
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Graph Representation Learning with Optimal 
Transport:
Analysis and Applications

Effrosyni SIMOU

Thèse n° 8044

2022

Présentée le 25 mai 2022

Prof. J.-Ph. Thiran, président du jury
Prof. P. Frossard, directeur de thèse
Prof. X. Bresson, rapporteur
Dr J. Feydy, rapporteur
Prof. P. Vandergheynst, rapporteur

Faculté des sciences et techniques de l’ingénieur
Laboratoire de traitement des signaux 4
Programme doctoral en génie électrique 





Love and respect what you do.

— Sylvie Guillem

To my family. . .





Acknowledgements
The journey of my PhD studies has been very rich and full of experiences which led me to

evolve academically and personally. I therefore want to take a moment to thank all the people

that contributed to these experiences.

First, I have to thank my supervisor Prof. Pascal Frossard, for giving me the opportunity to join

his research group and for trusting me with this PhD thesis. I also thank him for encouraging

me to chose my research topic, which I truly enjoyed to work on.

Further, I would like to thank the members of my thesis committee Prof. Vandergheynst,

Prof. Bresson and Dr. Feydy for the time they took to review my thesis and provide valuable

suggestions and feedbacks. Their interesting questions made my PhD exam a far more pleasant

experience than I could have ever imagined it to be. I also want to say a big thank you to the

jury president Prof. Thiran for his help with the organizational aspects of my thesis defence.

A special thank you goes out to Dorina Thanou, with whom I had the opportunity to collaborate

on a paper. Dorina’s genuine belief in me and my work gave me a significant confidence boost,

when I most needed it. I thank her for taking the time to give me useful feedback, for helping

me organize my ideas and for motivating me.

I want to thank also all the members of the LTS4 lab and, in general, the LTS corridor who

made me happy to go to EPFL everyday. I thank Renata for her warm personality, for sharing

our birthday celebration and for encouraging me to continue my ballet classes when I arrived

in Lausanne. I thank Isabela for being such a cool, fun person and for the lovely time we had

in Brighton together. A big thank you to Eda for the interesting discussions on graphs, books,

music.., for our long walks in the Ecublens nature during the Covid quarantine and for always

being there to share good advice. I also thank Marwa for her positive vibes; I certainly missed

her big smile since she graduated. Thank you also to Clémentine for her help with the French

version of the abstract of this thesis.

I cannot think of my years in Lausanne without thinking of my roommate and friend Anne-

Sophie. I thank her from the bottom of my heart for being such a kind, warm-hearted person

and for filling our house with laughter, cooking and Jasmine’s barking. I have the best memories

of our living together.

A big thank you also to all of my friends from Greece, who are by my side even though we are

currently scattered all over the globe. A special thank you to my friend Anthi, for her incredible

ability to empathize, for always telling me exactly what I need to hear and for inspiring me to

think out of the box.

i



Acknowledgements

A huge thank you to Giorgos for being with me during all the years of my master’s and PhD

studies. I thank him for being a constant source of love and balance in my life and for

supporting me in pursuing my goals. I also thank him for learning German and for coming to

join me in Switzerland when I started my PhD.

Last, but certainly not least, I thank my parents and my sister Eva for their infinite love and

support. I thank them for believing in me and for always giving me a reason to be happy. I

literally cannot find the words to express how grateful I am to have them in my life. I dedicate

this thesis to them.

Zürich, November 15, 2021

ii



Abstract
In several machine learning settings, the data of interest are well described by graphs.

Examples include data pertaining to transportation networks or social networks. Further,

biological data, such as proteins or molecules, lend themselves well to graph-structured

descriptions. In such settings, it is desirable to design representation learning algorithms that

can take into account the information captured by the underlying structure. This thesis

focuses on providing new methods to ingrain geometrical information in end-to-end deep

learning architectures for graphs through the use of elements from Optimal Transport theory.

First, we consider the setting where the data can be described by a fixed graph. In this setting,

each datapoint corresponds to a node of the graph and the edges among nodes signify their

pairwise relations. We propose an autoencoder architecture that consists of a linear layer in the

encoder and a novel Wasserstein barycentric layer at the decoder. Our proposed barycentric

layer takes into account the underlying geometry through the diffusion distance of the graph

and provides a way to obtain structure-aware, non-linear interpolations, which lead to directly

interpretable node embeddings that are stable to perturbations of the graph structure. Further,

the embeddings obtained with our proposed autoencoder achieve competitive or superior

results compared to state-of-the-art methods in node classification tasks.

Second, we consider the setting where the data consist of multiple graphs. In that setting, the

graphs can be of varying size and, therefore, a global pooling operation is needed in order to

obtain representations of fixed size and enable end-to-end learning with deep networks. We

propose a global pooling operation that optimally preserves the statistical properties of the

representations. In order to do so, we take into account the geometry of the representation

space and introduce a global pooling layer that minimizes the Wasserstein distance between a

graph representation and its pooled counterpart, of fixed size. This is achieved by performing

a Wasserstein gradient flow with respect to the pooled representation. Our proposed method

demonstrates promising results in the task of graph classification.

Overall, in this thesis we provide new methods for incorporating geometrical information in

end-to-end deep learning architectures for graph structured data. We believe that our

proposals will contribute to the development of algorithms that learn meaningful

representations and that take fully into account the geometry of the data under consideration.

Keywords: graph representation learning, optimal transport

iii





Résumé
Dans plusieurs contextes liés à l’apprentissage automatique, les données d’intérêt peuvent être

décrites par des graphes. Il s’agit par exemple de données relatives aux réseaux de transport ou

aux réseaux sociaux. De plus, les données biologiques, telles que les protéines ou les molécules,

se prêtent bien à des représentations graphiques. Dans de telles situations, il est souhaitable

de concevoir des algorithmes d’apprentissage de représentations qui prennent en compte

l’information venant de la structure sous-jacente des données. Cette thèse se concentre sur

de nouvelles méthodes afin d’incorporer l’information géométrique dans des architectures

d’apprentissage complet et profond pour les graphes par l’usage d’éléments provenant de la

théorie du transport optimal.

Tout d’abord, nous considérons une situation dans laquelle les données peuvent être décrites

par un graphe fixe. Dans ce cas, chaque point de données correspond à un nœud du graphe et

les arêtes entre les nœuds représentent leurs relations par paire. Nous proposons une

architecture d’un auto-encodeur qui se compose d’une couche linéaire pour l’encodeur et

d’une nouvelle couche Wasserstein barycentrique pour le décodeur. Notre couche

barycentrique proposée prend en compte la géométrie sous-jacente en utilisant la distance de

diffusion du graphe et permet d’obtenir des interpolations non-linéaires et conscientes de la

structure, qui conduisent à des intégrations de nœuds directement interprétables et

résistantes aux perturbations de la structure du graphe. De plus, les intégrations obtenues par

l’auto-encodeur proposé ont atteint des résultats compétitifs ou supérieurs aux méthodes

proposées dans l’état de l’art pour des tâches de classification de nœuds.

Dans un second temps, nous considérons une situation où les données sont décrites par

plusieurs graphes. Dans ce cas, les graphes peuvent être de taille variable et, par conséquent,

une opération de regroupement globale est nécessaire afin d’obtenir de représentations

de taille fixe et de permettre un apprentissage complet avec des réseaux profonds. Nous

proposons une opération de regroupement global qui préserve de manière optimale les

propriétés statistiques des représentations. Pour ce faire, nous prenons en compte la géométrie

de l’espace des représentations et introduisons un regroupement global qui minimise la

distance de Wasserstein entre une représentation graphique et son homologue regroupé,

de taille fixe. Ceci est réalisé grâce à un flux de gradient de Wasserstein par rapport à la

représentation regroupée. La méthode proposée montre des résultats prometteurs dans les

tâches de classification de graphes.

Dans l’ensemble de cette thèse, nous proposons de nouvelles méthodes pour incorporer

v



Résumé

l’information géométrique dans des architectures d’apprentissage complet et profond pour

des données structurées en graphes. Nous pensons que nos propositions contribueront au

développement d’algorithmes d’apprentissage de représentations graphiques qui apprennent

des représentations significatives et qui prennent en compte la géométrie des données

considérées.

Mots clés : apprentissage des représentations pour les graphes, transport optimal

vi



List of Tables
3.1 Macro-F1 score for node classification in PolBooks. . . . . . . . . . . . . . . . . . 38

3.2 Macro-F1 score for node classification in Citeseer4. . . . . . . . . . . . . . . . . . 39

3.3 Accuracy of node classification in PolBooks. . . . . . . . . . . . . . . . . . . . . . 40

3.4 Effect of barycentric layer. Macro-F1 scores for node classification in PolBooks. 42

3.5 Effect of barycentric layer. Macro-F1 scores for node classification in Citeseer4. 42

4.1 Statistics of Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Class Imbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Impact of Fixed Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Graph Classification Accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Classification Accuracy for PROTEINS. . . . . . . . . . . . . . . . . . . . . . . . . 68

vii





List of Figures

2.1 The optimal transport problem between the source µ and target ν. . . . . . . . 6

2.2 The pushforward constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Examples of a discrete measure of four points. (a) Mass can be found anywhere

in the space. (b) Mass can only be found at the positions predetermined by the

fixed grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Localized graph patterns m1, m2 plotted on the graph and their Wasserstein

barycenter b for λ1 = 0.2 and λ2 = 0.8. m1, m2 and b are plotted on the graph

in order to highlight that the barycentric interpolation takes into account the

underlying graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Node2coords block scheme. In the encoder, the node connectivity descriptors

are passed through a linear layer followed by a softmax activation to obtain the

small set of graph structural patterns that define the low dimensional space

MS . In the decoder, the node connectivity descriptors are reconstructed as

Wasserstein barycenters of the patterns in MS by optimizing for their barycentric

coordinates Λ. The barycentric coordinates are re-parametrized through a

softmax layer in order to guarantee that they sum up to one for each node. The

learned parameters are the weights of the encoder E and the weights of the

decoder ∆, which are annotated with red. . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Embeddings obtained for the Zachary Karate network with node2coords, LE,

Deepwalk, node2vec, SDNE, DVNE and GAE. For node2coords the two axes

correspond to the barycentric coordinates λ1,λ2. The embeddings of the other

methods are not in a known coordinate system. The embeddings of the two

communities are most clearly separated with node2coords. . . . . . . . . . . . . 33

3.4 Connectivity descriptor of the node highlighted with the orange circle. . . . . . 33

3.5 Graph structural patterns learned in MS for the Zachary Karate network. The

colormap shows the range of intensities of the pattern on the graph. The patterns

learned in MS are placed on each one of the communities. . . . . . . . . . . . . 33

ix



List of Figures

3.6 (a) Structural graph patterns of MS as learned for the graph G with p = 0.4. Each

pattern identifies one of the communities. (b) Structural graph patterns of MS

learned for the graph G with p = 0.4 transferred to the perturbed graph G ′ with

p ′ = 0.15. The graph structural patterns remain meaningful for the perturbed

graph G ′ as they clearly indicate the three communities. . . . . . . . . . . . . . . 35

3.7 Clustering of perturbed graphs. AMI and NMI scores as a function of the relative

change of the probability of connection within the community |p−p ′|
|p ′| . . . . . . . 36

3.8 Stability of node2coords embeddings. . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.9 Embeddings of node2coords of the perturbed graphs G ′ in the space MS learned

for the clean graph G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.10 Graph structural patterns learned for PolBooks. The node with the highest

value of each pattern is highlighted with an orange circle. Each graph structural

pattern indicates a cluster of the graph. . . . . . . . . . . . . . . . . . . . . . . . . 39

3.11 Sensitivity of the classification accuracy on the PolBooks dataset with respect to

the entropy regularization parameter ε. . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Corresponding a graph G to a probability measure ν. On the left we show a

graph G of N = 7 nodes with its representation Y . The j -th node is annotated

with its representation y j = [Y1, j ;Y2, j ]. For instance, the representation of node

2 is y2 = [−0.40;0.04]. By assuming that all the nodes in graph G are equally

important, we correspond the graph representation to the probability measure

ν= 1
7

∑7
j=1δy j . The positions of mass of the measure are determined by the node

representations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 The FlowPool method for pooling graph representations. The input is a graph

representation Y ∈ Rd×N , where N can admit any value. The output X (L) is a

Rd×M representation, with M fixed, such that Lε
C (X (L),Y )

(a,b) is minimal. . . . . 51

4.3 Implementation of FlowPool using JAX. The gradient ∇X LεC (X ,Y )(a,b) needed for

the gradient flow is obtained with JAX’s function jax.grad. The pooled graph

representation is updated according to this gradient. During the

backpropagation the gradient function obtained with jax.grad is re-derived in

order to obtain the Jacobians ∂Y ∇X LεC (X ,Y )(a,b) and ∂X ∇X LεC (X ,Y )(a,b). . . . . 58

4.4 Block scheme of graph classification with FlowPool. FlowPool is used to pool a

provided graph representation Y to a graph representation of fixed size X (L).

The representation X (L) is flattened to obtain the representation X f . The

learnable parameters are the weights w and the intercept c of the logistic

regression classifier, which are annotated with red. The features in X f are

linearly combined and passed through the sigmoid function, in order to obtain

the probability that the graph representation Y belongs to the positive class. . . 60

x



List of Figures

4.5 Impact of the entropy regularization parameter ε on the classification accuracy

for the BZR dataset using FlowPool for the minimization of (a) the entropy

regularized Wasserstein distance LεC (a,b) and (b) the Sinkhorn divergence

SεC (a,b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 Impact of the entropy regularization parameter ε on the classification accuracy

for the COX2 dataset using FlowPool for the minimization of (a) the entropy

regularized Wasserstein distance LεC (a,b) and (b) the Sinkhorn divergence

SεC (a,b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.7 Pooled graph representations for different values of ε for a representation from

BZR. With blue we show the initial representation Y ∈ R3×30 and with red the

pooled graph representation X (L) ∈R3×10. Larger values of ε result to degenerate

pooled representations X (L) with smaller support than Y . . . . . . . . . . . . . . 62

4.8 Pooled graph representations for different values of ε for a representation from

COX2. With blue we show the initial representation Y ∈R3×39 and with red the

pooled graph representation X (L) ∈R3×10. Larger values of ε result to degenerate

pooled representations X (L) with smaller support than Y . . . . . . . . . . . . . . 62

4.9 Comparison of the result of FlowPool on the feature representation of a graph

from the BZR dataset for (a) the entropy regularized Wasserstein distance

LεC (X ,Y )(a,b) and (b) the Sinkhorn divergence SεC (X ,Y )(a,b) for

ε = 10,τ = 0.2,L = 200. It can be seen that the Sinkhorn divergence yields an

unbiased solution even for this large value of ε= 10. . . . . . . . . . . . . . . . . 64

4.10 Comparison of the result of FlowPool on the feature representation of a graph

from the COX2 dataset for (a) the entropy regularized Wasserstein distance

LεC (X ,Y )(a,b) and (b) the Sinkhorn divergence SεC (X ,Y )(a,b) for ε= 10,τ= 0.2,L =
200. It can be seen that the Sinkhorn divergence yields an unbiased solution

even for this large value of ε= 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.11 Pooling of a GCN representation with FlowPool. With blue we show the initial

representation Y and with red the pooled graph representation X (L). . . . . . . 68

xi





Contents
Acknowledgements i

Abstract iii

List of Tables vii

List of Figures xi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Optimal Transport for Machine Learning 5

2.1 Illustrative Description of The Optimal Transport Problem . . . . . . . . . . . . 5

2.2 Optimal Transport Problems for Discrete Measures . . . . . . . . . . . . . . . . . 7

2.2.1 Discrete Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 The Monge Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 The Kantorovich Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.4 Wasserstein Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Entropy Regularization of the Optimal Transport Problem . . . . . . . . . . . . . 10

2.3.1 Entropy-Regularized Optimal Transport for Machine Learning . . . . . . 10

2.3.2 Log-stabilized Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.3 Relaxation of the Mass-Preservation Constraints . . . . . . . . . . . . . . 14

2.3.4 Metric Properties of the Entropy Regularized Transportation Problem . . 15

2.4 Wasserstein Barycenter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Wasserstein Barycenter of Fixed Support . . . . . . . . . . . . . . . . . . . 15

2.4.2 Entropy-Regularized Wasserstein Barycenter of Fixed Support . . . . . . 16

2.5 Optimal Transport for Machine Learning on Graphs . . . . . . . . . . . . . . . . 16

3 Graph Representation Learning with Wasserstein Barycenters 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

xiii



Contents

3.3 Wasserstein Barycenters for Graph Representation Learning . . . . . . . . . . . 23

3.3.1 Efficient Method for Barycenter Computation of Graph Patterns . . . . . 24

3.3.2 Illustrative Example of Wasserstein Barycenter of Graph Patterns . . . . 27

3.4 node2coords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.2 Interpretation of node2coords on a Community Detection Task . . . . . 32

3.5.3 Stability to Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.4 Node Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.5 Generalization to Unseen Nodes . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.6 Parameter Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.7 Study of the Effect of the Barycentric Layer . . . . . . . . . . . . . . . . . . 42

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Pooling Graph Representations with Wasserstein Gradient Flows 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Graph Representations as Probability Measures . . . . . . . . . . . . . . . . . . . 49

4.4 FlowPool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Implementation of FlowPool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Permutation Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6.1 Computation of ∇X LεC (X ,Y )(a,b) . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6.2 Proof of Permutation Invariance . . . . . . . . . . . . . . . . . . . . . . . . 56

4.7 Integrating FlowPool in Graph Neural Network Architectures . . . . . . . . . . . 57

4.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.8.1 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.8.2 Preliminary Classification Results of FlowPool in a GNN . . . . . . . . . . 67

4.9 Parametrization of FlowPool - Learning the Ground Cost . . . . . . . . . . . . . 69

4.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Conclusion and Future Work 71

Bibliography 73

Curriculum Vitae 83

xiv



1 Introduction

1.1 Motivation

In many machine learning settings the data of interest can be described using graph structures.

Such settings arise, for instance, in the analysis of the behaviours of users in social networks,

in the communication of nodes in sensor networks and in molecule generation for drug

discovery, among others. The graph structure captures important information about the

pairwise relationships between the features of the data. Therefore, algorithms that exploit the

graph provide effective solutions for machine learning tasks where such structured data are

considered.

Given the success of deep networks for learning representations from raw data over the

last decade, there has been a significant increase in the development of end-to-end graph

representation learning algorithms, commonly referred to as Graph Neural Networks (GNNs).

The majority of GNN architectures are message-passing GNNs that take into account the

graph geometry through the adjacency matrix [1] or the Laplacian matrix [2] of the graph and

learn geometry-aware representations by learning the weights of linear combinations of the

features of a node and its neighbors. Given the limited expressivity power of message passing

GNNs [3], in the last two years new architectures that take into account more information

about the geometry of the graph, either by considering higher order node interactions [4] or

by using a positional encoding for each node [5], have been proposed.

In this thesis, our primary focus is the infusion of extra geometrical information in end-to-end

deep learning algorithms for graphs. In order to achieve this, we leverage the mathematical

theory of Optimal Transport (OT), which enables the definition of geometrically meaningful

distances. Specifically, with OT one can use the geometry of a space, as captured by a distance

metric, to define Wasserstein distances between probability measures on that space. In our

work, we describe graph data as discrete probability measures and propose modules that use

Wasserstein distances to compare them in a geometrically meaningful way. We use the recently

1



Chapter 1. Introduction

proposed entropic regularization of the OT problem and implicit differentiation to enable the

automatic differentiation of our modules and, therefore, their integration in end-to-end GNN

architectures. Further, for each of our proposed modules we analyse their behaviour, build

intuitions and demonstrate with numerical experiments how the geometry awareness they

offer enhances the representation learning process.

Representation learning for graphs arises in two different settings. First, the setting where

the data is described by one graph. Such settings arise, most commonly, when each data

point corresponds to a node of the graph and the edges describe some pairwise relationship

among datapoints. An example of a machine learning task that may be relevant in that

case is the classification of the nodes. The underlying geometry is the one that captures the

relationship between the nodes. Second, the setting where the data consist of multiple graphs.

In this setting there are two different types of pairwise relationships that need to be properly

described: i) the relationships among the nodes of each graph and ii) the relationships between

the graphs. Examples of machine learning tasks that may be relevant in that case include

graph classification and graph regression. In this thesis we propose solutions that take into

account the underlying geometry in both of these settings. We provide below an outline of our

propositions.

1.2 Thesis Outline

The thesis is organized as follows:

In Chapter 2 we provide an introduction to Optimal Transport with a bias towards the entropy

regularized OT problem, which is particularly relevant in machine learning. We gather the

numerical methods that have been proposed for entropy-regularized OT problems and use

them as a point of reference within the next chapters of the thesis. Further, we provide an

overview of recent works in the literature of machine learning for graphs that employ elements

from OT theory.

In Chapter 3 we consider the graph representation learning setting where the data are

described by one, given graph. In that case, the geometry to be considered is fixed and

corresponds to the pairwise relationships between the nodes. Therefore, we chose to describe

the graph data as probability measures with fixed positions and capture their underlying

geometry using the diffusion distance [6]. The problem that we are interested in is to learn

interpretable node embeddings that are stable to perturbations of the graph structure. We

propose an end-to-end differentiable autoencoder composed of an encoder with a linear layer

and a decoder that uses OT to exploit the geometry. We cast the representation learning

problem to that of learning simultaneously i) a low-dimensional space and ii) coordinates for

the nodes in that space. We term our proposed architecture node2coords. The

representations learned for the low-dimensional space are conducive to interpretability, as

2



1.2. Thesis Outline

they capture the most relevant geometric information of the underlying graph, and to stability,

as they can be used to register the embeddings of perturbed graphs. The node coordinates are

interpretable, as their values reveal the proximity to the representations that span the

low-dimensional space. In that context, we propose a novel OT layer, that is incorporated in

the decoder of node2coords. This layer is directly amenable to automatic differentiation and

performs an interpolation in the Wasserstein space (aka a Wasserstein barycenter), of the

graph data while using the geometry captured by the diffusion distance. The input to

node2coords are node connectivity descriptors, which capture the local structure of the nodes.

The node connectivity descriptors are passed through the encoder to learn a small set of

graph structural patterns, which define the low-dimensional space. In the decoder, the node

connectivity descriptors are reconstructed as Wasserstein barycenters of the graph structural

patterns. The optimal weights for the barycenter representation of a node’s connectivity

descriptor correspond to the coordinates of that node in the low-dimensional space. Through

experimental results we demonstrate that the representations learned with node2coords are

stable to perturbations of the graph structure and achieve competitive or superior results

compared to state-of-the-art unsupervised methods in the task of node classification. The

content of this chapter has been published in [7].

In Chapter 4 we consider the setting where the data consist of multiple graphs. This setting is

tackled by graph representation learning algorithms that use a set of training graphs in order

to learn a mapping that can generalize to unseen, test graphs. An example of such a setting

is when the graph data represent molecules, where nodes are atoms and edges the chemical

bonds between them, and the task we are interested in is to classify them as active or inactive

against cancer cells. End-to-end GNN architectures are common choices for such tasks. In

GNN architectures the geometry between the nodes of each graph is taken into account with

graph-aware layers, such as the MP layers discussed in Section 1.1. The graphs can naturally be

of varying size. For instance, each molecule may be composed of a different number of atoms.

Therefore, the problem we focus on in this chapter is how we can optimally pool the graph

representations of varying size to a representation of fixed size that can be multiplied by the

weights of the classifier that is driving the end-to-end representation learning process. In order

to do so, we use OT to capture the geometry between the representations of different graphs.

Since the GNN learns a mapping that generalizes to unseen test graphs, it follows that the graph

representations can assume values anywhere within the representation space. Therefore, we

chose to describe them as probability measures with free positions in the considered space

and propose to pool a graph representation by minimizing the Wasserstein distance between

itself and its pooled version. Our pooling method minimizes this distance by performing a

Wasserstein gradient flow with respect to the pooled graph representation. Therefore, we term

our proposed pooling method FlowPool. The minimization of the Wasserstein distance leads

to the optimal preservation of the statistics of the graph representation to its pooled version.

Further, using recently proposed methods of implicit differentiation, FlowPool lends itself

to automatic differentiation. Through numerical experiments we show that our proposed

3



Chapter 1. Introduction

pooling method demonstrates promising results in the task of graph classification, when

compared to state-of-the-art pooling methods.

