants, it is unclear whether frequency

regulation through vehicle-to-grid will be profitable enough to outweigh these costs.

Governments could reduce the costs of vehicle-to-grid by mandating that all new electric

vehicles be equipped with vehicle-to-grid technology. Such a mandate may encourage vehicle

owners to participate in vehicle-to-grid, which would lower the need to import batteries for

stationary electricity storage. Compared to other storage technologies, vehicle-to-grid may

enjoy greater public acceptance because it is invisible to the general public. In contrast, the

dams and lakes of pumped-hydro storage are quite visible and may irritate local populations,

especially if they have to resettle, as well as environmental organizations. Stationary battery

storage, too, requires space and may, in addition, pose fire hazards.

Finally, vehicle-to-grid will only be successful if there is a sufficient amount of underused

electric vehicles. The global electric vehicle fleet has increased rapidly in the last decade and,

given global efforts in mitigating climate change and air pollution, it seems reasonable to

expect that the fleet will continue to expand in the coming decades. It is less clear how the

utilization of electric vehicles will evolve. On the one hand, the number of vehicles per capita

has increased by about 10% in the US and by about 5% in Western Europe over the last decade,

which points to a decreasing utilization. On the other hand, the deployment of car-sharing,

ride-sharing, and ride-hailing services, possibly facilitated by self-driving cars, points to an

increasing utilization, which may hamper the potential of vehicle-to-grid.
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