1.3 Summary of Contributions

The main contributions of this thesis are summarized as follows:

• We propose a Wasserstein barycentric layer that can take into account relevant

geometric information of the graph and that can be incorporated in end-to-end deep

learning architectures for graphs.

• We integrate the Wasserstein barycentric layer to an autoencoder architecture and learn

interpretable node embeddings that are stable to perturbations of the graph structure.

• We propose a pooling method that optimally preserves the statistics of a graph

representation by minimizing the Wasserstein distance between itself and its pooled

counterpart.

• We propose an effective method to perform automatic differentiation of the proposed

pooling method and integrate it in end-to-end deep learning architectures for graph

classification.

4



2 Optimal Transport for Machine

Learning

In this chapter we provide an introduction to Optimal Transport (OT) and discuss aspects

that are necessary for the comprehension of the next chapters of this thesis. We first provide

an illustrative description of the optimal transportation problem. We then proceed to the

mathematical formulation of the OT problems. Further, we discuss the entropy regularization

that has majorly contributed to the adoption of Optimal Transport by the machine learning

community in recent years. We gather the most relevant numerical methods that have been

proposed in the literature for solving entropy-regularized optimal transport problems [8] in

order to use them as a point of reference in Chapters 3 and 4. Finally, we provide an overview

of the works that have been proposed to solve machine learning tasks on graphs using Optimal

Transport.

2.1 Illustrative Description of The Optimal Transport Problem

The Optimal Transport problem was first formulated by Monge [9] in 1781 in order to find the

optimal way to transport the entirety of a pile of sand to a different position. We describe this

problem in an illustrative way in order to provide the reader with an intuitive visualization for

it.

In Fig. (2.1), we depict with red the pile of sand µ that we want to move from the positions X

and with blue the pile of sand ν, which will be the optimal displacement of µ at the positions

Y . The amount of sand (or mass) at the position x is equal to µ(x). If the sand µ(x) is moved to

position y = T (x), as determined by a map T , the total effort for its displacement is considered

to be equal to the distance D(x, y) between the positions x, y multiplied by the amount of

mass moved, µ(x). Therefore, the effort made to move the sand µ(x) is equal to D(x,T (x))µ(x).

The objective of the optimal transport problem is to find the map T that will minimize the

5



Chapter 2. Optimal Transport for Machine Learning

⌫µ

µ(x)

x y = T (x)

D(x, T (x))

YX

Figure 2.1 – The optimal transport problem between the source µ and target ν.

sum of these efforts for all amounts of sand µ(x) or equivalently:

min
T

∫
X

D(x,T (x))µ(x). (2.1)

However, the reader will notice that there is still an important constraint that needs to be

met according to Monge’s problem formulation, namely to transport the entirety of the sand

from pile µ to pile ν. In Fig. (2.2), we show that if the sand that is moved to B comes from

the areas A1 and A2 of X , then it will hold that µ(A1)+µ(A2) = ν(B). Of course, this natural

constraint must be satisfied for any area B of Y . For any B in Y , we can find the areas in X ,

from which the sand ν(B) was transferred, as T −1(B) = {x|T (x) ∈ B}. As a result, the constraint

is equivalent to:

µ(T −1(B)) = ν(B),∀B. (2.2)

This constraint, that guarantees the preservation of the amount of sand from the pile µ to the

pile ν, is called the pushforward constraint and is written as:

T#µ= ν. (2.3)

Therefore, the Optimal Transport problem, as formulated by Monge, is the minimization in

Eq.(2.1), subject to the constraint in Eq. (2.3). This problem found its place in probability

6



2.2. Optimal Transport Problems for Discrete Measures

⌫µ

BA1 A2

µ(A1) µ(A2)

⌫(B)

Figure 2.2 – The pushforward constraint.

theory by corresponding the piles of sand to probability measures. In that sense, the piles

of sand µ,ν with equal mass, shown in Fig. (2.1), (2.2), can be thought of as continuous

probability measures.

2.2 Optimal Transport Problems for Discrete Measures

2.2.1 Discrete Measures

In this thesis we propose methods based on Optimal Transport that can be used for learning

representations for graph-structured data. Since data are found in a discrete form, we focus on

optimal transport problems for discrete measures. We consider the set of discrete measures

M(Ω) defined on the spaceΩ. A measure µ ∈ M(Ω) is of the form:

µ=
n∑

i=1
aiδxi , (2.4)

where δxi is the Dirac unit mass at the point xi . Thus, the discrete measure µ is described by

the vector of positive weights a = [a1, . . . , an] and the set of points X = (x1, . . . , xn) ∈Ω. In the

case of discrete probability measures, the n-dimensional vector a is a histogram and belongs

in the probability simplex Σn = {a ∈Rn+|
∑n

i=1 ai = 1}.

In Fig. (2.3) we show two examples of a discrete measure in a 2-dimesional space. The size of

the i -th point is proportional to the weight ai . In Fig. (2.3a) mass can be found anywhere in the

2-dimensional space. The position of the i -th point is defined by its coordinates xi = [xi ,1, xi ,2].

7



Chapter 2. Optimal Transport for Machine Learning

(a) Lagrangian discretization. (b) Eulerian discretization.

Figure 2.3 – Examples of a discrete measure of four points. (a) Mass can be found anywhere in
the space. (b) Mass can only be found at the positions predetermined by the fixed grid.

In Fig. (2.3b) mass can be found only at the positions determined by the fixed grid. The setting

where mass can be found anywhere in the spaceΩ is referred to as a Lagrangian discretization.

The setting where mass can be found only on a predefined set of points inΩ corresponds to

an Eulerian discretization.

2.2.2 The Monge Problem

We consider a source measure µ = ∑n
i=1 aiδxi , a target measure ν = ∑m

j=1 b jδy j and a cost

matrix C ∈Rn×m . The cost C (xi , y j ) quantifies the penalization for the transportation of mass

from any point xi in the support of measure µ to any point y j in the support of the measure ν.

The Monge problem aims to find a map T that minimizes the total cost of transportation:

min
T

n∑
i=1

C (xi ,T (xi )) (2.5)

while satisfying the push-forward constraint:

b j =
∑

i :T (xi )=y j

ai . (2.6)

It can be directly seen that in the case where the number of points n of the source measure µ

is smaller than the number of points m of the target measure ν, there exists no Monge map

T that can transport µ to ν. This issue is alleviated with the relaxation of the transportation

8



2.2. Optimal Transport Problems for Discrete Measures

problem, proposed by Kantorovich, which allows to split the mass.

2.2.3 The Kantorovich Problem

The relaxed transportation problem proposed by Kantorovich [10] in 1942 aims to find the

optimal probabilistic coupling P ∈Rn×m+ between the measures µ and ν, instead of an optimal

deterministic map T from µ to ν. In this setting, the element P (i , j ) of the coupling describes

the probability of moving mass from the point xi in the support of the measure µ to the

point y j in the support of the measure ν. The Kantorovich transportation problem between

the measures µ= ∑n
i=1 aiδxi , ν= ∑m

j=1 b jδy j , and for cost matrix C ∈ Rn×m , searches for the

optimal coupling P that minimizes the total cost of transportation:

min
P

〈P,C〉 (2.7)

while satisfying the constraint:

P ∈U (a,b) = {P ∈Rn×m
+ |P1m = a and P>1n = b}. (2.8)

The constraint in Eq. (2.8) guarantees that the entirety of the mass of measure µ, namely a, is

transported to the mass of measure ν, namely b.

The problem defined in Eq. (2.7), (2.8) is a linear program. Its feasible region is the convex

polytope U (a,b) defined by the mass preservation constraints. It can be solved using linear

programming solvers such as the simplex algorithm [11].

From now on we will denote the Kantorovich optimal transport problem between the

measures µ = ∑n
i=1 aiδxi , ν = ∑m

j=1 b jδy j as LC (a,b). This is done in order to highlight the

dependency of the problem both on the geometry and the distribution of mass. The geometry

is dictated by the supports of the measures {xi }n
i=1, {y j }m

j=1 and the cost C selected to penalize

the transportation of mass from any xi to any y j . The distribution of mass is dictated by the

weight vectors a and b. Therefore, from now on:

LC (a,b) = min
P∈U (a,b)

〈P,C〉. (2.9)

2.2.4 Wasserstein Distance

The choice of the cost C influences in an important way the optimal transport problem. In

the specific case where the cost C is the p-th power of a metric D on the spaceΩ, it is shown

9



Chapter 2. Optimal Transport for Machine Learning

through the Gluing Lemma (Theorem 7.3 in [12]) that LC (a,b) can be used to define a distance

between the measures µ, ν. For instance, this is the case if the cost considered is the Euclidean

distance, as in the illustrative example of Section 2.1.

If the cost C = Dp for p ≥ 1 satisfies the properties of a distance, namely, non-negativity,

symmetry, the identity of indiscernibles and the triangle inequalities, then:

Wp (µ,ν) = LDp (a,b)
1
p (2.10)

defines a distance between the measures µ,ν, called the p-Wasserstein distance. Therefore,

optimal transport offers a principled way to use the distance between the support of the

measures to define a distance between the measures themselves.

In the more general case, where the cost C is not a metric on Ω, LC (a,b) is not a distance.

However, it can still be used to measure a similarity, or closeness, of the measures µ and ν,

while taking into account the geometry of the space on which they are defined.

2.3 Entropy Regularization of the Optimal Transport Problem

As mentioned before, the Kantorovich problem defined in Eq. (2.9) is a linear program. As, a

result, the complexity of computing LC (a,b) scales in at least O ((n +m)nm log(n +m)) when

comparing discrete measures of n and m points. Also, the value LC (a,b) is very susceptible to

small changes in the measures µ and ν. When the values of the weights a,b undergo a small

perturbation, the polytope U (a,b) of the feasible couplings P will change. Since a linear

program attains its minimum at a vertex of the feasible set, the optimal solution of the

perturbed optimal transport problem can vary significantly from that of the original,

unperturbed problem. Similarly, when the support {xi }n
i=1, {y j }m

j=1 of the measures µ,ν

undergoes a small variation, the values of the cost matrix C change. This change results to the

selection of different vertices of U (a,b), and can therefore also affect significantly the solution

of LC (a,b).

2.3.1 Entropy-Regularized Optimal Transport for Machine Learning

The issues of high computational complexity and instability to small perturbations hinder the

application of optimal transport to machine learning and data science. For instance, discrete

measures considered in machine learning applications can be composed of many datapoints,

thus making the values of n and m large. Further, since real data may hold some uncerainty

or noise, it is desirable to build machine learning models that are robust to this noise and do

not overfit the data. Both of these issues are addressed by the entropic regularization of the

optimal transport problem [13] proposed in the context of machine learning by Cuturi in 2013.

10



2.3. Entropy Regularization of the Optimal Transport Problem

The entropy regularized optimal transport problem aims to find an optimal probabilistic

coupling P between the measures µ and ν that minimizes the total cost of transportation and

whose negative entropy is as small as specified by a regularization parameter ε. Given the

entropy H(P ) =−∑n
i=1

∑m
j=1 Pi , j logPi , j of the coupling P , the regularized problem takes the

form:

LεC (a,b) = min
P∈U (a,b)

〈C ,P〉−εH(P ). (2.11)

When the entropy regularization ε takes large values, the minimization of the negative entropy

of the coupling dominates in Eq. (2.11) and therefore the optimal coupling is the independence

matrix of the measures, which is equal to ab>. On the contrary, when ε takes small values,

the solution of the entropy regularized problem LεC (a,b) tends to that of the unregularized

problem LC (a,b). Further, because the term −H(P ) is strictly convex with respect to P , the

objective function in Eq. (2.11) is also strictly convex with respect to P and, therefore, there

exists a unique optimal solution P∗. This is advantageous compared to the linear program in

Eq. (2.9) which is convex and can have more than one optimal solutions.

We now discuss how entropic regularization alleviates the issues of high computational

complexity and instability.

Reduction of Computational Complexity

Let f ∈Rn and g ∈Rm be dual variables. The Lagrangian L (P, f , g ) of Eq. (2.11) is:

L (P, f , g ) =
n∑

i=1

m∑
j=1

(Pi , j Ci , j +εPi , j logPi , j )+ f >(P1m −a)+ g>(P>1n −b). (2.12)

By taking the first order conditions we can obtain the following factorization for the

probabilistic coupling P :

∂L (P, f , g )

∂Pi , j
= 0 ⇒ Pi , j = e

fi
ε e−

Ci , j
ε e

g j
ε . (2.13)

Therefore, by considering the non-negative vectors:

u = e
f
ε and v = e

g
ε , (2.14)

11



Chapter 2. Optimal Transport for Machine Learning

the optimal coupling P of Eq. (2.11) can be written as:

P = diag(u)K diag(v), (2.15)

where :

K = e−
C
ε (2.16)

is the Gibbs kernel that corresponds to the cost matrix C and diag(u),diag(v) denote the

diagonal matrices obtained from the vectors u, v .

By substituting P , as factorized in Eq. (2.15), in the mass preservation constraints in Eq. (2.8)

we obtain:

u ¯ (K v) = a and v ¯ (K >u) = b (2.17)

where ¯ is the Hadamard (element-wise) product. By observing Eq. (2.17), one can see that the

problem in Eq. (2.11) can be solved with a fixed point algorithm, by alternating the updates:

u(l+1) = a

K v (l )
and v (l+1) = b

K >u(l+1)
(2.18)

where the divisions are applied element-wise and the initialization is a positive vector, for

instance v (0) = 1m . The iterations in Eq. (2.18) define Sinkhorn’s matrix scaling algorithm [14]

on the non-negative matrix K = e−
C
ε .

Therefore, the solution of the entropy-regularized problem with Sinkhorn’s algorithm consists

of matrix-vector multiplications and element-wise divisions and its computational complexity

is O
(
(n +m)2

)
when comparing measures of n and m points. Finally, Sinkhorn’s algorithm

converges linearly and the convergence rate decreases as the entropy regularization parameter

ε becomes smaller.

By substituting the values of the coupling P as a function of the dual potentials f , g as

expressed in Eq. (2.13) into the Lagrangian of Eq. (2.12), we can obtain the dual formulation of

the entropy-regularized transport problem as:

LεC (a,b) = max
f ∈Rn ,g∈Rm

〈 f , a〉+〈g ,b〉−ε〈e f
ε ,K e

g
ε 〉. (2.19)

12



2.3. Entropy Regularization of the Optimal Transport Problem

The unconstrained maximization problem in Eq. (2.19) can be solved with block coordinate

ascent [15]. The potentials f and g are updated alternatively by cancelling the respective

gradients in these variables of the objective in Eq. (2.19).

Stability and Differentiability

We now focus on the stability of LεC (a,b). What is meant by stability is that small perturbations

of the input measures, either in their weights or their positions of mass, result in small changes

of the optimal solution P∗. Equivalently, given an input measure µ=∑n
i=1 aiδxi , it is desired

that LεC (a,b) is smooth with respect to the weights a and the positions of mass {xi }n
i=1.

Differentiation with respect to the weights

LεC (a,b) is smooth and convex with respect to the weight vectors a,b. From the dual

formulation in Eq. (2.19) it can be seen that the gradient of LεC (a,b) with respect to a,b is:

∇LεC (a,b) = [ f ∗, g∗], (2.20)

where f ∗ = ε log(u)− ε log(u)>1n

n 1n and g∗ = ε log(v)− ε log(v)>1m

m 1m are the optimal potentials

obtained from Eq. (2.14) and recentered so that they sum up to zero.

Differentiation with respect to the positions of mass

We remark that for ε> 0, LεC (a,b) is a smooth function of the cost matrix C with gradient:

∇C LεC (a,b) = P∗, (2.21)

where P∗ is the unique optimal solution of Eq. (2.11) for the current value of the cost C or,

equivalently, for the current positions of mass.

Furthermore, assuming that the space where the probability measures are defined is the d-

dimensional Euclidean spaceΩ=Rd , so that X = [x1; . . . , xn] ∈Rn×d ,Y = [y1; . . . , ym] ∈Rm×d ,

the gradient of LεC (a,b) with respect to X can be obtained via the chain-rule as:

∇X LεC (a,b) =
( m∑

j=1
P∗

i , j∇1C (xi , y j )
)n

i=1
, (2.22)

where ∇1 denotes the gradient with respect to the first variable. Similarly, the gradient

∇Y LεC (a,b) can be obtained using Eq. (2.21) and the gradient of the cost with respect to the

second variable ∇2C (xi , y j ).

13



Chapter 2. Optimal Transport for Machine Learning

2.3.2 Log-stabilized Solution

If the entropy regularization parameter ε is small compared to the entries of the cost matrix

C , the values of the Gibbs kernel K = e−
C
ε become very close to zero. Therefore, the Sinkhorn

iterations in Eq. (2.18) can lead to numerical overflow. This numerical issue can be alleviated

by computing the Sinkhorn iterations in the log domain.

By considering the dual of the entropy-regularized optimal transport problem, the log-domain

iterations can be obtained as [16]:

f (l+1) =ε log(a)−ε log
(
K e

g (l )

ε

)
g (l+1) =ε log(b)−ε log

(
K >e

f (l+1)

ε

)
.

(2.23)

It can be noticed that, because of the relation between the dual potentials f , g and the scaling

vectors u, v in Eq. (2.14), the iterations in Eq. (2.18) are equivalent to the iterations in Eq.

(2.23). Therefore, in the case where there are no numerical overflows, the solution P∗ obtained

with the log domain computations is the same as that obtained with the unstabilized Sinkhorn

iterations, up to numerical precision.

The optimal coupling P∗ can be obtained from the optimal potentials f ∗, g∗ reached upon

convergence as:

P∗ = e
f ∗1>m+1n g∗>−C

ε . (2.24)

2.3.3 Relaxation of the Mass-Preservation Constraints

In some cases it may be desired to relax the mass preservation constraints in order to solve

optimal transport problems for a source µ and a target ν that do not have the same mass. In

[17], it is proposed to control the mass variation through a regularization parameter ρ, leading

to the definition of the unbalanced optimal transport problem with entropy regularization:

LεC (a,b) = min
P∈Rn×m+

〈C ,P〉−εH(P )+ρ
(

KL(P1m |a)+KL(P>1n |b)
)
, (2.25)

where KL(·|·) is the Kullback-Leibler divergence [18]. This problem can also be solved with

Sinkhorn iterations as proposed in [17] with the scaling vectors u and v in Eq. (2.18) raised to

the power ρ
ρ+ε .

14



2.4. Wasserstein Barycenter

2.3.4 Metric Properties of the Entropy Regularized Transportation Problem

In the case where the cost matrix C in Eq. (2.11 ) is a metric, it can be shown through the Gluing

Lemma that LεC (a,b) satisfies the properties of non-negativity, symmetry and the triangle

inequality (Theorem 1, [13]). Therefore, in the case where C belongs to the cone of distance

matrices, LεC (a,b) is called the Sinkhorn distance or the entropy regularized Wasserstein

distance between the measures µ and ν. The term “distance” is used a bit loosely, in the sense

that LεC (a,b) does not satisfy the identity of indiscernibles.

From now on we will denote the entropy-regularized p-Wasserstein distance between

measures µ=∑n
i=1 aiδxi and ν=∑m

j=1 b jδy j as W ε
p (µ,ν). Further, in the specific case where

measures are defined on fixed positions, as in the example of Fig. (2.3b) where the positions

are defined by a grid, we will use simply W ε
p (a,b).

2.4 Wasserstein Barycenter

Given S measures {νi }S
i=1 ∈ M(Ω) their Wasserstein barycenter [19] is defined as the solution

to the problem:

argmin
µ

S∑
i=1

λi W p
p (µ,νi ) (2.26)

subject to:

S∑
i=1

λi = 1, (2.27)

where Wp (µ,νi ) is the p-Wasserstein distance defined in Eq.(2.10). The barycenter is an

interpolation in the Wasserstein space of the S measures {νi }S
i=1 with weights {λi }S

i=1. The

weights {λi }S
i=1 are commonly referred to as barycentric weights or barycentric coordinates.

Barycenters can also be defined for the entropy-regularized Wasserstein distance, discussed in

Section 2.3, by substituting in Eq. (2.26) Wp by W ε
p .

2.4.1 Wasserstein Barycenter of Fixed Support

In the specific case where all the considered measures are defined on n fixed positions {x j }n
j=1,

the Wasserstein interpolation amounts to the computation of the weights a of the unknown

barycenter measure µ = ∑n
j=1 a jδx j . Given, the histograms bi of the measures νi , the

15



Chapter 2. Optimal Transport for Machine Learning

Wasserstein barycenter problem amounts to:

â = argmin
a∈Σn

S∑
i=1

λi W p
p (a,bi ) (2.28)

subject to:

S∑
i=1

λi = 1. (2.29)

2.4.2 Entropy-Regularized Wasserstein Barycenter of Fixed Support

Entropy-regularized Wasserstein barycenters for measures with fixed positions of mass can

be computed using Sinkhorn iterations. When computing the barycenter of S histograms

we are solving simultaneously S optimal transport problems between each of the S known

targets, which are the S histograms {bi }S
i=1, and the unknown source, which is the barycenter

a. Therefore, for the entropy-regularized case described above, S sets of scaling vectors u and

v have to be computed. The computation of the entropy-regularized, Wasserstein barycenter

can be performed through Sinkhorn iterations [20]. An extra step is added for the estimation

of the unknown barycenter a, which is needed for the update of the second scaling vectors

[21]. The solution of the entropy-regularized Wasserstein distance with Sinkhorn iterations

is equivalent to the Kullback-Leibler (KL) [18] projection of the transportation coupling P

to the convex sets defined by the mass preservation constraints [21]. The expression for the

estimation of the unknown barycenter is derived from the first order conditions of the KL

projections of the couplings to the convex sets defined by the mass preservation constraints of

the known targets {bi }S
i=1 [21].

In the specific case where the Wasserstein distance uses the mass relaxation of Eq. (2.25)

the obtained barycenter is the unbalanced Wasserstein barycenter. Unbalanced Wasserstein

barycenters [17] have been shown to better preserve the shape of the histograms {bi }S
i=1

because erroneous mass does not have to appear in the barycenter in order to satisfy the mass

preservation constraints. The L Sinkhorn iterations for the computation of the unbalanced

Wasserstein barycenter are shown in Algorithm 1.

2.5 Optimal Transport for Machine Learning on Graphs

Optimal transport is increasingly being used in machine learning. In this section we review

methods that are based on optimal transport and that have been proposed in order to tackle a

variety of machine learning tasks on graphs.

16



2.5. Optimal Transport for Machine Learning on Graphs

Algorithm 1 Unbalanced Wasserstein Barycenter of Fixed Support

Input: {bi }S
i=1, {λi }S

i=1
Initialization
for i ← 1 to S do

u(0)
i = 1n

end for
for l ← 0 to L−1 do

Update first scaling vectors
for i ← 1 to S do

v (l )
i =

(
bi

K >u(l )
i

) ρ

ρ+ε

end for
Estimate Barycenter

a(l ) =
(

S∑
i=1

λi (u(l )
i ¯K v (l )

i )
ε

ε+ρ
) ε+ρ

ε

Update second scaling vectors
for i ← 1 to S do

u(l+1)
i =

(
a(l )

K v (l )
i

) ρ

ρ+ε

end for
end for
return â = a(L−1)

DVNE [22] is an unsupervised learning algorithm for graphs that proposes a Wasserstein-based

loss for training. The authors introduce an autoencoder that learns Gaussian distributions in

the Wasserstein space as the latent representations of the nodes. They employ a Wasserstein-

based loss function in order to guarantee the preservation of the first-order and the second-

order node proximities in the latent representation space. In [23] the authors define a graph

kernel between a pair of two graphs. They use the Weisfeiler-Lehman graph kernel [24], [25] to

obtain the graph embeddings and then compute their Wasserstein distance, using as a cost

the Hamming distance for categorical node features and the squared Euclidean distance for

continuous features. Their proposed Wasserstein Weisfeiler-Lehman graph kernel is then

defined using the computed pairwise Wasserstein distances.

A line of works employ the Gromov-Wasserstein distance in order to compute meaningful

distances between graphs. The Gromov-Wasserstein distance [26] can be used to compare

metric spaces that are equipped with a probability distribution. In [27] this distance is

extended to define a distance between similarity matrices. The following works use

Gromov-Wasserstein distances between the adjacency matrices of graphs.

In [28] the authors propose a fusion of Wasserstein and Gromov–Wasserstein distances in

order to encode simultaneously both feature and structural information. The Wasserstein

distance is used to measure similarities of the feature representations and the

17



Chapter 2. Optimal Transport for Machine Learning

Gromov-Wasserstein distance is used to measure the similarities of the graph topologies. The

proposed fused distance is used to perform a variety of tasks, such as graph classification,

graph clustering and the interpolation of graph structures. In [29] a scheme based on

Gromov-Wasserstein that learns simultaneously the node embeddings and the optimal

matching between two graphs is proposed. The scheme boils down to an optimization

problem that is solved with an iterative process, where i) the node embeddings are used to

estimate distance matrices for the matching and ii) the learned matching regularizes the node

embeddings in the next iteration. The proposed scheme is validated on graph alignment and

recommendation tasks. In [30] the authors propose to use a Gromov-Wasserstein barycenter

of a set of graphs to perform graph partitioning and graph matching. The barycenter graph is

a disconnected graph and the optimal transport from the barycenter graph to any other graph

indicates a clustering structure. They propose an efficient regularized proximal gradient

algorithm. In [31] a dictionary learning algorithm for graphs of varying size is introduced. The

authors propose a factorization where the adjacency matrices of the graphs are expressed as

Gromov-Wasserstein barycenters of the atoms in the dictionary. They propose two different

implementations of the Gromov-Wasserstein factorization module, one with the proximal

point algorithm (PPA) and one with Bregman alternating direction method of multipliers

(BADMM) [32] and report results on graph clustering. An online graph dictionary learning

algorithm is proposed in [33]. The authors introduce an efficient stochastic algorithm to learn

a dictionary for graphs of different sizes and use the Gromov-Wasserstein distance as a data

fitting term. However, in contrast to [32], they use a linear representation of the atoms instead

of a barycenter. Therefore, their algorithm enjoys a smaller computational complexity. They

report results for online graph subspace estimation and tracking. In [34] a framework to

perform cross-domain alignment is proposed. Each domain is represented as a graph and a

neural network is trained that minimizes the Gromov-Wasserstein distance between the

graph structures and the Wasserstein distance between the features. The proposed framework

is validated experimentally on tasks like image and text retrieval, visual question answering,

image captioning, machine translation, and text summarization.

A different approach to compare graphs is proposed in [35], where the problem of defining

a distance between graphs is cast to that of defining a distance between the distribution of

smooth signals defined on graphs. The authors consider graphs of the same size and optimize

for a permutation matrix that aligns the graphs. They report results on graph alignment and

graph classification. The work in [36] builds on the work in [35]. The authors optimize for

a probabilistic coupling from the vertices of one graph to the other in order to allow for the

comparison of graphs of different sizes. Further, they show that the defined distance is a

metric on the set of isomorphism classes of finite graphs and report results on graph sketching,

graph retrieval and graph summarization.

More recently, in [37] the authors propose to learn hierarchical abstractions of graph structures

in an unsupervised manner. They use a coarsening approach of the graph, based on Algebraic

18



2.5. Optimal Transport for Machine Learning on Graphs

Multigrid [38], and parametrize the coarsening matrices using a graph convolutional layer.

The sum of the Wasserstein distances of the graphs from their coarsened versions is used as the

loss function to train the network. Further, in [39] the authors propose two effective log-linear

time approximations of the transportation cost matrix. The first is a sparse approximation

based on locality sensitive hashing and the second a Nyström approximation with LSH-based

sparse corrections. The proposed approximations are employed in order to perform in an

efficient way graph distance regression with a siamese GNN-based architecture.

In our work we propose differentiable modules that solve OT problems and can be

incorporated in end-to-end deep learning architectures for graph representation learning. In

Chapter 3 we propose a module that computes barycenters of histograms defined on a graph

and we incorporate it in an autoencoder in order to learn node embeddings that are directly

interpretable and stable to perturbations of the graph structure. In Chapter 4 we propose a

differentiable module that performs a Wasserstein gradient flow for graph representations of

varying size. We incorporate this module in GNN architectures in order to perform global

pooling of graphs, while optimally preserving the statistics of the graph representations.

19





3 Graph Representation Learning with

Wasserstein Barycenters

3.1 Introduction

In this chapter 1, we focus on the case where we are interested in learning representations

for a given graph. This case is relevant in machine learning settings where the datapoints

under consideration are related in some way. As an example, in a citation network, each node

corresponds to a publication and an edge exists between two nodes if either publication has

cited the other one. Therefore, in order to perform machine learning tasks, such as node

classification, it is necessary to design algorithms that learn effective representations for the

nodes.

Existing graph representation learning methods have, in principle, two limitations. First, they

are relatively unstable to perturbations of the graph structure [40]. Second, even if their design

is justified intuitively, they often do not lead to directly interpretable node embeddings [41],

[42]. In particular, there is not a clear interpretation of the values in a node embedding vector.

In this work, we address these two limitations by proposing node2coords, an unsupervised

learning algorithm that, given a graph structure, learns simultaneously a low-dimensional

space as well as node coordinates in that space. The low-dimensional space is conducive to

stability because it provides a way of registering the representations of perturbed graphs. The

values of the node coordinates are interpretable and they correspond to the proximity to the

representations that define the low-dimensional space.

We propose an autoencoder architecture with a Wasserstein barycentric decoder. The input to

the algorithm are node connectivity descriptors, which capture the local structure of the nodes.

In the encoding step, the node connectivity descriptors pass through a linear layer to obtain

a set of graph patterns. This set of patterns defines the low dimensional space and provides

essentially a compressed version of the structural information in the graph. In the decoding

1This work was published in a slightly different form in:
E. Simou, D. Thanou, and P. Frossard, “node2coords: Graph representation learning with wasserstein barycenters,”
IEEE Transactions on Signal and Information Processing over Networks, vol. 7, pp. 17–29, 2020.

21



Chapter 3. Graph Representation Learning with Wasserstein Barycenters

step, each node connectivity descriptor is optimally reconstructed as a Wasserstein barycenter

of the graph structural patterns by learning its barycentric coordinates [43]. The barycentric

coordinates of a node are used as its representation. Therefore, the value of each feature in the

representation of a node can be interpreted as the proximity, in terms of Wasserstein distance,

of the node connectivity descriptor to the corresponding graph pattern.

We perform experiments on synthetic and real data and demonstrate that the node

embeddings obtained with node2coords are stable with respect to perturbations of the graph

structure. Furthermore, we show that in the task of node classification we achieve competitive

or superior results compared to state-of-the art unsupervised learning algorithms that

leverage only the graph structure [44].

The organization of this chapter is as follows. In Section 3.2 we review the related work in

unsupervised learning of graph representations. In Section 3.3 we present in detail our

Wasserstein barycenter representation method, which is incorporated in the decoder of

node2coords. We outline our proposed autoencoder architecture in Section 3.4 and provide

explanations for the representations it learns. In Section 3.5 we evaluate through experiments

the performance of node2coords in machine learning tasks and we conclude in Section 3.6.

3.2 Related Work

The design of algorithms that learn representations for graph structured data has been

extensively researched in the last years. Such algorithms learn low-dimensional

representations for the nodes of the graph, which capture the most important information for

inference on the graph. Given the large body of works on learning graph representations, we

focus here on the ones that, similary to node2coords, learn graph representations in an

unsupervised manner and that have been designed to use only the graph structure as the

input to the algorithm. Such algorithms can be grouped into four categories, namely

distance-based methods, matrix factorization methods, skip- gram methods and

autoencoders.

Distance-based embedding methods learn an embedding look-up by forcing nodes that are

close in the graph to be mapped as close as possible in the embedding space, with respect to

a chosen distance metric. Notable methods in this category are Isomap [45], Locally Linear

Embedding [46] and Laplacian Eigenmaps [47]. These methods capture the proximity of the

nodes on the graph via the geodesic distance, a linear approximation of the local neighborhood

of the nodes and the smoothness of the eigenvectors of the Laplacian matrix of the graph,

respectively.

Matrix factorization methods aim to learn low-rank representations of the adjacency matrix

of a graph. The first such work is Graph Factorization [48] where an efficient distributed

22



3.3. Wasserstein Barycenters for Graph Representation Learning

algorithm is proposed for the factorization of large graphs. This is followed by HOPE [49]

which proposes matrix factorization for directed graphs and GraRep [50] which allows to

capture higher order node proximities by considering powers of the adjacency matrix.

Skip-gram graph embedding methods are inspired by word embedding methods that use

skip-gram [51] in order to predict context words for a given target word. Thus, by creating

sequences of nodes, similarly to sentences of words, it is possible to learn embeddings by

maximizing the probability of context nodes. Sequences of nodes are generated using random

walks and the obtained node sequences are fed to a skip-gram model which maximizes their

log-likelihood and provides the node embeddings. In Deepwalk [52] a neural network is

trained by maximizing the probability of predicting context nodes for each node of the graph.

Node2vec [53] creates node sequences by generating biased random walks. It combines

Breadth First Search (BFS) and Depth First Search (DFS) [54] in order to learn embeddings

that capture similarities of the nodes in terms of local structure as well as homophily. LINE

[55] learns embeddings that preserve first-order and second-order node proximities.

In the autoencoder architectures proposed for graph representation learning, the encoder,

most commonly, takes as input the adjacency matrix of the graph and outputs the node

embeddings. The decoder uses these embeddings to reconstruct the adjacency matrix. SDNE

[56] learns embeddings that preserve first-order and second-order node proximities. In order

for this to be achieved, a regularizer forces nodes that are connected on the graph to be close

in the embedding space. DNGR [57] creates a similarity matrix from the graph adjacency

matrix using random surfing [58], a probabilistic method that employs random walks. The

similarity matrix is fed to a denoising autoencoder in order to obtain the node embeddings.

DVNE [22] maps nodes to Gaussian distributions in order to account for uncertainties in the

graph structure and imposes neighboring nodes to have a small Wasserstein distance between

their corresponding Gaussians. DVNE, in terms of architecture, is an autoencoder composed

of linear layers at the encoder and the decoder and only employs a Wasserstein-based loss

at the objective function. In contrast, in node2coords we propose an autoencoder with a

non-linear Wasserstein barycentric layer at the decoder.

It is worth noting that Wasserstein barycenters have been used for representation learning in

different contexts. For example, in [59] the authors propose a dictionary learning algorithm

where images are reconstructed as Wasserstein barycenters of the atoms in the dictionary.

Further, Gromov-Wasserstein barycenters have been employed in the context of graph

representation learning in the works of [30], [31], discussed in Section 2.5.

3.3 Wasserstein Barycenters for Graph Representation Learning

In this section we propose a graph Wasserstein barycenter representation method, which

provides differentiable, geometry-aware non-linearities and can be incorporated in different

23



Chapter 3. Graph Representation Learning with Wasserstein Barycenters

deep network architectures. We first present our efficient implementation for the parallel

computation of multiple Wasserstein barycenters on graphs and analyse its time complexity.

Further, we provide an illustrative example of the non-linear, geometry aware interpolation

obtained with Wasserstein barycenters and provide intuitions of why they were used in our

graph representation learning algorithm.

3.3.1 Efficient Method for Barycenter Computation of Graph Patterns

Given a graph G of N nodes with adjacency matrix A, the input to our method can be any

set of S non-negative, N -dimensional vectors with l1 norm equal to one. From now on we

will refer to such vectors, input to our proposed graph Wasserstein barycenter computation

method, as graph patterns.

Our method takes as input a matrix of S graph patterns MS = [m1, . . . ,mS], with mi an N ×1

graph pattern, and outputs their J Wasserstein barycenters B J = [b1, . . . ,b J ], as computed for J

sets of barycentric coordinatesΛ given by:

Λ=

 λ1,1 . . . λ1,S

. . . . . . . . . . . . . . .

λJ ,1 . . . λJ ,S

 · (3.1)

The barycenter bi is an N -dimensional vector obtained as the barycenter of the graph patterns

in MS with weights Λ(i , ·) = [λi ,1, . . . ,λi ,S]. Therefore, when learning graph representations

with Wasserstein barycenters, the parameters being learnt are the barycentric coordinates in

Λ.

We propose to compute Wasserstein barycenters for patterns defined on a graph by taking

into account the underlying graph geometry through the diffusion distance Dτ [6]. Hence, the

geometry aware cost C is chosen to be C = Dp=1
τ and the Gibbs kernel becomes K = e−

Dτ
ε . The

diffusion distance Dτ captures the similarity of node connections in τ hops and is computed

using the τ-th power of a Markov matrix P defining a random walk on the graph. For the graph

G with adjacency matrix A, the degree of node i is defined as:

d(i ) =
N∑

j=1
A(i , j ) (3.2)

and the Markov matrix P as:

P (i , j ) = A(i , j )

d(i )
· (3.3)

24



3.3. Wasserstein Barycenters for Graph Representation Learning

The diffusion distance Dτ between a pair of nodes i , j is computed as:

D2
τ(i , j ) =‖Pτ(i , ·)−Pτ( j , ·)‖2

L2

=
N∑

u=1

(Pτ(i ,u)−Pτ( j ,u))2

π(u)

(3.4)

where:

π(x) = d(x)∑N
y=1 d(y)

· (3.5)

When two nodes i , j have similar connections in their τ-hop neighborhood, the diffusion

distance Dτ(i , j ) has a small value. The greater the difference of the τ-hop connectivities of

two nodes, the larger the value of their diffusion distance.

As mentioned in Chapter 2, the choice of the cost C used for the transportation of mass is very

important as it directly impacts the way that the underlying geometry is taken into account. As

a result, the choice of C affects also the representations learned with Wasserstein barycenters.

The diffusion distance cost Dτ enables a geometric analysis of the underlying graph structure

at different scales through the choice of the parameter τ. We select the values of the parameter

τ ∈ Z+ in the set [1,dmax ], where dmax is the diameter of the graph. The diameter of the

graph is equal to the greatest shortest path distance between any pair of vertices [60]. In the

case where the graph under consideration exhibits a clustered structure, it is reasonable to

select values for τ such that τ/dmax is small and τ is comparable to the maximal shortest path

distance between nodes belonging to the same cluster. By doing so, the diffusion distance

Dτ(i , j ) for two nodes i , j that belong to the same cluster has a small value and, as a result, the

matrix Dτ highlights the clusters of the graph. In the case of graphs that do not have clusters,

values of τ that are closer to dmax are relevant, as they allow to capture the similarities of node

connections at the scale of the entire graph.

Given the Gibbs kernel K = e−
C
ε , we can compute unbalanced Wasserstein barycenters with

Sinkhorn iterations as presented in Section 2.4. However, at each Sinkhorn iteration it is

needed to update each of the S scaling vectors v , and then, once the barycenter has been

estimated, update each of the S scaling vectors u. In the case where the updates of the S sets

of scaling vectors are performed serially, the computation of the barycenter is inefficient in

terms of time complexity, because of the nested loops.

We avoid this increase in the time complexity with S by proposing a parallelized and

computationally efficient method for the barycenter computation. Specifically, we update in

parallel the S scaling vectors v . Then, after the barycenter estimation, we also update in

parallel the S scaling vectors u. Our proposal for the efficient Wasserstein barycenter

computation is demonstrated in Algorithm 2. An important element of the parallelization is

25



Chapter 3. Graph Representation Learning with Wasserstein Barycenters

due to the fact that the matrix-vector multiplications of the transpose of the Gibbs kernel K >

with the scaling vectors uk can be implemented in parallel as a matrix-matrix multiplication

of the N ×N matrix K > with the N ×S matrix U = [u1, . . . ,uS ] whose columns are the S scaling

vectors {uk }S
k=1 [13]. Similarly, the matrix-vector multiplications of the matrix K with the S

scaling vectors {vk }S
k=1 can be implemented in parallel as a matrix-matrix multiplication of K

with V = [v1, . . . , vS]. We demonstrate in Algorithm 2 our proposed method for the

computation of Wasserstein barycenters in parallel.

Algorithm 2 Barycenter Computation in node2coords

Input: MS ,Λ(i , ·)
Initialisation :

1: U (0) = 1N×S

2: for l = 0 to L−1 do

3: Update first scaling vectors

4: V (l ) =
(

MS

K >U (l )

) ρ

ρ+ε

5: Estimate Barycenter

6: B J (i , ·)(l ) =
((

(1N ⊗Λ(i , ·))¯ (U (l ) ¯K V (l ))
ε

ε+ρ
)

1S

) ε+ρ
ε

7: Update second scaling vectors

8: U (l+1) =
(

B J (i , ·)(l ) ⊗1S

K V (l )

) ρ

ρ+ε

9: end for

10: return B J (i , ·)(L−1)

We now analyse step by step the time complexity of our proposed method. The first step is

the update of the scaling vectors in V . In our implementation, the update of the S scaling

vectors V is equivalent to the matrix multiplication K >U , the element-wise division of the

N ×S matrices MS and K >U and the elementwise exponentiation of the resulting N ×S matrix

to ρ
ρ+ε . The complexity for the update of the scaling vectors V is therefore O (N 2S +2N S).

The second step is the estimation of the Wasserstein barycenter. We perform this update

efficiently using matrix operations as:

B J (i , ·)(l ) =
((

(1N ⊗Λ(i , ·))¯ (U (l ) ¯K V (l ))
ε

ε+ρ
)

1S

) ε+ρ
ε

. (3.6)

The time complexity of this operation is O (N 2S +5N S +N ).

The third and final step is the update of the S scaling vectors U . This step is equivalent to the

matrix multiplication K V , the element-wise division of the N ×S matrices B J (i , ·)⊗1S and K V

and the elementwise exponentiation of the resulting N ×S matrix to ρ
ρ+ε . Thus, the complexity

for the update of the scaling vectors U is O (N 2S +3N S).

26



3.3. Wasserstein Barycenters for Graph Representation Learning

As a result, the time complexity for our implementation of a Sinkhorn iteration of the

barycenter B J (i , ·) is O (3N 2S + 10N S + N ), which means that it scales quadratically with

respect to the number of nodes O (N 2). The J barycenters in B J can be computed

simultaneously using broadcasting operations, which are common in libraries such as

PyTorch [61], and the complexity of each Sinkhorn iteration for the computation in parallel of

J barycenters is O (J N 2S). Therefore, the overall complexity of the barycenter computation,

which is composed of L Sinkhorn iterations, is O (LJ N 2S). The number of Sinkhorn iterations

L needed in order for the barycenter computation to converge increases as the entropy

regularization parameter ε decreases [62].

3.3.2 Illustrative Example of Wasserstein Barycenter of Graph Patterns

In this section we provide an illustration of the representations obtained with Wasserstein

barycenters of graph patterns. Consider a graph composed of two clusters. Let m1 and m2 be

two graph patterns localized at each cluster of the graph. The patterns m1, m2 as well as their

unbalanced Wasserstein barycenter b for λ1 = 0.2 and λ2 = 0.8 are shown in Fig. (3.1) 2. We

note that m1 and m2 are N -dimensional patterns defined on a graph. Their barycenter b is an

interpolation that takes into account the graph through the diffusion distance cost C = Dτ.

In Fig. (3.1) we plot m1, m2 and b on the graph in order to highlight that the Wasserstein

barycenter b is a geometry-aware non-linear interpolation of m1 and m2. It can be seen that

the values of the barycentric coordinates λ1, λ2 quantify the proximity of the barycenter b

with respect to the patterns m1, m2. Also, it can be seen that the barycenter b has a larger

support than the patterns m1 and m2, that are being interpolated, because of the entropy

regularization. Specifically, as the value of the entropy regularization parameter ε becomes

larger, the barycenter tends to be uniform over the graph.

−0.2 −0.1 0.0 0.1 0.2

−1.0

−0.5

0.0

0.5

1.0

pattern m1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−0.2 −0.1 0.0 0.1 0.2

−1.0

−0.5

0.0

0.5

1.0

pattern m2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

−0.2 −0.1 0.0 0.1 0.2

−1.0

−0.5

0.0

0.5

1.0

barycenter of m1 and m2

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Figure 3.1 – Localized graph patterns m1, m2 plotted on the graph and their Wasserstein
barycenter b for λ1 = 0.2 and λ2 = 0.8. m1, m2 and b are plotted on the graph in order to
highlight that the barycentric interpolation takes into account the underlying graph.

In our proposed graph representation learning algorithm node2coords, graph patterns similar

to those illustrated in Fig. (3.1) are interpolated at the Wasserstein barycentric decoder. We

2For the illustrations in Fig. (3.1), (3.3), (3.4), (3.5), (3.6), (3.10) we used the PyGSP toolbox [63].

27



Chapter 3. Graph Representation Learning with Wasserstein Barycenters

note finally that the graph patterns that can be interpolated with Wasserstein barycenters

are not restricted to be localized, as those shown in Fig. (3.1). Our proposed method can be

integrated in different algorithms for learning representations of graph structured data by

providing geometry aware, non-linear interpolations.

3.4 node2coords

Our proposed unsupervised graph representation learning algorithm node2coords relies on

the graph Wasserstein barycenter representation method, introduced in Section 3.3. The

proposed autoencoder architecture is shown in Fig. (3.2). The input of the encoder are

the connectivity descriptors of the nodes Zn , which capture their local structure. The node

connectivity descriptors are passed through a linear layer followed by a softmax activation

in order to obtain the small set of graph structural patterns MS . In the decoder we employ

Wasserstein barycenters as demonstrated in Section 3.3, to reconstruct the node connectivity

descriptors as Wasserstein barycenters of the graph patterns in MS . Thus, node2coords learns

both the graph patterns MS and the barycentric coordinatesΛ. We give more details of each

block of node2coords below.

Figure 3.2 – Node2coords block scheme. In the encoder, the node connectivity descriptors
are passed through a linear layer followed by a softmax activation to obtain the small set
of graph structural patterns that define the low dimensional space MS . In the decoder, the
node connectivity descriptors are reconstructed as Wasserstein barycenters of the patterns
in MS by optimizing for their barycentric coordinates Λ. The barycentric coordinates are
re-parametrized through a softmax layer in order to guarantee that they sum up to one for
each node. The learned parameters are the weights of the encoder E and the weights of the
decoder ∆, which are annotated with red.

Input: Given the adjacency matrix A of a graph of N nodes, we define the matrix of node

28



3.4. node2coords

connectivity descriptors Zn as:

Zn(i , j ) = Ãn(i , j )∑N
j=1 Ãn(i , j )

· (3.7)

The matrix Ã is defined as Ã = A+αIN , where IN is the N -dimensional identity matrix and

α ∈ {0,1}. The matrix Ãn is therefore computed as Ãn = (A +αIN )n . The i -th row Zn(i , ·) is

the connectivity descriptor of node i and its support indicates the nodes that can be reached

from node i in up to n hops. The value of the parameter α is set to α= 0 for n = 1 because for

n = 1 the only nodes that can be reached from a node are its one-hop neighbors. However,

for n ≥ 2 the value of α is set to α= 1. The reason for this choice is that for n ≥ 2, a node can

always reach itself by hoping to its first-hop neighbors and back. The value of the parameter n

depends on the size of the graph G . Specifically, for larger values of the number of nodes N ,

larger values for n are required. An example of a connectivity descriptor for n = 1 plotted on

the graph is shown in Fig. (3.4).

Encoder: In the encoder, the node connectivity descriptors Zn are passed through a linear

layer with N ×S (S < N ) parameters E followed by a softmax activation. The N ×S matrix MS

obtained at the output of the encoder is therefore:

MS = softmax(ZnE), (3.8)

where the softmax activation of an N -dimensional vector x is obtained as:

softmax(xi ) = exi∑N
j=1 ex j

· (3.9)

The S patterns in MS capture the most important structural properties of the graph and,

therefore, we refer to them as graph structural patterns.

Decoder: In the decoder, the node connectivity descriptors in Zn are reconstructed as

Wasserstein barycenters of the S graph structural patterns in MS using Wasserstein

barycenters, as introduced in Algorithm 3.3. We obtain the optimal representations of the

connectivity descriptors in Ẑn as Wasserstein barycenters of MS by learning their barycentric

coordinatesΛ.

In order to guarantee that the barycentric coordinates of each of the barycenter representations

sum up to one, we introduce a change of variable, through a softmax, so that the barycentric

coordinatesΛ(i , ·) of the barycenter approximation of the i -th node connectivity descriptor

Zn(i , ·) are reparametrized through a matrix ∆ as:

λi ,k = eδi ,k∑S
j=1 eδi , j

· (3.10)

29



Chapter 3. Graph Representation Learning with Wasserstein Barycenters

The node connectivity descriptors in Zn , that are being approximated as Wasserstein

barycenters at the decoder, are localized in the n-hop neighborhood of the nodes. Therefore,

their barycenter approximations in Ẑn are also localized in the n-hop neighborhood of the

nodes. The localization of the barycenters in Ẑn in n hops, leads to learning patterns in MS

that are localized in up to n-hops. As the entropy regularization parameter ε decreases, the

patterns in MS tend to be localized in exactly n hops. On the contrary, as ε increases the

patterns in MS become more localized. We note, however, that it is not possible to control the

nodes on which the graph structural patterns will have their highest values. Furthermore, in

the Wasserstein barycentric layer of the decoder the graph is taken into account through the

diffusion distance cost C = Dp=1
τ . The nature of the displacement interpolation obtained with

Wasserstein barycenters [64] and the use of the diffusion distance cost, which captures the

geometry of the underlying graph, leads to a small set of patterns in MS that highlight its

structural properties.

It is important to observe that the decoding step can be thought of as an embedding of the

nodes in the space spanned by the patterns in MS . The i -th node of the graph, as described

by its connectivity Zn(i , ·), is embedded in the S-dimensional space defined by the patterns

in MS by learning its S-dimensional coordinates Λ(i , ·). As a result, each element of the S-

dimensional embeddingΛ(i , ·) of the node i quantifies the proximity, in terms of Wasserstein

distance on the graph, of its connectivity descriptor to the S graph structural patterns. The

dimensionality of the embedding space S is a design choice and typically it depends on the

number of clusters in the graph.

Optimization: We train node2coords in order to learn the graph representations MS and

Λ by minimizing a loss L (Ẑn , Zn) between the node connectivity descriptors Zn and their

reconstruction as barycenters Ẑn . In order to ensure that the reconstruction of each node

connectivity descriptor in Zn is taken equally into account, we consider the normalized

reconstruction loss:

L (Ẑn , Zn) = ‖Zn − Ẑn‖2
F

‖Zn‖2
F

· (3.11)

It can be seen from Algorithm 2 and Eq. (3.10), (3.11) that L (Ẑn , Zn) is differentiable with

respect to ∆ as well as with respect to MS . Therefore, L (Ẑn , Zn) is differentiable with respect

to ∆ and E . The minimization of the loss function is a non-convex problem:

min
E ,∆

‖Zn − Ẑn‖2
F

‖Zn‖2
F

, (3.12)

that can be optimized with automatic differentiation [61] and stochastic gradient descent

(SGD) [65]. The number of barycenters computed in parallel J , introduced in Section 3.3.1,

determines the batch size used for training with SGD and it is a design choice. As the energy

in Eq. (3.12) is non-convex, the graph patterns in MS , and as a result, also the barycentric

30



3.5. Experimental Results

coordinatesΛ, will not be exactly the same for each run of node2coords. However, in every

case, the graph patterns will be localized on the clusters of the graph. It can finally be noted

that larger values of the entropy regularization ε constitute the energy in Eq. (3.12) less

non-convex.

3.5 Experimental Results

3.5.1 Settings

In this section we evaluate the quality of the representations learned with node2coords for

node classification tasks and examine their stability to perturbations of the graph structure.

We compare the performance of our algorithm against the following unsupervised learning

methods:

• Laplacian Eigenmaps (LE) [47]: A shallow-embedding method that finds S-dimensional

node embeddings by keeping the eigenvectors of the graph Laplacian matrix that

correspond to the S smallest eigenvalues. LE embeddings naturally emphasize the

clusters in the graph.

• DeepWalk [52]: An algorithm that uses random walks on graphs to learn S-dimensional

representations of nodes with a skip-gram model.

• node2vec [53]: A skip-gram method that uses biased random walks on graphs allowing

for a trade-off between homophily and structural equivalence of the obtained node

embeddings.

• SDNE [56]: An autoencoder that learns S-dimensional node embeddings at the ouput

of the N ×S linear layer of the encoder. SDNE embeddings preserve first-order and

second-order node proximities.

• DVNE [22]: An autoencoder that learns S-dimensional Gaussian distributions in the

Wasserstein space as the latent representation of the nodes. DVNE embeddings preserve

the graph structure while simultaneously modelling the uncertainty of nodes.

• GAE [66]: An autoencoder that learns S-dimensional node embeddings by employing

two graph convolutional layers in the encoder as GCN(X , A) = ĀReLU(ĀX W0)W1 [67],

where Ā = D− 1
2 AD− 1

2 , and W0,W1 are trainable parameters. Further, X is the feature

matrix of the nodes. In order to ensure a fair comparison with other methods, which do

not use features, we replace the feature matrix X with the identity matrix, as proposed

in [66].

The above methods were chosen in order to ensure comparison with benchmark methods as

well as state-of-the-art methods for unsupervised learning of graph representations.

31



Chapter 3. Graph Representation Learning with Wasserstein Barycenters

We consider the following datasets:

• Karate: The Zachary Karate network [68] is composed of N = 34 nodes. Each node is a

member of a Karate university club, which is split into two communities.

• PolBooks: This dataset consists of a network of N = 105 books about US politics

published around the time of the 2004 presidential election and sold by the online

bookseller Amazon.com [69]. Edges between books represent frequent copurchasing of

books by the same buyers. The books belong to one of three classes “liberal",

“conservative", “neutral".

• Citeseer4: Citeseer [70] is a dataset that consists of a citation network extracted from

the Citeseer digital library. Nodes are publications and an edge exists between two

nodes if either publication has cited the other one. The publications belong to one of

6 classes, where each class corresponds to a research area. Citeseer4 is a network of

N = 1532 nodes and corresponds to the giant component of the network obtained by

the publications that belong to the 4 research areas of the Citeseer network.

3.5.2 Interpretation of node2coords on a Community Detection Task

We first evaluate the node embeddings learned by node2coords for the task of community

detection on the Zachary Karate network. We also take the opportunity to explain in detail the

representations learned with node2coords and build intuitions on how to select optimally its

parameters.

We run node2coords for C = Dτ=1 and n = 1 because the Karate network is a small graph

and therefore 1-hop structural information is sufficient. We set S = 2 because there are two

communities in the graph. For the remaining parameters, we set ε= 0.03, ρ = 0.05. The choice

of the value for the parameter ε determines how localized the graph structural patterns are

and ρ controls the mass relaxation allowed. Furthermore, L = 500 iterations are sufficient for

the barycenter computation to converge. The input in node2coords is the connectivity matrix

Zn=1 and the output is its reconstruction using barycenters Ẑn=1. We train using Adam [71]

with learning rate µ= 0.01.

The graph structural patterns in MS are shown in Fig. (3.5). It can be seen that the low-

dimensional space MS comprises two very localized structural patterns which are placed

on the two communities. The embeddings obtained with node2coords are shown in Fig.

(3.3). The values of the barycentric coordinates λ1,λ2 of the nodes capture the proximity in

terms of Wasserstein distance of the node connectivity descriptors relatively to the graph

structural patterns of MS . As an example, the connectivity descriptor of the node in Fig. (3.4)

is approximated in the decoder as argminu∈ΣN

∑2
i=1λi W ε,ρ

p (MS(·, i ),u) where MS(·,1), MS(·,2)

are the two patterns shown in Fig. (3.5) and λ1 = 0.43,λ2 = 0.57 are the barycentric coordinates

32



3.5. Experimental Results

0.00 0.25 0.50 0.75 1.00
λ1

0.2

0.4

0.6

0.8

1.0
λ 2

node2coords

−0.5 0.0 0.5 1.0
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6
LE

−1.5 −1.0 −0.5

−0.2

0.0

0.2

0.4

0.6
Deepwalk

−1.5 −1.0 −0.5 0.0
−1.4

−1.3

−1.2

−1.1

−1.0

−0.9

−0.8
node2vec

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
SDNE

0 1 2

−1.0

−0.8

−0.6

−0.4

−0.2
DVNE

−2 0 2

−1

0

1

2

GAE

Figure 3.3 – Embeddings obtained for the Zachary Karate network with node2coords, LE,
Deepwalk, node2vec, SDNE, DVNE and GAE. For node2coords the two axes correspond to
the barycentric coordinates λ1,λ2. The embeddings of the other methods are not in a known
coordinate system. The embeddings of the two communities are most clearly separated with
node2coords.

learned for that node. Therefore, the nodes that are close to the first pattern in MS have a large

λ1 and a small λ2, as can be seen by the embeddings of the nodes in yellow in Fig. (3.3). The

opposite is true for the nodes in the purple community.

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
−4

−3

−2

−1

0

1

2

3

Node Connectivity Descriptor

0.00

0.02

0.04

0.06

0.08

0.10

Figure 3.4 – Connectivity descriptor of the node highlighted with the orange circle.

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5

−4

−3

−2

−1

0

1

2

3

First Graph Structural Pattern

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5

−4

−3

−2

−1

0

1

2

3

Second Graph Structural Pattern

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 3.5 – Graph structural patterns learned in MS for the Zachary Karate network. The
colormap shows the range of intensities of the pattern on the graph. The patterns learned in
MS are placed on each one of the communities.

We also show in Fig. (3.3) the embeddings learned by Laplacian Eigenmaps, Deepwalk,

node2vec, SDNE, DVNE and GAE for latent dimensionality S = 2 for the Zachary Karate

Network. For node2vec, the parameters p, q are set to p = 1, q = 0.5, which were proposed as

optimal in [53] for the task of community detection, where homophily among nodes is

detected. For Deepwalk the number of walks is set to γ= 10, the walk length to t = 10 and the

window size to w = 3. For SDNE, the regularization for the first order proximities is set to

α= 0.16, the L2 norm regularizer to avoid overfitting equal to ν= 0.15 and the reconstruction

33



Chapter 3. Graph Representation Learning with Wasserstein Barycenters

penalization parameter to β= 5. For DVNE we set the size of the hidden layer to h = 12 and

the parameter that controls the second-order proximity preservation to αD = 1. For GAE we

set the dimensionality of the embeddings at the hidden layer of the encoder to h = 32. It can

be seen that the embeddings obtained with all competitor unsupervised methods do not

separate the two communities as clearly as node2coords. Further, the node embeddings of

these methods lack interpretability as the value of the embedding of a node in each one of the

two dimensions does not correspond to the proximity to a particular axis.

It can be observed that LE and node2coords discover the clusters in the graph. Specifically, LE,

as explained in detail in [47], has a close connection to spectral clustering [104]. The

embeddings obtained with LE, shown in Fig(3.3), correspond to the S eigenvectors f

corresponding to the smallest, non-zero eigenvalues e of the generalized eigenvector problem

L f = eD f , where D is the diagonal matrix of node degrees and L = D −W is the Laplacian

matrix of the graph. Therefore, for the Zachary Karate Network of two clusters, the embedding

of the i -th node obtained with LE corresponds to [ f1(i ), f2(i )]. Further, due to the use of the

diffusion distance as a cost C = Dτ=1, node2coords learns graph structural patterns in MS that

highlight the clusters of the graph, as shown in Fig. (3.5). The embeddings obtained with

node2coords, shown in Fig(3.3), correspond to the Wasserstein distance of the node

descriptors from those graph structural patterns. Therefore, although both LE and

node2coords reveal the clusters of the graph, they lead to different node embeddings.

3.5.3 Stability to Perturbations

We now examine the stability of node2coords to perturbations of the graph structure. First, we

consider a stochastic block model [72] graph G of N = 100 nodes with probability of connection

within the community equal to p = 0.4 and probability of inter-community connection equal

to q = 0.01. We then consider perturbed versions G ′ of the graph G by varying the probability

p within the range p ′ = {0.15 : 0.05 : 0.40}. Therefore, the perturbation affects the number of

edges of the graph, but the number of nodes remains constant.

We run node2coords with n = 1, S = 3, ε = 0.01 and ρ = 0.1 and learn the space MS and

the barycentric coordinatesΛ for the graph G . The graph structural patterns learned in MS

for the clean graph G are shown in Fig. (3.6a) and their transfer to the perturbed graph G ′

with p ′ = 0.15 in Fig. (3.6b). The graph structural patterns are less localized in this case

compared to those in Fig. (3.5). This, as explained in Section 3.4, is due to the fact that the

entropy regularization parameter ε used for the SBM graph is smaller than the one used for the

Karate network. However the interpretation of the graph structural patterns remains the same.

Specifically, it can be seen that the graph patterns in MS identify the three communities and

thus they remain meaningful even when the actual graph changes. As a result, the perturbed

graphs can be embedded in the low-dimensional space MS that was learned for the clean

graph G . We confirm this intuition by evaluating the clustering result obtained using the node

34



3.5. Experimental Results

embeddingsΛ′ of the perturbed graphs in the space MS learned for the original graph G . For

the perturbed graphs G ′ we only compute the barycentric coordinates Λ′ of their nodes in

the space MS learned on G . We apply k-means clustering to the barycentric coordinates of

the nodes Λ′ with k = 3 and we compute the adjusted mutual information (AMI) and the

normalized mutual information (NMI) [73] for the clustering result. The obtained AMI, NMI

for the different perturbations are shown in Fig. (3.7). It can be seen that both the AMI and

NMI are high even for large perturbations. Thus, we confirm that the perturbed graphs G ′ can

be embedded in a meaningful way in the space MS learned for the clean graph G .

We further evaluate the relative change ‖Λ−Λ′‖F
‖Λ′‖F

in terms of Frobenius norm of the barycentric

coordinates Λ′ of the perturbed graphs G ′ in comparison to the barycentric coordinates

Λ of the original graph G . In Fig. (3.8a) we show the relative change of the embeddings

obtained as a function of the relative change of the probability of connection within the

community |p−p ′|
|p ′| . Laplacian Eigenmaps, node2vec, Deepwalk, SDNE, DVNE and GAE do not

learn a low-dimensional space as node2coords and, therefore, the only way to obtain the node

embeddings of the perturbed graphs is by re-running the algorithms. It can be seen clearly

that the embeddings obtained with node2coords are stable. DVNE produces also relatively

stable embeddings. This is expected, as possible uncertainties of the node embeddings are

accounted for through the variance of the Gaussian distribution. We notice also that the

change in the node embeddings of SDNE seems to follow an increasing trend as the relative

change of the probability of connection within the community increases. The relative change

in the embeddings of node2coords seems to increase linearly with the relative change in

the probability of intra-connection p. This is also clearly seen in Fig. (3.9) where we plot

the node embeddings for node2coords. It can be seen that node embeddings obtained with

node2coords change progressively as the value of the probability of connection p changes.

Furthermore, we consider the graph G of the PolBooks dataset and we create perturbed

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

First Graph Pattern

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Second Graph Pattern

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Third Graph Pattern

(a)

−0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Transfer of First Graph Pattern

−0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Transfer of Second Graph Pattern

−0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Transfer of Third Graph Pattern

(b)

Figure 3.6 – (a) Structural graph patterns of MS as learned for the graph G with p = 0.4. Each
pattern identifies one of the communities. (b) Structural graph patterns of MS learned for
the graph G with p = 0.4 transferred to the perturbed graph G ′ with p ′ = 0.15. The graph
structural patterns remain meaningful for the perturbed graph G ′ as they clearly indicate the
three communities.

35



Chapter 3. Graph Representation Learning with Wasserstein Barycenters

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

|p − p′|/|p′|

0.92

0.94

0.96

0.98

1.00

M
u
tu

a
l
In

fo
rm

a
ti
o
n

Clustering of Perturbed Graphs

AMI

NMI

Figure 3.7 – Clustering of perturbed graphs. AMI and NMI scores as a function of the relative

change of the probability of connection within the community |p−p ′|
|p ′| .

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

|p − p′|/|p′|
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

‖Λ
−

Λ
′ ‖

F
/
‖Λ

′ ‖
F

Stability of Embeddings
node2coords

node2vec

Deepwalk

SDNE

DVNE

LE

GAE

(a) Change of the embeddings ‖Λ−Λ′‖F
‖Λ′‖F

as a function of the change of the
intra-community probability of connection
|p−p ′|
|p ′| for the SBM graphs.

0.00 0.01 0.02 0.03 0.04 0.05
p

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

‖Λ
−

Λ
′ ‖

F
/
‖Λ

′ ‖
F

Stability of Embeddings
node2coords

node2vec

Deepwalk

SDNE

DVNE

LE

GAE

(b) Change of the embeddings ‖Λ−Λ′‖F
‖Λ′‖F

as

a function of the percentage of perturbed

edges in the graph p = |Ep |
|E |+|Ep | for the

PolBooks dataset.

Figure 3.8 – Stability of node2coords embeddings.

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

p′ = 0.15

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

p′ = 0.2

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

p′ = 0.25

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

p′ = 0.3

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

p′ = 0.35

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

p = 0.4

Figure 3.9 – Embeddings of node2coords of the perturbed graphs G ′ in the space MS learned
for the clean graph G .

graphs G ′ by randomly adding edges. We denote the number of added edges as |Ep |. The

maximal number of edges that can be added to this network until it becomes fully connected

is |Ep |max = N 2 −|E | = 10143. We define the ratio of added edges as rp = |Ep |
|Ep |max and generate

the perturbed graphs G ′ by varying the ratio rp in the range rp = {0.01 : 0.01 : 0.05}. We

run node2coords with n = 1, S = 3, ε = 0.01 and ρ = 0.1 and learn the space MS and the

barycentric coordinates Λ for the graph G . Next, we compute the barycentric coordinates

Λ′ of the perturbed graphs G ′ in the space MS and evaluate the relative change ‖Λ−Λ′‖F
‖Λ′‖F

in

terms of Frobenius norm of the barycentric coordinates Λ′ of the perturbed graphs G ′ in

36



3.5. Experimental Results

comparison to the barycentric coordinatesΛ of the original graph G . In Fig. (3.8b) we show

the relative change of the embeddings obtained as a function of the percentage of perturbed

edges in the graph p = |Ep |
|E |+|Ep | . It can be seen that again node2coords provides the most

stable node embeddings followed by DVNE. We notice also that SDNE produces relatively

stable embeddings. Furthermore, we notice that for the smaller perturbations p, DVNE

produces the most stable embeddings. Contrary to the perturbations generated for the SBM

graphs, where only the probability of connection within the community is perturbed, the

perturbations created in this experiment add randomly edges either within or between clusters.

Therefore, in this case, the perturbed edges affect more strongly the clusters in the graph.

These perturbations are more challenging for node2coords, since the geometry-aware cost

relies on the diffusion distance, which naturally emphasizes the clusters in the graph. As the

perturbation becomes stronger, the embeddings of DVNE become less stable than those of

node2coords.

To conclude, we have shown experimentally that node2coords learns stable node embeddings.

The advantage of the stability of the embeddings with node2coords is due to the fact that the

low-dimensional space MS permits a registration of the nodes in the case of perturbed graphs.

3.5.4 Node Classification

We now evaluate the features learned in an unsupervised manner with node2coords in the

context of node classification tasks. The node embeddings learned by node2coords and the

competitor methods are input to a one-vs-rest logistic regression classifier with L2

regularization.

We consider the same experimental set-up as in [53]. We consider train-test partitions of the

data varying from 20% to 80%. For each partition we create 10 random splits of the data to

train and test and provide results averaged over the 10 splits. The same splits are used for all

methods. The F1 score of a class is the harmonic mean of precision and recall. The precision

for a class is the number of true positives divided by the total number of elements labeled as

belonging to the class and recall is the number of true positives divided by the total number of

elements that belong to the class. We therefore compute the F1 score as:

F 1 = 2× precision× recall

precision+ recall
(3.13)

with:

precision = T P

T P +F P
(3.14)

37



Chapter 3. Graph Representation Learning with Wasserstein Barycenters

and

recall = T P

T P +F N
, (3.15)

where T P,F P,T N ,F N stand for true positives, false positives, true negatives and false

negatives, respectively.

For the evaluation of the classification results we compute the weighted Macro-F1 score, which

calculates the F1 score for each label, and finds their weighted mean.

We present in Table (3.1) the Macro-F1 scores for the PolBooks dataset and for train-test splits

varying from 20% to 80%. For node2coords and the algorithms against which we evaluate its

performance, the dimensionality of the embedding space is considered to be equal to S = 3 as

the network essentially has three clusters. It can be seen that node2coords provides the highest

Macro-F1 score for most training ratios. Indeed, even for the small latent dimensionality of

S = 3, it clearly identifies the small class “neutral". This can be clearly seen also from the graph

structural patterns of MS in Fig. (3.10). Specifically, DeepWalk, node2vec, SDNE and GAE make

most of the classification errors for the small class “neutral", which leads to reduced Macro-F1

scores. This shows that the embedding dimensionality S = 3 is too small for these algorithms

to properly capture the three clusters in the data, while it is sufficient for node2coords. DVNE

consistenly has the second best performance after node2coords when the training ratio is

more than 40%.

Table 3.1 – Macro-F1 score for node classification in PolBooks.

Train Ratio 20 % 30 % 40 % 50 % 60 % 70 % 80 %

LE 70.50 72.83 75.47 70.14 72.85 77.27 73.33

node2vec 72.48 75.52 74.77 70.80 73.61 80.76 86.92

DeepWalk 74.82 75.52 76.19 69.07 70.81 76.00 86.92

SDNE 64.48 65.40 68.65 70.65 70.81 72.22 79.16

DVNE 55.90 57.98 56.99 71.38 75.46 81.68 83.90

GAE 73.14 79.58 76.19 67.49 68.33 68.94 73.33

node2coords 75.58 73.26 78.43 73.58 78.88 86.11 86.92

We now examine how node2coords performs on larger datasets. We show in Table 3.2 the

Macro-F1 scores for node classification on Citeseer4. The latent dimensionality for all methods

is taken to be equal to S = 4. It can be seen again that node2coords provides the highest

Macro-F1 scores for most train ratios. Therefore, node2coords is able to capture structural

information for this larger graph. SDNE now has the second best performance, which shows

that it is a method that scales well for large datasets. Also, node2vec performs consistently

better than DeepWalk. This is due to the bias added to the random walks of node2vec, which

38



3.5. Experimental Results

−10 −5 0 5 10 15

−15

−10

−5

0

5

10

First Graph Structural Pattern

0.05

0.10

0.15

0.20

−10 −5 0 5 10 15

−15

−10

−5

0

5

10

Second Graph Structural Pattern

0.1

0.2

0.3

0.4

0.5

−10 −5 0 5 10 15

−15

−10

−5

0

5

10

Third Graph Structural Pattern

0.05

0.10

0.15

0.20

0.25

0.30

Figure 3.10 – Graph structural patterns learned for PolBooks. The node with the highest value
of each pattern is highlighted with an orange circle. Each graph structural pattern indicates a
cluster of the graph.

Table 3.2 – Macro-F1 score for node classification in Citeseer4.

Train Ratio 20 % 30 % 40 % 50 % 60 % 70 % 80 %

LE 30.78 32.47 31.81 32.87 34.09 34.57 36.63

node2vec 68.56 69.97 69.23 69.75 69.84 70.96 74.44

DeepWalk 57.56 59.61 59.01 59.18 59.10 60.69 60.27

SDNE 66.24 67.25 69.31 70.92 70.96 71.59 75.94

DVNE 38.48 40.60 40.24 40.63 40.86 39.47 41.45

GAE 61.44 63.86 63.34 64.01 65.46 65.33 67.00

node2coords 66.94 68.63 70.58 72.14 74.12 75.97 78.80

leads to embeddings that capture both homophily as well as structural similarities of nodes.

The performance of DVNE drops significantly in this case. This is due to the low embedding

dimensionality of S = 4. Specifically, as observed by the authors in [22], the quality of the

embeddings of DVNE decreases abruptly when the embedding dimensionality drops below

a threshold. For instance, they report that for a graph of N = 2708 nodes, the minimum

embedding dimensionality is S = 32. Therefore, the embedding dimensionality of S = 4

is insufficient for Citeseer4, which is a network of N = 1532 nodes. The worst performing

method is LE, which does not scale well to larger graphs. The drop in performance of Laplacian

Eigenmaps for large graphs could be due to the fact that it only takes into account first order

proximities of the nodes. This is also indicated by the fact that the performance of SDNE,

which takes into account second-order as well as first-order node proximities, improves for

large graphs. Further, we notice that the performance of GAE is worst than that of SDNE

and node2vec. This is consistent with the results reported in [66] for the featureless case and

highlights the fact that deep neural networks with graph convolutional filters are particularly

relevant in the case where features are available. However, they do not seem to fully exploit

the structural information of the graph.

39



Chapter 3. Graph Representation Learning with Wasserstein Barycenters

3.5.5 Generalization to Unseen Nodes

In this experiment we evaluate the ability of node2coords to generalize to nodes that have not

been seen during the representation learning process. In order to do so, we use only a

downsampled version of the adjacency matrix of the PolBooks network during the

representation learning process. Specifically, we use a randomly selected set of nodes for

training and subsample the N ×N adjacency matrix A to obtain the N tr ai n ×N tr ai n training

adjacency matrix Atr ai n . From Atr ai n we obtain the training connectivity matrix Z tr ai n
n . With

Z tr ai n
n as the input to node2coords, we learn the N tr ai n × S space M tr ai n

S and the

S-dimensional barycentric coordinates for each of the training nodes in that space. We

eventually use the S-dimensional barycentric coordinates to train a one-vs-rest logistic

regression classifier with l2 regularization.

As it has been shown above, the graph structural patterns learned with node2coords are sparse

and they only have non-zero values on a small set of nodes within a given cluster. Therefore,

we can upsample the patterns in M tr ai n
S by zero padding in order to obtain the N ×S space

MS . The graph structural patterns in MS obtained this way are meaningful as they indicate

the clusters in the graph. We validate the quality of the patterns in MS by evaluating the

classification performance of the unseen nodes’ coordinates in the space defined by MS .

Specifically, we compute the barycentric coordinates of the unseen, test nodes in the space

MS using the barycentric decoder of node2coords with fixed input MS . We predict their class

labels using the trained logistic regression classifier and evaluate the classification accuracy.

We consider downsampling partitions ranging from 50 % to 90 %. For each partition we create

5 random splits of the data to train and test and provide results averaged over the 5 splits.

In Table (3.3) we show the classification accuracy for node2coords for downsampling ratios

ranging from 50 % to 90 % (node2coords-DS) as well as the classification accuracy for the

set-up of Section 3.5.4 (node2coords). We can see that the algorithm generalizes well to nodes

that were completely unseen while learning the representation MS with node2coords. When

only 50 % of the nodes are kept in Atr ai n the classification accuracy for the nodes unseen

during learning of MS is 76.15 %.

Table 3.3 – Accuracy of node classification in PolBooks.

Train Ratio 50 % 60 % 70 % 80 % 90 %

node2coords 86.79 90.47 93.75 95.23 100.00

node2coords-DS 76.15 76.19 78.06 83.80 80.00

Node2coords generalizes well to unseen nodes because the patterns learned for the

downsampled graph capture the most important structural information which, in this case,

corresponds to the clusters. The ability of node2coords to learn such a meaningful

low-dimensional representation of the graph, given only partial information of the graph

40



3.5. Experimental Results

structure, is unique to node2coords and cannot be reproduced by other methods for graph

representation learning that only leverage structural information but not node features.

3.5.6 Parameter Sensitivity

We now examine the sensitivity of the quality of the node embeddings learned with

node2coords with respect to the entropy regularization parameter ε and the relaxation

parameter for the mass preservation constraints ρ.

We first investigate the sensitivity of node2coords with respect to the parameter ε. We set

ρ = 0.1 and vary ε in the range ε= {0.01 : 0.01 : 0.09}. The classification accuracy as a function

of ε is shown in Fig. (3.11). It can be seen that the classification accuracy is relatively stable

for ε in the range ε = {0.01 : 0.01 : 0.05} and drops for values of ε > 0.05. The reason for this

drop in the perfromance for larger values of ε is directly linked with the quality of the graph

structural patterns. Specifically, as the entropy regularization parameter ε increases, the graph

patterns are forced to be more localized. Significant increase of the regularization parameter ε

forces the graph patterns to be Dirac δ functions, equal to 1 on a node and 0 everywhere else.

However, as can be seen in Fig. (3.10) the optimal graph structural patterns are localized on a

specific cluster and not on a single node. In the case where the graph structural patterns are

Dirac δ functions, the barycentric coordinates will quantify the proximity with respect to S

nodes and not the proximity with respect to the S clusters, as desired.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
ǫ

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Sensitivity with respect to ǫ

Figure 3.11 – Sensitivity of the classification accuracy on the PolBooks dataset with respect to
the entropy regularization parameter ε.

Further, we mention that the performance of node2coords is not significantly affected by

the value of the parameter ρ. Specifically, even if ρ is set to a smaller value than necessary,

or equivalently if the mass preservation constraints are relaxed more than necessary for the

optimal reconstruction of the node connectivity descriptors, the mass of the barycenters will

converge to that needed for the optimal reconstruction. We note that very large values of

ρ take us away from the ubalanced barycenter computation. In that case, there will be a

drop in performance because the mass preservation constraints may penalize the optimal

reconstruction of the node connectivity descriptors obtained with the Wasserstein barycenters.

This is the reason why we have chosen to compute unbalanced barycenters in the decoder of

41



Chapter 3. Graph Representation Learning with Wasserstein Barycenters

node2coords.

3.5.7 Study of the Effect of the Barycentric Layer

In this section we study the effect of using our proposed barycentric layer compared to a simple

linear layer in the decoder. In order to do so, we compare the performance of node2coords

to SDNE, which is composed of a linear layer in the encoder and the decoder, when both its

regularization parameters are set to α= 0 and ν= 0. Furthermore, we provide as the input to

both node2coords and SDNE the node connectivity descriptors. We show in Tables 3.4, 3.5

the Macro-F1 scores obtained on the PolBooks and the Citeseer4 dataset for SDNE (with no

regularizers) and node2coords. It can be seen that node2coords significantly outperforms

SDNE with no regularizers. We have therefore illustrated the benefit of the barycentric layer

compared to a linear layer.

Table 3.4 – Effect of barycentric layer. Macro-F1 scores for node classification in PolBooks.

Train Ratio 20 % 30 % 40 % 50 % 60 % 70 % 80 %

SDNE (no reg.) 66.27 61.42 62.22 61.27 63.81 64.29 64.91

node2coords 75.58 73.26 78.43 73.58 78.88 86.11 86.92

Table 3.5 – Effect of barycentric layer. Macro-F1 scores for node classification in Citeseer4.

Train Ratio 20 % 30 % 40 % 50 % 60 % 70 % 80 %

SDNE (no reg.) 63.69 62.69 63.99 64.35 63.38 63.65 63.08

node2coords 66.94 68.63 70.58 72.14 74.12 75.97 78.80

3.6 Conclusion

In this work we proposed node2coords, an autoencoder architecture with a novel Wasserstein

barycentric decoder that learns low-dimensional graph representations without supervision.

The proposed algorithm learns simultaneously i) a low dimensional space and ii) node

embeddings that correspond to coordinates in that space. The low-dimensional space is

defined by a small set of graph patterns that capture the most relevant structural information

of the graph. The values of a node’s embedding in that space can be interpreted as the

proximity of its local connectivity to the corresponding graph patterns in terms of Wasserstein

distance on the graph.

We demonstrated how the low-dimensional space of node2coords can be used to obtain

significantly more stable embeddings for graphs that have undergone small perturbations,

compared to other methods. Furthermore, we showed that the node embeddings of

node2coords provide competitive or better results than those obtained with state-of-the-art

42



3.6. Conclusion

methods for node classification tasks on real datasets. Finally, we confirm experimentally the

ability to generalize to nodes that were unseen during the representation learning process.

43





4 Pooling Graph Representations with

Wasserstein Gradient Flows

4.1 Introduction

In the previous chapter, we focused on the case where we learn representations for a fixed

graph. Specifically, by exploiting the structure of a graph, we learned embeddings of its nodes

in order to perform node classification and community detection. However, in machine

learning problems, such as graph classification or graph regression, each datapoint

corresponds to a different graph. Examples of such problems arise in the fields of

computational biology, drug discovery and social network analysis, among others. As an

example, a task of interest is the prediction of whether a protein structure is an enzyme or not.

In that case, proteins are represented as graphs with nodes corresponding to amino-acids and

edges capturing the spatial proximity of the amino-acids. Similarly, molecules can be

represented as graphs where nodes are atoms and edges the chemical bonds between them.

The problem of interest in that case may be the classification of a molecule as active or

inactive against cancer cells.

Such tasks are tackled by models that operate in an inductive setting. In this setting, the goal

of graph representation learning algorithms is to use a set of k training graphs G1, . . .Gk in

order to learn a mapping that can generalize to unseen test graphs Gk+1, . . .Gk+l . Naturally, the

graphs can be of varying size. For instance, in the example of molecule classification discussed

above, each molecule may be composed of a different number of atoms. As a result, a relevant

problem that arises in GNN architectures in this context, is to find the optimal way to pool the

graph representations of varying size to a representation of fixed size that can be multiplied by

the weights of the classifier or regressor that is driving the representation learning process.

This operation is commonly referred to as global graph pooling.

Graph pooling methods proposed fall into two categories: node selection methods and node

clustering methods. Node selection methods aim to pool graph representations by selecting

the representations of the most important nodes of the graph, according to some criterion. An

45



Chapter 4. Pooling Graph Representations with Wasserstein Gradient Flows

important disadvantage of these methods is that they discard the information that is captured

in the representations of the least important nodes. Node clustering methods propose to pool

graph representations by learning node assignment matrices. The motivation of these methods

is to learn what constitutes nodes to be similar, so that the representations of similar nodes

can be linearly combined, as dictated by the assignment matrices. Node clustering methods

don’t discard information, but aggregate the representations of similar nodes. However they

still offer no guarantee with regards to the similarity of the graph representation and its pooled

version.

In this work, we introduce a new type of pooling method, that addresses this limitation. We

propose to explicitly preserve the statistics of the graph representation by minimizing the

entropy-regularized Wasserstein distance between itself and its pooled version. Our pooling

method minimizes this distance by performing a Wasserstein gradient flow with respect to the

pooled graph representation. Therefore, we term our proposed pooling method FlowPool. At

each step of the flow, the energy of the Wasserstein distance between the graph representation

and its pooled counterpart is computed and the pooled representation is moved closer to the

original graph representation according to the gradient of that energy. As a result, the pooled

graph representation, obtained with FlowPool, combines the representations of the nodes

using the optimal couplings that minimize the Wasserstein distance along the steps of the

flow.

Our contributions in this work are threefold:

• We propose a global pooling framework for graphs that optimally preserves the statistics

in the representation space.

• We propose a versatile implementation of this pooling method using implicit

differentiation [74] that can take into account any underlying geometry and that

enables its integration in end-to-end deep learning architectures for graphs.

• We analyse the proposed pooling method for the case where the geometry considered

is that determined by the squared Euclidean distance in the feature space and provide

promising results for graph classification on real data.

The structure of this chapter is as follows. First, in Section 4.2 we review the related work.

After introducing the correspondence of a graph representation to a probability measure in

Section 4.3, we propose FlowPool as the minimization of the Wasserstein distance between

graph representations in Section 4.4. In Section 4.5 we explain our versatile implementation

based on implicit automatic differentiation that can be used with any ground cost. In Section

4.6 we show that our method is invariant to permutations. In Section 4.7 we discuss how we

can backpropagate through FlowPool and integrate it in end-to-end GNN architectures. In

Section 4.8.1 we perform an experimental analysis for a simplified set-up of FlowPool in order

46



4.2. Related Work

to show its dependence on parameters and build intuitions and in Section 4.8.2 we provide

preliminary results on graph classification when FlowPool is incorporated in an end-to-end

deep learning architecture. We provide direction for future work in Section 4.9 and conclude

in Section 4.10.

4.2 Related Work

As mentioned before, existing pooling methods for graphs can be grouped into two categories,

namely node selection methods and node clustering methods. In this section we review briefly

representative methods from each of these two categories.

Node selection methods pool a graph representation by keeping only the representations of the

K most important nodes in the graph. The first node selection method proposed is SortPool

[75], which extends the idea of the Weisfeiler-Lehman graph kernels [25] to sort nodes based

on their color, to sorting nodes based on their GCN feature vector. Once the nodes have been

sorted, only the K most important ones are kept. Sortpool yields the same representation for

isomorphic graphs. A different approach is followed by TopKPool [76]. TopKPool proposes to

learn from the data a vector of parameters, such that only the K node representations, whose

inner product with the trainable vector is maximal, are kept. TopKPool does not explicitly

take into account the graph structure. This limitation is addressed by SAGPool [77]. SAGPool

employs a trainable graph convolutional layer in order to obtain an attention score for each

node in the graph, and keeps only the K nodes that correspond to the highest attention scores.

Node selection methods lead to loss of information due to the discarded features of the nodes

that are not selected. Node clustering methods aim to alleviate this problem by finding the

optimal way to aggregate the representations of all N nodes in a graph. This is achieved by

clustering the N nodes into M clusters in order to obtain an N ×M assignment matrix S. As a

result, given a graph of N nodes with adjacency matrix A and a d ×N graph representation Y ,

the representation output by node clustering pooling methods is equal to X = Y S. Further,

the assignment matrix S provides a way to obtain the adjacency matrix Ac of the pooled graph

as Ac = S>AS. All proposed node clustering methods learn the assignment matrices from the

data in order to achieve statistical strength. We provide a summary of existing node clustering

pooling methods below.

The first differentiable graph pooling method that proposes to learn assignment matrices

is DiffPool [78]. DiffPool proposes to parametrize node assignment matrices with a graph

convolutional filter followed by a softmax activation. The parameters of the GCN filter are

learned from the data during training. Therefore, DiffPool’s assignment matrices learn which

nodes should be grouped together, based on the features and the graph structure. Building on

DiffPool’s concept of parametrizing assignment matrices with GCNs, StructPool [79] proposes

to condition the cluster assignment of each node on the cluster assignments of other nodes. As

47



Chapter 4. Pooling Graph Representations with Wasserstein Gradient Flows

a result, the graph pooling problem is framed as a structured prediction problem by employing

conditional random fields to capture the relationships among the assignments of the nodes.

On a different line, HaarPool [80] employs the Haar basis [81], [82] matrix to obtain a mapping

of the nodes in the graph to the nodes of the pooled graph. The graph is pooled by keeping the

basis vectors that correspond to the low frequencies, thus maintaining the coarse structural

information, and discarding the ones that correspond to the high frequencies, thus dismissing

fine structural information. In order to leverage the node features as well as the spectral

information of the graph structure, MinCutPool [83] proposes to parametrize node assignment

matrices using multi-layer perceptrons and adds a term at the objective function which is a

relaxation of the normalized minCUT problem [84].

Graph pooling is employed in deep networks for graph representation learning in two different

contexts; hierarchical pooling and global pooling. Hierarchical pooling aims to generalize the

pooling operation, as performed in convolutional networks for regular grids, and aggregate

feature information over local patches in order to achieve locality-preserving representations

and invariance to small deformations. Global pooling aims to learn fixed-size representations

from graph representations of varying size. In a recent study [85] it is demonstrated that

certain graph pooling methods, when employed for hierarchical pooling, do not enhance the

graph representation learning process, but rather smooth the features of the nodes in the

pooled graph representation. Although in this work we focus on global graph pooling, we

mention that our proposed pooling method can also be used for hierarchical pooling and that

it could help alleviate the smoothing problem because of the explicit objective of preserving

the statistics. In that context, the coarsened graph adjacency matrix Ac could be obtained

through the optimal couplings.

Further, we mention that optimal transport-based methods have been recently proposed

in order to obtain fixed-size representations. First, the work in [86] proposes a framework

that uses a mapping to obtain a linear approximation of the Wasserstein-2 distance. In

order to obtain this mapping, the barycentric projection [87] from a reference to each graph

representation is needed. The optimal transport plans, needed for the barycentric projection

map calculation, are obtained by solving the Kantorovich problem of Eq. (2.7) with linear

solvers [88]. Once the graph representations of fixed size are obtained, they are used to

perform various graph prediction tasks. As this framework is not differentiable, it cannot

be integrated in end-to-end architectures for graph representation learning and only non-

parametric graph representations are considered. Also, its performance relies heavily on the

choice of the values of the representation of the reference, which must be numerically close to

those of the graph representations. Second, in [89] the authors address the problem of finding

fixed-size representations of sets of features of varying size and, possibly, in the regime where

labeled data are scarse. They introduce an embedding (OTKE) that combines kernel methods

[90] and optimal transport. They propose to embed the feature representations of a set to a

reproducing kernel Hilbert space and subsequently pool the obtained embedding using the

48



4.3. Graph Representations as Probability Measures

optimal transport plan between the kernel embedding and a trainable reference. Furthermore,

the relation of the proposed OTKE to attention mechanisms is discussed and its performance

is validated on biological sequence classification and natural language processing tasks.

4.3 Graph Representations as Probability Measures

In order to define a Wasserstein distance between graph representations, we first explain how

we correspond the representation of a graph to a probability measure. Given a graph G of N

nodes, its representation with d features is a d ×N matrix Y = [y1, . . . yN ] where y j is the d ×1

dimensional representation of the j -th node. We propose to describe the representation of

the graph G as a probability measure:

ν=
N∑

j=1
b jδy j , (4.1)

where b ∈ΣN is a histogram. The value of b j captures the significance of the representation of

node j . In the case where all nodes are of equal importance we may consider b j = 1
N ,∀ j . On

the contrary, we can consider a non-uniform distribution on the nodes in order to account

for some uncertainty in the node representation. For instance, in a social network, we may

chose to use higher weights for nodes that correspond to users that have been members of the

network for more that one year and whose features decribe them well, and lower weights for

users that have just joined the social network.

In Fig. (4.1) we provide an example. We consider a graph G of N = 7 nodes with

representation Y ∈R2×7. The 2×1 dimensional feature representation of node j corresponds

to y j = [Y1, j ;Y2, j ]. We show on the left of Fig. (4.1) the graph G , where each node is annotated

with its representation. We correspond to the representation of the graph G the probability

measure ν=∑7
j=1 b jδy j . Assuming that all nodes have equal importance, the weights of the

measure ν are equal to b j = 1
7 ,∀ j . The positions of mass of the probability measure ν are

determined by the representations of the nodes y j . On the right of Fig. (4.1) we plot the

measure ν in the 2-dimensional Euclidean space.

4.4 FlowPool

The goal of global graph pooling is to transform a representation of a graph of N nodes

in a d-dimensional feature space to a fixed size representation of M nodes with the same

feature dimension d . Let ν = ∑N
j=1 b jδy j and µ = ∑M

i=1 aiδxi be the probability measures

that correspond to the graph representation Y ∈Rd×N and its pooled counterpart X ∈Rd×M .

49



Chapter 4. Pooling Graph Representations with Wasserstein Gradient Flows

1

2

3

4

5

7
6

⌫ =
1

7

7X

j=1

�yj

G

−0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

1

2
3

4

5

6

7


�0.24

0.43

�


�0.40

0.04

�


0.26
0.25

�


1.56
0.48

�


�0.36

1.91

�


�0.47
�0.63

�

�0.16
�0.92

�

Figure 4.1 – Corresponding a graph G to a probability measure ν. On the left we show a graph
G of N = 7 nodes with its representation Y . The j -th node is annotated with its representation
y j = [Y1, j ;Y2, j ]. For instance, the representation of node 2 is y2 = [−0.40;0.04]. By assuming
that all the nodes in graph G are equally important, we correspond the graph representation to
the probability measure ν= 1

7

∑7
j=1δy j . The positions of mass of the measure are determined

by the node representations.

FlowPool computes the pooled representation X by solving:

min
X

LεC (X ,Y )(a,b), (4.2)

where LεC (X ,Y )(a,b) is the entropy regularized Wasserstein distance defined in Eq.(2.11) for a

cost C = Dp , with D a distance metric on the graph representation spaceΩ=Rd . We denote

the cost of the mass transportation as C (X ,Y ) in order to highlight the dependency of the cost

C on X ,Y . From now on, we assume that the nodes are of equal importance in all cases, so

that a = 1
M 1M and b = 1

N 1N , and we refer to LεC (X ,Y )(a,b) as the Wasserstein distance between

the representations X ,Y .

As discussed in Section 2.3.1, the objective function in Eq. (4.2) is differentiable with respect

to X . Therefore, using the entropic regularization introduced in [13] we can compute the

pooled graph representation by solving the problem in Eq. (4.2) with a gradient-based

optimization method. Thus, our proposed pooling method is cast to a gradient flow. By

denoting as X (0) the initialization for the pooled graph representation and as X (L) the

obtained pooled representation after L iterations of the gradient-based method that

minimizes Eq. (4.2), FlowPool can be thought of as demonstrated in Fig. (4.2). Specifically,

50



4.5. Implementation of FlowPool

given an initialization X (0) ∈ Rd×M , the FlowPool method summarizes any graph

representation Y ∈Rd×N , by performing L steps of a gradient-based method that minimizes

the energy LεC (X ,Y )(a,b). The returned pooled representation X (L) is the d ×M representation

that has minimal Wasserstein distance from the d ×N input representation Y .

Figure 4.2 – The FlowPool method for pooling graph representations. The input is a
graph representation Y ∈ Rd×N , where N can admit any value. The output X (L) is a Rd×M

representation, with M fixed, such that Lε
C (X (L),Y )

(a,b) is minimal.

4.5 Implementation of FlowPool

At each step of the gradient-based optimization of X , we need to compute the gradient with

respect to X of the energy LεC (X ,Y )(a,b) for the current X . One possible way to compute

this gradient is to back-propagate through the operations of the Sinkhorn iterations. This

is a similar approach to the way differentiation is handled in Chapter 3. A more efficient

approach to compute ∇X LεC (X ,Y )(a,b) is by using the implicit function theorem [91]. The

implicit differentiation of the entropy-regularized optimal transport problem is particularly

more efficient in terms of memory requirements as not all intermediate calculations of the

Sinkhorn iterations need to be stored in memory for the backpropagation.

Implicit Function Theorem

The implicit function theorem [91] states that, given a continuously differentiable function F ,

and a point (x∗(θ),θ) such that F (x∗(θ),θ) = 0, if the Jacobian ∂1F (x∗(θ),θ) is invertible, the

variables x(θ) are differentiable functions of θ in some neighborhood of the point (x∗(θ),θ).

51



Chapter 4. Pooling Graph Representations with Wasserstein Gradient Flows

By applying the chain rule, we obtain:

∂1F (x∗(θ),θ)∂x∗(θ)+∂2F (x∗(θ),θ) = 0 ⇔
−∂1F (x∗(θ),θ)∂x∗(θ) = ∂2F (x∗(θ),θ),

(4.3)

where by ∂1,∂2 we denote the Jacobian with respect to the first and the second argument,

accordingly. As a result, the Jacobian ∂x∗(θ) can be obtained by solving the linear system in

Eq. (4.3).

The recent work in [74] proposes to use the implicit function theorem in order to perform

automatic differentiation of optimization problems. In that context, θ stands for the inputs

of the optimization problem, x∗(θ) for the optimal solution and the function F captures the

optimality conditions. Thus, the implicit function theorem offers the possibility to obtain the

Jacobian of the optimal solution with respect to the inputs of the optimization problem.

Implicit Differentiation of the Entropy Regularized Optimal Transport Problem

In this work we use the OTT toolbox [92], which offers an implementation of the implicit

differentiation of the entropy-regularized optimal transport problem [93]. We outline briefly

below its implementation and how we employ it to compute the gradient ∇X LεC (X ,Y )(a,b) in

FlowPool.

By considering the dual formulation in Eq. (2.19), the computation of LεC (X ,Y )(a,b) consists

in computing the optimal dual potentials f ∗, g∗ and the entropy regularized OT cost from

these potentials using Eq. (2.19). Therefore, from the chain rule, we can obtain the gradient

∇X LεC (X ,Y )(a,b) as:

∇X LεC (X ,Y )(a,b) = ∂[ f ∗(X ), g∗(X )]>∇[ f ∗(X ),g∗(X )]L
ε
C (X ,Y )(a,b), (4.4)

where the gradient ∇[ f ∗(X ),g∗(X )]L
ε
C (X ,Y )(a,b) captures how changes in the optimal potentials

f ∗(X ), g∗(X ) affect the entropy-regularized optimal transport cost and the transposed

Jacobian ∂[ f ∗(X ), g∗(X )]> shows how changes in the positions X affect the optimal potentials

f ∗(X ) and g∗(X ).

The Jacobian ∂[ f ∗(X ), g∗(X )] can be computed using the implicit function theorem. As

discussed in Section 2.3.1, the iterations in Eq. (2.23) are a block-coordinate ascent on the dual

problem. As a result, the optimality conditions consist in cancelled gradients of the energy

E ( f , g ) = 〈 f , a〉+ 〈g ,b〉− ε〈e f
ε ,K e

g
ε 〉 with respect to f and g . Therefore, by considering the

52



4.5. Implementation of FlowPool

continuously differentiable function F as:

F ([ f (X ), g (X )], X ) =
[
∇| f E ( f , g )

∇|g E ( f , g )

]
, (4.5)

at optimality it holds that:

F ([ f ∗(X ), g∗(X )], X ) =
[

0M

0N

]
. (4.6)

The implicit function theorem states that, provided that the Jacobian ∂1F ([ f ∗(X ), g∗(X )], X ) is

invertible, we can obtain the Jacobian ∂[ f ∗(X ), g∗(X )] by solving a linear system, such as the

one in Eq. (4.3). From Eq. (4.5), we can obtain ∂1F ([ f (X ), g (X )], X ) as:

∂1F ([ f (X ), g (X )], X ) =
[
∂ f ∇ f E ( f , g ) ∂g∇ f E ( f , g )

∂ f ∇g E ( f , g ) ∂g∇g E ( f , g )

]
. (4.7)

By evaluating the derivatives in Eq. (4.7) at the optimal potentials f ∗ and g∗ it follows that:

−∂1F ([ f ∗(X ), g∗(X )], X ) = 1

ε

[
diag(a) P∗

P∗> diag(b)

]
, (4.8)

where P∗ is the optimal coupling obtained for the transportation problem and diag(a),diag(b)

are diagonal matrices, with elements in the diagonal corresponding to the marginals a and b,

respectively.

The Jacobian ∂2F ([ f ∗(X ), g∗(X )], X ) can be computed with automatic differentiation. Due to

the block structure of the Jacobian in Eq. (4.8), the linear system in Eq. (4.3) can be solved with

Schur’s complement [94]. The Schur complement that is inverted depends on which of the M

or N is smaller. In either case, the Schur complement is rank deficient, with a 0 eigenvalue for

the vector of ones. Therefore, a ridge kernel regularization is added that enforces solutions

to have zero sum. Further, when two nodes in the graph representation Y have very similar

feature representations, two columns of the cost C are numerically close and therefore two

columns of the optimal coupling P∗ are colinear. In order to deal with the rank deficiency

of the Schur complement in that case, a ridge identity regularization is added. The linear

system is solved with the conjugate gradient method [95]. Having solved the linear system

with respect to ∂[ f ∗(X ), g∗(X )], and using the chain rule, we can obtain the desired gradient

as in Eq. (4.4).

53



Chapter 4. Pooling Graph Representations with Wasserstein Gradient Flows

We show in Algorithm 3, the implementation of FlowPool for L iterations of the gradient flow.

In line 3 we compute the optimal potentials f ∗, g∗ using block coordinate ascent, as described

in Chapter 2. We use the implicit differentiation in line 5 to obtain the gradient as in Eq.(4.4)

and update the pooled representation using this gradient in line 7. The geometry is captured

by the cost function C (X ,Y ), which uses the input graph representation Y and its pooled

counterpart X (l ) at the l -th iteration, to return the cost matrix C (l ). We denote with τ the step

size used for the gradient flow.

Algorithm 3 FlowPool

Input: Y ; X (0)

1: for l = 0 to L−1 do

2: Solve Sinkhorn

3: f ∗, g∗ = Sinkhorn
(
a,b,C (l ) =C (X (l ),Y ),ε

)
4: Compute gradient with implicit function theorem

5: ∇X Lε
C (X (l ),Y )

(a,b) = implicit_diff
(

f ∗, g∗, a,b, X (l ),Y ,ε
)

6: Update pooled graph representation:

7: X (l+1) = update_step
(

X (l ),∇X Lε
C (X (l ),Y )

(a,b),τ
)

8: end for

9: return X (L)

4.6 Permutation Invariance

We now show that the proposed pooling method is permutation invariant. This is a

particularly relevant property when performing global pooling of graph representations. If

FlowPool is preceded by permutation equivariant message passing layers [4], the pooled

graph representation is permutation invariant. This means that the predictions made for a

given graph are independent of the ordering of its nodes.

4.6.1 Computation of ∇X LεC (X ,Y )(a,b)

Although the gradient ∇X LεC (X ,Y )(a,b) is computed in an automatic way in FlowPool using

implicit differentiation, as outlined in Section 4.5, we demonstrate now how it can be

computed analytically in order to prove that FlowPool is invariant to permutations. For this

derivation, we consider the primal formulation of the entropy-regularized problem which, as

explained in Chapter 2, is equivalent to the dual formulation. We remind that in the primal

formulation, the optimization variable is the coupling P , and that the optimal coupling can be

obtained from the optimal potentials f ∗, g∗ as:

P∗ = e
f ∗1>m+1n g∗>−C

ε . (4.9)

54



4.6. Permutation Invariance

Using the primal formulation, the gradient ∇X LεC (X ,Y )(a,b) can be expressed as:

∇X LεC (X ,Y )(a,b) = [∂X C (X ,Y )]>∇C LεC (X ,Y )(a,b), (4.10)

where ∇C LεC (X ,Y )(a,b) shows how changes in the cost matrix C affect the entropy-regularized

cost LεC (X ,Y )(a,b) and the transposed Jacobian [∂X C (X ,Y )]> shows how changes in the

positions X affect the cost matrix C . The computations in Eq. (4.4) and Eq. (4.10) are

equivalent. In Eq. (4.10) however, the only term that depends on the solution of the optimal

transport problem is ∇C LεC (X ,Y )(a,b). Therefore, it is more intuitive to study the

differentiation with respect to X using the primal formulation.

By observing Eq. (2.11) one can notice that in the case of FlowPool the objective function that

is being minimized is a function of two variables, the cost C and the coupling P . As a result,

we can re-express Eq. (2.11) as

LεC (a,b) = min
P∈U (a,b)

Q(C ,P ), (4.11)

where:

Q(C ,P ) = 〈C ,P〉−εH(P ). (4.12)

Therefore, the optimal coupling P∗ is obtained by:

P∗(C ) = argmin
P∈U (a,b)

Q(C ,P ), (4.13)

where we denote the coupling as P∗(C ) in order to highlight its dependency on the cost C . This

dependency is a direct consequence of the factorization in Eq. (2.15), the Sinkhorn iterations

in Eq. (2.18) and the expression for the Gibbs kernel in Eq. (2.16).

From Eq. (4.11), (4.12), (4.13) we obtain that:

LεC (X ,Y )(a,b) =Q(C ,P∗(C )). (4.14)

As a result, from the chain rule it follows that:

∇C LεC (X ,Y )(a,b) =∇1Q(C ,P∗(C ))+ [∂C P∗(C )]>∇2Q(C ,P∗(C )), (4.15)

55



Chapter 4. Pooling Graph Representations with Wasserstein Gradient Flows

where we denote by ∇1 and ∇2 the gradient with respect to the first and the second argument

respectively.

Due to the envelope theorem [96], [97], we can approximate Q(C ,P∗(C )) with a function

G(C ) =Q(C ,P∗), where P∗ is assumed to be constant and independent of C . Therefore, we

obtain:

∇C LεC (X ,Y )(a,b) =∇G(C ) =∇1Q(C ,P∗) = P∗. (4.16)

From Eq. (4.10), (4.16) it follows that:

∇X LεC (a,b) =
( N∑

j=1
P∗

i , j∇1C (xi , y j )
)M

i=1
. (4.17)

4.6.2 Proof of Permutation Invariance

We consider a graph representation Y1 ∈Rd×N and its column-wise, or equivalently node-wise,

permutation according to an N ×N permutation matrix P f :

Y2 = Y1P f . (4.18)

We will show that FlowPool(Y1) = FlowPool(Y2).

OT cost

Let X (0) ∈ Rd×M be the initialization of the pooled graph representation and C1, C2 be the

M ×N cost matrices that capture the pairwise squared Euclidean distances from X (0) to Y1

and to Y2, respectively. From Eq.(4.18) we obtain:

C2 =C1P f . (4.19)

OT coupling

Because of the entropic regularization, the problem in Eq. (2.11) is a strictly convex

minimization problem. Given uniform weight distributions, a = 1
M 1M and b = 1

N 1N , the only

variable controlling the unique solution P∗ is the cost for the transportation. Therefore, due

56



4.7. Integrating FlowPool in Graph Neural Network Architectures

to the relationship between the costs C1,C2 in Eq.(4.19), it holds that:

P∗
2 = P∗

1 P f . (4.20)

Gradient

Due to Eq. (4.19), (4.20), and the expression for the gradient of LεC (a,b) with respect to X in Eq.

(4.17), it follows that the gradient ∇X LεC (X ,Y )(a,b) will be the same for both the permuted and

the non-permuted case.

Update Step

As a result, if the initialization X (0) is common in both cases, then X (1)
1 = X (1)

2 . Similarly,

we can show that this is true for all iterations 0 < l < L of the flow. Therefore, it holds that

X (L)
1 = X (L)

2 ⇔ FlowPool(Y1) = FlowPool(Y2). The assumption that X (0) is common for both

cases is a reasonable one. In fact, as we demonstrate in Section 4.8, it is necessary for X (0)

to be shared among all graph representations in order for our proposed pooling method to

perform well. In Section 4.9, we discuss how one can go a step further by parametrizing X (0)

and learning it from the data.

4.7 Integrating FlowPool in Graph Neural Network Architectures

In order to integrate FlowPool in end-to-end deep learning architectures for graphs an element

that needs to be considered is the differentiation of the output of FlowPool with respect to

its input. This differentiation is key in the general setting, where the input representation Y

can be the output of one or more layers with trainable weights and we need to backpropagate

through FlowPool in order to learn these weights. In order to backpropagate through FlowPool

we need to compute the Jacobian of the output X (L) with respect to the input Y . In this section

we outline how this computation is handled. We depict a block-scheme of the computations

in FlowPool in Fig. (4.3).

The OTT toolbox used in this work is based on the automatic differentiation framework JAX

[98]. In the forward pass of FlowPool the gradient ∇X LεC (X ,Y )(a,b), computed using the

implicit differentiation scheme described above, is returned by calling JAX’s function

jax.grad on the entropy regularized cost LεC (X ,Y )(a,b). In Fig. (4.3) we show how the pooled

representation after the first step of the flow, X (1), is computed using the gradient

∇X LεC (X ,Y )(a,b) evaluated at X (0) and Y . At the backward pass, we need to differentiate again

the function ∇X LεC (X ,Y )(a,b). We note that the enveloppe theorem does not hold for higher

order derivatives and, therefore, the second term in Eq. (4.15) will be re-differentiated during

57



Chapter 4. Pooling Graph Representations with Wasserstein Gradient Flows

the backpropagation. The re-derivation of the gradient function obtained with jax.grad is

possible using JAX’s ability to perform automatic differentiation of the linear system in Eq.

(4.3). Specifically, this is accomplished with JAX’s function jax.lax.custom_linear_solve
that wraps all linear solvers in JAX [92] and allows to compute higher order derivatives,

implicitly again.

FlowPool

Y
rXL✏

C(X(0),Y )(a, b)
update step

�
X(0),rXL✏

C(X(0),Y )(a, b)
� X(1) X(L)

X(0)

jax.grad
�
L✏

C(X(0),Y )(a, b)
�

@Y rXL✏
C(X(0),Y )(a, b) @XrXL✏

C(X(1),Y )(a, b)

Figure 4.3 – Implementation of FlowPool using JAX. The gradient ∇X LεC (X ,Y )(a,b) needed for
the gradient flow is obtained with JAX’s function jax.grad. The pooled graph representation
is updated according to this gradient. During the backpropagation the gradient function
obtained with jax.grad is re-derived in order to obtain the Jacobians ∂Y ∇X LεC (X ,Y )(a,b) and
∂X ∇X LεC (X ,Y )(a,b).

At the backpropagation of the first step of the flow, the Jacobian needed is

∂Y ∇X Lε
C (X (0),Y )

(a,b), which captures how the gradient ∇X LεC (X ,Y )(a,b) is affected by changes

in the input graph representation Y , for the initialization of the pooled representation X (0). In

the next steps of the flow, Jacobians of the form ∂X ∇X LεC (X ,Y )(a,b) are also needed. We note

that ∂X ∇X LεC (X ,Y )(a,b) = ∇2
X LεC (X ,Y )(a,b), where ∇2 stands for the Hessian matrix with

second-order derivatives. The computation of the Jacobian of X (1) with respect to

∇X Lε
C (X (0),Y )

(a,b) is straightforward. For instance, in the case of a gradient update step of the

form X (1) = X (0) −τ∇X Lε
C (X (0),Y )

(a,b), it will be equal to −τI . Therefore, using JAX’s automatic

differentiation we can compute the Jacobian of X (L) with respect to Y , and therefore

backpropagate through FlowPool in order to train the layers that provide the graph

representation Y 1.

1We would like to thank Marco Cuturi for his kind interaction through the Github issues of the OTT toolbox and
for the modifications in the source code that enabled the computation of second-order derivatives.

58



4.8. Experiments

4.8 Experiments

4.8.1 Experimental Analysis

In this Section we analyse the behaviour of FlowPool and the dependence on its parameters.

For this analysis we consider the simplified setting where FlowPool is not integrated in a

deep network. Further, we use the squared Euclidean distance cost in order to visualize the

representations and build intuitions with regards to the way that FlowPool operates.

Experimental Settings

We consider two chemical compound datasets BZR and COX2 [99]. The chemical compounds

are represented by graphs, where nodes correspond to atoms and edges represent chemical

bonds. Each node is described by a 3-dimensional feature vector. The chemical compounds

considered are benzodiazepine receptor ligands in BZR and cyclooxygenase-2 inhibitors in

COX2. Further, the graphs are labeled as active or inactive against some type of cell. Therefore,

the datasets can be used for binary graph classification. We provide the statistics of the datasets

in Table 4.1.

Table 4.1 – Statistics of Datasets

Dataset # graphs # classes avg. node # avg. edge # # node features

BZR 405 2 35.75 38.36 3

COX2 467 2 41.22 43.45 3

In our experimental analysis, the representation Y of a graph corresponds to the features

of its nodes, as provided by the dataset. As a result, a graph of N nodes corresponds to a

representation Y ∈R3×N .

The setup considered for our analysis is shown in Fig. (4.4). We consider the input to FlowPool

to be a graph representation Y . FlowPool is used to pool Y to the fixed-size representation

X (L), which is input to a logistic regression classifier. We train the classifier by minimizing the

cross-entropy loss with an l2 regularization on the weights, in order to avoid over-fitting. The

weights w and intercept c of the classifier are the only learnable parameters. We denote the

sigmoid function as:

s(θ) = eθ

eθ+1
. (4.21)

The considered datasets are not split into pre-defined training and test sets. Therefore, we

evaluate the classification task over 10 different partitions of the data using 10 folds, as in a

10-fold cross validation scheme. For each partition, we use the 9 folds as our training data

59



Chapter 4. Pooling Graph Representations with Wasserstein Gradient Flows

Figure 4.4 – Block scheme of graph classification with FlowPool. FlowPool is used to
pool a provided graph representation Y to a graph representation of fixed size X (L). The
representation X (L) is flattened to obtain the representation X f . The learnable parameters are
the weights w and the intercept c of the logistic regression classifier, which are annotated with
red. The features in X f are linearly combined and passed through the sigmoid function, in
order to obtain the probability that the graph representation Y belongs to the positive class.

and the remaining fold for evaluation, and provide the mean and standard deviation of the

classification accuracy for the 10 partitions. Further, we notice that the datasets BZR and

COX2 are characterized by a class imbalance, as shown in Table 4.2. This is a common issue in

biological datasets, such as the ones considered here. In order to properly take into account

this imbalance, we consider stratified splits and we compute the balanced classification

accuracy [100]. In the binary case, the balanced accuracy is equal to the arithmetic mean of

sensitivity (true positive rate) and specificity (true negative rate):

balanced accuracy = 1

2

( T P

T P +F N
+ T N

T N +F P

)
, (4.22)

where T P,F P,T N ,F N stand for true positives, false positives, true negatives and false

negatives, respectively.

Table 4.2 – Class Imbalance

Dataset % positive class % negative class

BZR 21.23 78.77

COX2 21.84 78.16

In what follows, we study the impact of the entropy regularization parameter and the removal

of the bias of the entropic regularization. Further, we discuss the effect of the initialization

of the pooled graph representations. Finally, we evaluate the performance of FlowPool on a

binary classification task by comparing to other graph pooling methods.

Impact of Entropy Regularization

First, we study the impact of the entropy regularization parameter on the pooled graph

representation. In order to do so, we consider values of the regularization parameter in

60



4.8. Experiments

ε= [0.01,0.1,1,10,100]. Using the classification set-up of Fig. (4.4), with the same stratified

splits for all the evaluations and for M = 10, we compute the mean and the standard deviation

of the balanced classification accuracies over the 10 partitions of the data. We set the number

of iterations of the gradient flow to L = 200 and the step size to τ= 0.2. The results are shown

in Fig. (4.5a) and Fig. (4.6a) for the BZR and COX2 datasets respectively. It can be seen that

the value of ε affects the classification accuracy obtained. Further, we notice that for ε= 100

there is a significant drop in the performance for both datasets. In order to explain why this is

the case, we demonstrate in Fig. (4.7), (4.8) the representations obtained with FlowPool for

different values of ε for the BZR and COX2 datasets, respectively. We show with blue the initial

representation Y input to FlowPool and with red its pooled counterpart after L iterations of the

flow. It can be seen that, as the values of the entropic regularization become larger, the pooled

embeddings tend to“collapse”. In the extreme case of ε= 100, the pooled representation yields

the mean value of Y , since we use the squared Euclidean distance cost, and our method

becomes equivalent to mean pooling. Further, we notice that for COX2 there is a clear trend of

a dampening in its performance for larger values of ε, while for BZR there is a small increase for

ε= 10. We believe that this indicates that a smaller pooling dimension M may be the optimal

for this dataset.

10−2 10−1 100 101 102

ǫ
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A
cc

ur
ac

y

(a) LεC (a,b)

10−2 10−1 100 101 102

ǫ
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A
cc

ur
ac

y

(b) SεC (a,b)

Figure 4.5 – Impact of the entropy regularization parameter ε on the classification accuracy for
the BZR dataset using FlowPool for the minimization of (a) the entropy regularized Wasserstein
distance LεC (a,b) and (b) the Sinkhorn divergence SεC (a,b).

10−2 10−1 100 101 102

ǫ
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

A
cc

ur
ac

y

(a) LεC (a,b)

10−2 10−1 100 101 102

ǫ
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

A
cc

ur
ac

y

(b) SεC (a,b)

Figure 4.6 – Impact of the entropy regularization parameter ε on the classification accuracy
for the COX2 dataset using FlowPool for the minimization of (a) the entropy regularized
Wasserstein distance LεC (a,b) and (b) the Sinkhorn divergence SεC (a,b).

61



Chapter 4. Pooling Graph Representations with Wasserstein Gradient Flows

(a) (b) (c)

Figure 4.7 – Pooled graph representations for different values of ε for a representation from
BZR. With blue we show the initial representation Y ∈R3×30 and with red the pooled graph
representation X (L) ∈ R3×10. Larger values of ε result to degenerate pooled representations
X (L) with smaller support than Y .

(a) (b) (c)

Figure 4.8 – Pooled graph representations for different values of ε for a representation from
COX2. With blue we show the initial representation Y ∈R3×39 and with red the pooled graph
representation X (L) ∈ R3×10. Larger values of ε result to degenerate pooled representations
X (L) with smaller support than Y .

Interestingly the impact of the parameter ε has a very intuitive interpretation. We remind that:

LεC (a,b) = min
P∈U (a,b)

〈C ,P〉−εH(P ). (4.23)

Equivalently, as discussed in [101], we can write:

LεC (a,b) = min
P∈U (a,b)

〈C ,P〉+εKL(P |ab>). (4.24)

62



4.8. Experiments

We can observe that the quantity KL(P |ab>) is equal to the mutual information of the

probability measures ν and µ that correspond to the input graph representation and its

pooled counterpart respectively (Section 4.3). The mutual information is minimal, and equal

to zero, when the measures µ,ν are independent and the probabilistic coupling corresponds

to the independence matrix P = ab>. As can be seen from Eq. (4.23), the optimal coupling will

correspond to ab> when ε→∞. As a result, in order to maximize the mutual information

between µ and ν, while enjoying the properties of well defined gradients provided by the

entropic regularization, one should chose small values for ε. This can be done without getting

numerical issues using the log-stabilized iterations in Eq. (2.23).

The collapse of the pooled graph representation, as demonstrated in Fig. (4.7), (4.8), is

due to what is commonly referred to as the entropic bias. The entropy-regularized optimal

transport loss between a measure ν = ∑N
j=1 b jδy j and itself is equal to LεC (Y ,Y )(b,b), where

C (Y ,Y ) denotes the N ×N cost matrix with the pairwise distances between the points {y j }N
j=1.

For ε> 0, LεC (Y ,Y )(b,b) 6= 0 and, as a result, the minimization of LεC (X ,Y )(a,b) with respect to the

positions of the measure µ leads to a biased solution, with the measure µ having a smaller

support than that of the target measure ν. In [101], it is shown that a principled way to remedy

that is to minimize instead the Sinkhorn divergence:

SεC (X ,Y )(a,b) = LεC (X ,Y )(a,b)− 1

2
LεC (X ,X )(a, a)− 1

2
LεC (Y ,Y )(b,b). (4.25)

We consider again the experiment described above for values of the regularization parameter in

ε= [0.01,0.1,1,10,100], while substituting the computation of LεC (X ,Y )(a,b) with the Sinkhorn

divergence SεC (X ,Y )(a,b). The values of τ and L are kept the same. We show in Fig. (4.5b),

(4.6b) the classification accuracies obtained for the BZR and COX2 datasets, respectively. It

can be seen that, since the entropic bias has been removed, the impact of the value of ε on

the classification accuracy is practically eliminated. We show in Fig. (4.9), (4.10), examples of

the representations obtained when the energy minimized is that of the entropy regularized

Wasserstein distance and that of the Sinkhorn divergence. It can be seen that for the case

of the Sinkhorn divergence, the pooled representation is not degenerate, even for the large

value of ε= 10. Therefore, the minimization of the Sinkhorn divergence constitutes FlowPool

less sensitive to the hyperparameter ε and improves the quality of the pooled representation.

Further, the Sinkhorn divergence offers an advantage in terms of computational complexity.

This is due to the fact that larger values of ε can be considered without the “collapse” of

the pooled embedding. As less iterations are needed for Sinkhorn to converge with larger

values of ε, it follows that the Sinkhorn divergence is computationally more advantageous. A

discussed in [101], the autocorrelation terms in Eq. (4.25) converge in a very small number

of iterations and, therefore, their computational overhead is negligible. We note that in the

case of FlowPool, only the autocorrelation term LεC (X ,X )(a, a) provides non-zero gradients with

respect to X .

63



Chapter 4. Pooling Graph Representations with Wasserstein Gradient Flows

To sum up, the Sinkhorn divergence should be preferred over the entropy-regularized

Wasserstein distance since it constitutes FlowPool less sensitive to the hypeparameter ε and

less computationally expensive. The optimal values of ε and M can be cross-validated based

on the data under consideration and the task at hand.

(a) LεC (X ,Y )(a,b) (b) SεC (X ,Y )(a,b)

Figure 4.9 – Comparison of the result of FlowPool on the feature representation of a graph
from the BZR dataset for (a) the entropy regularized Wasserstein distance LεC (X ,Y )(a,b) and
(b) the Sinkhorn divergence SεC (X ,Y )(a,b) for ε = 10,τ = 0.2,L = 200. It can be seen that the
Sinkhorn divergence yields an unbiased solution even for this large value of ε= 10.

(a) LεC (X ,Y )(a,b) (b) SεC (X ,Y )(a,b)

Figure 4.10 – Comparison of the result of FlowPool on the feature representation of a graph
from the COX2 dataset for (a) the entropy regularized Wasserstein distance LεC (X ,Y )(a,b) and
(b) the Sinkhorn divergence SεC (X ,Y )(a,b) for ε = 10,τ = 0.2,L = 200. It can be seen that the
Sinkhorn divergence yields an unbiased solution even for this large value of ε= 10.

64



4.8. Experiments

Initialization of the Pooled Representation

The initialization X (0) impacts directly the pooled representation output by FlowPool. This

is due to the fact that the optimization problem in Eq. (4.2) is non-convex with respect to

X . Further, we notice that in order for FlowPool to yield meaningful representations, the

initialization X (0) must be shared among all input graph representations Y . In order to

demonstrate this, we consider the experimental setting of Section 4.8.1 with M = 10. We

set τ= 0.2, L = 200, ε= 0.1 and use the Sinkhorn divergence. We compute the classification

accuracy for BZR and COX2 for the case where the initialization is fixed, and shared among all

representations, and for the case where the initialization varies and is different for each input

representation. The obtained accuracies using the same stratified folds are shown in Table

4.3. Three different initialization seeds are used in order to smooth the effect of unfavorable

random initialization. It can be seen that the accuracies obtained when the initialization is

shared among all inputs are significantly higher than the ones obtained for the case where the

initialization is different for each input.

Table 4.3 – Impact of Fixed Initialization.

Dataset FlowPool (f. i.) FlowPool

BZR 72.51 ± 5.57 54.82 ± 6.49

COX2 63.24 ± 5.18 50.96 ± 7.24

The reason why this is the case is the following. Let us consider a representation Y1, with

pairwise distances from X (0), captured by the cost C1. If a representation Y2, that is close to

Y1, is considered, the cost matrix C2 will have similar values to those of C1. As a result, the

optimal coupling P∗
1 will be close to P∗

2 . Given the same initialization X (0), due to Eq. (4.17),

the gradient ∇X LεC (X ,Y )(a,b) evaluated at (X (0),Y1) will have similar values to that evaluated

at (X (0),Y2) and consequently the pooled representations X (1)
1 and X (1)

2 will also be close.

We can reason in a similar way for the next steps of the flow. Therefore, by using the same

initialization for the source of the two transportation problems, we manage to obtain a sense

of the similarity of the input representations Y1,Y2.

Graph Classification

Having analysed the impact of the parameters of FlowPool on its performance, we now evaluate

its efficiency in pooling graph representations compared to other methods. In order to evaluate

the effectiveness of FlowPool, we consider the classification set-up of Fig. (4.4) and compare to

other methods by substituting the FlowPool block with the following node clustering methods:

• K-means++ clustering [102]: The K-Means algorithm clusters the N node

representations in Y ∈ Rd×N by separating them into groups of equal variance. The

centroids are initialized with the K-means++ initialization [103].

65



Chapter 4. Pooling Graph Representations with Wasserstein Gradient Flows

• K-means clustering with fixed random initialization: The K-means algorithm, where

the centroids of the clusters are initialized randomly, but are shared across all input

representations.

• Spectral Clustering (SC)[104]: SC performs a low-dimensional embedding of the

Laplacian matrix of a graph, followed by clustering of the components of the

eigenvectors in the low dimensional space.

• DiffPool [78]: DiffPool learns assignment matrices from the data by parametrizing them

as S = softmax(GCN(A,F )), where A and F correspond to the adjacency matrix and the

features of a graph, respectively. GCN corresponds to the graph convolutional filter

[67] defined as GCN(A,F ) = D̃− 1
2 ÃD̃− 1

2 FΘ, where Θ ∈ Rd×M are the trainable weights,

Ã = A+ IN and D̃ is the diagonal matrix of node degrees of Ã.

• MinCutPool [83]: MinCutPool parametrizes the assignment matrices as

S = softmax(FΘ), where Θ ∈ Rd×M are the weights that are learned from the data. A

regularizer, which approximates the relaxed formulation of the minCUT problem,

affects the learned values of the trainable parametersΘ.

In the set-up we consider, we do not learn X (0), but initialize it randomly. Therefore, in order

to compare to node clustering pooling methods, we consider fixed and random weights for

their parameters as well. In order to mitigate the effect of possible favourable or unfavourable

initializations on test performances, we consider three different random seeds for the

initialization. For K-means++ the random initialization will affect the selection of the cluster

centers from the datapoints. In the case of K-means with fixed random initialization, the

seeds will affect the initialization of the centroids that is shared among all input

representations. In the case of Spectral Clustering, the random initialization pertains to the

initialization of the clusters in the low-dimensional space. For DiffPool, MinCutPool and

FlowPool the random initialization affects the parameters of the GCN layer, the fully

connected layer and the initialization of the source X (0), respectively. For FlowPool we set

τ= 0.2, L = 200, ε= 0.1 and use the Sinkhorn divergence. All methods are compared over the

same stratified splits and the same random seeds. The classification accuracies are averaged

over the ten partitions and the three different random initializations. The mean and the

standard deviation of the obtained accuracies for all methods are shown in Table (4.4). It can

be seen that, for both datasets, FlowPool yields the highest classification accuracy. For the

BZR dataset, DiffPool and MinCutPool achieve the second best performance and their

accuracies are comparable. We notice that Spectral Clustering does not perform well in

pooling the node representations for the BZR dataset. For the COX2 dataset, the second best

performance is achieved by K-means with fixed initialization, followed by SC. The reason why

K-means with fixed initialization performs relatively well for both datasets is due to the fact

that there is a close relationship between K-means and the minimization of the unregularized

Wasserstein distance (as in Eq. (2.10)). This relationship is studied in [105], [106]. Finally, we

66



4.8. Experiments

observe that K-means++ performs poorly for both datasets. The reason for this stems from the

fact that the K-means++ initialization is an algorithm that selects in a systematic way K points

of the data as the centroids for the clustering. Therefore, the initialization for K-means in that

case is not common for all input representations and, as a result, performance is hindered.

Table 4.4 – Graph Classification Accuracy.

Dataset K-means++ K-means (f.i.) SC DiffPool MinCutPool FlowPool

BZR 50.80 ± 6.97 68.87 ± 7.41 59.24 ± 7.98 71.04 ± 4.85 70.64 ± 5.05 72.51 ± 5.57

COX2 54.09 ± 8.38 62.73 ± 7.62 61.09 ± 7.84 60.77± 8.59 60.56 ± 8.14 63.24 ± 5.18

In the comparison carried out here, the only methods that use the graph structure are SC and

DiffPool. MinCutPool, in the scenario of random weights considered, does not use structural

information. This is because the minCUT regularizer can only impact the parametersΘ during

training. FlowPool also does not take into account the graph structure as the cost C considered

here employs only the similarity of the features, as captured by the squared Euclidean distance.

4.8.2 Preliminary Classification Results of FlowPool in a GNN

We now use FlowPool in order to perform global pooling in a GNN architecture. For this

experiment we use the PROTEINS [107], [108] dataset. Proteins are represented as graphs,

where nodes correspond to secondary structure elements (helix, sheet, turn) and two nodes

are connected by an edge if they are neighbors along the amino-acid sequence or one of three

nearest neighbors in space. The dataset consists of 1113 graphs with average node number

N̄ = 39.06 and average edge number Ē = 72.82. Further, each node is labeled according to its

type using a one-hot encoded vector. We perform a binary classification task where we predict

whether proteins are enzymes or not.

In order to do so, we consider a GNN composed of a graph convolutional layer [67], a global

pooling layer and a fully connected layer followed by a sigmoid activation. The network is

trained by minimizing the binary cross-entropy loss2. We use the same assessment method

with 10-fold CV and the same stratified splits as those proposed in the paper for fair

comparison of GNNs in the task of graph classification [112]. With this experiment we are

solely interested in assessing the possibility of the integration of FlowPool in end-to-end deep

learning architectures. Therefore, no model selection is performed in order to optimally tune

hyperparameters. We keep the GNN architecture fixed and compare the classification

accuracy obtained when using as the global pooling layer DiffPool, MinCutPool and FlowPool

with random weights. All models are trained with Adam [71] with a learning rate of µ= 0.0001

and batch size = 8. The embedding dimension is set to d = 3 in order for us to visualize the

2Software: For the implementation of the GCN layer we use J-Raph [109]. For the gradient processing and
optimization we use Optax [110]. The neural network library used is Haiku [111].

67



Chapter 4. Pooling Graph Representations with Wasserstein Gradient Flows

representations and ensure that our method functions as expected when integrated in a GNN.

The size of the pooled representation is set to M = 20. For FlowPool we set ε= 0.2, τ= 0.1 and

L = 2000 and use the Sinkhorn divergence in order to remove the entropic bias. The pooled

graph’s representation X (0) is set by randomly selecting M samples from the normal

distribution N (0d , Id ). We train over 1000 epochs and perform early-stopping [113] with a

patience of 50 epochs in order to avoid overfitting. The criterion for early-stopping is based on

the validation loss. We report the mean and the standard deviation of the classification

accuracy over the 10 folds in Table 4.5. It can be seen that our proposed pooling method

performs on par with MinCutPool and offers a small advantage in performance compared to

DiffPool. We note that the performance of all methods can be improved by optimally selecting

their hyperparameters. We expect that with optimal tuning, FlowPool will perform

significantly better than other methods, as in Section 4.8.1. With this preliminary experiment,

we have, however, performed a sanity check of the possibility of integrating FlowPool in

end-to-end deep learning architectures for graphs.

Table 4.5 – Classification Accuracy for PROTEINS.

Dataset DiffPool MinCutPool FlowPool

PROTEINS 69.27 ± 5.77 71.26 ± 3.87 71.45 ± 4.22

In Fig. (4.11) we show an example of a representation and its pooled version, as obtained with

FlowPool, in this experiment. It can be seen that our pooling method behaves as expected,

but that extra tuning of its parameters is needed in order to obtain a pooled representation

that optimally preserves the statistics. This could be due to the fact that the range of values of

the representations Y are smaller than those of Section 4.8.1, as can be seen by noticing the

difference in ranges in Fig. (4.7) and Fig. (4.11). Also, due to the smallest range of values of

the representations in that case, it may make sense to adapt the value of ε in order to obtain

discriminative Gibbs kernels K = e−
C
ε .

Figure 4.11 – Pooling of a GCN representation with FlowPool. With blue we show the initial
representation Y and with red the pooled graph representation X (L).

68



4.9. Parametrization of FlowPool - Learning the Ground Cost

Further, we highlight that the performance of a GNN network with FlowPool depends on the

solution ∂[ f ∗(X ), g∗(X )] of the linear system that occurs during the implicit differentiation.

In the forward pass, the solution of this linear system provides the gradient ∇X LεC (X ,Y )(a,b)

via Eq. (4.4). In the backward pass, it affects the propagation of the derivatives through

the Jacobians ∂Y ∇X LεC (X ,Y )(a,b), ∂X ∇X LεC (X ,Y )(a,b), which also depend on ∂[ f ∗(X ), g∗(X )]

through Eq. (4.4). Therefore, in order to guarantee that both the forward and the backward

pass behave as expected, we must ensure that the possible rank deficiency of the matrix in

Eq. (4.8) is properly accounted for by selecting appropriate values for the regularizers that

enforce the stability of the linear system. Finally, we note that during the backward pass

and, therefore, the differentiation of ∇X LεC (X ,Y )(a,b), the second term in Eq. (4.15) affects

the Jacobians ∂Y ∇X LεC (X ,Y )(a,b), ∂X ∇X LεC (X ,Y )(a,b). The Jacobian ∂C P∗(C ) that captures how

small changes in the cost C affect the optimal solution P∗, can be numerically unstable. This

can be more prevalent for small values of ε. In the extreme case where ε→ 0, the solution

LεC (a,b) tends to the solution LC (a,b) of the unregularized optimal transport problem of Eq.

(2.7). As discussed in Section 2.3, the unregularized OT problem is a linear program and,

therefore, attains its optimal solution on one of the vertices of the polytope U (a,b) defined by

the mass-preservation constraints. As a result, for small values of ε, small changes in the cost

C can cause a significant change in P∗. This instability of ∂C P∗(C ) does not affect the values

of the gradient ∇X LεC (X ,Y )(a,b), needed in the forward pass, because of the envelope theorem,

as discussed in Section 4.6.

By working on the numerical issues discussed, we expect the performance of FlowPool when

integrated in GNNs to become significantly better than that of competing methods. Finally, we

underline that the squared Euclidean distance was used as a cost matrix in these experiments

mostly in order to provide intuitive visualizations and comprehension of the way that FlowPool

operates. The investigation of different costs is possible due to the automatic differentiation

framework discussed in Sections 4.5, 4.7.

4.9 Parametrization of FlowPool - Learning the Ground Cost

The pooled representations returned by FlowPool can become more relevant to the specific

dataset, used to train the GNN architecture, by considering a parametrization of the ground

cost C =C (X ,Y ) used for the mass transportation. Two types of parametrization are possible.

The first is to consider a known cost function C (X ,Y ), such as the squared Euclidean cost used

in the previous section, and learn the initialization X (0) ∈ Rd×M from the data. The second

option is to consider a parametrization of the function C (X ,Y ) in order to take into account

the structures of the considered graphs. This corresponds to the problem of ground metric

learning and has been studied in a line of works, such as [114], [115], [116], [117], among

others. We believe that learning an appropriate cost from the data could offer a promising

direction for future work. Our implementation of FlowPool with automatic differentiation

69



Chapter 4. Pooling Graph Representations with Wasserstein Gradient Flows

ensures that the relevant derivatives can be computed for any cost C that captures the pairwise

relationship between the input representation and its pooled counterpart.

4.10 Conclusion

In this chapter we proposed FlowPool, a framework for pooling graph representations, while

optimally preserving their statistical properties. Our proposed method is framed as a

Wasserstein gradient flow in the graph representation space and admits an intuitive

parametrization. We proposed a versatile implementation of our method, based on automatic

differentiation, that can take into account the geometry of the representation space through

any optimal transport cost. We performed an experimental analysis of FlowPool on simplified

settings and showed promising results on graph classification. Finally, we demonstrated that

our method can be integrated in end-to-end deep learning architectures for graphs and

provided directions for future work.

70



5 Conclusion and Future Work

In this thesis we introduced new methods to take into account geometrical information in

order to enhance the performance of end-to-end deep architectures for graph representation

learning. We used probability measures in order to describe graph data and leveraged the

theory of Optimal Transport in order to define geometrically meaningful distances between

them. We proposed effective methods for both transductive [118] and inductive graph

representation learning settings. For the transductive setting we have access to a given graph

during the representation learning process. Therefore, the geometry of interest in that case is

fixed and discrete, as captured by the pairwise relationships between the nodes. As a result,

for that setting, we propose a Eulerian discretization and correspond the graph data to

probability measures of fixed support or, equivalently, to histograms. For the inductive setting,

where the representation learning algorithm is expected to generalize to unkown graph

instances, the geometry of interest is continuous. Thus, in this setting, we use a Lagrangian

discretization and correspond graph data to probability measures of free support. The

achievements of this thesis are summarized below.

First, we consider the transductive setting where the data correspond to a given graph

structure. We propose a Wasserstein barycentric method that can provide non-linear and

geometry aware interpolations of the histograms that describe the data. We introduce an

efficient implementation of our method in terms of time computational complexity and

explain how it can be differentiated in an automatic way by unrolling the Sinkhorn iterations

of the Wasserstein barycenter computation. We then proceed to integrate the proposed

method in an autoencoder architecture with the goal of learning node embeddings that are

directly interpretable and robust to perturbations of the graph structure. In order to achieve

this goal, we cast our representation learning problem to that of learning simultaneously i) a

low-dimensional space and ii) coordinates for the nodes in that low-dimensional space. The

low-dimensional space contributes to interpretability as the representations that define it

capture the most relevant structural information in the graph. Further, it is conducive to

stability, as it can be used to embed perturbed graphs and, therefore, offers the possibility to

71



Chapter 5. Conclusion and Future Work

register the embeddings of the clean graph and its perturbed versions. The coordinates of the

nodes are directly interpretable as their values reveal the proximity to each representation

that defines the low-dimensional space. We validate experimentally our proposed method

and show that it is stable to perturbations of the graph structure and achieves comparable or

superior results compared to state-of-the-art unsupervised graph representation learning

methods on the task of node classification. We believe that an interesting direction for

extending this work would be to study how the barycentric layer can be incorporated in other

deep learning architectures for graphs, apart from our proposed autoencoder. We believe that

the exploration of different costs, apart from the diffusion distance, could be relevant in that

case. Also, the creation of feature extraction layers that could apply more localized

Wasserstein barycenter computations could be promising.

Second, we focus on the inductive setting where the data is composed of a set of graphs. In this

setting, graphs can naturally be of varying size. Therefore, in order to enable end-to-end graph

representation learning, a global pooling operation is needed. We introduce a pooling method

that optimally preserves the statistics by minimizing the Wasserstein distance between a graph

representation and its pooled version. In order to do so, we perform a Wasserstein gradient

flow with respect to the positions of a source of fixed size, which corresponds to the pooled

representation. Further, we propose a versatile and efficient implementation for our pooling

method. Specifically, we compute the gradient of the energy of the Wasserstein distance with

respect to the positions, using recently introduced automatic differentiation schemes that

employ the implicit function theorem. Due to the automatic differentiation used, our proposed

method is versatile and can be used with any cost for the mass transportation. Further, we

demonstrate how our method is directly amenable to backpropagation and can therefore

be incorporated in end-to-end deep networks. This is possible by computing higher order

derivatives of the Wasserstein distance during the reverse-mode automatic differentiation.

We provide an experimental analysis of our pooling method and build intuitions with respect

to its functionality. Further, we evaluate it in graph classification tasks and show that our

proposed pooling method provides promising results. Interesting future work would be to

parametrize the ground cost used for the mass transportation and learn it from the data at

hand. We believe that this could provide also useful intuitions with regards to what feature

information is relevant for the representation learning process.

To conclude, this thesis offers new ways of infusing geometrical information in end-to-end

deep architectures for graphs by employing elements from the Optimal Transport theory. It

provides a mathematical analysis, builds intuitions and demonstrates important empirical

results in relevant applications of graph representation learning.

72



Bibliography

[1] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message

passing for quantum chemistry,” in International Conference on Machine Learning

(ICML. PMLR, 2017, pp. 1263–1272.

[2] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks

on graphs with fast localized spectral filtering,” in Advances in neural information

processing systems, 2016, pp. 3844–3852.

[3] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?” in

International Conference on Learning Representations, 2018.

[4] H. Maron, H. Ben-Hamu, N. Shamir, and Y. Lipman, “Invariant and equivariant graph

networks,” in International Conference on Learning Representations, 2019. [Online].

Available: https://openreview.net/forum?id=Syx72jC9tm

[5] V. P. Dwivedi and X. Bresson, “A generalization of transformer networks to graphs,” arXiv

preprint arXiv:2012.09699, 2020.

[6] R. R. Coifman and S. Lafon, “Diffusion maps,” Applied and Computational Harmonic

Analysis, vol. 21, no. 1, pp. 5–30, 2006.

[7] E. Simou, D. Thanou, and P. Frossard, “node2coords: Graph representation learning

with wasserstein barycenters,” IEEE Transactions on Signal and Information Processing

over Networks, vol. 7, pp. 17–29, 2020.

[8] G. Peyré, M. Cuturi et al., “Computational optimal transport,” Foundations and Trends®

in Machine Learning, vol. 11, no. 5-6, pp. 355–607, 2019.

[9] G. Monge, “Mémoire sur la théorie des déblais et des remblais,” Histoire de l’Académie

Royale des Sciences de Paris, 1781.

[10] L. Kantorovich, “On translation of mass,” Doklady Akademii nauk SSSR, vol. 37, pp.

227–229, 1942.

[11] D. Goldfarb and J. K. Reid, “A practicable steepest-edge simplex algorithm,”

Mathematical Programming, vol. 12, no. 1, pp. 361–371, 1977.

73

https://openreview.net/forum?id=Syx72jC9tm


Bibliography

[12] C. Villani, Optimal transport: old and new. Springer Science & Business Media, 2008,

vol. 338.

[13] M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal transport,” in

Advances in Neural Information Processing Systems (NIPS), 2013, pp. 2292–2300.

[14] P. A. Knight, “The sinkhorn–knopp algorithm: convergence and applications,” SIAM

Journal on Matrix Analysis and Applications, vol. 30, no. 1, pp. 261–275, 2008.

[15] D. P. Bertsekas, “Nonlinear programming,” Journal of the Operational Research Society,

vol. 48, no. 3, pp. 334–334, 1997.

[16] B. Schmitzer, “Stabilized sparse scaling algorithms for entropy regularized transport

problems,” SIAM Journal on Scientific Computing, vol. 41, no. 3, pp. A1443–A1481, 2019.

[17] L. Chizat, G. Peyré, B. Schmitzer, and F.-X. Vialard, “Scaling algorithms for unbalanced

optimal transport problems,” Mathematics of Computation, vol. 87, no. 314, pp. 2563–

2609, 2018.

[18] S. Kullback and R. A. Leibler, “On information and sufficiency,” The Annals of

Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

[19] M. Agueh and G. Carlier, “Barycenters in the wasserstein space,” SIAM Journal on

Mathematical Analysis, vol. 43, no. 2, pp. 904–924, 2011.

[20] H. Janati, M. Cuturi, and A. Gramfort, “Wasserstein regularization for sparse multi-task

regression,” in The 22nd International Conference on Artificial Intelligence and Statistics

(AISTATS), 2019, pp. 1407–1416.

[21] J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré, “Iterative bregman

projections for regularized transportation problems,” SIAM Journal on Scientific

Computing, vol. 37, no. 2, pp. A1111–A1138, 2015.

[22] D. Zhu, P. Cui, D. Wang, and W. Zhu, “Deep variational network embedding in

wasserstein space,” in Proceedings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 2018, pp. 2827–2836.

[23] M. Togninalli, E. Ghisu, F. Llinares-López, B. Rieck, and K. Borgwardt, “Wasserstein

weisfeiler–lehman graph kernels,” in Advances in Neural Information Processing

Systems 32 (NeurIPS), H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox,

and R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 6436–6446.

[24] N. Shervashidze and K. M. Borgwardt, “Fast subtree kernels on graphs.” in NIPS, 2009,

pp. 1660–1668.

74



Bibliography

[25] N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn, and K. M. Borgwardt,

“Weisfeiler-lehman graph kernels.” Journal of Machine Learning Research, vol. 12, no. 9,

2011.

[26] F. Mémoli, “Gromov–wasserstein distances and the metric approach to object matching,”

Foundations of computational mathematics, vol. 11, no. 4, pp. 417–487, 2011.

[27] G. Peyré, M. Cuturi, and J. Solomon, “Gromov-wasserstein averaging of kernel and

distance matrices,” in International Conference on Machine Learning. PMLR, 2016, pp.

2664–2672.

[28] V. Titouan, N. Courty, R. Tavenard, and R. Flamary, “Optimal transport for structured

data with application on graphs,” in International Conference on Machine Learning.

PMLR, 2019, pp. 6275–6284.

[29] H. Xu, D. Luo, H. Zha, and L. C. Duke, “Gromov-wasserstein learning for graph matching

and node embedding,” in International conference on machine learning. PMLR, 2019,

pp. 6932–6941.

[30] H. Xu, D. Luo, and L. Carin, “Scalable gromov-wasserstein learning for graph partitioning

and matching,” Advances in neural information processing systems, vol. 32, pp. 3052–

3062, 2019.

[31] H. Xu, “Gromov-wasserstein factorization models for graph clustering,” in Proceedings

of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, 2020, pp. 6478–6485.

[32] H. Wang and A. Banerjee, “Bregman alternating direction method of multipliers,”

Advances in Neural Information Processing Systems, vol. 4, no. January, pp. 2816–2824,

2014.

[33] C. Vincent-Cuaz, T. Vayer, R. Flamary, M. Corneli, and N. Courty, “Online graph

dictionary learning,” in Proceedings of the 38th International Conference on Machine

Learning, ser. Proceedings of Machine Learning Research, M. Meila and T. Zhang, Eds.,

vol. 139. PMLR, 18–24 Jul 2021, pp. 10 564–10 574.

[34] L. Chen, Z. Gan, Y. Cheng, L. Li, L. Carin, and J. Liu, “Graph optimal transport for cross-

domain alignment,” in International Conference on Machine Learning. PMLR, 2020,

pp. 1542–1553.

[35] H. P. Maretic, M. El Gheche, G. Chierchia, and P. Frossard, “Got: an optimal transport

framework for graph comparison,” in Advances in Neural Information Processing Systems

(NeurIPS), 2019, pp. 13 876–13 887.

[36] Y. Dong and W. Sawin, “Copt: Coordinated optimal transport on graphs,” Advances in

Neural Information Processing Systems, vol. 33, 2020.

75



Bibliography

[37] T. Ma and J. Chen, “Unsupervised learning of graph hierarchical abstractions with

differentiable coarsening and optimal transport,” in Proceedings of the AAAI Conference

on Artificial Intelligence, vol. 35, no. 10, 2021, pp. 8856–8864.

[38] J. W. Ruge and K. Stüben, “Algebraic multigrid,” in Multigrid methods. SIAM, 1987, pp.

73–130.

[39] J. Klicpera, M. Lienen, and S. Günnemann, “Scalable optimal transport in high

dimensions for graph distances, embedding alignment, and more,” in International

Conference on Machine Learning. PMLR, 2021, pp. 5616–5627.

[40] A. Bojchevski and S. Günnemann, “Certifiable robustness to graph perturbations,” in

Advances in Neural Information Processing Systems (NeurIPS), 2019, pp. 8317–8328.

[41] A. Dalmia and M. Gupta, “Towards interpretation of node embeddings,” in Companion

Proceedings of the The Web Conference 2018, 2018, pp. 945–952.

[42] N. Liu, X. Huang, J. Li, and X. Hu, “On interpretation of network embedding via

taxonomy induction,” in Proceedings of the 24th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining, 2018, pp. 1812–1820.

[43] N. Bonneel, G. Peyré, and M. Cuturi, “Wasserstein barycentric coordinates: histogram

regression using optimal transport.” ACM Transactions on Graphics, vol. 35, no. 4, pp.

71–1, 2016.

[44] I. Chami, S. Abu-El-Haija, B. Perozzi, C. Ré, and K. Murphy, “Machine learning on graphs:

A model and comprehensive taxonomy,” arXiv preprint arXiv:2005.03675, 2020.

[45] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric framework for

nonlinear dimensionality reduction,” Science, vol. 290, no. 5500, pp. 2319–2323, 2000.

[46] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear

embedding,” Science, vol. 290, no. 5500, pp. 2323–2326, 2000.

[47] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for embedding

and clustering,” in Advances in Neural Information Processing Systems (NIPS), 2002, pp.

585–591.

[48] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and A. J. Smola,

“Distributed large-scale natural graph factorization,” in Proceedings of the 22nd

International Conference on World Wide Web, 2013, pp. 37–48.

[49] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transitivity preserving graph

embedding,” in Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 2016, pp. 1105–1114.

76



Bibliography

[50] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations with global structural

information,” in Proceedings of the 24th ACM International on Conference on Information

and Knowledge Management, 2015, pp. 891–900.

[51] D. Guthrie, B. Allison, W. Liu, L. Guthrie, and Y. Wilks, “A closer look at skip-gram

modelling.” in Proceedings of the International Conference on Language Resources and

Evaluation (LREC), vol. 6, 2006, pp. 1222–1225.

[52] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social

representations,” in Proceedings of the 20th ACM SIGKDD international Conference

on Knowledge Discovery and Data Mining, 2014, pp. 701–710.

[53] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” in

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, 2016, pp. 855–864.

[54] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms. MIT

press, 2009.

[55] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-scale information

network embedding,” in Proceedings of the 24th International Conference on World Wide

Web, 2015, pp. 1067–1077.

[56] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

2016, pp. 1225–1234.

[57] S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learning graph representations,” in

AAAI Conference on Artificial Intelligence, 2016.

[58] A. Blum, T. H. Chan, and M. R. Rwebangira, “A random-surfer web-graph model,” in

2006 Proceedings of the Third Workshop on Analytic Algorithmics and Combinatorics

(ANALCO). SIAM, 2006, pp. 238–246.

[59] M. A. Schmitz, M. Heitz, N. Bonneel, F. Ngole, D. Coeurjolly, M. Cuturi, G. Peyré, and

J.-L. Starck, “Wasserstein dictionary learning: Optimal transport-based unsupervised

nonlinear dictionary learning,” SIAM Journal on Imaging Sciences, vol. 11, no. 1, pp.

643–678, 2018.

[60] J. Bouttier, P. Di Francesco, and E. Guitter, “Geodesic distance in planar graphs,” Nuclear

physics B, vol. 663, no. 3, pp. 535–567, 2003.

[61] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,

L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” 2017.

77



Bibliography

[62] A. Kroshnin, N. Tupitsa, D. Dvinskikh, P. Dvurechensky, A. Gasnikov, and C. Uribe, “On

the complexity of approximating wasserstein barycenters,” in International Conference

on Machine Learning (ICML), 2019, pp. 3530–3540.

[63] M. Defferrard, L. Martin, R. Pena, and N. Perraudin, “Pygsp: Graph signal processing in

python.” [Online]. Available: https://github.com/epfl-lts2/pygsp/

[64] E. Simou and P. Frossard, “Graph Signal Representation with Wasserstein Barycenters,”

in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

2019, pp. 5386–5390.

[65] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,” in Neural

networks: Tricks of the trade. Springer, 2012, pp. 9–48.

[66] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” NIPS Workshop on

Bayesian Deep Learning, 2016.

[67] ——, “Semi-supervised classification with graph convolutional networks,” in

International Conference on Learning Representations (ICLR), 2017.

[68] W. W. Zachary, “An information flow model for conflict and fission in small groups,”

Journal of anthropological research, vol. 33, no. 4, pp. 452–473, 1977.

[69] OrgNet, 2004). [Online]. Available: http://www.orgnet.com/divided2.html

[70] R. A. Rossi and N. K. Ahmed, “The network data repository with interactive graph

analytics and visualization,” in AAAI Conference on Artificial Intelligence, 2015. [Online].

Available: http://networkrepository.com

[71] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in ICLR (Poster),

2015. [Online]. Available: http://arxiv.org/abs/1412.6980

[72] P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic blockmodels: First steps,” Social

networks, vol. 5, no. 2, pp. 109–137, 1983.

[73] N. X. Vinh, J. Epps, and J. Bailey, “Information theoretic measures for clusterings

comparison: Variants, properties, normalization and correction for chance,” The Journal

of Machine Learning Research, vol. 11, pp. 2837–2854, 2010.

[74] M. Blondel, Q. Berthet, M. Cuturi, R. Frostig, S. Hoyer, F. Llinares-López, F. Pedregosa,

and J.-P. Vert, “Efficient and modular implicit differentiation,” arXiv e-prints, pp. arXiv–

2105, 2021.

[75] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep learning architecture

for graph classification,” in Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 32, no. 1, 2018.

78

https://github.com/epfl-lts2/pygsp/
http://www.orgnet.com/divided2.html
http://networkrepository.com
http://arxiv.org/abs/1412.6980


Bibliography

[76] H. Gao and S. Ji, “Graph u-nets,” in Proceedings of the 36th International Conference on

Machine Learning (ICML). PMLR, 2019, pp. 2083–2092.

[77] J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” in Proceedings of the 36th

International Conference on Machine Learning (ICML). PMLR, 2019, pp. 3734–3743.

[78] Z. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec, “Hierarchical graph

representation learning with differentiable pooling,” in Advances in Neural Information

Processing Systems (NeurIPS), 2018.

[79] H. Yuan and S. Ji, “Structpool: Structured graph pooling via conditional random fields,”

in International Conference on Learning Representations (ICLR), 2020.

[80] Y. G. Wang, M. Li, Z. Ma, G. Montúfar, X. Zhuang, and Y. Fan, “Haar graph pooling,” in

Proceedings of the 37th International Conference on Machine Learning (ICML).

[81] A. Haar, “Zur theorie der orthogonalen funktionensysteme,” Mathematische Annalen,

vol. 69, no. 3, pp. 331–371, 1910.

[82] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral

graph theory,” Applied and Computational Harmonic Analysis, vol. 30, no. 2, pp. 129–150,

2011.

[83] F. M. Bianchi, D. Grattarola, and C. Alippi, “Spectral clustering with graph neural

networks for graph pooling,” in Proceedings of the 37th International Conference on

Machine Learning (ICML). ACM, 2020, pp. 2729–2738.

[84] G. Dantzig and D. R. Fulkerson, “On the max flow min cut theorem of networks,” Linear

inequalities and related systems, vol. 38, pp. 225–231, 2003.

[85] D. Mesquita, A. Souza, and S. Kaski, “Rethinking pooling in graph neural networks,”

Advances in Neural Information Processing Systems (NeurIPS), vol. 33, 2020.

[86] S. Kolouri, N. Naderializadeh, G. K. Rohde, and H. Hoffmann, “Wasserstein embedding

for graph learning,” in International Conference on Learning Representations, 2021.

[Online]. Available: https://openreview.net/forum?id=AAes_3W-2z

[87] L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows: in metric spaces and in the space of

probability measures. Springer Science & Business Media, 2008.

[88] R. Flamary, N. Courty, A. Gramfort, M. Z. Alaya, A. Boisbunon, S. Chambon,

L. Chapel, A. Corenflos, K. Fatras, N. Fournier, L. Gautheron, N. T. Gayraud,

H. Janati, A. Rakotomamonjy, I. Redko, A. Rolet, A. Schutz, V. Seguy, D. J. Sutherland,

R. Tavenard, A. Tong, and T. Vayer, “Pot: Python optimal transport,” Journal of

Machine Learning Research, vol. 22, no. 78, pp. 1–8, 2021. [Online]. Available:

http://jmlr.org/papers/v22/20-451.html

79

https://openreview.net/forum?id=AAes_3W-2z
http://jmlr.org/papers/v22/20-451.html


Bibliography

[89] G. Mialon, D. Chen, A. d’Aspremont, and J. Mairal, “A trainable optimal transport

embedding for feature aggregation and its relationship to attention,” in ICLR 2021-The

Ninth International Conference on Learning Representations, 2021.

[90] B. Schölkopf, A. J. Smola, F. Bach et al., Learning with kernels: support vector machines,

regularization, optimization, and beyond. MIT press, 2002.

[91] S. G. Krantz and H. R. Parks, The implicit function theorem: history, theory, and

applications. Springer Science & Business Media, 2012.

[92] “Ott toolbox,” https://ott-jax.readthedocs.io/en/latest/, released:March 2021.

[93] M. Cuturi, O. Teboul, J. Niles-Weed, and J.-P. Vert, “Supervised quantile normalization

for low rank matrix factorization,” in International Conference on Machine Learning.

PMLR, 2020, pp. 2269–2279.

[94] F. Zhang, The Schur complement and its applications. Springer Science & Business

Media, 2006, vol. 4.

[95] E. Stiefel, “Methods of conjugate gradients for solving linear systems,” J. Res. Nat. Bur.

Standards, vol. 49, pp. 409–435, 1952.

[96] S. Afriat, “Theory of maxima and the method of lagrange,” SIAM Journal on Applied

Mathematics, vol. 20, no. 3, pp. 343–357, 1971.

[97] A. Takayama and T. Akira, Mathematical economics. Cambridge university press, 1985.

[98] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin,

G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang, “JAX:

composable transformations of Python+NumPy programs,” 2018. [Online]. Available:

http://github.com/google/jax

[99] J. J. Sutherland, L. A. O’brien, and D. F. Weaver, “Spline-fitting with a genetic algorithm:

A method for developing classification structure- activity relationships,” Journal of

chemical information and computer sciences, vol. 43, no. 6, pp. 1906–1915, 2003.

[100] G. King and L. Zeng, “Logistic regression in rare events data,” Political analysis, vol. 9,

no. 2, pp. 137–163, 2001.

[101] J. Feydy, T. Séjourné, F.-X. Vialard, S.-i. Amari, A. Trouve, and G. Peyré,

“Interpolating between optimal transport and mmd using sinkhorn divergences,” in

Proceedings of the Twenty-Second International Conference on Artificial Intelligence

and Statistics, ser. Proceedings of Machine Learning Research, K. Chaudhuri and

M. Sugiyama, Eds., vol. 89. PMLR, 16–18 Apr 2019, pp. 2681–2690. [Online]. Available:

http://proceedings.mlr.press/v89/feydy19a.html

80

https://ott-jax.readthedocs.io/en/latest/
http://github.com/google/jax
http://proceedings.mlr.press/v89/feydy19a.html


Bibliography

[102] J. MacQueen et al., “Some methods for classification and analysis of multivariate

observations,” in Proceedings of the fifth Berkeley symposium on mathematical statistics

and probability, vol. 1, no. 14. Oakland, CA, USA, 1967, pp. 281–297.

[103] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seeding,” Stanford,

Tech. Rep., 2006.

[104] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and computing, vol. 17,

no. 4, pp. 395–416, 2007.

[105] D. Pollard, “Quantization and the method of k-means,” IEEE Transactions on

Information theory, vol. 28, no. 2, pp. 199–205, 1982.

[106] G. D. Canas and L. A. Rosasco, “Learning probability measures with respect to optimal

transport metrics,” in Proceedings of the 25th International Conference on Neural

Information Processing Systems-Volume 2, 2012, pp. 2492–2500.

[107] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. Vishwanathan, A. J. Smola, and H.-P. Kriegel,

“Protein function prediction via graph kernels,” Bioinformatics, vol. 21, no. suppl_1, pp.

i47–i56, 2005.

[108] C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and M. Neumann, “Tudataset: A

collection of benchmark datasets for learning with graphs,” in ICML 2020 Workshop

on Graph Representation Learning and Beyond (GRL+ 2020), 2020. [Online]. Available:

www.graphlearning.io

[109] J. Godwin*, T. Keck*, P. Battaglia, V. Bapst, T. Kipf, Y. Li, K. Stachenfeld, P. Veličković, and

A. Sanchez-Gonzalez, “Jraph: A library for graph neural networks in jax.” 2020. [Online].

Available: http://github.com/deepmind/jraph

[110] M. Hessel, D. Budden, F. Viola, M. Rosca, E. Sezener, and T. Hennigan, “Optax:

composable gradient transformation and optimisation, in jax!” 2020. [Online]. Available:

http://github.com/deepmind/optax

[111] T. Hennigan, T. Cai, T. Norman, and I. Babuschkin, “Haiku: Sonnet for JAX,” 2020.

[Online]. Available: http://github.com/deepmind/dm-haiku

[112] F. Errica, M. Podda, D. Bacciu, and A. Micheli, “A fair comparison of graph neural

networks for graph classification,” in Proceedings of the 8th International Conference on

Learning Representations (ICLR), 2020.

[113] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep learning

requires rethinking generalization,” in 5th International Conference on Learning

Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track

Proceedings. OpenReview.net, 2017.

81

www.graphlearning.io
http://github.com/deepmind/jraph
http://github.com/deepmind/optax
http://github.com/deepmind/dm-haiku


Bibliography

[114] M. Cuturi and D. Avis, “Ground metric learning,” The Journal of Machine Learning

Research, vol. 15, no. 1, pp. 533–564, 2014.

[115] M. Heitz, N. Bonneel, D. Coeurjolly, M. Cuturi, and G. Peyré, “Ground metric learning

on graphs,” Journal of Mathematical Imaging and Vision, vol. 63, no. 1, pp. 89–107, 2021.

[116] F. Wang and L. J. Guibas, “Supervised earth mover’s distance learning and its computer

vision applications,” in European Conference on Computer Vision. Springer, 2012, pp.

442–455.

[117] G. Zen, E. Ricci, and N. Sebe, “Simultaneous ground metric learning and matrix

factorization with earth mover’s distance,” in 2014 22nd International Conference on

Pattern Recognition. IEEE, 2014, pp. 3690–3695.

[118] V. Vapnik, Estimation of dependences based on empirical data. Springer Science &

Business Media, 2006.

82



Effrosyni SIMOU
Machine Learning Engineer
 ersisimou.github.io
 github.com/ersisimou
 effrosyni.simou@epfl.ch

 EDUCATION

Jul 2016 PhD, SIGNAL PROCESSING LABORATORY- LTS4, ÉCOLE POLYTECHNIQUE FEDERALE DE LAUSANNE, EPFL
Oct 2021 ∠ Supervisor : Prof. Pascal Frossard

∠ Title : Graph Representation Learning with Optimal Transport : Analysis and Applications
∠ Examiners : Prof. P. Vandergheynst, Prof. X. Bresson, Dr. J. Feydy, President : Prof. J-Ph. Thiran
∠ Thesis successfully defended on October 15th 2021

Sep 2013 MSc Communications and Signal Processing, IMPERIAL COLLEGE LONDON, ICL
Sep 2014 ∠ Graduated with Merit

∠ MSc thesis project ranked among the three best

Oct 2007 Dipl. Electrical Engineering and Computer Science, NATIONAL TECHNICAL UNIVERSITY OF ATHENS, NTUA
Jul 2013 ∠ Graduated with Distinction

∠ Five year Diploma equivalent to MEng
∠ Specialization stream : Communications and Signal Processing

 EXPERIENCE

Jul 2016 Doctoral Assistant, LTS4 LABORATORY, ÉCOLE POLYTECHNIQUE FEDERALE DE LAUSANNE, EPFL
Oct 2021 ∠ Designed, developedandevaluatedanautoencoderwith aWassersteinbarycentric decoder for graph

structured data. The autoencoder leads to interpretable node embeddings that are stable to pertur-
bations of the graph structure and exhibits an increase in performance in node classification tasks
compared to state-of-the-art algorithms.
Python PyTorch Matplotlib scikit-learn GitHub

∠ Designed, developed and evaluated a global pooling layer for Graph Neural Network architectures.
Thepooling layer optimally preserves the statistics byminimizing theWassesrtein distance between a
graph’s representation and its pooled version and leads to an increase in graph classification accuracy
compared to state-of-the-art methods.
Python JAX Flax Optax Jraph OTT Matplotlib scikit-learn GitHub

∠ Contributed to the development and the evaluation of a continuous domain adaptation method for
temporally evolving data using Optimal Transport. The method demonstrated an increase in classifi-
cation accuracy with respect to competing methods.
Python Matplotlib scikit-learn GitHub

∠ Supervised projects of master students on Graph Neural Network architectures.

Sep 2017 Teaching Assistant, ÉCOLE POLYTECHNIQUE FEDERALE DE LAUSANNE, EPFL
Feb 2020 ANetworkTourofDataScience (NTDS) :Master’s course. Created, demonstratedandevaluatedpractical ses-

sions of the course. The practical sessions focused on the collection, analysis and visualization of network-
structured data, as well as on their exploitation with machine learning algorithms.
Python NumPy Matplotlib scikit-learn pandas GitHub

Mar 2016 Research Intern, LTS4 LABORATORY, ÉCOLE POLYTECHNIQUE FEDERALE DE LAUSANNE, EPFL
Jun 2016 Performed an experimental analysis in order to quantify the progressivemiss-representation of adversarial

images at the hidden layers of Deep Neural Network classifiers.
Matlab MatConvNet

Apr 2015 Research Assistant | Scientific Programmer, IBUG LABORATORY, IMPERIAL COLLEGE LONDON, ICL
Aug 2015 Contributed to the annotation of data within the framework of development of the Menpo project

(www.menpo.org) for deformable modelling. Annotation was performed both manually as well as with
the use of trained models.
Python NumPy Matplotlib scikit-learn pandas GitHub

Jan 2010 Assistant, RESIDENTIAL INVESTMENTS S.A., Athens, Greece
Sep 2011 Part-time. Administrative and technical duties related to building construction and development.

83



 LEADERSHIP AND AWARDS

Oct 2016 PhD Student Representative, DOCTORAL SCHOOL OF ELECTRICAL ENGINEERING (EDEE), EPFL
Oct 2018 Elected from the EDEE student body to represent them in the doctoral program committee meetings and

the doctoral commission meetings, which are chaired by the Vice-President for Education

Oct 2014 Kontaxi Award, NATIONAL TECHNICAL UNIVERSITY OF ATHENS, NTUA
Honorary award for ranking first (with GPA= 9/10) among the 2013 graduates of the NTUA Department of
Electrical Engineering andComputer Sciencewithin the streamof Communications andSignal Processing.

Mar 2014 IKY Award, STATE SCHOLARSHIP FOUNDATION
Honorary award for obtaining the highest overall grade (10/10) in the academic year 2011/2012 among the
students in the NTUA Department of Electrical Engineering and Computer Science.

Jul 2013 Thomaidio Prize, NATIONAL TECHNICAL UNIVERSITY OF ATHENS, NTUA
Monetary prize for achieving the highest overall grade (10/10) in the academic year 2011/2012 among all
students from all years in the NTUA Department of Electrical Engineering and Computer Science.

Sep 2007 Outstanding performance in the Greek National Exams
Awarded for ranking among the top 10% of the students with the best performance on the Greek National
Exams that were admitted to the NTUA Department of Electrical Engineering and Computer Science .

 SKILLS

Programming Languages Python, C++
Deep learning frameworks JAX, PyTorch, TensorFlow, MatConvNet

Scientific Computing Python (NumPy, Matplotlib, scikit-learn, pandas), Matlab
Open Source Familiarity with open-source GitHub development and management workflows.

 LANGUAGES
∠ Greek : mother tongue
∠ English : Fluent, Certificate of Proficiency in English, University of Cambridge, Grade obtained : A
∠ French : Advanced, Level B2, Institut Francais d Athènes

 PUBLICATIONS

PhD Thesis ∠ Graph Representation Learning with Optimal Transport : Analysis and Applications, Effrosyni Si-
mou, October 2021.

Journal ∠ node2coords : Graph Representation Learning with Wasserstein Barycenters, Effrosyni Simou, Do-
rina Thanou, Pascal Frossard, IEEE Transactions on Signal and Information Processing over Networks,
vol. 7, pp. 17–29, 2020.

Conference ∠ Forward-Backward Splitting for Optimal Transport Based Problems, Guillermo Ortiz-Jiménez, Mi-
reille El Gheche, Effrosyni Simou, Hermina Petric Maretić, Pascal Frossard, IEEE International Confe-
rence on Acoustics, Speech and Signal Processing (ICASSP), 2020.

∠ Graph Signal Representation with Wasserstein Barycenters, Effrosyni Simou and Pascal Frossard,
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019.

Workshop ∠ CDOT : Continuous Domain Adaptation using Optimal Transport, Guillermo Ortiz-Jiménez, Mireille
ElGheche, Effrosyni Simou,HerminaPetricMaretić, Pascal Frossard,OptimalTransport&Machine lear-
ning (OTML) Workshop at 34th Conference on Neural Information Processing Systems (NeurIPS), 2019.

84


	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Contents
	Introduction
	Motivation
	Thesis Outline
	Summary of Contributions

	Optimal Transport for Machine Learning
	Illustrative Description of The Optimal Transport Problem
	Optimal Transport Problems for Discrete Measures
	Discrete Measures
	The Monge Problem
	The Kantorovich Problem
	Wasserstein Distance

	Entropy Regularization of the Optimal Transport Problem
	Entropy-Regularized Optimal Transport for Machine Learning
	Log-stabilized Solution
	Relaxation of the Mass-Preservation Constraints
	Metric Properties of the Entropy Regularized Transportation Problem

	Wasserstein Barycenter
	Wasserstein Barycenter of Fixed Support
	Entropy-Regularized Wasserstein Barycenter of Fixed Support

	Optimal Transport for Machine Learning on Graphs

	Graph Representation Learning with Wasserstein Barycenters
	Introduction
	Related Work
	Wasserstein Barycenters for Graph Representation Learning
	Efficient Method for Barycenter Computation of Graph Patterns
	Illustrative Example of Wasserstein Barycenter of Graph Patterns

	node2coords
	Experimental Results
	Settings
	Interpretation of node2coords on a Community Detection Task
	Stability to Perturbations
	Node Classification
	Generalization to Unseen Nodes
	Parameter Sensitivity
	Study of the Effect of the Barycentric Layer

	Conclusion

	Pooling Graph Representations with Wasserstein Gradient Flows
	Introduction
	Related Work
	Graph Representations as Probability Measures
	FlowPool
	Implementation of FlowPool
	Permutation Invariance
	Computation of X LC(X,Y)(a, b)
	Proof of Permutation Invariance

	Integrating FlowPool in Graph Neural Network Architectures
	Experiments
	Experimental Analysis
	Preliminary Classification Results of FlowPool in a GNN

	Parametrization of FlowPool - Learning the Ground Cost
	Conclusion

	Conclusion and Future Work
	Bibliography
	Curriculum Vitae



